WO2016035494A1 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2016035494A1
WO2016035494A1 PCT/JP2015/071978 JP2015071978W WO2016035494A1 WO 2016035494 A1 WO2016035494 A1 WO 2016035494A1 JP 2015071978 W JP2015071978 W JP 2015071978W WO 2016035494 A1 WO2016035494 A1 WO 2016035494A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor layer
type semiconductor
region
charge
electrode
Prior art date
Application number
PCT/JP2015/071978
Other languages
English (en)
French (fr)
Inventor
慎一郎 ▲高▼木
堅太郎 前田
康人 米田
久則 鈴木
村松 雅治
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201580046692.6A priority Critical patent/CN106663690B/zh
Priority to US15/502,003 priority patent/US10483302B2/en
Priority to EP15838751.4A priority patent/EP3190622B1/en
Priority to KR1020177006540A priority patent/KR102386626B1/ko
Publication of WO2016035494A1 publication Critical patent/WO2016035494A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14638Structures specially adapted for transferring the charges across the imager perpendicular to the imaging plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14806Structural or functional details thereof
    • H01L27/14812Special geometry or disposition of pixel-elements, address lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14893Charge coupled imagers comprising a photoconductive layer deposited on the CCD structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures

Definitions

  • the present invention relates to a solid-state imaging device.
  • the charge storage unit is arranged along the second direction and at least two gates to which a predetermined potential is applied so as to increase the potential in the second direction. It has an electrode.
  • the saturation charge amount of each charge storage unit in order to expand the dynamic range and improve the SN ratio.
  • the transfer time of the charge stored in the charge storage unit becomes longer.
  • the increase in the charge transfer time becomes a factor that hinders speeding up of charge transfer in the solid-state imaging device, that is, speeding up of imaging. If the charge transfer time is shortened due to the restriction on the speeding up of the charge transfer, the charge is not transferred but remains in the charge storage unit. As a result, image lag (afterimage) may occur.
  • the increase in the saturation charge amount and the speeding up of the charge transfer are in a trade-off relationship with each other.
  • An object of one embodiment of the present invention is to provide a solid-state imaging device capable of achieving a high level of compatibility between an increase in the amount of saturated charges and an increase in charge transfer speed.
  • One embodiment of the present invention is a solid-state imaging device, and includes a plurality of photoelectric conversion units arranged in a first direction, a corresponding photoelectric conversion unit arranged in a second direction orthogonal to the first direction, and a corresponding photoelectric conversion unit.
  • a plurality of charge storage units that store the charges generated in the conversion unit; and a charge output unit that acquires the charges transferred from the plurality of charge storage units, transfers the charges in a first direction, and outputs the acquired charges.
  • Each photoelectric conversion unit forms a photosensitive region that generates charges in response to light incidence, and a potential gradient that is increased along the second direction with respect to the photosensitive region, and moves the charges in the photosensitive region.
  • a potential gradient forming portion that promotes in the second direction.
  • Each charge storage section is disposed so as to straddle a plurality of regions in which the impurity concentration is gradually changing in one direction toward the second direction, and a plurality of regions in which the impurity concentration is different in steps, and And an electrode for applying an electric field to the plurality of regions.
  • the potential depth in the region immediately below the electrode is adjusted by the electric field applied by the electrode.
  • the electric field generated in the middle part of the electrode in the second direction (for example, the central part in the second direction) is weaker than the electric field generated at the end of the electrode in the second direction. Therefore, the potential depth in the region immediately below the middle portion of the electrode is not properly adjusted. In this case, the movement of charges in the second direction cannot be sufficiently promoted, and the charge transfer time may increase. Moreover, there is a possibility that the increase in size (increase in saturation charge amount) of the charge storage unit in the second direction is hindered.
  • the charge storage unit has a plurality of regions in which the impurity concentration is gradually changed in one direction toward the second direction, and the electrode of the charge storage unit has an impurity concentration in a stepwise manner. It arrange
  • Each charge storage unit has a first region and a second region arranged in the second direction as a plurality of regions, and in the first region and the second region, impurities are injected into the first region and the second region.
  • the impurity concentration may be gradually changed in one direction by further implanting the impurity into the second region into which the impurity has been implanted. In this case, a plurality of regions in which the impurity concentration is gradually changing in one direction toward the second direction can be easily realized.
  • the second region may be adjacent to the photosensitive region in the second direction, and the photosensitive region may have the same impurity concentration as the second region by injecting impurities together with the second region.
  • a potential barrier or well is hardly generated between the photosensitive region and the second region adjacent in the second direction. For this reason, it is possible to prevent the charge transfer from the photosensitive region to the charge storage portion from being hindered.
  • a plurality of charge discharging units arranged in the first direction in each charge storage unit and discharging charges accumulated in the charge storage unit may be further provided.
  • the charge exceeding the storage capacity can be discharged by the charge discharging unit.
  • so-called blooming in which the charge overflowing from the charge storage part exceeding the storage capacity leaks to another charge storage part.
  • Each charge accumulating section may have a width in the first direction that increases in the second direction.
  • the charge discharging unit can be arranged without hindering the flow of charges in the second direction from the charge storage unit.
  • Each charge discharging unit has a drain region for discharging charges, and a gate region that is located between the charge storage unit and the drain region and controls the inflow of charges from the charge storage unit to the drain region,
  • the drain region may be shared between the charge discharging units adjacent in the first direction. In this case, space saving of the charge discharging unit can be achieved.
  • FIG. 1 is a diagram illustrating a planar configuration of a solid-state imaging device according to an embodiment.
  • FIG. 2 is a conceptual diagram showing a cross-sectional configuration along the line II-II in FIG.
  • FIG. 3 is a diagram for explaining the configuration of the storage unit.
  • FIG. 4 is a diagram for explaining a change in potential formed in the solid-state imaging device according to the present embodiment.
  • FIG. 5 is a diagram for explaining a process of forming a plurality of regions in the storage unit.
  • FIG. 6 is a diagram for explaining the comparative 1.
  • FIG. 7 is a diagram for explaining the comparative 1.
  • FIG. 8 is a diagram for explaining the comparative 1.
  • FIG. 9 is a diagram for explaining the comparative 2.
  • FIG. 10 is a diagram for explaining the comparative 3.
  • FIG. 10 is a diagram for explaining the comparative 3.
  • FIG. 11 is a conceptual diagram illustrating a cross-sectional configuration of a solid-state imaging device according to a modification of the present embodiment.
  • FIG. 12 is a diagram for explaining the configuration of the storage unit.
  • FIG. 13 is a diagram for explaining a process of forming a plurality of regions in the storage unit.
  • FIG. 14 is a diagram for explaining a configuration of a solid-state imaging device according to a modification of the present embodiment.
  • FIG. 15 is a diagram for explaining a configuration of a solid-state imaging device according to a modification of the present embodiment.
  • FIG. 16 is a diagram for explaining a configuration of a solid-state imaging device according to a modification of the present embodiment.
  • FIG. 17 is a diagram for describing a configuration of a solid-state imaging device according to a modification of the present embodiment.
  • FIG. 18 is a diagram for explaining a configuration of a solid-state imaging apparatus according to a modification of the present embodiment.
  • FIG. 1 is a diagram illustrating a planar configuration of the solid-state imaging device according to the present embodiment.
  • FIG. 2 is a diagram showing a cross-sectional configuration along the line II-II in FIG.
  • FIG. 3 is a diagram for explaining the configuration of the storage unit.
  • FIG. 4 is a diagram for explaining a change in potential formed in the solid-state imaging device according to the present embodiment. In FIG. 4, the downward direction in the figure is the positive direction of the potential. In FIG. 4, black circles indicate charges.
  • the solid-state imaging device SI includes a light receiving unit 1, a plurality of storage units 3, a plurality of transfer units 5, and a shift register 7 as a charge output unit.
  • the solid-state imaging device SI is, for example, a BT (Back-Thinned) -CCD linear image sensor.
  • the light receiving unit 1 has a plurality of photoelectric conversion units 10.
  • the plurality of photoelectric conversion units 10 are arranged in the first direction D1.
  • the plurality of photoelectric conversion units 10 each have a photosensitive region 11 and a potential gradient forming unit 13. That is, the light receiving unit 1 includes a plurality of photosensitive regions 11 and a plurality of potential gradient forming units 13.
  • the light sensitive region 11 is sensitive to the incident light and generates a charge corresponding to the intensity of the incident light.
  • the planar shape of the photosensitive region 11 has a rectangular shape formed by two long sides and two short sides.
  • the plurality of photosensitive regions 11 are arranged in the first direction D1.
  • the first direction D1 is a direction along the short side direction of the photosensitive region 11.
  • the plurality of photosensitive regions 11 are arranged in an array in the one-dimensional direction with the first direction D1 as a one-dimensional direction.
  • One photosensitive region 11 constitutes one pixel in the light receiving unit 1. In the present embodiment, in FIG. 1, one direction from right to left and one direction from left to right are the first direction D1.
  • Each potential gradient forming portion 13 is arranged corresponding to each of the photosensitive regions 11.
  • the potential gradient forming unit 13 forms a potential gradient raised along the second direction D2 intersecting the first direction D1 with respect to the corresponding photosensitive region 11.
  • the first direction D1 and the second direction D2 are orthogonal to each other, and the second direction D2 is along the long side direction of the photosensitive region 11 and from one short side to the other short side.
  • the electric charge generated in the photosensitive region 11 by the potential gradient forming unit 13 is discharged from the other short side of the photosensitive region 11. That is, the potential gradient forming unit 13 forms a potential gradient in which the other short side of the photosensitive region 11 is higher than the one short side of the photosensitive region 11.
  • Each storage unit 3 corresponds to the photosensitive region 11 and is disposed on the other short side of the photosensitive region 11. That is, the plurality of storage units 3 are arranged on the other short side of the photosensitive region 11 so as to be aligned with the photosensitive region 11 (photoelectric conversion unit 10) in the second direction D2.
  • the storage unit 3 is located between the photosensitive region 11 and the transfer unit 5.
  • the charges discharged from the photosensitive region 11 by the potential gradient forming unit 13 are accumulated in the storage unit 3.
  • the charges accumulated in the storage unit 3 are sent to the corresponding transfer unit 5.
  • the storage unit 3 functions as a charge storage unit. That is, the solid-state imaging device SI includes a plurality of charge storage units.
  • Each transfer unit 5 corresponds to the storage unit 3 and is disposed between the corresponding storage unit 3 and the shift register 7. That is, the plurality of transfer units 5 are arranged on the other short side of the photosensitive region 11 so as to be aligned with the storage unit 3 in the second direction D2.
  • the transfer unit 5 is located between the storage unit 3 and the shift register 7.
  • the transfer unit 5 acquires the charge accumulated in the storage unit 3 and transfers the acquired charge toward the shift register 7.
  • the shift register 7 is arranged so as to sandwich each transfer unit 5 between each storage unit 3. That is, the shift register 7 is disposed on the other short side of the photosensitive region 11.
  • the shift register 7 acquires the charge transferred from each transfer unit 5, transfers it in the first direction D ⁇ b> 1, and sequentially outputs it to the output stage 17.
  • the charge output from the shift register 7 is converted into a voltage by the output stage 17 and is output to the outside of the solid-state imaging device SI as a voltage for each photosensitive region 11.
  • the output stage 17 is composed of, for example, a floating diffusion amplifier (FDA).
  • Isolation regions are arranged between the adjacent photosensitive regions 11, between the adjacent storage units 3, and between the adjacent transfer units 5.
  • the isolation regions realize electrical separation between the photosensitive regions 11, between the storage units 3, and between the transfer units 5.
  • the solid-state imaging device SI includes a semiconductor substrate 20.
  • the semiconductor substrate 20 includes a p-type semiconductor layer 21 serving as a base of the semiconductor substrate 20, an n ⁇ type semiconductor layer 22, an n ⁇ type semiconductor layer 23, an n type semiconductor formed on one side of the p type semiconductor layer 21. Layers 24, 26 and 28, n ⁇ type semiconductor layers 25 and 27, and p + type semiconductor layer 29.
  • a silicon substrate is used as the semiconductor substrate 20.
  • the p-type and n-type conductivity types may be switched so as to be opposite to those described above.
  • a “+” Attached to the conductivity type indicates a high impurity concentration.
  • a “ ⁇ ” attached to the conductivity type indicates a low impurity concentration.
  • the low impurity concentration is apparently low due to the fact that part of the conductivity type impurity marked with “ ⁇ ” is compensated by the impurity of the conductivity type opposite to the conductivity type marked with “ ⁇ ”.
  • the aspect made into concentration is also included.
  • the number of “ ⁇ ” indicates the degree of concentration of the impurity of the conductivity type marked with “ ⁇ ”. The greater the number of “ ⁇ ”, the lower the concentration of conductivity type impurities marked with “ ⁇ ”.
  • Examples of n-type impurities include N, P, and As.
  • Examples of p-type impurities include B and Al.
  • n ⁇ type semiconductor layer 22 has a rectangular shape formed by two long sides and two short sides in plan view.
  • the n ⁇ type semiconductor layers 22 are arranged along the first direction D1 and are arranged in an array in the one-dimensional direction. That is, the n ⁇ type semiconductor layers 22 are arranged in a direction along the short side direction of the n ⁇ type semiconductor layer 22.
  • the isolation region described above can be constituted by a p + type semiconductor layer.
  • An electrode 31 is arranged with respect to the n ⁇ type semiconductor layer 22.
  • the electrode 31 is formed on the n ⁇ type semiconductor layer 22 via an insulating layer (not shown in FIG. 2).
  • the electrode 31 constitutes the potential gradient forming unit 13.
  • the electrode 31 constitutes a so-called resistive gate electrode and is formed to extend in the second direction D2.
  • the electrode 31 forms a potential gradient according to the electrical resistance component of the electrode 31 in the second direction D2 by applying a potential difference to both ends (REGL, REGH) in the second direction D2. That is, the electrode 31 forms a potential gradient that is increased along the second direction D2. Due to this potential gradient, a potential gradient is formed in the region immediately below the electrode 31 in the n ⁇ type semiconductor layer 22, as shown in FIG. The charges generated in the n ⁇ type semiconductor layer 22 in response to the light incidence move in the second direction D 2 along the potential gradient in the region immediately below the electrode 31.
  • the electrode 32 is adjacent to the electrode 31 in the second direction D2. Electrode 32 through the insulating layer (not shown in FIG. 3), the n - -type semiconductor layer 22 and the n - so as to straddle the -type semiconductor layer 23, the n - -type semiconductor layer 22 and the n - -type semiconductor It is formed on the layer 23.
  • the n ⁇ type semiconductor layer 23 is adjacent to the n ⁇ type semiconductor layer 22 in the second direction D2.
  • An electrode 33 is arranged for the n ⁇ type semiconductor layer 23 and the n type semiconductor layer 24.
  • the electrode 33 is adjacent to the electrode 32 in the second direction D2.
  • the electrode 33 is formed between the n ⁇ type semiconductor layer 23 and the n type semiconductor layer 24 so as to straddle the n ⁇ type semiconductor layer 23 and the n type semiconductor layer 24 via an insulating layer (not shown in FIG. 3). Formed on top.
  • the n-type semiconductor layer 24 is adjacent to the n ⁇ -type semiconductor layer 23 in the second direction D2.
  • a voltage (STG1) higher than the voltage applied to both ends of the electrode 31 is applied to the electrode 32.
  • a voltage (STG2) higher than the voltage applied to the electrode 32 is applied to the electrode 33.
  • the region immediately below the electrode 32 in the n ⁇ -type semiconductor layer 22 has a higher p-type impurity concentration than the region immediately below the electrode 32 in the n ⁇ -type semiconductor layer 23. That is, the region immediately below the electrode 32 in the n ⁇ -type semiconductor layer 23 apparently has a higher n-type impurity concentration than the region immediately below the electrode 32 in the n ⁇ type semiconductor layer 22. Therefore, the potential of the region immediately below the electrode 32 in the n ⁇ -type semiconductor layer 23 is lower than the potential of the region immediately below the electrode 32 in the n ⁇ type semiconductor layer 22.
  • a voltage higher than that of the electrode 32 is applied to the electrode 33.
  • the region immediately below the electrode 32 in the n ⁇ -type semiconductor layer 23 has a higher p-type impurity concentration than the region immediately below the electrode 33 in the n-type semiconductor layer 24. That is, the region immediately below the electrode 33 in the n-type semiconductor layer 24 apparently has a higher n-type impurity concentration than the region immediately below the electrode 32 in the n ⁇ -type semiconductor layer 23. Therefore, the potential of the region immediately below the electrode 33 in the n-type semiconductor layer 24 is lower than the potential of the region immediately below the electrode 32 in the n ⁇ -type semiconductor layer 23.
  • An electrode 32, 33, n - part of the type semiconductor layer 22 (n - end in the second direction D2 in type semiconductor layer 22), n - -type semiconductor layer 23, and by an n-type semiconductor layer 24
  • the storage unit 3 is configured. As described above, the storage unit 3, a plurality of regions in which the impurity concentration is changed stepwise one direction toward the second direction D2, n - part of the type semiconductor layer 22, n - -type A semiconductor layer 23 and an n-type semiconductor layer 24 are included.
  • the storage unit 3 includes electrodes 32 and 33 arranged so as to straddle a plurality of regions having different impurity concentrations in stages.
  • the potential in the storage unit 3, that is, the potential in the region immediately below the two electrodes 32 and 33 increases stepwise along the second direction D2, as shown in FIG.
  • the interface between the n ⁇ type semiconductor layer 22 and the n ⁇ type semiconductor layer 23 is located corresponding to the central portion of the electrode 32 in the second direction D2.
  • the interface between the n ⁇ -type semiconductor layer 23 and the n-type semiconductor layer 24 is located corresponding to the central portion of the electrode 33 in the second direction D2.
  • the number of electrodes 32 and 33 in the storage unit 3 is smaller than the number of the plurality of regions in which the impurity concentration is gradually changing in one direction.
  • a pair of transfer electrodes 34 and 35 are disposed adjacent to the electrode 33 and the second direction D2.
  • the transfer electrodes 34 and 35 are respectively formed on the n ⁇ type semiconductor layer 25 and the n type semiconductor layer 26 via an insulating layer (not shown in FIG. 3).
  • the n ⁇ type semiconductor layer 25 and the n type semiconductor layer 26 are disposed adjacent to the n type semiconductor layer 24 in the second direction D2.
  • the transfer electrodes 34 and 35 are supplied with a signal TG from a control circuit (not shown).
  • the potential depths of the n ⁇ type semiconductor layer 25 and the n type semiconductor layer 26 vary depending on the signal TG applied to the transfer electrodes 34 and 35 as shown in FIG. As a result, the charge accumulated in the region immediately below the electrodes 32 and 33 is sent to the shift register 7.
  • the transfer electrodes 5 are constituted by the transfer electrodes 34 and 35, the n ⁇ type semiconductor layer 25 and the n type semiconductor layer 26.
  • a pair of transfer electrodes 36 and 37 are disposed adjacent to the transfer electrode 35 in the second direction D2.
  • the transfer electrodes 36 and 37 are respectively formed on the n ⁇ type semiconductor layer 27 and the n type semiconductor layer 28 via an insulating layer (not shown in FIG. 3).
  • the n ⁇ type semiconductor layer 27 and the n type semiconductor layer 28 are arranged so as to be adjacent to the n type semiconductor layer 26 in the second direction D2.
  • the transfer electrodes 36 and 37 are supplied with a signal PH from a control circuit (not shown). As shown in FIG. 4, the potential depths of the n ⁇ type semiconductor layer 27 and the n type semiconductor layer 28 vary depending on the signal PH applied to the transfer electrodes 36 and 37. Thereby, the electric charge acquired from the transfer unit 5 is transferred to the output stage 17.
  • the transfer electrodes 36 and 37, the n ⁇ type semiconductor layer 27 and the n type semiconductor layer 28 constitute the shift register 7.
  • the p + -type semiconductor layer 29 electrically isolates the n-type semiconductor layers 22, 23, 24, 25, 26, 27, and 28 from other parts of the semiconductor substrate 20.
  • the electrodes 31, 32, 33, 34, 35, 36, 37 are made of, for example, a polysilicon film.
  • the insulating layer described above is made of, for example, a silicon oxide film.
  • FIG. 5 is a diagram for explaining a process of forming a plurality of regions in the storage unit.
  • a semiconductor substrate 20 having an n-type semiconductor layer 41 to which an n-type impurity is added at a predetermined concentration on one side of the p-type semiconductor layer 21 is prepared.
  • the n-type semiconductor layer 41 is a region for forming the photosensitive region 11 and the storage unit 3.
  • n-type impurities are added to the regions where the n ⁇ -type semiconductor layer 22 and the n ⁇ -type semiconductor layer 23 are to be formed at a predetermined concentration.
  • a mask having an opening formed at a position corresponding to a region to be formed is used, and a p-type impurity is added through the opening of the mask. That is, no p-type impurity is added to the region where the n-type semiconductor layer 24 is to be formed.
  • a region of the n-type semiconductor layer 41 to which no p-type impurity is added becomes the n-type semiconductor layer 24.
  • the n-type impurity is compensated. Thereby, the region to which the p-type impurity is added in the n-type semiconductor layer 41 apparently becomes a region (n ⁇ -type semiconductor layer 41a) where the concentration of the n-type impurity is low. Impurities are added by ion implantation or the like.
  • a p-type impurity is further added to the region where the n ⁇ type semiconductor layer 22 is to be formed at a predetermined concentration.
  • a mask having an opening formed at a position corresponding to a region to be formed is used, and a p-type impurity is added through the opening of the mask.
  • the region to which the p-type impurity is once added becomes the n ⁇ -type semiconductor layer 23, and the region to which the p-type impurity is added twice is the n ⁇ -type semiconductor layer 22. It becomes.
  • the concentration of n-type impurities apparently decreases.
  • n - -type semiconductor layer 22, n - -type semiconductor layer 23, and n-type semiconductor layer 24 is formed.
  • the n ⁇ type semiconductor layer 22 constitutes the photosensitive region 11 and also constitutes the storage unit 3. Therefore, the concentration of the n-type impurity in the photosensitive region 11 is equal to the concentration of the n-type impurity in the region adjacent to the photosensitive region 11 in the storage unit 3.
  • the storage unit 3 includes a plurality of regions (n ⁇ type semiconductor layers 22, n ⁇ ) whose impurity concentration is gradually changing in one direction toward the second direction D 2.
  • Type semiconductor layer 23 and n-type semiconductor layer 24 and electrodes 32 and 33.
  • the electrode 32 of the storage unit 3 extends over the n ⁇ type semiconductor layer 22 and the n ⁇ type semiconductor layer 23, and the electrode 33 extends over the n ⁇ type semiconductor layer 23 and the n type semiconductor layer 24. Is arranged. Therefore, even if the electric field formed in the middle part in the second direction D2 of each electrode 32, 33 is weak, the impurity concentration changes in one direction stepwise in the region immediately below the middle part.
  • FIGS. 6 to 10 are diagrams for explaining the comparisons 1 to 3.
  • FIG. 6 to 10 are diagrams for explaining the comparisons 1 to 3.
  • the comparison 1 is performed with respect to a plurality of n-type semiconductor layers 101, 102, 103, 104, and 105 located immediately below the electrodes 31, 32, and 33. It differs from the form.
  • the n-type semiconductor layer 101 is located in a region immediately below the electrode 31 and functions as the photosensitive region 11.
  • the n ⁇ type semiconductor layer 102 and the n type semiconductor layer 103 are located in a region immediately below the electrode 32.
  • the n ⁇ type semiconductor layer 104 and the n type semiconductor layer 105 are located in a region immediately below the electrode 33.
  • the impurity concentration repeatedly changes in the second direction D2, but does not change in one direction step by step.
  • a potential is formed in the plurality of semiconductor layers 101, 102, 103, 104, and 105 as shown in FIG.
  • the potential in the storage unit 3 increases stepwise along the second direction D2.
  • the n ⁇ type semiconductor layers 102 and 104 add p-type impurities to the n type semiconductor layer through a mask having openings formed at positions corresponding to the n ⁇ type semiconductor layers 102 and 104. Is formed.
  • the semiconductor layers 102, 103, 104, 105 and the electrodes 32, 33 are positioned as shown in (a) of FIG. 7 and (a) of FIG. Deviation may occur.
  • the positional deviation occurs, as shown in (b) in FIG. 7 and (b) in FIG. 8, an unintended barrier or well is formed in the potential, and charge transfer is inhibited. Since the displacement of the mask is different for each semiconductor wafer used when manufacturing the solid-state imaging device, the performance of the solid-state imaging device is different for each semiconductor wafer. As a result, performance variation among products increases.
  • the storage unit 3 includes a part of the n ⁇ type semiconductor layer 22 aligned in the second direction D2 as the plurality of regions of the storage unit 3 (immediately below the electrode 32 in the n ⁇ type semiconductor layer 22). And an n ⁇ -type semiconductor layer 23.
  • the p ⁇ type semiconductor layer 22 and the n ⁇ -type semiconductor layer 23 are formed in a region where the n ⁇ type semiconductor layer 22 and the n ⁇ type semiconductor layer 23 are to be formed.
  • Impurity is implanted, and p-type impurities are further implanted into a region to be formed of the n ⁇ type semiconductor layer 22 among the regions to be formed into which the p-type impurity has been implanted.
  • the position in the second direction D2 of the interface between the n ⁇ type semiconductor layer 22 and the n ⁇ type semiconductor layer 23 is located in the middle of the electrode 32 in the second direction D2. For this reason, even when a mask misalignment occurs, no barrier or well is formed in the potential, and charge transfer is not hindered. Therefore, performance variations among products due to mask displacement are unlikely to occur. Further, a plurality of regions (n ⁇ type semiconductor layer 22, n ⁇ type semiconductor layer 23, and n type semiconductor layer 24) in which the impurity concentration is gradually changed in one direction toward the second direction D2 are formed. It can be realized easily.
  • the n ⁇ type semiconductor layer 22 constitutes the photosensitive region 11 and the storage unit 3.
  • the n ⁇ type semiconductor layer 22 has a region that is located immediately below the electrode 31 and constitutes the photosensitive region 11, and a region that is located directly below the electrode 32 and constitutes the storage unit 3.
  • the two regions have the same impurity concentration.
  • the region (n ⁇ type semiconductor layer 22) constituting the photosensitive region 11 apparently has a lower n-type impurity concentration than the n-type semiconductor layer 101 in the comparative example 1. Therefore, the potential formed in the region immediately below the electrode 31 in the n ⁇ type semiconductor layer 22 is higher than that in the n type semiconductor layer 101.
  • the potential formed across the storage unit 3 and the transfer unit 5 becomes deeper than the proportional 1. For this reason, charge transfer is performed more smoothly. It is difficult for a potential barrier or well to be formed between the photosensitive region 11 and the storage unit 3, and it is possible to prevent charge transfer from the photosensitive region 11 to the storage unit 3 from being hindered.
  • the contrast 2 is related to the plurality of electrodes 111, 112, 113 included in the storage unit 3 and the n-type semiconductor layer 101 located immediately below the plurality of electrodes. It is different from this embodiment.
  • the n-type semiconductor layer 101 is located in a region immediately below the electrode 31 and the electrodes 111, 112, and 113, and functions as the photosensitive region 11 and the storage unit 3. That is, the storage unit 3 includes a part of the n-type semiconductor layer 101 and a plurality of electrodes 111, 112, 113.
  • Different voltages (STG1, STG2, and STG3) are applied to the electrodes 111, 112, and 113, and a potential is formed in the n-type semiconductor layer 101 as shown in (b) of FIG.
  • the potential in the storage unit 3 increases stepwise along the second direction D2.
  • the number of electrodes 111, 112, 113 corresponding to the number of potential stages formed in the storage unit 3 is required, and a signal line needs to be connected to each electrode 111, 112, 113. For this reason, there exists a possibility that a structure may become complicated. Since the electrodes 111, 112, and 113 are disposed, the size of the storage unit 3 in the second direction D2 is increased. In this case, the size of the storage unit 3 in the second direction D2 may be larger than the size based on a request for an increase in the amount of saturated charges.
  • the number of electrodes 32 and 33 is smaller than the number of potential stages formed in the storage unit 3, and the number of signal lines connected to the electrodes 32 and 33 is also small. Therefore, in this embodiment, the configuration of the solid-state imaging device SI is simple, and the manufacture of the solid-state imaging device SI is easy. It is suppressed that the size of the storage unit 3 in the second direction D2 becomes larger than the size based on the request for an increase in the saturation charge amount.
  • the proportionality 3 indicates that each of the electrodes 121, 122, 123, 124 and a plurality of n-type semiconductor layers 101, 102, 102 located directly below these electrodes 121, 122, 123, 124 are provided.
  • 103, 104, and 105 are different from the present embodiment.
  • the n ⁇ type semiconductor layer 102 is located in a region immediately below the electrode 121, and the n type semiconductor layer 103 is located in a region immediately below the electrode 122.
  • the n ⁇ type semiconductor layer 104 is located in a region immediately below the electrode 123, and the n type semiconductor layer 105 is located in a region immediately below the electrode 124.
  • the same voltage (STG1) is applied to the electrode 121 and the electrode 122, and the same voltage (STG2) is applied to the electrode 123 and the electrode 124.
  • the n ⁇ -type semiconductor layers 102 and 104 are formed on the n - type semiconductor layer using the electrodes 31, 122, and 124 as a mask after the electrode 31, the electrode 122, and the electrode 124 are formed. It is formed by adding the impurities. That is, the n ⁇ type semiconductor layers 102 and 104 are formed by self-alignment. Therefore, there is no misalignment of the mask as in the proportional 1 and no unintentional barrier or well is formed.
  • the size of the storage unit 3 in the second direction D ⁇ b> 2 may be larger than the size based on the request for increasing the saturation charge amount.
  • the configuration of the solid-state imaging device SI is simple, and the manufacture of the solid-state imaging device SI is easy. It is suppressed that the size of the storage unit 3 in the second direction D2 becomes larger than the size based on the request for an increase in the saturation charge amount.
  • the present embodiment provides superior operational effects as compared with the comparative examples 1 to 3. That is, according to the solid-state imaging device SI according to the present embodiment, it is possible to achieve both the increase of the saturation charge amount and the speeding up of the charge transfer at a high level.
  • FIG. 11 is a conceptual diagram illustrating a cross-sectional configuration of a solid-state imaging device according to a modification of the present embodiment.
  • FIG. 12 is a diagram for explaining the configuration of the storage unit.
  • the semiconductor substrate 20 included in the solid-state imaging device SI includes a p-type semiconductor layer 21, an n ⁇ type semiconductor layer 22, an n ⁇ type semiconductor layer 51, an n ⁇ type semiconductor layer 52, and an n type semiconductor layer.
  • 53,26,28 contains an n ---- -type semiconductor layers 25 and 27 and p + -type semiconductor layer 29, and.
  • an electrode 55 is disposed on the n ⁇ type semiconductor layer 22, the n ⁇ type semiconductor layer 51, the n ⁇ type semiconductor layer 52, and the n type semiconductor layer 53. ing.
  • the electrode 55 is adjacent to the electrode 31 in the second direction D2.
  • the electrode 55 extends over the n ⁇ type semiconductor layer 22, the n ⁇ type semiconductor layer 51, the n ⁇ type semiconductor layer 52, and the n type semiconductor layer 53 via an insulating layer (not shown in FIG. 11).
  • the n ⁇ type semiconductor layer 22, the n ⁇ type semiconductor layer 51, the n ⁇ type semiconductor layer 52, and the n type semiconductor layer 53 are formed.
  • the electrode 55 is made of, for example, a polysilicon film.
  • the insulating layer described above is made of, for example, a silicon oxide film.
  • a voltage (STG) higher than the voltage applied to both ends of the electrode 31 is applied to the electrode 55.
  • the n ⁇ type semiconductor layer 51 is adjacent to the n ⁇ type semiconductor layer 22 in the second direction D2.
  • the n ⁇ type semiconductor layer 52 is adjacent to the n ⁇ type semiconductor layer 51 in the second direction D2.
  • the n-type semiconductor layer 53 is adjacent to the n ⁇ -type semiconductor layer 52 in the second direction D2.
  • the n ⁇ type semiconductor layer 25 is adjacent to the n type semiconductor layer 53 in the second direction D2.
  • the region immediately below the electrode 55 in the n ⁇ type semiconductor layer 22 has a higher concentration of p type impurities than the n ⁇ type semiconductor layer 51. That is, the n ⁇ type semiconductor layer 51 apparently has a higher concentration of n type impurities than the region immediately below the electrode 55 in the n ⁇ type semiconductor layer 22.
  • the n ⁇ type semiconductor layer 51 has a higher concentration of p type impurities than the n ⁇ type semiconductor layer 52.
  • the n ⁇ type semiconductor layer 52 has a higher concentration of p type impurities than the n type semiconductor layer 53. That is, the n-type semiconductor layer 53 apparently has a higher n-type impurity concentration than the n ⁇ -type semiconductor layer 52.
  • the n ⁇ type semiconductor layer 52 apparently has a higher n-type impurity concentration than the n ⁇ type semiconductor layer 51.
  • An electrode 55 a portion of the n --- type semiconductor layer 22 (the end portion at the n --- type semiconductor layer 22 in the second direction D2), n - -type semiconductor layer 51, n - -type semiconductor layer 52,
  • the storage unit 3 is configured by the n-type semiconductor layer 53.
  • the storage unit 3 a plurality of regions in which the impurity concentration is changed stepwise one direction toward the second direction D2, n - part of the type semiconductor layer 22, n - A n-type semiconductor layer 51, an n ⁇ -type semiconductor layer 52, and an n-type semiconductor layer 53.
  • the storage unit 3 includes an electrode 55 arranged so as to straddle a plurality of regions having different impurity concentrations in stages.
  • the potential in the storage unit 3, that is, the potential in the region immediately below the electrode 55 increases stepwise along the second direction D2.
  • FIG. 13 is a diagram for explaining a process of forming a plurality of regions in the storage unit.
  • a semiconductor substrate 20 having an n-type semiconductor layer 41 to which an n-type impurity is added at a predetermined concentration on one side of the p-type semiconductor layer 21 is prepared. Then, a p-type impurity is added at a predetermined concentration to regions where the n ⁇ type semiconductor layer 22, the n ⁇ type semiconductor layer 51, and the n ⁇ type semiconductor layer 52 are to be formed in the n type semiconductor layer 41.
  • a mask having an opening formed at a position corresponding to a region to be formed is used, and a p-type impurity is added through the opening of the mask. That is, no p-type impurity is added to the region where the n-type semiconductor layer 53 is to be formed. As a result, a region of the n-type semiconductor layer 41 to which no p-type impurity is added becomes the n-type semiconductor layer 53.
  • p-type impurities are further added to the regions where the n ⁇ type semiconductor layer 22 and the n ⁇ type semiconductor layer 51 are to be formed at a predetermined concentration.
  • a mask having an opening formed at a position corresponding to a region to be formed is used, and a p-type impurity is added through the opening of the mask.
  • a p-type impurity is further added to the region where the n ⁇ type semiconductor layer 22 is to be formed at a predetermined concentration.
  • a mask having an opening formed at a position corresponding to the region to be formed is used, and a p-type impurity is added through the opening of the mask.
  • the region to which the p-type impurity is once added becomes the n ⁇ -type semiconductor layer 52, and the region to which the p-type impurity is added twice is the n ⁇ -type semiconductor layer 51.
  • the region where the p-type impurity is added three times becomes the n ⁇ type semiconductor layer 22.
  • the storage unit 3 includes a plurality of regions (n.sup .--- type semiconductor layers 22, n) whose impurity concentration is gradually changing in one direction toward the second direction D2.
  • the electrode 55 of the storage unit 3 is disposed so as to straddle the n ⁇ type semiconductor layer 22, the n ⁇ type semiconductor layer 51, the n ⁇ type semiconductor layer 52, and the n type semiconductor layer 53. Therefore, even if the electric field formed in the middle part of the electrode 55 in the second direction D2 is weak, the impurity concentration changes stepwise in one direction in the region immediately below the middle part. The potential depth in the region immediately below the middle portion of the electrode 55 is appropriately adjusted. Thereby, also in this modification, it is possible to achieve both the increase of the saturation charge amount and the speeding up of the charge transfer at a high level.
  • FIGS. 14 to 17 are diagrams for explaining the configuration of a solid-state imaging device according to a modification of the present embodiment.
  • the solid-state imaging device includes a plurality of charge discharging units 61 arranged in the first direction in each storage unit 3 and discharging charges accumulated in the corresponding storage unit 3. Yes.
  • Each charge discharging unit 61 includes a drain region 63 that discharges charges, and a gate region 65 located between the storage unit 3 and the drain region 63.
  • the gate region 65 controls the inflow of charges from the storage unit 3 to the drain region 63.
  • the drain region 63 includes an n + type semiconductor layer 63a and an electrode 63b electrically connected to the n + type semiconductor layer 63a.
  • the n + type semiconductor layer 63 a has a higher n-type impurity concentration than the storage unit 3.
  • the gate region 65 includes an n-type semiconductor layer 65a adjacent to the storage unit 3 in the first direction D1, and a gate electrode 65b disposed on the n-type semiconductor layer 65a.
  • the n-type semiconductor layer 65a has a lower n-type impurity concentration than the n + -type semiconductor layer 63a.
  • the width in the first direction D1 increases as the storage unit 3 moves in the second direction D2.
  • the charge discharging unit 61 can be arranged without hindering the flow of charge from the storage unit 3 toward the transfer unit 5, that is, the flow of charge from the storage unit 3 in the second direction D2. .
  • the drain region 63 (n + type semiconductor layer 63a) is shared between the charge discharging units 61 adjacent in the first direction D1. Thereby, space saving of the electric charge discharge part 61 can be achieved. Also in the modification shown in FIG. 14, the drain region 63 (n + type semiconductor layer 63a) may be shared between the charge discharging units 61 adjacent in the first direction D1.
  • the storage unit 3 includes a plurality of regions (impurity concentration is gradually changing in one direction toward the second direction D ⁇ b> 2 ( n-type semiconductor layer 22, n + -type semiconductor layer 23, and n ++ -type semiconductor layer 24), and electrodes 32 and 33.
  • the n + type semiconductor layer 23 is a region to which an n-type impurity is once added
  • the n + + type semiconductor layer 24 is a region to which an n-type impurity is added twice.
  • the electrode 32 of the storage unit 3 straddles the n-type semiconductor layer 22 and the n + -type semiconductor layer 23, and the electrode 33 straddles the n + -type semiconductor layer 23 and the n + -type semiconductor layer 24. Has been placed. Therefore, the potential in the storage unit 3 becomes deeper in stages along the second direction D2 as in the present embodiment.
  • the storage unit 3 includes a plurality of regions (impurity concentrations changing in one direction stepwise toward the second direction D2.
  • n-type semiconductor layer 22, n + -type semiconductor layer 51, n ++ type semiconductor layer 52, and an n +++ type semiconductor layer 53) has an electrode 55, a.
  • the n + type semiconductor layer 51 is a region to which an n-type impurity is once added
  • the n + + type semiconductor layer 52 is a region to which an n-type impurity is added twice
  • the type semiconductor layer 53 is a region to which an n-type impurity is added three times.
  • Electrode 55 of the storage portion 3 is disposed so as to straddle the n-type semiconductor layer 22, n + -type semiconductor layer 51, n ++ type semiconductor layer 52 and n +++ type semiconductor layer 53,. Therefore, the potential in the storage unit 3 becomes deeper in stages along the second direction D2, as in the modification examples shown in FIGS.
  • the number of regions in the storage unit 3 where the impurity concentration is gradually changing in one direction toward the second direction D2 is not limited to the number in the above-described embodiment and modification.
  • the number of electrodes included in the storage unit 3 is not limited to the number in the embodiment and the modification described above.
  • the present invention can be used for a solid-state imaging device such as a CCD linear image sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

 固体撮像装置SIは、複数の光電変換部と、対応する光電変換部で発生した電荷を蓄積する複数の電荷蓄積部と、を備えている。光電変換部は、光入射に応じて電荷を発生する光感応領域と、光感応領域での電荷の移動を第二方向D2に促進する電位勾配形成部と、を有している。電荷蓄積部は、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(半導体層)22,23,24と、複数の領域22,23,24に電界を印加する電極32,33と、を有している。電極32は、不純物濃度が段階的に異なる複数の領域22,23を跨るように配置されている。電極33は、不純物濃度が段階的に異なる複数の領域23,24を跨るように配置されている。

Description

固体撮像装置
 本発明は、固体撮像装置に関する。
 第一方向に並んだ複数の光電変換部と、対応する光電変換部と第一方向に直交する第二方向で並び、かつ、対応する光電変換部で発生した電荷を蓄積する複数の電荷蓄積部と、複数の電荷蓄積部からそれぞれ転送された電荷を取得し、第一方向に転送して出力する電荷出力部と、を備えた固体撮像装置が知られている(たとえば、特許文献1参照)。特許文献1に記載された固体撮像装置では、電荷蓄積部は、第二方向に沿って配置されると共に第二方向に向かってポテンシャルを高くするように所定の電位がそれぞれ与えられる少なくとも二つのゲート電極を有している。
特開2012-151364号公報
 上述したような固体撮像装置では、ダイナミックレンジの拡大及びSN比の向上のため、各電荷蓄積部の飽和電荷量を増大させることが好ましい。この場合、電荷蓄積部の第二方向でのサイズを大きくすることにより、電荷蓄積部の飽和電荷量の増大を実現することができる。電荷蓄積部の第二方向でのサイズが大きくなるに従い、電荷蓄積部に蓄積された電荷の転送時間が長くなる。電荷の転送時間の増加は、固体撮像装置における電荷転送の高速化、すなわち撮像の高速化を阻害する要因となる。電荷転送の高速化の制約から、電荷の転送時間を短くした場合には、電荷が転送されずに電荷蓄積部に残ってしまう。この結果、イメージラグ(残像)が発生するおそれがある。このように、飽和電荷量の増大と電荷転送の高速化とは、互いにトレードオフの関係にある。
 飽和電荷量の増大と電荷転送の高速化とに対する要求は、益々高くなっている。本発明者らの検討によれば、特許文献1に記載された固体撮像装置であっても、飽和電荷量の増大と電荷転送の高速化との両立の観点で未だ改善の余地がある。
 本発明の一態様は、飽和電荷量の増大と電荷転送の高速化との両立を高い次元で図ることが可能な固体撮像装置を提供することを目的とする。
 本発明の一態様は、固体撮像装置であって、第一方向に並んだ複数の光電変換部と、対応する光電変換部と第一方向に直交する第二方向で並び、かつ、対応する光電変換部で発生した電荷を蓄積する複数の電荷蓄積部と、複数の電荷蓄積部からそれぞれ転送された電荷を取得し、第一方向に転送して出力する電荷出力部と、を備えている。各光電変換部は、光入射に応じて電荷を発生する光感応領域と、光感応領域に対して第二方向に沿って高くされた電位勾配を形成し、光感応領域での電荷の移動を第二方向に促進する電位勾配形成部と、を有している。各電荷蓄積部は、不純物濃度が第二方向に向かって段階的に一の方向に変化している複数の領域と、不純物濃度が段階的に異なる複数の領域を跨るように配置され、かつ、複数の領域に電界を印加する電極と、を有している。
 電荷蓄積部では、電極により印加される電界により、当該電極直下の領域でのポテンシャルの深さが調整される。電極における第二方向での途中部分(たとえば、第二方向での中央部分)に生じる電界は、電極における第二方向での端部に生じる電界よりも弱い。したがって、電極の上記途中部分直下の領域でのポテンシャルの深さが適切に調整されない。この場合、第二方向での電荷の移動を十分に促進できず、電荷の転送時間が増大するおそれがある。また、電荷蓄積部の第二方向での大サイズ化(飽和電荷量の増大)が阻害されるおそれがある。
 本態様では、電荷蓄積部が、不純物濃度が第二方向に向かって段階的に一の方向に変化している複数の領域を有すると共に、電荷蓄積部が有する電極は、不純物濃度が段階的に異なる複数の領域を跨るように配置されている。したがって、電極における第二方向での途中部分に形成される電界が弱い場合であっても、当該途中部分直下の領域にて不純物濃度が段階的に一の方向に変化するため、電極の上記途中部分直下の領域でのポテンシャルの深さが適切に調整される。これにより、第二方向での電荷の移動が十分に促進され、電荷の転送時間が短縮される。また、電荷蓄積部の第二方向での大サイズ化(飽和電荷量の増大)が阻害されることはない。
 各電荷蓄積部は、複数の領域として、第二方向に並ぶ第一領域と第二領域とを有し、第一領域と第二領域とでは、第一領域と第二領域とに不純物を注入し、かつ、不純物が注入された第二領域に不純物を更に注入することにより、不純物濃度が段階的に一の方向に変化していてもよい。この場合、不純物濃度が第二方向に向かって段階的に一の方向に変化している複数の領域を簡易に実現することができる。
 第二領域は、第二方向で光感応領域と隣り合い、光感応領域は、第二領域と共に不純物を注入することにより、第二領域と不純物濃度が同等であってもよい。この場合、第二方向で隣り合う光感応領域と第二領域との間にポテンシャルの障壁又は井戸が生じ難い。このため、光感応領域から電荷蓄積部への電荷転送が阻害されるのを防ぐことができる。
 各電荷蓄積部に第一方向で並び、かつ、電荷蓄積部に蓄積される電荷を排出する複数の電荷排出部を更に備えていてもよい。この場合、たとえば、電荷蓄積部にて当該電荷蓄積部の蓄積容量を超える電荷が発生した際に、蓄積容量を超えた分の電荷を電荷排出部により排出することができる。これにより、蓄積容量を超えた電荷蓄積部から溢れた電荷が他の電荷蓄積部へ漏れ出す、いわゆるブルーミングを防止することができる。
 各電荷蓄積部は、第二方向に向かうにしたがって、第一方向での幅が大きくなっていてもよい。この場合、電荷蓄積部からの第二方向での電荷の流れを阻害することなく、電荷排出部を配置することができる。
 各電荷排出部は、電荷を排出するドレイン領域と、電荷蓄積部とドレイン領域との間に位置し、かつ、電荷蓄積部からドレイン領域へ電荷の流入を制御するゲート領域と、を有し、ドレイン領域は、第一方向で隣り合う電荷排出部間で共用されていてもよい。この場合、電荷排出部の省スペース化を図ることができる。
 本発明の上記一態様によれば、飽和電荷量の増大と電荷転送の高速化との両立を高い次元で図ることが可能な固体撮像装置を提供することができる。
図1は、一実施形態に係る固体撮像装置の平面構成を示す図である。 図2は、図1におけるII-II線に沿った断面構成を示す概念図である。 図3は、ストレージ部の構成を説明するための図である。 図4は、本実施形態に係る固体撮像装置において形成されるポテンシャルの変化を説明するための図である。 図5は、ストレージ部における複数の領域の形成過程を説明するための図である。 図6は、対比例1を説明するための図である。 図7は、対比例1を説明するための図である。 図8は、対比例1を説明するための図である。 図9は、対比例2を説明するための図である。 図10は、対比例3を説明するための図である。 図11は、本実施形態の変形例に係る固体撮像装置の断面構成を示す概念図である。 図12は、ストレージ部の構成を説明するための図である。 図13は、ストレージ部における複数の領域の形成過程を説明するための図である。 図14は、本実施形態の変形例に係る固体撮像装置の構成を説明するための図である。 図15は、本実施形態の変形例に係る固体撮像装置の構成を説明するための図である。 図16は、本実施形態の変形例に係る固体撮像装置の構成を説明するための図である。 図17は、本実施形態の変形例に係る固体撮像装置の構成を説明するための図である。 図18は、本実施形態の変形例に係る固体撮像装置の構成を説明するための図である。
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
 図1~図4を参照して、本実施形態に係る固体撮像装置SIの構成を説明する。図1は、本実施形態に係る固体撮像装置の平面構成を示す図である。図2は、図1におけるII-II線に沿った断面構成を示す図である。図3は、ストレージ部の構成を説明するための図である。図4は、本実施形態に係る固体撮像装置において形成されるポテンシャルの変化を説明するための図である。図4において、図面下向きが、ポテンシャルの正方向である。図4中、黒丸は、電荷を示す。
 固体撮像装置SIは、図1に示されるように、受光部1と、複数のストレージ部3と、複数の転送部5と、電荷出力部としてのシフトレジスタ7と、を備えている。固体撮像装置SIは、たとえば、BT(Back-Thinned)-CCDリニアイメージセンサである。
 受光部1は、複数の光電変換部10を有している。複数の光電変換部10は、第一方向D1に並んでいる。複数の光電変換部10は、光感応領域11と電位勾配形成部13とをそれぞれ有している。すなわち、受光部1は、複数の光感応領域11と、複数の電位勾配形成部13と、を有している。
 光感応領域11は、光の入射に感応して、入射光の強度に応じた電荷を発生する。光感応領域11の平面形状は、二つの長辺と二つの短辺とによって形作られる矩形状を呈している。複数の光感応領域11は、第一方向D1に並んでいる。本実施形態では、第一方向D1は、光感応領域11の短辺方向に沿う方向である。複数の光感応領域11は、第一方向D1を一次元方向として、当該一次元方向にアレイ状に配置されている。一つの光感応領域11は、受光部1における一画素を構成する。本実施形態では、図1において、右から左に向かう一方向、及び、左から右に向かう一方向それぞれが、第一方向D1である。
 各電位勾配形成部13は、光感応領域11にそれぞれ対応して配置されている。電位勾配形成部13は、対応する光感応領域11に対して、第一方向D1と交差する第二方向D2に沿って高くされた電位勾配を形成する。本実施形態では、第一方向D1と第二方向D2とは直交しており、第二方向D2は、光感応領域11の長辺方向に沿い、かつ、一方の短辺から他方の短辺に向かう一方向である。電位勾配形成部13により、光感応領域11に発生した電荷は、光感応領域11の他方の短辺側から排出される。すなわち、電位勾配形成部13は、光感応領域11の一方の短辺側よりも光感応領域11の他方の短辺側が高くされた電位勾配を形成する。
 各ストレージ部3は、光感応領域11にそれぞれ対応し、かつ、光感応領域11の他方の短辺側に配置されている。すなわち、複数のストレージ部3は、光感応領域11の他方の短辺側に、第二方向D2で光感応領域11(光電変換部10)と並ぶように配置されている。ストレージ部3は、光感応領域11と転送部5との間に位置する。本実施形態では、電位勾配形成部13によって光感応領域11から排出された電荷がストレージ部3に蓄積される。ストレージ部3に蓄積された電荷は、対応する転送部5に送られる。ストレージ部3は、電荷蓄積部として機能する。すなわち、固体撮像装置SIは、複数の電荷蓄積部を備える。
 各転送部5は、ストレージ部3にそれぞれ対応し、かつ、対応するストレージ部3とシフトレジスタ7との間に配置されている。すなわち、複数の転送部5は、光感応領域11の他方の短辺側に、第二方向D2でストレージ部3と並ぶように配置されている。転送部5は、ストレージ部3とシフトレジスタ7との間に位置する。転送部5は、ストレージ部3に蓄積されている電荷を取得し、取得した電荷をシフトレジスタ7に向けて転送する。
 シフトレジスタ7は、各ストレージ部3とで各転送部5を挟むように配置されている。すなわち、シフトレジスタ7は、光感応領域11の他方の短辺側に配置されている。シフトレジスタ7は、各転送部5から転送された電荷を取得し、第一方向D1に転送して、出力段17に順次出力する。シフトレジスタ7から出力された電荷は、出力段17によって電圧に変換され、光感応領域11毎の電圧として固体撮像装置SIの外部に出力される。出力段17は、たとえば、フローティングディフュージョンアンプ(FDA)などから構成される。
 隣り合う光感応領域11の間、隣り合うストレージ部3の間、及び隣り合う転送部5の間には、アイソレーション領域が配置されている。アイソレーション領域は、光感応領域11の間、ストレージ部3の間、及び転送部5の間それぞれにおける電気的な分離を実現している。
 受光部1、複数のストレージ部3、複数の転送部5、及びシフトレジスタ7は、図2にも示されるように、半導体基板20に形成されている。すなわち、固体撮像装置SIは、半導体基板20を備えている。半導体基板20は、半導体基板20の基体となるp型半導体層21と、p型半導体層21の一方面側に形成されたn--型半導体層22、n型半導体層23、n型半導体層24,26,28、n----型半導体層25,27、及びp型半導体層29と、を含んでいる。本実施形態では、半導体基板20としてシリコン基板が用いられている。p型およびn型の各導電型は、上述したものとは逆になるように入れ替えられていてもよい。
 導電型に付された「+」は、高不純物濃度を示す。導電型に付された「-」は、低不純物濃度を示す。低不純物濃度は、「-」が付された導電型の不純物の一部が、「-」が付された導電型とは逆の導電型の不純物により補償されることにより、見かけ上、低不純物濃度とされた態様も含む。「-」の数は、「-」が付された導電型の不純物の濃度の度合いを示す。「-」の数が多いほど、「-」が付された導電型の不純物の濃度が低い。n型の不純物としては、N、P又はAsなどがある。p型の不純物としては、B又はAlなどがある。
 p型半導体層21とn--型半導体層22とはpn接合を形成しており、n--型半導体層22により、光の入射により電荷を発生する光感応領域11が構成される。n--型半導体層22は、平面視で、二つの長辺と二つの短辺とによって形作られる矩形状を呈している。n--型半導体層22は、第一方向D1に沿って並んでおり、一次元方向にアレイ状に位置している。すなわち、各n--型半導体層22は、n--型半導体層22の短辺方向に沿う方向に並んでいる。上述したアイソレーション領域は、p型半導体層により構成できる。
 n--型半導体層22に対して、電極31が配置されている。電極31は、絶縁層(図2では図示せず)を介してn--型半導体層22上に形成されている。電極31により、電位勾配形成部13が構成される。電極31は、いわゆるレジスティブゲート電極を構成しており、第二方向D2に延びるように形成されている。
 電極31は、第二方向D2での両端(REGL,REGH)に電位差が与えられることにより、電極31の第二方向D2での電気抵抗成分に応じた電位勾配を形成する。すなわち、電極31は、第二方向D2に沿って高くされた電位勾配を形成する。この電位勾配により、n--型半導体層22における電極31の直下の領域には、図4に示されるように、ポテンシャルの傾斜が形成される。光入射に応じてn--型半導体層22にて発生した電荷は、電極31の直下の領域におけるポテンシャルの傾斜に沿って第二方向D2に移動する。
 n--型半導体層22とn型半導体層23とに対して、図3にも示されているように、電極32が配置されている。電極32は、電極31と第二方向D2で隣接している。電極32は、絶縁層(図3では図示せず)を介して、n--型半導体層22とn型半導体層23とに跨るように、n--型半導体層22とn型半導体層23との上に形成されている。n型半導体層23は、n--型半導体層22と第二方向D2で隣接している。
 n型半導体層23とn型半導体層24とに対して、電極33が配置されている。電極33は、電極32と第二方向D2で隣接している。電極33は、絶縁層(図3では図示せず)を介して、n型半導体層23とn型半導体層24とに跨るように、n型半導体層23とn型半導体層24との上に形成されている。n型半導体層24は、n型半導体層23と第二方向D2で隣接している。
 電極32には、電極31の両端に印加される電圧よりも高い電圧(STG1)が印加される。電極33には、電極32に印加される電圧よりも高い電圧(STG2)が印加される。したがって、n--型半導体層22及びn型半導体層23における電極32の直下の領域のポテンシャルと、n型半導体層23とn型半導体層24における電極33の直下の領域のポテンシャルとが、n--型半導体層22における電極31の直下の領域のポテンシャルよりも低い。このため、電極31の直下の領域におけるポテンシャルの傾斜に沿って移動してきた電荷は、電極32及び電極33の直下の領域に形成されるポテンシャル井戸内に流れ込み、当該ポテンシャル井戸に蓄積される。
 n--型半導体層22における電極32の直下の領域は、n型半導体層23における電極32の直下の領域よりも、p型不純物の濃度が高い。すなわち、n型半導体層23における電極32の直下の領域は、n--型半導体層22における電極32の直下の領域よりも、見かけ上、n型不純物の濃度が高い。したがって、n型半導体層23における電極32の直下の領域のポテンシャルは、n--型半導体層22における電極32の直下の領域のポテンシャルよりも低い。
 n型半導体層23における電極32の直下の領域と、n型半導体層23における電極33の直下の領域とでは、不純物濃度は同等である。電極33には、電極32よりも高い電圧が印加される。したがって、n型半導体層23における電極33の直下の領域のポテンシャルは、n型半導体層23における電極32の直下の領域のポテンシャルよりも低い。
 n型半導体層23における電極32の直下の領域は、n型半導体層24における電極33の直下の領域よりも、p型不純物の濃度が高い。すなわち、n型半導体層24における電極33の直下の領域は、n型半導体層23における電極32の直下の領域よりも、見かけ上、n型不純物の濃度が高い。したがって、n型半導体層24における電極33の直下の領域のポテンシャルは、n型半導体層23における電極32の直下の領域のポテンシャルよりも低い。
 電極32,33と、n--型半導体層22の一部(n--型半導体層22における第二方向D2での端部)、n型半導体層23、及びn型半導体層24とによって、ストレージ部3が構成される。上述したように、ストレージ部3は、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域として、n--型半導体層22の一部、n型半導体層23、及びn型半導体層24を有する。ストレージ部3は、不純物濃度が段階的に異なる複数の領域を跨るように配置されている電極32,33を有している。ストレージ部3でのポテンシャル、すなわち、二つの電極32,33の直下の領域のポテンシャルは、図4に示されるように、第二方向D2に沿って、段階的に深くなる。
 本実施形態では、n--型半導体層22とn型半導体層23との界面は、電極32における第二方向D2での中央部分に対応して位置している。n型半導体層23とn型半導体層24との界面は、電極33における第二方向D2での中央部分に対応して位置している。ストレージ部3における電極32,33の数は、不純物濃度が段階的に一の方向に変化している上記複数の領域の数よりも少ない。
 電極33と第二方向D2に隣接して、一対の転送電極34,35が配置されている。転送電極34,35は、絶縁層(図3では図示せず)を介して、n----型半導体層25及びn型半導体層26上にそれぞれ形成されている。n----型半導体層25及びn型半導体層26は、n型半導体層24と第二方向D2で隣接するように配置されている。
 転送電極34,35には、制御回路(図示せず)から信号TGが与えられる。n----型半導体層25及びn型半導体層26のポテンシャルの深さは、図4に示されるように、転送電極34,35に与えられる信号TGに応じて変わる。これにより、電極32,33の直下の領域に蓄積されている電荷が、シフトレジスタ7に送り出される。転送電極34,35と、n----型半導体層25及びn型半導体層26とによって、転送部5が構成される。
 転送電極35と第二方向D2に隣接して、一対の転送電極36,37が配置されている。転送電極36,37は、絶縁層(図3では図示せず)を介して、n----型半導体層27及びn型半導体層28上にそれぞれ形成されている。n----型半導体層27及びn型半導体層28は、n型半導体層26と第二方向D2で隣接するように配置されている。
 転送電極36,37には、制御回路(図示せず)から信号PHが与えられる。n----型半導体層27及びn型半導体層28のポテンシャルの深さは、図4に示されるように、転送電極36,37に与えられる信号PHに応じて変わる。これにより、転送部5から取得した電荷が出力段17に転送される。転送電極36,37と、n----型半導体層27及びn型半導体層28とによって、シフトレジスタ7が構成される。
 p型半導体層29は、n型の各半導体層22,23,24,25,26,27,28を、半導体基板20の他の部分から電気的に分離している。電極31,32,33,34,35,36,37は、たとえばポリシリコン膜からなる。上述した絶縁層は、たとえばシリコン酸化膜からなる。
 続いて、図5を参照して、ストレージ部3が有する、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域を形成する過程を説明する。図5は、ストレージ部における複数の領域の形成過程を説明するための図である。
 n型の不純物が所定の濃度で添加されているn型半導体層41をp型半導体層21の一方面側に有する半導体基板20を用意する。n型半導体層41は、光感応領域11とストレージ部3とを形成するための領域である。
 n型半導体層41における、n--型半導体層22とn型半導体層23との形成予定領域に、p型の不純物が所定の濃度で添加される。ここでは、形成予定領域に対応する位置に開口が形成されたマスクが用いられ、マスクの開口を通してp型の不純物が添加される。すなわち、n型半導体層24の形成予定領域には、p型の不純物が添加されない。これにより、n型半導体層41における、p型の不純物が添加されていない領域が、n型半導体層24となる。n型半導体層41にp型の不純物が添加されると、n型の不純物が補償される。これにより、n型半導体層41における、p型の不純物が添加された領域は、見かけ上、n型の不純物の濃度が低い領域(n型半導体層41a)となる。不純物の添加は、イオン注入法などが用いられる。
 次に、n--型半導体層22の形成予定領域に、p型の不純物が更に所定の濃度で添加される。ここでは、形成予定領域に対応する位置に開口が形成されたマスクが用いられ、マスクの開口を通してp型の不純物が添加される。これにより、n型半導体層41における、p型の不純物が一度添加された領域が、n型半導体層23となり、p型の不純物が二度添加された領域が、n--型半導体層22となる。p型の不純物の添加回数が多いほど、n型の不純物の濃度は、見かけ上、低くなる。
 以上の過程により、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(n--型半導体層22、n型半導体層23、及びn型半導体層24)が形成される。n--型半導体層22は、光感応領域11を構成すると共に、ストレージ部3も構成している。したがって、光感応領域11におけるn型不純物の濃度と、ストレージ部3における光感応領域11に隣接する領域でのn型不純物の濃度とは同等である。
 以上のように、本実施形態では、ストレージ部3が、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(n--型半導体層22、n型半導体層23、及びn型半導体層24)と、電極32,33と、を有している。ストレージ部3の電極32は、n--型半導体層22とn型半導体層23とを跨るように、また、電極33は、n型半導体層23とn型半導体層24とを跨るように配置されている。したがって、各電極32,33における第二方向D2での途中部分に形成される電界が弱い場合であっても、当該途中部分直下の領域にて不純物濃度が段階的に一の方向に変化しているため、各電極32,33の上記途中部分直下の領域でのポテンシャルの深さが適切に調整される。これにより、ストレージ部3での第二方向D2での電荷の移動が十分に促進され、電荷の転送時間が短縮される。また、ストレージ部3の第二方向D2での大サイズ化(飽和電荷量の増大)が阻害されることはない。
 ここで、図6~図10に示されている対比例1~3と比較しながら、上述した本実施形態の作用効果を確認する。図6~図10では、対比例1~3において、本実施形態と対応する構成については、本実施形態と同じ符号を付し、説明を省略する。図6~図10は、対比例1~3を説明するための図である。
 対比例1は、図6中の(a)に示されるように、各電極31,32,33の直下に位置するn型の複数の半導体層101,102,103,104,105に関して、本実施形態と相違する。n型半導体層101は、電極31の直下の領域に位置し、光感応領域11として機能する。n型半導体層102及びn型半導体層103は、電極32の直下の領域に位置する。n型半導体層104及びn型半導体層105は、電極33の直下の領域に位置する。対比例1のストレージ部3では、不純物濃度が第二方向D2に向かって繰り返し変化しているものの、段階的に一の方向には変化していない。複数の半導体層101,102,103,104,105には、図6中の(b)のように、ポテンシャルが形成される。ストレージ部3でのポテンシャルは、第二方向D2に沿って、段階的に深くなる。
 対比例1では、n型半導体層102,104は、n型半導体層102,104に対応する位置に開口が形成されたマスクを介して、n型の半導体層にp型の不純物を添加することにより、形成される。このとき、上記マスクの位置ずれにより、図7中の(a)及び図8中の(a)に示されるように、各半導体層102,103,104,105と各電極32,33とに位置ずれが生じることがある。上記位置ずれが生じると、図7中の(b)及び図8中の(b)に示されるように、ホテンシャルに意図しない障壁又は井戸が形成されるため、電荷転送が阻害される。マスクの位置ずれは、固体撮像装置を製造する際に用いる半導体ウェハ毎に異なるため、半導体ウェハ毎に固体撮像装置の性能が異なってしまう。これにより、製品毎での性能ばらつきが大きくなる。
 本実施形態では、ストレージ部3は、ストレージ部3が有する上記複数の領域として、第二方向D2に並ぶn--型半導体層22の一部(n--型半導体層22における電極32の直下に位置する部分)とn型半導体層23とを有している。n--型半導体層22の上記一部とn型半導体層23とでは、n型半導体層41におけるn--型半導体層22とn型半導体層23との形成予定領域にp型の不純物が注入され、かつ、当該p型の不純物が注入された上記形成予定領域のうちn--型半導体層22の形成予定領域にp型の不純物が更に注入されることにより、不純物濃度が段階的に一の方向に変化している。n--型半導体層22とn型半導体層23との界面の第二方向D2での位置は、電極32における第二方向D2での途中部分に位置する。このため、マスクの位置ずれが生じた場合でも、ホテンシャルに障壁又は井戸が形成されることはなく、電荷転送を阻害することはない。したがって、マスクの位置ずれを要因とする、製品毎での性能ばらつきは、生じ難い。また、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(n--型半導体層22、n型半導体層23、及びn型半導体層24)を簡易に実現することができる。
 本実施形態では、n--型半導体層22が、光感応領域11と、ストレージ部3と、を構成している。すなわち、n--型半導体層22は、電極31の直下に位置し、光感応領域11を構成する領域と、電極32の直下に位置し、ストレージ部3を構成する領域と、を有しており、当該両領域は、不純物濃度が同等である。光感応領域11を構成する領域(n--型半導体層22)は、対比例1におけるn型半導体層101よりも、見かけ上、n型の不純物の濃度が低い。したがって、n型半導体層101に比して、n--型半導体層22における電極31の直下の領域に形成されるポテンシャルが上がる。ストレージ部3と転送部5にわたって形成されるポテンシャルは、対比例1に比して、深くなる。このため、電荷転送がより一層スムーズに行われる。光感応領域11とストレージ部3との間にポテンシャルの障壁又は井戸が生じ難く、光感応領域11からストレージ部3への電荷転送が阻害されるのを防ぐことができる。
 対比例2は、図9中の(a)に示されるように、ストレージ部3が有する複数の電極111,112,113と、当該複数の電極の直下に位置するn型の半導体層101に関して、本実施形態と相違する。n型半導体層101は、電極31と、電極111,112,113との直下の領域に位置し、光感応領域11及びストレージ部3として機能する。すなわち、ストレージ部3は、n型半導体層101の一部と、複数の電極111,112,113とにより構成されている。各電極111,112,113には異なる電圧(STG1,STG2,STG3)が印加され、n型半導体層101には、図9中の(b)のように、ポテンシャルが形成される。ストレージ部3でのポテンシャルは、第二方向D2に沿って、段階的に深くなる。
 対比例2では、ストレージ部3に形成されるポテンシャルの段数に対応した数の電極111,112,113が必要とされ、各電極111,112,113に信号線を接続する必要がある。このため、構成が複雑化するおそれがある。電極111,112,113が配置される分、ストレージ部3の第二方向D2でのサイズが大きくなってしまう。この場合、ストレージ部3の第二方向D2でのサイズが、飽和電荷量の増大の要請に基づくサイズより大きくなるおそれもある。
 これに対し、本実施形態では、ストレージ部3に形成されるポテンシャルの段数よりも、電極32,33の数が少なく、当該電極32,33に接続される信号線の数も少ない。したがって、本実施形態では、固体撮像装置SIの構成がシンプルであり、かつ、固体撮像装置SIの製造も容易である。ストレージ部3の第二方向D2でのサイズが、飽和電荷量の増大の要請に基づくサイズより大きくなることが抑制される。
 対比例3は、図10に示されるように、各電極121,122,123,124と、これらの電極121,122,123,124の直下に位置するn型の複数の半導体層101,102,103,104,105に関して、本実施形態と相違する。n型半導体層102は、電極121の直下の領域に位置し、n型半導体層103は、電極122の直下の領域に位置する。n型半導体層104は、電極123の直下の領域に位置し、n型半導体層105は、電極124の直下の領域に位置する。電極121と電極122とは、同じ電圧(STG1)が印加され、電極123と電極124とは、同じ電圧(STG2)が印加される。
 対比例3では、n型半導体層102,104は、電極31、電極122、及び電極124が形成された後、これらの電極31,122,124をマスクとして、n型の半導体層にp型の不純物が添加されることにより、形成される。すなわち、n型半導体層102,104は、セルフアライメントにより形成される。したがって、対比例1のようなマスクの位置ずれは生じることなく、ホテンシャルに意図しない障壁又は井戸が形成されることもない。
 対比例3は、狭い領域に複数の電極121,122,123,124が集中する構成を備えているため、各電極121,122,123,124に接続される信号線の配線スペースの確保といった、設計上の制約が多い。対比例3では、対比例2と同様に、ストレージ部3の第二方向D2でのサイズが、飽和電荷量の増大の要請に基づくサイズより大きくなるおそれもある。
 これに対し、本実施形態では、上述したように、固体撮像装置SIの構成がシンプルであり、かつ、固体撮像装置SIの製造も容易である。ストレージ部3の第二方向D2でのサイズが、飽和電荷量の増大の要請に基づくサイズより大きくなることが抑制される。
 以上のように、本実施形態は、対比例1~3に比して、優位な作用効果を奏する。すなわち、本実施形態に係る固体撮像装置SIによれば、飽和電荷量の増大と電荷転送の高速化との両立を高い次元で図ることができる。
 次に、図11及び図12を参照して、本実施形態の変形例の構成を説明する。図11は、本実施形態の変形例に係る固体撮像装置の断面構成を示す概念図である。図12は、ストレージ部の構成を説明するための図である。
 本変形例に係る固体撮像装置SIが備える半導体基板20は、p型半導体層21、n---型半導体層22、n--型半導体層51、n型半導体層52、n型半導体層53,26,28、n----型半導体層25,27、及びp型半導体層29と、を含んでいる。n---型半導体層22、n--型半導体層51、n型半導体層52、及びn型半導体層53に対して、図12にも示されているように、電極55が配置されている。
 電極55は、電極31と第二方向D2で隣接している。電極55は、絶縁層(図11では図示せず)を介して、n---型半導体層22、n--型半導体層51、n型半導体層52、及びn型半導体層53に跨るように、n---型半導体層22、n--型半導体層51、n型半導体層52、及びn型半導体層53の上に形成されている。電極55は、たとえばポリシリコン膜からなる。上述した絶縁層は、たとえばシリコン酸化膜からなる。電極55には、電極31の両端に印加される電圧よりも高い電圧(STG)が印加される。
 n--型半導体層51は、n---型半導体層22と第二方向D2で隣接している。n型半導体層52は、n--型半導体層51と第二方向D2で隣接している。n型半導体層53は、n型半導体層52と第二方向D2で隣接している。n----型半導体層25は、n型半導体層53と第二方向D2で隣接している。
 n---型半導体層22における電極55の直下の領域は、n--型半導体層51よりも、p型不純物の濃度が高い。すなわち、n--型半導体層51は、n---型半導体層22における電極55の直下の領域よりも、見かけ上、n型不純物の濃度が高い。n--型半導体層51は、n型半導体層52よりもp型不純物の濃度が高い。n型半導体層52は、n型半導体層53よりもp型不純物の濃度が高い。すなわち、n型半導体層53は、n型半導体層52よりも、見かけ上、n型不純物の濃度が高い。n型半導体層52は、n--型半導体層51よりも、見かけ上、n型不純物の濃度が高い。
 電極55と、n---型半導体層22の一部(n---型半導体層22における第二方向D2での端部)、n--型半導体層51、n型半導体層52、及びn型半導体層53とによって、ストレージ部3が構成される。上述したように、ストレージ部3は、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域として、n--型半導体層22の一部、n--型半導体層51、n型半導体層52、及びn型半導体層53を有する。また、ストレージ部3は、不純物濃度が段階的に異なる複数の領域を跨るように配置されている電極55を有している。ストレージ部3でのポテンシャル、すなわち、電極55の直下の領域のポテンシャルは、第二方向D2に沿って、段階的に深くなる。
 続いて、図13を参照して、変形例のストレージ部3が有する、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域を形成する過程を説明する。図13は、ストレージ部における複数の領域の形成過程を説明するための図である。
 n型の不純物が所定の濃度で添加されているn型半導体層41をp型半導体層21の一方面側に有する半導体基板20を用意する。そして、n型半導体層41における、n---型半導体層22、n--型半導体層51、及びn型半導体層52の形成予定領域に、p型の不純物が所定の濃度で添加される。ここでは、形成予定領域に対応する位置に開口が形成されたマスクが用いられ、マスクの開口を通してp型の不純物が添加される。すなわち、n型半導体層53の形成予定領域には、p型の不純物が添加されない。これにより、n型半導体層41における、p型の不純物が添加されていない領域が、n型半導体層53となる。
 次に、n---型半導体層22及びn--型半導体層51の形成予定領域に、p型の不純物が更に所定の濃度で添加される。ここでは、形成予定領域に対応する位置に開口が形成されたマスクが用いられ、マスクの開口を通してp型の不純物が添加される。その後、n---型半導体層22の形成予定領域に、p型の不純物が更に所定の濃度で添加される。ここでも、形成予定領域に対応する位置に開口が形成されたマスクが用いられ、マスクの開口を通してp型の不純物が添加される。これにより、n型半導体層41における、p型の不純物が一度添加された領域が、n型半導体層52となり、p型の不純物が二度添加された領域が、n--型半導体層51となり、p型の不純物が三度添加された領域が、n---型半導体層22となる。
 以上の過程により、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(n---型半導体層22、n--型半導体層51、n型半導体層52、及びn型半導体層53)が形成される。
 以上のように、本変形例では、ストレージ部3が、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(n---型半導体層22、n--型半導体層51、n型半導体層52、及びn型半導体層53)と、電極55と、を有している。ストレージ部3の電極55は、n---型半導体層22、n--型半導体層51、n型半導体層52、及びn型半導体層53を跨るように配置されている。したがって、電極55における第二方向D2での途中部分に形成される電界が弱い場合であっても、当該途中部分直下の領域にて不純物濃度が段階的に一の方向に変化しているため、電極55の上記途中部分直下の領域でのポテンシャルの深さが適切に調整される。これにより、本変形例においても、飽和電荷量の増大と電荷転送の高速化との両立を高い次元で図ることができる。
 次に、図14~図17を参照して、本実施形態の変形例に係る固体撮像装置の構成を説明する。図14~図17は、本実施形態の変形例に係る固体撮像装置の構成を説明するための図である。
 図14に示された変形例に係る固体撮像装置は、各ストレージ部3に第一方向で並び、かつ、対応するストレージ部3に蓄積される電荷を排出する複数の電荷排出部61を備えている。各電荷排出部61は、電荷を排出するドレイン領域63と、ストレージ部3とドレイン領域63との間に位置するゲート領域65と、を有している。ゲート領域65は、ストレージ部3からドレイン領域63へ電荷の流入を制御する。ドレイン領域63は、n型半導体層63aと、n型半導体層63aに電気的に接続された電極63bからなる。n型半導体層63aは、ストレージ部3よりもn型の不純物の濃度が高い。ゲート領域65は、ストレージ部3と第一方向D1で隣接するn型半導体層65aと、n型半導体層65a上に配置されているゲート電極65bと、を有している。n型半導体層65aは、n型半導体層63aよりもn型の不純物の濃度が低い。
 ゲート電極65bに基準より低い電位を与えた場合、n型半導体層65aにおいてポテンシャルの障壁が形成される。これにより、ストレージ部3からドレイン領域63への電荷の流れが規制される。ゲート電極65bに基準より高い電位を与えた場合、n型半導体層65aにはポテンシャルの障壁が形成されない。これにより、電荷は、ドレイン領域63(n型半導体層63a)に流れ、排出される。
 本変形例では、ストレージ部3にて当該ストレージ部3の蓄積容量を超える電荷が発生した際に、蓄積容量を超えた分の電荷を電荷排出部61により排出することができる。これにより、蓄積容量を超えたストレージ部3から溢れた電荷が他のストレージ部3へ漏れ出す、いわゆるブルーミングを防止することができる。
 図15に示された変形例に係る固体撮像装置では、ストレージ部3が、第二方向D2に向かうにしたがって、第一方向D1での幅が大きくなっている。本変形例では、ストレージ部3から転送部5に向かう電荷の流れ、すなわち、ストレージ部3からの第二方向D2での電荷の流れを阻害することなく、電荷排出部61を配置することができる。
 図16及び図17に示された変形例に係る固体撮像装置では、ドレイン領域63(n型半導体層63a)が、第一方向D1で隣り合う電荷排出部61間で共用されている。これにより、電荷排出部61の省スペース化を図ることができる。図14に示された変形例においても、ドレイン領域63(n型半導体層63a)が、第一方向D1で隣り合う電荷排出部61間で共用されていてもよい。
 図18中の(a)に示された変形例に係る固体撮像装置では、ストレージ部3が、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(n型半導体層22、n型半導体層23、及びn++型半導体層24)と、電極32,33と、を有している。ストレージ部3において、n型半導体層23は、n型の不純物が一度添加された領域であり、n++型半導体層24は、n型の不純物が二度添加された領域である。ストレージ部3の電極32は、n型半導体層22とn型半導体層23とを跨るように、また、電極33は、n型半導体層23とn++型半導体層24とを跨るように配置されている。したがって、ストレージ部3でのポテンシャルは、本実施形態と同様に、第二方向D2に沿って、段階的に深くなる。
 図18中の(b)に示された変形例に係る固体撮像装置では、ストレージ部3が、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(n型半導体層22、n型半導体層51、n++型半導体層52、及びn+++型半導体層53)と、電極55と、を有している。ストレージ部3において、n型半導体層51は、n型の不純物が一度添加された領域であり、n++型半導体層52は、n型の不純物が二度添加された領域であり、n+++型半導体層53は、n型の不純物が三度添加された領域である。ストレージ部3の電極55は、n型半導体層22、n型半導体層51、n++型半導体層52、及びn+++型半導体層53を跨るように配置されている。したがって、ストレージ部3でのポテンシャルは、図11及び図12に示された変形例と同様に、第二方向D2に沿って、段階的に深くなる。
 図18に示された変形例では、n型の不純物を添加することにより、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している複数の領域(n型半導体層22、n型半導体層23、及びn++型半導体層24)が形成されている。本変形例においても、飽和電荷量の増大と電荷転送の高速化との両立を高い次元で図ることができる。
 以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 たとえば、ストレージ部3における、不純物濃度が第二方向D2に向かって段階的に一の方向に変化している領域数は、上述した実施形態及び変形例での数に限られない。ストレージ部3が有する電極の数も、上述した実施形態及び変形例での数に限られない。
 本発明は、CCDリニアイメージセンサなどの固体撮像装置に利用できる。
 3…ストレージ部、5…転送部、7…シフトレジスタ、10…光電変換部、11…光感応領域、13…電位勾配形成部、20…半導体基板、22…n--型半導体層,n---型半導体層,n型半導体層、23…n型半導体層,n型半導体層、24…n型半導体層,n++型半導体層、31,32,33,55…電極、51…n--型半導体層,n型半導体層、52…n型半導体層,n++型半導体層、53…n型半導体層,n+++型半導体層、61…電荷排出部、63…ドレイン領域、65…ゲート領域、D1…第一方向、D2…第二方向、SI…固体撮像装置。

Claims (6)

  1.  固体撮像装置であって、
     第一方向に並んだ複数の光電変換部と、
     対応する前記光電変換部と前記第一方向に直交する第二方向で並び、かつ、対応する前記光電変換部で発生した電荷を蓄積する複数の電荷蓄積部と、
     前記複数の電荷蓄積部からそれぞれ転送された電荷を取得し、前記第一方向に転送して出力する電荷出力部と、を備え、
     各前記光電変換部は、
      光入射に応じて電荷を発生する光感応領域と、
      前記光感応領域に対して前記第二方向に沿って高くされた電位勾配を形成し、前記光感応領域での電荷の移動を前記第二方向に促進する電位勾配形成部と、を有し、
     各前記電荷蓄積部は、
      不純物濃度が前記第二方向に向かって段階的に一の方向に変化している複数の領域と、
      不純物濃度が段階的に異なる前記複数の領域を跨るように配置され、かつ、前記複数の領域に電界を印加する電極と、を有している。
  2.  請求項1に記載の固体撮像装置であって、
     各前記電荷蓄積部は、前記複数の領域として、前記第二方向に並ぶ第一領域と第二領域とを有し、
     前記第一領域と前記第二領域とでは、前記第一領域と前記第二領域とに不純物を注入し、かつ、不純物が注入された前記第二領域に不純物を更に注入することにより、不純物濃度が段階的に一の方向に変化している。
  3.  請求項2に記載の固体撮像装置であって、
     前記第二領域は、前記第二方向で前記光感応領域と隣り合い、
     前記光感応領域は、前記第二領域と共に不純物を注入することにより、前記第二領域と不純物濃度が同等である。
  4.  請求項1~3のいずれか一項に記載の固体撮像装置であって、
     各前記電荷蓄積部に前記第一方向で並び、かつ、前記電荷蓄積部に蓄積される電荷を排出する複数の電荷排出部を更に備えている。
  5.  請求項4に記載の固体撮像装置であって、
     各前記電荷蓄積部は、前記第二方向に向かうにしたがって、前記第一方向での幅が大きくなっている。
  6.  請求項4又は5に記載の固体撮像装置であって、
     各前記電荷排出部は、
      電荷を排出するドレイン領域と、
      前記電荷蓄積部と前記ドレイン領域との間に位置し、かつ、前記電荷蓄積部から前記ドレイン領域へ電荷の流入を制御するゲート領域と、を有し、
     前記ドレイン領域は、前記第一方向で隣り合う前記電荷排出部間で共用されている。
PCT/JP2015/071978 2014-09-01 2015-08-03 固体撮像装置 WO2016035494A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580046692.6A CN106663690B (zh) 2014-09-01 2015-08-03 固体摄像装置
US15/502,003 US10483302B2 (en) 2014-09-01 2015-08-03 Solid-state imaging device
EP15838751.4A EP3190622B1 (en) 2014-09-01 2015-08-03 Solid-state imaging device
KR1020177006540A KR102386626B1 (ko) 2014-09-01 2015-08-03 고체 촬상 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-177195 2014-09-01
JP2014177195A JP6739891B2 (ja) 2014-09-01 2014-09-01 固体撮像装置

Publications (1)

Publication Number Publication Date
WO2016035494A1 true WO2016035494A1 (ja) 2016-03-10

Family

ID=55439562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071978 WO2016035494A1 (ja) 2014-09-01 2015-08-03 固体撮像装置

Country Status (7)

Country Link
US (1) US10483302B2 (ja)
EP (1) EP3190622B1 (ja)
JP (1) JP6739891B2 (ja)
KR (1) KR102386626B1 (ja)
CN (1) CN106663690B (ja)
TW (1) TWI692858B (ja)
WO (1) WO2016035494A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908880B2 (en) 2017-09-04 2024-02-20 Hamamatsu Photonics K.K. Solid state imaging device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109804308B (zh) * 2017-08-25 2023-03-07 深圳市汇顶科技股份有限公司 一种可形成电位能梯度的感光元件
JP2020141029A (ja) * 2019-02-27 2020-09-03 株式会社東芝 固体撮像装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194870A (ja) * 1985-02-25 1986-08-29 Nec Corp 固体撮像装置
JPH06104417A (ja) * 1992-09-18 1994-04-15 Matsushita Electron Corp 固体撮像装置
JPH06236987A (ja) * 1993-02-12 1994-08-23 Matsushita Electron Corp 固体撮像装置
JP2002373979A (ja) * 2001-06-15 2002-12-26 Toshiba Microelectronics Corp 固体ラインセンサー
JP2004303982A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd 固体撮像素子
JP2007258424A (ja) * 2006-03-23 2007-10-04 Seiko Epson Corp 固体撮像素子の製造方法及び固体撮像素子
JP2009272333A (ja) * 2008-04-30 2009-11-19 Hamamatsu Photonics Kk 固体撮像装置
JP2011187921A (ja) * 2010-02-09 2011-09-22 Renesas Electronics Corp 固体撮像装置及びその駆動方法
JP2012151364A (ja) * 2011-01-20 2012-08-09 Hamamatsu Photonics Kk 固体撮像装置
JP2015090907A (ja) * 2013-11-05 2015-05-11 浜松ホトニクス株式会社 リニアイメージセンサ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194780A (ja) 1985-02-25 1986-08-29 Hitachi Ltd 半導体装置の製造方法
WO2008066067A1 (fr) * 2006-11-28 2008-06-05 Hamamatsu Photonics K.K. Élément d'imagerie à l'état solide
JP5350659B2 (ja) 2008-03-25 2013-11-27 浜松ホトニクス株式会社 固体撮像装置
EP2216981A1 (en) * 2009-02-09 2010-08-11 Thomson Licensing Method, apparatus and system for providing a color device characterization with a quality evaluation
WO2010092644A1 (ja) * 2009-02-13 2010-08-19 パナソニック株式会社 固体撮像装置及びカメラ
JP2013175610A (ja) * 2012-02-27 2013-09-05 Toshiba Corp 固体撮像素子

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61194870A (ja) * 1985-02-25 1986-08-29 Nec Corp 固体撮像装置
JPH06104417A (ja) * 1992-09-18 1994-04-15 Matsushita Electron Corp 固体撮像装置
JPH06236987A (ja) * 1993-02-12 1994-08-23 Matsushita Electron Corp 固体撮像装置
JP2002373979A (ja) * 2001-06-15 2002-12-26 Toshiba Microelectronics Corp 固体ラインセンサー
JP2004303982A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Ind Co Ltd 固体撮像素子
JP2007258424A (ja) * 2006-03-23 2007-10-04 Seiko Epson Corp 固体撮像素子の製造方法及び固体撮像素子
JP2009272333A (ja) * 2008-04-30 2009-11-19 Hamamatsu Photonics Kk 固体撮像装置
JP2011187921A (ja) * 2010-02-09 2011-09-22 Renesas Electronics Corp 固体撮像装置及びその駆動方法
JP2012151364A (ja) * 2011-01-20 2012-08-09 Hamamatsu Photonics Kk 固体撮像装置
JP2015090907A (ja) * 2013-11-05 2015-05-11 浜松ホトニクス株式会社 リニアイメージセンサ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3190622A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11908880B2 (en) 2017-09-04 2024-02-20 Hamamatsu Photonics K.K. Solid state imaging device

Also Published As

Publication number Publication date
EP3190622B1 (en) 2021-09-22
TWI692858B (zh) 2020-05-01
EP3190622A4 (en) 2018-04-25
KR20170049522A (ko) 2017-05-10
EP3190622A1 (en) 2017-07-12
TW201622119A (zh) 2016-06-16
JP2016051852A (ja) 2016-04-11
JP6739891B2 (ja) 2020-08-12
US20170229501A1 (en) 2017-08-10
KR102386626B1 (ko) 2022-04-15
CN106663690A (zh) 2017-05-10
US10483302B2 (en) 2019-11-19
CN106663690B (zh) 2019-11-29

Similar Documents

Publication Publication Date Title
US9818794B2 (en) Solid-state image sensor and camera
JP6018376B2 (ja) 固体撮像装置およびカメラ
US9711558B2 (en) Imaging device with photoelectric converter
US8349640B2 (en) Method of manufacturing solid-state image sensor
US9190439B2 (en) Solid-state image pickup device
WO2012098747A1 (ja) 固体撮像装置
JP5489855B2 (ja) 固体撮像装置の製造方法
WO2016035494A1 (ja) 固体撮像装置
US7244971B2 (en) Solid state image pickup device
JP6348272B2 (ja) 電荷結合素子及びその製造方法、並びに固体撮像装置
JP6818075B2 (ja) 固体撮像装置
WO2017056345A1 (ja) 固体撮像装置及びその製造方法
JP2017011300A (ja) 固体撮像装置およびカメラ
JP4696596B2 (ja) 撮像素子及び撮像素子の製造方法
US20130049157A1 (en) Solid-state imaging device and manufacturing method thereof
JP2012023205A (ja) 固体撮像装置
CN112018133A (zh) 半导体元件、半导体元件制备方法以及固态成像装置
JP2010073804A (ja) 固体撮像装置
JP2007123655A (ja) 固体撮像素子
JP2012049553A (ja) 固体撮像装置およびその製造方法
JP2008117941A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838751

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015838751

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006540

Country of ref document: KR

Kind code of ref document: A