WO2016035795A1 - ダイヤモンド複合材料、及び放熱部材 - Google Patents

ダイヤモンド複合材料、及び放熱部材 Download PDF

Info

Publication number
WO2016035795A1
WO2016035795A1 PCT/JP2015/074880 JP2015074880W WO2016035795A1 WO 2016035795 A1 WO2016035795 A1 WO 2016035795A1 JP 2015074880 W JP2015074880 W JP 2015074880W WO 2016035795 A1 WO2016035795 A1 WO 2016035795A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
composite material
powder
metal
group
Prior art date
Application number
PCT/JP2015/074880
Other languages
English (en)
French (fr)
Inventor
達矢 森川
角倉 孝典
謙介 大澤
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to EP15838762.1A priority Critical patent/EP3190198B1/en
Priority to JP2016546659A priority patent/JP6292688B2/ja
Priority to US15/327,269 priority patent/US20170145280A1/en
Priority to CN201580047186.9A priority patent/CN106795596A/zh
Publication of WO2016035795A1 publication Critical patent/WO2016035795A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1036Alloys containing non-metals starting from a melt
    • C22C1/1073Infiltration or casting under mechanical pressure, e.g. squeeze casting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • C22C5/08Alloys based on silver with copper as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3732Diamonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • B22F2007/066Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts using impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/05Boride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/40Carbon, graphite
    • B22F2302/406Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/45Others, including non-metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/10Micron size particles, i.e. above 1 micrometer up to 500 micrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/005Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/006Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being carbides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/007Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds being nitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C26/00Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
    • C22C2026/008Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes with additional metal compounds other than carbides, borides or nitrides

Definitions

  • the present invention relates to a composite material in which diamond and metal are composited, a method for manufacturing the composite material, and a heat radiating member composed of the composite material.
  • a heat radiating member (called a heat sink, a heat spreader, or the like) for expanding a heat radiating area is used for heat radiation of a semiconductor element, in addition to natural convection and forced air blowing.
  • Patent Document 1 discloses a composite material of diamond and an Ag—Cu alloy.
  • Patent Document 2 discloses a composite material of diamond and copper.
  • Diamond is generally inferior in wettability with metal.
  • pores are generated in the vicinity of the interface between the diamond and the metal, resulting in a decrease in the density and thermal conductivity of the composite material due to the pores. Therefore, it is desired to develop a composite material of diamond and metal that is used as a material for a heat radiating member such as a semiconductor element, which is fine with few pores and excellent in thermal conductivity.
  • Patent Document 1 discloses that Ti powder is used as a raw material, diamond itself and Ti are reacted to form Ti carbide on the surface of diamond particles, and the Ti carbide and Ag—Cu alloy are wetted. Discloses a structure in which diamond particles and an Ag—Cu alloy are in close contact with each other through the carbide.
  • elements of Group 4 of the periodic table such as Ti are generally easily bonded to oxygen, and an oxide film may be present on the surface of the Ti powder particles. This oxide film inhibits the reaction between diamond and Ti, so that the wettability cannot be sufficiently increased, and the density of the composite material and the thermal conductivity due to the pores can be reduced. Since the oxide can remain in the composite material, the thermal conductivity can be lowered.
  • Patent Document 1 silver powder or a silver plate is used as a raw material. Since silver itself may contain oxygen, oxygen released from silver and elements of Group 4 of the periodic table such as Ti may be combined to form an oxide, which may inhibit the reaction between diamond and Ti. is there.
  • oxides for example, oxides such as Cr and Fe
  • oxides such as Cr and Fe may remain on the surface of the diamond powder particles. This oxide can also be a factor that hinders the reaction between diamond and Group 4 elements of the periodic table such as Ti.
  • Citation 2 discloses a manufacturing method in which a green compact of diamond powder and copper powder is filled into a Mo capsule, sintered under ultra-high pressure, and then the capsule is ground and removed. According to this manufacturing method, a dense composite material is obtained, and no oxide is formed in copper. However, in this composite material, diamond and copper are only in contact with each other, and both are not bonded, and when used as a heat dissipation member, a gap occurs at the interface between diamond and copper due to repeated cooling and heating cycles, There is a risk of deteriorating thermal properties. In addition, this manufacturing method is inferior in manufacturability of composite materials because it requires equipment capable of generating and controlling ultra-high pressure. Accordingly, it is desired to develop a method for producing a diamond composite material that can reduce and remove oxides that may cause a decrease in thermal conductivity, while being a simpler production method.
  • one of the objects of the present invention is to provide a dense diamond composite material and a heat radiating member that are excellent in thermal conductivity.
  • Another object of the present invention is to provide a method for producing a diamond composite material that can produce a dense diamond composite material having excellent wettability between diamond and metal with high productivity.
  • a diamond composite material bonds diamond particles, coated diamond particles that cover the surface of the diamond particles and includes a carbide layer containing an element of Group 4 of the periodic table, and the coated diamond particles.
  • Silver or a silver alloy is provided, and the oxygen content is 0.1% by mass or less.
  • Examples of the method for producing the diamond composite material include the following production methods.
  • This method for manufacturing a diamond composite material includes the following preparation process, filling process, and infiltration process.
  • Preparation step As raw materials, diamond powder, powder of one or more group 4 compounds selected from sulfides, nitrides, hydrides, borides containing elements of group 4 of the periodic table, and silver or silver alloy
  • Preparing a metal material including (Filling step) A step of filling the mold with the diamond powder, the Group 4 compound powder and the metal material.
  • (Infiltration step) A step of heating the filler filled in the mold and combining the diamond with the molten silver or silver alloy.
  • the above diamond composite material is excellent in thermal conductivity and dense.
  • the above-described method for producing a diamond composite material is excellent in wettability between diamond and metal and can easily produce a dense diamond composite material.
  • Sample No. produced in Test Example 1 It is an image obtained by observing the cross section of the diamond composite material 1-3 with an electron beam microanalyzer (EPMA). The upper left is a reflected electron image, the lower left is an oxygen (O) mapping image, the upper right is a carbon (C) mapping image, and the lower right. Indicates a Ti mapping image.
  • Sample No. produced in Test Example 1 The cross section of the diamond composite material of 1-102 is an image obtained by observing the vicinity of diamond particles with EPMA. The upper left shows a reflected electron image, the lower left shows an O mapping image, the upper right shows a C mapping image, and the lower right shows a Ti mapping image. .
  • a diamond composite material includes a diamond particle, a coated diamond particle that covers the surface of the diamond particle and includes a carbide layer containing a group 4 element in the periodic table, and the coated diamond particles. And an oxygen content of 0.1% by mass or less.
  • the periodic table refers to a long periodic table represented by the new IUPAC formula.
  • the diamond composite material is dense and excellent in thermal conductivity from the following points.
  • (Dense) The above-mentioned diamond composite material has an oxygen content of 0.1% by mass or less and a low oxygen content. Therefore, there is little oxygen over the entire composite material including the interface between the diamond particles and the carbide layer containing the elements of Group 4 of the periodic table and the vicinity thereof, preferably it does not exist, and the surface of the diamond particles and the carbide layer are not present. It can be said that there is almost no oxide. In such a diamond composite material, it is considered that the generation of pores that cause a decrease in density is sufficiently suppressed during the production process, and a carbide layer is easily formed on the surface of diamond.
  • the diamond is in close contact with the carbide layer containing the Group 4 element.
  • the elements of Group 4 of the periodic table existing around the diamond particles are mainly present as carbides.
  • there is almost no oxide in silver or a silver alloy hereinafter sometimes referred to as a metal matrix.
  • a metal matrix in such a diamond composite material, in the manufacturing process, the wettability between the carbide layer containing the elements of Group 4 of the periodic table and the molten metal forming the metal matrix is sufficiently enhanced, and pores that cause a decrease in density It is considered that the occurrence of the occurrence was sufficiently suppressed.
  • the main components are diamond particles having a thermal conductivity of 1000 W / m ⁇ K or higher and silver or a silver alloy that tends to have a higher thermal conductivity than copper or a copper alloy.
  • oxygen is low throughout the composite material including the vicinity of the diamond particles, preferably it is not present, that is, there is little oxide, preferably not present, that is inferior in thermal conductivity.
  • Diamond particles are bonded together by the metal matrix and are dense, so the heat conduction path that connects the diamond particles, carbide, and metal matrix, and the heat that the carbides formed on the surface of the diamond particles are connected continuously. Conduction paths can be built well.
  • the above-mentioned diamond composite material includes both diamond particles having a thermal expansion coefficient of about 2.3 ⁇ 10 ⁇ 6 / K or less and a metal matrix having a thermal expansion coefficient larger than that of diamond.
  • the coefficient is close to the thermal expansion coefficient of a semiconductor element or a peripheral part of a semiconductor device (the difference is small and the matching is excellent). Therefore, the diamond composite material can be suitably used as a material for a heat dissipation member of a semiconductor element.
  • the above form is dense, has few pores, can reduce a decrease in thermal conductivity due to the pores, and has high thermal conductivity.
  • the average particle diameter of the diamond particles is 1 ⁇ m or more and 300 ⁇ m or less.
  • the above form can suppress a decrease in thermal conductivity due to excessive diamond powder grain boundaries in the composite material because the diamond particles are too small, and has high thermal conductivity. And the said form can suppress the fall of workability, such as grinding by excessive diamond particle
  • the above form is excellent in thermal conductivity because it contains sufficient diamond particles. And the said form can suppress degradation of the infiltration property (generation
  • the thermal conductivity at room temperature is 500 W / m ⁇ K or more.
  • Room temperature includes 20 ° C. or more and 27 ° C. or less under atmospheric pressure.
  • the above embodiment can be suitably used for a material such as a heat radiating member of a semiconductor element which has a very high thermal conductivity and requires high heat dissipation.
  • an average thermal expansion coefficient at 30 ° C. to 150 ° C. is 3 ⁇ 10 ⁇ 6 / K or more and 13 ⁇ 10 ⁇ 6 / K or less.
  • the above form is excellent in consistency with the thermal expansion coefficient of the semiconductor element (for example, GaN: about 5.5 ⁇ 10 ⁇ 6 / K) and the thermal expansion coefficient of peripheral components such as a package, and the heat dissipation member of the semiconductor element It can use suitably for materials, such as.
  • the thermal expansion coefficient of the semiconductor element for example, GaN: about 5.5 ⁇ 10 ⁇ 6 / K
  • the thermal expansion coefficient of peripheral components such as a package
  • the heat dissipation member of the semiconductor element It can use suitably for materials, such as.
  • the thermal cycle resistance at ⁇ 60 ° C. to + 250 ° C. is 95% or more.
  • the heat cycle resistance is (heat conductivity after the heat cycle / heat conductivity before the heat cycle) ⁇ 100.
  • the above-mentioned diamond composite material with low oxygen content, denseness, and high thermal conductivity has little decrease in thermal conductivity even when subjected to a cooling cycle of ⁇ 60 ° C. to + 250 ° C. Conductivity can be maintained. Therefore, the said form can be utilized suitably for raw materials, such as a heat radiating member of the semiconductor element which receives a cooling cycle at the time of use.
  • the deterioration rate of thermal conductivity after heating to 800 ° C. is less than 5%.
  • the deterioration rate is ⁇ [(thermal conductivity before heating) ⁇ (thermal conductivity after heating)] / (thermal conductivity before heating) ⁇ ⁇ 100.
  • the above-mentioned form maintains a high thermal conductivity even when heated to a high temperature such as 800 ° C. by being a diamond composite material having a low oxygen content, a denseness, and a high thermal conductivity as described above. It has excellent heat resistance.
  • a form is a material such as a heat radiating member of a semiconductor element in which an insulating material made of ceramics or the like may be bonded using a high melting point bonding material such as a silver brazing material (melting point of about 780 ° C.), for example. Can be suitably used.
  • the above form is easy to be smooth and has excellent surface properties by providing a metal layer. Further, when this form is used for a heat radiating member of a semiconductor element or the like, the semiconductor element and the heat radiating member can be firmly joined by using the metal layer as a base such as solder or brazing material.
  • a heat dissipating member according to one aspect of the present invention is composed of the diamond composite material described in any one of (1) to (9) above.
  • the heat dissipating member is composed of the above-mentioned diamond composite material that is dense and excellent in thermal conductivity, it is dense and excellent in thermal conductivity. Since said diamond composite material is excellent also in consistency with the thermal expansion coefficient of a semiconductor element, said heat radiating member can be utilized suitably for the heat radiating member of a semiconductor element.
  • Examples of the method for producing the diamond composite material include the following production methods.
  • M1 This method for producing a diamond composite material includes the following preparation process, filling process, and infiltration process.
  • Preparation step As raw materials, diamond powder, powder of one or more group 4 compounds selected from sulfides, nitrides, hydrides, borides containing elements of group 4 of the periodic table, and silver or silver alloy
  • Preparing a metal material including (Filling step) A step of filling the mold with the diamond powder, the Group 4 compound powder and the metal material.
  • Infiltration step A step of heating the filler filled in the mold and combining the diamond with the molten silver or silver alloy.
  • the manufacturing method of the above-mentioned diamond composite material does not use the elements of Group 4 of the periodic table as raw materials as in Patent Document 1, but rather the elements of Group 4 of the periodic table and specific elements, specifically sulfur, nitrogen.
  • a Group 4 compound powder containing at least one element of hydrogen and boron is used as a raw material.
  • the powder of the group 4 compound By using the powder of the group 4 compound, the oxidation of the elements of the group 4 of the periodic table in the raw material stage, the preparation process, the filling process, and the like can be suppressed. Due to this inhibition of oxidation, the surroundings of the elements in Group 4 of the periodic table are likely to be in a state where oxygen is low.
  • the elements in Group 4 of the periodic table generated by the chemical decomposition of the Group 4 compound are oxidized by the surrounding oxygen. Can be suppressed. Further, some of the above specific elements have a reducing action.
  • the reduction action means oxygen or oxides that can be contained in raw materials such as industrial diamond, silver, or silver alloy in the temperature rising process of the infiltration process, and the surroundings of elements of Group 4 of the periodic table generated by chemical decomposition. This is an action capable of reducing oxygen and oxides that may be present in the gas and removing them as gas (for example, water vapor).
  • Oxidation suppressing action and reducing action of the specific element can effectively suppress oxidation of diamond, silver, and the like as well as the elements of Group 4 of the periodic table during the production process. From the above, it is possible to satisfactorily form a carbide that can react satisfactorily with the elements of Group 4 of the periodic table and diamond and enhance the wettability of diamond and molten metal, without excess or deficiency.
  • a powder of the group 4 compound as a supply source of a carbide-forming element (group 4 element of the periodic table)
  • the supply amount of the group 4 element of the periodic table is little or substantially not changed and stable.
  • the thickness variation of the carbide layer hardly occurs.
  • a composite material (typically, the diamond composite material according to the embodiment) having a small oxygen content, being dense, and having excellent thermal conductivity can be produced.
  • the filler in the mold is a mixture (layer) of mixed powder and a metal material (layer)
  • the above-mentioned group 4 compound tends to exist reliably around the diamond. Therefore, in the above embodiment, the group 4 element of the periodic table and diamond more easily react to easily form a carbide, the group 4 element of the periodic table that did not substantially react with diamond remains, It is easy to suppress the presence of an oxide.
  • the weight of the molten metal can be increased.
  • the molten metal Due to the weight of the molten metal, it can move automatically and easily to the layer side of the mixed powder and can be infiltrated well. Furthermore, it is easy to uniformly infiltrate the molten metal on the layer side of the mixed powder, and a diamond composite material in which a metal matrix is uniformly present is obtained as compared with the case where a small amount of molten metal is dispersed and produced in various places. It is considered easy.
  • the metal material is made of metal powder and mixed with diamond powder, it can be said that the metal powder has a specific gravity larger than that of diamond and is difficult to mix uniformly with diamond powder.
  • the said form should just mix the powder of a diamond and the powder of the said 4th group compound with a comparatively small specific gravity difference with a diamond, and is excellent in mixing workability
  • a coated composite material including a metal layer composed of a metal having the same composition as that of the metal matrix on both sides of the diamond composite material can be manufactured.
  • the above-mentioned form can form a metal layer simultaneously with infiltration, and can produce a coated composite material with high productivity, with fewer steps compared to the case where the metal layer is formed in a separate process such as joining of a metal foil or the like.
  • the obtained coating composite material has a structure in which the metal matrix and the metal layer are continuous, the bonding strength is high, the metal layer is difficult to peel off, and the thermal conductivity is also excellent.
  • this embodiment can obtain various effects described in the above (m2).
  • the metal material is a metal powder
  • the metal powder layer includes a Group 4 compound powder containing an element of Group 4 of the periodic table and a group of Periodic Table 4 Examples include a form containing at least one of the elemental powders.
  • the metal material layer is a layer containing a powder of the Group 4 compound or a Group 4 element powder in addition to the metal powder
  • the Group 4 compound contained in the metal powder layer is chemically decomposed.
  • the elements of Group 4 of the periodic table and the elements of Group 4 of the periodic table contained in the metal powder layer are first taken into the molten metal formed by melting the metal powder in the temperature rising process of the infiltration process, and then Reacts with diamond to form carbides. If the reaction of diamond starts, such a reaction is likely to occur continuously thereafter.
  • the above-described embodiment provides a state in which the elements of Group 4 of the periodic table are easily taken into the molten metal infiltrated into diamond, and as a result, the reaction between the diamond and the elements of Group 4 of the periodic table is facilitated. Even so, carbides can be formed better. Therefore, according to the said form, the diamond composite material which is denser and has higher thermal conductivity can be manufactured.
  • Diamond composite material 1 includes a plurality of coatings including diamond particles 2 and a carbide layer 3 that covers the surface of the diamond particles 2 and includes a group 4 element of the periodic table as shown in FIG. Diamond particles 4 and a metal matrix 5 for bonding the coated diamond particles 4 to each other are provided.
  • the metal matrix 5 is filled in the gap formed by the plurality of coated diamond particles 4, and the aggregated state of the diamond particles 2 is maintained by the metal matrix 5.
  • the composite material 1 is a dense molded body having very few pores and filled with the metal matrix 5 without any gap (see the reflected electron image of EPMA in FIG. 2).
  • One of the characteristics of the composite material 1 of the embodiment is that the oxygen content is low throughout.
  • each component will be described in detail.
  • the diamond composite material 1 includes a plurality of diamond particles 2 as one of main components.
  • the composite material 1 having a thermal conductivity of 500 W / m ⁇ K or more can be obtained.
  • the composite material 1 having a thermal expansion coefficient of 4 ⁇ 10 ⁇ 6 / K or more and 9.5 ⁇ 10 ⁇ 6 / K or less can be obtained, which is close to the thermal expansion coefficient of the semiconductor element and its peripheral components.
  • the content of diamond particles 2 in the composite material 1 is preferably 30% by volume or more and 90% by volume, and more than 45% by volume. 85 volume% or less, 50 volume% or more and 80 volume% or less are more preferable. A method for measuring the content of the diamond particles 2 in the composite material 1 will be described later.
  • the composite material 1 having a thermal conductivity of 500 W / m ⁇ K or more can be obtained.
  • the particle size is not too large, it is excellent in workability such as grinding and can be easily adjusted to satisfy a predetermined dimensional tolerance. If the particle size is not too large, a thin composite material 1 can be obtained.
  • the average particle size of the diamond particles 2 in the composite material 1 is preferably 1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m, and more preferably 20 ⁇ m to 60 ⁇ m.
  • Diamond powder can also be finely mixed.
  • the composite material 1 containing finely mixed diamond powder is denser and has a higher relative density. A method for measuring the average particle diameter of the diamond particles 2 in the composite material 1 will be described later.
  • each diamond particle 2 in the diamond composite material 1 is covered with a carbide containing an element of Group 4 of the periodic table, and each coated diamond particle 4 is formed of the carbide. Is provided.
  • the carbide layer 3 is in close contact with both the diamond particles 2 and the metal matrix 5 (see the reflected electron image of EPMA in FIG. 2).
  • the carbide layer 3 was easily formed on the diamond surface in the manufacturing process, and the carbide layer 3 was a molten metal. It is thought that it was able to adhere
  • the composite material 1 including such a carbide layer 3 is dense with the diamond particles 2, the carbide layer 3, and the metal matrix 5 in close contact with each other without a gap.
  • Various methods can be used for forming the carbide layer 3 as long as the gist of the present invention is not impaired.
  • the carbide layer 3 is a carbide formed by combining constituent elements (carbon) in the surface side region of the diamond particles 2 and elements of Group 4 of the periodic table. It is preferable to be configured. In this case, since the carbide layer 3 includes the components of the diamond particles 2 themselves as constituent elements, the carbide layer 3 can be made into a denser composite material 1 that is more excellent in adhesion to the diamond particles 2.
  • the main constituent components of the carbide layer 3 are carbon, preferably carbon derived from the diamond particles 2 and elements of Group 4 of the periodic table.
  • Examples of the element of Group 4 of the periodic table included in the carbide layer 3 include at least one selected from titanium (Ti), zirconium (Zr), and hafnium (Hf).
  • the carbide layer 3 can be in a form containing a plurality of kinds of elements in addition to a form containing only one kind of the listed elements.
  • the carbide layer 3 is thin to some extent in consideration of thermal conductivity.
  • the average thickness of the carbide layer 3 is preferably 5 ⁇ m or less, 3 ⁇ m or less, less than 3 ⁇ m, more preferably 1 ⁇ m or less, and can be nano-ordered.
  • the thickness of the carbide layer 3 can be adjusted by adjusting the addition amount and size of the raw material.
  • each coated diamond particle 4 is preferably a dense composite material 1 if it is 90 area% or more of the surface area of the diamond particle 2 and the entire surface of the diamond is covered with the above-mentioned carbide.
  • the composite material 1 becomes more dense.
  • it is allowed to include a portion on the surface of the diamond where a carbide containing an element of Group 4 of the periodic table does not exist the smaller this portion is, the more preferable.
  • the diamond composite material 1 can have a portion in which at least a part of the carbide layer 3 provided in the adjacent coated diamond particles 4 is bonded and integrated (hereinafter, this portion may be referred to as a connecting portion). Both the form having a connecting part made of carbide and the form not having a connecting part (a form in which coated diamond particles are dispersed apart) are dense and excellent in thermal characteristics.
  • the diamond composite material 1 has a metal matrix 5 as one of main components.
  • the component of the metal matrix 5 is silver (so-called pure silver) or a silver alloy. If the metal matrix 5 is silver, the composite material 1 having a high thermal conductivity of 427 W / m ⁇ K and excellent thermal conductivity can be obtained.
  • the silver alloy is an alloy containing Ag in excess of 50% by mass and an additive element, with the balance being inevitable impurities. In particular, a silver alloy containing 70% by mass or more of Ag and an additive element, and the balance being inevitable impurities, tends to have a low liquidus temperature while maintaining high thermal conductivity. Since it can be combined well even at low temperatures, it is excellent in manufacturability.
  • the additive element of the silver alloy include Cu. The total content of additive elements is about 30% by mass or less.
  • the oxygen content of the composite material 1 is 0.1% by mass or less. If the oxygen content of the entire composite material 1 is 0.1% by mass or less, oxides, pores and the like are sufficiently small in the vicinity of the surface side of the diamond particles 2, and are preferably substantially absent. Therefore, the composite material 1 can suppress a decrease in thermal conductivity between the diamond particles 2 and the metal matrix 5 due to the inclusion of an oxide or the like, and is excellent in thermal conductivity. Further, if the oxide is small, it can be said that the elements of Group 4 of the periodic table are present as carbides instead of oxides, and the dense composite material 1 can be obtained by interposing the carbide layer 3.
  • the oxygen content is preferably as small as possible, more preferably 0.095% by mass or less, 0.090% by mass or less, and 0.080% by mass or less.
  • the carbide layer 3 is present on the surface of the diamond particles 2 in the diamond composite material 1 except for the metal matrix 5. That is, when elemental analysis of the vicinity of the surface side of the diamond particle 2 is performed, it is preferable that carbon and the elements of Group 4 of the periodic table are mainly present, and other elements, particularly oxygen is small. When oxygen is present in the vicinity of the surface side of the diamond particle 2, it is considered that this oxygen is present, for example, as an oxide of a group 4 element in the periodic table. Since this oxide has low thermal conductivity and poor wettability with molten metal, when it is present in the vicinity of the surface of the diamond particle 2, it can be a composite material having poor thermal conductivity and denseness.
  • the oxygen concentration in the vicinity of the surface side of the diamond particles 2 is also sufficiently low.
  • a boundary between the diamond particles 2 and the carbide layer 3 is taken, and an annular region having a thickness of up to 5 ⁇ m is taken from this boundary toward the outer peripheral side (metal matrix 5 side).
  • this annular region is defined as the outer peripheral region, those having an oxygen content of 0.1% by mass or less in the outer peripheral region can be mentioned.
  • the boundary can be easily visualized by using element mapping of EPMA described later. Further, by using element mapping of EPMA, it is easily confirmed that the composite material 1 of the embodiment has very little oxygen, preferably substantially absent, in the vicinity of the boundary between the diamond particles 2 and the carbide layer 3. it can.
  • Conceivable sources of oxygen that can be contained in the diamond composite material 1 are a raw material diamond powder 20 (FIG. 4), a silver or silver alloy metal material (metal powder 50 in FIG. 4), an atmosphere in the manufacturing process, and the like. . Therefore, oxygen can be contained in any location in the composite material 1.
  • the oxygen concentration in the whole is in a specific range, and due to the fact that the whole oxygen is small, the portion near the boundary between the diamond and the substance adjacent to the diamond is likely to cause deterioration in thermal conductivity.
  • there is very little oxygen By utilizing the method for producing a diamond composite material described later, oxygen can be reduced and removed well in the production process, and the composite material 1 having a low oxygen concentration throughout the vicinity including the vicinity of the diamond particles 2 can be produced.
  • a metal layer 6 covering at least a part of the surface of the composite material 1 can be provided (the coated composite material 1 ⁇ / b> B in FIG. 6 is an example). ).
  • the coated composite material 1B including the metal layer 6 is sufficiently wetted with the metal such as the metal layer 6 and the solder or brazing material. It is preferable that the covering composite material 1B and the like can be firmly bonded to the semiconductor element.
  • the constituent metal of the metal layer 6 is not particularly limited as long as it is a metal that can withstand the use temperature of solder or brazing material.
  • the metal layer 6 has, for example, a form that is the same component as the metal matrix 5, a form that has the same main component as the metal matrix 5 (for example, a form in which both the metal matrix 5 and the metal layer 6 are silver alloys and have different additive elements)
  • the metal matrix 5 is silver and the metal layer 6 is a silver alloy), and the metal matrix 5 and the metal layer 6 are completely different components.
  • specific metals include copper, gold, aluminum, nickel, zinc, tin, alloys of each element, and the like.
  • the metal layer 6 can have a multilayer structure as well as a single layer structure.
  • the method for forming the metal layer 6 is not particularly limited (see later).
  • the metal layer 6 is preferably thin for the purpose of suppressing a decrease in the thermal conductivity of the entire coated composite material.
  • the metal layer 6 has a thickness (total thickness in the case of a multilayer structure) of 300 ⁇ m or less, 200 ⁇ m or less, or 100 ⁇ m or less.
  • the thickness of the metal layer 6 is 0.5 ⁇ m or more, 5 ⁇ m or more, or 20 ⁇ m or more for the purpose of the above-mentioned bonding base.
  • the metal layer 6 may not be provided, and the thickness may be less than 0.5 ⁇ m.
  • the diamond composite material 1 and the coated composite material 1B of the embodiment are excellent in thermal conductivity.
  • the composite material 1 described above has a thermal conductivity at room temperature of 500 W / m ⁇ K or more (in the case of a coated composite material, the thermal conductivity in a state including the metal layer 6).
  • the diamond composite material 1 and the coated composite material 1B according to the embodiment are mainly composed of diamond particles 2 having a small thermal expansion coefficient and a metal matrix 5 having a sufficiently larger thermal expansion coefficient than diamond, thereby having a thermal expansion coefficient.
  • the intermediate value of both can be taken.
  • the composite material 1 and the like satisfy an average coefficient of thermal expansion at 30 ° C. to 150 ° C. of 3 ⁇ 10 ⁇ 6 / K or more and 13 ⁇ 10 ⁇ 6 / K or less (in the case of a coated composite material, a metal layer) 6).
  • the thermal expansion coefficient is 4 ⁇ 10 ⁇ 6 / K or more and 12 ⁇ 10 ⁇ 6 / K or less, 4.5 ⁇ 10 ⁇ 6 / K or more and 10 or more, although it depends on the content of the diamond particles 2 and the components of the metal matrix 5. X10 ⁇ 6 / K or less can be satisfied.
  • Diamond composite material having a thermal conductivity at room temperature of 500 W / m ⁇ K or more and an average coefficient of thermal expansion at 30 ° C. to 150 ° C. of 3 ⁇ 10 ⁇ 6 / K to 13 ⁇ 10 ⁇ 6 / K 1 and the coated composite material 1B are excellent in thermal conductivity and excellent in consistency with the thermal expansion coefficient of the semiconductor element and its peripheral components, and therefore can be suitably used as a heat dissipation member for the semiconductor element.
  • the diamond composite material 1 and the coated composite material 1B of the embodiment are excellent in thermal conductivity, and also have a low thermal conductivity and a high thermal conductivity even when subjected to a thermal cycle or heated to a high temperature.
  • the rate can be maintained (in the case of a coated composite material, the thermal conductivity in a state including the metal layer 6).
  • composite material 1 having a thermal cycle resistance at ⁇ 60 ° C. to + 250 ° C. of 95% or more can be given.
  • Such a composite material 1 or the like can be suitably used as a heat radiating member of a semiconductor element that undergoes a cooling / heating cycle when in use since the decrease in thermal conductivity is as low as 5% or less even when subjected to a cooling / heating cycle.
  • the composite material 1 etc. whose deterioration rate of thermal conductivity after heating at 800 degreeC is less than 5% are mentioned.
  • the heat radiating member may be bonded to an insulating material made of ceramics or the like.
  • a high melting point bonding material such as a silver brazing material may be used for this bonding.
  • the heat radiating member is heated by the bonding material, and it is desired that the heat conductivity of the heat radiating member is less reduced by this heating.
  • the composite material 1 having a thermal conductivity deterioration of less than 5% is excellent in heat resistance with little decrease in thermal conductivity even when exposed to high temperatures.
  • the composite material 1 and the like can be suitably used for a heat radiating member of a semiconductor element in which a bonding material such as silver solder can be used.
  • the region of the composite material 1 in the diamond composite material 1 or the coated composite material 1B of the embodiment has a small number of pores and is dense and has a high relative density. Since the metal layer 6 of the coated composite material 1B is dense with substantially no pores, the coated composite material 1B has a high relative density even when the metal layer 6 is included.
  • the composite material 1 and the like satisfy a relative density of 96.5% or more. The higher the relative density is, the denser the material is, and the lower the thermal conductivity due to the pores is less likely to occur, and the higher the thermal conductivity, the higher the 96.7%, 97.0%, and 97.5%. More preferred.
  • Typical shapes of the diamond composite material 1 and the coated composite material 1B of the embodiment include a flat plate shape.
  • the composite material 1 having a desired planar shape or a three-dimensional shape can be formed by the shape of a mold used at the time of manufacturing, cutting, or the like.
  • the size (thickness, width, length, etc.) of the composite material 1 can be selected as appropriate. When the thickness is thin (for example, 5 mm or less, 3 mm or less, and further 2.5 mm or less), a lightweight and thin composite material 1 can be obtained.
  • the heat radiating member which concerns on embodiment is substantially comprised, such as a composite material 1 grade
  • the diamond composite material 1 and the covering composite material 1B according to the embodiment can be manufactured by, for example, the following diamond composite material manufacturing method.
  • the outline of this manufacturing method is as follows. As shown in FIGS. 4 and 6, the diamond powder 20 and a metal material that finally forms the metal matrix 5 (FIG. 1) (the metal powder 50 in FIGS. 4 and 6). Are prepared (preparation step), filled in the container 110 of the mold 100 (filling step), the filler is heated to melt the metal material, and the molten metal 52 is dissolved in the diamond powder 20. Immerse (infiltration process).
  • This manufacturing method further uses, as a raw material, a Group 4 compound powder 30 containing a Group 4 element and a specific element as a raw material, and oxidation until the Group 4 element forms a carbide.
  • the group 4 compound is chemically decomposed during the temperature rising process, and a specific element other than the group 4 of the periodic table generated by this chemical decomposition is caused to exert a reducing action, etc.
  • diamond reacts with the elements of Group 4 of the periodic table generated by the chemical decomposition to form carbides.
  • a diamond powder 20 As a raw material, a diamond powder 20, a Group 4 compound powder 30 containing a Group 4 element, and a metal material containing silver or a silver alloy are prepared.
  • the size (average particle size) and content (volume ratio of the raw material) of the diamond powder 20 are the size (average particle size) of diamond particles in the diamond composite material 1A to be finally produced.
  • the content (volume ratio in the composite material 1A) is selected so as to be a desired value (see the above-mentioned section of diamond).
  • the surface side region of each powder particle constituting the diamond powder 20 is used for forming the carbide layer 3 (FIG. 1).
  • the sheath content is different from the size and content of diamond in the composite material 1A.
  • the carbide layer 3 is very thin as described above, it can be said that the size, content, shape, etc.
  • the average particle diameter of the raw diamond powder is preferably 1 ⁇ m to 300 ⁇ m, more preferably 1 ⁇ m to 100 ⁇ m, and 20 ⁇ m to 60 ⁇ m.
  • the average particle size of the coarse particles is preferably 2 times or more, more preferably 3 times or more and 4 times or more of the average particle size of the fine particles, and considering the thermal conductivity and workability, it is 300 ⁇ m.
  • it is more preferably 100 ⁇ m or less and 60 ⁇ m or less.
  • the average particle size of the fine particles may be smaller than the average particle size of the coarse particles, but considering densification and the like, it is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and 10 ⁇ m or more.
  • the constituent components of the metal material are selected so that the metal matrix 5 in the diamond composite material 1A to be finally produced has a desired composition (see the above-mentioned section of the metal matrix).
  • the metal material can be used in various forms, for example, metal powder 50.
  • metal powder 50 When the metal powder 50 is heated in the infiltration process, individual powder particles are easily melted to form the molten metal 52. Further, the metal powder 50 can be easily mixed with the diamond powder 20, the Group 4 compound powder 30, the Group 4 element powder described later, and the like, and the mixed powder can be filled into the mold 100.
  • size (average particle diameter) of the metal powder 50 can be selected suitably, for example, about 1 micrometer or more and 150 micrometers or less are mentioned. If it is in this range, it is considered that the metal powder 50 is easy to handle because it is not too small and is not too large.
  • Plate materials and block bodies can be used as other metal materials.
  • an appropriate size and shape may be used so that the mold 100 can be filled.
  • the plate material and the block body can be easily stored in the mold 100 and have excellent workability.
  • the content (volume ratio) of the metal material is selected so that the content (volume ratio) of the metal matrix 5 in the diamond composite material 1A to be finally produced has a desired value.
  • the constituent components of the Group 4 compound powder containing the elements of Group 4 of the periodic table are the elements of Group 4 of the periodic table desired by the carbide layer 3 in the diamond composite material 1A to be finally produced (see above). (See the section on carbide layers).
  • the Group 4 compound powder 30 includes one compound selected from sulfides, nitrides, hydrides, and borides containing one or more elements selected from Ti, Zr, and Hf. .
  • the powder 30 can contain a plurality of types of compounds in addition to a form containing only one type of the listed compounds.
  • a composite material including coated diamond particles including TiC and coated diamond particles including ZrC, a composite material including coated diamond particles covered with a composite carbide layer including Ti and Zr, and the like can be manufactured.
  • TiH 2 is relatively easy to obtain, easy to store, and excellent in handleability, so it is easy to use.
  • the component present in the diamond composite material 1A as the final product is substantially only the elements of Group 4 of the periodic table, and these elements mainly form carbides, and the carbide layer 3 (FIG. 1).
  • the thickness of the carbide layer 3 varies depending on the amount of the Group 4 compound powder 30 added. As described above, if the carbide layer 3 is too thick, thermal conductivity is lowered due to excessive carbide. Therefore, it is preferable that the carbide layer 3 is not too thick in consideration of thermal conductivity.
  • the content (volume ratio) of the Group 4 compound powder 30 may be adjusted so that the thickness of the carbide layer 3 has a desired value.
  • the Group 4 compound powder 30 contains elements of Group 4 of the Periodic Table that are relatively easy to oxidize, but unlike the Group 4 element alone, the Periodic Table 4 is heated until it is heated in the infiltration step described below. Group elements are bonded to sulfur (S), nitrogen (N), hydrogen (H), or boron (B). For this reason, in this method for producing a diamond composite material, oxidation of the elements of Group 4 of the periodic table is difficult to occur during the process of producing the composite material, and the elements of Group 4 of the periodic table and carbon (here, particularly the diamond surface layer side region) The reaction can be performed well.
  • each of the above-described elements bonded to the elements of Group 4 of the periodic table can be removed as a gas (for example, water, nitrogen monoxide, sulfur dioxide, etc.).
  • a gas for example, water, nitrogen monoxide, sulfur dioxide, etc.
  • the diamond powder 20, the Group 4 compound powder 30, and the metal material are filled into the container 110 of the mold 100.
  • the filling form is, for example, a form in which the three parties are layered and the filling is a three-layer laminate, and when all three are powders, all powders are mixed and filled. And a form in which a powder obtained by mixing two of the three powders and the remaining one (not necessarily a powder) are layered to form a two-layer laminate. It is done.
  • a mixed powder 23 including diamond powder 20 and Group 4 compound powder 30 and a metal material are arranged in layers in the container 110 of the mold 100 and laminated.
  • a body 235 is formed.
  • the group 4 compound can be present more reliably around the diamond
  • molten metal can be generated from the metal material layer, and the molten metal having a relatively large weight is placed on the layer side of the mixed powder 23.
  • the diamond powder 20 and the Group 4 compound powder 30 can be easily mixed, and the mixed powder 23 can be satisfactorily formed.
  • a mixing apparatus that can be used for mixing powders of non-metallic inorganic materials (here, diamond powder 20 and group 4 compound powder 30) can be used as appropriate.
  • known devices such as a Henschel mixer and a vacuum stirring device can be used.
  • Any of wet mixing using a liquid binder typified by organic substances such as polyvinyl alcohol, water and alcohol, and dry mixing without using a binder can be used.
  • a drying process for removing the binder may be provided after mixing or after the mixed powder 23 is filled in the mold 100, but the binder may be removed by heating in the infiltration process.
  • water or alcohol when heating or vacuum drying is appropriately performed during mixing, and water or alcohol is gradually removed, separation of diamond from group 4 compounds due to specific gravity difference, etc. It is easy to mix uniformly.
  • a laminate 235 having a two-layer structure By filling the prepared mixed powder 23 into the container 110 and filling a metal material such as the metal powder 50 thereon, a laminate 235 having a two-layer structure can be formed.
  • a metal material having a large specific gravity is disposed on the layer of the mixed powder 23, when the metal material is melted in the next step, the molten metal 52 easily moves to the mixed powder 23 side of the lower layer due to the weight of the metal and infiltrates. it can.
  • infiltration can proceed by a chemical reaction between the elements of Group 4 of the periodic table contained in the molten metal 52 and diamond.
  • the laminated body 235 When the laminated body 235 is formed, for example, pressing is performed every time the powders 23 and 50 are filled (or a pressure as small as hand pressing), or tapping is performed by applying vibration to obtain a desired filling density.
  • the lid 120 of the container 110 is closed.
  • the molding die 100 can be provided with a box-shaped or bottomed cylindrical container 110 and a lid 120 that closes the opening of the container 110.
  • the shape of the container 110 may be selected so that the diamond composite material 1A having a desired shape can be formed.
  • As the mold 100 a mold having excellent heat resistance, strength and the like made of carbon can be suitably used.
  • This process heats the filling (for example, laminated body 235) with which the shaping
  • the heating temperature is a temperature at which the metal material melts, that is, a melting point of silver (961 ° C.) or higher, or a liquidus temperature of silver alloy or higher.
  • the heating temperature may be 980 ° C. or higher and 1300 ° C. or lower.
  • the holding time is about 10 minutes to 3 hours.
  • the atmosphere is preferably a non-oxidizing atmosphere (for example, an argon atmosphere) or a low oxidizing atmosphere (for example, a vacuum atmosphere; the degree of vacuum is 10 kPa or less) in order to prevent the mixing and increase of oxygen. Since the lower the atmospheric pressure, the easier it is to infiltrate, a reduced-pressure atmosphere less than atmospheric pressure is preferable (for example, 10 kPa or less).
  • TiH 2 is illustrated as a group 4 compound 300 among hydrides.
  • oxygen 600 that can be contained in the metal powder is released and can be contained in the layer of the mixed powder (upper part of FIG. 5).
  • the group 4 compound 300 is converted into an element 301 (Ti in FIG. 5) of the periodic table group 4 and an element 302 (FIG. 5) other than the group 4 element of the periodic table. Then, it is chemically decomposed into hydrogen (H)) (middle upper part of FIG. 5).
  • the specific element 302 generated by the chemical decomposition is combined with the above-described oxygen 600 or, when an oxide is present on the raw material surface, the oxygen atom in the oxide and the like to form a gaseous compound 640 (in FIG. 5). Steam (water) is formed and released from the mixed powder. In this manner, oxygen that can be contained in the raw material or the like can be effectively reduced or removed by the specific element 302.
  • the molten metal 52 in which the metal material has melted enters the layer side of the mixed powder and takes in the element 301 of the periodic table group 4 generated by the above-described chemical decomposition.
  • the composite molten metal 54 incorporating the element 301 of the periodic table group 4 comes into contact with the diamond particles 21 in the mixed powder layer (the lower middle part of FIG. 5), the carbon in the surface side region of the diamond particles 21 and the group 4 of the periodic table
  • the element 301 reacts (bonds) to form a carbide.
  • the composite molten metal 54 is easily wetted with the diamond particles 21, and the formation reaction of the carbide with the group 301 element 301 of the periodic table proceeds continuously over the entire surface side region of the diamond particles 21.
  • the element 301 of Group 4 of the periodic table in the composite molten metal 54 is consumed with the reaction with the diamond particles 21 and becomes a molten metal 52 of silver or a silver alloy.
  • Infiltration of the molten metal 52 and the like proceeds with the formation of the carbide.
  • the coated diamond particles 4 having the carbide layer 3 containing the elements of Group 4 of the periodic table can be formed on the surface of the diamond particles 2, and the molten metal 52 is filled in the gap formed between the coated diamond particles 4.
  • a material can be formed. When the adjacent diamond particles 21 and 21 form carbides, a portion where the carbides are connected can be formed. In this case, a composite material having a connecting portion made of carbide can be manufactured.
  • the specific element 302 generated by the chemical decomposition of the group 4 compound 300 may exist around the diamond particle 21 before the diamond particle 21 and the group 4 element 301 of the periodic table react.
  • oxygen 600 and the like can be sufficiently reduced and removed, and the amount of oxygen in the finally obtained diamond composite material can be effectively reduced.
  • the diamond composite material 1A (1) having a low oxygen concentration in the vicinity of the diamond particle 21 (2) can be obtained.
  • the group 301 element of the periodic table generated by the chemical decomposition of the group 4 compound 300 is easy to react with the diamond particles 21 to form a carbide because oxygen is removed as described above.
  • Most of the elements of Group 4 of the periodic table contained in the Group 4 compound powder 30 used as a raw material can be preferably made into a carbide. As a result, at least a part, preferably all, of the surface of the diamond particle 21 is covered with the carbide, and the wettability with the molten metal 52 (54) is enhanced. It is thought that such a phenomenon can similarly occur for any of the above-described filling forms.
  • the rate of temperature increase is about 2 ° C./min or more and 20 ° C./min or less.
  • a diamond composite material 1A having a low oxygen concentration, a dense, and excellent thermal conductivity can be obtained.
  • This method for producing a diamond composite material uses the group 4 compound powder 30 containing the elements of the group 4 of the periodic table in this way to prevent oxidation of the elements of the group 4 of the periodic table, oxygen by reduction of oxygen and oxides, etc. Reduction, removal, good carbide formation, and improved wettability between diamond and molten metal.
  • this manufacturing method can easily manufacture the composite material 1A without performing heat treatment a plurality of times for the combination of diamond and silver or a silver alloy, or without performing a high-pressure press described in Patent Document 2. Excellent productivity.
  • the amount of the metal material is adjusted (increased) so that one surface of the composite material has the same components as the metal matrix 5 and is continuous.
  • a coated composite material (one-side infiltrant) including the metal layer 6 having the texture thus formed can be formed.
  • the container 110 is filled with a metal material such as the metal powder 50, then filled with the mixed powder 23, and filled with a metal material such as the last metal powder 50.
  • a layered structure both-side metal laminate 2355) can be formed.
  • various methods such as vapor deposition such as plating and sputtering, immersion in metal hot water, metal plate or metal foil, and metal powder heat bonding (hot press) can be used.
  • vapor deposition such as plating and sputtering, immersion in metal hot water, metal plate or metal foil, and metal powder heat bonding (hot press)
  • hot press metal powder heat bonding
  • pressing pressure is 0.2ton / cm 2 or more 4.5ton / cm 2 or less (19.6 MPa above 441MPa or less) about the heating temperature is preferably degree 300 ° C. or higher 900 ° C. or less.
  • a metal plate or the like is placed on one surface of the diamond composite material 1 and then pressed to produce a coated composite material on only one side. By disposing a pair of metal plates or the like so as to sandwich both surfaces of the composite material 1 and then pressing, a coated composite material 1B having metal layers 6 and 6 on both surfaces of the composite material 1 can be manufactured.
  • the metal layer 6 having the same composition as the metal matrix 5 of the diamond composite material 1 but also the metal layer 6 having a different composition can be easily formed.
  • the method for producing the diamond composite material may include a grinding step of polishing the surface of the composite material 1A not provided with the metal layer 6 or the surface of the coated composite material 1B provided with the metal layer 6. it can.
  • a diamond composite material was prepared using a diamond powder, a metal material, and a powder containing an element of Group 4 of the periodic table as appropriate, and the thermal characteristics, relative density, and oxygen content were examined.
  • a diamond powder having an average particle size of 50 ⁇ m, a silver (Ag) powder having an average particle size of 150 ⁇ m as a metal material, and an average particle size of 45 ⁇ m, and a powder ⁇ containing elements of Group 4 of the periodic table of materials shown in Table 1 are used.
  • a powder ⁇ sample no. 1-1 to 1-12, Group 4 compound powder, Sample No. In 1-102 to 1-104, powders of elements of Group 4 of the periodic table were prepared.
  • the average particle size of each powder is the median particle size.
  • each powder was adjusted so that the diamond powder was 60% by volume, the silver powder was 38% by volume, and the powder ⁇ was 2% by volume with respect to the volume of 10 mm ⁇ in diameter and 2 mm in thickness.
  • Sample No. In 1-101 powder ⁇ was not used, and diamond powder was 60% by volume and silver powder was 40% by volume.
  • the above mixed powder was filled into a carbon mold container. After the filling, in order to level the surface of the mixed powder, after pressing at 40 kPa, the mixed powder layer is filled with silver powder, and a two-layered powder compact (including a laminate) is placed in the container. And the container was capped. In this test, a carbon punch was placed on the powder compact to facilitate infiltration, and a weight (300 g) was placed on the punch, but the weight was omitted. Natural infiltration is also possible. In a state where a 300 g load was applied to a molding die containing the powder molded body in which the punch and the weight were arranged in an argon (Ar) atmosphere (5 kPa), the temperature was increased to 1200 ° C.
  • Ar argon
  • the thermal conductivity and the thermal expansion coefficient were measured using a commercially available measuring instrument.
  • the thermal conductivity was measured at room temperature (23 ° C.).
  • the thermal expansion coefficient was an average value measured in the range of 30 ° C to 150 ° C.
  • the relative density was determined by (actual density / theoretical density) ⁇ 100.
  • the actual density was determined by the Archimedes method (underwater specific gravity method).
  • the theoretical density is 100 / ⁇ (% by mass of diamond / density of diamond) + (% by mass of metal matrix / density of metal matrix) + (% by mass of group 4 element of periodic table / density of group 4 element of periodic table) ⁇ Sought by.
  • the mass ratio of diamond, metal matrix (silver in this test), and periodic table group 4 was calculated using the volume ratio of the raw material composition. For example, in the sample using TiH 2 as the powder of the group 4 compound, the mass% of Ti was calculated from the amount of Ti formed by decomposition into Ti and H 2 . In addition, the said mass ratio is calculated
  • the heat cycle resistance is an index representing the difficulty of lowering the thermal conductivity accompanying the temperature change in the substance, and was determined by (thermal conductivity after the thermal cycle / thermal conductivity before the thermal cycle) ⁇ 100.
  • the thermal conductivity after the cooling / heating cycle is defined as one cycle: the infiltrant of each sample is immersed in a test solution maintained at ⁇ 60 ° C. for 10 minutes and then immersed in a test solution maintained at 250 ° C. for 10 minutes. The measurement was made after 1000 cycles of this cooling and heating cycle.
  • the thermal conductivity after the cooling / heating cycle was measured at room temperature (23 ° C.) using the above-described commercially available measuring instrument.
  • As the test liquid a fluorine-based inert liquid (“Galden (registered trademark)”, “Fluorinert (trade name)”, or the like can be used.
  • the oxygen content was measured by separately preparing a test piece. Specifically, for each sample, a measurement material capable of collecting 5 or more 3 mm ⁇ 3 mm ⁇ 5 mm measurement test pieces was prepared in the same manner as each sample. Then, the measurement material was subjected to wire electric discharge machining, and a plurality of 3 mm ⁇ 3 mm ⁇ 5 mm measurement test pieces were cut out, and then acid washed to remove the wire component. After the acid washing, the oxygen concentration of each test specimen was measured using an oxygen / nitrogen analyzer (TC-600 type manufactured by LECO Japan GK). Table 1 shows the average value of five measurement specimens for each sample. The point regarding the measurement of the oxygen content is the same for the test examples described later. Note that the size of the measurement test piece is an example, and can be appropriately changed to a measurable size according to the specifications of the measurement apparatus. A measurement specimen may be taken from the composite material itself.
  • a CP cross section was taken using a commercially available cross section polisher (CP) processing apparatus, and the structure observation and elemental analysis by EPMA were performed on this cross section.
  • 2 and 3 show an observation image and an element mapping image (element image).
  • the element mapping images by EPMA shown in FIGS. 2 and 3 show the levels of the extracted elements in different colors. White, red, orange, yellow, green, light blue, blue, black are shown in descending order of element concentration. A color scale is shown below the mapping image of each element.
  • FIG. EPMA reflected electron images of the 1-3 infiltrated material show the oxygen mapping image, carbon mapping image, and titanium mapping image of EPMA in this order.
  • a polygonal dark gray region indicates a diamond
  • a light gray region indicates a metal matrix (here, silver).
  • a film-like region exists between the polygonal dark gray region and the light gray region along the periphery of the polygonal region.
  • the infiltrant 1-3 is filled with a metal matrix (here, silver) substantially without gaps between the diamond particles. Further, as apparent from the fact that the oxygen mapping image in the lower left of FIG. It can be seen that the 1-3 infiltrant is so small that oxygen is not substantially detected throughout.
  • a metal matrix here, silver
  • the polygonal particles are generally white to red to yellow, have a high carbon concentration, and can be identified as diamond. It can be seen that a region with a low carbon concentration (green region) is thin and circular along the contour of the polygonal particles. That is, it can be determined that the carbon concentration is low in the surface side region of the diamond particles. Looking at the titanium mapping image in the lower right of FIG. 2, it can be seen that a region having a high titanium concentration (generally a green to blue region) is thin and circular along the contour of the polygonal particles. When considered together with the above-described carbon mapping image, it can be seen that titanium exists in a ring shape along the contour of the diamond particles.
  • an annular region having a relatively low carbon concentration and an annular region having a high titanium concentration substantially overlap, and oxygen overlapping this annular region is overlapped. It turns out that there is virtually no. From this, it can be determined that the thin annular region along the outline of the diamond particle is a region in which carbon and titanium are combined to form a carbide and oxygen is not substantially present. Since the carbon component of the carbide exists along the periphery of the diamond particle, it can be determined that it is caused by diamond. In addition, the average thickness of the cyclic
  • Sample No. Sample Nos. 1-1, 1-2, 1-4 to 1-12 were also used for the infiltrant. Observation and analysis in the same manner as in 1-3 revealed that the gap formed between the diamond particles was filled with a metal matrix (here, silver) substantially without gaps, and that the surface side region of the diamond particles was of Group 4 of the periodic table. It has been confirmed that the carbide layer is thin and that the oxygen concentration is low throughout the infiltrant including the vicinity of the surface of the diamond particles.
  • the infiltrant of 1-1 to 1-12 covers diamond particles and a carbide layer that covers the surface of the diamond particles and contains a group 4 element (in this case, the diamond particles and the group 4 element in particular are bonded to each other).
  • the composite material is provided with coated diamond particles including a carbide layer and silver that bonds the coated diamond particles.
  • sample no. As shown in Table 1, all of the composite materials 1-1 to 1-12 have a low oxygen content, are dense, and have excellent thermal characteristics. Specifically, Sample No. All of the composite materials 1-1 to 1-12 have an oxygen content of 0.1% by mass or less (here 0.06% by mass or less) and a high relative density (here 96.8% or more). The thermal conductivity is high (here, 580 W / m ⁇ K or more). Sample No. All of the composite materials 1-1 to 1-12 have excellent thermal cycle resistance (95% or more here), and 500 W / m ⁇ K or more (here 550 W / m ⁇ K) even after being subjected to the thermal cycle. The above thermal conductivity can be maintained.
  • a diamond composite material having a low oxygen content, denseness, and excellent thermal properties, such as the composite material 1-1 to 1-12, can be easily obtained by an infiltration method using the above-mentioned Group 4 compound powder as a raw material. It can be seen that it can be manufactured.
  • the coated diamond particles were extracted by removing silver with an acid or the like, and the average particle size (median particle size) was measured. The diameter was substantially maintained (about 45 ⁇ m). Further, the volume ratio of the extracted coated diamond particles to the composite material substantially maintained the blending ratio of the diamond powder used as the raw material (about 60% by volume). Considering that the carbide layer is extremely thin, it can be said that the particle size and volume ratio of the diamond particles in the composite material substantially maintain the state of the raw material stage. For diamond composite materials (low oxygen content, dense, and excellent thermal properties) prepared in the test examples described later, the metal matrix is removed with acid, etc., and the coated diamond particles are extracted to obtain an average particle size. The volume ratio is measured as described above, and the same result (maintenance of the raw material stage) is obtained.
  • the reason why the above result is obtained is that the element of the group 4 of the periodic table is used as the raw material, so that the element of the group 4 of the periodic table may be oxidized in the raw material stage or exist in the manufacturing process of the infiltrant.
  • Oxygen or the like causes oxidation of the Group 4 element of the periodic table, so that the carbide of the Group 4 element of the periodic table cannot be sufficiently formed (see also FIG. 3), resulting in insufficient wettability with the molten metal. Conceivable.
  • sample No. 1-3 and the sample No. It can be considered that the difference from the oxygen amount of 1-102 is caused by the difference in the oxygen amount contained in the diamond particles and the oxide existing in the vicinity thereof, with reference to the oxygen mapping images shown in FIGS.
  • a diamond composite material was produced in the same manner as 1-1 to 1-12.
  • the outline is as follows. Tables 2 to 4 show diamond powders having an average particle diameter of 0.1 ⁇ m, 1 ⁇ m, 20 ⁇ m, 50 ⁇ m, 100 ⁇ m, 300 ⁇ m, and 400 ⁇ m, silver (Ag) powder having an average particle diameter of 150 ⁇ m, and an average particle diameter of 45 ⁇ m.
  • a Group 4 compound powder was prepared. Adjustment was made so that the diamond powder was 60% by volume, the silver powder was 38% by volume, and the group 4 compound powder was 2% by volume with respect to the volume of 10 mm ⁇ in diameter and 2 mm in thickness.
  • any of the infiltrant materials 2-1 to 2-88 covers diamond particles and a carbide layer that covers the surface of the diamond particles and contains an element of Group 4 of the periodic table (in particular, diamond particles and elements of Group 4 of the periodic table).
  • the composite material includes a coated diamond particle including a TiC layer, a ZrC layer, or an HfC layer bonded to each other and silver that bonds the coated diamond particles to each other.
  • sample no. As shown in Tables 2 to 4, all of the composite materials 2-1 to 2-88 have a low oxygen content, are dense, and have excellent thermal characteristics. Specifically, Sample No. No.
  • the composite material of 2-1 to 2-88 has an oxygen content of 0.1% by mass or less (here, many samples are 0.06% by mass or less), and has a high relative density (here, many samples are 97.0% or more) and high thermal conductivity (here, many samples are 600 W / m ⁇ K or more). Furthermore, sample no.
  • the composite material of 2-1 to 2-88 has excellent thermal cycle resistance (in this case, many samples are 96% or more), and many samples have a thermal cycle of 500 W / m ⁇ K or more. Fulfill. As shown in Tables 2 to 4, it can be seen that the larger the diamond particles, the better the thermal conductivity.
  • a composite material having a thermal conductivity of 700 W / m ⁇ K or more for example, Sample Nos. 2-11, 34, 2-71, etc.
  • a composite material having a thermal conductivity of 800 W / m ⁇ K or more for example, Sample Nos. 2-5, 2-42, 2-79, etc.
  • a sample with too large diamond particles here, a sample using diamond powder having an average particle size of 400 ⁇ m
  • the average particle size of diamond particles in the composite material is 400 ⁇ m. Less than 300 ⁇ m or less.
  • the composite material of the sample using the fine coarse mixed powder as the diamond powder is likely to have a relatively high relative density and more dense than the sample not using the fine coarse mixed powder.
  • a sample using a finely mixed powder is compared with a sample that is not used. For example, only a sample using a coarse powder of diamond powder having an average particle diameter of 50 ⁇ m and a diamond powder having an average particle diameter of 50 ⁇ m are used. When the coarsely mixed powder is used, it can be said that the thermal conductivity tends to be high and the thermal conductivity can be improved more easily.
  • sample No Although the composite materials 2-101 to 2-124 use Group 4 compound powder as a raw material, the oxygen content is higher than 0.1% by mass and the thermal characteristics are lower than other samples. Yes. The reason for this is that the diamond particles are too small, the oxides that can be present in the diamond particles are relatively large and cannot be sufficiently reduced or removed, the oxides remain, and the diamond grain boundaries increase. In other words, the heat path becomes longer, the surface area of the diamond particles increases, and the heat loss at the interface between the diamond and Ag increases.
  • sample No. 1 of Test Example 1 was mainly used except that the blending ratio of diamond powder and metal powder was changed from Test Example 1.
  • a diamond composite material was produced in the same manner as 1-1 to 1-12.
  • the particle diameter of the diamond powder and the material of the metal powder were also changed from Test Example 1.
  • the outline is as follows. Diamond powder with an average particle diameter of 1 ⁇ m, 50 ⁇ m, 300 ⁇ m, silver (Ag) powder with an average particle diameter of 150 ⁇ m, or silver alloy (Ag-28 mass% Cu) powder containing 28 mass% Cu, with an average particle diameter of 45 ⁇ m Therefore, Group 4 compound powders having the materials shown in Tables 5 to 7 were prepared.
  • Diamond powder is 25% by volume, 29% by volume, 30% by volume, 45% by volume, 60% by volume, 75% by volume, 90% by volume, 95% by volume, and silver powder with respect to a volume of 10 mm diameter and 2 mm thickness.
  • the silver alloy powder was adjusted to the values shown in Tables 5 to 7 so that the Group 4 compound powder was 2% by volume.
  • wet mixing of diamond powder and Group 4 compound powder ⁇ drying ⁇ filling mixed powder into carbon mold ⁇ pressing ⁇ filling silver powder or silver alloy powder ⁇ Ar atmosphere, 10 °C / min, 1200 °C ⁇ 2
  • infiltrant (diameter 10 mm ⁇ , thickness 2 mm disk) was prepared (Sample Nos. 3-1 to 3-80, 3-101 to 3-104, 3-111 to 3- 114, 3-121 to 3-124).
  • Sample No. Samples 3-125 to 3-127 are samples that do not use the powder of Group 4 compound. Specifically, a diamond powder having an average particle diameter of 1 ⁇ m, a silver alloy (Ag-28 mass% Cu) powder having an average particle diameter of 150 ⁇ m, an average particle diameter of 45 ⁇ m, and a powder of an element belonging to Group 4 of the periodic table (titanium ( Ti) powder, zirconium (Zr) powder, hafnium (Hf) powder). The volume was adjusted to 30% by volume of diamond powder, 68% by volume of silver alloy powder, and 2% by volume of group 4 element powder with respect to the volume of 10 mm diameter and 2 mm thickness. And sample no. Infiltrant (a disk having a diameter of 10 mm ⁇ and a thickness of 2 mm) was produced in the same manner as in 3-1.
  • a diamond powder having an average particle diameter of 1 ⁇ m a silver alloy (Ag-28 mass% Cu) powder having an average particle diameter of 150 ⁇ m, an average particle diameter of
  • Sample No. A sample 3-128 does not use the powder of the Group 4 compound. Specifically, diamond powder having an average particle diameter of 50 ⁇ m, silver alloy (Ag-28 mass% Cu) powder having an average particle diameter of 150 ⁇ m, and titanium (Ti) powder having an average particle diameter of 45 ⁇ m were prepared. Adjustments were made so that the diamond powder was 60% by volume, the silver alloy powder was 38% by volume, and the Ti powder was 2% by volume with respect to the volume of 10 mm ⁇ in diameter and 2 mm in thickness. And Ti powder and silver alloy powder were mixed. This mixing was dry mixing using a mixer mill.
  • diamond powder is filled into a carbon mold ⁇ press ⁇ filled with a mixed powder of silver alloy powder and Ti powder ⁇ Ar atmosphere (5 kPa), 10 ° C./min, 1200 ° C. ⁇ 2 hours.
  • An immersion material (a disk having a diameter of 10 mm ⁇ and a thickness of 2 mm) was produced.
  • each of the infiltrators 3-1 to 3-80 covers diamond particles and a carbide layer that covers the surface of the diamond particles and contains elements of Group 4 of the periodic table (in particular, diamond particles and elements of Group 4 of the periodic table).
  • Coated diamond particles comprising a TiC layer or a ZrC layer or an HfC layer bonded to each other, and silver or a silver alloy (sample Nos. 3-5, 3-33, 3-63, etc.) that bonds the coated diamond particles to each other. It was a composite material.
  • sample no. As shown in Tables 5 to 7, all of the composite materials 3-1 to 3-80 are low in oxygen content, dense, and excellent in thermal characteristics. Specifically, Sample No. No.
  • the composite material of 3-1 to 3-80 has an oxygen content of 0.1% by mass or less, a high relative density (here 96.5% or more), and a high thermal conductivity (here 500 W / m). ⁇ K or higher). Furthermore, sample no. No. All of the composite materials of 3-1 to 3-80 are excellent in thermal cycle resistance (95% or more here). Sample No. It can be seen that even when the metal matrix is a silver alloy such as composite materials such as 3-5, 3-33, and 3-63, the oxygen content is low, dense, and excellent in thermal characteristics. As shown in Tables 5 to 7, it can be seen that the greater the content of diamond particles, the better the thermal conductivity.
  • the infiltrant materials 3-101 to 3-104, 3-111 to 3-114, and 3-121 to 3-124 have high oxygen concentrations of more than 0.1% by mass and low thermal characteristics. The reason for this is that the content of diamond having excellent thermal conductivity is small, and there is too much silver that can contain oxygen. As a result, there is too much oxygen, and the above-mentioned Group 4 compound powder is used as a raw material. However, it is considered that the oxide was present without sufficiently exerting the reducing action.
  • sample No. 4 using a group obtained by adding a group 4 element of the periodic table to a silver alloy powder. In No. 3-128, an infiltrant was obtained, but sample no. It has a higher oxygen content, lower relative density, and poor thermal properties than 3-125.
  • the raw material is not a single element of Group 4 of the periodic table, but a sulfide or nitride containing elements of Group 4 of the periodic table. It can be seen that it is preferable to use a Group 4 compound such as an oxide, a hydride, or a boride, and to use at least a part of the Group 4 compound powder mixed with the diamond powder.
  • a diamond composite material having a low oxygen content, denseness, and excellent thermal properties such as a composite material of 3-1 to 3-80, has a diamond content in the composite material of more than 25% by volume and less than 95% by volume, Furthermore, it turns out that 30 volume% or more and 90 volume% or less are preferable.
  • Test Example 4 A coated composite material having a metal layer was prepared by various methods, and thermal characteristics, relative density, oxygen content, and surface roughness were examined. The relative density was determined including the metal layer.
  • the sample No. 1 prepared in Test Example 1 was used. 1-1 to 1-12 infiltrant, Sample No. Samples Nos. 2-1, 2-3, and 2-6, sample Nos.
  • the infiltrant 3-2 was prepared, and a metal layer was formed on the surface of each infiltrant by metal plating, metal foil pressure bonding, or metal powder pressure bonding.
  • the metal foil or metal powder was joined by hot pressing at a heating temperature of 400 ° C. and a pressure of 4 ton / cm 2 ⁇ 392 MPa.
  • the metal plating utilized known conditions.
  • Table 8 shows the sample number of the infiltrant used for the coating composite material of each sample, the material of the metal layer, and the method of forming the metal layer.
  • the size of the coated composite material of each sample is a disk having a diameter of 10 mm ⁇ and a thickness of 2.2 mm in the state of being provided with a metal layer, and the infiltration is performed so that the thickness of the metal layer becomes a value shown in Table 8.
  • the thickness of the material and the thickness of the metal layer were adjusted.
  • the obtained sample No. Thermal conductivity (W / m ⁇ K), thermal expansion coefficient ( ⁇ 10 ⁇ 6 / K ppm / K), relative density (%), thermal cycle resistance (%) ),
  • the oxygen content (oxygen content, mass%) was measured in the same manner as in Test Example 1. The results are shown in Table 8.
  • the influence on the thermal characteristics due to the difference in the raw material of the metal layer such as metal foil and metal powder, the influence on the thermal characteristics due to the difference in the composition of the metal layer, the difference in the formation method of the metal layer such as hot press and plating It can be said that the effects on the thermal properties are small. Further, from this test, it can be said that the oxygen content may slightly increase when the metal layer has a composition that easily contains oxygen (for example, containing Cu) or the metal layer becomes thick.
  • Test Example 5 The samples prepared in Test Examples 1 to 3 were examined for deterioration of thermal characteristics after being heated to a high temperature.
  • 5-1 to 5-5 it can be seen that even when heated at 800 ° C., there is little decrease in thermal conductivity and excellent heat resistance. Specifically, even when any sample is heated to 800 ° C., the deterioration rate of the thermal conductivity is less than 5%. In this test, the deterioration rate is less than 5% even when subjected to heating twice.
  • sample No. Sample No. 5 which is inferior in thermal characteristics to 5-1 No. 5-6 has a large decrease in thermal conductivity even when heated to 800 ° C., the deterioration rate is 5% or more, and 10% or more when subjected to heating twice.
  • Sample No. A diamond composite material with a low oxygen content such as a composite material of 5-1 to 5-5, which is dense and has a high thermal conductivity, even when heated to a high temperature simulating the joining of a silver brazing material, Little decrease in thermal conductivity. It can be seen that such a composite material can be used for a heat radiating member and maintain high thermal conductivity even after a high melting point bonding material such as a silver brazing material is bonded.
  • the heat radiating member of the present invention is a CPU (Central Processing Unit), GPU (Graphics Processing Unit), HEMT (High Electron Mobility Transistor), chip set, memory chip, etc. provided in supercomputers, other personal computers and mobile electronic devices, etc. It can be used as a heat dissipating member of a semiconductor element used in the above.
  • the diamond composite material of the present invention can be used as a material for a heat dissipation member that requires high heat dissipation, such as the heat dissipation member of the semiconductor element.
  • the method for producing a diamond composite material according to the present invention can be used for producing a diamond composite material mainly composed of diamond and silver or a silver alloy, which is dense and excellent in thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

熱伝導性に優れて放熱部材の素材に適しており、緻密なダイヤモンド複合材料及び放熱部材、ダイヤモンドと金属との濡れ性に優れて緻密なダイヤモンド複合材料を生産性よく製造できるダイヤモンド複合材料の製造方法を提供する。 ダイヤモンド粒子と、前記ダイヤモンド粒子の表面を覆い、周期表4族の元素を含む炭化物層とを備える被覆ダイヤモンド粒子と、前記被覆ダイヤモンド粒子同士を結合する銀又は銀合金とを備え、酸素含有量が0.1質量%以下であるダイヤモンド複合材料。

Description

ダイヤモンド複合材料、及び放熱部材
 本発明は、ダイヤモンドと金属とが複合された複合材料及びその製造方法、この複合材料から構成される放熱部材に関するものである。特に、熱伝導性に優れて放熱部材の素材に適しており、緻密なダイヤモンド複合材料、ダイヤモンドと金属との濡れ性に優れて緻密なダイヤモンド複合材料を生産性よく製造できるダイヤモンド複合材料の製造方法に関するものである。
 半導体素子の高集積化、高出力化、高速化などが進んでいる。そのため、半導体素子が作動上限温度に達しないように、半導体素子を十分に放熱する必要がある。従来、半導体素子の放熱には、自然対流や強制送風の他、放熱面積を拡大するための放熱部材(ヒートシンク、ヒートスプレッダなどと呼ばれる)が利用されている。
 特に高い放熱性が要求される放熱部材の素材として、高い熱伝導率を有するダイヤモンドと、金属との複合材料が検討されている。特許文献1は、ダイヤモンドとAg-Cu合金との複合材料を開示している。特許文献2は、ダイヤモンドと銅との複合材料を開示している。
特開2004-197153号公報 国際公開第2003/040420号パンフレット
 ダイヤモンドは、一般に、金属との濡れ性に劣る。その結果、ダイヤモンドと金属とを複合すると、ダイヤモンドと金属との界面近傍に気孔が生じ、気孔に起因して、複合材料の密度の低下及び熱伝導性の低下を招く。そのため、半導体素子などの放熱部材の素材に利用するダイヤモンドと金属との複合材料に対して、気孔が少なく緻密で、熱伝導性に優れるものの開発が望まれる。
 特許文献1は、原料にTi粉末を用いて、ダイヤモンド自体とTiとを反応させてダイヤモンド粒子の表面にTiの炭化物を形成し、このTiの炭化物とAg-Cu合金とが濡れることで、Tiの炭化物を介してダイヤモンド粒子とAg-Cu合金とを密着させる構成を開示している。しかし、Tiなどの周期表4族の元素は、一般に酸素と結合し易く、Tiの粉末粒子の表面に酸化膜が存在し得る。この酸化膜がダイヤモンドとTiとの反応を阻害して、濡れ性を十分に高められず、複合材料の密度の低下、気孔に起因する熱伝導性の低下を招き得る。複合材料中に酸化物が残存し得ることからも、熱伝導性の低下を招き得る。
 また、特許文献1では、原料に銀粉末や銀板などを用いている。銀はそれ自体が酸素を含み得ることから、銀から放出された酸素とTiなどの周期表4族の元素とが結合して酸化物を形成し、ダイヤモンドとTiとの反応を阻害する恐れがある。
 更に、工業用ダイヤモンドでは、ダイヤモンドの製造に用いた試薬などに起因する酸化物(例えば、CrやFeなどの酸化物)がダイヤモンドの粉末粒子の表面に残存していることがある。この酸化物も、ダイヤモンドとTiなどの周期表4族元素との反応を阻害する要因となり得る。
 引用文献2は、ダイヤモンド粉末と銅粉末との圧粉体をMo製カプセルに充填して、超高圧力下で焼結した後、カプセルを研削除去する製造方法を開示している。この製造方法によって緻密な複合材料が得られ、銅中には酸化物が形成されないとしている。しかし、この複合材料は、ダイヤモンドと銅とが接しているだけで両者が結合しておらず、放熱部材として使用した場合に冷熱サイクルの繰り返しによって、ダイヤモンドと銅との界面に隙間が生じて、熱特性を劣化させる恐れがある。また、この製造方法は、超高圧を発生及び制御可能な設備が必要であるため、複合材料の製造性に劣る。従って、より簡便な製造方法でありながら、熱伝導性の低下を招き得る酸化物を低減・除去できるダイヤモンド複合材料の製造方法の開発が望まれる。
 そこで、本発明の目的の一つは、熱伝導性に優れ、緻密なダイヤモンド複合材料、及び放熱部材を提供することにある。また、本発明の別の目的は、ダイヤモンドと金属との濡れ性に優れて緻密なダイヤモンド複合材料を生産性よく製造できるダイヤモンド複合材料の製造方法を提供することにある。
 本発明の一態様に係るダイヤモンド複合材料は、ダイヤモンド粒子と、前記ダイヤモンド粒子の表面を覆い、周期表4族の元素を含む炭化物層とを備える被覆ダイヤモンド粒子と、前記被覆ダイヤモンド粒子同士を結合する銀又は銀合金とを備え、酸素含有量が0.1質量%以下である。
 上記のダイヤモンド複合材料を製造する方法として、例えば、以下の製造方法が挙げられる。このダイヤモンド複合材料の製造方法は、以下の準備工程と、充填工程と、溶浸工程とを備える。
(準備工程)原料として、ダイヤモンドの粉末と、周期表4族の元素を含む硫化物、窒化物、水素化物、硼化物から選択される1種以上の4族化合物の粉末と、銀又は銀合金を含む金属材とを準備する工程。
(充填工程)前記ダイヤモンドの粉末と前記4族化合物の粉末と前記金属材とを成形型内に充填する工程。
(溶浸工程)前記成形型に充填した充填物を加熱して、前記ダイヤモンドと、溶融した前記銀又は銀合金とを複合する工程。
 上記のダイヤモンド複合材料は、熱伝導性に優れ、緻密である。上記のダイヤモンド複合材料の製造方法は、ダイヤモンドと金属との濡れ性に優れて、緻密なダイヤモンド複合材料を容易に製造できる。
実施形態に係るダイヤモンド複合材料を模式的に示す部分断面図である。 試験例1で作製した試料No.1-3のダイヤモンド複合材料の断面を電子線マイクロアナライザー(EPMA)で観察した像であり、左上は反射電子像、左下は酸素(O)マッピング像、右上は炭素(C)マッピング像、右下はTiマッピング像を示す。 試験例1で作製した試料No.1-102のダイヤモンド複合材料の断面について、ダイヤモンド粒子の近傍をEPMAで観察した像であり、左上は反射電子像、左下はOマッピング像、右上はCマッピング像、右下はTiマッピング像を示す。 実施形態に係るダイヤモンド複合材料の製造方法の手順の一例を示す工程説明図である。 実施形態に係るダイヤモンド複合材料の製造方法における溶浸工程に生じる現象を説明する模式説明図である。 実施形態に係るダイヤモンド複合材料の製造方法の手順の一例(両側に金属層を形成する方法)を示す工程説明図である。
[本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
 (1) 本発明の一態様に係るダイヤモンド複合材料は、ダイヤモンド粒子と、上記ダイヤモンド粒子の表面を覆い、周期表4族の元素を含む炭化物層とを備える被覆ダイヤモンド粒子と、上記被覆ダイヤモンド粒子同士を結合する銀又は銀合金とを備え、酸素含有量が0.1質量%以下である。ここでの周期表とは、新IUPAC式で表された長周期表をいう。
 上記のダイヤモンド複合材料は、以下の点から、緻密で、熱伝導性に優れる。
(緻密)
・上記のダイヤモンド複合材料は、酸素含有量が0.1質量%以下であり、酸素が少ない。そのため、ダイヤモンド粒子と周期表4族の元素を含む炭化物層との界面及びその近傍を含めた複合材料全体に亘って酸素が少ない、好ましくは存在せず、ダイヤモンド粒子の表面や上記炭化物層中にも酸化物がほとんど存在しないといえる。このような上記のダイヤモンド複合材料は、製造過程で、密度の低下の原因となる気孔の発生が十分に抑制され、ダイヤモンドの表面に炭化物層が健全に形成され易くなったと考えられる。その結果、ダイヤモンドと、周期表4族の元素を含む炭化物層とが密着している。
・上記炭化物層中に酸化物がほとんど存在しないことから、ダイヤモンド粒子の周囲に存在する周期表4族の元素が主として炭化物として存在するといえる。また、銀又は銀合金(以下、金属マトリクスと呼ぶことがある)中にも酸化物がほとんど存在しないといえる。このような上記のダイヤモンド複合材料は、製造過程で、周期表4族の元素を含む炭化物層と金属マトリクスを形成する溶融金属との濡れ性が十分に高められ、密度の低下の原因となる気孔の発生が十分に抑制されたと考えられる。その結果、周期表4族の元素を含む炭化物層と、金属マトリクスとが密着している。
・金属マトリクス中の気孔も十分に低減されている。
(熱伝導性)
・熱伝導率が1000W/m・K以上であるダイヤモンド粒子と、銅や銅合金よりも高い熱伝導率を有する傾向にある銀又は銀合金とを主成分とする。
・上述のようにダイヤモンド粒子の近傍を含めた複合材料全体に亘って酸素が少ない、好ましくは存在しない、即ち、熱伝導性に劣る酸化物が少ない、好ましくは存在しない。
・金属マトリクスによってダイヤモンド粒子同士が結合されると共に緻密であるため、ダイヤモンド粒子、炭化物、金属マトリクス間を繋ぐ熱伝導経路や、ダイヤモンド粒子の表面に形成される炭化物同士が連続的に繋がってなる熱伝導経路などを良好に構築できる。
 また、上記のダイヤモンド複合材料は、熱膨張係数が2.3×10-6/K以下程度であるダイヤモンド粒子と、熱膨張係数がダイヤモンドよりも大きい金属マトリクスとの双方を含むため、その熱膨張係数が、半導体素子や半導体装置の周辺部品などの熱膨張係数に近い(差が小さく、整合性に優れる)。従って、上記のダイヤモンド複合材料は、半導体素子の放熱部材の素材に好適に利用できる。
 (2) 上記のダイヤモンド複合材料の一例として、相対密度が96.5%以上である形態が挙げられる。
 上記形態は、緻密であり、気孔が少なく、気孔に起因する熱伝導性の低下を低減でき、高い熱伝導性を有する。
 (3) 上記のダイヤモンド複合材料の一例として、上記ダイヤモンド粒子の平均粒径が1μm以上300μm以下である形態が挙げられる。
 上記形態は、ダイヤモンド粒子が小さ過ぎて、複合材料中におけるダイヤモンドの粉末粒界が過多になることによる熱伝導性の低下を抑制でき、高い熱伝導性を有する。かつ、上記形態は、ダイヤモンド粒子の過大による研削などの加工性の低下を抑制でき、研削などによる寸法や形状などの調整を行い易い。
 (4) 上記のダイヤモンド複合材料の一例として、上記ダイヤモンド粒子の含有量が30体積%以上90体積%以下である形態が挙げられる。
 上記形態は、ダイヤモンド粒子を十分に含むため熱伝導性に優れる。かつ、上記形態は、ダイヤモンド粒子の過多による溶浸性の劣化(未溶浸部分の発生)を抑制でき、製造性に優れる。
 (5) 上記のダイヤモンド複合材料の一例として、室温における熱伝導率が500W/m・K以上である形態が挙げられる。室温とは、大気圧下で20℃以上27℃以下程度が挙げられる。
 上記形態は、熱伝導率が非常に高く、高い放熱性が求められる半導体素子の放熱部材などの素材に好適に利用できる。
 (6) 上記のダイヤモンド複合材料の一例として、30℃~150℃における平均の熱膨張係数が3×10-6/K以上13×10-6/K以下である形態が挙げられる。
 上記形態は、半導体素子の熱膨張係数(例えば、GaN:5.5×10-6/K程度など)や、パッケージなどの周辺部品の熱膨張係数との整合性に優れ、半導体素子の放熱部材などの素材に好適に利用できる。
 (7) 上記のダイヤモンド複合材料の一例として、-60℃~+250℃における冷熱サイクル耐性が95%以上である形態が挙げられる。冷熱サイクル耐性は、(冷熱サイクル後の熱伝導率/冷熱サイクル前の熱伝導率)×100とする。
 上述のような酸素含有量が少なく、緻密で、熱伝導率が高いダイヤモンド複合材料であることで、-60℃~+250℃の冷熱サイクルを受けた場合でも熱伝導率の低下が少なく、高い熱伝導率を維持できる。従って、上記形態は、使用時に冷熱サイクルを受ける半導体素子の放熱部材などの素材に好適に利用できる。
 (8) 上記のダイヤモンド複合材料の一例として、800℃に加熱した後における熱伝導率の劣化率が5%未満である形態が挙げられる。劣化率は、{[(加熱前の熱伝導率)-(加熱後の熱伝導率)]/(加熱前の熱伝導率)}×100とする。
 上述のような酸素含有量が少なく、緻密で、熱伝導率が高いダイヤモンド複合材料であることで、上記形態は、800℃といった高温に加熱された場合であっても、高い熱伝導率を維持できて、耐熱性に優れる。このような上記形態は、例えば、銀ロウ材(融点780℃程度)といった高融点の接合材を用いて、セラミックスなどからなる絶縁材などが接合される場合がある半導体素子の放熱部材などの素材に好適に利用できる。
 (9) 上記のダイヤモンド複合材料の一例として、上記ダイヤモンド複合材料の表面の少なくとも一部を覆う金属層を更に備え、上記金属層の厚さが1μm以上300μm以下である形態が挙げられる。
 上記形態は、金属層を備えることで、平滑になり易く、表面性状に優れる。また、この形態を半導体素子の放熱部材などに利用する場合、金属層を半田やロウ材などの下地に利用することで、半導体素子と放熱部材とを強固に接合できる。
 (10) 本発明の一態様に係る放熱部材は、上記(1)~(9)のいずれか1つに記載のダイヤモンド複合材料から構成される。
 上記の放熱部材は、緻密で熱伝導性に優れる上記のダイヤモンド複合材料から構成されているため、緻密で熱伝導性に優れる。上記のダイヤモンド複合材料は、半導体素子の熱膨張係数との整合性にも優れるため、上記の放熱部材は、半導体素子の放熱部材に好適に利用できる。
 上記のダイヤモンド複合材料を製造する方法として、例えば、以下の製造方法が挙げられる。
 (m1)このダイヤモンド複合材料の製造方法は、以下の準備工程と、充填工程と、溶浸工程とを備える。
(準備工程)原料として、ダイヤモンドの粉末と、周期表4族の元素を含む硫化物、窒化物、水素化物、硼化物から選択される1種以上の4族化合物の粉末と、銀又は銀合金を含む金属材とを準備する工程。
(充填工程)上記ダイヤモンドの粉末と上記4族化合物の粉末と上記金属材とを成形型内に充填する工程。
(溶浸工程)上記成形型に充填した充填物を加熱して、上記ダイヤモンドと、溶融した上記銀又は銀合金とを複合する工程。
 上記のダイヤモンド複合材料の製造方法は、特許文献1のように周期表4族の元素をそのまま原料に用いるのではなく、周期表4族の元素と、特定の元素、具体的には硫黄、窒素、水素、硼素の少なくとも1種の元素とを含む4族化合物の粉末を原料に用いる。4族化合物の粉末を用いることで、原料段階や準備工程、充填工程などでの周期表4族の元素の酸化を抑制できる。この酸化抑制によって周期表4族の元素の周囲は酸素が少ない状態になり易く、溶浸工程では、上記4族化合物の化学分解で生じた周期表4族の元素が、周囲の酸素によって酸化されることを抑制できる。
 更に上記の特定の元素は、還元作用を有するものがある。
 ここでの還元作用とは、溶浸工程の昇温過程などにおいて、工業用ダイヤモンドや銀又は銀合金などの原料に含み得る酸素や酸化物、化学分解で生じた周期表4族の元素の周囲に存在し得る酸素や酸化物を還元して、気体(例えば水蒸気など)として除去可能な作用である。
 上記の特定の元素が有する酸化抑制作用や還元作用によって、上記周期表4族の元素は勿論、ダイヤモンドや銀などが製造過程で酸化されることを効果的に抑制できる。
 以上のことから、周期表4族の元素とダイヤモンドとが良好に反応でき、ダイヤモンドと溶融金属との濡れ性を高められる炭化物を健全に、かつ過不足なく十分に形成できる。特に、上記4族化合物の粉末を炭化物形成元素(周期表4族の元素)の供給源とすることで、周期表4族の元素の供給量の変動が少なく、又は実質的に生じず、安定して供給でき、炭化物層の厚さ変動が生じ難い。即ち、ダイヤモンド粒子の表面に、ダイヤモンド粒子の構成成分(炭素)と周期表4族の元素とが結合した炭化物層を均一的な厚さに一様に形成し易い。従って、上記のダイヤモンド複合材料の製造方法によれば、酸素含有量が少なく、緻密で、熱伝導性に優れる複合材料(代表的には、実施形態に係るダイヤモンド複合材料)を製造できる。
 (m2) 上記のダイヤモンド複合材料の製造方法の一例として、上記充填工程では、上記ダイヤモンドの粉末と上記4族化合物の粉末とを含む混合粉末と、上記金属材とを層状に成形型内に充填して、上記充填物を積層体とする形態が挙げられる。
 上記形態は、金型内の充填物を混合粉末のまとまり(層)と、金属材のまとまり(層)とするため、ダイヤモンドの周囲に上記4族化合物が確実に存在し易い。従って、上記形態は、周期表4族の元素とダイヤモンドとがより確実に反応して炭化物を形成し易く、ダイヤモンドと実質的に反応しなかった周期表4族の元素が残存したり、更には酸化物となって存在したりし得ることを抑制し易い。また、例えば、混合粉末の層の上に金属材の層を配置した積層体とした場合、金属材の層に金属材がまとまって存在することから、溶融金属も纏まってできることで自重が大きく、溶融金属の自重によって混合粉末の層側に自動的に、かつ容易に移動して良好に溶浸できる。更に、混合粉末の層側に溶融金属が均一的に溶浸し易く、少量の溶融金属が各所に分散して生成される場合に比較して、金属マトリクスが均一的に存在するダイヤモンド複合材料を得易いと考えられる。加えて、金属材を金属粉末とし、ダイヤモンドの粉末と混合する場合には、金属粉末がダイヤモンドよりも比重が大きく、ダイヤモンドの粉末と均一的に混合し難いといえる。これに対し、上記形態は、ダイヤモンドの粉末と、ダイヤモンドとの比重差が比較的小さい上記4族化合物の粉末とを混合すればよく、混合作業性に優れる。従って、上記形態によれば、緻密で、高い熱伝導性を有するダイヤモンド複合材料をより生産性よく製造できる。
 (m3) 上記のダイヤモンド複合材料の製造方法の一例として、上記(m2)の形態で述べた充填物を積層体とする場合に、上記充填工程では、上記金属材と、上記混合粉末と、上記金属材とを順に積層した両側金属積層体を形成する形態が挙げられる。
 上記形態は、ダイヤモンド複合材料の両側に、金属マトリクスと同じ組成の金属から構成される金属層を備える被覆複合材料を製造できる。特に、上記形態は、溶浸と同時に金属層も形成でき、金属箔などの接合といった別工程で金属層を形成する場合に比較して、工程数が少なく、被覆複合材料を生産性よく製造できる。得られた被覆複合材料は、金属マトリクスと金属層とが連続する組織を有するため、接合強度が高く金属層が剥離し難い上に、熱伝導性にも優れる。その他、この形態は、上記(m2)の形態で述べた種々の効果が得られる。
 (m4) 上記のダイヤモンド複合材料の製造方法の一例として、上記金属材が金属粉末であり、上記金属粉末の層に、周期表4族の元素を含む4族化合物の粉末及び周期表4族の元素の粉末の少なくとも一方の粉末を含む形態が挙げられる。
 金属材の層を、金属粉末に加えて上記4族化合物の粉末や周期表4族の元素の粉末を含む層とする上記の形態では、金属粉末の層に含む4族化合物が化学分解して生じた周期表4族の元素や、金属粉末の層に含んでいた周期表4族の元素は、溶浸工程の昇温過程で金属粉末が溶融してできた溶融金属にまず取り込まれ、その後にダイヤモンドと反応し、炭化物を形成する。ダイヤモンドの反応が始まれば、以降、このような反応が連続的に生じ易い。即ち、上記形態は、ダイヤモンドに溶浸する溶融金属に、周期表4族の元素が取り込まれ易い状態を設けており、その結果、ダイヤモンドと周期表4族の元素との反応を生じ易くしているといえ、炭化物をより良好に形成できる。従って、上記形態によれば、より緻密で、より高い熱伝導性を有するダイヤモンド複合材料を製造できる。
 [本発明の実施形態の詳細]
 以下、図1を参照して、本発明の実施形態に係るダイヤモンド複合材料、放熱部材を詳細に説明し、図4~図6を参照して、実施形態のダイヤモンド複合材料を製造できるダイヤモンド複合材料の製造方法を詳細に説明する。
 ・ダイヤモンド複合材料
 実施形態に係るダイヤモンド複合材料1は、図1に示すようにダイヤモンド粒子2と、ダイヤモンド粒子2の表面を覆い、周期表4族の元素を含む炭化物層3とを備える複数の被覆ダイヤモンド粒子4と、被覆ダイヤモンド粒子4同士を結合する金属マトリクス5とを備える。複数の被覆ダイヤモンド粒子4がつくる隙間に金属マトリクス5が充填されて、ダイヤモンド粒子2の集合状態が金属マトリクス5によって維持される。複合材料1は、気孔が非常に少なく、隙間なく金属マトリクス5が充填された緻密な成形体である(図2のEPMAの反射電子像参照)。実施形態の複合材料1はその全体に亘って酸素含有量が低いことを特徴の一つとする。以下、構成要素ごとを詳細に説明する。
 ・・被覆ダイヤモンド粒子
 ・・・ダイヤモンド
 ダイヤモンド複合材料1は、複数のダイヤモンド粒子2を主要構成要素の一つとする。複合材料1中のダイヤモンド粒子2の含有量が多いほど、熱伝導性に優れて好ましい。例えば、熱伝導率が500W/m・K以上を満たす複合材料1とすることができる。一方、上記含有量が多過ぎず、金属マトリクス5をある程度含むことで、複合材料1の熱膨張係数が小さくなり過ぎることを防止できる。例えば、熱膨張係数が4×10-6/K以上9.5×10-6/K以下程度の複合材料1とすることができ、半導体素子やその周辺部品の熱膨張係数に近い。また、上記含有量が多過ぎなければ、製造時、ダイヤモンド粒子間につくられる隙間に溶融金属が十分に溶浸できる。その結果、炭化物層3の介在による緻密化、複合化を良好に行えて、より緻密な複合材料1とすることができる。熱伝導性や半導体素子などとの熱膨張係数の整合性、緻密化などを考慮すると、複合材料1中のダイヤモンド粒子2の含有量は、30体積%以上90体積%が好ましく、45体積%以上85体積%以下、50体積%以上80体積%以下がより好ましい。複合材料1中のダイヤモンド粒子2の含有量の測定方法は、後述する。
 ダイヤモンド複合材料1中のダイヤモンド粒子2の粒径が大きいほど、複合材料1中のダイヤモンドの粉末粒界が少なく、熱伝導性に優れる複合材料1となって好ましい。例えば、熱伝導率が500W/m・K以上を満たす複合材料1とすることができる。一方、上記粒径が大き過ぎなければ、研削などの加工性に優れ、所定の寸法公差を満たすように調整し易い。また、上記粒径が大き過ぎなければ、薄型の複合材料1とすることができる。熱伝導性、加工性、薄型化などを考慮すると、複合材料1中のダイヤモンド粒子2の平均粒径は1μm以上300μm以下が好ましく、1μm以上100μm以下、20μm以上60μm以下がより好ましい。ダイヤモンド粉末を微粗混合とすることもできる。微粗混合のダイヤモンド粉末を含む複合材料1は、より緻密で、相対密度がより高い。複合材料1中のダイヤモンド粒子2の平均粒径の測定方法は、後述する。
 ・・・炭化物層
 ダイヤモンド複合材料1中の各ダイヤモンド粒子2の表面は、周期表4族の元素を含む炭化物で覆われており、各被覆ダイヤモンド粒子4は、上記炭化物から形成される炭化物層3を備える。この炭化物層3は、ダイヤモンド粒子2及び金属マトリクス5の双方に密着している(図2のEPMAの反射電子像参照)。上述のように複合材料1は、酸素含有量が極めて少なく、酸化物がほとんど存在しないため、製造過程で、炭化物層3がダイヤモンド表面で健全に形成され易かったこと、及び炭化物層3が溶融金属(複合材料1中では主として金属マトリクス5になる)との濡れ性に優れたことで密着できたと考えられる。このような炭化物層3を備える複合材料1は、ダイヤモンド粒子2と、炭化物層3と、金属マトリクス5との三者が隙間なく密着して緻密である。
 炭化物層3の形成方法は、本発明の趣旨を損なわない限りにおいて、種々の方法を利用できる。ダイヤモンド粒子2との密着性をより高めるという観点からは、炭化物層3は、ダイヤモンド粒子2の表面側領域の構成元素(炭素)と周期表4族の元素とが結合して形成された炭化物で構成されていることが好ましい。この場合、炭化物層3は、ダイヤモンド粒子2自体の成分を構成要素とすることから、ダイヤモンド粒子2との密着性により優れて、より緻密な複合材料1とすることができる。
 炭化物層3の主要構成成分は、炭素、好ましくはダイヤモンド粒子2由来の炭素、及び周期表4族の元素である。炭化物層3に含む周期表4族の元素は、チタン(Ti)、ジルコニウム(Zr)、及びハフニウム(Hf)から選択される少なくとも一種が挙げられる。炭化物層3は、列挙した元素を1種のみ含む形態の他、複数種の元素を含む形態とすることができる。
 炭化物層3は、厚過ぎると炭化物の過多による熱伝導性の低下を招き易くなるため、熱伝導性を考慮すると、ある程度薄い方が好ましい。具体的には、炭化物層3の平均厚さは、5μm以下、3μm以下、3μm未満が好ましく、1μm以下がより好ましく、ナノオーダーもとり得る。炭化物層3がダイヤモンド複合材料1の製造時の反応生成物である場合には、代表的には原料の添加量や大きさなどを調整することで、炭化物層3の厚さを調整できる。
 ダイヤモンド複合材料1中のダイヤモンド粒子2はいずれも、被覆ダイヤモンド粒子4であることが好ましい。各被覆ダイヤモンド粒子4は、ダイヤモンド粒子2の表面積の90面積%以上、更にダイヤモンドの表面全体が上述の炭化物で覆われていると、緻密な複合材料1となって好ましい。ダイヤモンド粒子2の表面側領域の実質的に全てが炭化物として存在していると、更に緻密な複合材料1となって好ましい。なお、ダイヤモンドの表面に、周期表4族の元素を含む炭化物が存在しない部分を含むことを許容するが、この部分は少ないほど好ましい。
 ダイヤモンド複合材料1は、隣り合う被覆ダイヤモンド粒子4に備える炭化物層3の少なくとも一部が結合して一体化された部分(以下、この部分を連結部と呼ぶことがある)を有することができる。炭化物から構成される連結部を有する形態、連結部を有しない形態(いわば被覆ダイヤモンド粒子がバラバラに分散した形態)のいずれも、緻密で、熱特性に優れる。
 ・・金属マトリクス
 ダイヤモンド複合材料1は、金属マトリクス5を主要構成要素の一つとする。金属マトリクス5の構成成分は、銀(いわゆる純銀)又は銀合金とする。金属マトリクス5が銀であれば、熱伝導率が427W/m・Kと高く、熱伝導性に優れる複合材料1とすることができる。銀合金は、Agを50質量%超と、添加元素とを含み、残部が不可避不純物からなる合金である。特に、Agを70質量%以上と、添加元素とを含み、残部が不可避不純物である銀合金は、高い熱伝導性を維持しつつ、液相点温度が低い傾向にあり、製造時、溶浸温度を低くしても良好に複合化できるため、製造性に優れる。銀合金の添加元素は、Cuなどが挙げられる。添加元素の合計含有量は、30質量%以下程度が挙げられる。
 ・・酸素濃度
 ダイヤモンド複合材料1は、その全体において酸素が少ないことを特徴の一つとする。具体的には、複合材料1の酸素含有量は、0.1質量%以下である。複合材料1全体の酸素含有量が0.1質量%以下であれば、ダイヤモンド粒子2の表面側近傍に酸化物、気孔などが十分に少なく、好ましくは実質的に存在しない。そのため、複合材料1は、酸化物などの介在に起因するダイヤモンド粒子2と金属マトリクス5との間の熱伝導性の低下を抑制でき、熱伝導性に優れる。また、酸化物が少なければ、周期表4族の元素が酸化物ではなく炭化物として存在しているといえ、炭化物層3の介在によって緻密な複合材料1とすることができる。上記酸素含有量は、少ないほど好ましく、0.095質量%以下、0.090質量%以下、0.080質量%以下がより好ましい。
 ダイヤモンド複合材料1中のダイヤモンド粒子2の表面には、金属マトリクス5を除いて、炭化物層3のみが存在することが好ましい。即ち、ダイヤモンド粒子2の表面側近傍を元素分析した場合、炭素及び周期表4族の元素が主として存在し、それ以外の元素、特に酸素が少ないことが好ましい。ダイヤモンド粒子2の表面側近傍に酸素が存在する場合、この酸素は、例えば、周期表4族の元素の酸化物などで存在すると考えられる。この酸化物は熱伝導率が低く、溶融金属との濡れ性も悪いため、ダイヤモンド粒子2の表面側近傍に存在すると、熱伝導性、緻密性に劣る複合材料となり得る。実施形態の複合材料1は、その全体の酸素濃度が低いため、ダイヤモンド粒子2の表面側近傍の酸素濃度も十分に低い。実施形態の複合材料1の一例として、ダイヤモンド粒子2と炭化物層3との境界をとり、この境界から外周側(金属マトリクス5側)に向かって、厚さが5μmまでの環状の領域をとり、この環状の領域を外周領域とするとき、この外周領域における酸素含有量が0.1質量%以下を満たすものが挙げられる。上記境界は、後述するEPMAの元素マッピングを利用すれば容易に可視化できる。また、EPMAの元素マッピングを利用すれば、実施形態の複合材料1は、ダイヤモンド粒子2と炭化物層3との境界近傍に酸素が非常に少ないこと、好ましくは実質的に存在しないことを容易に確認できる。
 ダイヤモンド複合材料1に含まれ得る酸素の混入源は、原料のダイヤモンドの粉末20(図4)、銀や銀合金の金属材(図4では金属粉末50)、製造過程での雰囲気などが考えられる。そのため、複合材料1中の任意の箇所に酸素が含まれ得る。複合材料1では、その全体における酸素濃度を特定の範囲とし、全体の酸素が少ないことを以って、ダイヤモンドとダイヤモンドに隣接する物質との境界近傍という熱伝導性の劣化を招き易い箇所にも、酸素が非常に少ないとする。後述するダイヤモンド複合材料の製造方法を利用することで、製造過程で酸素を良好に低減、除去でき、ダイヤモンド粒子2の近傍を含む全体に亘って酸素濃度が低い複合材料1を製造できる。
 ・・金属層
 ダイヤモンド複合材料1の一例として、図6に示すように複合材料1の表面の少なくとも一部を覆う金属層6を備える形態とすることができる(図6の被覆複合材料1Bは一例)。複合材料1と半導体素子などとを半田やロウ材などで接合する場合に、金属層6を備える被覆複合材料1Bとすると、金属層6と半田やろう材などの金属とが十分に濡れて、被覆複合材料1Bなどと半導体素子などとを強固に接合できて好ましい。
 金属層6の構成金属は、半田やロウ材の使用温度に耐え得る金属であればよく、特に限定されない。金属層6は、例えば、金属マトリクス5と同じ成分である形態、金属マトリクス5と主成分が同じである形態(例えば、金属マトリクス5と金属層6との双方が銀合金で添加元素が異なる形態、金属マトリクス5が銀で、金属層6が銀合金である形態など)、金属マトリクス5と金属層6とが全く異なる成分である形態のいずれもとり得る。金属層6が金属マトリクス5の構成金属と異なる場合、具体的な金属として、銅、金、アルミニウム、ニッケル、亜鉛、錫、各元素の合金などが挙げられる。金属層6は、単層構造の他、多層構造とすることができる。金属層6の形成方法は、特に限定されない(後述参照)。
 金属層6は、被覆複合材料全体の熱伝導性の低下を抑制する目的からは、薄い方が好ましい。具体的には、金属層6の厚さ(多層構造の場合には合計厚さ)は、300μm以下、200μm以下、100μm以下が挙げられる。一方、上述の接合用下地などの目的からは、金属層6の厚さは、0.5μm以上、5μm以上、20μm以上が挙げられる。ダイヤモンド複合材料1の用途などによっては、金属層6を備えていなくてもよく、厚さが0.5μm未満であってもよい。
 ・・特性
 ・・・熱特性
 実施形態のダイヤモンド複合材料1や被覆複合材料1Bなどは、熱伝導性に優れる。例えば、上記の複合材料1などは、室温における熱伝導率が500W/m・K以上を満たす(被覆複合材料の場合には金属層6を含めた状態での熱伝導率)。熱伝導率が高いほど、熱伝導性に優れる複合材料1などになり、放熱部材の素材に好ましいことから、520W/m・K以上、550W/m・K以上、600W/m・K以上がより好ましい。
 実施形態のダイヤモンド複合材料1や被覆複合材料1Bなどは、熱膨張係数が小さいダイヤモンド粒子2と、ダイヤモンドよりも熱膨張係数が十分に大きい金属マトリクス5とを主体とすることで、熱膨張係数が両者の中間値をとり得る。例えば、上記の複合材料1などは、30℃~150℃における平均の熱膨張係数が3×10-6/K以上13×10-6/K以下を満たす(被覆複合材料の場合には金属層6を含めた状態での熱膨張係数)。ダイヤモンド粒子2の含有量や金属マトリクス5の成分にもよるものの、上記熱膨張係数が4×10-6/K以上12×10-6/K以下、4.5×10-6/K以上10×10-6/K以下を満たすものとすることができる。
 室温での熱伝導率が500W/m・K以上を満たし、かつ30℃~150℃における平均の熱膨張係数が3×10-6/K以上13×10-6/K以下を満たすダイヤモンド複合材料1や被覆複合材料1Bなどは、熱伝導性に優れる上に、半導体素子やその周辺部品の熱膨張係数との整合性に優れるため、半導体素子の放熱部材に好適に利用できる。
 実施形態のダイヤモンド複合材料1や被覆複合材料1Bなどは、熱伝導性に優れる上に、冷熱サイクルを受けた場合や高温に加熱された場合にも、熱伝導率の低下が少なく、高い熱伝導率を維持することができる(被覆複合材料の場合には金属層6を含めた状態での熱伝導率)。
 一例として、-60℃~+250℃における冷熱サイクル耐性が95%以上である複合材料1などが挙げられる。このような複合材料1などは、冷熱サイクルを受けた場合にも熱伝導率の低下が5%以下と低いため、使用時に冷熱サイクルを受ける半導体素子の放熱部材に好適に利用できる。
 又は、一例として、800℃に加熱した後における熱伝導率の劣化率が5%未満である複合材料1などが挙げられる。ここで、複合材料1などを半導体素子の放熱部材に利用する場合に、放熱部材とセラミックスなどからなる絶縁材などとを接合することがある。この接合に銀ロウ材といった高融点の接合材を用いることがある。この場合、放熱部材は、接合材によって加熱されることになるが、この加熱によって放熱部材の熱伝導率の低下が少ないことが望まれる。上記熱伝導率の劣化が5%未満である複合材料1などは、高温に曝された場合にも熱伝導率の低下が少なく、耐熱性に優れるといえる。この複合材料1などは、銀ロウなどの接合材が利用され得る半導体素子の放熱部材に好適に利用できる。
 ・・・相対密度
 実施形態のダイヤモンド複合材料1や、被覆複合材料1Bなどにおける複合材料1の領域は、気孔が少なく緻密で相対密度が高い。被覆複合材料1Bの金属層6は気孔が実質的に存在せず緻密であることから、被覆複合材料1Bは、金属層6を含めた状態でも相対密度が高い。例えば、上記の複合材料1などは、相対密度が96.5%以上を満たす。相対密度が高いほど、緻密であり、気孔に起因する熱伝導性の低下が生じ難く、高い熱伝導性を有することから、96.7%以上、97.0%以上、97.5%以上がより好ましい。
 ・・形状・大きさ
 実施形態のダイヤモンド複合材料1や被覆複合材料1Bなどの代表的な形状は、平板状が挙げられる。製造時に用いる成形型の形状や、切削加工などによって所望の平面形状、三次元形状の複合材料1などにすることができる。複合材料1などの大きさ(厚さ、幅、長さなど)は適宜選択できる。厚さが薄いと(例えば5mm以下、3mm以下、更に2.5mm以下)、軽量で薄型の複合材料1などとすることができる。
 ・放熱部材
 実施形態に係る放熱部材は、実施形態のダイヤモンド複合材料1や被覆複合材料1Bなどから構成されることで、複合材料1などの組成、組織、特性などを実質的に維持する。従って、実施形態の放熱部材は、酸素含有量が少なく(上述の酸素濃度の項参照)、緻密で(上述の相対密度の項参照)、熱伝導性に優れ(上述の熱特性の項参照)、半導体素子の放熱部材に好適に利用できる。
 ・ダイヤモンド複合材料の製造方法
 実施形態に係るダイヤモンド複合材料1や被覆複合材料1Bなどは、例えば、以下のダイヤモンド複合材料の製造方法によって製造することができる。この製造方法の概略を述べると、図4,図6に示すようにダイヤモンドの粉末20と、最終的に金属マトリクス5(図1)を形成する金属材(図4,図6では金属粉末50)とを含む原料を準備して(準備工程)、成形型100の容器110に充填し(充填工程)、充填物を加熱して金属材を溶融して、ダイヤモンドの粉末20に溶融金属52を溶浸する(溶浸工程)。この製造方法は、更に、原料に、周期表4族の元素と特定の元素とを含む4族化合物の粉末30を用いて、周期表4族の元素が炭化物を形成するまでの間の酸化を効果的に抑制し、溶浸工程では、昇温過程で4族化合物を化学分解させ、この化学分解で生じた周期表4族以外の特定の元素に還元作用などを発揮させて、ダイヤモンドの周囲に存在し得る酸素を低減、除去させながら、上記化学分解によって生じた周期表4族の元素とダイヤモンドとを反応させて炭化物を形成する。以下、工程ごとに説明する。
 ・準備工程
 この工程では、原料として、ダイヤモンドの粉末20と、周期表4族の元素を含む4族化合物の粉末30と、銀又は銀合金を含む金属材とを準備する。
 ・・ダイヤモンドの粉末
 ダイヤモンドの粉末20の大きさ(平均粒径)、含有量(原料に占める体積割合)は、最終的に製造するダイヤモンド複合材料1A中のダイヤモンド粒子の大きさ(平均粒径)、含有量(複合材料1Aに占める体積割合)が所望の値(上述のダイヤモンドの項参照)となるように選択する。このダイヤモンド複合材料の製造方法では、ダイヤモンドの粉末20を構成する各粉末粒子の表面側領域が炭化物層3(図1)の形成に利用されるため、厳密に言うと、原料段階におけるダイヤモンドの大きさや含有量と、複合材料1A中のダイヤモンドの大きさや含有量とは異なる。しかし、炭化物層3は上述のように非常に薄いため、複合材料1A中のダイヤモンドの大きさ、含有量、形状などは、原料段階の大きさ、含有量、形状などを実質的に維持するといえる。原料のダイヤモンド粉末の平均粒径は、上述のように1μm以上300μm以下、更に1μm以上100μm以下、20μm以上60μm以下が好ましい。微粗混合とする場合には、粗粒の平均粒径は、微粒の平均粒径の2倍以上、更に3倍以上、4倍以上が好ましく、熱伝導性や加工性などを考慮すると、300μm以下、更に100μm以下、60μm以下が好ましい。微粒の平均粒径は、粗粒の平均粒径よりも小さければよいが、緻密化などを考慮すると、1μm以上、更に5μm以上、10μm以上が好ましい。
 原料のダイヤモンドの粉末20は、純度が高いほど(例えば天然ダイヤモンド)、熱伝導性に優れて好ましい。一方、工業用ダイヤモンドは、純度が低いものの比較的安価であり利用し易い。このダイヤモンド複合材料の製造方法では、工業用ダイヤモンドであっても、原料に利用できる。原料に用いる4族化合物の粉末30を製造過程で還元剤として機能させた場合には、ダイヤモンドの粉末粒子の表面に不純物として付着し得る酸化物を低減、除去できるからである。
 ・・金属材
 金属材の構成成分は、最終的に製造するダイヤモンド複合材料1A中の金属マトリクス5が所望の組成(上述の金属マトリクスの項参照)となるように選択する。
 金属材は、種々の形態のものが利用でき、例えば、金属粉末50が挙げられる。金属粉末50は、溶浸工程の加熱時に個々の粉末粒子が容易に溶融して溶融金属52を形成し易い。また、金属粉末50であれば、ダイヤモンドの粉末20や、4族化合物の粉末30、後述する周期表4族の元素の粉末などと混合し易く、混合した粉末を成形型100に充填できる。金属粉末50の大きさ(平均粒径)は、適宜選択でき、例えば、1μm以上150μm以下程度が挙げられる。この範囲であれば、金属粉末50が小さ過ぎず取り扱い易く、大き過ぎないため溶融し易いと考えられる。
 その他の金属材として、板材やブロック体などを利用できる。この場合、成形型100に充填可能なように適宜な大きさ、形状にするとよい。板材やブロック体は、大きさによっては、成形型100に収納が容易で作業性に優れる。
 金属材の含有量(体積割合)は、最終的に製造するダイヤモンド複合材料1A中の金属マトリクス5の含有量(体積割合)が所望の値となるように選択する。
 ・・4族化合物の粉末
 周期表4族の元素を含む4族化合物の粉末の構成成分は、最終的に製造するダイヤモンド複合材料1A中の炭化物層3が所望の周期表4族の元素(上述の炭化物層の項参照)を含むように選択する。具体的には、4族化合物の粉末30は、Ti,Zr及びHfから選択される1種以上の元素を含む硫化物、窒化物、水素化物、硼化物から選択される1種の化合物を含む。粉末30は、列挙した化合物を1種のみ含む形態の他、複数種の化合物を含むことができる。後者の場合、例えば、TiCを備える被覆ダイヤモンド粒子と、ZrCを備える被覆ダイヤモンド粒子とを含む複合材料、TiとZrとを含む複合炭化物層で覆われた被覆ダイヤモンド粒子を含む複合材料などを製造できる。水素化物のうちTiHは、比較的容易に入手でき、保存などもし易く、取り扱い性に優れるため、利用し易い。
 4族化合物のうち、最終製品であるダイヤモンド複合材料1A中の存在する成分は、実質的に周期表4族の元素のみであり、この元素は主として炭化物を形成し、炭化物層3(図1)として存在する。そのため、4族化合物の粉末30の添加量によって、炭化物層3の厚さが異なる。上述のように炭化物層3が厚過ぎると炭化物の過多による熱伝導性の低下を生じることから、熱伝導性を考慮すると炭化物層3は厚過ぎない方が好ましい。炭化物層3の厚さが所望の値となるように、4族化合物の粉末30の含有量(体積割合)を調整するとよい。
 4族化合物の粉末30は、比較的酸化し易い周期表4族の元素を含むものの、周期表4族の元素単体である場合と異なり、後述の溶浸工程で加熱されるまで、周期表4族の元素は、硫黄(S)、窒素(N)水素(H)、又は硼素(B)と結合している。そのため、このダイヤモンド複合材料の製造方法では、複合材料の製造過程で、周期表4族の元素の酸化が生じ難く、周期表4族の元素と炭素(ここでは特にダイヤモンドの表層側領域)との反応を良好に行える。また、周期表4族の元素に結合している上記の各元素は、気体(例えば、水、一酸化窒素、二酸化硫黄など)として除去できる。上記の各元素がダイヤモンドの周囲に存在し得る酸素や、酸化物の酸素原子と結合する場合(還元する場合)には、酸素の低減、除去をより効果的に行える。
 ・充填工程
 この工程では、ダイヤモンドの粉末20と4族化合物の粉末30と金属材とを成形型100の容器110内に充填する。充填形態は、例えば、三者を層状に充填して充填物を三層構造の積層体とする形態、三者が全て粉末の場合に全ての粉末を混合して充填した全混合粉末の充填物とする形態、三者のうち二者の粉末を混合した粉末と残り一者(粉末でなくてもよい)とを層状に充填して充填物を二層構造の積層体とする形態などが挙げられる。
 二層構造の積層体とする場合、例えば、ダイヤモンドの粉末20と4族化合物の粉末30とを含む混合粉末23と、金属材とを層状に成形型100の容器110内に配置して、積層体235を形成する。この場合、(i)ダイヤモンドの周囲に4族化合物をより確実に存在させられる、(ii)金属材の層から溶融金属を生成でき、自重が比較的大きい溶融金属を混合粉末23の層側に溶浸し易い、(iii)溶融金属を均一的に溶浸し易い、などの理由から、緻密で高い熱伝導性を有するダイヤモンド複合材料1Aを製造し易いと期待される。その他、ダイヤモンドの粉末20と4族化合物の粉末30とは混合し易く、混合粉末23を良好に形成できる。
 混合粉末23の作製には、非金属無機材料の粉末(ここではダイヤモンドの粉末20及び4族化合物の粉末30)の混合に利用可能な混合装置を適宜利用できる。例えば、ヘンシェルミキサー、真空撹拌装置などの公知の装置が利用できる。ポリビニルアルコールなどの有機物、水やアルコールなどに代表される液体バインダを用いた湿式混合、バインダを用いない乾式混合のいずれも利用できる。湿式混合では、混合後又は成形型100に混合粉末23を充填後、バインダを除去する乾燥工程を別途設けてもよいが、溶浸工程の加熱によってバインダを除去してもよい。その他、湿式混合に水やアルコールなどを用いる場合、混合時に加熱や真空乾燥などを適宜行って、水やアルコールなどを徐々に除去すると、比重差などに起因するダイヤモンドと4族化合物などとの分離を抑制して、均一的に混合し易い。
 用意した混合粉末23を容器110に充填し、その上に金属粉末50といった金属材を充填することで、二層構造の積層体235を形成できる。比重が大きい金属材を混合粉末23の層の上に配置すると、次の工程で金属材が溶融すると、金属の自重によって、下層の混合粉末23側に容易に溶融金属52が移動して溶浸できる。後述するように溶融金属52に含まれた周期表4族の元素とダイヤモンドとの化合反応によって溶浸を進行できる。積層体235を形成する際、例えば、粉末23,50の充填ごとにプレスしたり(ハンドプレス程度の小さな圧力でもよい)、振動を付与してタッピングしたりすることで所望の充填密度にする。積層体235を形成したら、容器110の蓋120を閉じる。
 成形型100は、箱状や有底筒状の容器110と、容器110の開口部を塞ぐ蓋120とを備えるものが利用できる。所望の形状のダイヤモンド複合材料1Aを成形できるように、容器110の形状を選択するとよい。成形型100は、カーボン製などの耐熱性、強度などに優れるものが好適に利用できる。成形型100が蓋120を有する場合、容器110内に雰囲気ガスが過度に入り込むことを防止できる。
 ・溶浸工程
 この工程は、成形型100に充填した充填物(一例として積層体235)を加熱して、ダイヤモンドと、金属材を溶融した溶融金属52とを複合する。
 加熱温度は、金属材が溶融する温度、即ち、銀の融点(961℃)以上、又は銀合金の液相線温度以上にする。例えば、加熱温度は、980℃以上1300℃以下が挙げられる。保持時間は、10分以上3時間以下程度が挙げられる。
 雰囲気は、酸素の混入・増大を防止するために、非酸化性雰囲気(例えば、アルゴン雰囲気など)、低酸化性雰囲気(例えば、真空雰囲気。真空度は10kPa以下)とすることが好ましい。雰囲気圧力が低いほど、溶浸し易くなるため、大気圧未満の減圧雰囲気とすることが好ましい(例えば、10kPa以下)。
 溶浸工程で生じると考えられる現象について、積層体235を利用した場合を例にし、図5を参照して説明する。図5では、4族化合物300として、水素化物のうち、TiHを例示する。昇温し始めて200℃~300℃程度に達すると、金属粉末が含有し得る酸素600を放出し、混合粉末の層中に含まれ得る(図5の上段)。更に、昇温して500℃~600℃程度に達すると、4族化合物300が、周期表4族の元素301(図5ではTi)と、周期表4族の元素以外の元素302(図5では水素(H))とに化学分解する(図5の中上段)。化学分解により生じた特定の元素302は、上述の酸素600や、原料表面に酸化物が存在する場合にはこの酸化物中の酸素原子などと結合して、ガス状の化合物640(図5では水蒸気(水))を形成し、混合粉末から放出される。このように特定の元素302によって、原料などに含まれ得る酸素を効果的に低減又は除去できる。
 更に昇温すると金属材が溶融した溶融金属52が混合粉末の層側に侵入してきて、上述の化学分解によって生じた周期表4族の元素301を取り込む。周期表4族の元素301を取り込んだ複合溶融金属54が混合粉末の層中のダイヤモンド粒子21に接触すると(図5の中下段)、ダイヤモンド粒子21の表面側領域の炭素と、周期表4族の元素301とが反応して(結合して)、炭化物を形成する。この炭化物の形成によって、複合溶融金属54がダイヤモンド粒子21と濡れ易くなって、ダイヤモンド粒子21の表面側領域全域に亘って連続的に周期表4族の元素301との炭化物の形成反応が進む。複合溶融金属54中の周期表4族の元素301は、ダイヤモンド粒子21との反応に伴って消費されて、銀又は銀合金の溶融金属52になっていく。炭化物の形成に伴って、溶融金属52などの溶浸が進行する。この結果、ダイヤモンド粒子2の表面に、周期表4族の元素を含む炭化物層3を備える被覆ダイヤモンド粒子4を形成でき、これら被覆ダイヤモンド粒子4間がつくる隙間に溶融金属52が充填された溶浸材を形成できる。隣り合うダイヤモンド粒子21,21がそれぞれ炭化物を形成することで、炭化物同士が連結した部分を形成し得る。この場合、炭化物から構成される連結部を有する複合材料が製造できる。
 上述の現象では、ダイヤモンド粒子21と周期表4族の元素301とが反応する前に、4族化合物300の化学分解によって生じた上述の特定の元素302が、ダイヤモンド粒子21の周囲に存在し得る酸素600と結合したり、酸化物を還元する場合には、酸素600などを十分に低減、除去でき、最終的に得られるダイヤモンド複合材料中の酸素量を効果的に低減できる。ダイヤモンド粒子21の表面近傍でこのような酸素の除去を行うことで、ダイヤモンド粒子21(2)の近傍の酸素濃度が低いダイヤモンド複合材料1A(1)とすることができる。かつ、4族化合物300の化学分解によって生じた周期表4族の元素301は、上述のように酸素が除去されたため、ダイヤモンド粒子21と反応して炭化物を形成し易い。原料に用いた4族化合物の粉末30中に含む周期表4族の元素の多くを、好ましくは全量を炭化物にできる。その結果、ダイヤモンド粒子21の表面の少なくとも一部、好ましくは全部が炭化物に覆われて、溶融金属52(54)との濡れ性を高められる。このような現象は、上述した任意の充填形態について同様に生じ得ると考えられる。
 上述のように酸素の除去及び炭化物の形成を行うための時間が確保できるように、昇温速度を調整することが好ましい。例えば、昇温速度は、2℃/min以上20℃/min以下程度が挙げられる。
 上述の溶浸後、冷却することで、酸素濃度が低く、緻密で、熱伝導性に優れるダイヤモンド複合材料1Aが得られる。このダイヤモンド複合材料の製造方法は、このように周期表4族の元素を含む4族化合物の粉末30を利用して、周期表4族の元素の酸化防止、酸素や酸化物の還元などによる酸素の低減、除去及び炭化物の良好な形成、ダイヤモンドと溶融金属との濡れ性の改善を効果的に行える。また、この製造方法は、ダイヤモンドと銀又は銀合金との複合にあたり複数回の熱処理を行ったり、特許文献2に記載される高圧プレスを行ったりすることなく、複合材料1Aを容易に製造でき、生産性に優れる。
 ・その他の工程
 ・・金属層の形成
 金属層6を備える被覆複合材料1Bなどを製造する場合、金属材を利用して、溶浸工程で複合化と同時に金属層6を形成する同時形成方法と、溶浸工程を経て作製した溶浸材の表面に金属層6を別途形成する別形成方法という二つの方法が利用できる。
 同時形成方法では、例えば、上述の二層構造の積層体235の形成にあたり、金属材の量を調整する(多くする)ことで、複合材料の一面に、金属マトリクス5と同じ成分で、かつ連続した組織を有する金属層6を備える被覆複合材料(片側溶浸材)を形成できる。又は、例えば、充填工程において、図6に示すように、容器110に金属粉末50といった金属材を充填し、次に混合粉末23を充填し、最後の金属粉末50といった金属材を充填した、三層構造の積層体(両側金属積層体2355)を形成することができる。この場合も金属材の量を調整することで、両側金属積層体2355を加熱すると、下側の溶融金属52が混合粉末23の層に溶浸することで混合粉末23の層が下方に下がりながら、上側の溶融金属52も溶浸していき、上下に金属が多く存在したまま、中間部が複合化される。この結果、図6に示すように複合材料1の表裏面の双方に金属層6,6を備える被覆複合材料1B(両側溶浸材)を製造できる。以下、この方法を両側溶浸法と呼ぶことがある。
 別形成方法は、めっき、スパッタリングなどの蒸着、金属湯への浸漬、金属板や金属箔、金属粉末の加熱接合(ホットプレス)など種々の方法を利用できる。金属層6の形成前には、ダイヤモンド複合材料1の表面を洗浄にすることが好ましい。
 ホットプレスを行う場合、加圧圧力は0.2ton/cm以上4.5ton/cm以下(19.6MPa以上441MPa以下)程度、加熱温度は300℃以上900℃以下程度が好ましい。ホットプレスは、ダイヤモンド複合材料1の一面に金属板などを配置した後、押圧することで、片側のみの被覆複合材料を製造できる。複合材料1の両面を挟むように一対の金属板などを配置した後、押圧することで、複合材料1の両面に金属層6,6を備える被覆複合材料1Bを製造できる。
 別形成方法は、ダイヤモンド複合材料1の金属マトリクス5と同じ組成の金属層6は勿論、異なる組成の金属層6を容易に形成できる。
 ・・研磨
 その他、このダイヤモンド複合材料の製造方法は、金属層6を備えていない複合材料1Aの表面、又は金属層6を備える被覆複合材料1Bなどの表面に研磨を施す研削工程を備えることができる。
 [試験例1]
 ダイヤモンドの粉末と、金属材と、適宜、周期表4族の元素を含む粉末とを用いて、ダイヤモンド複合材料を作製し、熱特性、相対密度、酸素量を調べた。
 原料として、平均粒径50μmのダイヤモンドの粉末、金属材として平均粒径150μmの銀(Ag)粉末、平均粒径45μmであり、表1に示す材質の周期表4族の元素を含む粉末αを用意した。粉末αとして、試料No.1-1~1-12では4族化合物の粉末、試料No.1-102~1-104では、周期表4族の元素の粉末を用意した。各粉末の平均粒径はいずれも、メジアン粒径である。
 直径10mmφ、厚さ2mmの体積に対して、ダイヤモンドの粉末が60体積%、銀粉末が38体積%、粉末αが2体積%となるように、各粉末の量を調整した。試料No.1-101は、粉末αを用いておらず、ダイヤモンドの粉末を60体積%、銀粉末を40体積%とした。
 粉末αを用いた各試料では、ダイヤモンドの粉末と粉末αとを湿式混合した。ここでは、溶媒が水及びエタノールであり、溶質がポリビニルアルコール(PVA)であるPVA溶液(濃度0.2質量%)を用意して、このPVA溶液に粉末を浸漬して、真空撹拌装置(マゼルスター、倉敷紡績株式会社製)を用いて10min混合した。その後、混合物を真空引きしながら5min混合して、水及びエタノールを乾燥除去した。この工程によって、PVAを含む混合粉末を得た。PVAは、溶浸時の加熱によって除去する。
 上述の混合粉末をカーボン製の成形型の容器に充填した。充填後、混合粉末の表面を均すために、40kPaでプレスした後、混合粉末の層の上に銀粉末を充填して、二層構造の粉末成形体(積層体を含む)を上記容器内で作製し、容器に蓋をした。この試験では、溶浸が進行し易いように粉末成形体の上にカーボン製のパンチ、このパンチの上に錘を配置して荷重(300g)を負荷するようにしたが、錘を省略し、自然溶浸することもできる。上記パンチ及び錘を配置した粉末成形体を内蔵する成形型をアルゴン(Ar)雰囲気(5kPa)中、300gの負荷を印加した状態で、昇温速度10℃/minで1200℃まで昇温し、1200℃に到達してから2時間保持して、ダイヤモンドに溶融金属(ここでは銀湯)を溶浸させた後、冷却して溶浸材(直径10mmφ、厚さ2mmの円板)を作製した。得られた各試料の溶浸材の熱伝導率(W/m・K)、熱膨張係数(×10-6/K=ppm/K)、相対密度(%)、冷熱サイクル耐性(%)、酸素含有量(酸素量、質量%)を測定した。その結果を表1に示す。
 熱伝導率及び熱膨張係数は、市販の測定器を用いて測定した。熱伝導率は、室温(23℃)で測定した。熱膨張係数は、30℃~150℃の範囲で測定した平均値とした。
 相対密度は、(実密度/理論密度)×100によって求めた。実密度は、アルキメデス法(水中比重法)によって求めた。理論密度は、100/{(ダイヤモンドの質量%/ダイヤモンドの密度)+(金属マトリクスの質量%/金属マトリクスの密度)+(周期表4族元素の質量%/周期表4族元素の密度)}によって求めた。ダイヤモンド、金属マトリクス(この試験では銀)、及び周期表4族の質量割合は、この試験では、原料組成の体積割合を用いて算出した。例えば、4族化合物の粉末としてTiHを用いた試料では、Tiの質量%は、TiとHに分解してできたTi量から計算した。その他、上記質量割合は、複合材料に対して各種の成分分析を利用することで求められる。
 冷熱サイクル耐性は、その物質における温度変化に伴う熱伝導率の低下のし難さを表す指標であり、(冷熱サイクル後の熱伝導率/冷熱サイクル前の熱伝導率)×100によって求めた。冷熱サイクル後の熱伝導率は、各試料の溶浸材について、-60℃に保持した試験液に10分浸した後、250℃に保持した試験液に10分浸す、という操作を1サイクルとし、この冷熱サイクルを1000サイクル行った後に測定した。冷熱サイクル後の熱伝導率の測定は、上述の市販の測定器を用いて、室温(23℃)で測定した。試験液には、フッ素系不活性液体(「ガルデン(登録商標)」や「フロリナート(商品名)」などを使用できる。
 酸素含有量の測定は、この試験では、別途、試験片を作製して行った。具体的には、試料ごとに、3mm×3mm×5mmの測定試験片が5個以上採取可能な測定用素材を各試料と同様にして作製した。そして、測定用素材をワイヤー放電加工して、3mm×3mm×5mmの測定試験片を複数切り出した後、酸洗浄してワイヤー成分を除去した。酸洗浄後、各試料の測定試験片について酸素・窒素分析装置(LECOジャパン合同会社製TC-600型)を用いて、酸素濃度を測定した。各試料について、5個の測定試験片の平均値を表1に示す。酸素含有量の測定に関する点は、後述する試験例についても同様である。なお、測定試験片の大きさは例示であり、測定装置の仕様に応じて、測定可能な大きさに適宜変更できる。複合材料自体から測定試験片を採取してもよい。
 得られた各試料の溶浸材について市販のクロスセクションポリッシャ(CP)加工装置を用いてCP断面をとり、この断面についてEPMAによる組織観察と元素分析とを行った。図2,図3に観察像と、元素マッピング像(元素イメージ)とを示す。図2,図3のEPMAによる元素マッピング像は、抽出した元素の濃度の高低を色別で示す。元素濃度が高い順に白、赤、橙、黄、緑、薄青、青、黒で示す。各元素のマッピング像の下にカラースケールを示す。
 図2の左上は、試料No.1-3の溶浸材のEPMAの反射電子像、図2の左下、右上、右下は順にEPMAの酸素マッピング像、炭素マッピング像、チタンマッピング像を示す。
 図3の左上は、試料No.1-102の溶浸材について、ダイヤモンド粒子の近傍を拡大したEPMAの反射電子像、図3の左下、右上、右下は順にEPMAの酸素マッピング像、炭素マッピング像、チタンマッピング像を示す。
 図2,図3の反射電子像において、多角形状で濃い灰色の領域がダイヤモンド、薄い灰色の領域が金属マトリクス(ここでは銀)を示す。図3の反射電子像において、多角形状で濃い灰色の領域と、薄い灰色の領域との間には多角形状の領域の周縁に沿って膜状の領域が存在する。
 図2の反射電子像に示すように、試料No.1-3の溶浸材は、ダイヤモンド粒子間がつくる隙間に金属マトリクス(ここでは銀)が実質的に隙間なく充填されていることが分かる。また、図2の左下の酸素マッピング像が黒一色であることから明らかなように、試料No.1-3の溶浸材は、その全体に亘って酸素が実質的に検出されないほどに少ないことが分かる。
 図2の右上の炭素マッピング像をみると、多角形状の粒子は概ね白~赤~黄であり、炭素濃度が高く、ダイヤモンドであると判別できる。この多角形状の粒子の輪郭に沿って、炭素濃度が低い領域(緑の領域)が薄く環状に存在していることが分かる。即ち、ダイヤモンド粒子の表面側領域では、炭素濃度が低くなっていると判別できる。図2の右下のチタンマッピング像をみると、多角形状の粒子の輪郭に沿ってチタン濃度が高い領域(概ね緑~青の領域)が薄く環状に存在していることが分かる。上述の炭素マッピング像と合せて考えれば、ダイヤモンド粒子の輪郭に沿って環状にチタンが存在することが分かる。
 更に、図2に示す三つの元素マッピング像を重ね合せると、炭素濃度が相対的に低い環状の領域と、チタン濃度が高い環状の領域とが実質的に重なり、この環状の領域に重なる酸素が実質的に無いことが分かる。このことから、ダイヤモンド粒子の輪郭に沿った薄い環状の領域は、炭素とチタンとが結合して炭化物として存在し、酸素が実質的に存在しない領域であると判別できる。この炭化物の炭素成分は、ダイヤモンド粒子の周縁に沿って存在することから、ダイヤモンドに起因すると判別できる。なお、炭化物からなる環状の領域(炭化物層)の平均厚さは、3μm以下程度である。また、図2の酸素マッピング像から上述の環状の領域だけでなく、複合材料の全体に亘って酸素が実質的に存在しないことが分かる。
 一方、図3の左下の酸素マッピング像から明らかなように、青色から黄色の部分が存在し、試料No.1-102の溶浸材は、局所的に酸素が存在することが分かる。図3に示す三つの元素マッピング像を重ね合せると、ダイヤモンド粒子の輪郭に沿った膜状の領域について、炭素濃度が相対的に低い膜状の領域の一部とチタン濃度が高い領域の一部とが重なり、チタン濃度が高い領域の他部と酸素濃度が高い領域とが重なることが分かる。ダイヤモンド粒子の輪郭に沿った膜状の領域は、炭素とチタンとが結合して炭化物として存在する部分があるものの、酸素とチタンとが結合して酸化物として存在する部分をも有すると判別できる。このことから、製造条件が異なることで、ダイヤモンド粒子の近傍に酸素が実質的に存在しない溶浸材と、酸素が存在し得る溶浸材とが得られることが確認できた。
 試料No.1-1,1-2,1-4~1-12の溶浸材についても、試料No.1-3と同様に観察・分析したところ、ダイヤモンド粒子間がつくる隙間に金属マトリクス(ここでは銀)が実質的に隙間なく充填されていること、ダイヤモンド粒子の表面側領域に周期表4族の炭化物層が薄く存在すること、ダイヤモンド粒子の表面近傍を含む溶浸材の全体に亘って、酸素濃度が低いことを確認している。これら試料No.1-1~1-12の溶浸材は、ダイヤモンド粒子と、ダイヤモンド粒子の表面を覆い、周期表4族の元素を含む炭化物層(ここでは特にダイヤモンド粒子と周期表4族の元素とが結合した炭化物層)とを備える被覆ダイヤモンド粒子と、被覆ダイヤモンド粒子同士を結合する銀とを備える複合材料である。
Figure JPOXMLDOC01-appb-T000001
 そして、試料No.1-1~1-12の複合材料はいずれも、表1に示すように、酸素含有量が低く、緻密で、熱特性に優れることが分かる。具体的には、試料No.1-1~1-12の複合材料はいずれも、酸素含有量が0.1質量%以下(ここでは0.06質量%以下)であり、相対密度が高く(ここでは96.8%以上)、熱伝導率が高い(ここでは580W/m・K以上)。試料No.1-1~1-12の複合材料はいずれも、冷熱サイクル耐性にも優れており(ここでは95%以上)、冷熱サイクルを受けても500W/m・K以上(ここでは550W/m・K以上)の熱伝導率を維持できる。
 上記の結果が得られた理由として、原料に周期表4族の元素を含む4族化合物の粉末を用いたことで、製造過程で、周期表4族の元素の酸化を抑制できたと共に、原料の周囲に存在し得る酸素を、上記4族化合物の化学分解によって生じた特定の元素の作用によって低減、除去でき、更には上記化学分解によって生じた周期表4族の元素とダイヤモンドとが反応して炭化物を効率よく生成できて、溶融金属との濡れ性を高められたため、と考えられる。特に、ダイヤモンド粒子の表面近傍で酸素を低減、除去できたことで、周期表4族の元素の炭化物を良好に形成でき、ダイヤモンド粒子と溶融金属とが良好に濡れたことで、緻密化できた、と考えられる。
 この試験から、試料No.1-1~1-12の複合材料のような、酸素含有量が低く、緻密で、熱特性に優れるダイヤモンド複合材料は、原料に上述の4族化合物の粉末を用いた溶浸法によって容易に製造できることが分かる。
 なお、試料No.1-1~1-12の複合材料について、酸などで銀を除去して被覆ダイヤモンド粒子を抽出し、平均粒径(メジアン粒径)を測定したところ、原料に用いたダイヤモンドの粉末の平均粒径を実質的に維持していた(45μm程度)。また、複合材料に対する、抽出した被覆ダイヤモンド粒子の体積割合は、原料に用いたダイヤモンドの粉末の配合比を実質的に維持していた(60体積%程度)。炭化物層が極薄いことを考慮すれば、複合材料中のダイヤモンド粒子の粒径及び体積割合は、原料段階の状態を実質的に維持しているといえる。後述する試験例で作製したダイヤモンド複合材料(酸素含有量が低く、緻密で、熱特性に優れるもの)についても、金属マトリクスを酸などで除去して、被覆ダイヤモンド粒子を抽出して、平均粒径や体積割合を上述のように測定して、同様の結果(原料段階の維持)を得ている。
 一方、原料に周期表4族の元素を含む粉末を用いなかった試料No.1-101では、実質的に溶浸材が得られなかったため、熱特性、相対密度、酸素量を調べていない。
 他方、原料に周期表4族の元素単体を用いた試料No.1-102~1-104では、溶浸材が得られたものの、試料No.1-1~1-12に比較して、酸素含有量が高く(0.15質量%超)、相対密度が低く(96.5%未満)、熱特性も劣る(熱伝導率が500W未満、更に450W未満、冷熱サイクル特性が94%以下)。上記の結果が得られた理由として、原料に周期表4族の元素単体を用いたことで、原料段階で周期表4族の元素が酸化して、又は溶浸材の製造過程で存在し得る酸素などによって周期表4族の元素が酸化して、周期表4族の元素の炭化物を十分に形成できず(図3も参照)、溶融金属との濡れが不十分な箇所が生じたため、と考えられる。なお、例えば、試料No.1-3の酸素量と、試料No.1-102の酸素量との差は、図2,図3に示す酸素マッピング像を参照すれば、ダイヤモンド粒子とその近傍に存在する酸化物に含まれる酸素量の差によって生じると考えられる。
 [試験例2]
 ダイヤモンドの粉末の粒径を異ならせて、種々のダイヤモンド複合材料を製造し、熱特性、相対密度、酸素量を調べた。
 この試験では、ダイヤモンドの粉末の粒径を除いて、試験例1の試料No.1-1~1-12と同様にして、ダイヤモンド複合材料を作製した。概略は以下の通りである。平均粒径の0.1μm、1μm、20μm、50μm、100μm、300μm、400μmのダイヤモンドの粉末、平均粒径150μmの銀(Ag)粉末、平均粒径45μmであって、表2~表4に示す材質の4族化合物の粉末を用意した。直径10mmφ、厚さ2mmの体積に対して、ダイヤモンドの粉末が60体積%、銀粉末が38体積%、4族化合物の粉末が2体積%となるように調整した。そして、ダイヤモンド粉末と4族化合物の粉末との湿式混合⇒乾燥⇒混合粉末をカーボン製成形型に充填⇒プレス⇒銀粉末の充填⇒Ar雰囲気、10℃/min、1200℃×2時間、という工程を経て、溶浸材(直径10mmφ、厚さ2mmの円板)を作製した(試料No.2-1~2-88,2-101~2-124)。
 表2~表4に「混合比(粗:微)」が「7:3」と記載された各試料では、ダイヤモンド粉末として、微粗混合粉末を用いた。この試験では、平均粒径が50μmの粉末を粗粒粉末とし、平均粒径が10μmの粉末を微粒粉末とする試料(No.2-3,2-33,2-63など)と、平均粒径が300μmの粉末を粗粒粉末とし、平均粒径が1μmの粉末を微粒粉末とする試料(No.2-6,2-36,2-66など)とを用意した(いずれもメジアン粒径)。いずれの試料も、粗粒粉末と微粒粉末との配合比が体積割合で7:3となるように、粗粒粉末を多めにして配合した。
 得られた試料No.2-1~2-88,2-101~2-124の溶浸材の熱伝導率(W/m・K)、熱膨張係数(×10-6/K=ppm/K)、相対密度(%)、冷熱サイクル耐性(%)、酸素含有量(酸素量、質量%)を試験例1と同様にして測定した。その結果を表2~表4に示す。表2は、4族化合物に含む周期表4族の元素がTiである試料No.2-1~2-28及び試料No.2-101~2-104、表3はZrである試料No.2-31~2-58及び試料No.2-111~2-114、表4はHfである試料No.2-61~2-88及び試料No.2-121~2-124を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 得られた試料No.2-1~2-88の溶浸材はいずれも、ダイヤモンド粒子と、ダイヤモンド粒子の表面を覆い、周期表4族の元素を含む炭化物層(ここでは特にダイヤモンド粒子と周期表4族の元素とが結合したTiC層又はZrC層又はHfC層)とを備える被覆ダイヤモンド粒子と、被覆ダイヤモンド粒子同士を結合する銀とを備える複合材料であった。そして、試料No.2-1~2-88の複合材料はいずれも、表2~表4に示すように、酸素含有量が低く、緻密で、熱特性に優れることが分かる。具体的には、試料No.No.2-1~2-88の複合材料は、酸素含有量が0.1質量%以下であり(ここでは多くの試料が0.06質量%以下)、相対密度が高く(ここでは多くの試料が97.0%以上)、熱伝導率が高い(ここでは多くの試料が600W/m・K以上)。更に、試料No.2-1~2-88の複合材料は、冷熱サイクル耐性にも優れており(ここでは多くの試料が96%以上)、多くの試料は冷熱サイクルを受けても、500W/m・K以上を満たす。そして、表2~表4に示すように、ダイヤモンド粒子が大きいほど、熱伝導性に優れることが分かる。この試験では、熱伝導率が700W/m・K以上の複合材料(例えば、試料No.2-11,2-34,2-71など)、更に800W/m・K以上の複合材料(例えば、試料No.2-5,2-42,2-79など)が得られている。但し、ダイヤモンド粒子が大き過ぎる試料(ここでは平均粒径400μmのダイヤモンド粉末を用いた試料)は、研磨や切断などの加工性に劣ると考えられ、複合材料中のダイヤモンド粒子の平均粒径は400μm未満、更に300μm以下が好ましいと考えられる。
 特に、ダイヤモンド粉末として、微粗混合粉を用いた試料の複合材料は、微粗混合粉を用いていない試料と比較して、相対密度が非常に高くなり易く、より緻密になり易いといえる。また、微粗混合粉を用いた試料と用いていない試料とを比較して、例えば、粗粒粉末に平均粒径50μmのダイヤモンド粉末を用いた試料と、平均粒径50μmのダイヤモンド粉末のみを用いた試料とを比較すると、微粗混合粉を用いると、熱伝導率が高くなる傾向にあり、熱伝導性をより向上し易いといえる。
 一方、試料No.2-101~2-124の複合材料は、原料に4族化合物の粉末を用いたものの、その他の試料と比較して酸素含有量が0.1質量%超と高く、熱特性も低くなっている。この理由として、ダイヤモンド粒子が小さ過ぎることで、ダイヤモンド粒子に存在し得る酸化物が相対的に多くなって十分に低減、除去できず、酸化物が残存したこと、ダイヤモンドの粉末粒界が多くなって熱経路が長くなったこと、ダイヤモンド粒子の表面積が大きくなってダイヤモンドとAgとの界面での熱損失が大きくなったこと、が挙げられる。
 この試験から、試料No.2-1~2-88の複合材料のような、酸素含有量が低く、緻密で、熱特性に優れるダイヤモンド複合材料は、複合材料中のダイヤモンドの平均粒径が0.1μm超400μm以下、更に1μm以上300μm以下を満たすことが好ましいことが分かる。
 [試験例3]
 ダイヤモンドの粉末及び金属粉末の配合比を異ならせて、種々のダイヤモンド複合材料を作製し、熱特性、相対密度、酸素量を調べた。
 この試験では、主として、ダイヤモンド粉末及び金属粉末の配合比を試験例1から変更した点を除いて、試験例1の試料No.1-1~1-12と同様にして、ダイヤモンド複合材料を作製した。試料によっては、ダイヤモンド粉末の粒径や金属粉末の材質も試験例1から変更した。概略は以下の通りである。平均粒径の1μm、50μm、300μmのダイヤモンドの粉末、平均粒径150μmの銀(Ag)粉末、又は28質量%のCuを含む銀合金(Ag-28質量%Cu)粉末、平均粒径45μmであって、表5~表7に示す材質の4族化合物の粉末を用意した。直径10mmφ、厚さ2mmの体積に対して、ダイヤモンドの粉末が25体積%、29体積%、30体積%、45体積%、60体積%、75体積%、90体積%、95体積%、銀粉末又は銀合金粉末が表5~表7に示す値、4族化合物の粉末が2体積%となるように調整した。そして、ダイヤモンド粉末と4族化合物の粉末との湿式混合⇒乾燥⇒混合粉末をカーボン製成形型に充填⇒プレス⇒銀粉末又銀合金粉末の充填⇒Ar雰囲気、10℃/min、1200℃×2時間、という工程を経て、溶浸材(直径10mmφ、厚さ2mmの円板)を作製した(試料No.3-1~3-80,3-101~3-104,3-111~3-114,3-121~3-124)。
 試料No.3-125~3-127はいずれも、上記4族化合物の粉末を用いていない試料である。具体的には、平均粒径1μmのダイヤモンドの粉末、平均粒径150μmの銀合金(Ag-28質量%Cu)粉末、平均粒径45μmであって、周期表4族の元素の粉末(チタン(Ti)粉末、ジルコニウム(Zr)粉末、ハフニウム(Hf)粉末)を用意した。直径10mmφ、厚さ2mmの体積に対して、ダイヤモンドの粉末が30体積%、銀合金粉末が68体積%、周期表4族の元素の粉末が2体積%となるように調整した。そして、試料No.3-1~3-80と同様にして、溶浸材(直径10mmφ、厚さ2mmの円板)を作製した。
 試料No.3-128は、上記4族化合物の粉末を用いていない試料である。具体的には、平均粒径50μmのダイヤモンドの粉末、平均粒径150μmの銀合金(Ag-28質量%Cu)粉末、平均粒径45μmのチタン(Ti)粉末を用意した。直径10mmφ、厚さ2mmの体積に対して、ダイヤモンドの粉末が60体積%、銀合金粉末が38体積%、Ti粉末が2体積%となるように調整した。そして、Ti粉末と銀合金粉末とを混合した。この混合は、ミキサーミルを用いた乾式混合とした。そして、ダイヤモンド粉末をカーボン製成形型に充填⇒プレス⇒銀合金粉末とTi粉末との混合粉末を充填⇒Ar雰囲気(5kPa)、10℃/min、1200℃×2時間、という工程を経て、溶浸材(直径10mmφ、厚さ2mmの円板)を作製した。
 得られた試料No.3-1~3-80,3-101~3-104,3-111~3-114,3-121~3-128の溶浸材の熱伝導率(W/m・K)、熱膨張係数(×10-6/K=ppm/K)、相対密度(%)、冷熱サイクル耐性(%)、酸素含有量(酸素量、質量%)を試験例1と同様にして測定した。その結果を表5~表7に示す。表5は、4族化合物に含む周期表4族の元素がTiである試料No.3-1~3-23及び試料No.3-101~3-108、表6はZrである試料No.3-31~3-50及び試料No.3-111~3-118、表7はHfである試料No.3-61~3-80及び試料No.3-121~3-132を示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 得られた試料No.3-1~3-80の溶浸材はいずれも、ダイヤモンド粒子と、ダイヤモンド粒子の表面を覆い、周期表4族の元素を含む炭化物層(ここでは特にダイヤモンド粒子と周期表4族の元素とが結合したTiC層又はZrC層又はHfC層)とを備える被覆ダイヤモンド粒子と、被覆ダイヤモンド粒子同士を結合する銀又は銀合金(試料No.3-5,3-33,3-63など)とを備える複合材料であった。そして、試料No.3-1~3-80の複合材料はいずれも、表5~表7に示すように、酸素含有量が低く、緻密で、熱特性に優れることが分かる。具体的には、試料No.No.3-1~3-80の複合材料は、酸素含有量が0.1質量%以下であり、相対密度が高く(ここでは96.5%以上)、熱伝導率が高い(ここでは500W/m・K以上)。更に、試料No.No.3-1~3-80の複合材料はいずれも、冷熱サイクル耐性にも優れている(ここでは95%以上)。試料No.3-5,3-33,3-63などの複合材料のように金属マトリクスが銀合金である場合でも、酸素含有量が低く、緻密で、熱特性に優れることが分かる。そして、表5~表7に示すように、ダイヤモンド粒子の含有量が多いほど、熱伝導性に優れることが分かる。
 ダイヤモンド粒子の含有量が少なく、金属マトリクスである銀が多い試料No.3-101~3-104,3-111~3-114,3-121~3-124の溶浸材は、酸素濃度が0.1質量%超と高めで、熱特性も低い。この理由は、熱伝導性に優れるダイヤモンドの含有量が少ない上に、酸素を含有し得る銀が多過ぎることで、結果として酸素が多過ぎて、原料に上述の4族化合物の粉末を用いても、還元作用などを十分に発揮できずに酸化物が存在したため、と考えられる。
 ダイヤモンド粒子の含有量が多く、金属マトリクスである銀が少ない試料No.3-105~3-108,3-115~3-118,3-129~3-132は、積層体の一部にのみ溶浸したものの、所定の大きさの溶浸材(ここでは直径10mmφ、厚さ2mmの円板、上述の酸素含有量の測定用素材)が得られなかったため、熱特性、相対密度、酸素量を調べていない。溶浸が不十分となった理由は、原料に用いた金属粉末の量が不足しており、金属マトリクスの形成、更には炭化物層の形成が十分に行えなかったため、と考えられる。
 一方、原料に周期表4族の元素単体を用いた試料No.3-125~3-127では、溶浸材が得られたものの、試験例1で作製した試料No.1-102~1-104と同様に酸素含有量が多く、相対密度も低く、熱特性も劣っている。他方、原料として、周期表4族の元素を銀合金粉末に添加したものを用いた試料No.3-128では、溶浸材が得られたものの、試料No.3-125よりも、酸素含有量が多く、相対密度も低く、熱特性も劣っている。このことから、緻密で、熱特性に優れると共に、酸素濃度が低いダイヤモンド複合材料を製造するには、原料に周期表4族の元素単体ではなく、周期表4族の元素を含む硫化物、窒化物、水素化物、硼化物といった4族化合物を用いること、4族化合物の粉末の少なくとも一部をダイヤモンドの粉末に混合して用いることが好ましいことが分かる。
 この試験から、試料No.3-1~3-80の複合材料のような、酸素含有量が低く、緻密で、熱特性に優れるダイヤモンド複合材料は、複合材料中のダイヤモンドの含有量が25体積%超95体積%未満、更に30体積%以上90体積%以下が好ましいことが分かる。
 [試験例4]
 種々の方法で金属層を有する被覆複合材料を作製し、熱特性、相対密度、酸素量、表面粗さを調べた。相対密度は、金属層を含めて求めた。
 ここでは、試験例1で作製した試料No.1-1~1-12の溶浸材、試験例2で作製した試料No.2-1,2-3,2-6の溶浸材、試験例3で作製した試料No.3-2の溶浸材を用意し、金属めっき、又は金属箔の圧着、又は金属粉末の圧着によって、各溶浸材の表面に金属層を形成した。ここでの圧着は、加熱温度を400℃、圧力を4ton/cm≒392MPaとしたホットプレスを行って、金属箔や金属粉末を接合した。金属めっきは公知の条件を利用した。各試料の被覆複合材料に用いた、溶浸材の試料番号、金属層の材質、金属層の形成方法を表8に示す。各試料の被覆複合材料のサイズは、金属層を備える状態で直径10mmφ、厚さ2.2mmの円板であり、かつ、金属層の厚さが表8に示す値となるように、溶浸材の厚さや金属層の厚さなどを調整した。得られた試料No.4-1~4-23の被覆複合材料の熱伝導率(W/m・K)、熱膨張係数(×10-6/K=ppm/K)、相対密度(%)、冷熱サイクル耐性(%)、酸素含有量(酸素量、質量%)を試験例1と同様にして測定した。その結果を表8に示す。
Figure JPOXMLDOC01-appb-T000008
 表8に示すように、金属層を備える被覆複合材料であっても、酸素含有量が低く、緻密であり、金属層の厚さが300μm以下であれば、熱伝導性にも優れることが分かる。特に、ホットプレスで金属層を形成した場合には、複合材料の相対密度がより高い傾向にあり、より緻密になっている。この理由は、ホットプレスによって気孔が低減されたためと考えられる。
 その他、この試験では、金属箔や金属粉といった金属層の原料の差異による熱特性への影響、金属層の組成の差異による熱特性への影響、ホットプレスやめっきといった金属層の形成方法の差異による熱特性への影響はいずれも小さいといえる。また、この試験から、酸素含有量については、金属層が酸素を含有し易い組成であったり(例えば、Cuを含む)、金属層が厚くなったりすると、若干増加する場合があるといえる。
 [試験例5]
 試験例1~試験例3で作製した試料について、高温に加熱した後の熱特性の劣化状態を調べた。
 ここでは、試験例1で作製した試料No.1-1,1-102の溶浸材、試験例2で作製した試料No.2-1,2-3,2-6の溶浸材、試験例3で作製した試料No.3-2の溶浸材を用意した。用意した各試料の溶浸材を水素雰囲気中で加熱し、800℃で1時間保持した後、室温まで冷却して、試験例1と同様にして熱伝導率を測定した。そして、この加熱前の熱伝導率が加熱後にどの程度低下するかを評価した。
 評価は、劣化率={[(加熱前の熱伝導率)-(加熱後の熱伝導率)]/(加熱前の熱伝導率)}×100を求めることで行った。ここでは、上述の条件で加熱を1回行った場合(熱処理1回目)と、上述の条件で加熱を2回行った場合(熱処理2回目)について、加熱後の熱伝導率(W/m・K)と劣化率(%)とを測定した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9に示すように800℃の加熱前において熱特性に優れるダイヤモンド複合材料である試料No.5-1~5-5はいずれも、800℃で加熱された場合でも熱伝導率の低下が少なく、耐熱性に優れることが分かる。具体的には、いずれの試料も、800℃に加熱された場合でも、熱伝導率の劣化率が5%未満である。この試験では、2回の加熱を受けても、上記劣化率が5%未満である。他方、800℃の加熱前において試料No.5-1よりも熱特性に劣る試料No.5-6は、800℃に加熱された場合にも熱伝導率の低下が大きく、劣化率が5%以上であり、2回の加熱を受けると10%以上である。
 試料No.5-1~5-5の複合材料のような、酸素含有量が低く、緻密で熱伝導率が高いダイヤモンド複合材料は、銀ロウ材の接合を模擬したような高温に加熱された場合でも、熱伝導率の低下が少ない。このような複合材料は、放熱部材に利用されて、銀ロウ材といった高融点の接合材が接合された後にも、高い熱伝導率を維持できることが分かる。
 本発明は、上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能であり、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 本発明の放熱部材は、スーパーコンピューター、その他パーソナルコンピュータやモバイル電子機器などに具備されるCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、HEMT(High Electron Mobility Transistor)、チップセット、メモリーチップなどに利用される半導体素子の放熱部材に利用できる。本発明のダイヤモンド複合材料は、上記半導体素子の放熱部材などのように、高い放熱性が望まれる放熱部材の素材に利用できる。本発明のダイヤモンドの複合材料の製造方法は、ダイヤモンドと銀又は銀合金とを主体とし、緻密で熱伝導性に優れるダイヤモンド複合材料の製造に利用できる。
 1,1A ダイヤモンド複合材料 1B 被覆複合材料
  2,21 ダイヤモンド粒子 3 炭化物層 
  4 被覆ダイヤモンド粒子 5 金属マトリクス 6 金属層
 20 ダイヤモンドの粉末 30 4族化合物の粉末 23 混合粉末
 50 金属粉末
 235 積層体 2355 両側金属積層体
 52 溶融金属 54 複合溶融金属
 100 成形型 110 容器 120 蓋
 300 4族化合物 301 周期表4族の元素
 302 4族化合物の構成元素のうち、周期表4族の元素以外の元素
 600 酸素 640 ガス状の化合物

Claims (10)

  1.  ダイヤモンド粒子と、前記ダイヤモンド粒子の表面を覆い、周期表4族の元素を含む炭化物層とを備える被覆ダイヤモンド粒子と、
     前記被覆ダイヤモンド粒子同士を結合する銀又は銀合金とを備え、
     酸素含有量が0.1質量%以下であるダイヤモンド複合材料。
  2.  相対密度が96.5%以上である請求項1に記載のダイヤモンド複合材料。
  3.  前記ダイヤモンド粒子の平均粒径が1μm以上300μm以下である請求項1又は請求項2に記載のダイヤモンド複合材料。
  4.  前記ダイヤモンド粒子の含有量が30体積%以上90体積%以下である請求項1~請求項3のいずれか1項に記載のダイヤモンド複合材料。
  5.  室温における熱伝導率が500W/m・K以上である請求項1~請求項4のいずれか1項に記載のダイヤモンド複合材料。
  6.  30℃~150℃における平均の熱膨張係数が3×10-6/K以上13×10-6/K以下である請求項1~請求項5のいずれか1項に記載のダイヤモンド複合材料。
  7.  -60℃~+250℃における冷熱サイクル耐性が95%以上である請求項1~請求項6のいずれか1項に記載のダイヤモンド複合材料。
  8.  800℃に加熱した後における熱伝導率の劣化率が5%未満である請求項1~請求項7のいずれか1項に記載のダイヤモンド複合材料。
  9.  前記ダイヤモンド複合材料の表面の少なくとも一部を覆う金属層を更に備え、前記金属層の厚さが1μm以上300μm以下である請求項1~請求項8のいずれか1項に記載のダイヤモンド複合材料。
  10.  請求項1~請求項9のいずれか1項に記載のダイヤモンド複合材料から構成される放熱部材。
PCT/JP2015/074880 2014-09-02 2015-09-01 ダイヤモンド複合材料、及び放熱部材 WO2016035795A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15838762.1A EP3190198B1 (en) 2014-09-02 2015-09-01 Heat radiating member comprising diamond composite material
JP2016546659A JP6292688B2 (ja) 2014-09-02 2015-09-01 ダイヤモンド複合材料、及び放熱部材
US15/327,269 US20170145280A1 (en) 2014-09-02 2015-09-01 Diamond composite material and heat radiating member
CN201580047186.9A CN106795596A (zh) 2014-09-02 2015-09-01 金刚石复合材料和散热部件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-178434 2014-09-02
JP2014178434 2014-09-02

Publications (1)

Publication Number Publication Date
WO2016035795A1 true WO2016035795A1 (ja) 2016-03-10

Family

ID=55439855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074880 WO2016035795A1 (ja) 2014-09-02 2015-09-01 ダイヤモンド複合材料、及び放熱部材

Country Status (5)

Country Link
US (1) US20170145280A1 (ja)
EP (1) EP3190198B1 (ja)
JP (2) JP6292688B2 (ja)
CN (3) CN110656259A (ja)
WO (1) WO2016035795A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115655B2 (en) 2014-10-09 2018-10-30 Superufo291 Tec Heat dissipation substrate and method for producing heat dissipation substrate
JP2019071328A (ja) * 2017-10-06 2019-05-09 株式会社豊田中央研究所 半導体実装基板、半導体モジュールおよび半導体実装基板の製造方法
WO2019159694A1 (ja) 2018-02-14 2019-08-22 住友電気工業株式会社 複合部材、及び複合部材の製造方法
WO2019163721A1 (ja) * 2018-02-21 2019-08-29 住友電気工業株式会社 複合材料、及び複合材料の製造方法
WO2020012821A1 (ja) * 2018-07-12 2020-01-16 住友電気工業株式会社 複合部材
WO2020084903A1 (ja) 2018-10-25 2020-04-30 住友電気工業株式会社 複合部材
WO2020090213A1 (ja) 2018-10-31 2020-05-07 住友電気工業株式会社 放熱部材
WO2024157803A1 (ja) * 2023-01-23 2024-08-02 旭ダイヤモンド工業株式会社 複合材料及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950991A4 (en) * 2019-03-29 2022-05-18 Sumitomo Electric Industries, Ltd. COMPOSITE MATERIAL
CN112625657B (zh) * 2019-09-24 2022-01-14 华为技术有限公司 导热体、导热材料和半导体器件的封装结构
WO2021205782A1 (ja) * 2020-04-09 2021-10-14 住友電気工業株式会社 複合材料、ヒートシンク及び半導体装置
CN111421141B (zh) * 2020-04-20 2022-05-24 浙江工业大学 一种定向高导热金刚石/金属基复合材料的制备方法
US20220025241A1 (en) * 2020-07-27 2022-01-27 Google Llc Thermal interface material and method for making the same
KR102576792B1 (ko) * 2021-06-08 2023-09-11 주식회사 더굿시스템 복합재료 및 방열부품
CN114086047B (zh) * 2021-11-22 2022-05-31 合肥哈瑞克机电科技有限公司 一种高导热复合材料及其制备方法
KR102685109B1 (ko) * 2021-12-13 2024-07-15 주식회사 더굿시스템 복합재료 및 이 복합재료를 포함하는 방열부품
KR20230164796A (ko) 2022-05-25 2023-12-05 주식회사 더굿시스템 복합재료 및 이 복합재료를 포함하는 방열부품
WO2024210148A1 (ja) * 2023-04-05 2024-10-10 積水化学工業株式会社 ダイヤモンド複合粒子、樹脂組成物

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197153A (ja) * 2002-12-18 2004-07-15 Allied Material Corp ダイヤモンド−金属複合材料およびその製造方法
JP2013115096A (ja) * 2011-11-25 2013-06-10 Tomei Diamond Co Ltd ダイヤモンド含有ヒートシンク材及びその製法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650714A (en) * 1969-03-04 1972-03-21 Permattach Diamond Tool Corp A method of coating diamond particles with metal
US5834115A (en) * 1995-05-02 1998-11-10 Technical Research Associates, Inc. Metal and carbonaceous materials composites
US5976205A (en) * 1996-12-02 1999-11-02 Norton Company Abrasive tool
JP2004200346A (ja) * 2002-12-18 2004-07-15 Sumitomo Electric Ind Ltd 半導体素子収納用パッケージ、その製造方法及び半導体装置
CN101035876A (zh) * 2004-08-23 2007-09-12 莫门蒂夫性能材料股份有限公司 导热性组合物及其制备方法
WO2007121052A2 (en) * 2006-04-13 2007-10-25 3M Innovative Properties Company Metal-coated superabrasive material and methods of making the same
CN1944698A (zh) * 2006-10-24 2007-04-11 北京科技大学 一种超高导热、低热膨胀系数的复合材料及其制备方法
WO2011049479A1 (en) * 2009-10-21 2011-04-28 Andrey Mikhailovich Abyzov Composite material having high thermal conductivity and process of fabricating same
CN101985702B (zh) * 2010-06-29 2013-02-06 北京科技大学 一种超高导热、低热膨胀系数金刚石复合材料及制备方法
US9035448B2 (en) * 2012-06-29 2015-05-19 Materion Corporation Semiconductor packages having metal composite base plates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197153A (ja) * 2002-12-18 2004-07-15 Allied Material Corp ダイヤモンド−金属複合材料およびその製造方法
JP2013115096A (ja) * 2011-11-25 2013-06-10 Tomei Diamond Co Ltd ダイヤモンド含有ヒートシンク材及びその製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190198A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10115655B2 (en) 2014-10-09 2018-10-30 Superufo291 Tec Heat dissipation substrate and method for producing heat dissipation substrate
JP2019071328A (ja) * 2017-10-06 2019-05-09 株式会社豊田中央研究所 半導体実装基板、半導体モジュールおよび半導体実装基板の製造方法
WO2019159694A1 (ja) 2018-02-14 2019-08-22 住友電気工業株式会社 複合部材、及び複合部材の製造方法
US11668009B2 (en) 2018-02-14 2023-06-06 Sumitomo Electric Industries, Ltd. Composite member
KR20200119249A (ko) 2018-02-14 2020-10-19 스미토모덴키고교가부시키가이샤 복합 부재 및, 복합 부재의 제조 방법
KR102544898B1 (ko) 2018-02-21 2023-06-16 스미토모덴키고교가부시키가이샤 복합 재료, 및 복합 재료의 제조 방법
KR20200121311A (ko) * 2018-02-21 2020-10-23 스미토모덴키고교가부시키가이샤 복합 재료, 및 복합 재료의 제조 방법
JPWO2019163721A1 (ja) * 2018-02-21 2021-04-08 住友電気工業株式会社 複合材料、及び複合材料の製造方法
WO2019163721A1 (ja) * 2018-02-21 2019-08-29 住友電気工業株式会社 複合材料、及び複合材料の製造方法
JP7273374B2 (ja) 2018-02-21 2023-05-15 住友電気工業株式会社 複合材料、及び複合材料の製造方法
JP7189214B2 (ja) 2018-07-12 2022-12-13 住友電気工業株式会社 複合部材
WO2020012821A1 (ja) * 2018-07-12 2020-01-16 住友電気工業株式会社 複合部材
JPWO2020012821A1 (ja) * 2018-07-12 2021-08-12 住友電気工業株式会社 複合部材
WO2020084903A1 (ja) 2018-10-25 2020-04-30 住友電気工業株式会社 複合部材
KR20210079288A (ko) 2018-10-25 2021-06-29 스미토모덴키고교가부시키가이샤 복합 부재
JP7196193B2 (ja) 2018-10-31 2022-12-26 住友電気工業株式会社 放熱部材
JPWO2020090213A1 (ja) * 2018-10-31 2021-10-07 住友電気工業株式会社 放熱部材
WO2020090213A1 (ja) 2018-10-31 2020-05-07 住友電気工業株式会社 放熱部材
US12112993B2 (en) 2018-10-31 2024-10-08 A.L.M.T. Corp. Heat radiation member
WO2024157803A1 (ja) * 2023-01-23 2024-08-02 旭ダイヤモンド工業株式会社 複合材料及びその製造方法

Also Published As

Publication number Publication date
EP3190198B1 (en) 2019-11-06
CN106795596A (zh) 2017-05-31
EP3190198A4 (en) 2017-10-25
CN114032413A (zh) 2022-02-11
JP2018111883A (ja) 2018-07-19
US20170145280A1 (en) 2017-05-25
CN110656259A (zh) 2020-01-07
EP3190198A1 (en) 2017-07-12
JP6292688B2 (ja) 2018-03-14
JPWO2016035795A1 (ja) 2017-06-15

Similar Documents

Publication Publication Date Title
JP6292688B2 (ja) ダイヤモンド複合材料、及び放熱部材
JP6182082B2 (ja) 緻密質複合材料、その製法及び半導体製造装置用部材
TWI600634B (zh) 緻密質複合材料、其製法、接合體及半導體製造裝置用構件
JP6257575B2 (ja) 半導体パッケージ、及び半導体装置
JP2011524466A (ja) 金属浸潤炭化ケイ素チタンおよび炭化アルミニウムチタン体
CN111742073B (zh) 复合材料和复合材料的制造方法
JP6714786B1 (ja) 複合部材
JP2016028173A (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
JP2015140456A (ja) 複合材料、半導体装置、及び複合材料の製造方法
JP7196193B2 (ja) 放熱部材
JP7350058B2 (ja) 複合材料
JP2016065311A (ja) スパッタリングターゲットおよびスパッタリングターゲットセット
WO2021192916A1 (ja) 複合材料、及び放熱部材
JP4594433B1 (ja) 放熱部材
JP2011165811A (ja) 半導体素子搭載部材とその製造方法ならびに半導体装置
JP5503474B2 (ja) 放熱部材、半導体装置、放熱部材の製造方法
JP2013245374A (ja) 複合材料、複合材料の製造方法、及び半導体装置
JP2009290136A (ja) 複合部材及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838762

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2016546659

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15327269

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015838762

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838762

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE