WO2013183168A1 - 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器 - Google Patents

電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器 Download PDF

Info

Publication number
WO2013183168A1
WO2013183168A1 PCT/JP2012/064831 JP2012064831W WO2013183168A1 WO 2013183168 A1 WO2013183168 A1 WO 2013183168A1 JP 2012064831 W JP2012064831 W JP 2012064831W WO 2013183168 A1 WO2013183168 A1 WO 2013183168A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
motor
circuit board
inverter
resistor
Prior art date
Application number
PCT/JP2012/064831
Other languages
English (en)
French (fr)
Inventor
倫雄 山田
篠本 洋介
洋樹 麻生
石井 博幸
隼一郎 尾屋
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/399,686 priority Critical patent/US10027268B2/en
Priority to GB1420124.8A priority patent/GB2517326B/en
Priority to PCT/JP2012/064831 priority patent/WO2013183168A1/ja
Priority to JP2014519784A priority patent/JP5791798B2/ja
Publication of WO2013183168A1 publication Critical patent/WO2013183168A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual dc dynamo-electric motor by varying field or armature current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Definitions

  • the present invention relates to a motor with a built-in power conversion device constituted by a power conversion circuit board using a semiconductor module, an air conditioner, a water heater, and a ventilation blower with a built-in motor.
  • motors with a built-in drive circuit that are formed of a thermosetting resin such as unsaturated polyester resin by connecting a high-voltage power conversion circuit and a stator are often used for air-conditioning fans.
  • the direct current power source for driving the motor is increased to a maximum voltage of 325 V (for example, Patent Document 1 below).
  • air-conditioning equipment is often used in areas where power supply conditions are poor, and the maximum value of the voltage of the DC power supply tends to further increase.
  • ICs integrated circuits
  • ICs mounted on a power converter inside a motor are increasingly used in the above-described surface mount packages because of the demand for miniaturization (for example, Patent Document 2 below).
  • Patent Document 2 since an IC used for an air-conditioning blower motor or the like requires a relatively large allowable power consumption, ingenuity is required for mounting in order to effectively dissipate heat generated by the allowable power consumption. .
  • the inverter circuit of the motor is connected to the high potential (positive pole of the DC power supply) side of the circuit and melts when an abnormal current is generated in the circuit, and the low potential (negative pole of the DC power supply) of the circuit.
  • a shunt resistor or the like is provided for detecting a current flowing in the) side.
  • an abnormal current flows also to the shunt resistor. Therefore, if the shunt resistor is burned (disconnected) by the abnormal current, the shunt resistor, which is originally a low resistance, may become a high resistance. There is.
  • the resistor connected to the high potential side of the inverter circuit does not flow a current that blows the resistor, and the resistor is not blown. That is, when the shunt resistor burns out due to an abnormal current generated in the inverter circuit, the resistor is not blown, and a voltage corresponding to the abnormal current is continuously applied to the inverter circuit. There is a possibility of damaging parts and motors.
  • a resistor that melts when an abnormal current of a predetermined level or more connected to the high potential side of the inverter circuit occurs, and an inverter circuit And a bypass circuit that is connected in parallel to the shunt resistor and bypasses the shunt resistor when an abnormal current flows.
  • the inverter circuit can be shut off from the power supply side, and an abnormal voltage can be prevented from being applied to the components of the inverter circuit, the motor, and the like.
  • JP 2011-61907 paragraph “0059”, FIGS. 1 and 3)
  • JP-A-5-91708 paragraphs “0011” to “0013”, FIG. 4)
  • JP 2010-88233 A paragraph “0006”, FIG. 1 and FIG. 2
  • the power conversion device disclosed in Patent Document 1 has a problem that a human process is required for board mounting because the IC in which the main parts of the power conversion circuit are integrated is a lead type.
  • the IC since the IC is disposed on the printed circuit board on the side opposite to the stator, there is a problem that the circuit becomes thick.
  • the inverter circuit in the IC causes a vertical short-circuit failure, the IC high voltage power supply terminal and the surrounding substrate copper foil are provided on the side opposite to the stator, so that the influence of the IC breakdown affects the outside of the motor.
  • the power conversion device disclosed in Patent Document 2 has a problem in that the mechanical connection strength with the printed circuit board is weaker than that of lead mounting because the IC and the board are surface-mounted and the solder area cannot be increased. . Further, in the power conversion device shown in Patent Document 2, since the semiconductor chip of the switching power element is directly mechanically connected to the printed board, it is not a printed board using a resin base material for chip heat dissipation, Since it is necessary to use a substrate using a metal or a sintered base material, there is a problem that it is expensive.
  • the high heat dissipation substrate (a substrate using a metal or a sintered base) is generally a single-sided wiring, there is a problem that the wiring efficiency is lower than that of a double-sided board and the board area is increased. .
  • the high voltage wiring from the IC terminal Cannot be placed under and around the IC.
  • the routable area is very narrow. Accordingly, there is a problem in that a high-voltage wiring may not be arranged on a printed board having a copper foil only on the side opposite to the stator.
  • the present invention has been made in view of the above, and can be miniaturized, and the inverter circuit operates normally while preventing abnormal voltage from being applied to the components of the inverter circuit. It is an object of the present invention to obtain a motor with a built-in power conversion device that can reduce loss of current flowing when the air flows, an air conditioner with a built-in motor, a water heater, and a ventilation fan.
  • the present invention is a motor with a built-in power conversion device having a substrate on which a semiconductor module for converting a voltage of an external power source into a high-frequency voltage and supplying it to a stator is mounted.
  • the substrate is provided with a high-voltage circuit ground of the semiconductor module and a low-voltage circuit ground of the semiconductor module, and the high-voltage circuit ground and the low-voltage circuit ground are connected at one point via a resistor. It is characterized by.
  • the present invention even when a high-voltage DC voltage is applied to the low-voltage circuit, the short-circuit current is limited by the low-power capacity resistor, and when the time has elapsed, the resistor is disconnected and the high-voltage DC voltage is Since the circuit is cut off, it is possible to reduce the size and loss of current that flows when the inverter circuit is operating normally while preventing abnormal voltage from being applied to the components of the inverter circuit. There is an effect that it can be reduced.
  • FIG. 1 is a side sectional view and a top perspective view of a power conversion device according to Embodiment 1 of the present invention and a motor incorporating the power conversion device.
  • FIG. 2 is an internal structure diagram of the resistor according to the first embodiment of the present invention.
  • FIG. 3 is a configuration diagram of the inverter IC mounted on the power conversion device according to Embodiment 1 of the present invention.
  • FIG. 4 is a structural diagram of an IC chip in the inverter IC of the power conversion device according to the first embodiment of the present invention.
  • FIG. 5 is a circuit configuration diagram around the IC chip in the inverter IC of the power conversion device according to the first embodiment of the present invention.
  • FIG. 1 is a side sectional view and a top perspective view of a power conversion device according to Embodiment 1 of the present invention and a motor incorporating the power conversion device.
  • FIG. 2 is an internal structure diagram of the resistor according to the first embodiment of the present invention.
  • FIG. 3 is
  • FIG. 6 is a cross-sectional view of the power conversion apparatus according to Embodiment 1 of the present invention.
  • FIG. 7 is a diagram for explaining merits when a plurality of printed circuit boards according to Embodiment 1 of the present invention are taken out from a single circuit board.
  • FIG. 8 is an overall external view of an air conditioner according to Embodiment 2 of the present invention.
  • FIG. 9 is a cross-sectional view of the indoor unit in the air conditioner according to Embodiment 2 of the present invention.
  • FIG. 1 is a side sectional view and a top perspective view of a motor 61 incorporating a power conversion device 60 according to Embodiment 1 of the present invention.
  • the lower side of FIG. 1 shows a surface of the printed circuit board 1 on the stator 3 side (hereinafter referred to as “stator side”) viewed from the direction of arrow A in FIG.
  • the motor 61 includes a power conversion device 60, a stator 3, a rotor 16, and a bearing 9 as main components.
  • the power converter 60 mainly includes a printed circuit board 1 formed in a substantially 1 ⁇ 2 arc shape, an inverter IC 2, a motor terminal 5 that is an input terminal of each phase of the motor 61, and a rotational position of the rotor 16.
  • the printed circuit board 1 on which a power conversion circuit for rotating the motor 61 is mounted is incorporated.
  • An inverter IC 2 that is a part of the power conversion circuit is mounted on the printed board 1.
  • the inverter IC2 incorporates a main circuit of a voltage type inverter for applying a voltage to a winding which is a copper wire or an aluminum wire of the stator 3 of the motor 61.
  • an annular stator 3 in which a winding is wound around a stator core (not shown) is disposed on the surface of the printed circuit board 1 on which the inverter IC 2 is mounted.
  • the stator 3 and the printed circuit board 1 are mechanically connected by a thermosetting mold resin 4 such as unsaturated polyester.
  • An outer shape of the motor 61 constituting the bearing housing 9a is formed by the mold resin 4 on the surface of the printed board 1 on the side opposite to the stator.
  • the surface on the side opposite to the stator of the printed circuit board 1 is pressed by a mold (not shown) that contacts the position indicated by the reference numeral 100.
  • the surface of the printed circuit board 1 on the stator side is pressed by the starter 3 and a mold that contacts the position indicated by reference numeral 101.
  • the surface of the anti-stator of the printed circuit board 1 is pressed by the mold on both the inner peripheral side and the outer peripheral side (six locations indicated by reference numeral 100 indicated by dotted circles).
  • the inner peripheral side of the printed circuit board 1 (two locations indicated by reference numeral 101 indicated by solid circles). Only) is held by the mold. Thereafter, a resin is poured into the mold to mold the mold resin 4. Since this mold is removed after the molding resin 4 is molded, holes are formed at locations indicated by reference numerals 100 and 101 so that the printed circuit board 1 is directly exposed.
  • the printed circuit board 1 and the stator 3 are electrically connected by a motor terminal 5 by soldering so that a voltage from the printed circuit board 1 to the stator 3 is applied.
  • a Hall element 6 disposed so as to be surrounded by the stator 3 is mounted on the surface of the printed circuit board 1 on the stator side, and an overheat detection element 14 is installed in the vicinity of the inverter IC2.
  • a motor external connection lead 7 is installed on the surface of the printed circuit board 1 on the side opposite to the stator in order to electrically connect the printed circuit board 1 and the outside of the motor 61.
  • a high-voltage input line 17 and a low-voltage input / output line 18 extend from the motor external connection lead 7 to the outside.
  • a rotor penetration hole 8 that is not filled with the mold resin 4 and is hollow in a cylindrical shape is provided in the inner peripheral portion of the stator 3, and a rotor that is a rotor of the motor 61 is provided in the rotor penetration hole 8. 16 is arranged.
  • a bearing through hole 10 is formed on the inner peripheral side of the printed circuit board 1. The bearing through-hole 10 communicates with the rotor through-hole 8 so that the main shaft (not shown) of the rotor 16 penetrates the mold resin 4 to the bearing housing 9a in a direction substantially perpendicular to the printed circuit board 1.
  • a bearing 9 is accommodated in the bearing through hole 10, and a main shaft (not shown) of the rotor 16 is passed through an inner ring (not shown) of the bearing 9.
  • the inverter IC 2 includes a heat spreader 13, a high voltage electrode 11, and a low voltage electrode 12 as main components.
  • the high voltage electrode 11 and the low voltage electrode 12 form a dual in-line electrode of the inverter IC2.
  • the high voltage electrode 11 inputs a high voltage DC voltage obtained by full-wave rectification or voltage double rectification of the commercial power supply outside the motor 61.
  • the high-voltage DC voltage is converted into a high-frequency voltage, and the high-voltage electrode 11 outputs the high-frequency voltage to the motor terminal 5.
  • these high-voltage electrodes 11 are provided with an inverter IC 2 and a printed circuit board, for example, as shown in FIG. 1 in consideration of the installation position of the motor terminal 5 so that the wiring (motor output wiring 105) on the printed circuit board 1 is shortened. 1 is provided between the outer peripheral side of 1.
  • the high-voltage input line 17 is electrically connected to the copper foil 104 which is a copper foil provided on the surface of the printed circuit board 1 on the stator side via the motor external connection lead 7.
  • One end of the copper foil 104 is electrically connected to the high-voltage input line 17 by solder, and the other end of the copper foil 104 is electrically connected to the high-voltage electrode 11 provided in the inverter IC 2 by solder.
  • the motor output wiring 105 which is a copper foil provided on the surface opposite to the stator of the printed circuit board 1 in the vicinity of the copper foil 104, is electrically connected at one end to the motor output terminal in the high voltage electrode 11 of the inverter IC2, The other end is electrically connected to the motor terminal 5.
  • One end of the motor output wiring 105 is connected on the side opposite to the stator, and the other end of the motor output wiring 105 is connected on the stator side.
  • the inverter IC 2 has a high-voltage main circuit system ground (hereinafter “high-voltage circuit ground GP”) and a low-voltage circuit control circuit ground (hereinafter “low-voltage circuit ground GS”).
  • the control system circuit has functions such as determining the switching pattern of the high-voltage main circuit according to the output signal of the Hall element 6 and limiting the output current of the high-voltage main circuit according to the overheat state detected by the overheat detection element 14.
  • the resistor Rg shown in FIG. 1 is a resistor that electrically connects the high-voltage circuit ground GP and the low-voltage circuit ground GS.
  • the resistor Rg is disposed on the stator side of the printed circuit board 1, and the high-voltage circuit ground GP and the low-voltage circuit ground GS are connected, for example, at one point via the resistor Rg. Details of the resistor Rg will be described later.
  • the power conversion device 60 includes at least the printed circuit board 1, the inverter IC 2 mounted on the printed circuit board 1, the motor terminal 5, the Hall element 6, the motor external connection lead 7, and the overheat detection element 14. It is configured.
  • the motor 61 includes the power conversion device 60 and the stator 3, which are mechanically coupled with the mold resin 4, the rotor 16, the bearing 9, and a main shaft (not shown).
  • the inverter IC 2 and the overheat detection element 14 correspond to the “semiconductor module” and “overheat detection means” of the present invention, respectively.
  • FIG. 2 is an internal structure diagram of the resistor according to the first embodiment of the present invention.
  • a represents a ceramic substrate
  • b represents a conductor
  • c represents a resistor
  • d represents an overcoat
  • e represents (color code or the like)
  • f represents a metal electrode.
  • the resistor Rg is surface-mounted on the printed circuit board 1, and then the printed circuit board 1 is molded with the mold resin 4.
  • the resistor c is surrounded by a ceramic substrate a, a metal electrode f, and an overcoat d.
  • a modal resin 4 mainly a bulk mold compound (BMC) resin based on glass
  • BMC bulk mold compound
  • the periphery of the resistor c is covered with a nonflammable material such as glass (d), ceramic (a), and metal (f) without a gap. Therefore, discoloration and deformation of the periphery of the resistor Rg due to temperature when the resistor c is melted can be minimized, and an effect that the discoloration and deformation cannot be seen from the outside of the motor can be obtained.
  • FIG. 3 is a configuration diagram of the inverter IC2 mounted on the power conversion device 60 according to Embodiment 1 of the present invention.
  • FIG. 3 shows an IC package 23, a metal lead frame 22, a bonding wire 21, a heat spreader 13, a high voltage electrode 11, and a low voltage electrode 12, which are components of the inverter IC2.
  • the IC chip 20, the bonding wire 21, and the metal lead frame 22 are covered with an IC package 23 that is a highly heat conductive resin.
  • the IC chip 20 is composed of a wide band gap semiconductor such as silicon or SiC.
  • the bonding wire 21 is made of a metal wire such as gold, copper, or aluminum, and one end thereof is electrically connected to a metal electrode (an aluminum wiring 25 described later) on the IC chip 20 by ultrasonic melting, and the other end. Is electrically connected to the metal lead frame 22.
  • the IC chip 20 is provided on a heat spreader 13 having a large plate thickness in order to efficiently release heat, and is thermally and mechanically connected to the heat spreader 13 by soldering or silver paste.
  • the IC chip 20 is electrically, thermally, and mechanically connected to the thick heat spreader 13 by soldering or silver paste. Therefore, the transient heat generation among the heat generation from the IC chip 20 is stored in the heat spreader 13 and the transient temperature rise of the IC chip 20 is suppressed.
  • the IC chip 20, the bonding wire 21, and the metal lead frame 22 are covered with an IC package 23 to form the main body of the inverter IC2.
  • the main body of the inverter IC2 is formed by a high voltage electrode 11, a low voltage electrode 12, and a heat spreader 13 extending from the main body.
  • the IC chip 20 and the heat spreader 13 are disposed close to the metal lead frame 22, and the IC chip 20 is thermally and mechanically connected to the IC package 23. Therefore, regarding the heat generation from the IC chip 20, the steady heat generation is radiated from the high voltage electrode 11 and the low voltage electrode 12 to the outside of the IC chip 20 through the metal lead frame 22, and further, the IC chip through the IC package 23. 20 is radiated to the outside.
  • the IC chip 20 and the IC package 23 correspond to “semiconductor chip” and “thermal conductive resin” of the present invention, respectively.
  • FIG. 4 is a structural diagram of the IC chip 20 in the inverter IC2 of the power conversion device 60 according to the first embodiment of the present invention.
  • the IC chip 20 is provided with a plurality of semiconductor elements constituting switching elements, and an electrical connection between the semiconductor elements and external electrodes (such as the metal lead frame 22 shown in FIG. 2) is provided above each semiconductor element.
  • a plurality of aluminum wirings 25 for obtaining are provided. These aluminum wirings 25 are electrically connected to the metal lead frame 22 described above.
  • a silicon oxide film 26 having high insulation performance for insulating the aluminum wirings 25 is formed.
  • the IC chip 20 according to the first embodiment is compared with a general IC, that is, an IC in which a plurality of semiconductor elements are arranged on the metal lead frame 22 and electrical connection is made between the semiconductor elements by bonding wires 21.
  • a general IC that is, an IC in which a plurality of semiconductor elements are arranged on the metal lead frame 22 and electrical connection is made between the semiconductor elements by bonding wires 21.
  • the arrangement of the aluminum wiring 25 has a degree of freedom.
  • the high voltage electrode 11 and the low voltage electrode 12 can be provided separately in a very small space.
  • the IC chip 20 is provided with an insulating isolation layer 29 (for example, silicon oxide) having a high insulating property in order to provide electrical insulation between the plurality of semiconductor single crystal islands 27 constituting the semiconductor element and the polycrystalline silicon 28 covering the periphery thereof. ) Is formed.
  • the polycrystalline silicon 28 is thermally and mechanically connected to the heat spreader 13 described above.
  • the insulating separation layer 29 is made of, for example, silicon oxide (SiO 2 ) that can ensure sufficient insulation performance even with a thin film.
  • the IC chip 20 can dispose the semiconductor single crystal island 27 in an island shape on the same chip by providing the insulating isolation layer 29 having a high insulating property, and can provide a switching element that requires high voltage insulation. Can be mixed.
  • the IC chip 20 is smaller than a general IC, that is, an IC in which a plurality of semiconductor elements are arranged with a predetermined insulation distance and each of these semiconductor elements is mounted on a metal lead frame 22. Therefore, the inverter IC 2 body can be downsized.
  • the IC chip 20 since a low-voltage circuit can be configured on the same chip, a control low-pressure chip or a chip for high-low pressure separation is not required outside, and they are also mounted on the metal lead frame 22 and the printed circuit board 1. There is no need to electrically connect the wires. Thereby, a power converter circuit and by extension, the power converter 60 whole can be made remarkably small.
  • the semiconductor single crystal island 27 corresponds to the “semiconductor element” of the present invention.
  • FIG. 5 is a circuit configuration diagram around the IC chip 20 in the inverter IC2 of the power conversion device 60 according to the first embodiment of the present invention.
  • the high-voltage DC power supply 38 is a high-voltage DC voltage obtained by full-wave rectification or voltage doubler rectification of the commercial power supply outside the motor 61, and this voltage is input to the IC chip 20.
  • the IGBT 34 is a switching element formed on the semiconductor single crystal island 27 of the IC chip 20 described above.
  • the IGBT 34 is ON / OFF driven by the upper arm driving circuit 35a and the lower arm driving circuit 35b, and converts the input DC voltage into a high frequency voltage. Convert.
  • Each of the six IGBTs 34 shown in FIG. 5 has a free-wheeling diode connected in antiparallel.
  • the high frequency voltage from the IGBT 34 is applied from the high voltage electrode 11 to the winding of the stator 3 via the motor terminal 5.
  • the rotational position signal of the rotor 16 detected by the Hall element 6 is converted into a low-pressure pulse signal by a logic circuit inside the IC chip 20 and output to the outside from the rotational speed output line 31. Further, the IC chip 20 adjusts the output voltage of the inverter by changing the switching pulse width of the six IGBTs 34 based on the low-voltage analog signal voltage input from the outside via the output voltage command input line 32. To do. At this time, the power supply of the upper arm drive circuit 35a that drives the IGBT 34 of the upper arm among the inverters constituted by the six IGBTs 34 is generated by the charge pump diode 33 and the external capacitors C1 and C2. Further, the opposite side of the winding of the stator 3 connected to the motor terminal 5 (see FIG. 1) is electrically connected by a neutral point connection 39 to form a star connection motor.
  • the overheat detection element 14 As the overheat detection element 14, a positive temperature resistance element having a steep resistance characteristic with respect to temperature is used, and the overheat detection element 14 converts the detected temperature into a resistance value. This resistance value is input to the overcurrent protection terminal.
  • the overheat detection element 14 detects the overheat state of the inverter IC2 by giving the overcurrent protection level a temperature characteristic, and detects that the inverter IC2 and the stator 3 are overheated. In this case, the inverter IC2 limits or stops the current supplied to the stator 3 via the high-voltage electrode 11, and prevents the inverter IC2 and the like from being destroyed due to overheating.
  • the low-voltage circuit ground GS shown in FIG. 5 is a ground of a control circuit system that is a low-voltage circuit, and is provided, for example, on the stator side of the printed circuit board 1.
  • This control system circuit has a function of determining the switching pattern of the high-voltage main circuit according to the output signal of the Hall element 6, and a function of limiting the output current of the high-voltage main circuit according to the overheat state detected by the overheat detection element 14.
  • the high-voltage circuit ground GP is a power ground of the high-voltage main circuit system of the inverter IC2, and is provided on the stator side of the printed circuit board 1, for example.
  • the high-voltage circuit ground GP and the low-voltage circuit ground GS are connected, for example, at one point via the resistor Rg.
  • the “GL” terminal of the IC chip 20 is connected to the ground (GS), but one end of the resistor Rg is connected to this ground, and the other end of the resistor Rg is connected to the high-voltage circuit ground GP. It is connected.
  • Rs shown in FIG. 4 is a shunt resistor for current detection, and its size is 3216 (power rating: 1/4 W) type, its parallel arrangement or lead type (for example, 1/2 W to 2 W type). is there.
  • the resistor Rg used in the present embodiment is a chip resistor of 1608 (1/16 W) to 2125 (1/8 W) type, and has a smaller size and power rating than the shunt resistor Rs.
  • the resistance value of the resistor Rg is the resistance value of the high voltage power wiring from the high voltage DC power supply 38 to the high voltage power supply inputs Vs1 and Vs2 of the IC chip 20, the resistance value of the lead frame (not shown) inside the IC chip 20, or the bonding.
  • the resistance value of the wire 21 is equal to or larger than the resistance value.
  • the IGBT 34 of the IC chip 20 is in the upper and lower short-circuit failure mode due to input of different voltage, generation of surge voltage, etc., in the power conversion circuit, first, the shunt resistor Rs having the highest resistance value on the power wiring becomes an open failure. .
  • the voltage of the high-voltage DC power supply 38 is concentrated on the IC chip 20, and the high-voltage DC power supply 38 and the low-voltage circuit are conducted inside the IC chip 20.
  • a high-voltage DC voltage is applied to the low-voltage circuit, and power concentration occurs in the low-voltage circuit. For this reason, parts (Hall element, overheat protection circuit, etc.) connected to the low voltage circuit are destroyed, and there is a concern about sound generation and light emission at the time of destruction.
  • the low-voltage circuit ground GS and the high-voltage circuit ground GP have a resistance value equal to or higher than the resistance value of a normal power line, and one point through the resistor Rg having a small power capacity. It is connected. For this reason, the resistor Rg limits the short-circuit current before the above-described low-voltage circuit is destroyed. When the time further elapses, the resistor Rg where the power concentration has occurred is disconnected, and the high-voltage DC voltage is cut off.
  • the resistor Rg can be mounted on the stator side of the printed circuit board 1 as a surface-mounted component so that the resistor Rg can be mounted simultaneously with other surface-mounted components, and
  • the resistor Rg can be arranged at a position far from the mold surface. That is, the resistance from the surface of the mold resin 4 to the resistor Rg when the resistor Rg is mounted on the anti-stator surface, and the resistance from the surface of the mold resin 4 when the resistor Rg is mounted on the stator surface
  • the distance to the body Rg is compared, the latter distance is longer than the former distance, and the thickness of the mold resin 4 is relatively thick. Therefore, it is possible to obtain an effect that the sound and light emission when the resistor Rg is melted are difficult to understand from the outside of the motor.
  • the resistor Rg has a current value of about 5 to 50 mA that flows when the inverter circuit operates normally (hereinafter referred to as “normal current”). Since such a current flows through the ground line of the low-voltage circuit, a resistor Rg having a low power capacity can be used as compared with the case where a resistor having the same resistance value is provided on the high-voltage wiring side.
  • the low-voltage circuit ground GS and the high-voltage circuit ground GP have a small power capacity and a resistance value equal to or greater than the resistance value of a normal power line. It is connected at one point via the body Rg. Therefore, it can be seen that the improvement effect in the destruction mode is great.
  • the semiconductor single crystal island 27 constituting the IGBT 34 may be constituted by a wide band gap semiconductor such as GaN (gallium nitride), SiC (silicon carbide), or diamond. Since the wide band gap semiconductor has high heat resistance and withstand voltage and high allowable current density, the IGBT 34 formed on the IC chip 20 can be downsized, and the inverter IC 2 can be downsized. In addition, since the wide band gap semiconductor has low power loss, it is possible to configure the IGBT 34 that can operate with high efficiency.
  • a wide band gap semiconductor such as GaN (gallium nitride), SiC (silicon carbide), or diamond. Since the wide band gap semiconductor has high heat resistance and withstand voltage and high allowable current density, the IGBT 34 formed on the IC chip 20 can be downsized, and the inverter IC 2 can be downsized. In addition, since the wide band gap semiconductor has low power loss, it is possible to configure the IGBT 34 that can operate with high efficiency.
  • FIG. 6 is a cross-sectional view of power conversion device 60 according to Embodiment 1 of the present invention.
  • the copper foil 50 shown in FIG. 6 is formed of a circuit wiring pattern on the printed circuit board 1 or lands for electrically, thermally, and mechanically connecting the printed circuit board 1 and components by soldering.
  • a Hall element 6, an overheat detection element 14, and an inverter IC 2 are disposed on the surface of the printed circuit board 1 on the stator side via a copper foil 50.
  • the inverter IC2 is connected to the copper foil 50 by solder via the high voltage electrode 11 and the low voltage electrode 12. Further, the overheat detecting element 14 is electrically and thermally connected to the low voltage electrode 12 through the copper foil 50.
  • the through hole 51 is a hole penetrating from the stator side surface of the printed circuit board 1 to the anti-stator side surface.
  • the surface of the hole is plated, and the copper foil 50 on the stator side surface of the printed circuit board 1 and the copper foil 50 on the surface opposite to the stator side of the printed circuit board 1 are electrically connected by plating applied to the through hole 51. Connected thermally and thermally.
  • the motor terminal 5 is provided through the through hole 51 from the surface on the stator side of the printed circuit board 1 to the surface on the side opposite to the stator.
  • the motor terminal 5 melts thread-like solder from the copper foil 50 provided on the surface of the printed circuit board 1 on the side opposite to the stator, and is electrically connected to the stator-side copper foil 50 through the through hole 51. Since the stator-side copper foil 50 is connected to the high voltage electrode 11 of the inverter IC 2, the motor terminal 5 is electrically connected to the high voltage electrode 11.
  • the high voltage input line 17 is electrically connected to one end of the copper foil 104 provided on the stator side surface of the printed circuit board 1 by solder.
  • the other end of the copper foil 104 is electrically connected to the high-voltage electrode 11 provided in the inverter IC 2 by solder.
  • the copper foil 104 and the copper foil 50 shown around the motor terminal 5 are represented as being connected to one high-voltage electrode 11 for the purpose of illustration. However, it is assumed that the copper foil 104 and the copper foil 50 are connected to different high-voltage electrodes 11, respectively.
  • the motor external connection lead 7 is mounted not as a connector type but as a lead wire type on the surface opposite to the stator of the printed circuit board 1 in order to electrically connect an external power source (such as a high-voltage DC voltage) and the inverter IC 2. .
  • an external power source such as a high-voltage DC voltage
  • the motor 61 is mounted on an air conditioner or the like, moisture may adhere to the outline of the motor 61.
  • the motor external connection lead 7 is a connector type, when this moisture adheres between the high and low voltage electrodes in the connector, these electrodes may be short-circuited.
  • the motor external connection lead 7 is a lead wire type, such a short circuit can be avoided and the reliability of the motor 61 can be ensured.
  • the heat spreader 13 is electrically, thermally, and mechanically connected by the copper foil 50 and solder, like the high voltage electrode 11 and the low voltage electrode 12. Further, the heat spreader 13 is thermally connected to the copper foil 50 provided on the surface opposite to the stator of the printed circuit board 1 through the copper foil 50 applied to the through hole 51.
  • the surface-mounted inverter IC 2 has a package size larger than that of the Hall element 6 and the overheat detecting element 14, and therefore receives a large amount of heat shrinkage stress at the time of molding of the surrounding mold resin 4 and after molding. Cutting is easy to occur.
  • the heat spreader 13 is mechanically strongly connected to the copper foil 50 by solder, the inverter IC 2 is less susceptible to the heat shrinkage stress of the mold resin 4.
  • the inverter IC 2 has a dramatic mechanical connection strength with the printed circuit board 1 as compared with an IC that is connected by soldering only ordinary circuit electrodes (such as the high-voltage electrode 11 and the low-voltage electrode 12). And solder breakage is reduced. As a result, it is possible to incorporate the power conversion device 60 in the motor 61 molded with the mold resin 4.
  • the heat spreader 13 is thermally connected to the copper foil 50 by solder on the surface of the printed circuit board 1 on the stator side, and further thermally connected to the copper foil 50 on the side opposite to the stator via the through hole 51. Yes. Thereby, the heat generated in the inverter IC 2 can be radiated to the side opposite to the stator of the printed circuit board 1.
  • the overheat detecting element 14 and the inverter IC 2 are surface-mounted on the surface of the printed circuit board 1 on which the Hall element 6 is disposed.
  • these components are electrically connected at one time by remelting the cream solder applied to the copper foil 50 (reflow soldering). And mechanically connectable.
  • the connection of the motor external connection leads 7 and the motor terminals 5 that need to be soldered after the printed circuit board 1 is divided (detailed in FIG. 7). It becomes possible not to apply solder to the land for use (to prevent the application of solder with a metal mask).
  • the inverter IC2 by improving the temperature detection performance of the overheat detecting element 14, it is possible to surface-mount the inverter IC2 with the thickest heat spreader 13 among the mounted parts of the printed circuit board 1 on the printed circuit board on the stator side. It is. As a result, there is a margin in the mold space on the surface of the printed circuit board 1 opposite to the stator, so that the stator 3 can be thickened by the margin to obtain a motor 61 with a large output, or the margin can be thinned. By doing so, a thin and compact motor 61 with the same output can be obtained.
  • FIG. 7 is a diagram for explaining the merits when a plurality of printed circuit boards 1 according to Embodiment 1 of the present invention are taken out from one board.
  • FIG. 7 shows an example on one board. The example which shape
  • the printed circuit board 1 according to the first embodiment is such that the neutral point connection 39 (see FIG. 5) of the stator 3 is not mounted, and an inverter in which a plurality of high-voltage elements are integrated on the IC chip 20 that is a one-chip semiconductor.
  • the package is downsized.
  • the semicircular arc-shaped printed circuit board 1 having a cross-sectional area of 1 ⁇ 2 or less can be formed.
  • the inner diameter portion of the printed circuit board 1 is formed in a semicircular arc shape so that a bearing (not shown) can be provided.
  • the inner peripheral part of the printed circuit board 1 is formed in a semicircular arc shape. Therefore, when forming a plurality of printed circuit boards 1 on a single substrate, the printed circuit board 1 is printed by arranging the printed circuit boards 1 so that the inner diameter portions of the printed circuit boards 1 face each other and the arc centers of the inner diameter portions are offset from each other. The inner periphery of the substrate 1 can be used effectively. In other words, a plurality of printed circuit boards 1 can be formed at a high density on a single substrate, and the utilization efficiency of the substrate for forming the printed circuit board 1 can be improved.
  • the inner periphery of a conventional printed circuit board is formed in an annular shape, when an electronic component is connected to the printed circuit board using flow solder, the solder in the solder bath is blown through the through part. Go up. In order to prevent this blow-up, a step of applying a plate for closing the through portion is required before the flow soldering step, and a step of removing this plate is also required after the soldering step.
  • the printed circuit board 1 according to the first embodiment has a semicircular inner diameter portion instead of an annular inner peripheral portion, the aforementioned steps can be reduced when soldering by flow soldering. It can be manufactured at low cost.
  • the motor with a built-in power converter is mounted on the substrate (printed circuit board 1) on which the semiconductor module (inverter IC2) that converts the voltage of the external power supply into a high-frequency voltage and supplies it to the stator 3 is mounted.
  • the substrate printed circuit board 1
  • the semiconductor module inverter IC2 that converts the voltage of the external power supply into a high-frequency voltage and supplies it to the stator 3 is mounted.
  • a built-in power converter 60 having a high-voltage circuit ground (high-voltage circuit ground GP) of the semiconductor module and a low-voltage circuit ground (low-voltage circuit ground GS) of the semiconductor module.
  • the high-voltage circuit ground GP and the low-voltage circuit ground GS are connected at one point via the resistor Rg, a voltage surge can be obtained even if a new resistor other than the shunt resistor Rs is not placed on the main wiring of the high-voltage DC power.
  • the sound and light emission when an abnormal voltage such as is applied can be made difficult to leak outside the motor.
  • the printed circuit board 1 and the motor 61 can be downsized because a resistor having a small power capacity is sufficient as compared with the case where a resistor is inserted in the power line.
  • electric power can be interrupted by fusing resistor Rg, fusing of bonding wire 21 inside the IC can be suppressed.
  • the resistor Rg prevents the bonding wire 21 from fusing. Therefore, it is possible to make it difficult for the light emission accompanying the fusing of the bonding wire 21 to leak outside the motor.
  • the resistor Rg according to the first embodiment is mounted on the surface of the printed circuit board 1 that faces the stator 3, the resistor Rg can be mounted simultaneously with the inverter IC2, so that the substrate is manufactured by one reflow soldering. It is possible to reduce the cost. Further, the resistor Rg can be arranged at a position far from the mold surface. Therefore, the sound and light emission when the resistor Rg is melted are not easily transmitted to the outside of the motor, and the user's anxiety can be reduced.
  • FIG. 8 is an overall external view of the air conditioner 200 according to Embodiment 2 of the present invention
  • FIG. 9 is a cross-sectional view of the indoor unit 70 in the air conditioner 200.
  • the indoor unit 70 hung on the indoor wall is connected to an outdoor unit 80 installed outdoors via a refrigerant pipe 90. Further, the indoor unit 70 incorporates an indoor blower 71 described later, and the outdoor unit 80 is provided with an outdoor blower 81.
  • the indoor unit 70 includes a suction port 73 provided on the upper surface of the indoor unit 70, an indoor heat exchanger 72, an indoor blower 71, a blowout air passage 74, and a blowout port 75 as main components. It is configured.
  • the indoor heat exchanger 72 exchanges heat between the indoor air and the refrigerant, and the indoor blower 71 sucks indoor air from the suction port 73 and passes the air through the indoor heat exchanger 72 to exchange heat.
  • the air is conditioned and blows into the room.
  • the indoor heat exchanger 72 extends from the rear upper part of the indoor unit 70 to the vicinity of the front middle stage, is bent from the middle front part of the indoor unit 70 toward the lower front part, and surrounds the front side of the indoor blower 71.
  • the indoor blower 71 is a line flow fan that is rotatably provided so as to extend in the longitudinal direction of the indoor unit 70.
  • the motor 61 (refer FIG. 1) with which the power converter device 60 which concerns on Embodiment 1 was incorporated is connected with the edge part of the longitudinal direction of the indoor air blower 71 in order to rotationally drive the indoor air blower 71.
  • FIG. . a blowout air passage 74 through which conditioned air circulates is formed in the lower portion of the indoor blower 71.
  • the blower outlet 75 is provided in the lower part of the indoor unit 70 in order to discharge the conditioned air which has circulated through the blowout air passage 74 to the outside.
  • the indoor heat exchanger 72 functions as an evaporator when the air conditioner 200 is performing a cooling operation, and the refrigerant inside the indoor heat exchanger 72 evaporates, so that the passing indoor air is cooled. .
  • the indoor heat exchanger 72 functions as a condenser, and the passing indoor air is heated.
  • the conditioned air that has passed through the indoor heat exchanger 72 passes through the blowout air passage 74 and is blown into the room from the air outlet 75 by the continuous rotation of the indoor blower 71.
  • the air volume of the conditioned air blown out is adjusted by changing the rotation speed of the motor 61 connected to the indoor blower 71.
  • the air conditioner 200 according to the second embodiment particularly, by mounting the motor 61 according to the first embodiment on the indoor blower 71, the indoor heat exchange by the amount that the motor 61 is reduced in size.
  • the size of the device 72 can be increased, and sound and light emission when an abnormal voltage such as a voltage surge is applied can be made difficult to leak outside the motor. Therefore, it is possible to obtain an air conditioner that has high energy saving performance and can reduce anxiety to the user when an abnormality occurs.
  • the air conditioner 200 according to the second embodiment can increase the heat exchange performance at the time of start-up by mounting the motor 61 according to the first embodiment on the indoor blower 71, and can be set in a short time. It can reach the temperature and improve the comfort of the user.
  • the wind speed is increased by increasing the output of the motor 61, the temperature unevenness in the room can be eliminated, the comfort of the user can be improved, and at the same time, the anxiety to the user when an abnormality occurs is reduced. can do.
  • the structure of the air conditioner 200 shown by FIG. 8 and FIG. 9 demonstrated above, especially the indoor unit 70 is an example, The structure is not limited by these.
  • the example in which the motor 61 according to the first embodiment is used as the indoor blower 71 of the indoor unit 70 has been described.
  • the air conditioner 200 according to the second embodiment is limited to this.
  • the motor 61 may be used for the outdoor blower 81 of the outdoor unit 80.
  • the power conversion device 60 uses a high-voltage DC voltage that has undergone full-wave rectification or voltage doubler rectification as the high-voltage DC power supply 38. Therefore, compared to a circuit built-in motor using a low-voltage power supply of 30 V or less using a step-down power supply, the breaking energy of the wire and its surroundings at the time of a Si or SiC element chip short-circuit failure is orders of magnitude greater. If the resistance value of the high-voltage wiring system at the time of the short-circuit failure is R and the DC power supply voltage is V, the amount of heat generated at the time of breakdown is V 2 / R.
  • the resistance at the time of a short-circuit failure is the direction in which the high-voltage power element having a larger chip cross-sectional area becomes smaller. Even if the resistance is the same, the power supply voltage has a difference of 5 to 10 times or more, and the breakdown energy is 25 to 100 More than double. As a result, it is easy to emit light and sound outside the motor and equipment, and to give anxiety to the user. In order to eliminate such anxiety, it is first required not to cause thermal destruction. Also, it is desirable to have a structure in which light emission and pronunciation are not perceived by a user outside the device in the event of element breakdown.
  • the resistor Rg is arranged on the stator side. Therefore, the surface of the sound or light generated by the energy when the high-breakdown-voltage IC chip 20 driven by the high-voltage DC voltage 38 is broken, that is, the surface of a resin hole (such as a mold hole indicated by reference numeral 100 in FIG. 1). The sound and light generated through the mold resin 4 on the side opposite to the stator having a small thickness from the printed circuit board 1 to the printed circuit board 1 are reduced, and the user's anxiety can be reduced.
  • the one-chip inverter IC is used for the main circuit of the inverter.
  • the same effect can be obtained by using a high-voltage surface-mount type multi-chip inverter IC and a discrete main element. Not too long.
  • examples of the wide band gap semiconductor include silicon carbide, gallium nitride-based material, and diamond.
  • Switching elements and diode elements formed by such wide band gap semiconductors have high voltage resistance and high allowable current density, so that switching elements and diode elements can be miniaturized.
  • elements and diode elements it is possible to reduce the size of a semiconductor module incorporating these elements. In these elements, the ON resistance at the time of top and bottom short circuit is lower than that of the narrow gap Si semiconductor, so that a short circuit current flows much, the degree of damage of the wire and its surroundings is large, and the effect of arranging the copper foil on the stator surface is higher. Become.
  • the heat spreader 13 can be reduced in size.
  • the cooling method can be changed from water cooling to air cooling, thereby further reducing the size of the semiconductor module. It becomes possible. Therefore, since the metal lead frame 22 is shorter than that of the Si element, the degree of damage of the wire and its periphery is large, and the effect of arranging the copper foil 104 on the stator surface is enhanced.
  • both the switching element and the diode element are desirably formed of a wide band gap semiconductor, either one of the elements may be formed of a wide band gap semiconductor, and the effect described in this embodiment Can be obtained.
  • the double-sided through-hole substrate using the copper foil 50 is used for the printed circuit board 1, but the substrate is not configured by a base material made of another metal or an insulating material, etching, or the like. Needless to say, the same effect can be obtained even if double-sided wiring is used.
  • the air conditioner has been described as the motor-equipped device.
  • the motor 61 may be used for a ventilation fan device.
  • the motor 61 as a motor of a ventilation blower that blows out indoor air to the outside, it goes without saying that the same effects as described above, such as thinning of the device and improvement of the blowing performance, can be obtained.
  • the improvement of the air blowing performance is particularly effective when it is desired to discharge moisture and odor in a short time in a bathroom or a toilet.
  • the air conditioner has been described as the motor-equipped device.
  • the motor 61 may be used for a water heater.
  • the motor 61 for a blower in a hot water heater or a fluid pump in a hot water heater for heating water with a refrigerant, the same effects as described above such as thinning of the apparatus and improvement of the blowing performance can be obtained.
  • the improvement of the high temperature and high load performance is particularly effective when pumping high temperature hot water which is a factor for increasing the ambient temperature of the motor.
  • the present invention can be applied mainly to a motor incorporating a power conversion device, an air conditioner incorporating this motor, a water heater, and a ventilation fan, and in particular, downsizing can be achieved.
  • the present invention is useful as an invention capable of reducing the loss of current that flows when the inverter circuit is operating normally while preventing abnormal voltages from being applied to the components of the inverter circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inverter Devices (AREA)

Abstract

 外部電源の電圧を高周波電圧に変換してステータ3へ供給する半導体モジュール(インバータIC2)が実装されたプリント基板1を有する電力変換装置60を内蔵したモータ61であって、基板には、インバータIC2の高圧主回路系のパワーグランドである高圧回路グランドGPと半導体モジュールの低圧回路である制御回路系のグランドである低圧回路グランドGSとが設けられ、高圧回路グランドと低圧回路グランドとは、抵抗体Rgを介して一点で接続されている。

Description

電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器
 本発明は、半導体モジュールを用いた電力変換回路基板によって構成された電力変換装置を内蔵したモータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器に関する。
 近年、高圧の電力変換回路とステータとを接続し不飽和ポリエステル樹脂等の熱硬化性樹脂で成形された駆動回路内蔵モータが空調用送風機に多く用いられている。モータ駆動のための直流電源は、最大325Vと高圧化している(例えば下記特許文献1)。また、空調機器は、電源事情の悪い地域での利用も多く、上記直流電源の電圧の最大値がさらに増加する方向である。
 また、集積回路(以下、ICと略す)を封止するパッケージは、小型化が進み、面実装に対応するパッケージも多く使われるようになった。特に、モータ内部の電力変換装置に実装されるICは、小型化の要求から上記の面実装対応のパッケージが使われる例が増えている(例えば下記特許文献2)。ただし、空調用送風モータ等で使われるICには、比較的大きな許容消費電力が要求されるため、この許容消費電力に伴い生じる熱を効果的に放熱するため、実装には工夫が必要となる。
 また、モータのインバータ回路には、当該回路の高電位(直流電源の正極)側に接続され当該回路に異常電流が発生したときに溶断する抵抗体や、当該回路の低電位(直流電源の負極)側に流れる電流を検出するためのシャント抵抗などが設けられている。ただし、このように構成されたインバータ回路では、異常電流がシャント抵抗にも流れるため、シャント抵抗が異常電流によって焼損(断線)した場合、本来は低抵抗であるシャント抵抗が高抵抗になる可能性がある。そうすると、インバータ回路内では異常電流の原因が解消されていないにも係わらず、シャント抵抗によってインバータ回路の高電位側から低電位側への電流の流れが阻害される。従って、インバータ回路の高電位側に接続されている抵抗体には、当該抵抗体を溶断するような電流が流れなくなり、当該抵抗体が溶断されない状態が続くことになる。すなわち、インバータ回路内で発生する異常電流によって、シャント抵抗が焼損した場合、抵抗体が溶断されないため、インバータ回路には、異常電流に対応する電圧が継続して印加されるため、インバータ回路の構成部品やモータ等に損傷を与える可能性がある。
 このような問題を解決する手段として、下記特許文献1に示される電力変換装置では、インバータ回路の高電位側に接続される所定以上の異常電流が発生した場合に溶断する抵抗体と、インバータ回路の低電位側に接続されたシャント抵抗と、シャント抵抗に並列に接続され異常電流が流れたときにシャント抵抗をバイパスするバイパス回路と、を有して構成されている。そして、インバータ回路に異常電流が発生した場合、異常電流がバイパス回路に電流が流れるため、シャント抵抗の焼損が防止される。従って、シャント抵抗が焼損して高抵抗になることが抑制され、安価な抵抗体を用いても抵抗体を溶断させることが可能である。その結果、インバータ回路を電源側から遮断することができ、インバータ回路の構成部品やモータなどに異常電圧が印加されることを防止することができる。
特開2011-61907号公報(段落「0059」、図1、図3) 特開平5-91708号公報(段落「0011」~「0013」、図4) 特開2010-88233号公報(段落「0006」、図1、図2)
 しかしながら、上記特許文献1で示される電力変換装置は、電力変換回路の主要な部分を集積したICがリードタイプであるため、基板実装に人的工程が必要であるといった問題点があった。また、プリント基板上のICの配置位置が反ステータ側であるため、回路が厚くなるといった問題点がある。さらに、IC内のインバータ回路が上下短絡故障を起こした場合、破損するICの高圧電源端子とその周辺の基板銅箔が反ステータ側に設けられているため、IC破壊の影響がモータ外部に及ばないよう反ステータ側のモールド樹脂の肉厚を大きく取る必要があり、モータが大型化するという問題があった。
 また、上記特許文献2で示される電力変換装置は、ICおよび基板が面実装化され半田面積がかせげないため、リード実装に比べてプリント基板との機械的接続強度が弱くなるという問題があった。また、上記特許文献2で示される電力変換装置では、スイッチングパワー素子の半導体チップが直接プリント基板と機械的に接続されることから、チップ放熱のために樹脂基材を用いたプリント基板ではなく、金属や焼結基材を用いた基板を用いる必要があるため、高価になるという問題があった。また、前記の放熱性の高い基板(金属や焼結基材を用いた基板)では一般的に片面配線となることから、両面基板に比べ配線効率が悪く、基板面積が大きくなるといった問題もある。
 一方、スイッチングパワー素子を含む電力変換主回路に面実装ICを用いて、ICパッケージに配置されたヒートスプレッダからプリント基板上の銅箔を介してICの熱を放熱する場合、IC端子からの高圧配線をIC下部およびその周辺に配置することができない。この場合、高圧配線の一部をプリント基板の反ステータ側に引き回す必要があるものの、プリント基板の反ステータ側には基板押さえ用の金型穴が配置されているなどの事情により、高圧配線の配線可能領域は非常に狭くなっている。従って、反ステータ側にしか銅箔のないプリント基板では、高圧配線を配置することができない場合があるという問題がある。
 また、上記特許文献3で示される電力変換装置では、高電位側の抵抗体を溶断しやすくするため抵抗体の抵抗値を高くする必要があり、主電流のラインの抵抗値を大きくした場合、通常運転時の損失が増加するといった課題がある。するわち、インバータ回路の構成部品などに異常電圧が印加されることを防止しながらインバータ回路が正常動作しているとき流れる電流の損失を低減するというニーズに対応することができないという課題があった。
 本発明は、上記に鑑みてなされたものであって、小型化を図ることができると共に、インバータ回路の構成部品などに異常電圧が印加されることを防止しながらインバータ回路が正常動作している際に流れる電流の損失を低減可能な電力変換装置を内蔵したモータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、外部電源の電圧を高周波電圧に変換してステータへ供給する半導体モジュールが実装された基板を有する電力変換装置を内蔵したモータであって、前記基板には、前記半導体モジュールの高圧回路グランドと、前記半導体モジュールの低圧回路グランドと、が設けられ、前記高圧回路グランドと低圧回路グランドとは、抵抗体を介して一点で接続されていることを特徴とする。
 この発明によれば、高圧直流電圧が低圧回路に印加された場合でも、小電力容量の抵抗体によって短絡電流が制限されると共に、時間が経過したときにこの抵抗体が断線して高圧直流電圧が遮断されるようにしたので、小型化を図ることができると共に、インバータ回路の構成部品などに異常電圧が印加されることを防止しながらインバータ回路が正常動作している際に流れる電流の損失を低減することができる、という効果を奏する。
図1は、本発明の実施の形態1に係る電力変換装置およびそれを内蔵したモータの側断面図および上面透視図である。 図2は、本発明実施の形態1に係る抵抗体の内部構造図である。 図3は、本発明の実施の形態1に係る電力変換装置に実装されたインバータICの構成図である。 図4は、本発明の実施の形態1に係る電力変換装置のインバータICにおけるICチップの構造図である。 図5は、本発明の実施の形態1に係る電力変換装置のインバータICにおけるICチップ周辺の回路構成図である。 図6は、本発明の実施の形態1に係る電力変換装置の断面図である。 図7は、本発明の実施の形態1に係るプリント基板を1枚の基板から複数枚取り出すときにおけるメリットを説明するための図である。 図8は、本発明の実施の形態2に係る空気調和機の全体外観図である。 図9は、本発明の実施の形態2に係る空気調和機における室内機の横断面図である。
 以下に、本発明に係る電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
(電力変換装置60およびモータ61の構成)
 図1は、本発明の実施の形態1に係る電力変換装置60を内蔵したモータ61の側断面図および上面透視図である。図1の下側には、図1の矢印Aの方向から見たプリント基板1のステータ3側(以下「ステータ側」)の面が示されている。モータ61は、主たる構成として、電力変換装置60と、ステータ3と、ロータ16と、ベアリング9とを有して構成されている。また電力変換装置60は、主たる構成として、略1/2円弧状に形成されたプリント基板1と、インバータIC2と、モータ61の各相の入力端子であるモータ端子5と、ロータ16の回転位置を検出するホール素子6と、モータ外部接続リード7と、インバータIC2の過熱状態を検知する過熱検知素子14とを有して構成されている。
 モータ61の内部には、モータ61を回転駆動させるための電力変換回路を実装したプリント基板1が内蔵されている。電力変換回路の一部であるインバータIC2は、プリント基板1に実装されている。インバータIC2は、モータ61のステータ3の銅線またはアルミ線等である巻線に電圧を印加するための電圧型インバータの主回路を内蔵している。また、モータ61の内部において、プリント基板1のインバータIC2が実装される側の面には、ステータコア(図示せず)に巻線が巻かれた円環状のステータ3が配置されている。そして、ステータ3とプリント基板1は、不飽和ポリエステル等の熱硬化性モールド樹脂4によって機械的に接続されている。プリント基板1の反ステータ側の面には、このモールド樹脂4によって、ベアリングハウジング9aを構成するモータ61の外形が形成されている。
 モールド樹脂4内のステータ3とプリント基板1の位置関係を正しく保つため、プリント基板1の反ステータ側の面は、符号100で示される位置に当接する金型(図示せず)で押さえられ、かつ、プリント基板1のステータ側の面は、スタータ3と符号101で示される位置に当接する金型とで押さえられる。より具体的には、プリント基板1の反ステータの面は、内周側と外周側の双方(点線の丸で示される符号100の6箇所)が金型で押さえられる。また、プリント基板1のステータ側の面は、モータ端子5を介してステータ3と機械的に接続がとれているため、プリント基板1の内周側(実線の丸で示される符号101の2箇所)のみが金型で押さえられる。その上で金型に樹脂が流されてモールド樹脂4が成形される。この金型は、モールド樹脂4の成形後に取り除かれるため、符号100、101で示される場所には、プリント基板1が直接露出するような穴が形成される。
 プリント基板1とステータ3は、プリント基板1からステータ3への電圧が印加されるように、半田付けによりモータ端子5によって電気的に接続されている。プリント基板1のステータ側の面には、ステータ3に囲われるように配置されたホール素子6が実装されると共に、インバータIC2近傍に過熱検知素子14が設置されている。プリント基板1の反ステータ側の面には、プリント基板1とモータ61の外部とを電気的に接続するため、モータ外部接続リード7が設置されている。このモータ外部接続リード7から外部側には、高圧入力線17および低圧入出力線18が延びている。
 ステータ3の内周部には、モールド樹脂4が充填されず円筒状に中空となっているロータ貫通用穴8が設けられ、このロータ貫通用穴8には、モータ61の回転子であるロータ16が配置されている。プリント基板1の内周側には、ベアリング貫通穴10が形成されている。ベアリング貫通穴10は、ロータ貫通用穴8と連通して、ロータ16の主軸(図示せず)がプリント基板1に対して略垂直方向にモールド樹脂4内をベアリングハウジング9aまで貫通している。ベアリング貫通穴10には、ベアリング9が収納されており、ベアリング9の内輪(図示せず)には、ロータ16の主軸(図示せず)が貫設されている。
 インバータIC2は、主たる構成としてヒートスプレッダ13、高圧電極11、および低圧電極12を有して構成されている。高圧電極11と低圧電極12は、インバータIC2のデュアルインライン電極を形成する。高圧電極11は、モータ61の外部で商用電源が全波整流あるいは倍電圧整流された高圧直流電圧を入力する。インバータIC2では、この高圧直流電圧が高周波電圧に変換され、高圧電極11は、この高周波電圧をモータ端子5へ出力する。なお、これらの高圧電極11は、プリント基板1上の配線(モータ出力配線105)が短くなるようにモータ端子5の設置位置を考慮して、例えば図1に示されるようにインバータIC2とプリント基板1の外周側との間に設けられている。
 高圧入力線17は、モータ外部接続リード7を介して、プリント基板1のステータ側の面に設けられた銅箔である銅箔104と電気的に接続されている。銅箔104の一端は、半田によって高圧入力線17と電気的に接続され、銅箔104の他端は、インバータIC2に設けられた高圧電極11と半田によって電気的に接続されている。銅箔104と近接してプリント基板1の反ステータ側の面に設けられた銅箔であるモータ出力配線105は、一端がインバータIC2の高圧電極11内のモータ出力端子と電気的に接続され、他端がモータ端子5と電気的に接続されている。モータ出力配線105の一端は反ステータ側で接続され、モータ出力配線105の他端はステータ側で接続されている。
 またインバータIC2には、高圧主回路系のグランド(以下「高圧回路グランドGP」)および低圧回路である制御回路系グランド(以下「低圧回路グランドGS」)を有する。制御系回路は、ホール素子6の出力信号に応じ高圧主回路のスイッチングパターンを決定したり、過熱検知素子14により検知された過熱状態に応じて高圧主回路の出力電流を制限するなどの機能を有する。図1に示される抵抗体Rgは、高圧回路グランドGPと低圧回路グランドGSとを電気的に接続する抵抗体である。実施の形態1では、一例として抵抗体Rgがプリント基板1のステータ側に配置され、高圧回路グランドGPと低圧回路グランドGSが抵抗体Rgを介して例えば一点接続されている。抵抗体Rgの詳細に関しては後述する。
 このように、電力変換装置60は、少なくとも、プリント基板1、プリント基板1上に実装されたインバータIC2、モータ端子5、ホール素子6、モータ外部接続リード7、および過熱検知素子14を有して構成されている。そして、モータ61は、モールド樹脂4で機械的に結合された電力変換装置60およびステータ3と、ロータ16と、ベアリング9と、主軸(図示せず)とを有して構成されている。
 なお、インバータIC2及び過熱検知素子14は、それぞれ本発明の「半導体モジュール」及び「過熱検知手段」に相当する。
 図2は、本発明実施の形態1に係る抵抗体の内部構造図である。図2に示される各符号a~fは、aがセラミック基板を表し、bが導体、cが抵抗体、dがオーバーコート、eが表示(カラーコードなど)、fが金属電極である。
 本実施の形態では、抵抗体Rgがプリント基板1に面実装され、その後、このプリント基板1がモールド樹脂4によってモールドされる。抵抗体cはセラミック基板a、金属電極f、およびオーバーコートdで取り囲まれ、さらに薄膜のオーバーコートdの外周面にはモードル樹脂4(主にガラスを基材としたバルクモールドコンパウンド(BMC)樹脂)が形成される。そのため、抵抗体cが溶断した際の発光や発音が、モータ外部や製品外部に漏洩しにくいという効果を得ることができる。
 また、このように構成された抵抗体Rgでは、抵抗体cの周囲が、ガラス(d)、セラミック(a)、および金属(f)といった不燃物で隙間無く覆われている。そのため、抵抗体cが溶断した際の温度による抵抗体Rg周辺部の変色や変形が最小限に抑えられ、この変色や変形がモータ外部から見えないといった効果を得ることもできる。
(インバータIC2の構成)
 図3は、本発明の実施の形態1に係る電力変換装置60に実装されたインバータIC2の構成図である。図3には、インバータIC2の構成要素であるICパッケージ23、金属リードフレーム22、ボンディングワイヤ21、ヒートスプレッダ13、高圧電極11、および低圧電極12が示されている。ICチップ20、ボンディングワイヤ21、および金属リードフレーム22は、高熱伝導性の樹脂であるICパッケージ23によって覆われている。ICチップ20は、シリコンまたはSiC等のワイドバンドギャップ半導体によって構成されている。このボンディングワイヤ21は、金、銅もしくはアルミ等の金属線材で構成され、超音波溶融によって、その一端がICチップ20上の金属電極(後述するアルミ配線25)と電気的に接続され、その他端が金属リードフレーム22と電気的に接続されている。ICチップ20は、熱を効率的に放出するために板厚が厚く形成されたヒートスプレッダ13上に設けられ、半田付けまたは銀ペーストによって、ヒートスプレッダ13と熱的および機械的に接続されている。
 インバータIC2では、ICチップ20が板厚の厚いヒートスプレッダ13上に、半田付け又は銀ペーストによって電気的、熱的、および機械的に接続されている。そのため、ICチップ20からの発熱のうち過渡的な発熱に関しては、ヒートスプレッダ13に蓄熱されてICチップ20の過渡的な温度上昇が抑制される。
 また、ICチップ20、ボンディングワイヤ21、および金属リードフレーム22は、ICパッケージ23によって覆われて、インバータIC2の本体を形成している。そしてインバータIC2の本体は、その本体から延びている高圧電極11、低圧電極12、およびヒートスプレッダ13によって形成されている。インバータIC2では、ICチップ20とヒートスプレッダ13が金属リードフレーム22に近接配置され、さらにICチップ20がICパッケージ23と熱的および機械的に接続されている。そのため、ICチップ20からの発熱のうち定常的な発熱に関しては、金属リードフレーム22を介して高圧電極11および低圧電極12からICチップ20の外部に放熱され、さらにICパッケージ23を介してICチップ20の外部に放熱される。なお、ICチップ20およびICパッケージ23は、それぞれ本発明の「半導体チップ」および「熱伝導性樹脂」に相当する。
(ICチップ20の構成)
 図4は、本発明の実施の形態1に係る電力変換装置60のインバータIC2におけるICチップ20の構造図である。ICチップ20には、スイッチング素子を構成する複数の半導体素子が設けられ、各半導体素子の上部には、半導体素子と外部電極(図2に示される金属リードフレーム22など)との電気的接続を得るためのアルミ配線25が複数設けられている。これらのアルミ配線25は、前述した金属リードフレーム22と電気的に接続される。ICチップ20上には、各アルミ配線25同士の絶縁をとるための絶縁性能の高い酸化シリコン膜26が形成されている。そのため、実施の形態1に係るICチップ20は、一般的なIC、すなわち複数の半導体素子を各々金属リードフレーム22に配置してボンディングワイヤ21によって各半導体素子間の電気的接続をとるICと比較して、アルミ配線25の配置に自由度がある。また、ICチップ20を用いることによって、非常に小さいスペースで高圧電極11と低圧電極12とを分離して設けることが可能である。
 また、ICチップ20には、半導体素子を構成する複数の半導体単結晶島27とその周囲を覆う多結晶シリコン28との電気的絶縁をとるため、絶縁性の高い絶縁分離層29(例えば酸化シリコン)が形成されている。多結晶シリコン28は、前述したヒートスプレッダ13と熱的および機械的に接続されている。絶縁分離層29は、例えば薄膜でも絶縁性能が充分確保できる酸化シリコン(SiO)によって構成されている。
 このようにICチップ20は、絶縁性の高い絶縁分離層29を設けることによって半導体単結晶島27を同一チップ上に島状に分離して配置することができ、高圧絶縁が必要なスイッチング素子を混載することができる。また、ICチップ20は、一般的なIC、すなわち複数の半導体素子を所定の絶縁距離をとりながら配置してこれらの半導体素子を各々金属リードフレーム22に実装して成るICと比較して、小型化を図ることができるため、インバータIC2本体を小型化することができる。さらに、ICチップ20では、低圧の回路も同一チップ上に構成できることから、外部に制御用低圧チップまたは高低圧分離のためのチップが不要となり、また、それらを金属リードフレーム22およびプリント基板1上の配線によって電気的に接続させる必要がない。これにより、電力変換回路、延いては、電力変換装置60全体を著しく小さくすることができる。なお、半導体単結晶島27は、本発明の「半導体素子」に相当する。
 図5は、本発明の実施の形態1に係る電力変換装置60のインバータIC2におけるICチップ20周辺の回路構成図である。高圧直流電源38は、モータ61の外部で商用電源が全波整流あるいは倍電圧整流された高圧直流電圧であり、この電圧は、ICチップ20に入力される。IGBT34は、前述したICチップ20の半導体単結晶島27に形成されたスイッチング素子であり、上アーム駆動回路35aおよび下アーム駆動回路35bによってON/OFF駆動され、入力された直流電圧を高周波電圧に変換する。なお、図5に示される6つのIGBT34にはそれぞれ還流ダイオードが逆並列に接続されている。IGBT34からの高周波電圧は、高圧電極11からモータ端子5を介して、ステータ3の巻線に印加される。
 ホール素子6で検出されたロータ16の回転位置信号は、ICチップ20内部のロジック回路によって、低圧のパルス信号に変換され、回転数出力線31から外部に出力される。また、ICチップ20は、出力電圧指令入力線32を介して外部から入力される低圧のアナログ信号電圧に基づいて、前述した6個のIGBT34のスイッチングパルス幅を変化させてインバータの出力電圧を調整する。このとき、6個のIGBT34によって構成されるインバータのうち、上アームのIGBT34を駆動させる上アーム駆動回路35aの電源は、チャージポンプダイオード33並びに外部コンデンサーC1およびC2によって生成される。また、モータ端子5(図1参照)と接続されるステータ3の巻線の反対側は、中性点結線39によって電気的に接続され、スター結線モータを形成する。
 過熱検知素子14には、温度に対する抵抗特性が急峻な正特性の温度抵抗素子が用いられ、過熱検知素子14は、検出した温度を抵抗値に変換する。この抵抗値は、過電流保護端子に入力される。過熱検知素子14は、過電流保護レベルに温度特性を持たせることによって、インバータIC2の過熱状態を検知して、インバータIC2およびステータ3が過熱状態になったことを検出する。この場合、インバータIC2は、高圧電極11を介してステータ3に供給される電流を制限または停止して、過熱によるインバータIC2等の破壊を防止する。
 また図5に示される低圧回路グランドGSは、低圧回路である制御回路系のグランドであり、例えばプリント基板1のステータ側に設けられている。この制御系回路は、ホール素子6の出力信号に応じて高圧主回路のスイッチングパターンを決定する機能や、過熱検知素子14により検知された過熱状態に応じて高圧主回路の出力電流を制限する機能などを有する。また高圧回路グランドGPは、インバータIC2の高圧主回路系のパワーグランドであり、例えばプリント基板1のステータ側に設けられている。高圧回路グランドGPと低圧回路グランドGSは、抵抗体Rgを介して例えば一点接続される。図5の例では、ICチップ20の「GL」端子がグランド(GS)に接続されているが、抵抗体Rgの一端はこのグランドに接続され、抵抗体Rgの他端は高圧回路グランドGPに接続されている。また、図4に示されるRsは、電流検出用のシャント抵抗であり、そのサイズは、3216(電力定格:1/4W)タイプ、その並列配置もしくはリードタイプ(例えば1/2W~2Wタイプ)である。
 本実施の形態で用いられる抵抗体Rgは、1608(1/16W)~2125(1/8W)タイプのチップ抵抗であり、シャント抵抗Rsに対してサイズおよび電力定格の小さいものを用いる。また抵抗体Rgの抵抗値は、高圧直流電源38からICチップ20の高圧電源入力Vs1、Vs2に至る高圧電力配線の抵抗値、ICチップ20内部のリードフレーム(図示せず)抵抗値、もしくはボンディングワイヤ21の抵抗値と、同等もしくは大きい値とする。
 ここで、異電圧投入やサージ電圧発生等によりICチップ20のIGBT34が上下短絡故障モードとなったとき、電力変換回路では、まず電力配線上で最も抵抗値の高いシャント抵抗Rsがオープン故障となる。その場合、高圧直流電源38の電圧がICチップ20に集中し、ICチップ20内部で高圧直流電源38と低圧回路が導通する。この場合、低圧回路に高圧直流電圧が印加され、低圧回路に電力集中が発生する。そのため、低圧回路に接続される部品(ホール素子・過熱保護回路等)が破壊されるなどして、その破壊時の発音や発光が懸念される。
 本実施の形態では、低圧回路グランドGSと高圧回路グランドGPとが、通常の電力ラインの抵抗値と同等もしくはそれ以上の抵抗値を持ち、かつ、小電力容量の抵抗体Rgを介して、一点接続されている。そのため、前述した低圧回路が破壊される前に抵抗体Rgが短絡電流を制限する。さらに時間が経過したとき、電力集中が発生した抵抗体Rgが断線し、高圧直流電圧が遮断される。
 また本実施の形態では、図1に示すように抵抗体Rgをプリント基板1のステータ側に、面実装部品として配置することで、他の面実装部品と同時に抵抗体Rgを実装でき、かつ、モールド表面から遠い位置に抵抗体Rgを配置することができる。すなわち、反ステータ面に抵抗体Rgを実装されている場合におけるモールド樹脂4の表面から抵抗体Rgまでの距離と、ステータ面に抵抗体Rgが実装されている場合におけるモールド樹脂4の表面から抵抗体Rgまでの距離とを比較したとき、後者の距離は前者の距離よりも長くなり、相対的にモールド樹脂4の肉厚が厚くなる。従って、抵抗体Rgが溶断した際の発音や発光がモータの外部からわかりにくくなる、という効果を得る事が可能である。
 また抵抗体Rgは、インバータ回路が正常動作しているとき流れる電流(以下「通常時の電流」)の電流値は5~50mA程度である。このような電流が低圧回路のグランドラインに流れることから、同一の抵抗値の抵抗体を高圧配線側に設ける場合に比べて、低電力容量の抵抗体Rgを用いることができる。
 また高圧側に高い抵抗値の抵抗体を挿入する必要がないため、通常時の電流が流れているときにおける電力変換回路の損失を低減することも可能である。
 このように実施の形態1にかかる電力変換装置60では、低圧回路グランドGSと高圧回路グランドGPとが、小電力容量、かつ、通常の電力ラインの抵抗値と同等もしくはそれ以上の抵抗値の抵抗体Rgを介して、一点で接続されている。そのため、破壊モードにおける改善効果が大きいことがわかる。
 なお、IGBT34を構成する半導体単結晶島27は、GaN(窒化ガリウム)、SiC(シリコンカーバイド)、またはダイヤモンド等のワイドバンドギャップ半導体によって構成してもよい。ワイドバンドギャップ半導体は、耐熱性および耐電圧が高く、許容電流密度も高いので、ICチップ20上に成形されるIGBT34を小型化することができ、インバータIC2の小型化を図ることができる。また、ワイドバンドギャップ半導体は、電力損失が小さいため、高効率に動作が可能なIGBT34を構成することができる。
(電力変換装置60におけるプリント基板1上の各素子の配置構成)
 図6は、本発明の実施の形態1に係る電力変換装置60の断面図である。図6に示される銅箔50は、プリント基板1上の回路配線パターン、または、プリント基板1と部品とを半田により電気的、熱的、および機械的に接続させるためのランドによって形成されている。プリント基板1のステータ側の面には、銅箔50を介してホール素子6、過熱検知素子14、およびインバータIC2が配置されている。インバータIC2は、高圧電極11および低圧電極12を介して半田によって銅箔50に接続されている。また、過熱検知素子14は、この銅箔50を介して低圧電極12と電気的および熱的に接続されている。
 スルーホール51は、プリント基板1のステータ側の面から反ステータ側の面に貫通する穴である。この穴の表面にはメッキが施され、プリント基板1のステータ側の面における銅箔50とプリント基板1の反ステータ側の面における銅箔50とは、スルーホール51に施されたメッキによって電気的および熱的に接続されている。
 モータ端子5は、スルーホール51を通じてプリント基板1のステータ側の面から反ステータ側の面に貫設されている。モータ端子5は、プリント基板1の反ステータ側の面に設けられた銅箔50から糸状の半田を溶融し、スルーホール51を介してステータ側の銅箔50と電気的に接続されている。このステータ側の銅箔50は、インバータIC2の高圧電極11と接続されるため、モータ端子5は、高圧電極11と電気的に接続される。
 高圧入力線17は、プリント基板1のステータ側の面に設けられた銅箔104の一端と半田によって電気的に接続されている。銅箔104の他端は、インバータIC2に設けられた高圧電極11と半田によって電気的に接続されている。なお、プリント基板1のステータ側の面において、モータ端子5の周囲に示される銅箔104と銅箔50は、図示の関係上、一つの高圧電極11に接続されているように表されているが、銅箔104と銅箔50は、各々別の高圧電極11に接続されているものとする。
 モータ外部接続リード7は、外部電源(高圧直流電圧など)とインバータIC2とを電気的に接続するため、プリント基板1の反ステータ側の面に、コネクタ式ではなくリード線式として実装されている。例えばモータ61が空気調和機等に搭載された場合、モータ61の外郭に水分が付着する可能性がある。モータ外部接続リード7がコネクタ式の場合、この水分がコネクタ内の高低圧電極間に付着した際、これらの電極がショートする可能性がある。モータ外部接続リード7がリード線式の場合、このようなショートを回避することができ、モータ61の信頼性を確保することができる。
 ヒートスプレッダ13は、高圧電極11および低圧電極12と同様に、銅箔50と半田によって電気的、熱的、および機械的に接続されている。さらに、ヒートスプレッダ13は、スルーホール51に施された銅箔50を介して、プリント基板1の反ステータ側の面に設けられた銅箔50と熱的に接続されている。ここで、面実装のインバータIC2は、そのパッケージサイズがホール素子6および過熱検知素子14と比較して大きいことから、周囲のモールド樹脂4の成形時および成形後の熱収縮応力を大きく受けて半田切れが発生しやすい。しかしながら、ヒートスプレッダ13を半田によって銅箔50と機械的に強く接続することによって、インバータIC2は、モールド樹脂4の熱収縮応力の影響を受け難くなる。従って、実施の形態1に係るインバータIC2は、通常の回路電極(高圧電極11および低圧電極12等)のみの半田によって接続されるICと比べて、プリント基板1との機械的接続強度が飛躍的に向上し、半田切れが軽減する。その結果、モールド樹脂4で成形されたモータ61に電力変換装置60を内蔵させることが可能となる。
 また、ヒートスプレッダ13は、プリント基板1のステータ側の面において銅箔50と半田によって熱的に接続され、さらに、スルーホール51を介して反ステータ側の銅箔50にも熱的に接続されている。これにより、インバータIC2で発生した熱をプリント基板1の反ステータ側に放熱することができる。
 また、ホール素子6が配設されたプリント基板1のステータ側の面には、過熱検知素子14およびインバータIC2が面実装されている。このように、プリント基板1のステータ側の面に部品を面実装することによって、これらの部品は、銅箔50に塗布されたクリーム半田の再溶融による接続(リフロー半田)で、一度に電気的および機械的に接続可能である。また、プリント基板1のステータ側の面に部品を面実装することによって、プリント基板1の分割後(図7で詳説する)に半田を施す必要があるモータ外部接続リード7およびモータ端子5の接続用ランドに、半田を塗布しないこと(メタルマスクで半田の塗布を防ぐこと)が可能となる。
 また、過熱検知素子14の温度検知性能の向上によって、プリント基板1の実装部品のうち、もっとも厚さのあるヒートスプレッダ13を伴ったインバータIC2を、ステータ側のプリント基板上に面実装させることが可能である。これによって、プリント基板1の反ステータ側の面におけるモールド空間に余裕ができるので、その余裕分だけステータ3を厚くして出力の大きいモータ61を得ることができ、あるいは、その余裕分を薄肉化することによって同一出力で薄型のコンパクトなモータ61を得ることができる。
 なお、上記説明では、プリント基板1に対して、ホール素子6、過熱検知素子14、およびインバータIC2等の面実装部品を、リフロー半田によって半田付けする例を説明したが、フロー半田(半田槽の上にプリント基板1を流して部品と基板の接合部に半田付けを行なう手法)によって実装するものとしてもよい。
(プリント基板1の材料取りについて)
 図7は、本発明の実施の形態1に係るプリント基板1を1枚の基板から複数枚取り出すときにおけるメリットを説明するための図であり、図7には、一例として1枚の基板上に、実施の形態1に係るプリント基板1を成形した例が示されている。
 実施の形態1に係るプリント基板1は、ステータ3の中性点結線39(図5参照)を実装しないこと、および、1チップ半導体であるICチップ20上に複数の高圧素子が集積されたインバータIC2を用いることによって、そのパッケージを小型化している。これによって、断面積が1/2以下となる半円弧状のプリント基板1を形成することができる。このとき、プリント基板1の内径部は、ベアリング(図示せず)を設けることができるよう、半円弧状に形成されている。
 従来のプリント基板は、円環状に形成されているため、プリント基板の内周部(ベアリング直径に相当する部分)にインバータIC2などの部品を配設することができない。従って、プリント基板の内周部は廃棄されていた。これに対し、実施の形態1に係るプリント基板1は、プリント基板1の内径部が半円弧状に形成されている。そのため、1枚の基板に複数のプリント基板1を成形する場合、各プリント基板1の内径部を対向させ、かつ、内径部の円弧中心を互いにオフセットさせて配置することによって、プリント基板1のプリント基板1の内周部が有効活用できる。換言すれば、1枚の基板に複数のプリント基板1を高密度で成形することができ、プリント基板1を成形するための基板の利用効率を向上させることができる。
 また、従来のプリント基板は、プリント基板の内周部が円環状に形成されているため、フロー半田を用いてこのプリント基板に電子部品を接続させるとき、半田槽の半田がこの貫通部を通して吹き上がる。この吹き上がりを防止するためには、フロー半田工程前に貫通部を塞ぐための板を施す工程が必要であり、また半田工程後にはこの板を外す工程も必要となる。これに対し、実施の形態1に係るプリント基板1は、円環状の内周部ではなく半円弧状の内径部を有するため、フロー半田により半田付けする場合、前述の工程を削減することができ、安価に製造することが可能である。
 以上に説明したように実施の形態1にかかる電力変換装置内蔵モータは、外部電源の電圧を高周波電圧に変換してステータ3へ供給する半導体モジュール(インバータIC2)が実装された基板(プリント基板1)を有する電力変換装置60を内蔵したモータ61であって、基板には、半導体モジュールの高圧回路グランド(高圧回路グランドGP)と半導体モジュールの低圧回路グランド(低圧回路グランドGS)とが設けられ、高圧回路グランドGPと低圧回路グランドGSとは、抵抗体Rgを介して一点で接続されているので、高圧直流電力の主配線上にシャント抵抗Rs以外に新たな抵抗体を入れなくとも、電圧サージ等の異常電圧が投入された際の発音や発光をモータ外部に漏れに難くすることができる。また、電力ラインに抵抗体を入れる場合に比べ、小さい電力容量の抵抗体でよい事からプリント基板1およびモータ61の小型化を図ることが可能である。また抵抗体Rgの溶断により電力を遮断できることから、IC内部のボンディングワイヤ21の溶断を抑制可能である。例えばインバータIC2が反ステータ側に配置されている場合(すなわち高圧配線のためのボンディングワイヤ21が反ステータ側に配置されている場合)であっても、抵抗体Rgによりボンディングワイヤ21の溶断が抑制されるため、ボンディングワイヤ21の溶断に伴う発光がモータ外部を漏れに難くすることができる。
 また、実施の形態1にかかる抵抗体Rgは、プリント基板1のステータ3と対向する面に実装されているため、インバータIC2と同時に抵抗体Rgを実装できるため一回のリフロー半田で基板を製造することができ、コスト低減を図ることが可能である。また、モールド表面から遠い位置に抵抗体Rgを配置することができる。そのため、抵抗体Rgが溶断した際の発音や発光が、モータの外部に伝わりにくく、使用者への不安感を軽減することができる。
実施の形態2.
(空気調和機200の構成)
 図8は、本発明の実施の形態2に係る空気調和機200の全体外観図であり、図9は、同空気調和機200における室内機70の横断面図である。
 図8に示される空気調和機200において、室内の壁に掛けられた室内機70は、冷媒配管90を介して、屋外に設置された室外機80に接続されている。また、室内機70には、後述する室内送風機71が内蔵されており、室外機80には、室外送風機81が設置されている。
 図9において、室内機70は、主たる構成として、室内機70の上面に備えられた吸込口73と、室内熱交換器72と、室内送風機71と、吹出風路74と、吹出口75とを有して構成されている。室内熱交換器72は、室内空気と冷媒との間で熱交換を行い、室内送風機71は、吸込口73からの室内空気を吸込み、この空気を室内熱交換器72に通過させて熱交換した調和空気とした上で室内に吹出す。室内熱交換器72は、室内機70の背面上部から前面中段付近に延設され、かつ、室内機70の前面中段付近から前面下部に向けて折り曲げられ、室内送風機71の前面側を囲うように設置されている。室内送風機71は、室内機70の長手方向に延びる態様で回転可能に設けられたラインフローファンである。そして、室内送風機71の長手方向の端部には、室内送風機71を回転駆動させるために、実施の形態1に係る電力変換装置60が内蔵されたモータ61(図1参照)が連結されている。また、室内送風機71の下部には、調和空気が流通する吹出風路74が形成されている。吹出口75は、その吹出風路74を流通してきた調和空気を外部に排出するために、室内機70の下部に設けられている。
(空気調和機200の室内機70の基本動作)
 次に、室内機70の基本的な動作について説明する。使用者がリモコン等を操作することによって空気調和機200の運転が開始されたとき、室内送風機71に連結されたモータ61が回転駆動し、その回転に連動して室内送風機71が回転駆動する。この室内送風機71の回転によって室内空気が吸込口73から吸い込まれる。吸い込まれた室内空気は、室内送風機71の連続的な回転によってさらに室内熱交換器72を通過し、この室内熱交換器72内部を流通する冷媒と熱交換される。室内熱交換器72は、空気調和機200が冷房運転を実施している場合には蒸発器として機能し、室内熱交換器72の内部の冷媒が蒸発するため、通過する室内空気は冷却される。一方、空気調和機200が暖房運転を実施している場合、室内熱交換器72は、凝縮器として機能し、通過する室内空気は加熱される。このように、室内機70に吸い込まれた室内空気は、室内熱交換器72を通過する際に、室内熱交換器72によって熱交換され、使用者が要求する調和空気となる。室内熱交換器72を通過した調和空気は、室内送風機71の連続的な回転によって、吹出風路74を通過して吹出口75から室内に吹き出される。また、この室内送風機71に連結されたモータ61の回転数が変化することによって、吹き出される調和空気の風量が調整される。
(実施の形態2の効果)
 以上に説明したように、実施の形態2に係る空気調和機200は、特に室内送風機71へ実施の形態1に係るモータ61を搭載することによって、モータ61が小型化された分だけ室内熱交換器72のサイズを大きくすることができると共に、電圧サージ等の異常電圧が投入された際の発音や発光がモータ外部に漏れに難くすることができる。そのため、省エネ性能が高く、かつ、異常発生時における使用者への不安感を軽減することができる空気調和機を得ることができる。
 また、実施の形態2に係る空気調和機200は、特に室内送風機71へ実施の形態1に係るモータ61を搭載することによって、立ち上がり時の熱交換性能を高く取ることができ、短時間で設定温度に到達し、使用者の快適性を向上させるとができる。また、モータ61の高出力化によって風速が上げられるので、室内の温度ムラを解消でき、使用者の快適性をより向上させることができると同時に、異常発生時における使用者への不安感を軽減することができる。
 なお、上記で説明した図8および図9で示される空気調和機200、特に室内機70の構成は一例であり、これらによってその構成が限定されるものではない。実施の形態2の説明では、実施の形態1に係るモータ61を室内機70の室内送風機71に用いた例に関して説明したが、実施の形態2に係る空気調和機200は、これに限定されるものではなく、室外機80の室外送風機81にモータ61を用いるように構成してもよい。
 また、実施の形態1に係る電力変換装置60は、全波整流あるいは倍電圧整流された高圧直流電圧を高圧直流電源38として用いている。そのため、降圧電源を用いた30V以下の低圧電源を用いた回路内蔵モータと比較して、SiやSiC素子チップ短絡故障の時のワイヤとその周辺の破壊エネルギーは、桁違いに大きい。短絡故障時の高圧配線系の抵抗値をR、直流電源電圧をVとすると、破壊時の発生熱量はV/Rとなる。短絡故障時の抵抗は、チップ断面積の大きな高圧パワー素子の方が小さくなる方向であり、仮に同じとしても電源電圧は、5~10倍以上の差があり、破壊のエネルギーは、25~100倍以上となる。その結果、モータや機器の外部で発光や発音がしやすく、使用者に不安感を与えやすい。このような不安感を解消するためには、まず熱破壊を起こさないことが求められる。また、万が一素子破壊が発生した場合にも、機器の外部にいる使用者に発光や発音を認知されない構造にすることが望ましい。
 本実施の形態1に係るプリント基板1では抵抗体Rgがステータ側に配置されている。そのため、高圧直流電圧38で駆動する高耐圧のICチップ20が破壊された際のエネルギーにより発生する発生する音や光、すなわち樹脂穴(図1の符号100で示される金型穴など)の表面からプリント基板1までの厚みが薄い反ステータ側のモールド樹脂4を介して発生する音や光が低減され、使用者への不安感を軽減することができる。
 また、上記実施の形態では、インバータの主回路に1チップインバータICを用いているが、高圧面実装タイプのマルチチップのインバータICおよびディスクリート主素子を用いても同様の効果が得られることはいうまでもない。
 また、ワイドバンドギャップ半導体としては、例えば、炭化珪素、窒化ガリウム系材料またはダイヤモンドがある。このようなワイドバンドギャップ半導体によって形成されたスイッチング素子やダイオード素子は、耐電圧性が高く、許容電流密度も高いため、スイッチング素子やダイオード素子の小型化が可能であり、これら小型化されたスイッチング素子やダイオード素子を用いることにより、これらの素子を組み込んだ半導体モジュールの小型化が可能となる。またこれらの素子では、上下短絡時のON抵抗がナローギャップのSi半導体より低いため多く短絡電流が流れ、ワイヤとその周辺の損傷の度合いが大きく、銅箔をステータ面に配置した効果がより高くなる。
 また、ワイドバンドギャップ半導体は、耐熱性も高いため、ヒートスプレッダ13の小型化が可能であり、また、例えば冷却方式を水冷から空冷化することも可能であるので、半導体モジュールの一層の小型化が可能になる。そのため金属リードフレーム22は、Si素子の場合に比べ短くなることから、ワイヤとその周辺の損傷の度合いが大きく、銅箔104をステータ面に配置した効果が高くなる。
 なお、スイッチング素子やダイオード素子の両方がワイドバンドギャップ半導体によって形成されていることが望ましいが、いずれか一方の素子がワイドバンドギャップ半導体によって形成されていてもよく、この実施の形態に記載の効果を得ることができる。
 実施の形態1、2において、素子と各金属との熱的、電気的、および機械的接続を半田により行う場合について説明したが、他の金属や導電性樹脂等の素材を用いても同様の効果が得られることはいうまでもない。
 また、実施の形態1、2において、プリント基板1に銅箔50を用いた両面スルーホール基板を用いたが、他金属や絶縁素材で構成された基材や、エッチング等により回路を構成しない基板を用いても、両面配線可能であれば同様の効果が得られることはいうまでもない。
 また、実施の形態1、2において、モータ搭載機器として空気調和機について説明したが、モータ61は、換気送風機器に用いてもよい。例えば、室内空気を室外に吹き出す換気送風機器のモータとしてモータ61を用いることにより、機器の薄型化や送風性能の向上等の上述同様の効果が得られることはいうまでもない。送風性能の向上は、浴室やトイレ等において短時間で湿気や臭気を排出したい場合等に特に有効である。
 また、これまでの実施の形態において、モータ搭載機器として空気調和機について説明したが、モータ61は、給湯器に用いてもよい。例えば、冷媒により水を加熱するための給湯器内送風機または給湯器内流体ポンプにモータ61を用いることにより、機器の薄型化や送風性能の向上等の上述同様の効果が得られることはいうまでもない。高温高負荷性能の向上は、モータ周囲温度を高める要因となる高温の湯をポンピングする場合に特に有効である。
 以上のように、本発明は、主に電力変換装置を内蔵したモータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器に適用可能であり、特に、小型化を図ることができると共に、インバータ回路の構成部品などに異常電圧が印加されることを防止しながらインバータ回路が正常動作している際に流れる電流の損失を低減可能な発明として有用である。
 1 プリント基板、2 インバータIC(半導体モジュール)、3 ステータ、4 モールド樹脂、5 モータ端子、6 ホール素子、7 モータ外部接続リード、8 ロータ貫通用穴、9 ベアリング、9a ベアリングハウジング、10 ベアリング貫通穴、11 高圧電極、12 低圧電極、13 ヒートスプレッダ、14 過熱検知素子、16 ロータ、17 高圧入力線、18 低圧入出力線、20 ICチップ(半導体チップ)、21 ボンディングワイヤ、22 金属リードフレーム(外部電極)、23 ICパッケージ、25 アルミ配線、26 酸化シリコン膜、27 半導体単結晶島(半導体素子)、28 多結晶シリコン、29 絶縁分離層、31 回転数出力線、32 出力電圧指令入力線、33 チャージポンプダイオード、34 IGBT、35a 上アーム駆動回路、35b 下アーム駆動回路、38 高圧直流電源、39 中性点結線、50 銅箔、51 スルーホール、60 電力変換装置、61 モータ、70 室内機、71 室内送風機、72 室内熱交換器、73 吸込口、74 吹出風路、75 吹出口、80 室外機、81 室外送風機、90 冷媒配管、104 銅箔、105 モータ出力配線、200 空気調和機、GP 高圧主回路系グランド(高圧回路グランド)、GS 低圧の制御回路系グランド(低圧回路グランド)、Rg 抵抗体、Rs シャント抵抗

Claims (8)

  1.  外部電源の電圧を高周波電圧に変換してステータへ供給する半導体モジュールが実装された基板を有する電力変換装置を内蔵したモータであって、
     前記基板には、前記半導体モジュールの高圧回路グランドと、前記半導体モジュールの低圧回路グランドと、が設けられ、
     前記高圧回路グランドと低圧回路グランドとは、抵抗体を介して一点で接続されていることを特徴とする電力変換装置内蔵モータ。
  2.  前記抵抗体は、前記基板のステータと対向する面に実装されていることを特徴とする請求項1に記載の電力変換装置内蔵モータ。
  3.  前記半導体モジュールは、複数の半導体素子が形成された半導体チップを有し、
     前記半導体チップは、ワイドバンドギャップ半導体によって構成されていることを特徴とする請求項1または2に記載の電力変換装置内蔵モータ。
  4.  調和空気を設置室内に吹き出す室内機と、
     この室内機内に設置され、その吹出口から前記調和空気を送り出す室内送風機と、
     前記室内機と冷媒配管によって接続され、外気と熱交換を実施する室外機と、
     を備え、
     前記室内送風機には、請求項1~3のいずれか1つに記載の電力変換装置内蔵モータが設けられていることを特徴とする空気調和機。
  5.  調和空気を設置室内に吹き出す室内機と、
     前記室内機と冷媒配管によって接続され、外気と熱交換を実施する室外機と、
     この室外機内に設置され、外気をこの室外機内に送り込む室外送風機と、
     を備え、
     前記室外送風機には、請求項1~3のいずれか1つに記載の電力変換装置内蔵モータが設けられていることを特徴とする空気調和機。
  6.  冷媒により水を加熱するための送風機に、請求項1~3のいずれか1つに記載の電力変換装置内蔵モータが設けられていることを特徴とする給湯器。
  7.  冷媒により水を加熱するための流体ポンプに、請求項1~3のいずれか1つに記載の電力変換装置内蔵モータが設けられていることを特徴とする給湯器。
  8.  室内空気を室外に吹き出す換気送風機器であって、請求項1~3のいずれか1つに記載の電力変換装置内蔵モータが設けられていることを特徴とする換気送風機器。
PCT/JP2012/064831 2012-06-08 2012-06-08 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器 WO2013183168A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/399,686 US10027268B2 (en) 2012-06-08 2012-06-08 Motor incorporating power converter, and air conditioner, water heater, and ventilation blower incorporating the motor
GB1420124.8A GB2517326B (en) 2012-06-08 2012-06-08 Motor incorporating power converter, and air conditioner, water heater, and ventilation blower incorporating the motor
PCT/JP2012/064831 WO2013183168A1 (ja) 2012-06-08 2012-06-08 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器
JP2014519784A JP5791798B2 (ja) 2012-06-08 2012-06-08 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/064831 WO2013183168A1 (ja) 2012-06-08 2012-06-08 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器

Publications (1)

Publication Number Publication Date
WO2013183168A1 true WO2013183168A1 (ja) 2013-12-12

Family

ID=49711584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064831 WO2013183168A1 (ja) 2012-06-08 2012-06-08 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器

Country Status (4)

Country Link
US (1) US10027268B2 (ja)
JP (1) JP5791798B2 (ja)
GB (1) GB2517326B (ja)
WO (1) WO2013183168A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038683A1 (ja) * 2014-09-09 2016-03-17 三菱電機株式会社 多相交流モータ駆動用インバータ装置
JP2016077092A (ja) * 2014-10-07 2016-05-12 三菱電機株式会社 電動機、空気調和機、および電動機の製造方法
WO2017072965A1 (ja) * 2015-10-30 2017-05-04 三菱電機株式会社 電動機、送風機および空気調和機
WO2017072964A1 (ja) * 2015-10-30 2017-05-04 三菱電機株式会社 電動機、送風機および空気調和機
WO2018025367A1 (ja) * 2016-08-04 2018-02-08 三菱電機株式会社 電動機および空気調和装置
CN109005639A (zh) * 2018-09-07 2018-12-14 英迪迈智能驱动技术无锡股份有限公司 一种用于筒状电机的pcb布局结构
WO2021220427A1 (ja) * 2020-04-28 2021-11-04 三菱電機株式会社 電動機及び空気調和機

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2957210T3 (es) * 2014-12-22 2024-01-15 Mitsubishi Electric Corp Uso de una placa de circuito
JP6571197B2 (ja) * 2015-08-31 2019-09-04 株式会社Fuji 部品実装機、フィーダ装置、およびスプライス作業の不良判定方法
JP6410952B2 (ja) * 2015-09-04 2018-10-24 三菱電機株式会社 電動機駆動装置および空気調和機
USD865139S1 (en) * 2016-01-29 2019-10-29 Mitsubishi Electric Corporation Outdoor unit for water heater
JP6576576B2 (ja) * 2016-10-25 2019-09-18 三菱電機株式会社 電力制御装置、電動機、空気調和機、および電動機の製造方法
TWI661456B (zh) * 2018-07-31 2019-06-01 聚鼎科技股份有限公司 保護元件
CN110828254B (zh) * 2018-08-07 2022-11-25 聚鼎科技股份有限公司 保护元件
CN109068475B (zh) * 2018-09-07 2023-11-10 英迪迈智能驱动技术无锡股份有限公司 一种用于筒状电机的pcb布局结构
CN110139481A (zh) * 2019-05-24 2019-08-16 河南新骏电机有限公司 无刷直流空调电机集成线路板优化
DE112020006750T5 (de) * 2020-02-19 2022-12-15 Mitsubishi Electric Corporation Elektromotor und diesen beinhaltende Klimaanlage

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025239A (ja) * 1999-07-08 2001-01-26 Fuji Electric Co Ltd Dc−dcコンバータ
JP2011155727A (ja) * 2010-01-26 2011-08-11 Hitachi Ltd 電力変換装置
WO2012035791A1 (ja) * 2010-09-15 2012-03-22 三菱電機株式会社 電力変換装置、それを内蔵したモーター、そのモーターを搭載した空気調和機、及びそのモーターを搭載した換気送風機器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591708A (ja) 1991-09-25 1993-04-09 Matsushita Electric Ind Co Ltd ブラシレスモータ
JPH09135058A (ja) 1995-11-08 1997-05-20 Zojirushi Corp プリント配線板
JP2002319746A (ja) 2001-04-20 2002-10-31 Tohoku Ricoh Co Ltd 雷サージ電圧回避装置
JP3806644B2 (ja) * 2001-12-13 2006-08-09 三菱電機株式会社 電力用半導体装置
JP4158487B2 (ja) 2002-10-31 2008-10-01 オムロン株式会社 安全電源装置
JP2006011023A (ja) 2004-06-25 2006-01-12 Matsushita Electric Ind Co Ltd ポリゴンミラースキャナモータ
JP4290085B2 (ja) * 2004-07-09 2009-07-01 三洋電機株式会社 電源回路
JP4509735B2 (ja) 2004-10-27 2010-07-21 三菱電機株式会社 電動機の駆動装置及びモールド電動機及び空気調和機及び冷蔵庫及び換気扇
KR101146972B1 (ko) * 2005-03-16 2012-05-22 페어차일드코리아반도체 주식회사 고내압 다이오드를 갖는 고전압 집적회로 장치
KR100784860B1 (ko) * 2005-10-31 2007-12-14 삼성전자주식회사 비휘발성 메모리 장치 및 그 제조 방법
EP1966812A4 (en) * 2005-12-30 2010-11-03 Smc Electrical Products Inc APPARATUS AND METHOD FOR REDUCING GROUND LEAKAGE CURRENT AND PROTECTING TRANSITORS IN VARIABLE FREQUENCY CONTROLLED SYSTEMS
JP4698621B2 (ja) 2007-01-29 2011-06-08 三菱電機株式会社 電力変換回路を内蔵したモータおよびそれを搭載した機器
JP5333814B2 (ja) * 2007-09-12 2013-11-06 アイシン精機株式会社 パワー半導体モジュール、インバータ装置、及びインバータ一体型モータ
JP2010088233A (ja) 2008-10-01 2010-04-15 Nidec Shibaura Corp モータの制御回路
JP2011054885A (ja) * 2009-09-04 2011-03-17 Sony Corp 半導体装置及び半導体装置の製造方法
JP5063651B2 (ja) 2009-09-07 2012-10-31 三菱電機株式会社 電動機及び電気機器及び電動機の製造方法
EP2613162B1 (en) * 2010-08-31 2018-03-28 Panasonic Intellectual Property Management Co., Ltd. Insulation resistance detection device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001025239A (ja) * 1999-07-08 2001-01-26 Fuji Electric Co Ltd Dc−dcコンバータ
JP2011155727A (ja) * 2010-01-26 2011-08-11 Hitachi Ltd 電力変換装置
WO2012035791A1 (ja) * 2010-09-15 2012-03-22 三菱電機株式会社 電力変換装置、それを内蔵したモーター、そのモーターを搭載した空気調和機、及びそのモーターを搭載した換気送風機器

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793849B2 (en) 2014-09-09 2017-10-17 Mitsubishi Electric Corporation Inverter apparatus for polyphase AC motor drive
JPWO2016038683A1 (ja) * 2014-09-09 2017-04-27 三菱電機株式会社 多相交流モータ駆動用インバータ装置
WO2016038683A1 (ja) * 2014-09-09 2016-03-17 三菱電機株式会社 多相交流モータ駆動用インバータ装置
JP2016077092A (ja) * 2014-10-07 2016-05-12 三菱電機株式会社 電動機、空気調和機、および電動機の製造方法
JPWO2017072965A1 (ja) * 2015-10-30 2018-02-08 三菱電機株式会社 電動機、送風機および空気調和機
WO2017072964A1 (ja) * 2015-10-30 2017-05-04 三菱電機株式会社 電動機、送風機および空気調和機
WO2017072965A1 (ja) * 2015-10-30 2017-05-04 三菱電機株式会社 電動機、送風機および空気調和機
JPWO2017072964A1 (ja) * 2015-10-30 2018-02-08 三菱電機株式会社 電動機、送風機および空気調和機
US10396690B2 (en) 2015-10-30 2019-08-27 Mitsubishi Electric Corporation Electric motor, blower, and air conditioner
WO2018025367A1 (ja) * 2016-08-04 2018-02-08 三菱電機株式会社 電動機および空気調和装置
GB2567970A (en) * 2016-08-04 2019-05-01 Mitsubishi Electric Corp Motor and air-conditioning device
GB2567970B (en) * 2016-08-04 2022-03-16 Mitsubishi Electric Corp Motor and air conditioner
CN109005639A (zh) * 2018-09-07 2018-12-14 英迪迈智能驱动技术无锡股份有限公司 一种用于筒状电机的pcb布局结构
CN109005639B (zh) * 2018-09-07 2024-05-07 英迪迈智能驱动技术无锡股份有限公司 一种用于筒状电机的pcb布局结构
WO2021220427A1 (ja) * 2020-04-28 2021-11-04 三菱電機株式会社 電動機及び空気調和機

Also Published As

Publication number Publication date
JP5791798B2 (ja) 2015-10-07
GB2517326A (en) 2015-02-18
GB201420124D0 (en) 2014-12-24
JPWO2013183168A1 (ja) 2016-01-28
GB2517326B (en) 2020-04-29
US10027268B2 (en) 2018-07-17
US20150121929A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5791798B2 (ja) 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器
JP5766302B2 (ja) 電力変換装置内蔵モータ、このモータを内蔵した空気調和機、給湯器、および換気送風機器
JP5627697B2 (ja) 電力変換装置、それを内蔵したモーター、そのモーターを搭載した空気調和機、及びそのモーターを搭載した換気送風機器
EP2651015B1 (en) Motor with embedded power conversion circuit, liquid pump in which this motor with embedded power conversion circuit is installed, air conditioner in which this liquid pump is installed, water heater in which this liquid pump is installed, and equipment in which motor with embedded power conversion circuit is installed
JP4698621B2 (ja) 電力変換回路を内蔵したモータおよびそれを搭載した機器
WO2007080748A1 (ja) 電動機の駆動回路及び空気調和機の室外機
JP5173877B2 (ja) 電力変換装置、それを内蔵した駆動回路内蔵モーター、並びに、その駆動回路内蔵モーターを搭載した換気扇、空気調和機の室内機、空気調和機、ポンプ及びそのポンプを搭載した給湯機
JP6619297B2 (ja) モータ駆動回路、およびそれを内蔵した駆動回路内蔵モータならびに駆動回路内蔵ポンプモータ、およびそれらを搭載した空気調和機、換気扇、ヒートポンプ給湯機、ならびに内蔵冷温水循環式空調機
CN113130471A (zh) 驱动芯片、半导体电路及其制备方法
JP4989665B2 (ja) 駆動回路一体型モーター、この駆動回路一体型モーターを用いた空気調和機の室内機、空気調和機、換気扇及びポンプ、並びにこのポンプを用いた機器及び給湯機
CN110085579B (zh) 高集成智能功率模块及其制作方法以及空调器
JP5296817B2 (ja) 駆動回路内蔵モータ及び送風機及び機器
JP5345124B2 (ja) 電力変換回路を内蔵したモータを搭載した空気調和機
CN214705928U (zh) 驱动芯片及半导体电路
CN214542229U (zh) 智能功率模块
JP2016018845A (ja) 配線板、電動機、電気機器及び空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014519784

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14399686

Country of ref document: US

ENP Entry into the national phase

Ref document number: 1420124

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20120608

WWE Wipo information: entry into national phase

Ref document number: 1420124.8

Country of ref document: GB

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878570

Country of ref document: EP

Kind code of ref document: A1