WO2018173425A1 - 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 - Google Patents

電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2018173425A1
WO2018173425A1 PCT/JP2018/000376 JP2018000376W WO2018173425A1 WO 2018173425 A1 WO2018173425 A1 WO 2018173425A1 JP 2018000376 W JP2018000376 W JP 2018000376W WO 2018173425 A1 WO2018173425 A1 WO 2018173425A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
coil
neutral point
phase
coil groups
Prior art date
Application number
PCT/JP2018/000376
Other languages
English (en)
French (fr)
Inventor
弘光 大橋
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to US16/486,528 priority Critical patent/US10998841B2/en
Priority to DE112018001580.7T priority patent/DE112018001580T5/de
Priority to JP2019507375A priority patent/JP7010282B2/ja
Priority to CN201880019522.2A priority patent/CN110463024B/zh
Publication of WO2018173425A1 publication Critical patent/WO2018173425A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation

Definitions

  • the present disclosure relates to a power conversion device, a motor drive unit, and an electric power steering device.
  • Patent Document 1 discloses a power conversion device that includes a control unit and two inverters and converts power supplied to a three-phase motor. Each of the two inverters is connected to a power source and a ground (hereinafter referred to as “GND”). One inverter is connected to one end of the three-phase winding of the motor, and the other inverter is connected to the other end of the three-phase winding. Each inverter has a bridge circuit composed of three legs, each including a high-side switch element and a low-side switch element.
  • the control unit switches the motor control from the normal control to the abnormal control. In normal control, for example, the motor is driven by switching the switching elements of two inverters. In the control at the time of abnormality, for example, the motor is driven by the inverter that has not failed using the neutral point of the winding configured in the failed inverter.
  • the embodiment of the present disclosure provides a power conversion device that can change a motor output to an arbitrary size by adjusting the number of coil groups connected to an inverter.
  • An exemplary power conversion device of the present disclosure supplies power from a power source to an n-phase (n is an integer of 3 or more) motor having m (m is an integer of 3 or more) coils that can be connected in series.
  • a power conversion device that converts power into a first inverter connected to one end of the m coil groups, a second inverter connected to the other end of the m coil groups, and the m pieces M-1 separation relay circuits respectively connected between two adjacent coil groups in each of the coil groups, each of which switches between connection and non-connection of the two adjacent coil groups.
  • the m ⁇ 1 first relay relay circuit that switches connection / disconnection between the ends of the coil group on the inverter side and the m ⁇ 1 separation relay circuit between two adjacent coil groups.
  • M-1 second neutral point relay circuits provided on each second inverter side, each of the ends of the coil groups on the second inverter side of two adjacent coil groups And m ⁇ 1 second neutral point relay circuits for switching between connection and non-connection.
  • the number of coil groups connected to the inverter is determined using a plurality of separation relay circuits, a plurality of first neutral point relay circuits, and a plurality of second neutral point relay circuits.
  • a power conversion device capable of changing the motor output to an arbitrary magnitude by adjustment
  • a motor drive unit including the power conversion device
  • an electric power steering device including the motor drive unit.
  • FIG. 1 is a block diagram showing a typical block configuration of a motor drive unit 1000 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram showing a typical circuit configuration of the power conversion apparatus 100 according to the exemplary embodiment 1.
  • FIG. 3 is a graph illustrating a current waveform (sine wave) obtained by plotting the current values flowing through the U-phase, V-phase, and W-phase coils of the motor 200 when the three-phase energization control is performed.
  • FIG. 4 is a graph illustrating a current waveform (sine wave) obtained by plotting the current value flowing through the second coil group 220 of the motor 200 when the second inverter 120 performs the three-phase energization control.
  • FIG. 1 is a block diagram showing a typical block configuration of a motor drive unit 1000 according to an exemplary embodiment 1.
  • FIG. 2 is a circuit diagram showing a typical circuit configuration of the power conversion apparatus 100 according to the exemplary embodiment 1.
  • FIG. 3 is a graph illustrating a current wave
  • FIG. 5 is a graph illustrating a current waveform (sine wave) obtained by plotting the current values flowing in the first and second coil groups 210 and 220 of the motor 200 when the two-phase energization control is performed.
  • FIG. 6 is a diagram showing the relationship between the rotational speed N (rps) per unit time of the motor and the torque T (N ⁇ m).
  • FIG. 7 is a circuit diagram illustrating a circuit configuration of a power conversion device 100A according to a modification of the exemplary embodiment 1.
  • FIG. 8A is a circuit diagram illustrating another circuit configuration of the power conversion device 100A according to a modification of the exemplary embodiment 1.
  • FIG. 8B is a circuit diagram illustrating another circuit configuration of the power conversion device 100A according to the modification of the exemplary embodiment 1.
  • FIG. 9 is a circuit diagram illustrating a typical circuit configuration of the power conversion device 100B according to the exemplary embodiment 2.
  • FIG. 10 is a circuit diagram illustrating another circuit configuration of the power conversion device 100B according to the exemplary embodiment 2.
  • FIG. 11 is a schematic diagram showing a typical configuration of an electric power steering apparatus 2000 according to an exemplary embodiment 3. As shown in FIG.
  • electric power from a power source is converted into electric power supplied to a three-phase motor having three-phase (U-phase, V-phase, W-phase) windings (sometimes referred to as “coils”).
  • a power conversion device that converts power from a power source into power supplied to an n-phase motor having an n-phase winding (n is an integer of 4 or more) such as four-phase or five-phase is also included in the scope of the present disclosure. . *
  • FIG. 1 schematically shows a typical block configuration of a motor drive unit 1000 according to the present embodiment.
  • the motor drive unit 1000 typically includes a power conversion device 100, a motor 200, and a control circuit 300. *
  • the motor drive unit 1000 is modularized and can be manufactured and sold as a motor module having a motor, a sensor, a driver, and a controller, for example.
  • the motor drive unit 1000 will be described by taking a system including the motor 200 as a component as an example.
  • the motor drive unit 1000 may be a system for driving the motor 200 that does not include the motor 200 as a component.
  • the power conversion apparatus 100 includes a first inverter 110, a second inverter 120, a separation relay circuit 130, a first neutral point relay circuit 140, a second neutral point relay circuit 150, and a current sensor 400.
  • the power conversion device 100 can convert power from the power source 101 (see FIG. 2) into power supplied to the motor 200.
  • the first and second inverters 110 and 120 can convert DC power into three-phase AC power that is a pseudo sine wave of U phase, V phase, and W phase. *
  • First inverter 110 is connected to first coil group 210 of motor 200, and second inverter 120 is connected to second coil group 220.
  • connection between components (components) mainly means electrical connection.
  • the motor 200 is, for example, a three-phase AC motor.
  • the motor 200 includes first and second coil groups 210 and 220.
  • Each of the first and second coil groups 210 and 220 has U-phase, V-phase, and W-phase windings.
  • the first and second coil groups 210 and 220 can be connected in series by a separation relay circuit 130 described later.
  • the winding method may be concentrated winding or distributed winding.
  • the control circuit 300 includes a microcontroller and the like.
  • the control circuit 300 controls the power conversion apparatus 100 based on input signals from the current sensor 400 and the angle sensor 320. Examples of the control method include vector control, pulse width modulation (PWM), and direct torque control (DTC). *
  • FIG. 2 schematically shows a typical circuit configuration of the power conversion apparatus 100 according to the present embodiment.
  • the power conversion apparatus 100 typically includes a power source 101, a coil 102, a capacitor 103, a first inverter 110, a second inverter 120, a separation relay circuit 130, a first neutral point relay circuit 140, and a second neutral point relay circuit. 150. *
  • the power supply 101 generates a predetermined power supply voltage (for example, 12V).
  • a DC power source is used as the power source 101.
  • the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery).
  • the power source 101 may be a single power source common to the first and second inverters 110 and 120, or may include a first power source for the first inverter 110 and a second power source for the second inverter 120. Also good. *
  • a coil 102 is provided between the power supply 101 and each inverter.
  • the coil 102 functions as a noise filter, and smoothes the high frequency noise included in the voltage waveform supplied to each inverter or the high frequency noise generated by each inverter so as not to flow to the power source 101 side.
  • a capacitor 103 is connected to the power supply terminal of each inverter.
  • the capacitor 103 is a so-called bypass capacitor and suppresses voltage ripple.
  • the capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number to be used are appropriately determined according to the design specifications. *
  • the first inverter 110 includes a bridge circuit having three legs. Each leg has a high-side switch element and a low-side switch element. Specifically, the U-phase leg includes a high-side switch element 111H and a low-side switch element 111L. The V-phase leg has a high-side switch element 112H and a low-side switch element 112L. The W-phase leg includes a high-side switch element 113H and a low-side switch element 113L.
  • a field effect transistor typically MOSFET
  • IGBT insulated gate bipolar transistor
  • the first inverter 110 includes, for example, shunt resistors 111R, 112R, and 113R as current sensors 400 (see FIG. 1) for detecting currents flowing through the windings of the U-phase, V-phase, and W-phase, respectively Have on each leg.
  • the current sensor 400 includes a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
  • a shunt resistor can be connected between the low side switch element and GND at each leg.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ . *
  • the number of shunt resistors is not limited to three.
  • two shunt resistors 111R and 112R for U phase and V phase, two shunt resistors 112R and 113R for V phase and W phase, or two shunt resistors 111R and 113R for U phase and W phase are used. It is possible.
  • the number of shunt resistors to be used and the arrangement of the shunt resistors are appropriately determined in consideration of the product cost and design specifications. *
  • the second inverter 120 includes a bridge circuit having three legs.
  • the U-phase leg has a high-side switch element 121H and a low-side switch element 121L.
  • the V-phase leg has a high-side switch element 122H and a low-side switch element 122L.
  • the W-phase leg includes a high-side switch element 123H and a low-side switch element 123L.
  • the second inverter 120 includes, for example, shunt resistors 121R, 122R, and 123R. *
  • the first inverter 110 is connected to one end of the first coil group 210. More specifically, the U-phase leg of the first inverter 110 (that is, the node between the high-side switch element and the low-side switch element) is connected to one end of the U-phase coil 211 of the first coil group 210. The V-phase leg is connected to one end of the V-phase coil 212. The W-phase leg is connected to one end of the W-phase coil 213. *
  • the second inverter 120 is connected to one end of the second coil group 220. More specifically, the U-phase leg of the second inverter 120 is connected to one end of the U-phase coil 221 of the second coil group 220. The V-phase leg is connected to one end of the V-phase coil 222. The W-phase leg is connected to one end of the W-phase coil 223. *
  • the separation relay circuit 130 is connected to the other end of the first coil group 210 and the other end of the second coil group 220.
  • the separation relay circuit 130 can switch connection / disconnection of the first and second coil groups 210, 220.
  • the separation relay circuit 130 includes three coils 211, 212, and 213 in the first coil group 210 and three coils 221, 222, and 223 in the second coil group 220 that switch connection / disconnection.
  • Separation relays 131, 132, and 133 are provided. More specifically, the separation relay 131 is connected to the other end of the coil 211 of the first coil group 210 and the other end of the coil 221 of the second coil group 220, and switches connection / disconnection of those coils.
  • the separation relay 132 is connected to the other end of the coil 212 and the other end of the coil 222, and switches connection / disconnection of these coils.
  • the separation relay 133 is connected to the other end of the coil 213 and the other end of the coil 223, and switches connection / disconnection of these coils. *
  • the first neutral point relay circuit 140 is connected to the other end of the first coil group 210.
  • the first neutral point relay circuit 140 can switch connection / disconnection between the other ends of the first coil group 210.
  • the first neutral point relay circuit 140 has three first intermediate terminals, one end of which is commonly connected to the node N1 and the other end is connected to the three coils 211, 212, and 213 of the first coil group 210. It has sex point relays 141, 142 and 143. More specifically, the first neutral point relay 141 is connected to the node N1 and the other end of the coil 211. The first neutral point relay 142 is connected to the node N1 and the other end of the coil 212. First neutral point relay 143 is connected to node N 1 and the other end of coil 213. *
  • the second neutral point relay circuit 150 is connected to the other end of the second coil group 220.
  • the second neutral point relay circuit 150 can switch connection / disconnection between the other ends of the second coil group 220.
  • the second neutral point relay circuit 150 has three second middle terminals, one end of which is commonly connected to the node N 2 and the other end is connected to the three coils 221, 222 and 223 of the second coil group 220. It has sex point relays 151, 152 and 153. More specifically, the second neutral relay 151 is connected to the node N2 and the other end of the coil 221. Second neutral point relay 152 is connected to node N 2 and the other end of coil 222. Second neutral point relay 153 is connected to node N 2 and the other end of coil 223. *
  • a semiconductor switch element such as a MOSFET, a thyristor, an analog switch IC, a triac, or a mechanical relay can be used.
  • the separation relay circuit 130 When the separation relay circuit 130 is turned on, the first coil group 210 and the second coil group 220 are connected. When the separation relay circuit 130 is turned off, the first coil group 210 is electrically disconnected from the second coil group 220. “The separation relay circuit 130 is turned on” means that all the separation relays 131, 132, and 133 in the separation relay circuit 130 are turned on, and “the separation relay circuit 130 is turned off” means that the separation relay 131, It means that 132 and 133 are all turned off. *
  • the first neutral point relay circuit 140 When the first neutral relay circuit 140 is turned on, the other ends of the three-phase coils 211, 212, and 213 of the first coil group 210 are connected to each other. As a result, the first coil group 210 is Y-connected.
  • the node N1 in the first neutral point relay circuit 140 can function as a neutral point.
  • the first neutral point relay circuit 140 is turned off, the other ends of the three-phase coils 211, 212, and 213 are not connected to each other.
  • “The first neutral point relay circuit 140 is turned on” means that the first neutral point relays 141, 142, and 143 in the first neutral point relay circuit 140 are all turned on.
  • “The sex point relay circuit 140 is turned off” means that the first neutral point relays 141, 142, and 143 are all turned off. *
  • the second neutral point relay circuit 150 When the second neutral point relay circuit 150 is turned on, the other ends of the three-phase coils 221, 222, and 223 of the second coil group 220 are connected. As a result, the second coil group 220 is Y-connected.
  • the node N2 in the second neutral point relay circuit 150 can function as a neutral point.
  • the second neutral relay circuit 150 is turned off, the other ends of the three-phase coils 221, 222, and 223 are not connected to each other.
  • “The second neutral point relay circuit 150 is turned on” means that the second neutral point relays 151, 152, and 153 in the second neutral point relay circuit 150 are all turned on.
  • the sex relay circuit 150 is turned off means that the second neutral relays 151, 152, and 153 are all turned off.
  • the separation relay circuit 130 and the first and second neutral relay circuits 140 and 150 are not turned on or off at the same time.
  • the separation relay circuit 130 is turned on, the first and second neutral relay circuits 140 and 150 are turned off.
  • the separation relay circuit 130 is turned off, at least one of the first and second neutral point relay circuits 140 and 150 is turned on.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a microcontroller 340, a drive circuit 350, and a ROM 360.
  • the control circuit 300 is connected to the power conversion device 100.
  • the control circuit 300 controls the power converter 100, specifically, the first inverter 110, the second inverter 120, the separation relay circuit 130, the first neutral point relay circuit 140, and the second neutral point relay circuit 150. To do. *
  • the control circuit 300 can realize closed-loop control by controlling the target rotor position (rotation angle), rotation speed, current, and the like.
  • the rotation speed is obtained, for example, by differentiating the rotation angle (rad) with time, and is represented by the number of rotations (rpm) at which the rotor rotates per unit time (for example, 1 minute).
  • the control circuit 300 may include a torque sensor instead of the angle sensor. In this case, the control circuit 300 can control the target motor torque. *
  • the power supply circuit 310 generates a DC voltage (for example, 3V, 5V) necessary for each block in the circuit. *
  • the angle sensor 320 is, for example, a resolver or a Hall IC.
  • the angle sensor 320 is also realized by a combination of an MR sensor having a magnetoresistive (MR) element and a sensor magnet.
  • the angle sensor 320 detects the rotation angle of the rotor of the motor 200 (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the microcontroller 340.
  • rotation signal the rotation angle of the rotor of the motor 200
  • the angle sensor 320 may not be required. *
  • the input circuit 330 receives a motor current value detected by the current sensor 400 (hereinafter referred to as “actual current value”).
  • the input circuit 330 converts the actual current value level to the input level of the microcontroller 340 as necessary, and outputs the actual current value to the microcontroller 340.
  • the input circuit 330 is an analog / digital conversion circuit. *
  • the microcontroller 340 receives the rotor rotation signal detected by the angle sensor 320.
  • the microcontroller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350.
  • the microcontroller 340 generates a PWM signal for controlling the switching operation (turn-on or turn-off) of each switch element in the first and second inverters 110 and 120 of the power conversion device 100.
  • the microcontroller 340 includes an ON / OFF state of each separation relay in the separation relay circuit 130 of the power conversion device 100 and each neutral point relay in the first and second neutral point relay circuits 140 and 150. It is possible to generate a signal that determines the on / off state.
  • the drive circuit 350 is typically a gate driver.
  • the drive circuit 350 generates a control signal (for example, a gate control signal) for controlling the switching operation of each switch element in the first and second inverters 110 and 120 according to the PWM signal, and gives the control signal to each switch element.
  • the drive circuit 350 generates control signals for turning on and off the relays according to signals from the microcontroller 340 that determine the on / off states of the individual relays and the neutral relays. It is possible to provide a control signal.
  • the microcontroller 340 may have the function of the drive circuit 350. In that case, the drive circuit 350 is not required. *
  • the ROM 360 is, for example, a writable memory (for example, PROM), a rewritable memory (for example, flash memory), or a read-only memory.
  • the ROM 360 stores a control program including a command group for causing the microcontroller 340 to control the power conversion apparatus 100.
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting.
  • the control of the power conversion apparatus 100 includes normal and abnormal control.
  • the control circuit 300 (mainly the microcontroller 340) can switch the control of the power conversion apparatus 100 from normal control to abnormal control. *
  • the power conversion device 100 has first and second operation modes in normal control.
  • the first operation mode is an operation mode in which high motor output (high output) due to high-speed rotation of the motor is not required.
  • the first operation mode corresponds to a conventional mode generally used for driving a power converter in which one inverter is connected to one end of a coil and the other inverter is connected to the other end of the coil.
  • the second operation mode is an operation mode in which high output is required by high-speed rotation of the motor.
  • the control circuit 300 can switch the normal operation mode between the first and second operation modes. *
  • the control circuit 300 turns on the separation relay circuit 130 and turns off the first and second neutral point relay circuits 140 and 150.
  • the first inverter 110 is connected to one end of the first coil group 210
  • the second inverter 120 is connected to one end of the second coil group 220
  • the first and second coil groups 210 are connected.
  • 220 are connected to each other.
  • the first and second inverters 110 and 120 perform three-phase energization control that independently controls the current flowing through the three-phase coil.
  • FIG. 3 illustrates a current waveform (sine wave) obtained by plotting the current values flowing through the U-phase, V-phase, and W-phase coils of the motor 200 when three-phase energization control is performed.
  • the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • the current value is plotted every 30 ° electrical angle.
  • Ipk represents the maximum current value (peak current value) of each phase.
  • Table 1 shows the value of current flowing through the coils of each phase for each electrical angle in the sine wave of FIG. Table 1 specifically shows the value of the current flowing every 30 ° of electrical angle flowing from the first inverter 110 to each phase coil, and every 30 ° electrical angle flowing from the second inverter 120 to the winding of each phase.
  • the value of current is shown.
  • the direction of current flowing from the first inverter 110 to the coil of each phase is defined as a positive direction.
  • the direction of current shown in FIG. 3 follows this definition.
  • the second inverter 120 the direction of current flowing from the second inverter 120 to the coil of each phase is defined as a positive direction.
  • the phase difference between the current of the first inverter 110 and the current of the second inverter 120 is 180 °.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * I pk
  • the magnitude of the current value I 2 is I pk / 2.
  • a current of magnitude I 2 flows from the first inverter 110 to the second inverter 120 through the two U-phase coils 211 and 221, and the second V-phase coils 212 and 222 have a second current.
  • a current of magnitude I pk flows from the inverter 120 to the first inverter 110, and a current of magnitude I 2 flows from the first inverter 110 to the second inverter 120 through the two W-phase coils 213 and 223.
  • current of magnitude I 1 flows from the first inverter 110 to the second inverter 120 through the two U-phase coils 211 and 221, and the second inverter 212 and 222 through the two V-phase coils 212 and 222.
  • a current of magnitude I 1 flows from 120 to the first inverter 110. No current flows through the two W-phase coils 213 and 223.
  • current of magnitude I pk flows from the first inverter 110 to the second inverter 120 through the two U-phase coils 211 and 221, and the second inverter 212 and 222 through the two V-phase coils 212 and 222.
  • a current of magnitude I 2 flows from 120 to the first inverter 110, and a current of magnitude I 2 flows from the second inverter 120 to the first inverter 110 through the two W-phase coils 213 and 223.
  • a current of magnitude I 1 flows from the first inverter 110 to the second inverter 120 through the two U-phase coils 211 and 221, and the second inverter 213 and 223 has the second inverter.
  • a current of magnitude I 1 flows from 120 to the first inverter 110. No current flows through the two V-phase coils 212 and 222.
  • a current of magnitude I 2 flows from the first inverter 110 to the second inverter 120 through the two U-phase coils 211, 221, and the first inverter through the two V-phase coils 212, 222.
  • a current of magnitude I 2 flows from 110 to the second inverter 120, and a current of magnitude I pk flows from the second inverter 120 to the first inverter 110 through the two W-phase coils 213 and 223.
  • a current of magnitude I 2 flows from the second inverter 120 to the first inverter 110 through the two U-phase coils 211 and 221, and the first inverters through the two V-phase coils 212 and 222
  • a current of magnitude I pk flows from 110 to the second inverter 120
  • a current of magnitude I 2 flows from the second inverter 120 to the first inverter 110 through the two W-phase coils 213 and 223.
  • a current of magnitude I 1 flows from the second inverter 120 to the first inverter 110 through the two U-phase coils 211 and 221, and the first inverter receives the two V-phase coils 212 and 222.
  • a current of magnitude I 1 flows from 110 to the second inverter 120. No current flows through the two W-phase coils 213 and 223.
  • a current of magnitude I pk flows from the second inverter 120 to the first inverter 110 through the two U-phase coils 211 and 221, and the first inverters through the two V-phase coils 212 and 222
  • a current of magnitude I 2 flows from 110 to the second inverter 120, and a current of magnitude I 2 flows from the first inverter 110 to the second inverter 120 through the two W-phase coils 213 and 223.
  • a current of magnitude I 1 flows from the second inverter 120 to the first inverter 110 through the two U-phase coils 211 and 221, and the first inverter receives the two W-phase coils 213 and 223.
  • a current of magnitude I 1 flows from 110 to the second inverter 120. No current flows through the two V-phase coils 212 and 222.
  • a current of magnitude I 2 flows from the second inverter 120 to the first inverter 110 through the two U-phase coils 211, 221, and the second inverters through the two V-phase coils 212, 222
  • a current of magnitude I 2 flows from 120 to the first inverter 110
  • a current of magnitude I pk flows from the first inverter 110 to the second inverter 120 through the two W-phase coils 213 and 223.
  • the control circuit 300 controls the switching operation of each switch element of the first and second inverters 110 and 120 by PWM control that obtains the current waveform shown in FIG. *
  • the control circuit 300 can switch the operation mode from the first operation mode to the second operation mode when a high output by high-speed rotation of the motor is required.
  • the separation relay circuit 130 is turned off, and the first and second neutral relay circuits 140 and 150 are turned on.
  • the first coil group 210 is separated from the second coil group.
  • the other ends of the first coil group 210 are Y-connected, and the other ends of the second coil group 220 are Y-connected.
  • the node N1 of the first neutral point relay circuit 140 and the node N2 of the second neutral point relay circuit 150 can each function as a neutral point.
  • the first inverter 110 is connected to the first coil group 210 that is Y-connected, and the second inverter 120 is connected to the second coil group 220 that is Y-connected. In this connected state, the first inverter 110 can energize the first coil group 210, and the second inverter 120 can energize the second coil group 220.
  • FIG. 4 illustrates a current waveform (sine wave) obtained by plotting the value of the current flowing through the second coil group 220 of the motor 200 when the second inverter 120 performs the three-phase energization control.
  • the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • current values are plotted every 30 ° electrical angle.
  • Ipk represents the maximum current value (peak current value) of each phase.
  • Table 2 shows current values flowing in the coils of the respective phases of the second coil group 220 for each electrical angle in the sine wave of FIG. 4.
  • the sign of the current value shown in FIG. 4 follows the definition of the current direction described above.
  • a current of magnitude I 2 flows through the U-phase coil 221 toward the second inverter 120, and a current of magnitude I pk flows from the second inverter 120 into the V-phase coil 222.
  • a current of magnitude I 2 flows through the W-phase coil 223 toward the second inverter 120.
  • the current magnitude I 1 flows toward the second inverter 120 to the coil 221 of the U-phase current of magnitude I 1 flows from the second inverter 120 to the coil 222 of the V-phase. No current flows through the W-phase coil 223.
  • the control circuit 300 can control the switching operation of each switch element of the second inverter 120 by PWM control that obtains the current waveform shown in FIG.
  • the control circuit 300 can control the first inverter 110 similarly to the second inverter 120. Since the entire energization current does not change between the first and second operation modes, the motor assist torque is the same.
  • the maximum voltage applied to the coil can be increased by superimposing the third harmonic component of the three-phase voltage.
  • the motor 200 can be rotated at a higher speed in the second operation mode than in the first operation mode.
  • the third operation mode is an operation mode used for control at the time of abnormality.
  • the abnormality refers to a state in which a failure mainly occurs in the switch elements of the first and second inverters 110 and 120 and the motor cannot be driven in the first and second operation modes.
  • the failure is roughly classified into an “open failure” and a “short failure”.
  • Open failure refers to a failure in which the source and drain of the FET are opened (in other words, the resistance rds between the source and drain becomes high impedance)
  • short failure refers to the failure between the source and drain of the FET. Refers to a short circuit failure.
  • this operation mode will be described on the assumption that a failure has occurred in the switch element in the first inverter 110. Naturally, the control in this operation mode is also applied when a failure occurs in the switch element in the second inverter 120.
  • control circuit 300 turns on the separation relay circuit 130 and turns off the first and second neutral point relay circuits 140 and 150 as in the first operation mode.
  • first coil group 210 is connected to the second coil group 220.
  • the control circuit 300 turns off the other high side switch elements 112H and 113H in the first inverter 110 and turns on all the low side switch elements 111L, 112L, and 113L.
  • the node NL (see FIG. 2) on the low side of the first inverter 110 can function as a neutral point.
  • the non-failed second inverter 120 can energize the first and second coil groups 210 and 220 using the neutral point in the first inverter 110.
  • the function of the node as a neutral point means that three nodes (nodes between the high-side switch element and the low-side switch element of each leg) L1 that connect each phase leg of the inverter and each phase coil. , L2 and L3 are equal potentials.
  • the on / off pattern of the switch element for making these three nodes equipotential is not limited to the above-described pattern, and may be various other patterns.
  • the control circuit 300 can control the switching operation of each switch element of the second inverter 120 by, for example, PWM control that obtains the current waveform shown in FIG.
  • the second inverter 120 energizes the first and second coil groups 210 and 220.
  • the power conversion device 100 has an H bridge for each phase.
  • the U-phase H-bridge has a leg including switch elements 111H and 111L and a leg including switch elements 121H and 121L.
  • the V-phase H-bridge has a leg including switch elements 112H and 112L and a leg including switch elements 122H and 122L.
  • the W-phase H-bridge has a leg including switch elements 113H and 113L and a leg including switch elements 123H and 123L.
  • the power conversion device 100 can perform two-phase energization control using two other H bridges other than the H bridge including the failed switch element. *
  • the U-phase H-bridge cannot be used.
  • the power conversion apparatus 100 performs two-phase energization control using V bridges and W phase H bridges. Even when the V or W phase H bridge cannot be used, the power conversion apparatus 100 can perform the two phase energization control using another two phase H bridge.
  • FIG. 5 illustrates a current waveform (sine wave) obtained by plotting the current values flowing through the first and second coil groups 210 and 220 of the motor 200 when the power conversion device 100 performs the two-phase energization control.
  • the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • the current value is plotted every 30 ° electrical angle.
  • Ipk represents the maximum current value (peak current value) of each phase.
  • the power conversion apparatus 100 can energize the V and W phase coils using the V and W phase H bridges that are not faulty. Thereby, motor drive can be continued.
  • the motor drive may be performed by energizing a coil group connected to a non-failed inverter without using the failed inverter.
  • the control circuit 300 turns off the separation relay circuit 130 and the first neutral point relay circuit 140, and the second neutral point relay circuit 150. Can be turned on.
  • the motor can be driven by energizing the second coil group 220 Y-connected using the second inverter 120.
  • FIG. 6 shows the relationship between the rotational speed N (rps) per unit time of the motor and the torque T (N ⁇ m).
  • FIG. 6 shows a so-called TN curve for each of the first to third operation modes described above. *
  • the separation relay circuit 130 the first By switching on and off the first and second neutral point relay circuits 140 and 150 according to a predetermined pattern, the connection system of the two coil groups can be switched. As a result, the operation mode can be switched between the first operation mode and the second operation mode, and the high-speed driving of the motor 200 can be further improved.
  • FIG. 7 schematically shows a circuit configuration of a power conversion device 100A according to a modification of the present embodiment.
  • the first coil group 210 includes three coil groups of each phase each having at least two coils connected in parallel, and the second coil group 220. Comprises three groups of coils of each phase each having at least two coils connected in parallel.
  • FIG. 6 illustrates a configuration in which the coil group of each phase has two coils connected in parallel.
  • the separation relay circuit 130 can switch connection / disconnection between the three coil groups in the first coil group 210 and the three coil groups in the second coil group 220.
  • the first neutral point relay circuit 140 has three first neutral point relays 141 having one end connected in common to the node N1 and the other end connected to the three coil groups of the first coil group 210. , 142 and 143.
  • the second neutral point relay circuit 150 has three second neutral point relays 151 having one end connected in common to the node N2 and the other end connected to the three coil groups of the second coil group 220. , 152 and 153. *
  • the coil 211_2 is used as the U-phase coil.
  • 221_1 and 221_2 can be used to continue motor driving in the first or second operation mode.
  • the coils 211_2 and 221_1 are used as the U-phase coils.
  • the motor drive in the first or second operation mode can be continued.
  • the motor driving in the first or second operation mode can be continued using another coil. It becomes. *
  • FIG. 8A schematically shows another circuit configuration of the power conversion device 100A according to the modification of the present embodiment. *
  • the first coil group 210 includes three coil groups of three phases each having two coils connected in parallel
  • the second coil group 220 includes: , Each comprising three groups of coils of each phase having two coils connected in parallel.
  • the separation relay circuit 130 can switch connection / disconnection between the three coil groups in the first coil group 210 and the three coil groups in the second coil group 220.
  • the first neutral point relay circuit 140 has one end commonly connected to the node N1 and the other end one of two coils in each of the three coil groups of the first coil group 210. Have three first neutral point relays 141_1, 142_1, and 143_1. The first neutral point relay circuit 140 has one end connected in common to the node N3 and the other end connected to the other of the two coils in each of the three coil groups of the first coil group 210. And three first neutral point relays 141_2, 142_2 and 143_2 connected to. *
  • the first neutral point relay 141_1 is connected to the coil 211_1 in the U-phase coil group in the first coil group 210, and the first neutral point relay 142_1 is the coil 212_1 in the V-phase coil group.
  • the first neutral point relay 143_1 is connected to the coil 213_1 in the W-phase coil group.
  • the first neutral point relay 141_2 is connected to the coil 211_2 in the U-phase coil group
  • the first neutral point relay 142_2 is connected to the coil 212_2 in the V-phase coil group
  • the first neutral point relay 143_2 is , Connected to the coil 213_2 in the W-phase coil group.
  • the second neutral point relay circuit 150 has one end connected in common to the node N2 and the other end connected to one of the two coils in each of the three coil groups of the second coil group 220. Have three second neutral point relays 151_1, 152_1, and 153_1. The second neutral point relay circuit 150 has one end commonly connected to the node N4 and the other end connected to the other of the two coils in each of the three coil groups of the second coil group 220. And three second neutral point relays 151_2, 152_2 and 153_2 connected to. *
  • the second neutral point relay 151_1 is connected to the coil 221_1 in the U-phase coil group in the second coil group 220, and the second neutral point relay 152_1 is the coil 222_1 in the V-phase coil group.
  • the second neutral point relay 153_1 is connected to the coil 223_1 in the W-phase coil group.
  • the second neutral point relay 151_2 is connected to the coil 221_2 in the U-phase coil group
  • the second neutral point relay 152_2 is connected to the coil 222_2 in the V-phase coil group
  • the second neutral point relay 153_2 is , Connected to the coil 223_2 in the W-phase coil group.
  • the separation relay circuit 130 can be turned on, the first and second neutral relay circuits 140 and 150 can be turned off, and the motor drive in the first operation mode can be continued using a coil that is not disconnected. It is. *
  • the separation relay circuit 130 can be turned off and the motor drive in the second operation mode can be continued.
  • the control circuit 300 turns off all three first neutral point relays 141_1, 142_1, and 143_1 including the first neutral point relays connected to the disconnected coils 211_1 and 212_1, and the other first neutral points.
  • the point relays 141_2, 142_2, and 143_2 are turned on. Thereby, the coils 211_2, 212_2, and 213_2 are Y-connected.
  • the first inverter 110 can energize the coils 211_2, 212_2, and 213_2 that are Y-connected.
  • the control circuit 300 turns off all three second neutral point relays 151_1, 152_1, and 153_1 including the second neutral point relay connected to the disconnected coil 223_1, and the other second neutral point relay 151_2. , 152_2 and 153_2 are turned on. Thereby, the coils 221_2, 222_2 and 223_2 are Y-connected.
  • the second inverter 120 can energize the coils 221_2, 222_2, and 223_2 that are Y-connected. As described above, even when one of the plurality of coils included in one phase is disconnected, the motor driving in the first or second operation mode can be continued using another coil. It becomes.
  • FIG. 8B schematically shows still another circuit configuration of the power conversion device 100A according to the modification of the present embodiment.
  • the number of coils included in each phase coil group is not limited to two.
  • the first coil group 210 may include three coil groups each having three or more coils connected in parallel.
  • the second coil group 220 may include three coil groups each having three or more coils connected in parallel.
  • FIG. 8B illustrates a configuration in which each phase coil group includes three coils. *
  • the first neutral point relay circuit 140 includes three neutral point relay circuits 140_1, 140_2, and 140_3. Each neutral point relay circuit has three first neutral point relays. Three coils in each of the three coil groups of the first coil group 210 are connected to three neutral point relay circuits 140_1, 140_2, and 140_3. *
  • the coil 211_1 in the U-phase coil group is connected to the first neutral point relay 141_1.
  • the coil 211_2 is connected to the first neutral point relay 141_2.
  • the coil 211_3 is connected to the first neutral point relay 141_3.
  • the coil 212_1 in the V-phase coil group is connected to the first neutral point relay 142_1.
  • the coil 212_2 is connected to the first neutral point relay 142_2.
  • the coil 212_3 is connected to the first neutral point relay 142_3.
  • Coil 213_1 in the W-phase coil group is connected to first neutral point relay 143_1.
  • the coil 213_2 is connected to the first neutral point relay 143_2.
  • the coil 213_3 is connected to the first neutral point relay 143_3.
  • the second neutral point relay circuit 150 includes three neutral point relay circuits 150_1, 150_2, and 150_3. Each neutral point relay circuit has three second neutral point relays. Three coils in each of the three coil groups of the second coil group 220 are connected to three neutral point relay circuits 150_1, 150_2, and 150_3. *
  • the coil 221_1 in the U-phase coil group is connected to the second neutral point relay 151_1.
  • the coil 221_2 is connected to the second neutral point relay 151_2.
  • the coil 221_3 is connected to the second neutral point relay 151_3.
  • the coil 222_1 in the V-phase coil group is connected to the second neutral point relay 152_1.
  • the coil 222_2 is connected to the second neutral point relay 152_2.
  • the coil 222_3 is connected to the second neutral point relay 152_3.
  • Coil 223_1 in the W-phase coil group is connected to second neutral point relay 153_1.
  • the coil 223_2 is connected to the second neutral point relay 153_2.
  • the coil 223_3 is connected to the second neutral point relay 153_3.
  • the power conversion device 100B can convert the power from the power source 101 into power supplied to a three-phase motor having m coil groups (m is an integer of 3 or more) that can be connected in series. is there.
  • m is an integer of 3 or more
  • FIG. 9 schematically shows a typical circuit configuration of the power conversion device 100B according to the present embodiment. *
  • FIG. 9 illustrates a three-phase motor having three coil groups 210, 220, and 230 that can be connected in series.
  • the first inverter 110 is connected to one end of the three coil groups 210, 220 and 230
  • the second inverter 120 is connected to the other end of the three coil groups 210, 220 and 230.
  • Two separation relay circuits 130_1 and 130_2 are connected between two adjacent coil groups in the three coil groups 210, 220, and 230, respectively. Each separation relay circuit can switch connection / disconnection of two adjacent coil groups. More specifically, the separation relay circuit 130_1 is connected between the first and second coil groups 210 and 220, and the connection / disconnection of the two coil groups can be switched. The separation relay circuit 130_2 is connected between the second and third coil groups 220 and 230, and can switch connection / disconnection of the two coil groups. *
  • Each first neutral point relay circuit 140_1 and 140_2 are respectively provided between two adjacent coil groups. Each first neutral point relay circuit can switch connection / disconnection between ends of a coil group on the first inverter 110 side of two adjacent coil groups.
  • the first neutral point relay circuit 140_1 is provided on the first inverter 110 side of the separation relay circuit 130_1 between the first and second coil groups 210 and 220.
  • the first neutral point relay circuit 140_1 can switch connection / disconnection of the ends of the first coil group 210.
  • the first neutral point relay circuit 140_2 is provided on the first inverter 110 side of the separation relay circuit 130_2 between the second and third coil groups 220 and 230.
  • the first neutral point relay circuit 140_2 can switch connection / disconnection between the ends of the second coil group 220.
  • Each second neutral point relay circuit can switch connection / disconnection between ends of a coil group on the second inverter 120 side of two adjacent coil groups.
  • the second neutral relay circuit 150_1 is provided on the second inverter 120 side of the separation relay circuit 130_1 between the first and second coil groups 210 and 220.
  • the second neutral point relay circuit 150_1 can switch the connection / disconnection between the ends of the second coil group 220.
  • the second neutral point relay circuit 150_2 is provided on the second inverter 120 side of the separation relay circuit 130_2 between the second and third coil groups 220 and 230.
  • the second neutral point relay circuit 150_2 can switch connection / disconnection between the ends of the third coil group 230. *
  • each separation circuit relay and each neutral point relay circuit is as described in the first embodiment. Detailed description here is omitted. *
  • the control circuit 300 controls on / off states of the two separation relay circuits 130_1 and 130_2, the two first neutral point relay circuits 140_1 and 140_2, and the two second neutral point relay circuits 150_1 and 150_2. To do. Thereby, it is possible to change the number of coil groups connected to the first inverter 110 and the number of coil groups connected to the second inverter 120 among the three coil groups 210, 220, and 230. is there. *
  • the control circuit 300 turns on the separation relay circuit 130_1, turns off the separation relay circuit 130_2, turns off the first neutral point relay circuit 140_1, turns on the first neutral point relay circuit 140_2, and
  • the second neutral point relay circuit 150_1 is turned off and the second neutral point relay circuit 150_2 is turned on.
  • the first inverter 110 is connected to the first and second coil groups 210 and 220
  • the second inverter 120 is connected to the third coil group 230.
  • the second coil group 220 is Y-connected by turning on the first neutral relay circuit 140_2.
  • the third coil group 230 is Y-connected by turning on the second neutral relay circuit 150_2.
  • the first inverter 110 can energize the first and second coil groups 210 and 220
  • the second inverter 120 can energize the third coil group 230.
  • the damaged second coil group 220 can be electrically separated from the two inverters by turning off the separation relay circuits 130_1 and 130_2. It is possible to continue the motor drive by energizing the first coil group 210 and the third coil group 230.
  • the motor torque is proportional to the length of the coil side and the number of turns.
  • the motor output can be changed to an arbitrary size by changing the number of coil groups connected to the first inverter 110 and the number of coil groups connected to the second inverter 120. Become. *
  • FIG. 10 schematically shows another circuit configuration of the power conversion device 100B according to the present embodiment. *
  • FIG. 10 illustrates a circuit configuration of a power conversion device 100B that can drive a motor 200 having four coil groups 210, 220, 230, and 240 that can be connected in series. *
  • the power conversion device 100B illustrated in FIG. 10 includes three separation relay circuits 130_1, 130_2, and 130_3, three first neutral point relay circuits 140_1, 140_2, and 140_3, and three second neutral point relay circuits 150_1. , 150_2 and 150_3.
  • FIG. 11 schematically shows a typical configuration of the electric power steering apparatus 2000 according to the present embodiment.
  • a vehicle such as an automobile generally has an electric power steering (EPS) device.
  • the electric power steering apparatus 2000 includes a steering system 520 and an auxiliary torque mechanism 540 that generates auxiliary torque.
  • the electric power steering apparatus 2000 generates auxiliary torque that assists the steering torque of the steering system that is generated when the driver operates the steering wheel. The burden of operation by the driver is reduced by the auxiliary torque.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522, universal shaft joints 523A and 523B, a rotating shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, and a knuckle. 528A and 528B, and left and right steering wheels 529A and 529B. *
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an automotive electronic control unit (ECU) 542, a motor 543, and a speed reduction mechanism 544.
  • the steering torque sensor 541 detects the steering torque in the steering system 520.
  • the ECU 542 generates a drive signal based on the detection signal of the steering torque sensor 541.
  • the motor 543 generates an auxiliary torque corresponding to the steering torque based on the drive signal.
  • the motor 543 transmits the generated auxiliary torque to the steering system 520 via the speed reduction mechanism 544. *
  • the ECU 542 includes, for example, the microcontroller 340 and the drive circuit 350 according to the first embodiment.
  • an electronic control system with an ECU as a core is constructed.
  • a motor drive unit is constructed by the ECU 542, the motor 543, and the inverter 545.
  • the motor drive unit 1000 according to the first embodiment can be suitably used for the unit.
  • Embodiments of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
  • various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)
  • Power Steering Mechanism (AREA)

Abstract

電力変換装置は、m個(mは3以上の整数)のコイル群の一端に接続される第1インバータと、m個のコイル群の他端に接続される第2インバータと、m個のコイル群において隣接する2つのコイル群の間にそれぞれ接続されるm-1個の分離リレー回路と、隣接する2つのコイル群の間で、m-1個の分離リレー回路の各々の第1インバータ側に設けられたm-1個の第1中性点リレー回路と、隣接する2つのコイル群の間で、m-1個の分離リレー回路の各々の第2インバータ側に設けられたm-1個の第2中性点リレー回路と、を備える。

Description

電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
本開示は、電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置に関する。
近年、電動モータ(以下、単に「モータ」と表記する。)、電力変換装置およびECUが一体化された機電一体型モータが開発されている。特に車載分野において、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。 
特許文献1は、制御部と、2つのインバータとを有し、三相モータに供給する電力を変換する電力変換装置を開示する。2つのインバータの各々は電源およびグランド(以下、「GND」と表記する。)に接続される。一方のインバータは、モータの三相の巻線の一端に接続され、他方のインバータは、三相の巻線の他端に接続される。各インバータは、各々がハイサイドスイッチ素子およびローサイドスイッチ素子を含む3つのレグから構成されるブリッジ回路を有する。制御部は、2つのインバータにおけるスイッチ素子の故障を検出した場合、モータ制御を正常時の制御から異常時の制御に切替える。正常時の制御では、例えば、2つのインバータのスイッチ素子をスイッチングすることによりモータが駆動される。異常時の制御では、例えば、故障したインバータに構成された巻線の中性点を用いて、故障していないインバータによってモータが駆動される。
特開2014-192950号公報
上述した従来の技術では、モータ出力のさらなる向上が求められていた。 
本開示の実施形態は、インバータに接続されるコイル群の数を調整することによりモータ出力を任意の大きさに変化させることが可能となる電力変換装置を提供する。
本開示の例示的な電力変換装置は、電源からの電力を、直列接続され得るm個(mは3以上の整数)のコイル群を有するn相(nは3以上の整数)のモータに供給する電力に変換する電力変換装置であって、前記m個のコイル群の一端に接続される第1インバータと、前記m個のコイル群の他端に接続される第2インバータと、前記m個のコイル群において隣接する2つのコイル群の間にそれぞれ接続されるm-1個の分離リレー回路であって、各々は隣接する2つのコイル群の接続・非接続を切替える、m-1個の分離リレー回路と、隣接する2つのコイル群の間で、前記m-1個の分離リレー回路の各々の前記第1インバータ側に設けられたm-1個の第1中性点リレー回路であって、各々は、隣接する2つのコイル群のうちの前記第1インバータ側のコイル群の端同士の接続・非接続を切替える、m-1個の第1中性点リレー回路と、隣接する2つのコイル群の間で、前記m-1個の分離リレー回路の各々の前記第2インバータ側に設けられたm-1個の第2中性点リレー回路であって、各々は、隣接する2つのコイル群のうちの前記第2インバータ側のコイル群の端同士の接続・非接続を切替える、m-1個の第2中性点リレー回路と、を備える。
本開示の例示的な実施形態によると、複数の分離リレー回路、複数の第1中性点リレー回路および複数の第2中性点リレー回路を用いて、インバータに接続されるコイル群の数を調整することにより、モータ出力を任意の大きさに変化させることが可能となる電力変換装置、当該電力変換装置を備えるモータ駆動ユニット、および、当該モータ駆動ユニットを備える電動パワーステアリング装置が提供される。
図1は、例示的な実施形態1によるモータ駆動ユニット1000の典型的なブロック構成を示すブロック図である。 図2は、例示的な実施形態1による電力変換装置100の典型的な回路構成を示す回路図である。 図3は、三相通電制御を行ったときにモータ200のU相、V相およびW相の各コイルに流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。 図4は、第2インバータ120が三相通電制御を行ったときにモータ200の第2コイル群220に流れる電流値をプロットして得られる電流波形(正弦波)を例示するグラフである。 図5は、二相通電制御を行ったときにモータ200の第1および第2コイル群210、220に流れる電流値をプロットして得られる電流波形(正弦波)を例示するフラフである。 図6は、モータの単位時間当たりの回転数N(rps)とトルクT(N・m)との関係を示す図である。 図7は、例示的な実施形態1の変形例による電力変換装置100Aの回路構成を示す回路図である。 図8Aは、例示的な実施形態1の変形例による電力変換装置100Aの他の回路構成を示す回路図である。 図8Bは、例示的な実施形態1の変形例による電力変換装置100Aの他の回路構成を示す回路図である。 図9は、例示的な実施形態2による電力変換装置100Bの典型的な回路構成を示す回路図である。 図10は、例示的な実施形態2による電力変換装置100Bの他の回路構成を示す回路図である。 図11は、例示的な実施形態3による電動パワーステアリング装置2000の典型的な構成を示す模式図である。
以下、添付の図面を参照しながら、本開示の電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするため、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。 
本明細書において、電源からの電力を、三相(U相、V相、W相)の巻線(「コイル」と表記する場合がある。)を有する三相モータに供給する電力に変換する電力変換装置を例にして、本開示の実施形態を説明する。ただし、電源からの電力を、四相または五相などのn相(nは4以上の整数)の巻線を有するn相モータに供給する電力に変換する電力変換装置も本開示の範疇である。 
(実施形態1)

〔モータ駆動ユニット1000および電力変換装置100の構造〕 図1は、本実施形態によるモータ駆動ユニット1000の典型的なブロック構成を模式的に示す。 
モータ駆動ユニット1000は、典型的に、電力変換装置100、モータ200および制御回路300を備える。 
モータ駆動ユニット1000は、モジュール化され、例えば、モータ、センサ、ドライバおよびコントローラを有するモータモジュールとして製造および販売され得る。本明細書では、構成要素としてモータ200を備えるシステムを例に、モータ駆動ユニット1000を説明する。ただし、モータ駆動ユニット1000は、構成要素としてモータ200を備えない、モータ200を駆動するためのシステムであってもよい。 
電力変換装置100は、第1インバータ110、第2インバータ120、分離リレー回路130、第1中性点リレー回路140、第2中性点リレー回路150および電流センサ400を備える。電力変換装置100は、電源101(図2を参照)からの電力をモータ200に供給する電力に変換することが可能である。例えば、第1および第2インバータ110、120は、直流電力を、U相、V相およびW相の擬似正弦波である三相交流電力に変換することが可能である。 
第1インバータ110は、モータ200の第1コイル群210に接続され、第2インバータ120は、第2コイル群220に接続される。本明細書において、部品(構成要素)同士の間の「接続」とは、主に電気的な接続を意味する。 
モータ200は、例えば三相交流モータである。モータ200は、第1および第2コイル群210、220を有する。第1および第2コイル群210、220の各々は、U相、V相およびW相の巻線を有する。第1および第2コイル群210、220は、後述する分離リレー回路130によって直列接続することが可能である。巻線の巻き方は、集中巻きまたは分布巻きであり得る。 
制御回路300は、マイクロコントローラなどを備える。制御回路300は、電流センサ400および角度センサ320からの入力信号に基づいて電力変換装置100を制御する。その制御手法として、例えばベクトル制御、パルス幅変調(PWM)および直接トルク制御(DTC)がある。 
図2を参照して、電力変換装置100の具体的な回路構成を説明する。 
図2は、本実施形態による電力変換装置100の典型的な回路構成を模式的に示す。 
電力変換装置100は、典型的に、電源101、コイル102、コンデンサ103、第1インバータ110、第2インバータ120、分離リレー回路130、第1中性点リレー回路140および第2中性点リレー回路150を備える。 
電源101は所定の電源電圧(例えば12V)を生成する。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、第1および第2インバータ110、120に共通の単一電源であってもよいし、第1インバータ110用の第1電源および第2インバータ120用の第2電源を有していてもよい。 
電源101と各インバータとの間にコイル102が設けられている。コイル102は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、各インバータの電源端子には、コンデンサ103が接続されている。コンデンサ103は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ103は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。 
第1インバータ110は、3個のレグを有するブリッジ回路を備える。各レグは、ハイサイドスイッチ素子およびローサイドスイッチ素子を有する。具体的には、U相用レグは、ハイサイドスイッチ素子111Hおよびローサイドスイッチ素子111Lを有する。V相用レグは、ハイサイドスイッチ素子112Hおよびローサイドスイッチ素子112Lを有する。W相用レグは、ハイサイドスイッチ素子113Hおよびローサイドスイッチ素子113Lを有する。スイッチ素子として、例えば電界効果トランジスタ(典型的にはMOSFET)または絶縁ゲートバイポーラトランジスタ(IGBT)を用いることができる。 
第1インバータ110は、例えば、U相、V相およびW相の各相の巻線に流れる電流を検出するための電流センサ400(図1を参照)として、シャント抵抗111R、112Rおよび113Rをそれぞれ各レグに有する。電流センサ400は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を有する。例えば、シャント抵抗は、各レグにおいて、ローサイドスイッチ素子とGNDとの間に接続され得る。シャント抵抗の抵抗値は、例えば0.5mΩ~1.0mΩ程度である。 
シャント抵抗の数は3つに限られない。例えば、U相、V相用の2つのシャント抵抗111R、112R、V相、W相用の2つのシャント抵抗112R、113R、または、U相、W相用の2つのシャント抵抗111R、113Rを用いることが可能である。使用するシャント抵抗の数およびシャント抵抗の配置は、製品コストおよび設計仕様などを考慮して適宜決定される。 
第2インバータ120は、3個のレグを有するブリッジ回路を備える。U相用レグは、ハイサイドスイッチ素子121Hおよびローサイドスイッチ素子121Lを有する。V相用レグは、ハイサイドスイッチ素子122Hおよびローサイドスイッチ素子122Lを有する。W相用レグは、ハイサイドスイッチ素子123Hおよびローサイドスイッチ素子123Lを有する。第1インバータ110と同様に、第2インバータ120は、例えば、シャント抵抗121R、122Rおよび123Rを有する。 
第1インバータ110は、第1コイル群210の一端に接続される。具体的に説明すると、第1インバータ110のU相用レグ(つまり、ハイサイドスイッチ素子およびローサイドスイッチ素子の間のノード)は、第1コイル群210のU相コイル211の一端に接続される。V相用レグは、V相コイル212の一端に接続される。W相用レグは、W相コイル213の一端に接続される。 
第2インバータ120は、第2コイル群220の一端に接続される。具体的に説明すると、第2インバータ120のU相用レグは、第2コイル群220のU相コイル221の一端に接続される。V相用レグは、V相コイル222の一端に接続される。W相用レグは、W相コイル223の一端に接続される。 
分離リレー回路130は、第1コイル群210の他端と第2コイル群220の他端と、に接続される。分離リレー回路130は、第1および第2コイル群210、220の接続・非接続を切替えることが可能である。 
分離リレー回路130は、第1コイル群210の3個のコイル211、212および213と、第2コイル群220の3個のコイル221、222および223と、の接続・非接続を切替える3個の分離リレー131、132および133を備える。具体的に説明すると、分離リレー131は、第1コイル群210のコイル211の他端と第2コイル群220のコイル221の他端とに接続され、それらのコイルの接続・非接続を切替える。分離リレー132は、コイル212の他端とコイル222の他端とに接続され、それらのコイルの接続・非接続を切替える。分離リレー133は、コイル213の他端とコイル223の他端とに接続され、それらのコイルの接続・非接続を切替える。 
第1中性点リレー回路140は、第1コイル群210の他端に接続される。第1中性点リレー回路140は、第1コイル群210の他端同士の接続・非接続を切替えることが可能である。 
第1中性点リレー回路140は、一端がノードN1に共通に接続され、かつ、他端が第1コイル群210の3個のコイル211、212および213に接続される3個の第1中性点リレー141、142および143を有する。具体的に説明すると、第1中性点リレー141は、ノードN1とコイル211の他端とに接続される。第1中性点リレー142は、ノードN1とコイル212の他端とに接続される。第1中性点リレー143は、ノードN1とコイル213の他端とに接続される。 
第2中性点リレー回路150は、第2コイル群220の他端に接続される。第2中性点リレー回路150は、第2コイル群220の他端同士の接続・非接続を切替えることが可能である。 
第2中性点リレー回路150は、一端がノードN2に共通に接続され、かつ、他端が第2コイル群220の3個のコイル221、222および223に接続される3個の第2中性点リレー151、152および153を有する。具体的に説明すると、第2中性点リレー151は、ノードN2とコイル221の他端とに接続される。第2中性点リレー152は、ノードN2とコイル222の他端とに接続される。第2中性点リレー153は、ノードN2とコイル223の他端とに接続される。 
上述した分離リレーおよび中性点リレーとして、例えば、MOSFET、サイリスタ、アナログスイッチIC、トライアックなどの半導体スイッチ素子またはメカニカルリレーを用いることができる。 
以下、分離リレー回路130、第1および第2中性点リレー回路140、150のオン・オフ状態、および、オン・オフ状態における、第1および第2コイル群210、220の電気的な接続関係を詳細に説明する。 
分離リレー回路130がオンすると、第1コイル群210と第2コイル群220とが接続される。分離リレー回路130がオフすると、第1コイル群210は第2コイル群220から電気的に切り離される。「分離リレー回路130がオンする」とは、分離リレー回路130内の分離リレー131、132および133が全てオンすることを意味し、「分離リレー回路130がオフする」とは、分離リレー131、132および133が全てオフすることを意味する。 
第1中性点リレー回路140がオンすると、第1コイル群210の三相のコイル211、212および213の他端同士が接続される。その結果、第1コイル群210はY結線される。第1中性点リレー回路140の中のノードN1を中性点として機能させることが可能となる。第1中性点リレー回路140がオフすると、三相のコイル211、212および213の他端同士は接続されない。「第1中性点リレー回路140がオンする」とは、第1中性点リレー回路140内の第1中性点リレー141、142および143が全てオンすることを意味し、「第1中性点リレー回路140がオフする」とは、第1中性点リレー141、142および143が全てオフすることを意味する。 
第2中性点リレー回路150がオンすると、第2コイル群220の三相のコイル221、222および223の他端同士が接続される。その結果、第2コイル群220はY結線される。第2中性点リレー回路150の中のノードN2を中性点として機能させることが可能となる。第2中性点リレー回路150がオフすると、三相のコイル221、222および223の他端同士は接続されない。「第2中性点リレー回路150がオンする」とは、第2中性点リレー回路150内の第2中性点リレー151、152および153が全てオンすることを意味し、「第2中性点リレー回路150がオフする」とは、第2中性点リレー151、152および153が全てオフすることを意味する。 

 本実施形態において、分離リレー回路130、第1および第2中性点リレー回路140、150は、同時にオンまたはオフしない。分離リレー回路130がオンすると、第1および第2中性点リレー回路140、150がオフする。分離リレー回路130がオフすると、第1および第2中性点リレー回路140、150の少なくとも1つがオンする。
再び図1を参照する。制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、マイクロコントローラ340と、駆動回路350と、ROM360とを備える。制御回路300は電力変換装置100に接続される。制御回路300は、電力変換装置100を、具体的には、第1インバータ110、第2インバータ120、分離リレー回路130、第1中性点リレー回路140および第2中性点リレー回路150を制御する。 
制御回路300は、目的とするロータの位置(回転角)、回転速度、および電流などを制御してクローズドループ制御を実現することができる。回転速度は、例えば、回転角(rad)を時間微分することにより得られ、単位時間(例えば1分間)にロータが回転する回転数(rpm)で表される。制御回路300は、角度センサに代えてトルクセンサを備えていてもよい。この場合、制御回路300は、目的とするモータトルクを制御することが可能である。 
電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。 
角度センサ320は、例えばレゾルバまたはホールICである。角度センサ320は、磁気抵抗(MR)素子を有するMRセンサとセンサマグネットとの組み合わせによっても実現される。角度センサ320は、モータ200のロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をマイクロコントローラ340に出力する。モータ制御手法(例えばセンサレス制御)によっては、角度センサ320は必要とされない場合がある。 
入力回路330は、電流センサ400によって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取る。入力回路330は、マイクロコントローラ340の入力レベルに実電流値のレベルを必要に応じて変換し、実電流値をマイクロコントローラ340に出力する。入力回路330は、アナログデジタル変換回路である。 
マイクロコントローラ340は、角度センサ320によって検出されたロータの回転信号を受信する。マイクロコントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。 
例えば、マイクロコントローラ340は、電力変換装置100の第1および第2インバータ110、120における各スイッチ素子のスイッチング動作(ターンオンまたはターンオフ)を制御するためのPWM信号を生成する。マイクロコントローラ340は、電力変換装置100の分離リレー回路130の中の各分離リレーのオン・オフの状態と、第1および第2中性点リレー回路140、150の中の各中性点リレーのオン・オフの状態と、を決定する信号を生成することが可能である。 
駆動回路350は、典型的にはゲートドライバである。駆動回路350は、第1および第2インバータ110、120における各スイッチ素子のスイッチング動作を制御する制御信号(例えば、ゲート制御信号)をPWM信号に従って生成し、各スイッチ素子に制御信号を与える。さらに、駆動回路350は、マイクロコントローラ340からの、各分離リレーおよび各中性点リレーのオン・オフの状態を決定する信号に従って、それらのリレーをオン・オフする制御信号を生成し、それらに制御信号を与えることが可能である。マイクロコントローラ340は、駆動回路350の機能を有していてもよい。その場合、駆動回路350は必要とされない。 
ROM360は、例えば書き込み可能なメモリ(例えばPROM)、書き換え可能なメモリ(例えばフラッシュメモリ)または読み出し専用のメモリである。ROM360は、マイクロコントローラ340に電力変換装置100を制御させるための命令群を含む制御プログラムを格納する。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 
〔モータ駆動ユニット1000の動作〕

 以下、モータ駆動ユニット1000の動作の具体例を説明し、主として電力変換装置100の動作の具体例を説明する。 
電力変換装置100の制御に、正常時および異常時の制御がある。制御回路300(主としてマイクロコントローラ340)は、電力変換装置100の制御を正常時の制御から異常時の制御に切替えることができる。 
正常とは、第1および第2インバータ110、120のスイッチ素子に故障が生じていない状態を指す。電力変換装置100は、正常時の制御において、第1および第2動作モードを有する。第1動作モードは、モータの高速回転による高いモータ出力(高出力)が要求されない動作モードである。第1動作モードは、コイルの一端に一方のインバータが接続され、コイルの他端に他方のインバータが接続される電力変換装置の駆動に一般に用いられる従来のモードに相当する。第2動作モードは、モータの高速回転による高出力が要求される動作モードである。制御回路300は、第1および第2動作モードの間で正常時の動作モードを切替えることが可能である。 
(第1動作モード)

 制御回路300は、分離リレー回路130をオンし、かつ、第1および第2中性点リレー回路140、150をオフする。これにより、第1インバータ110は、第1コイル群210の一端に接続され、かつ、第2インバータ120は、第2コイル群220の一端に接続された状態で、第1および第2コイル群210、220の他端同士が接続される。この接続状態で、第1および第2インバータ110、120は、三相のコイルに流れる電流を独立に制御する三相通電制御を行う。 
図3は、三相通電制御を行ったときにモータ200のU相、V相およびW相の各コイルに流れる電流値をプロットして得られる電流波形(正弦波)を例示する。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図3の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。 
表1は、図3の正弦波において電気角毎に、各相のコイルに流れる電流値を示す。表1は、具体的に、第1インバータ110から各相のコイルに流れる、電気角30°毎の電流の値、および、第2インバータ120から各相の巻線に流れる、電気角30°毎の電流の値を示す。ここで、第1インバータ110に対しては、第1インバータ110から各相のコイルに流れる電流方向を正の方向と定義する。図3に示される電流の向きはこの定義に従う。また、第2インバータ120に対しては、第2インバータ120から各相のコイルに流れる電流方向を正の方向と定義する。従って、第1インバータ110の電流と第2インバータ120の電流との位相差は180°となる。表1において、電流値Iの大きさは〔(3)1/2/2〕*Ipkであり、電流値Iの大きさはIpk/2である。 
Figure JPOXMLDOC01-appb-T000001
電気角0°において、U相の2つのコイル211、221には電流は流れない。V相の2つのコイル212、222には第2インバータ120から第1インバータ110に大きさIの電流が流れ、W相の2つのコイル213、223には第1インバータ110から第2インバータ120に大きさIの電流が流れる。 
電気角30°においては、U相の2つのコイル211、221には第1インバータ110から第2インバータ120に大きさIの電流が流れ、V相の2つのコイル212、222には第2インバータ120から第1インバータ110に大きさIpkの電流が流れ、W相の2つのコイル213、223には第1インバータ110から第2インバータ120に大きさIの電流が流れる。
電気角60°において、U相の2つのコイル211、221には第1インバータ110から第2インバータ120に大きさIの電流が流れ、V相の2つのコイル212、222には第2インバータ120から第1インバータ110に大きさIの電流が流れる。W相の2つのコイル213、223には電流は流れない。 
電気角90°において、U相の2つのコイル211、221には第1インバータ110から第2インバータ120に大きさIpkの電流が流れ、V相の2つのコイル212、222には第2インバータ120から第1インバータ110に大きさIの電流が流れ、W相の2つのコイル213、223には第2インバータ120から第1インバータ110に大きさIの電流が流れる。 
電気角120°において、U相の2つのコイル211、221には第1インバータ110から第2インバータ120に大きさIの電流が流れ、W相の2つのコイル213、223には第2インバータ120から第1インバータ110に大きさIの電流が流れる。V相の2つのコイル212、222には電流は流れない。 
電気角150°において、U相の2つのコイル211、221には第1インバータ110から第2インバータ120に大きさIの電流が流れ、V相の2つのコイル212、222には第1インバータ110から第2インバータ120に大きさIの電流が流れ、W相の2つのコイル213、223には第2インバータ120から第1インバータ110に大きさIpkの電流が流れる。
電気角180°において、U相の2つのコイル211、221には電流は流れない。V相の2つのコイル212、222には第1インバータ110から第2インバータ120に大きさIの電流が流れ、W相の2つのコイル213、223には第2インバータ120から第1インバータ110に大きさIの電流が流れる。 
電気角210°において、U相の2つのコイル211、221には第2インバータ120から第1インバータ110に大きさIの電流が流れ、V相の2つのコイル212、222には第1インバータ110から第2インバータ120に大きさIpkの電流が流れ、W相の2つのコイル213、223には第2インバータ120から第1インバータ110に大きさIの電流が流れる。
電気角240°において、U相の2つのコイル211、221には第2インバータ120から第1インバータ110に大きさIの電流が流れ、V相の2つのコイル212、222には第1インバータ110から第2インバータ120に大きさIの電流が流れる。W相の2つのコイル213、223には電流は流れない。 
電気角270°において、U相の2つのコイル211、221には第2インバータ120から第1インバータ110に大きさIpkの電流が流れ、V相の2つのコイル212、222には第1インバータ110から第2インバータ120に大きさIの電流が流れ、W相の2つのコイル213、223には第1インバータ110から第2インバータ120に大きさIの電流が流れる。
電気角300°において、U相の2つのコイル211、221には第2インバータ120から第1インバータ110に大きさIの電流が流れ、W相の2つのコイル213、223には第1インバータ110から第2インバータ120に大きさIの電流が流れる。V相の2つのコイル212、222には電流は流れない。 
電気角330°において、U相の2つのコイル211、221には第2インバータ120から第1インバータ110に大きさIの電流が流れ、V相の2つのコイル212、222には第2インバータ120から第1インバータ110に大きさIの電流が流れ、W相の2つのコイル213、223には第1インバータ110から第2インバータ120に大きさIpkの電流が流れる。
図3に示される電流波形において、電流の向きを考慮した三相のコイルに流れる電流の総和は電気角毎に「0」となる。ただし、電力変換装置100の回路構成によれば、三相のコイルに流れる電流を独立に制御することができるため、電流の総和が「0」とはならない制御を行うことも可能である。例えば、制御回路300は、図3に示される電流波形が得られるPWM制御によって第1および第2インバータ110、120の各スイッチ素子のスイッチング動作を制御する。 
(第2動作モード)

 制御回路300は、モータの高速回転による高出力が要求されるとき、動作モードを第1動作モードから第2動作モードに切替えることができる。第2動作モードでは、分離リレー回路130はオフし、第1および第2中性点リレー回路140、150がオンする。これにより、第1コイル群210は第2コイル群から切り離される。第1コイル群210の他端同士がY結線され、第2コイル群220の他端同士がY結線される。この接続により、第1中性点リレー回路140のノードN1および第2中性点リレー回路150のノードN2をそれぞれ中性点として機能させることができる。 
第1インバータ110は、Y結線された第1コイル群210に接続され、第2インバータ120は、Y結線された第2コイル群220に接続される。この接続状態で、第1インバータ110は第1コイル群210を通電し、第2インバータ120は第2コイル群220を通電することができる。 
図4は、第2インバータ120が三相通電制御を行ったときにモータ200の第2コイル群220に流れる電流値をプロットして得られる電流波形(正弦波)を例示する。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図4の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。 
表2は、図4の正弦波において電気角毎に、第2コイル群220の各相のコイルに流れる電流値を示す。図4に示される電流値の正負の符号は、上述した電流方向の定義に従う。 
Figure JPOXMLDOC01-appb-T000002
例えば、電気角30°において、U相のコイル221には第2インバータ120に向けて大きさIの電流が流れ、V相のコイル222には第2インバータ120から大きさIpkの電流が流れ、W相のコイル223には第2インバータ120に向けて大きさIの電流が流れる。電気角60°において、U相のコイル221には第2インバータ120に向けて大きさIの電流が流れ、V相のコイル222には第2インバータ120から大きさIの電流が流れる。W相のコイル223には電流は流れない。 
一般的なY結線の結線方式のモータでは、電流の向きを考慮した三相の巻線に流れる電流の総和は電気角毎に「0」である。例えば、制御回路300は、図4に示される電流波形が得られるPWM制御によって第2インバータ120の各スイッチ素子のスイッチング動作を制御することが可能である。制御回路300は、第2インバータ120と同様に、第1インバータ110を制御することができる。第1および第2動作モードの間で全体の通電電流は変わらないので、モータのアシストトルクは同じである。 
Y結線の結線方式において、ノードN1、N2の電位(中性点電位)を利用した電圧利用率を改善する方法が知られている。具体的には、三相電圧の3次高調波成分を重畳することにより、コイルに印加される最大電圧を高めることができる。この手法を積極的に利用することにより、第2動作モードにおいて、第1動作モードと比べ、より高速にモータ200を回転させることが可能となる。 
(第3動作モード)

 第3動作モードは、異常時の制御に用いる動作モードである。異常とは、第1および第2インバータ110、120の主にスイッチ素子に故障が生じ、第1および第2動作モードによってモータ駆動できない状態を指す。例えば、スイッチ素子としてMOSFETを用いる場合、その故障には、大きく分けて「オープン故障」と「ショート故障」とがある。「オープン故障」は、FETのソース-ドレイン間が開放する故障(換言すると、ソース-ドレイン間の抵抗rdsがハイインピーダンスになること)を指し、「ショート故障」は、FETのソース-ドレイン間が短絡する故障を指す。以下、第1インバータ110の中のスイッチ素子に故障が生じたとして、本動作モードを説明する。当然に、本動作モードによる制御は、第2インバータ120の中のスイッチ素子に故障が生じた場合も適用される。 
例えば、制御回路300は、第1動作モードと同様に、分離リレー回路130をオンし、第1および第2中性点リレー回路140、150をオフする。これにより、第1コイル群210は第2コイル群220に接続される。 
第1インバータ110の中のハイサイドスイッチ素子111Hがオープン故障したとする(図2を参照)。例えば、制御回路300は、第1インバータ110の中の他のハイサイドスイッチ素子112H、113Hをオフにし、全てのローサイドスイッチ素子111L、112Lおよび113Lをオンにする。この制御により、第1インバータ110のローサイド側のノードNL(図2を参照)を中性点として機能させることができる。故障していない第2インバータ120は、第1インバータ110における中性点を利用して、第1および第2コイル群210、220を通電することができる。 
ノードを中性点として機能させるとは、インバータの各相のレグと、各相のコイルと、を接続する3つのノード(各レグのハイサイドスイッチ素子とローサイドスイッチ素子との間のノード)L1、L2およびL3の電位を等電位にすることでもある。それら3つのノードを等電位にするためのスイッチ素子のオン・オフのパターンは上述したパターンに限られず、他の様々なパターンであり得る。 
制御回路300は、例えば、図4に示される電流波形が得られるPWM制御によって第2インバータ120の各スイッチ素子のスイッチング動作を制御することが可能である。第2インバータ120は、第1および第2コイル群210、220を通電する。 
電力変換装置100は、Hブリッジを相毎に有する。U相のHブリッジは、スイッチ素子111H、111Lを含むレグと、スイッチ素子121H、121Lを含むレグとを有する。V相のHブリッジは、スイッチ素子112H、112Lを含むレグと、スイッチ素子122H、122Lを含むレグとを有する。W相のHブリッジは、スイッチ素子113H、113Lを含むレグと、スイッチ素子123H、123Lを含むレグとを有する。例えば、電力変換装置100は、故障したスイッチ素子が含まれるHブリッジ以外の他の2つHブリッジを用いて二相通電制御を行うことが可能である。 
例えば、第1インバータ110の中のハイサイドスイッチ素子111Hがオープン故障した場合、U相のHブリッジは利用できない。電力変換装置100は、VおよびW相のHブリッジを用いて二相通電制御を行う。VまたはW相のHブリッジが利用できない場合も、電力変換装置100は、他の二相のHブリッジを用いて二相通電制御を行うことができる。 
図5は、電力変換装置100が二相通電制御を行ったときにモータ200の第1および第2コイル群210、220に流れる電流値をプロットして得られる電流波形(正弦波)を例示する。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示す。図5の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表す。電力変換装置100は、故障していないVおよびW相のHブリッジを用いて、VおよびW相のコイルを通電することができる。これにより、モータ駆動を継続することができる。 
他の例として、故障したインバータを利用せずに、故障していないインバータを用いてそれに接続されたコイル群を通電することによりモータ駆動を行ってもよい。例えば、第1インバータ110の中のハイサイドスイッチ素子111Hがオープン故障した場合、制御回路300は、分離リレー回路130および第1中性点リレー回路140をオフし、第2中性点リレー回路150をオンすることができる。Y結線された第2コイル群220を第2インバータ120を用いて通電することによりモータ駆動を行うことが可能である。 
図6は、モータの単位時間当たりの回転数N(rps)とトルクT(N・m)との関係を示す。図6には、上述した第1から第3動作モード毎のいわゆるT-N曲線を示す。 
本実施形態によると、第1コイル群210の一端に第1インバータ110が接続され、第2コイル群220の一端に第2インバータ120が接続される電力変換装置100において、分離リレー回路130、第1および第2中性点リレー回路140、150を所定のパターンに従ってオン・オフすることにより、2つのコイル群の結線方式を切替えることができる。これにより、動作モードを第1動作モードおよび第2動作モードの間で切替えることができ、モータ200の高速駆動のさらなる向上が可能となる。 
図7は、本実施形態の変形例による電力変換装置100Aの回路構成を模式的に示す。 
本実施形態の変形例による電力変換装置100Aにおいて、第1コイル群210は、各々が、並列接続された少なくとも2個のコイルを有する3個の各相のコイル群を備え、第2コイル群220は、各々が、並列接続された少なくとも2個のコイルを有する3個の各相のコイル群を備える。図6に、各相のコイル群は、並列接続された2個のコイルを有する構成を例示する。 
分離リレー回路130は、第1コイル群210における3個のコイル群と、第2コイル群220における3個のコイル群と、の接続・非接続を切替えることができる。 
第1中性点リレー回路140は、一端がノードN1に共通に接続され、かつ、他端が第1コイル群210の3個のコイル群に接続される3個の第1中性点リレー141、142および143を有する。第2中性点リレー回路150は、一端がノードN2に共通に接続され、かつ、他端が第2コイル群220の3個のコイル群に接続される3個の第2中性点リレー151、152および153を有する。 
本変形例によると、例えば、第1コイル群210における3個のコイル群のうちの、U相のコイル群の中のコイル211_1に断線が生じた場合でも、U相用のコイルとして、コイル211_2、221_1および221_2を用いて、第1または第2動作モードによるモータ駆動を継続することが可能となる。例えば、第2コイル群220における3個のコイル群のうちの、U相のコイル群の中のコイル221_2に断線がさらに生じた場合でも、U相用のコイルとして、コイル211_2、221_1を用いて、第1または第2動作モードによるモータ駆動を継続することが可能となる。このように、一相に含まれる複数のコイルのうちの1つに断線が生じた場合であっても、他のコイルを用いて第1または第2動作モードによるモータ駆動を継続することが可能となる。 
図8Aは、本実施形態の変形例による電力変換装置100Aの他の回路構成を模式的に示す。 
本実施形態の変形例による電力変換装置100Aにおいて、第1コイル群210は、各々が、並列接続された2個のコイルを有する3個の各相のコイル群を備え、第2コイル群220は、各々が、並列接続された2個のコイルを有する3個の各相のコイル群を備える。分離リレー回路130は、第1コイル群210における3個のコイル群と、第2コイル群220における3個のコイル群と、の接続・非接続を切替えることができる。 
第1中性点リレー回路140は、一端がノードN1に共通に接続され、かつ、他端が、第1コイル群210の3個のコイル群の各々の中の2個のコイルのうちの一方に接続される3個の第1中性点リレー141_1、142_1および143_1を有する。第1中性点リレー回路140は、一端がノードN3に共通に接続され、かつ、他端が、第1コイル群210の3個のコイル群の各々の中の2個のコイルのうちの他方に接続される3個の第1中性点リレー141_2、142_2および143_2をさらに有する。 
図8Aにおいて、第1中性点リレー141_1は、第1コイル群210の中のU相のコイル群におけるコイル211_1に接続され、第1中性点リレー142_1は、V相のコイル群におけるコイル212_1に接続され、第1中性点リレー143_1は、W相のコイル群におけるコイル213_1に接続される。第1中性点リレー141_2は、U相のコイル群におけるコイル211_2に接続され、第1中性点リレー142_2は、V相のコイル群におけるコイル212_2に接続され、第1中性点リレー143_2は、W相のコイル群におけるコイル213_2に接続される。 
第2中性点リレー回路150は、一端がノードN2に共通に接続され、かつ、他端が、第2コイル群220の3個のコイル群の各々の中の2個のコイルのうちの一方に接続される3個の第2中性点リレー151_1、152_1および153_1を有する。第2中性点リレー回路150は、一端がノードN4に共通に接続され、かつ、他端が、第2コイル群220の3個のコイル群の各々の中の2個のコイルのうちの他方に接続される3個の第2中性点リレー151_2、152_2および153_2をさらに有する。 
図8Aにおいて、第2中性点リレー151_1は、第2コイル群220の中のU相のコイル群におけるコイル221_1に接続され、第2中性点リレー152_1は、V相のコイル群におけるコイル222_1に接続され、第2中性点リレー153_1は、W相のコイル群におけるコイル223_1に接続される。第2中性点リレー151_2は、U相のコイル群におけるコイル221_2に接続され、第2中性点リレー152_2は、V相のコイル群におけるコイル222_2に接続され、第2中性点リレー153_2は、W相のコイル群におけるコイル223_2に接続される。 
本変形例によると、例えば、第1コイル群210の中のコイル211_1、212_1、および、第2コイル群220の中のコイル223_1が各相で同時に断線した場合を考える。例えば、分離リレー回路130をオンして、第1および第2中性点リレー回路140、150をオフし、断線していないコイルを用いて、第1動作モードによるモータ駆動を継続することが可能である。 
例えば、分離リレー回路130をオフして、第2動作モードによるモータ駆動を継続することが可能である。この場合、制御回路300は、断線したコイル211_1、212_1に接続された第1中性点リレーを含む3つの第1中性点リレー141_1、142_1および143_1を全てオフし、他の第1中性点リレー141_2、142_2および143_2をオンにする。これにより、コイル211_2、212_2および213_2はY結線される。第1インバータ110は、Y結線されたコイル211_2、212_2および213_2を通電することができる。 
例えば、制御回路300は、断線したコイル223_1に接続された第2中性点リレーを含む3つの第2中性点リレー151_1、152_1および153_1を全てオフし、他の第2中性点リレー151_2、152_2および153_2をオンにする。これにより、コイル221_2、222_2および223_2はY結線される。第2インバータ120は、Y結線されたコイル221_2、222_2および223_2を通電するこ
とができる。このように、一相に含まれる複数のコイルのうちの1つに断線が生じた場合であっても、他のコイルを用いて第1または第2動作モードによるモータ駆動を継続することが可能となる。
図8Bは、本実施形態の変形例による電力変換装置100Aのさらなる他の回路構成を模式的に示す。
各相のコイル群に含まれるコイルの数は2個に限られない。第1コイル群210は、各々が、並列接続された3個以上のコイルを有する3個のコイル群を備えていてもよい。第2コイル群220は、各々が、並列接続された3個以上のコイルを有する3個のコイル群を備えていてもよい。図8Bには、各相のコイル群が3個のコイルを備える構成を例示する。 
第1中性点リレー回路140は、3個の中性点リレー回路140_1、140_2および140_3を有する。各中性点リレー回路は3個の第1中性点リレーを有する。第1コイル群210の3個のコイル群の各々の中の3個のコイルは、3個の中性点リレー回路140_1、140_2および140_3に接続される。 
例えば、U相のコイル群の中のコイル211_1は、第1中性点リレー141_1に接続される。コイル211_2は、第1中性点リレー141_2に接続される。コイル211_3は、第1中性点リレー141_3に接続される。V相のコイル群の中のコイル212_1は、第1中性点リレー142_1に接続される。コイル212_2は、第1中性点リレー142_2に接続される。コイル212_3は、第1中性点リレー142_3に接続される。W相のコイル群の中のコイル213_1は、第1中性点リレー143_1に接続される。コイル213_2は、第1中性点リレー143_2に接続される。コイル213_3は、第1中性点リレー143_3に接続される。 
第2中性点リレー回路150は、3個の中性点リレー回路150_1、150_2および150_3を有する。各中性点リレー回路は3個の第2中性点リレーを有する。第2コイル群220の3個のコイル群の各々の中の3個のコイルは、3個の中性点リレー回路150_1、150_2および150_3に接続される。 
例えば、U相のコイル群の中のコイル221_1は、第2中性点リレー151_1に接続される。コイル221_2は、第2中性点リレー151_2に接続される。コイル221_3は、第2中性点リレー151_3に接続される。V相のコイル群の中のコイル222_1は、第2中性点リレー152_1に接続される。コイル222_2は、第2中性点リレー152_2に接続される。コイル222_3は、第2中性点リレー152_3に接続される。W相のコイル群の中のコイル223_1は、第2中性点リレー153_1に接続される。コイル223_2は、第2中性点リレー153_2に接続される。コイル223_3は、第2中性点リレー153_3に接続される。 
(実施形態2)

 本実施形態による電力変換装置100Bは、電源101からの電力を、直列接続され得るm個(mは3以上の整数)のコイル群を有する三相モータに供給する電力に変換することが可能である。以下、実施形態1による電力変換装置100との差異点を主として説明する。 
図9は、本実施形態による電力変換装置100Bの典型的な回路構成を模式的に示す。 
図9には、直列接続され得る3個のコイル群210、220および230を有する三相モータを例示する。第1インバータ110は、3個のコイル群210、220および230の一端に接続され、第2インバータ120は、3個のコイル群210、220および230の他端に接続される。 
2個の分離リレー回路130_1、130_2が、3個のコイル群210、220および230において隣接する2つのコイル群の間にそれぞれ接続される。各分離リレー回路は、隣接する2つのコイル群の接続・非接続を切替えることが可能である。具体的に説明すると、分離リレー回路130_1は、第1および第2コイル群210、220の間に接続され、それら2つのコイル群の接続・非接続を切替えることが可能である。分離リレー回路130_2は、第2および第3コイル群220、230の間に接続され、それら2つのコイル群の接続・非接続を切替えることが可能である。 
2個の第1中性点リレー回路140_1、140_2が、隣接する2つのコイル群の間にそれぞれ設けられている。各第1中性点リレー回路は、隣接する2つのコイル群のうちの第1インバータ110側のコイル群の端同士の接続・非接続を切替えることが可能である。 
第1中性点リレー回路140_1は、第1および第2コイル群210、220の間で、分離リレー回路130_1の第1インバータ110側に設けられている。第1中性点リレー回路140_1は、第1コイル群210の端同士の接続・非接続を切替えることが可能である。第1中性点リレー回路140_2は、第2および第3コイル群220、230の間で、分離リレー回路130_2の第1インバータ110側に設けられている。第1中性点リレー回路140_2は、第2コイル群220の端同士の接続・非接続を切替えることが可能である。 
2個の第2中性点リレー回路150_1、150_2が、隣接する2つのコイル群の間にそれぞれ設けられている。各第2中性点リレー回路は、隣接する2つのコイル群のうちの第2インバータ120側のコイル群の端同士の接続・非接続を切替えることが可能である。 
第2中性点リレー回路150_1は、第1および第2コイル群210、220の間で、分離リレー回路130_1の第2インバータ120側に設けられている。第2中性点リレー回路150_1は、第2コイル群220の端同士の接続・非接続を切替えることが可能である。第2中性点リレー回路150_2は、第2および第3コイル群220、230の間で、分離リレー回路130_2の第2インバータ120側に設けられている。第2中性点リレー回路150_2は、第3コイル群230の端同士の接続・非接続を切替えることが可能である。 
各分離回路リレーおよび各中性点リレー回路の構成は、実施形態1において説明したとおりである。ここでの詳細な説明は省略する。 
制御回路300は、2個の分離リレー回路130_1、130_2、2個の第1中性点リレー回路140_1、140_2、および2個の第2中性点リレー回路150_1、150_2のオン・オフ状態を制御する。これにより、3個のコイル群210、220および230のうちの、第1インバータ110に接続されるコイル群の数、および、第2インバータ120に接続されるコイル群の数を変えることが可能である。 
例えば、制御回路300は、分離リレー回路130_1をオンして分離リレー回路130_2をオフし、かつ、第1中性点リレー回路140_1をオフして第1中性点リレー回路140_2をオンし、かつ、第2中性点リレー回路150_1をオフして第2中性点リレー回路150_2をオンすることを考える。その場合、第1インバータ110には、第1および第2コイル群210、220が接続され、第2インバータ120には、第3コイル群230が接続される。第1中性点リレー回路140_2をオンすることにより、第2コイル群220がY結線される。第2中性点リレー回路150_2をオンすることにより、第3コイル群230がY結線される。この接続によると、第1インバータ110は、第1および第2コイル群210、220を通電し、第2インバータ120は、第3コイル群230を通電することができる。
例えば、第2コイル群220が破損した場合、分離リレー回路130_1、130_2をオフすることにより、破損した第2コイル群220を2つのインバータから電気的に分離することができる。第1コイル群210と第3コイル群230とを通電してモータ駆動を継続することが可能である。 
モータトルクは、コイル辺の長さおよび巻数に比例する。本実施形態によると、第1インバータ110に接続されるコイル群の数および第2インバータ120に接続されるコイル群の数を変えることにより、モータ出力を任意の大きさに変化させることが可能となる。 
図10は、本実施形態による電力変換装置100Bの他の回路構成を模式的に示す。 
図10には、直列接続され得る4個のコイル群210、220、230および240を有するモータ200を駆動することが可能な電力変換装置100Bの回路構成を例示する。 
図10に示される電力変換装置100Bは、3個の分離リレー回路130_1、130_2、130_3、3個の第1中性点リレー回路140_1、140_2、140_3、3個の第2中性点リレー回路150_1、150_2および150_3を備える。コイル群の数、それらに接続される分離リレー回路および中性点リレー回路の数を増やすことにより、モータ出力を任意の大きさにより高い精度で変化させることが可能となる。 
(実施形態3)

 図11は、本実施形態による電動パワーステアリング装置2000の典型的な構成を模式的に示す。 
自動車等の車両は一般に、電動パワーステアリング(EPS)装置を有する。本実施形態による電動パワーステアリング装置2000は、ステアリングシステム520、および補助トルクを生成する補助トルク機構540を有する。電動パワーステアリング装置2000は、運転者がステアリングハンドルを操作することによって発生するステアリングシステムの操舵トルクを補助する補助トルクを生成する。補助トルクにより、運転者の操作の負担は軽減される。 
ステアリングシステム520は、例えば、ステアリングハンドル521、ステアリングシャフト522、自在軸継手523A、523B、回転軸524、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪529A、529Bを備える。 
補助トルク機構540は、例えば、操舵トルクセンサ541、自動車用電子制御ユニット(ECU)542、モータ543および減速機構544を備える。操舵トルクセンサ541は、ステアリングシステム520における操舵トルクを検出する。ECU542は、操舵トルクセンサ541の検出信号に基づいて駆動信号を生成する。モータ543は、駆動信号に基づいて操舵トルクに応じた補助トルクを生成する。モータ543は、減速機構544を介してステアリングシステム520に、生成した補助トルクを伝達する。 
ECU542は、例えば、実施形態1によるマイクロコントローラ340および駆動回路350などを有する。自動車ではECUを核とした電子制御システムが構築される。電動パワーステアリング装置2000では、例えば、ECU542、モータ543およびインバータ545によって、モータ駆動ユニットが構築される。そのユニットに、実施形態1によるモータ駆動ユニット1000を好適に用いることができる。
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。
100、100A、100B:電力変換装置、101:電源、102、103:ヒューズ、110:第1インバータ、120:第2インバータ、130:分離リレー回路、140:第1中性点リレー回路、150:第2中性点リレー回路、200:モータ、300:制御回路、310:電源回路、320:角度センサ、330:入力回路、340:マイクロコントローラ、350:駆動回路、360:ROM、400:電流センサ、1000:モータ駆動ユニット、2000:電動パワーステアリング装置

Claims (5)

  1. 電源からの電力を、直列接続され得るm個(mは3以上の整数)のコイル群を有するn相(nは3以上の整数)のモータに供給する電力に変換する電力変換装置であって、

     前記m個のコイル群の一端に接続される第1インバータと、

     前記m個のコイル群の他端に接続される第2インバータと、

     前記m個のコイル群において隣接する2つのコイル群の間にそれぞれ接続されるm-1個の分離リレー回路であって、各々は隣接する2つのコイル群の接続・非接続を切替える、m-1個の分離リレー回路と、

     隣接する2つのコイル群の間で、前記m-1個の分離リレー回路の各々の前記第1インバータ側に設けられたm-1個の第1中性点リレー回路であって、各々は、隣接する2つのコイル群のうちの前記第1インバータ側のコイル群の端同士の接続・非接続を切替える、m-1個の第1中性点リレー回路と、

     隣接する2つのコイル群の間で、前記m-1個の分離リレー回路の各々の前記第2インバータ側に設けられたm-1個の第2中性点リレー回路であって、各々は、隣接する2つのコイル群のうちの前記第2インバータ側のコイル群の端同士の接続・非接続を切替える、m-1個の第2中性点リレー回路と、

    を備える電力変換装置。
  2. 前記m個のコイル群の各々は、n個のコイルを有し、

     前記m-1個の分離リレー回路の各々は、隣接する2つのコイル群の一方のn個のコイルと、他方のn個のコイルとの接続・非接続を切替えるn個の分離リレーを有し、

     前記m-1個の第1中性点リレー回路の各々は、一端が第1ノードに共通に接続され、かつ、他端が、隣接する2つのコイル群のうちの前記第1インバータ側のコイル群の前記n個のコイルに接続されるn個の第1中性点リレーを有し、

     前記m-1個の第2中性点リレー回路の各々は、一端が第2ノードに共通に接続され、かつ、他端が、隣接する2つのコイル群のうちの前記第2インバータ側のコイル群の前記n個のコイルに接続されるn個の第2中性点リレーを有する、請求項1に記載の電力変換装置。
  3. 前記m-1個の分離リレー回路、前記m-1個の第1中性点リレー回路、および前記m-1個の第2中性点リレー回路のオン・オフ状態を制御することにより、前記m個のコイル群のうちの、前記第1インバータに接続されるコイル群の数および前記第2インバータに接続されるコイル群の数が変わる、請求項1または2に記載の電力変換装置。
  4. 前記モータと、

    請求項1から3のいずれかに記載の電力変換装置と、

    前記電力変換装置を制御する制御回路と、

    を備えるモータ駆動ユニット。
  5. 請求項4に記載のモータ駆動ユニットを備える電動パワーステアリング装置。
PCT/JP2018/000376 2017-03-24 2018-01-10 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置 WO2018173425A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/486,528 US10998841B2 (en) 2017-03-24 2018-01-10 Power conversion device, motor drive unit, and electric power steering device
DE112018001580.7T DE112018001580T5 (de) 2017-03-24 2018-01-10 Leistungsumwandlungsvorrichtung, motorantriebseinheit und elektrische servolenkungsvorrichtung
JP2019507375A JP7010282B2 (ja) 2017-03-24 2018-01-10 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
CN201880019522.2A CN110463024B (zh) 2017-03-24 2018-01-10 电力转换装置、马达驱动单元以及电动助力转向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-058735 2017-03-24
JP2017058735 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018173425A1 true WO2018173425A1 (ja) 2018-09-27

Family

ID=63586043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000376 WO2018173425A1 (ja) 2017-03-24 2018-01-10 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US10998841B2 (ja)
JP (1) JP7010282B2 (ja)
CN (1) CN110463024B (ja)
DE (1) DE112018001580T5 (ja)
WO (1) WO2018173425A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120515A (ja) * 2019-01-24 2020-08-06 株式会社デンソー 電動機駆動装置
WO2021010469A1 (ja) * 2019-07-18 2021-01-21 学校法人法政大学 回転機システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3108219B1 (fr) * 2020-03-16 2023-08-25 Alstom Transp Tech Circuit d’entraînement de traction et procédé de pilotage d’un tel circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121222A (ja) * 2011-12-07 2013-06-17 Hitachi Appliances Inc モータ駆動装置、およびこれを用いた機器
CN103684196A (zh) * 2013-11-19 2014-03-26 南京航空航天大学 一种可切换绕组的永磁同步电机驱动系统
JP2014204574A (ja) * 2013-04-05 2014-10-27 株式会社日本自動車部品総合研究所 電力変換装置
CN104167975A (zh) * 2014-08-18 2014-11-26 华中科技大学 一种基于相切换的多相永磁电机调速系统及其调速方法
JP2015033268A (ja) * 2013-08-05 2015-02-16 日立オートモティブシステムズ株式会社 電動モータの制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254445A (ja) * 2003-02-20 2004-09-09 Fanuc Ltd 電動機
US7154237B2 (en) 2005-01-26 2006-12-26 General Motors Corporation Unified power control method of double-ended inverter drive systems for hybrid vehicles
FR2961361B1 (fr) 2010-06-14 2013-07-12 Hispano Suiza Sa Onduleur de tension et procede de commande d'un tel onduleur
US20140125269A1 (en) * 2011-02-25 2014-05-08 Whirlpool S.A. Winding switching circuit and thermal protection for dual voltage hermetic induction motor of hermetic cooling compressor
DE102012101156A1 (de) * 2012-02-14 2013-08-14 Lti Drives Gmbh Netzeinspeisevorrichtung, Energieeinspeisesystem sowie Verfahren zum Betrieb einer Netzeinspeisevorrichtung
JP2014192950A (ja) 2013-03-26 2014-10-06 Denso Corp 電力変換装置
US9677531B2 (en) * 2014-09-30 2017-06-13 Caterpillar Inc. Multiphase induction motor with configurable windings
JP6564057B2 (ja) * 2015-11-27 2019-08-21 日立オートモティブシステムズエンジニアリング株式会社 回転電機および回転電機システム
CN106130289B (zh) * 2016-08-29 2019-03-22 桂林星辰电力电子有限公司 一种配有绕组电控切换机构的永磁电机及绕组切换方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013121222A (ja) * 2011-12-07 2013-06-17 Hitachi Appliances Inc モータ駆動装置、およびこれを用いた機器
JP2014204574A (ja) * 2013-04-05 2014-10-27 株式会社日本自動車部品総合研究所 電力変換装置
JP2015033268A (ja) * 2013-08-05 2015-02-16 日立オートモティブシステムズ株式会社 電動モータの制御装置
CN103684196A (zh) * 2013-11-19 2014-03-26 南京航空航天大学 一种可切换绕组的永磁同步电机驱动系统
CN104167975A (zh) * 2014-08-18 2014-11-26 华中科技大学 一种基于相切换的多相永磁电机调速系统及其调速方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020120515A (ja) * 2019-01-24 2020-08-06 株式会社デンソー 電動機駆動装置
JP7238424B2 (ja) 2019-01-24 2023-03-14 株式会社デンソー 電動機駆動装置
WO2021010469A1 (ja) * 2019-07-18 2021-01-21 学校法人法政大学 回転機システム

Also Published As

Publication number Publication date
US20190372500A1 (en) 2019-12-05
CN110463024B (zh) 2022-09-06
CN110463024A (zh) 2019-11-15
JPWO2018173425A1 (ja) 2020-01-23
JP7010282B2 (ja) 2022-01-26
US10998841B2 (en) 2021-05-04
DE112018001580T5 (de) 2020-01-02

Similar Documents

Publication Publication Date Title
WO2018173424A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6933205B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6888609B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US10998842B2 (en) Power conversion device, motor drive unit, and electric power steering device
JP6874758B2 (ja) 電力変換装置、モータ駆動ユニット、電動パワーステアリング装置およびリレーモジュール
WO2018163591A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7014183B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7063322B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2018056045A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2018061818A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
US11095233B2 (en) Electric power conversion apparatus, motor drive unit and electric motion power steering apparatus
WO2018173425A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7070548B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019021647A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
JP7052801B2 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置
WO2019150911A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2019150912A1 (ja) 電力変換装置、駆動装置およびパワーステアリング装置
WO2018056046A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019049449A1 (ja) 電力変換装置、モータモジュールおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18770679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019507375

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18770679

Country of ref document: EP

Kind code of ref document: A1