WO2016031664A1 - ポリエステル樹脂組成物及び成形体 - Google Patents

ポリエステル樹脂組成物及び成形体 Download PDF

Info

Publication number
WO2016031664A1
WO2016031664A1 PCT/JP2015/073340 JP2015073340W WO2016031664A1 WO 2016031664 A1 WO2016031664 A1 WO 2016031664A1 JP 2015073340 W JP2015073340 W JP 2015073340W WO 2016031664 A1 WO2016031664 A1 WO 2016031664A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
resin composition
polyrotaxane
examples
anhydride
Prior art date
Application number
PCT/JP2015/073340
Other languages
English (en)
French (fr)
Inventor
聖司 西岡
徳士 幸田
直幸 橋本
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to CN201580045607.4A priority Critical patent/CN106574101B/zh
Priority to US15/325,331 priority patent/US10113061B2/en
Priority to EP15835800.2A priority patent/EP3187540B1/en
Priority to JP2016545465A priority patent/JP6748577B2/ja
Priority to ES15835800T priority patent/ES2722049T3/es
Publication of WO2016031664A1 publication Critical patent/WO2016031664A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/3311Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group
    • C08G65/3314Polymers modified by chemical after-treatment with organic compounds containing oxygen containing a hydroxy group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/007Polyrotaxanes; Polycatenanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable

Definitions

  • the present invention relates to a polyester resin composition. Moreover, this invention relates to the molded object formed by shape
  • biodegradable plastics particularly biodegradable plastics
  • Typical biodegradable plastics include polyglycolic acid derived from petroleum, polylactic acid based on starch, aliphatic polyesters based on biomass-derived diols and dicarboxylic acids, and aliphatic polyesters produced by microorganisms. Polyester resins and aliphatic polycarbonates are known. These resins are metabolized by composting and finally decomposed into carbon dioxide and water.
  • biodegradable polyester resins have become relatively inexpensive due to expansion of production volume and improvement of production technology, so studies are being promoted as alternatives to general-purpose resins with low biodegradability. Expansion to is expected.
  • such a polyester resin is hard but brittle and has a problem of poor impact resistance, and it has been difficult to use it alone as a substitute for a general-purpose resin.
  • Patent Document 1 As a method for imparting flexibility, stretchability and impact resistance to a hard polyester resin, a method using a low molecular plasticizer (Patent Document 1) or a soft aliphatic polyester such as polycaprolactone or polybutylene succinate is used. A blending method is disclosed (Patent Documents 2 and 3).
  • a low molecular plasticizer as disclosed in Patent Document 1 must be blended in a large amount in order to exhibit a sufficient effect, and it bleeds out to the surface with the passage of time, resulting in an appearance. There has been a problem that it may cause damage or decrease in physical properties.
  • soft aliphatic polyesters disclosed in Patent Documents 2 and 3 must be blended in a large amount in order to provide sufficient flexibility, and as a result, other physical properties of the polyester resin are impaired. (For example, yield stress is remarkably reduced).
  • An object of this invention is to provide the polyester resin composition which can obtain the molded object which is excellent in extendibility. Moreover, an object of this invention is to provide the molded object formed by shape
  • the present invention contains a polyester resin and a polyrotaxane comprising a cyclic molecule, a linear molecule penetrating through the opening of the cyclic molecule, and a blocking group that blocks both ends of the linear molecule. It is a polyester resin composition.
  • the present invention is described in detail below.
  • the present inventors have found that by using a combination of a polyester resin and a polyrotaxane, it is possible to obtain a molded article having excellent stretchability without impairing other physical properties, and the present invention has been completed.
  • the polyester resin composition of the present invention contains a polyester resin.
  • the polyester resin is not particularly limited as long as it is a polymer having an ester bond in the main chain, and examples thereof include ⁇ -hydroxycarboxylic acid-based polyesters such as polylactic acid and polyglycolic acid, poly ⁇ -caprolactone, and poly ⁇ -valerolactone.
  • lactone polyesters such as polyethylene succinate, aliphatic polyesters such as diol / dicarboxylic acid polyesters such as polybutylene adipate, aromatic polyesters such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate. It is done.
  • polylactic acid-based resin means a polymer having a segment derived from lactic acid, and has a segment derived from another copolymer component other than lactic acid as long as the object of the present invention is not impaired. May be.
  • the “polyglycolic acid-based resin” means a polymer having a segment derived from glycolic acid, and is a segment derived from a copolymer component other than glycolic acid as long as the object of the present invention is not impaired. You may have.
  • the polyester resin preferably has a main chain composed only of an aliphatic structure.
  • the mass average molecular weight of the polyester resin varies depending on the use, but from the viewpoint of processability, the preferable lower limit is 10,000 and the preferable upper limit is 1,000,000.
  • the minimum with a more preferable mass average molecular weight of the said polyester resin is 20,000, and a more preferable upper limit is 300,000.
  • the mass average molecular weight is a value determined by polystyrene conversion measured by GPC unless otherwise specified. Examples of the column for measuring the mass average molecular weight in terms of polystyrene by GPC include TSKgel SuperHM-M (manufactured by Tosoh Corporation).
  • the polyester resin may be crystalline, semi-crystalline, or amorphous, and the same effect can be obtained with any property.
  • the preferable lower limit of the melting point is 60 ° C.
  • the preferable upper limit is 250 ° C.
  • the more preferable lower limit is 100 ° C.
  • the more preferable upper limit is 200 ° C.
  • the preferable lower limit of the glass transition temperature is 40 ° C.
  • the preferable upper limit is 250 ° C.
  • the more preferable lower limit is 50 ° C.
  • the more preferable upper limit is 200 ° C.
  • the minimum with preferable content of the said polyester resin in the whole polyester resin composition of this invention is 80 mass%, and a preferable upper limit is 99.9 mass%.
  • a preferable upper limit is 99.9 mass%.
  • the minimum with more preferable content of the said polyester resin is 90 mass%, and a more preferable upper limit is 99.5 mass%.
  • the polyester resin composition of the present invention contains a polyrotaxane comprising a cyclic molecule, a linear molecule penetrating through the opening of the cyclic molecule, and a blocking group that blocks both ends of the linear molecule. .
  • the cyclic molecule is not particularly limited as long as the linear molecule can be included so that the linear molecule penetrates through the opening in a skewered manner and can move on the linear molecule.
  • a conventionally known method for example, a method described in JP-A No. 2005-154675
  • cyclic of the cyclic molecule means substantially cyclic, and may be a complete ring-closed structure as long as it can move on the linear molecule. For example, a spiral structure may be used.
  • cyclic molecule examples include cyclic polymers such as cyclic polyether, cyclic polyester, and cyclic polyetheramine, pillar arenes, cyclophanes, ring-expanded porphyrins, and cyclodextrins.
  • cyclic polymer examples include crown ether and derivatives thereof, calixarene and derivatives thereof, cyclophane and derivatives thereof, cryptand and derivatives thereof, and the like.
  • the cyclic molecule is appropriately selected depending on the type of linear molecule to be used, but since it is easily available and many types of blocking groups can be selected, ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclo Cyclodextrins such as dextrin are preferred. For example, as will be described later, when polyethylene glycol is selected as the linear molecule, ⁇ -cyclodextrin is preferred from the viewpoint of the stability of the resulting clathrate.
  • a part of the hydroxyl groups of the cyclodextrins is modified with a modifying group that improves the compatibility with the polyester resin (hereinafter also referred to as “solubility-imparting group”). It is preferable.
  • solubility-imparting group examples include an acetyl group, an alkyl group having 1 to 18 carbon atoms, a trityl group, a trimethylsilyl group, a phenyl group, a polyester chain, an oxyethylene chain, and a polyacrylate chain.
  • strand as a polyester chain from a viewpoint of improving the compatibility to the polyester resin of a polyrotaxane.
  • These solubility-imparting groups may be introduced alone, or two or more of them may be introduced.
  • the hydroxyl group of the cyclodextrins is first modified with an oxyethylene chain, and the introduced oxyethylene chain terminal end is introduced.
  • a method of introducing a polyester chain starting from a hydroxyl group can be used. Specifically, after adding a hydroxypropyl group to a hydroxyl group present in cyclodextrin itself, ring-opening polymerization of ⁇ -caprolactone can be carried out via the hydroxyl group of the hydroxypropyl group to introduce a polycaprolactone chain.
  • the introduction rate of the solubility-imparting group, when using cyclodextrins as the cyclic molecule, is preferably a lower limit of 10 mol% and a preferred upper limit with respect to the total hydroxyl groups of the cyclodextrins. Is 90 mol%, a more preferred lower limit is 30 mol%, and a more preferred upper limit is 70 mol%. *
  • the polycaprolactone chain is also referred to as a substituent at the terminal (hereinafter referred to as “terminal substituent”) for the purpose of further improving the compatibility of the polyrotaxane with the polyester resin.
  • terminal substituent examples include a hydroxyl group, a carboxyl group, an ester group, and a (meth) acryloyl group. Of these, a hydroxyl group and a carboxyl group are preferable, and a carboxyl group is more preferable.
  • the “(meth) acryloyl” means at least one of “acryloyl” and “methacryloyl”.
  • the preferable lower limit is 50 mol%
  • the preferable upper limit is 90 mol%
  • the more preferable lower limit is 70 mol% with respect to the entire terminal of the polycaprolactone chain.
  • the terminal substituent of the polycaprolactone chain includes a reactive group such as a terminal hydroxyl group of the polycaprolactone chain of the cyclic molecule before introducing the substituent, a functional group capable of reacting with the reactive group, and a substituent to be introduced. It can introduce
  • a carboxyl group for example, succinic anhydride, methyl succinic anhydride, dodecenyl succinic anhydride, caronic anhydride, Maleic anhydride, citraconic anhydride, 1,1-cyclohexanediacetic anhydride, diacetyltartaric anhydride, glutaric anhydride, 3,3-dimethylglutaric anhydride, diglycolic anhydride, phthalic anhydride, anhydrous Trimellitic acid, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, tetrahydrophthalic anhydride, hymic anhydride, chlorendic anhydride, camphoric anhydride, norbornadiene dicarboxylic anhydride, 1,8-naphthalic acid Cyclic acids such
  • the preferable lower limit of the contact ratio is 0.1%, the preferable upper limit is 60%, the more preferable lower limit is 1%, the more preferable upper limit is 50%, the still more preferable lower limit is 5%, and the further preferable upper limit is 40%.
  • the maximum inclusion amount can be determined by the length of the linear molecule and the thickness of the cyclic molecule. For example, the maximum inclusion amount when the linear molecule is polyethylene glycol and the cyclic molecule is ⁇ -cyclodextrin is experimentally determined (see Macromolecules 1993, 26, 5698-5703).
  • the linear molecule is not particularly limited as long as it can be clasped into the opening of the cyclic molecule.
  • polyethylene glycol, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol, and polyvinyl methyl ether are preferable, polyethylene glycol, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, Polyethylene and polypropylene are more preferred, and polyethylene glycol is even more preferred.
  • the “(meth) acryl” means at least one of “acryl” and “methacryl”.
  • the preferable lower limit of the weight average molecular weight of the linear molecule is 3000, and the preferable upper limit is 300,000.
  • the more preferable lower limit of the weight average molecular weight of the linear molecule is 5000, the more preferable upper limit is 100,000, the still more preferable lower limit is 10,000, and the still more preferable upper limit is 50,000.
  • the mass average molecular weight of the said linear molecule is a value calculated
  • the linear molecule is preferably polyethylene glycol
  • the cyclic molecule is preferably a molecule derived from ⁇ -cyclodextrin.
  • the blocking groups are arranged at both ends of the linear molecule included in the cyclic molecule and have a role of preventing the cyclic molecule from leaving.
  • a conventionally known method for example, a method described in JP-A-2005-154675
  • JP-A-2005-154675 a method described in JP-A-2005-154675
  • Examples of the blocking group include dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, pyrenes, anthracenes, and the like, and a mass average molecular weight of 1,000 to 1,000,000. Examples include a main chain or a side chain of a polymer. Of these, dinitrophenyl groups, cyclodextrins, adamantane groups, trityl groups, fluoresceins, silsesquioxanes, and pyrenes are preferable, and adamantane groups and trityl groups are more preferable.
  • Examples of the polymer having a mass average molecular weight of 1,000 to 1,000,000 include polyamide, polyimide, polyurethane, polydimethylsiloxane, and polyacrylate. Two or more of these blocking groups may be mixed in the polyrotaxane.
  • the minimum with preferable content of the said polyrotaxane in the whole polyester resin composition of this invention is 0.1 mass%, and a preferable upper limit is 20 mass%.
  • a preferable upper limit is 20 mass%.
  • the more preferable lower limit of the polyrotaxane content is 0.5% by mass, the more preferable upper limit is 15% by mass, and the still more preferable upper limit is 10% by mass.
  • the polyester resin composition of the present invention is a cross-linking agent, a curing accelerator, a hydrolysis inhibitor, an antioxidant, a plasticizer, an ultraviolet absorber, a crystal nucleating agent, if necessary, as long as the object of the present invention is not impaired.
  • Various additives such as flame retardants and fillers may be contained.
  • crosslinking agent examples include polycarbodiimide, styrene / acrylic copolymer having an epoxy group, acrylic copolymer having an epoxy group, and ethylene-glycidyl methacrylate copolymer.
  • hydrolysis inhibitor examples include carbodiimide compounds, isocyanate compounds, oxazoline compounds, and the like.
  • antioxidants examples include phenol-based antioxidants, amine-based antioxidants, phosphorus-based antioxidants, and sulfur-based antioxidants.
  • plasticizer examples include glycerin ester compounds, lactic acid ester compounds, dibasic acid ester compounds, and polyalkylene glycols.
  • ultraviolet absorber examples include benzophenone ultraviolet absorbers, benzotriazole ultraviolet absorbers, triazine ultraviolet absorbers, and benzoate ultraviolet absorbers.
  • crystal nucleating agent examples include organic amide compounds, organic hydrazide compounds, carboxylic acid ester compounds, organic sulfonates, organic phosphonates, and talc.
  • Examples of the flame retardant include a brominated flame retardant, a metal hydroxide flame retardant, and a phosphorus flame retardant.
  • filler examples include glass fiber, glass bead, carbon fiber, calcium carbonate, clay, cellulose, chitin and the like.
  • the content of the additive is preferably 100% by mass or less in total with respect to the entire polyester resin composition of the present invention.
  • the polyester resin, the polyrotaxane, and additives used as necessary are uniformly mixed with a Henschel mixer, a blender, etc., and then rolled, extruded. After melt-kneading using a melt-kneader such as a machine, Banbury mixer, plastograph, Brabender, etc., or after dissolving the polyester resin, the polyrotaxane, and additives used as necessary in a solvent And a method of removing the solvent.
  • a melt-kneader such as a machine, Banbury mixer, plastograph, Brabender, etc.
  • a molded article obtained by molding the polyester resin composition of the present invention is also one aspect of the present invention.
  • the shape of the molded body of the present invention is not particularly limited, and examples thereof include a strand shape, a film shape, a flat plate shape, and a pellet shape.
  • Examples of the method for producing the molded body of the present invention include an injection molding method, a compression molding method, an extrusion molding method, an inflation molding method, a blow molding method, and a calendar molding method.
  • the molded article of the present invention has a preferred lower limit of elongation at break representing stretchability of 50%, a more preferred lower limit of 100%, a still more preferred lower limit of 150%, and a particularly preferred lower limit of 200%.
  • the elongation at break can be measured, for example, by performing a tensile test using a universal testing machine such as AGS-J (manufactured by Shimadzu Corporation) at a measurement temperature of 25 ° C. and a tensile speed of 20 mm / min.
  • the molded body of the present invention is hard and has stretchability, it can be used for a wide range of applications.
  • Examples of uses of the molded article of the present invention include films, agricultural materials, electric / electronic parts, building members, automobile parts, daily necessities, fibers, and the like.
  • the polyester resin composition which can obtain the molded object which is excellent in extendibility can be provided. Moreover, according to this invention, the molded object formed by shape
  • FIG. 1 is a transmission electron micrograph of the resin composition obtained in Example 4.
  • Example 1 Crystalline polylactic acid (“Ingeo Polymer 2003D”, poly-L-lactic acid, weight average molecular weight 200,000, manufactured by Nature Works) as the polyester resin and PR described above as the polyrotaxane in chloroform at the blending ratio shown in Table 1 After dissolving and stirring for 1 hour, chloroform was removed to obtain a resin composition.
  • 1 is a transmission electron micrograph of the resin composition obtained in Example 4.
  • Example 3 A resin composition was obtained in the same manner as in Example 1, except that poly ⁇ -caprolactone (“Plexel 302” manufactured by Daicel Corporation) was used in place of the polyrotaxane.
  • poly ⁇ -caprolactone (“Plexel 302” manufactured by Daicel Corporation) was used in place of the polyrotaxane.
  • Example 4 A resin composition was obtained in the same manner as in Example 4 except that polyethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) was used in place of the polyrotaxane.
  • polyethylene glycol manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 5 A resin composition was obtained in the same manner as in Example 1, except that glycerin diacetomonolaurate (manufactured by Riken Vitamin Co., Ltd., “Riquemar PL-012”) was used as a low molecular plasticizer instead of polyrotaxane.
  • glycerin diacetomonolaurate manufactured by Riken Vitamin Co., Ltd., “Riquemar PL-012”
  • Example 6 Crystalline polylactic acid (manufactured by Nature Works, “Ingeo Polymer 2003D”, poly-L-lactic acid, weight average molecular weight 200,000) as a polyester resin, and colorless rubber-like carboxylated polyrotaxane synthesized in Production Example 1 as a polyrotaxane 1 was added to a kneading / extrusion molding evaluation test apparatus (“Labo Plast Mill 4C150” manufactured by Toyo Seiki Seisakusho Co., Ltd.) at the blending ratio described in 1 and melt-kneaded at 190 ° C. and a rotation speed of 50 rpm for 10 minutes to obtain a resin composition Obtained.
  • a kneading / extrusion molding evaluation test apparatus (“Labo Plast Mill 4C150” manufactured by Toyo Seiki Seisakusho Co., Ltd.) at the blending ratio described in 1 and melt-kneaded at 190 ° C. and a rotation speed of 50 rpm for 10
  • Example 8 A resin composition was obtained in the same manner as in Example 6 except that the white rubber-like carboxylated polyrotaxane synthesized in Production Example 2 was used in place of the colorless rubber-like carboxylated polyrotaxane synthesized in Production Example 1. It was.
  • Example 9 Example 6 except that amorphous polylactic acid (manufactured by Nature Works, “Ingeo Polymer 4060D”, poly-DL-lactic acid, weight average molecular weight 100,000) was used as the polyester resin in place of crystalline polylactic acid. In the same manner as above, a resin composition was obtained.
  • amorphous polylactic acid manufactured by Nature Works, “Ingeo Polymer 4060D”, poly-DL-lactic acid, weight average molecular weight 100,000
  • Table 1 shows the semicrystalline polyglycolic acid (manufactured by Kureha, “Kuredux 100R60”, weight average molecular weight 170,000) as the polyester resin and the colorless rubber-like carboxylated polyrotaxane synthesized in Production Example 1 as the polyrotaxane.
  • the blending ratio was added to a kneading / extrusion molding evaluation test apparatus (“Labo Plast Mill 4C150” manufactured by Toyo Seiki Seisakusho Co., Ltd.), and melt-kneaded at 230 ° C. and a rotation speed of 50 rpm for 10 minutes to obtain a resin composition.
  • the obtained test piece was subjected to a tensile test using a universal testing machine (manufactured by Shimadzu Corporation, “AGS-J”) at a measurement temperature of 25 ° C. and a tensile speed of 20 mm / min, yield stress, breaking stress, and breaking We asked for growth.
  • AGS-J universal testing machine
  • a tensile test was performed at a measurement temperature of 25 ° C. and a tensile speed of 1 mm / min to obtain a tensile elastic modulus.
  • Total light transmittance Each resin composition obtained in Examples and Comparative Examples using polylactic acid was sandwiched between metal plates, pressed at 180 ° C. and 10 MPa for 2 minutes, then cooled in a 20 ° C. cooling press for 2 minutes, and long A film-like molded body having a thickness of 100 mm, a width of 100 mm, and a thickness of 0.2 mm was obtained. About the obtained molded object, the total light transmittance was measured using the haze meter (The Nippon Denshoku Industries Co., Ltd. make, "NDH 300A").
  • Comparative Examples 3 and 5 prepared by blending a large amount of polycaprolactone and a low molecular plasticizer, the elongation at break was greatly improved as in the case of blending polyrotaxane, but the yield stress and tensile modulus were increased. It can be seen that the total light transmittance is greatly reduced. Moreover, from Example 6 and Example 9 of Table 1, it can be seen that, in both the crystalline polyester resin and the amorphous polyester resin, the effect of greatly improving the breaking elongation can be obtained without greatly reducing the yield stress. .
  • FIG. 1 shows that in the polyester resin composition of the present invention, the polyrotaxane forms very fine domains of several tens of nm or less. From this, it is considered that the polyrotaxane is excellent in compatibility with the polyester resin.
  • the polyester resin composition which can obtain the molded object which is excellent in extendibility can be provided. Moreover, according to this invention, the molded object formed by shape

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本発明は、延伸性に優れる成形体を得ることができるポリエステル樹脂組成物を提供することを目的とする。また、本発明は、該ポリエステル樹脂組成物を成形してなる成形体を提供することを目的とする。 本発明は、ポリエステル樹脂、及び、環状分子と、該環状分子の開口部を串刺し状に貫通する直鎖状分子と、該直鎖状分子の両端を封鎖する封鎖基とからなるポリロタキサンを含有するポリエステル樹脂組成物である。

Description

ポリエステル樹脂組成物及び成形体
本発明は、ポリエステル樹脂組成物に関する。また、本発明は、該ポリエステル樹脂組成物を成形してなる成形体に関する。
近年、プラスチックごみの削減に対する世界的な要求が高まっている。その解決策の一つとして、分解性プラスチック、特に生分解性プラスチックの利用が広く検討されている。代表的な生分解性プラスチックには、石油由来のポリグリコール酸、澱粉を原料とするポリ乳酸、バイオマス由来のジオールとジカルボン酸を原料とする脂肪族ポリエステル、微生物により生産される脂肪族ポリエステル等のポリエステル樹脂や、脂肪族ポリカーボネート等が知られている。これらの樹脂は、コンポスト化することによって、微生物の代謝を受け、最終的に二酸化炭素と水に分解される。なかでも、生分解性のポリエステル樹脂は、生産量の拡大と生産技術の向上により、比較的安価になってきたことから、生分解性の低い汎用樹脂の代替として検討が進められ、様々な用途への展開が期待されている。しかしながら、このようなポリエステル樹脂は、硬質である一方で、脆く、耐衝撃性に乏しいという課題があり、単独では汎用樹脂の代替として用いることは困難であった。
硬質なポリエステル樹脂に柔軟性や延伸性や耐衝撃性を付与する方法としては、低分子可塑剤を用いる方法(特許文献1)や、ポリカプロラクトンやポリブチレンサクシネート等の軟質な脂肪族ポリエステルをブレンドする方法が開示されている(特許文献2、3)。しかしながら、特許文献1に開示されているような低分子可塑剤は、充分な効果を発現させるためには多量に配合しなければならず、時間の経過とともに表面にブリードアウトしてしまい、外観を損ねたり、物性の低下を引き起こしたりしてしまうという問題があった。また、特許文献2、3に開示されているような軟質な脂肪族ポリエステルも、充分な柔軟性をもたせるためには多量に配合しなければならず、その結果、ポリエステル樹脂の他の物性が損なわれる(例えば、降伏応力等が著しく低下する)等の問題があった。
特開2003-292474号公報 特開2001-026658号公報 特開2001-064379号公報
本発明は、延伸性に優れる成形体を得ることができるポリエステル樹脂組成物を提供することを目的とする。また、本発明は、該ポリエステル樹脂組成物を成形してなる成形体を提供することを目的とする。
本発明は、ポリエステル樹脂、及び、環状分子と、該環状分子の開口部を串刺し状に貫通する直鎖状分子と、該直鎖状分子の両端を封鎖する封鎖基とからなるポリロタキサンを含有するポリエステル樹脂組成物である。
以下に本発明を詳述する。
本発明者らは、ポリエステル樹脂とポリロタキサンとを組み合わせて用いることにより、他の物性を損なうことなく、延伸性に優れる成形体を得ることができることを見出し、本発明を完成させるに至った。
本発明のポリエステル樹脂組成物は、ポリエステル樹脂を含有する。
前記ポリエステル樹脂は、主鎖にエステル結合を有する重合体であれば特に限定されず、例えば、ポリ乳酸、ポリグリコール酸等のα-ヒドロキシカルボン酸系ポリエステル、ポリε-カプロラクトン、ポリδ-バレロラクトン等のラクトン系ポリエステル、ポリエチレンサクシネート、ポリブチレンアジペート等のジオール・ジカルボン酸系ポリエステル等の脂肪族ポリエステル、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の芳香族ポリエステル等が挙げられる。なかでも、ポリロタキサンとの相溶性の観点から、α-ヒドロキシカルボン酸系ポリエステルを含有することが好ましく、生分解性の観点から、ポリ乳酸系樹脂及び/又はポリグリコール酸系樹脂を含有することがより好ましい。また、透明性が求められる用途においては、ポリ乳酸系樹脂が好ましい。
前記ポリエステル樹脂は、単独で用いてもよいし、2種以上を組み合わせて用いてもよいし、共重合体であってもよい。
なお、前記「ポリ乳酸系樹脂」は、乳酸に由来するセグメントを有する重合体を意味し、本発明の目的を損なわない範囲において、乳酸以外の他の共重合成分に由来するセグメントを有していてもよい。同様に、前記「ポリグリコール酸系樹脂」は、グリコール酸に由来するセグメントを有する重合体を意味し、本発明の目的を損なわない範囲において、グリコール酸以外の他の共重合成分に由来するセグメントを有していてもよい。
前記ポリエステル樹脂は、生分解性の観点から、主鎖が脂肪族構造のみで構成されていることが好ましい。
前記ポリエステル樹脂の質量平均分子量は、用途によっても異なるが、加工性の観点から、好ましい下限が1万、好ましい上限が100万である。前記ポリエステル樹脂の質量平均分子量のより好ましい下限は2万、より好ましい上限は30万である。
なお、本明細書において前記質量平均分子量は、特に断りがない限り、GPCで測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による質量平均分子量を測定する際のカラムとしては、例えば、TSKgel SuperHM-M(東ソー社製)等が挙げられる。
前記ポリエステル樹脂は、結晶性であっても、半結晶性であっても、非晶性であってもよく、いずれの性質でも同等の効果が得られる。
前記ポリエステル樹脂が結晶性又は半結晶性である場合の融点の好ましい下限は60℃、好ましい上限は250℃であり、より好ましい下限は100℃、より好ましい上限は200℃である。
前記ポリエステル樹脂が非晶性である場合のガラス転移温度の好ましい下限は40℃、好ましい上限は250℃であり、より好ましい下限は50℃、より好ましい上限は200℃である。
本発明のポリエステル樹脂組成物全体中における前記ポリエステル樹脂の含有量の好ましい下限は80質量%、好ましい上限は99.9質量%である。前記ポリエステル樹脂の含有量がこの範囲であることにより、降伏応力の著しい低下等を引き起こすことなく得られる成形体の延伸性を充分に向上させることができる。前記ポリエステル樹脂の含有量のより好ましい下限は90質量%、より好ましい上限は99.5質量%である。
本発明のポリエステル樹脂組成物は、環状分子と、該環状分子の開口部を串刺し状に貫通する直鎖状分子と、該直鎖状分子の両端を封鎖する封鎖基とからなるポリロタキサンを含有する。
前記環状分子は、開口部に直鎖状分子が串刺し状に貫通するように包接可能であり、かつ、前記直鎖状分子上で移動可能であれば特に限定されない。
前記環状分子により前記直鎖状分子を包接する方法としては、従来公知の方法(例えば、特開2005-154675号公報記載の方法等)を用いることができる。
なお、本明細書において、前記環状分子の「環状」とは、実質的に環状であることを意味し、前記直鎖状分子上で移動可能であれば、完全な閉環構造体でなくてもよく、例えば、螺旋構造体であってもよい。
前記環状分子としては、例えば、環状ポリエーテル、環状ポリエステル、環状ポリエーテルアミン等の環状ポリマーや、ピラーアレーン類、シクロファン類、環拡張ポルフィリン類、シクロデキストリン類等が挙げられる。
前記環状ポリマーとしては、例えば、クラウンエーテル及びその誘導体、カリックスアレーン及びその誘導体、シクロファン及びその誘導体、クリプタンド及びその誘導体等が挙げられる。
前記環状分子としては、用いる直鎖状分子の種類によって適宜選択されるが、入手の容易さ、及び、封鎖基の種類を多数選択できることから、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン等のシクロデキストリン類が好ましい。例えば、後述するように、直鎖状分子としてポリエチレングリコールを選択した場合には、得られる包接体の安定性の観点から、α-シクロデキストリンが好ましい。
前記環状分子としてシクロデキストリン類を使用する場合、該シクロデキストリン類の水酸基の一部が、前記ポリエステル樹脂との相溶性を向上させる修飾基(以下、「溶解性付与基」ともいう)によって修飾されていることが好ましい。
前記溶解性付与基としては、例えば、アセチル基、炭素数1~18のアルキル基、トリチル基、トリメチルシリル基、フェニル基、ポリエステル鎖、オキシエチレン鎖、ポリアクリル酸エステル鎖等が挙げられる。なかでも、ポリロタキサンのポリエステル樹脂への相溶性を向上させる観点から、ポリエステル鎖としてポリカプロラクトン鎖を導入することが好ましい。これらの溶解性付与基は単独で導入されていてもよいし、2種以上が導入されていてもよい。2種以上の溶解性付与基を導入する場合、例えば、オキシエチレン鎖とポリエステル鎖とを導入する場合、シクロデキストリン類の水酸基を、まずオキシエチレン鎖で修飾し、導入されたオキシエチレン鎖末端の水酸基を起点として、ポリエステル鎖を導入する方法等を用いることができる。具体的には、シクロデキストリン自体に存在する水酸基にヒドロキシプロピル基を付加した後、該ヒドロキシプロピル基の水酸基を介してε-カプロラクトンの開環重合を行い、ポリカプロラクトン鎖を導入することができる。
前記溶解性付与基の導入率は、前記ポリエステル樹脂との相溶性の観点から、環状分子としてシクロデキストリン類を用いる場合、シクロデキストリン類の全水酸基に対して、好ましい下限が10モル%、好ましい上限が90モル%、より好ましい下限が30モル%、より好ましい上限が70モル%である。 
前記環状分子にポリカプロラクトン鎖が導入されている場合、該ポリカプロラクトン鎖は、ポリロタキサンのポリエステル樹脂への相溶性をさらに改善することを目的として、末端に置換基(以下、「末端置換基」ともいう)を有していてもよい。
前記ポリカプロラクトン鎖の末端置換基としては、水酸基、カルボキシル基、エステル基、(メタ)アクリロイル基等が挙げられる。なかでも、水酸基、カルボキシル基が好ましく、カルボキシル基がより好ましい。
なお、本明細書において、前記「(メタ)アクリロイル」とは、「アクリロイル」及び「メタクリロイル」の少なくともいずれかを意味する。
前記ポリカプロラクトン鎖の末端置換基の導入率は、前記ポリカプロラクトン鎖の末端全体に対して、好ましい下限が50モル%、好ましい上限が90モル%、より好ましい下限が70モル%である。
前記ポリカプロラクトン鎖の末端置換基は、該置換基を導入する前の環状分子の有するポリカプロラクトン鎖の末端水酸基等の反応性基と、該反応性基と反応可能な官能基及び導入したい置換基を有する化合物とを反応させることによって導入させることができる。
前記反応性基と反応可能な官能基及び導入したい置換基を有する化合物としては、カルボキシル基を導入したい場合は、例えば、無水コハク酸、メチル無水コハク酸、ドデセニル無水コハク酸、カロン酸無水物、無水マレイン酸、シトラコン酸無水物、1,1-シクロヘキサン二酢酸無水物、ジアセチル酒石酸無水物、グルタル酸無水物、3,3-ジメチルグルタル酸無水物、ジグリコール酸無水物、無水フタル酸、無水トリメリト酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水ハイミック酸、無水クロレンド酸、無水カンファー酸、ノルボルナジエンジカルボン酸無水物、1,8-ナフタル酸無水物、イサト酸無水物、ジフェン酸無水物等の環状酸無水物が挙げられ、エステル基を導入したい場合は、例えば、アセチルクロリド、プロピオン酸クロリド等の酸塩化物、無水酢酸、プロピオン酸無水物等のカルボン酸無水物、酢酸メチル、アセト酢酸エチル等のエステルが挙げられ、(メタ)アクリロイル基を導入したい場合は、例えば、(メタ)アクリロイルクロリド、(メタ)アクリル酸無水物、2-(メタ)アクリロイルオキシエチルイソシアネート、2-ヒドロキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、α-メタクリロイルオキシ-γ-ブチロラクトン、β-メタクリロイルオキシ-γ-ブチロラクトン等が挙げられる。
前記環状分子が前記直鎖状分子を包接する際に最大限に包接できる量(最大包接量)に対する前記環状分子の包接量を百分率で示したものを包接率とするとき、包接率の好ましい下限は0.1%、好ましい上限は60%であり、より好ましい下限は1%、より好ましい上限は50%であり、更に好ましい下限は5%、更に好ましい上限は40%である。
なお、前記最大包接量は、直鎖状分子の長さ、及び、環状分子の厚さによって決定することができる。例えば、直鎖状分子がポリエチレングリコールであり、環状分子がα-シクロデキストリンである場合の最大包接量は実験的に求められている(Macromolecules 1993,26,5698-5703参照)。
前記直鎖状分子は、環状分子の開口部に串刺し状に包接され得るものであれば特に限定されず、例えば、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリルアミド、ポリエチレンオキサイド、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルメチルエーテル、ポリテトラヒドロフラン、ポリアニリン、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、カゼイン、ゼラチン、でんぷん、セルロース系樹脂(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等)、ポリオレフィン樹脂(ポリエチレン、ポリプロピレン、ポリイソブチレン、及び、これらを構成する単量体とその他のオレフィン系単量体との共重合体等)、ポリエステル樹脂、ポリ塩化ビニル系樹脂(ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体等)、ポリスチレン系樹脂(ポリスチレン、アクリロニトリル-スチレン共重合体等)、アクリル樹脂(ポリ(メタ)アクリル酸、ポリメチルメタクリレート、(メタ)アクリル酸エステル共重合体、アクリロニトリル-メチルアクリレート共重合体等)、ポリカーボネート樹脂、ポリウレタン樹脂、ポリビニルアセタール樹脂(ポリビニルブチラール樹脂等)、ポリアミド樹脂(ナイロン(登録商標)等)、ポリイミド樹脂、ポリジエン樹脂(ポリイソプレン、ポリブタジエン等)、ポリシロキサン樹脂(ポリジメチルシロキサン等)、ポリスルホン樹脂、ポリイミン樹脂(ポリエチレンイミン等)、ポリアミン樹脂、ポリ無水酢酸系樹脂、ポリ尿素系樹脂、ポリスルフィド樹脂、ポリフォスファゼン樹脂、ポリケトン樹脂、ポリフェニレン樹脂、ポリハロオレフィン樹脂、及び、これらの共重合体や誘導体や変性体等が挙げられる。なかでも、ポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ポリビニルメチルエーテルが好ましく、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレンがより好ましく、ポリエチレングリコールが更に好ましい。
なお、本明細書において、前記「(メタ)アクリル」とは、「アクリル」及び「メタクリル」の少なくともいずれかを意味する。
前記直鎖状分子の質量平均分子量の好ましい下限は3000、好ましい上限は30万である。直鎖状分子の質量平均分子量がこの範囲であることにより、ポリロタキサンとポリエステル樹脂との相溶性を悪化させることなく得られる成形体の延伸性を充分に向上させることができる。前記直鎖状分子の質量平均分子量のより好ましい下限は5000、より好ましい上限は10万であり、更に好ましい下限は1万、更に好ましい上限は5万である。
なお、前記直鎖状分子の質量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリエチレングリコール換算により求められる値である。GPCによってポリエチレングリコール換算による質量平均分子量を測定する際のカラムとしては、例えば、TSKgel SuperAWM-H(東ソー社製)等が挙げられる。
本発明において用いるポリロタキサンは、直鎖状分子がポリエチレングリコールであり、かつ、環状分子がα-シクロデキストリン由来の分子であることが好ましい。
前記封鎖基は、環状分子に包接された直鎖状分子の両末端に配置され、環状分子が脱離しないように作用する役割を有する。直鎖状分子の両端を封鎖基で封鎖する方法としては、従来公知の方法(例えば、特開2005-154675号公報記載の方法等)を用いることができる。
前記封鎖基としては、例えば、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、ピレン類、アントラセン類等や、質量平均分子量1000~100万の高分子の主鎖又は側鎖等が挙げられる。
なかでも、ジニトロフェニル基類、シクロデキストリン類、アダマンタン基類、トリチル基類、フルオレセイン類、シルセスキオキサン類、ピレン類が好ましく、アダマンタン基類、トリチル基類がより好ましい。
前記質量平均分子量1000~100万の高分子としては、例えば、ポリアミド、ポリイミド、ポリウレタン、ポリジメチルシロキサン、ポリアクリル酸エステル等が挙げられる。
これらの封鎖基は、ポリロタキサン中で2種以上混在していてもよい。
本発明のポリエステル樹脂組成物全体中における前記ポリロタキサンの含有量の好ましい下限は0.1質量%、好ましい上限は20質量%である。前記ポリロタキサンの含有量がこの範囲であることにより、得られる成形体が延伸性に特に優れるものとなる。前記ポリロタキサンの含有量のより好ましい下限は0.5質量%、より好ましい上限は15質量%、更に好ましい上限は10質量%である。 
本発明のポリエステル樹脂組成物は、本発明の目的を阻害しない範囲において、必要に応じて、架橋剤、硬化促進剤、加水分解防止剤、酸化防止剤、可塑剤、紫外線吸収剤、結晶核剤、難燃剤、充填剤等の各種添加剤を含有してもよい。
前記架橋剤としては、例えば、ポリカルボジイミド、エポキシ基を有するスチレン・アクリル共重合体、エポキシ基を有するアクリル共重合体、エチレン-グリシジルメタクリレート共重合体等が挙げられる。
前記加水分解防止剤としては、例えば、カルボジイミド化合物、イソシアネート化合物、オキサゾリン化合物等が挙げられる。
前記酸化防止剤としては、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤等が挙げられる。
前記可塑剤としては、例えば、グリセリンエステル化合物、乳酸エステル化合物、二塩基酸エステル化合物、ポリアルキレングリコール等が挙げられる。
前記紫外線吸収剤としては、例えば、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾエート系紫外線吸収剤等が挙げられる。
前記結晶核剤としては、例えば、有機アミド化合物、有機ヒドラジド化合物、カルボン酸エステル系化合物、有機スルホン酸塩、有機ホスホン酸塩、タルク等が挙げられる。
前記難燃剤としては、例えば、臭素系難燃剤、金属水酸化物系難燃剤、リン系難燃剤等が挙げられる。
前記充填剤としては、例えば、ガラス繊維、ガラスビーズ、炭素繊維、炭酸カルシウム、クレイ、セルロース、キチン等が挙げられる。
前記添加剤の含有量は、本発明のポリエステル樹脂組成物全体に対して、合計で100質量%以下であることが好ましい。
本発明のポリエステル樹脂組成物を製造する方法としては、例えば、前記ポリエステル樹脂、前記ポリロタキサン、及び、必要に応じて用いられる添加剤を、ヘンシェルミキサー、ブレンダー等で均一に混合した後、ロール、押出機、バンバリーミキサー、プラストグラフ、ブラベンダー等の溶融混練機を用いて溶融混練する方法や、前記ポリエステル樹脂、前記ポリロタキサン、及び、必要に応じて用いられる添加剤を溶媒に溶解させて撹拌した後、該溶媒を除去する方法等が挙げられる。
本発明のポリエステル樹脂組成物を成形してなる成形体もまた、本発明の1つである。
本発明の成形体の形状は特に限定されず、例えば、ストランド状、フィルム状、平板状、ペレット状等が挙げられる。
本発明の成形体を製造する方法としては、例えば、射出成形法、圧縮成形法、押出成形法、インフレーション成形法、ブロー成形法、カレンダー成形法等が挙げられる。
本発明の成形体は、延伸性を表す破断伸びの好ましい下限が50%、より好ましい下限が100%、更に好ましい下限が150%、特に好ましい下限が200%である。
なお、上記破断伸びは、例えば、AGS-J(島津製作所社製)等の万能試験機を用いて、測定温度25℃、引張速度20mm/minの条件で引張試験を行なうことにより測定できる。
本発明の成形体は、硬質であり、かつ、延伸性を兼ね備えていることから、幅広い用途に利用できる。本発明の成形体の用途としては、例えば、フィルム、農業資材、電気・電子部品、建築部材、自動車部品、日用品、繊維等が挙げられる。
本発明によれば、延伸性に優れる成形体を得ることができるポリエステル樹脂組成物を提供することができる。また、本発明によれば、該ポリエステル樹脂組成物を成形してなる成形体を提供することができる。
図1は、実施例4で得られた樹脂組成物の透過型電子顕微鏡写真である。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。以下、製造例に用いたポリロタキサンは、特開2011-241401号公報に記載された方法を参考にして調製した。
(製造例1)
(カルボキシル化ポリロタキサン(無色ゴム状)の製造)
直鎖状分子として、ポリエチレングリコール(質量平均分子量35000)、環状分子として、ヒドロキシプロピル基を導入した後、ε-カプロラクトンをグラフト重合したα-シクロデキストリン(ヒドロキシプロピル基の置換度51%)、及び、封鎖基としてアダマンタンアミン基を有するポリロタキサン(環状分子の包接率25%、質量平均分子量470000、水酸基価74mgKOH/g、以下、「PR」ともいう)の35質量%キシレン溶液100gに、4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物(東京理化社製、「リカシッドMH-700」)9.2g、トリエチルアミン14.0g、及び、4-ジメチルアミノピリジン0.34gを添加し、80℃で3時間撹拌した。得られた混合液を室温まで冷却し、p-トルエンスルホン酸一水和物32.3gを加え、室温で30分撹拌した。得られた白色スラリーに大量のメタノールを加え、ポリマーを析出させた後、上澄みを抜き出し、更にメタノールで3回洗浄し白色沈殿物を得た。得られた白色沈殿物を120℃で3時間乾燥させ、無色ゴム状のカルボキシル化ポリロタキサンを40g得た。得られた無色ゴム状のカルボキシル化ポリロタキサンの酸価をJIS K 0070に準拠した方法で測定したところ、カルボキシル基の導入率(修飾率)は89.2%であった。
(製造例2)
(カルボキシル化ポリロタキサン(白色ゴム状)の製造)
製造例1にて上述したPRの35質量%キシレン溶液100gに、4-メチルヘキサヒドロ無水フタル酸/ヘキサヒドロ無水フタル酸混合物(東京理化社製、「リカシッドMH-700」)9.2gを添加し、80℃で6時間撹拌した。得られた混合液を室温まで冷却し、大量のメタノールを加え、ポリマーを析出させた後、上澄みを抜き出し、更にメタノールで3回洗浄し白色沈殿物を得た。得られた白色沈殿物を80℃で3時間乾燥させ、白色ゴム状のカルボキシル化ポリロタキサンを37g得た。得られた白色ゴム状のカルボキシル化ポリロタキサンの酸価をJIS K 0070に準拠した方法で測定したところ、カルボキシル基の導入率(修飾率)は70.6%であった。
(実施例1~5)
ポリエステル樹脂として結晶性ポリ乳酸(ネイチャーワークス社製、「IngeoPolymer 2003D」、ポリ-L-乳酸、質量平均分子量20万)と、ポリロタキサンとして上述したPRとを、表1に記載した配合割合でクロロホルムに溶解させ、1時間撹拌した後、クロロホルムを除去し、樹脂組成物を得た。
図1は、実施例4で得られた樹脂組成物の透過型電子顕微鏡写真である。
(比較例1)
ポリロタキサンを配合しなかったこと以外は実施例1と同様にして、樹脂組成物を得た。
(比較例2)
ポリロタキサンに代えてポリε-カプロラクトン(ダイセル社製、「プラクセル302」)を用いたこと以外は実施例4と同様にして、樹脂組成物を得た。
(比較例3)
ポリロタキサンに代えてポリε-カプロラクトン(ダイセル社製、「プラクセル302」)を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
(比較例4)
ポリロタキサンに代えてポリエチレングリコール(和光純薬工業社製)を用いたこと以外は実施例4と同様にして、樹脂組成物を得た。
(比較例5)
ポリロタキサンに代えて低分子可塑剤としてグリセリンジアセトモノラウレート(理研ビタミン社製、「リケマールPL-012」)を用いたこと以外は実施例1と同様にして、樹脂組成物を得た。
(実施例6~7)
ポリエステル樹脂として結晶性ポリ乳酸(ネイチャーワークス製、「IngeoPolymer 2003D」、ポリ-L-乳酸、質量平均分子量20万)と、ポリロタキサンとして製造例1で合成した無色ゴム状のカルボキシル化ポリロタキサンとを、表1に記載した配合割合で、混練・押出成形評価試験装置(東洋精機製作所社製、「ラボプラストミル4C150」)に投入し、190℃、回転数50rpmで10分間溶融混練し、樹脂組成物を得た。
(実施例8)
製造例1で合成した無色ゴム状のカルボキシル化ポリロタキサンに代えて、製造例2で合成した白色ゴム状のカルボキシル化ポリロタキサンを用いたこと以外は、実施例6と同様にして、樹脂組成物を得た。
(実施例9)
ポリエステル樹脂として、結晶性ポリ乳酸に代えて、非晶性ポリ乳酸(ネイチャーワークス社製、「IngeoPolymer 4060D」、ポリ-DL-乳酸、質量平均分子量10万)を用いたこと以外は、実施例6と同様にして、樹脂組成物を得た。
(比較例6)
ポリロタキサンを配合しなかったこと以外は実施例6と同様にして、樹脂組成物を得た。
(比較例7)
ポリロタキサンを配合しなかったこと以外は実施例9と同様にして、樹脂組成物を得た。
(実施例10~11)
ポリエステル樹脂として半結晶性ポリグリコール酸(クレハ社製、「Kuredux 100R60」、質量平均分子量17万)と、ポリロタキサンとして製造例1で合成した無色ゴム状のカルボキシル化ポリロタキサンとを、表1に記載した配合割合で、混練・押出成形評価試験装置(東洋精機製作所社製、「ラボプラストミル4C150」)に投入し、230℃、回転数50rpmで10分間溶融混練し、樹脂組成物を得た。
(比較例8)
ポリロタキサンを配合しなかったこと以外は実施例10と同様にして、樹脂組成物を得た。
(比較例9)
ポリカーボネート(帝人化成社製、「パンライト L1225-Y」、質量平均分子量2.2万)と、ポリロタキサンとして製造例1で合成した無色ゴム状のカルボキシル化ポリロタキサンとを、表2に記載した配合割合で、混練・押出成形評価試験装置(東洋精機製作所社製、「ラボプラストミル4C150」)に投入し、260℃、回転数50rpmで10分間溶融混練し、樹脂組成物を得た。
(比較例10)
ポリロタキサンを配合しなかったこと以外は比較例9と同様にして、樹脂組成物を得た。
<評価>
実施例及び比較例で得られた各樹脂組成物について、以下の評価を行った。結果を表1、2に示した。
(降伏応力、破断応力、破断伸び、及び、引張弾性率)
実施例及び比較例で得られた各樹脂組成物を、金属板に挟み、180℃(比較例9、10の場合は、240℃)、10MPaで2分間プレスし、その後、20℃の冷却プレス機で2分間冷却し、長さ100mm、幅100mm、厚さ0.6mmのシート状の成形体を得た。得られた成形体から、JIS K 7162-5Bに準拠して、引張試験用の試験片を切り出した。
得られた試験片について、万能試験機(島津製作所製、「AGS-J」)を用いて、測定温度25℃、引張速度20mm/minで引張試験を行ない、降伏応力、破断応力、及び、破断伸びを求めた。また、測定温度25℃、引張速度1mm/minで引張試験を行ない、引張弾性率を求めた。
(全光線透過率)
ポリ乳酸を使用した実施例及び比較例で得られた各樹脂組成物を、金属板に挟み、180℃、10MPaで2分間プレスし、その後、20℃の冷却プレス機で2分間冷却し、長さ100mm、幅100mm、厚さ0.2mmのフィルム状の成形体を得た。得られた成形体について、ヘーズメーター(日本電色工業社製、「NDH 300A」)を用いて、全光線透過率を測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
表1、2より、ポリロタキサンを配合して作製した実施例の樹脂組成物は、成形体の降伏応力が、ポリロタキサンを配合せずに作製した比較例1、6~8の樹脂組成物と同等であるのに対し、破断伸びは大幅に向上していることがわかる。また、ポリロタキサンに代えて、ポリロタキサンの部分構造であるポリカプロラクトンやポリエチレングリコールを配合して作製した比較例2、4の樹脂組成物では、このような効果が得られていないことがわかる。更に、ポリカプロラクトンや低分子可塑剤を多量に配合して作製した比較例3、5では、ポリロタキサンを配合した場合と同様に、破断伸びは大幅に向上しているが、降伏応力や引張弾性率、全光線透過率が大きく低下していることがわかる。
また、表1の実施例6と実施例9とから、結晶性ポリエステル樹脂及び非晶性ポリエステル樹脂の両方において、降伏応力を大きく低下させることなく破断伸びを大きく向上させる効果が得られることがわかる。
更に、実施例10、11と比較例8との比較から、ポリエステル樹脂としてポリグリコール酸を用いた場合も、ポリロタキサンを混合することにより、降伏応力を大きく低下させることなく破断伸びを大きく向上させることができることがわかる。
更に、表2の比較例9と比較例10とから、ポリカーボネート樹脂では、ポリロタキサンを混合することによる効果が見られないことがわかる。
図1から、本発明のポリエステル樹脂組成物中において、ポリロタキサンは、数十nm以下の非常に微細なドメインを形成していることがわかる。このことから、ポリロタキサンは、ポリエステル樹脂に対して相溶性に優れていると考えられる。
本発明によれば、延伸性に優れる成形体を得ることができるポリエステル樹脂組成物を提供することができる。また、本発明によれば、該ポリエステル樹脂組成物を成形してなる成形体を提供することができる。

Claims (4)

  1. ポリエステル樹脂、及び、
    環状分子と、該環状分子の開口部を串刺し状に貫通する直鎖状分子と、該直鎖状分子の両端を封鎖する封鎖基とからなるポリロタキサンを含有する
    ことを特徴とするポリエステル樹脂組成物。
  2. ポリエステル樹脂は、ポリ乳酸系樹脂及び/又はポリグリコール酸系樹脂を含有する請求項1記載のポリエステル樹脂組成物。
  3. ポリロタキサンは、直鎖状分子がポリエチレングリコールであり、かつ、環状分子がα-シクロデキストリン由来の分子である請求項1又は2記載のポリエステル樹脂組成物。
  4. 請求項1、2又は3記載のポリエステル樹脂組成物を成形してなる成形体。
     
PCT/JP2015/073340 2014-08-25 2015-08-20 ポリエステル樹脂組成物及び成形体 WO2016031664A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580045607.4A CN106574101B (zh) 2014-08-25 2015-08-20 聚酯树脂组合物和成型体
US15/325,331 US10113061B2 (en) 2014-08-25 2015-08-20 Polyester resin composition and molding
EP15835800.2A EP3187540B1 (en) 2014-08-25 2015-08-20 Polyester resin composition and molding
JP2016545465A JP6748577B2 (ja) 2014-08-25 2015-08-20 ポリエステル樹脂組成物及び成形体
ES15835800T ES2722049T3 (es) 2014-08-25 2015-08-20 Composición de resina de poliéster y moldeo

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170629 2014-08-25
JP2014-170629 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031664A1 true WO2016031664A1 (ja) 2016-03-03

Family

ID=55399559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073340 WO2016031664A1 (ja) 2014-08-25 2015-08-20 ポリエステル樹脂組成物及び成形体

Country Status (7)

Country Link
US (1) US10113061B2 (ja)
EP (1) EP3187540B1 (ja)
JP (1) JP6748577B2 (ja)
CN (1) CN106574101B (ja)
ES (1) ES2722049T3 (ja)
TW (1) TWI687481B (ja)
WO (1) WO2016031664A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179349A (ja) * 2016-03-29 2017-10-05 東レ株式会社 樹脂組成物およびその成形品
WO2018043025A1 (ja) * 2016-08-31 2018-03-08 東レ株式会社 樹脂組成物およびその成形品
JP2018172656A (ja) * 2017-03-31 2018-11-08 東レ株式会社 樹脂組成物およびその成形品
CN110167734A (zh) * 2017-01-18 2019-08-23 住友化学株式会社 成型体和其制造方法
JP2019172879A (ja) * 2018-03-29 2019-10-10 三菱ケミカル株式会社 ポリカーボネート樹脂組成物及びその成形体
CN110698823A (zh) * 2018-07-10 2020-01-17 纳米及先进材料研发院有限公司 可生物降解聚合物组合物
WO2023219145A1 (ja) * 2022-05-12 2023-11-16 国立大学法人 東京大学 ポリロタキサン添加によるビトリマーの改良
WO2024014339A1 (ja) * 2022-07-13 2024-01-18 Ube株式会社 熱可塑性樹脂組成物及びそれを含む成形体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10874910B2 (en) * 2016-12-27 2020-12-29 Sumitomo Rubber Industries, Ltd. Golf ball
US10894190B2 (en) * 2016-12-27 2021-01-19 Sumitomo Rubber Industries, Ltd. Golf ball
CN111376545A (zh) * 2018-12-28 2020-07-07 新纶复合材料科技(常州)有限公司 一种高冲深成型性能铝塑复合膜及其制备方法
WO2021039942A1 (en) * 2019-08-29 2021-03-04 The Texas A&M University System Thermoplastic polymer composition comprising polyrotaxane
CN111410825B (zh) * 2020-01-09 2022-12-27 广东开放大学(广东理工职业学院) 一种薄膜用聚乳酸组合物及其制备方法
CN112227073B (zh) * 2020-10-09 2022-03-25 苏州鱼得水电气科技有限公司 一种防静电耐磨损无纺布及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008045055A (ja) * 2006-08-18 2008-02-28 Univ Of Tokyo 高い拡散係数をもたらすポリロタキサンを有する材料
JP2008291267A (ja) * 2005-08-31 2008-12-04 Nissan Motor Co Ltd 疎水性修飾ポリロタキサン
JP2011241401A (ja) * 2011-05-30 2011-12-01 Advanced Softmaterials Inc 架橋ポリロタキサンを有する材料、及びその製造方法
JP2014084414A (ja) * 2012-10-24 2014-05-12 Osaka Gas Co Ltd ポリ乳酸含有ブロック共重合体グラフトポリロタキサン及び該ブロック共重合体グラフトポリロタキサンを含有する樹脂組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001026658A (ja) 1999-07-13 2001-01-30 Mitsui Chemicals Inc ポリ乳酸系樹脂組成物及びその製造方法
JP2001064379A (ja) 1999-08-31 2001-03-13 Shimadzu Corp 相溶性脂肪族ポリエステルの製造方法及びその組成物
JP3421769B1 (ja) 2002-04-02 2003-06-30 大八化学工業株式会社 エステル化合物、生分解性脂肪族系ポリエステル樹脂用可塑剤及び生分解性樹脂組成物
KR101180169B1 (ko) * 2004-03-31 2012-09-05 도꾜 다이가꾸 폴리로탁산을 갖는 중합체 재료, 및 그의 제조 방법
JP4521875B2 (ja) 2005-08-31 2010-08-11 日産自動車株式会社 疎水性修飾ポリロタキサン
DK1942163T3 (da) * 2005-10-06 2012-01-09 Nissan Motor Materiale til hærdeligt, opløsningsmiddelbaseret topcoatingmateriale, og coatingmateriale og coatingfilm, som omfatter førnævnte eller er dannet deraf
JP5701852B2 (ja) * 2010-03-02 2015-04-15 アドバンスト・ソフトマテリアルズ株式会社 架橋ポリロタキサンを有する材料、及びその製造方法
JPWO2013099842A1 (ja) * 2011-12-26 2015-05-07 アドバンスト・ソフトマテリアルズ株式会社 修飾化ポリロタキサン及びその製造方法、並びに修飾化ポリロタキサンを有して形成される材料
EP2787010B1 (en) * 2012-05-25 2021-12-15 LG Chem, Ltd. Poly-rotaxane compound, photocurable coating composition, and coating film
EP3070142B1 (en) 2013-11-11 2019-05-22 Tokuyama Corporation Photochromic composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291267A (ja) * 2005-08-31 2008-12-04 Nissan Motor Co Ltd 疎水性修飾ポリロタキサン
JP2008045055A (ja) * 2006-08-18 2008-02-28 Univ Of Tokyo 高い拡散係数をもたらすポリロタキサンを有する材料
JP2011241401A (ja) * 2011-05-30 2011-12-01 Advanced Softmaterials Inc 架橋ポリロタキサンを有する材料、及びその製造方法
JP2014084414A (ja) * 2012-10-24 2014-05-12 Osaka Gas Co Ltd ポリ乳酸含有ブロック共重合体グラフトポリロタキサン及び該ブロック共重合体グラフトポリロタキサンを含有する樹脂組成物

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179349A (ja) * 2016-03-29 2017-10-05 東レ株式会社 樹脂組成物およびその成形品
US20190309164A1 (en) * 2016-08-31 2019-10-10 Toray Industries, Inc. Resin composition and molded article thereof
WO2018043025A1 (ja) * 2016-08-31 2018-03-08 東レ株式会社 樹脂組成物およびその成形品
JPWO2018043025A1 (ja) * 2016-08-31 2018-08-30 東レ株式会社 樹脂組成物およびその成形品
CN109563354B (zh) * 2016-08-31 2021-06-04 东丽株式会社 树脂组合物及其成型品
CN109563354A (zh) * 2016-08-31 2019-04-02 东丽株式会社 树脂组合物及其成型品
US10626273B2 (en) 2016-08-31 2020-04-21 Toray Industries, Inc. Resin composition and molded article thereof
US10941254B2 (en) 2017-01-18 2021-03-09 Sumitomo Chemical Company, Limited Molded article and method of producing the same
EP3572202A4 (en) * 2017-01-18 2020-09-09 Sumitomo Chemical Company, Limited MOLDED ARTICLES AND METHOD FOR MANUFACTURING THEREOF
CN110167734B (zh) * 2017-01-18 2021-01-08 住友化学株式会社 成型体和其制造方法
CN110167734A (zh) * 2017-01-18 2019-08-23 住友化学株式会社 成型体和其制造方法
JP2018172656A (ja) * 2017-03-31 2018-11-08 東レ株式会社 樹脂組成物およびその成形品
JP7021580B2 (ja) 2017-03-31 2022-02-17 東レ株式会社 樹脂組成物およびその成形品
JP2019172879A (ja) * 2018-03-29 2019-10-10 三菱ケミカル株式会社 ポリカーボネート樹脂組成物及びその成形体
JP7095358B2 (ja) 2018-03-29 2022-07-05 三菱ケミカル株式会社 ポリカーボネート樹脂組成物及びその成形体
CN110698823A (zh) * 2018-07-10 2020-01-17 纳米及先进材料研发院有限公司 可生物降解聚合物组合物
WO2023219145A1 (ja) * 2022-05-12 2023-11-16 国立大学法人 東京大学 ポリロタキサン添加によるビトリマーの改良
WO2024014339A1 (ja) * 2022-07-13 2024-01-18 Ube株式会社 熱可塑性樹脂組成物及びそれを含む成形体

Also Published As

Publication number Publication date
CN106574101A (zh) 2017-04-19
EP3187540B1 (en) 2019-02-27
EP3187540A4 (en) 2018-03-28
ES2722049T3 (es) 2019-08-07
JPWO2016031664A1 (ja) 2017-06-22
US10113061B2 (en) 2018-10-30
US20170198138A1 (en) 2017-07-13
TWI687481B (zh) 2020-03-11
TW201609952A (zh) 2016-03-16
EP3187540A1 (en) 2017-07-05
JP6748577B2 (ja) 2020-09-02
CN106574101B (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2016031664A1 (ja) ポリエステル樹脂組成物及び成形体
Liu et al. Toward fully bio-based and supertough PLA blends via in situ formation of cross-linked biopolyamide continuity network
Sangeetha et al. State of the art and future prospectives of poly (lactic acid) based blends and composites
US7514503B2 (en) Molded article produced from aliphatic polyester resin composition
JP5014908B2 (ja) 結晶性ポリ乳酸樹脂組成物およびそれからなる成形体
KR101582807B1 (ko) 혼합 조성물, 유연한 튜브 재료 및 그 혼합물의 제조 방법
JPWO2009004769A1 (ja) 結晶性ポリ乳酸樹脂組成物およびそれからなる成形体
KR101741697B1 (ko) 수지용 폴리에스테르계 가소제
JP2016524645A (ja) ポリマー組成物
JP2005298797A (ja) 脂肪族ポリエステル系樹脂組成物成形体
JP4559285B2 (ja) 共重合体を含む乳酸系樹脂組成物、およびその成形物
Odent et al. Highly Toughened Polylactide‐Based Materials through Melt‐Blending Techniques
KR20110082702A (ko) 생분해성 수지 조성물, 그의 제조방법 및 그로부터 제조되는 생분해성 필름
JP6435603B2 (ja) 樹脂組成物、成形体、及び該成形体から構成される内装部品、内装材、筐体
JP2014001261A (ja) ポリ乳酸系樹脂組成物及びそれを用いたフィルム又はシート
Ye et al. Customized compatibilizer to improve the mechanical properties of polylactic acid/lignin composites via enhanced intermolecular interactions for 3D printing
JP2004359840A (ja) 樹脂組成物、その成形品および分散助剤
JP7021580B2 (ja) 樹脂組成物およびその成形品
JP5095487B2 (ja) 結晶性ポリ乳酸樹脂組成物およびそれからなる成形体
CN111087776B (zh) 一种基于氮丙啶增容剂的高韧性、高熔体强度pla/pbat合金及其制备方法
WO2016103788A1 (ja) ポリ乳酸樹脂組成物
JP4977890B2 (ja) ポリ乳酸樹脂組成物及びその製造方法
KR20190076480A (ko) 기계적 물성이 개선된 바이오 플라스틱 및 이를 포함하는 정수기 필터 하우징
CN115028976B (zh) 一种立构复合界面增容的聚乳酸共混材料及其制备方法
WO2016158331A1 (en) Resin composition and its film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545465

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015835800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15325331

Country of ref document: US

Ref document number: 2015835800

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE