WO2016103788A1 - ポリ乳酸樹脂組成物 - Google Patents

ポリ乳酸樹脂組成物 Download PDF

Info

Publication number
WO2016103788A1
WO2016103788A1 PCT/JP2015/074179 JP2015074179W WO2016103788A1 WO 2016103788 A1 WO2016103788 A1 WO 2016103788A1 JP 2015074179 W JP2015074179 W JP 2015074179W WO 2016103788 A1 WO2016103788 A1 WO 2016103788A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
resin composition
polyisoprene
trans
weight
Prior art date
Application number
PCT/JP2015/074179
Other languages
English (en)
French (fr)
Inventor
修平 山口
真也 武野
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2016103788A1 publication Critical patent/WO2016103788A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable

Definitions

  • the present invention relates to a polylactic acid resin composition, and more particularly to a polylactic acid resin composition having improved impact resistance of a resin molded body.
  • Polylactic acid is biodegradable and is applied in various technical fields such as sutures, stents, bone fixatives, agricultural materials, packaging / packaging materials, and tableware. In recent years, it tends to be used as a structural material for automobile components.
  • Patent Document 1 discloses that a trans-polyisoprene having an epoxy group as a modifier is combined with a polyester resin in order to improve the impact resistance of the polyester resin composition.
  • the trans-polyisoprene having the epoxy group has practically limited industrial applications because of concerns about safety to the human body and large influence on the environment.
  • unmodified trans polyisoprene TP-301 manufactured by Kuraray Co., Ltd.
  • the unmodified trans polyisoprene is a petrochemically derived trans polyisoprene having a weight average molecular weight of 250,000 and a stereoregularity of 99%.
  • Patent Document 2 discloses that the impact resistance of a resin composition is improved by adding a polypropylene resin as a modifier to a polylactic acid resin in the presence of a compatibilizer.
  • the modifier is a petrochemical-derived polypropylene. Since the degree of biomass in the resin composition decreases as the petrochemical-derived modifier is added, the characteristics of plant-derived polylactic acid cannot be utilized.
  • the present invention aims to solve the above-mentioned problems, and the object of the present invention is to have excellent impact resistance and safety to the human body and the environment while taking advantage of the biomass material possessed by polylactic acid. Another object is to provide a polylactic acid resin composition.
  • the present invention is a polylactic acid resin composition containing polylactic acid and trans-polyisoprene having a stereoregularity of 90% or more and a weight average molecular weight of 500,000 to 5,000,000.
  • the trans polyisoprene has a stereoregularity of 99.9% or more.
  • the trans polyisoprene is a polyisoprene derived from eucommia.
  • the polylactic acid is poly (L-lactic acid).
  • the content of the polylactic acid is 40% to 99% by weight and the content of the trans-polyisoprene is 1% to 60% by weight with respect to the total weight.
  • the present invention is also a method for producing a polylactic acid resin composition, comprising melting and kneading polylactic acid and trans-polyisoprene having a stereoregularity of 90% or more and a weight average molecular weight of 500,000 to 5,000,000.
  • a method comprising steps.
  • the present invention is also a resin molded product obtained using the polylactic acid resin composition.
  • the present invention it is possible to obtain a polylactic acid resin composition capable of improving the impact resistance to a resin molded body.
  • the polylactic acid resin composition of the present invention reduces the burden on the human body and the environment without impairing the properties of the constituent polylactic acid, and can be used for a wider range of industrial applications.
  • FIG. 2 is a graph showing a 1 H-NMR spectrum of trans polyisoprene used in Example 1.
  • FIG. 2 is a graph showing a 13 C-NMR spectrum of trans polyisoprene used in Example 1.
  • FIG. 2 is a graph showing an SEC chromatogram of trans-type polyisoprene used in Example 1.
  • the polylactic acid resin composition of the present invention contains polylactic acid and trans-polyisoprene.
  • the polylactic acid constituting the resin composition of the present invention is biodegradable, that is, has a property of decomposing over a suitable time in soil or compost, or in water or seawater.
  • the polylactic acid in the present invention is a polymer or copolymer containing L-lactic acid and / or D-lactic acid as a structural unit, or at least one of these lactic acids and glycolic acid, 3-hydroxybutyric acid, 4- Copolymers with other organic acids such as hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxyvaleric acid, 6-hydroxycaproic acid; and / or other alcohols such as vinyl alcohol, butanediol.
  • Such polylactic acid may be obtained, for example, by ring-opening polymerization of lactide or dehydration condensation of lactic acid, by heating and polymerizing lactic acid under reduced pressure in a predetermined organic solvent such as diphenyl ether. It may be obtained. Furthermore, the polylactic acid may be produced from a biomass-derived material.
  • the biomass is not necessarily limited, and examples thereof include plant materials such as corn, sweet potato, potato, and sugar cane.
  • poly (L-lactic acid) obtained using L-lactic acid is preferably used because it is versatile and easily available.
  • the content of polylactic acid in the resin composition of the present invention is not necessarily limited. For example, it is preferably 40% by weight to 99% by weight, more preferably 55% by weight to 95% by weight, based on the weight of the entire resin composition. %.
  • the content of polylactic acid in the resin composition is less than 40% by weight, the properties (for example, biodegradability) of polylactic acid itself may not be sufficiently exerted with respect to the obtained resin composition. . If the content of polylactic acid in the resin composition exceeds 99% by weight, it may be difficult to impart sufficient impact resistance to the resin molded body using the resin composition.
  • the trans-type polyisoprene constituting the resin composition of the present invention is a diene thermoplastic elastomer, functions as a modifier for the polylactic acid, and imparts excellent impact resistance to the resulting resin molding. be able to.
  • the trans polyisoprene in the present invention has a stereoregularity of 90% or more, preferably 99.9% or more.
  • the term “trans-type polyisoprene” used in the present specification is polyisoprene containing a trans 1,4-bond unit, and in addition to the trans 1,4-bond unit, cis 1,4- Polyisoprene which may contain at least one of a linking unit, 1,2-linking unit, and 3,4-linking unit. That is, in the present invention, trans-type polyisoprene is preferably composed of 90% or more, more preferably 99.9% or more of trans 1,4-bond units.
  • the trans polyisoprene in the present invention preferably has a total proportion of cis 1,4-bond units, 1,2-bond units, and 3,4-bond units in the bond units of 10% or less. More preferably, it is 0.1% or less.
  • the trans-type polyisoprene in the present invention also has a weight average molecular weight of 500,000 to 5,000,000, preferably 1,000,000 to 5,000,000, more preferably 1.5 million to 5,000,000.
  • 500,000 to 5,000,000 When the weight average molecular weight of the polyisoprene is less than 500,000, it is difficult to impart sufficient impact resistance to the obtained resin molded body.
  • trans-type polyisoprene in the present invention for example, a plant-derived component trans-type polyisoprene can be used.
  • plants containing trans polyisoprene include Eucommia ulmoides Oliver, Palaquim gutta, and balata rubber (Mimusops balata).
  • Eucommia ulmoides Oliver because of its high weight average molecular weight trans polyisoprene and its high content of trans 1,4-bond units and low content of bond isomer units It is preferable to use the derived trans-type polyisoprene.
  • the plant-derived trans-type polyisoprene can be obtained using a technique known in the art.
  • the trans polyisoprene of the present invention also contains polyisoprene containing the above trans 1,4-bond unit or plant-derived polyisoprene (hereinafter collectively referred to as “unmodified polyisoprene”), maleic anhydride, It may be chemically modified with a modification-imparting compound such as maleimide anhydride or an epoxy group-containing compound (for example, peracetic acid or performic acid).
  • a modification-imparting compound such as maleimide anhydride or an epoxy group-containing compound (for example, peracetic acid or performic acid).
  • the amount of the modification-imparting compound used with respect to the unmodified polyisoprene can be arbitrarily set by those skilled in the art according to the modification rate desired for the trans-polyisoprene.
  • the amount of the modification-imparting compound used is, for example, 10 to 200 parts by weight, preferably 14 to 140 parts by weight, based on 100 parts by weight of the unmodified polyisoprene.
  • the reaction between the unmodified polyisoprene and the modification-imparting compound is performed, for example, in a polar solvent and preferably heated at a temperature of 160 ° C. to 230 ° C.
  • polar solvents examples include benzene solvents such as dichlorobenzene, chlorobenzene, benzene, mesitylene, ethylbenzene, 1,2,4,5-tetramethylbenzene; and ester solvents such as ethyl acetate; As well as combinations thereof.
  • the unmodified polyisoprene preferably has a modification rate of 0.5% to 30%, more preferably 0.8% to 20%, even more preferably 1% to 10% (in the isoprene unit, The ratio of isoprene units modified with the modification-imparting compound (also referred to as introduction rate)).
  • Such trans-type polyisoprene has such a modification rate, so that chemical bonds such as covalent bonds and intermolecular forces are easily formed between polylactic acid and trans-type polyisoprene. The strength and impact resistance of the entire resin composition can be increased.
  • the content of trans-polyisoprene in the resin composition of the present invention is not necessarily limited, but is preferably 1% by weight to 60% by weight, more preferably 1% by weight to, based on the weight of the entire resin composition, for example. 30 weight.
  • the content of trans-type polyisoprene in the resin composition is less than 1% by weight, sufficient impact resistance is imparted to the resulting resin composition using the resin composition. May be difficult.
  • the content of trans-polyisoprene in the resin composition exceeds 60% by weight, the properties (for example, biodegradability) of the polylactic acid itself contained in the resin composition may not be sufficiently exhibited. .
  • the polylactic acid resin composition of the present invention may contain other additives as necessary within the range not impairing the characteristics of the present invention, in addition to the above-mentioned polylactic acid and trans-type polyisoprene.
  • additives for improving moldability of the resin composition described later for example, higher fatty acid salts such as calcium stearate); talc, calcium carbonate, magnesium carbonate, barium sulfate, calcium sulfate.
  • Organic fillers natural fibers such as cotton, hemp and wool, polyamide fibers, polyester fibers, acrylic fibers, viscose fibers, acetate fibers, asbestos fibers, glass fibers, carbon fibers, ceramic fibers, metal fibers, Fiber fillers such as whisker fibers; coloring agents such as pigments, pigments and carbon black; antistatic agents; conductivity-imparting agents; anti-aging agents; flame retardants; flame retardants; Waxes, surfactants, lubricants, UV absorbers, heat stabilizers, chelating agents, and dispersants, and combinations thereof.
  • polylactic acid resin composition of the present invention may be blended with other polymers as necessary within the range not impairing the characteristics of the present invention, in addition to the above-mentioned trans-type polyisoprene.
  • the content of such other components and / or other polymers is also not particularly limited, and a person skilled in the art can set any content as long as the characteristics of the present invention are not impaired.
  • the polylactic acid and the trans-polyisoprene are melted and kneaded.
  • the trans polyisoprene is purified in advance using an organic solvent such as toluene because it contains foreign substances derived from the skin when using the one derived from the plant component (for example, Eucommia). It is preferable to use one.
  • an organic solvent such as toluene because it contains foreign substances derived from the skin when using the one derived from the plant component (for example, Eucommia). It is preferable to use one.
  • melt and kneading of polylactic acid and trans-type polyisoprene can be performed using a commercially available apparatus (for example, a segment mixer, an open roll, a Banbury mixer, and a twin screw extruder). Conditions required for melting and kneading (for example, temperature, time, rotation speed, etc.) are also not particularly limited, and the amount of equipment, materials (ie, polylactic acid and trans-polyisoprene) used by those skilled in the art, etc. Can be appropriately selected.
  • the polylactic acid and the trans-type polyisoprene are charged in such an apparatus together with the other components and / or other polymers as necessary, and are melted and kneaded. As a result, the polylactic acid and trans-polyisoprene, and the other components and / or other polymers contained as necessary are mixed with each other to produce a composite resin composition.
  • the melted and kneaded material may be formed into pellets having a shape known to those skilled in the art, for example.
  • the polylactic acid resin composition of the present invention can be produced.
  • Polylactic acid resin molding In order to obtain a molded product by thermoforming the polylactic acid resin molded product of the present invention, blow molding, injection molding, injection blow molding, inflation molding, vacuum pressure molding, or extrusion molding such as profile extrusion molding or spinning extrusion molding is used. A molding method known to those skilled in the art can be employed.
  • the structure and stereoregularity of the eucommia-derived biopolymer manufactured by Hitachi Zosen Corporation were confirmed by 1 H-NMR and 13 C-NMR (manufactured by JEOL Ltd./model: ECA500).
  • the weight average molecular weight of the biopolymer was determined by size exclusion chromatography (SEC-RI / manufactured by Tosoh Corporation / model: HLC-8320GPC / measurement conditions: (eluent) tetrahydrofuran, (elution temperature) 40 ° C. (external standard) (Material) polystyrene, (detector) differential refractive index detector).
  • SEC-RI size exclusion chromatography
  • FIG. 1 1 H-NMR
  • FIG. 2 13 C-NMR
  • FIG. 3 SEC chromatogram
  • the eucommia-derived biopolymer used in this example was confirmed to be polyisoprene having a trans 1,4-bond unit as a basic structure from FIG. 1, and from FIG. 2, cis 1,4-linked polyisoprene It was confirmed that signals of methyl group (23.0 ppm) and methylene group (26.5 ppm) did not appear. Thus, it was estimated that 100% of the eucommia-derived biopolymer used in this example was composed of trans 1,4-linked polyisoprene. Furthermore, the weight average molecular weight of the eucommia-derived biopolymer was confirmed to be 1.8 ⁇ 10 6 according to the molecular weight measurement in terms of standard polystyrene by SEC chromatogram.
  • polylactic acid Teerramac manufactured by Unitika Co., Ltd.
  • eucommia-derived biopolymer manufactured by Hitachi Zosen Co., Ltd.
  • a segment mixer kneader Toyo Seiki Seisakusho Co., Ltd.
  • Table 1 composition ratio (parts by weight) shown in Table 1.
  • Product type / model: KF70V2 equipped with a lab plast mill (manufactured by Toyo Seiki Seisakusho Co., Ltd./model: 110C100), melted and kneaded at a temperature of 180 ° C., a time of 10 minutes, and a rotational speed of 50 revolutions / minute. .
  • a strand was formed using a hand truer (manufactured by Toyo Seiki Seisakusho Co., Ltd./model: PM-1), and a pellet was molded using a cold cut pelletizer (manufactured by Toyo Seiki Seisakusho Co., Ltd./model: PETEC3).
  • the strips for Charpy impact test (80 ⁇ 10 ⁇ 4 mm) were molded from the obtained pellets of each composition by using a small injection molding machine (manufactured by Thermo Fisher Scientific / model: HAAKE MiniJet Pro). .
  • a notching tool (manufactured by Toyo Seiki Seisakusho Co., Ltd.) was used for notching the specimen.
  • an impact tester manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • an edgewise impact was applied with a 2.0 J hammer to perform the test.
  • the test used the test piece with a single notch, and prepared the sample number of 5 or more, and measured it.
  • the obtained Charpy impact test results are shown in Table 1.
  • the resin compositions of Examples 1 to 9 obtained by mixing and compounding eucommia-derived biopolymer (trans-type polyisoprene) with polylactic acid are only polylactic acid of Comparative Example 1. Compared with what was comprised, all showed the numerical value with a high measured value of a Charpy test, and it turns out that the impact resistance improved. In particular, the effect of the combined use of the eucommia-derived biopolymer is sufficiently shown in Examples 1 to 4, 8 and 9 in which the content of the biopolymer is relatively small.
  • the trans-type polyisoprene has a polylactic acid resin composition. It can be seen that it has an excellent function as a modifier for enhancing the impact resistance of the object.
  • a polylactic acid resin composition having improved impact resistance can be obtained.
  • the present invention can be formed into various resin molded articles such as films, sheets, bottles and the like by utilizing such impact resistance, and is useful for various industrial products.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

 ポリ乳酸が有するバイオマス素材の利点を活かしつつ、優れた耐衝撃性と人体および環境に対する安全性とを有する、ポリ乳酸樹脂組成物を開示する。本発明のポリ乳酸樹脂組成物は、ポリ乳酸と、90%以上の立体規則性および50万から500万の重量平均分子量を有するトランス型ポリイソプレンとを含有する。

Description

ポリ乳酸樹脂組成物
 本発明は、ポリ乳酸樹脂組成物に関し、より詳細には、樹脂成形体の耐衝撃性が向上したポリ乳酸樹脂組成物に関する。
 ポリ乳酸は生分解性を有し、例えば、縫合糸、ステント、骨固定剤、農業資材、包装・梱包資材、食器のような種々の技術分野にて応用されている。また、近年では、自動車構成部品などの構造材料としても利用される傾向にある。
 しかし、ポリ乳酸自体の性質として、その樹脂成形体の耐衝撃性が低いという理由から、その利用範囲は制限されている。
 このような耐衝撃性の改善には、例えば、樹脂成形体を構成するポリ乳酸の光学純度を高めること、その他の樹脂成分との複合化を行うこと、添加剤を加えることなどの手法が用いられている。
 ここで、特許文献1には、ポリエステル樹脂組成物の耐衝撃性を改善するために、ポリエステル樹脂に、改質剤としてエポキシ基を有するトランス型ポリイソプレンを複合化することが開示されている。しかし、当該エポキシ基を有するトランス型ポリイソプレンは、人体に対する安全性に懸念があることや環境に及ぼす影響が大きい等の理由から、実質的にその工業的用途は制限される。また、これに代わり、未変性トランス型ポリイソプレン(株式会社クラレ製TP-301)でポリ乳酸を複合化した場合では、得られる樹脂組成物の耐衝撃性には特に変化が生じていない。当該未変性トランス型ポリイソプレンは、25万の重量平均分子量および99%の立体規則性を有する石化由来のトランス型ポリイソプレンである。
 他方、特許文献2は、ポリ乳酸樹脂に、相溶化剤の存在下にて改質剤としてポリプロピレン樹脂を添加することにより、樹脂組成物の耐衝撃性を改善することを開示している。しかし、特許文献2に記載の発明によれば、当該改質剤は石化由来品のポリプロピレンである。当該石化由来の改質剤を添加するほど、樹脂組成物中のバイオマス度が低下するため、植物由来であるポリ乳酸の特徴を活かすことができない。
 このように、ポリ乳酸樹脂組成物の耐衝撃性を向上させるために、従来提案されている改質剤には種々の懸念が存在する。よって、例えば、人体や環境に対する懸念がなく、より広範な工業的用途に利用され得る、優れた耐衝撃性を有するポリ乳酸樹脂組成物の提供が望まれている。
特開2012-107137号公報 特開2006-131716号公報
 本発明は、上記課題の解決を課題とするものであり、その目的とするところは、ポリ乳酸が有するバイオマス素材の利点を活かしつつ、優れた耐衝撃性と人体および環境に対する安全性とを有する、ポリ乳酸樹脂組成物を提供することにある。
 本発明は、ポリ乳酸と、90%以上の立体規則性および50万から500万の重量平均分子量を有するトランス型ポリイソプレンとを含有する、ポリ乳酸樹脂組成物である。
 1つの実施形態では、上記トランス型ポリイソプレンは99.9%以上の立体規則性を有する。
 1つの実施形態では、上記トランス型ポリイソプレンはトチュウ由来のポリイソプレンである。
 1つの実施形態では、上記ポリ乳酸はポリ(L-乳酸)である。
 1つの実施形態では、全体重量に対し、上記ポリ乳酸の含有量は40重量%から99重量%であり、そして上記トランス型ポリイソプレンの含有量は1重量%から60重量%である。
 本発明はまた、ポリ乳酸樹脂組成物の製造方法であって、ポリ乳酸と、90%以上の立体規則性および50万から500万の重量平均分子量を有するトランス型ポリイソプレンとを溶融かつ混練する工程を含む、方法である。
 本発明はまた、上記ポリ乳酸樹脂組成物を用いて得られた樹脂成形体である。
 本発明によれば、樹脂成形体に対する耐衝撃性を向上させることができるポリ乳酸樹脂組成物を得ることができる。本発明のポリ乳酸樹脂組成物は、構成成分であるポリ乳酸の特性を阻害することなく、人体および環境に対する負荷を低減し、より広範な工業的用途に使用され得る。
実施例1で使用したトランス型ポリイソプレンのH-NMRスペクトルを示すグラフである。 実施例1で使用したトランス型ポリイソプレンの13C-NMRスペクトルを示すグラフである。 実施例1で使用したトランス型ポリイソプレンのSECクロマトグラムを示すグラフである。
 以下、本発明について詳述する。
 本発明のポリ乳酸樹脂組成物は、ポリ乳酸とトランス型ポリイソプレンとを含有する。
 本発明の樹脂組成物を構成するポリ乳酸は、生分解性、すなわち土壌または堆肥中、あるいは水中または海水中で適切な時間をかけて分解する性質を有する。本発明におけるポリ乳酸は、構成単位としてL-乳酸および/またはD-乳酸を含むポリマーまたはコポリマーであるか、もしくはこれらの乳酸のうちの少なくとも1種と、グリコール酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸などの他の有機酸;および/またはビニルアルコール、ブタンジオールなどの他のアルコール;とのコポリマーである。
 このようなポリ乳酸は、例えば、ラクチドの開環重合や乳酸の脱水縮合により得られたものであってもよく、ジフェニルエーテルなどの所定の有機溶媒中で乳酸を減圧下にて加熱重合することにより得られたものであってもよい。さらに、ポリ乳酸は、バイオマス由来の材料から製造されたものであってもよい。当該バイオマスとしては、必ずしも限定されないが、例えば、トウモロコシ、サツマイモ、ジャガイモ、サトウキビなどの植物性材料が挙げられる。
 本発明においては、汎用性に富み入手が容易であるとの理由から、L-乳酸を用いて得られたポリ(L-乳酸)を用いることが好ましい。
 本発明の樹脂組成物におけるポリ乳酸の含有量は、必ずしも限定されないが、例えば、樹脂組成物全体の重量を基準として、好ましくは40重量%~99重量%、より好ましくは55重量%~95重量%である。樹脂組成物中におけるポリ乳酸の含有量が40重量%未満であると、得られる樹脂組成物に対し、ポリ乳酸自体の性質(例えば、生分解性)を充分に発揮することができない場合がある。樹脂組成物中におけるポリ乳酸の含有量が99重量%を上回ると、当該樹脂組成物を用いた樹脂成形体に対して充分な耐衝撃性を付与することが困難となる場合がある。
 本発明の樹脂組成物を構成するトランス型ポリイソプレンは、ジエン系熱可塑性エラストマーであり、上記ポリ乳酸に対する改質剤として機能し、得られる樹脂成形体に対して優れた耐衝撃性を付与することができる。
 本発明におけるトランス型ポリイソプレンは、90%以上、好ましくは99.9%以上の立体規則性を有する。ここで、本明細書中に用いられる用語「トランス型ポリイソプレン」とは、トランス1,4-結合単位を含むポリイソプレンであって、トランス1,4-結合単位以外に、シス1,4-結合単位、1,2-結合単位、および3,4-結合単位の少なくとも1つを含んでいてもよいポリイソプレンを言う。すなわち、本発明においては、トランス型ポリイソプレンは、構成される結合単位の好ましくは90%以上、より好ましくは99.9%以上がトランス1,4-結合単位である。あるいは、本発明におけるトランス型ポリイソプレンは、その結合単位中、シス1,4-結合単位、1,2-結合単位および3,4-結合単位の結合異性単位の合計割合が好ましくは10%以下、より好ましくは0.1%以下である。
 本発明におけるトランス型ポリイソプレンはまた、50万~500万、好ましくは100万~500万、より好ましくは150万~500万の重量平均分子量を有する。当該ポリイソプレンの重量平均分子量が50万を下回る場合は、得られた樹脂成形体に対して充分な耐衝撃性を付与することが困難となる。なお、トランス型ポリイソプレンの重量平均分子量が高ければ高いほど、得られた樹脂成形体の耐衝撃性は向上するが、植物由来であっても500万を超えるものは入手が困難となる場合がある。
 さらに、本発明におけるトランス型ポリイソプレンは、例えば植物由来成分のトランス型ポリイソプレンを使用することができる。トランス型ポリイソプレンを含有する植物の例としては、トチュウ(Eucommia ulmoides Oliver)、グッタペルカノキ(Palaquim gutta)、およびバラタゴムノキ(Mimusops balata)が挙げられる。高い重量平均分子量のトランス型ポリイソプレンが得られる上、その構造中に、トランス1,4-結合単位の含有率が高くかつ結合異性単位の含有率が低いとの理由からトチュウ(Eucommia ulmoides Oliver)由来のトランス型ポリイソプレンを用いることが好ましい。上記植物由来のトランス型ポリイソプレンは、当該技術分野において公知の手法を用いて得ることができる。
 本発明のトランス型ポリイソプレンはまた、上記トランス1,4-結合単位を含むポリイソプレンまたは植物由来のポリイソプレン(以下、これらを総括して「未変性ポリイソプレン」という)を、無水マレイン酸、無水マレイミド、あるいはエポキシ基含有化合物(例えば、過酢酸、過蟻酸)のよう変性付与化合物によって化学的に変性させたものであってもよい。
 未変性ポリイソプレンに対する変性付与化合物の使用量は、上記トランス型ポリイソプレンに所望される変性率に応じて当業者が任意の量を設定することができる。1つの実施形態においては、変性付与化合物の使用量は、未変性ポリイソプレン100重量部に対して、例えば、10重量部~200重量部であり、好ましくは14重量部~140重量部である。未変性ポリイソプレンと変性付与化合物との反応は、例えば、極性溶媒中で、好ましくは160℃~230℃の温度で加熱した状態で行われる。この反応に使用可能な極性溶媒の例としては、ジクロロベンゼン、クロロベンゼン、ベンゼン、メシチレン、エチルベンゼン、1,2,4,5-テトラメチルベンゼンなどのベンゼン系溶媒;および酢酸エチルなどのエステル系溶媒;ならびにこれらの組み合わせが挙げられる。
 このようにして、未変性ポリイソプレンに対し、好ましくは0.5%~30%、より好ましくは0.8%~20%、さらにより好ましくは1%~10%の変性率(イソプレン単位中、上記変性付与化合物で修飾されたイソプレン単位の割合(導入率ともいう))を有する。このようなトランス型ポリイソプレンがこのような変性率を有していることにより、ポリ乳酸とトランス型ポリイソプレンとの間で共有結合や分子間力などの化学結合が形成されやすくなり、結果として樹脂組成物全体の強度や耐衝撃性を高めることができる。
 本発明の樹脂組成物におけるトランス型ポリイソプレンの含有量は、必ずしも限定されないが、例えば、樹脂組成物全体の重量を基準として、好ましくは1重量%~60重量%、より好ましくは1重量%~30重量である。樹脂組成物中におけるトランス型ポリイソプレンの含有量が1重量%未満であると、得られる樹脂組成物に対し、当該樹脂組成物を用いた樹脂成形体に対して充分な耐衝撃性を付与することが困難となる場合がある。樹脂組成物中におけるトランス型ポリイソプレンの含有量が60重量%を上回ると、当該樹脂組成物に含まれるポリ乳酸自体の性質(例えば、生分解性)を充分に発揮することができない場合がある。
 本発明のポリ乳酸樹脂組成物は、上記ポリ乳酸およびトランス型ポリイソプレン以外に、本発明の特徴を損なわない範囲において必要に応じて他の添加剤を含有していてもよい。
 このような他の添加剤としては、後述する樹脂組成物の成形性を向上させるための添加剤(例えば、ステアリン酸カルシウムなどの高級脂肪酸塩);タルク、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム、燐酸カルシウム、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、酸化マグネシウム、酸化チタン、酸化鉄、酸化亜鉛、アルミナ、シリカ、珪藻土、ドロマイト、石膏、焼成クレー、アスベスト、マイカ、ケイ酸カルシウム、ベントナイト、ホワイトカーボン、カーボンブラック、鉄粉、アルミニウム粉、石粉、高炉スラグ、フライアッシュ、セメント、ジルコニア粉などの無機フィラー;リンター、リネン、サイザル、木粉、ヤシ粉、クルミ粉、でん粉、小麦粉、米粉などの有機フィラー;木綿、麻、羊毛などの天然繊維、ポリアミド繊維、ポリエステル繊維、アクリル繊維、ビスコース繊維、アセテート繊維などの有機合成繊維や、アスベスト繊維、ガラス繊維、炭素繊維、セラミック繊維、金属繊維、ウィスカー繊維などの繊維フィラー;色素、顔料、カーボンブラックなどの着色剤;帯電防止剤;導電性付与剤;老化防止剤;難燃剤;防炎剤;撥水剤;撥油剤;防虫剤;防腐剤;ワックス類;界面活性剤;滑剤;紫外線吸収剤;熱安定剤;キレート剤;および分散剤;ならびにこれらの組み合わせが挙げられる。
 さらに、本発明のポリ乳酸樹脂組成物は、上記トランス型ポリイソプレン以外に、本発明の特徴を損なわない範囲において必要に応じて他のポリマーがブレンドされていてもよい。
 このような他の成分および/または他のポリマーの含有量もまた特に限定されず、本発明の特徴を損なわない範囲において、当業者が任意の含有量を設定することができる。
(ポリ乳酸樹脂組成物の製造方法)
 以下、本発明のポリ乳酸樹脂組成物の製造方法の一例について説明する。
 本発明においては、上記ポリ乳酸と、上記トランス型ポリイソプレンとが溶融かつ混練される。
 ここで、上記トランス型ポリイソプレンは、上記植物成分(例えば、トチュウ)由来のものを用いる場合、果皮由来の異物を含んでいるという理由から、予めトルエンのような有機溶媒を用いて精製されたものを使用することが好ましい。
 ポリ乳酸とトランス型ポリイソプレンとの溶融かつ混練は、市販の装置(例えば、セグメントミキサー、オープンロール、バンバリーミキサー、および二軸押出機)を用いて行われ得る。溶融かつ混練に必要とされる条件(例えば、温度、時間、回転数等)もまた、特に限定されず、当業者が使用する装置、材料(すなわち、ポリ乳酸およびトランス型ポリイソプレン)の量等によって適宜選択することができる。本発明においては、上記ポリ乳酸およびトランス型ポリイソプレンは、このような装置に、必要に応じて上記他の成分および/または他のポリマーとともに仕込まれ、溶融かつ混練が行われる。その結果、上記ポリ乳酸およびトランス型ポリイソプレン、ならびに必要に応じて含まれる上記他の成分および/または他のポリマーが互いに混合され、複合化された樹脂組成物が生じる。
 次いで、溶融かつ混練した材料は、例えば、当業者に公知の形状でなるペレットに成形されてもよい。
 このようにして、本発明のポリ乳酸樹脂組成物を製造することができる。
(ポリ乳酸樹脂成形体)
 本発明のポリ乳酸樹脂成形体を加熱成形して成形体を得るには、ブロー成形、射出成形、射出ブロー成形、インフレーション成形、真空圧空成形、あるいは異形押出成形または紡糸押出成形などの押出成形のような当業者に周知の成形方法を採用することができる。
 このような成形方法を経て、本発明のポリ乳酸樹脂組成物から、フィルム、シート、ボトルなどの任意の形態を有する耐衝撃性に優れた樹脂成形体を得ることができる。
 以下、実施例により本発明を詳述する。ただし、本発明はこれらに限定されるものではない。
(実施例1~9および比較例1)
 まず、本実施例に使用するトチュウ由来バイオポリマーについて以下のような分析を行った。
 日立造船株式会社製トチュウ由来バイオポリマーの構造および立体規則性を、H-NMRおよび13C-NMR(日本電子株式会社製/型式:ECA500)により確認した。また、当該バイオポリマーの重量平均分子量を、サイズ排除クロマトグラフィー(SEC-RI/東ソー株式会社製/型式:HLC-8320GPC/測定条件:(溶離液)テトラヒドロフラン、(溶出温度)40℃、(外部標準物質)ポリスチレン、(検出器)示差屈折率検出器)により測定した。得られた結果を、図1(H-NMR)、図2(13C-NMR)および図3(SECクロマトグラム)にそれぞれ示す。
 本実施例で使用したトチュウ由来バイオポリマーは、図1により基本構造がトランス1,4-結合単位を有するポリイソプレンであることを確認し、図2により、シス1,4-結合型ポリイソプレンのメチル基(23.0ppm)、メチレン基(26.5ppm)のシグナルが現れていないことを確認した。これにより、本実施例で使用したトチュウ由来バイオポリマーは、100%がトランス1,4-結合型ポリイソプレンから構成されているものであると推定した。さらに、当該トチュウ由来バイオポリマーの重量平均分子量は、SECクロマトグラムにより、標準ポリスチレン換算による分子量測定によれば、1.8×10であったことを確認した。
 次いで、ポリ乳酸(ユニチカ株式会社製テラマック)、および上記トチュウ由来バイオポリマー(日立造船株式会社製)を、表1に記載の組成比(重量部)でそれぞれセグメントミキサー混練機(株式会社東洋精機製作所製/型式:KF70V2)を備えるラボプラストミル(株式会社東洋精機製作所製/型式:110C100)に仕込み、温度180℃、時間10分、および回転数50回転/分の混練条件にて溶融かつ混練した。その後、ハンドトゥルーダー(株式会社東洋精機製作所製/型式:PM-1)を用いてストランドを成形し、コールドカットペレタイザー(株式会社東洋精機製作所製/型式:PETEC3)を用いてペレットを成形した。
 さらに、得られた各組成のペレットを、小型射出成形機(サーモフィッシャーサイエンティフィック社製/型式:HAAKE MiniJet Pro)を用いて、シャルピー衝撃試験用短冊片(80×10×4mm)を成形した。なお、試験片のノッチ加工にはノッチングツール(株式会社東洋精機製作所製)を用いた。シャルピー衝撃試験には衝撃試験機(株式会社東洋精機製作所製)を用い、2.0Jのハンマーでエッジワイズ衝撃を加えて試験を行った。試験はシングルノッチ付き試験片を用い、それぞれ5本以上のサンプル数を用意して測定を行った。得られたシャルピー衝撃試験結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、ポリ乳酸にトチュウ由来バイオポリマー(トランス型ポリイソプレン)を混合し、複合化させて得られた実施例1~9の樹脂組成物は、比較例1のポリ乳酸のみで構成されるものと比較して、いずれもシャルピー試験の測定値が高い数値を示し、耐衝撃性が向上していたことがわかる。特に、トチュウ由来バイオポリマーの併用による効果は、当該バイオポリマーの含有量が比較的少ない実施例1~4、8および9においても充分に示されており、トランス型ポリイソプレンが、ポリ乳酸樹脂組成物における耐衝撃性を高めるための改質剤として優れた機能を奏していることがわかる。
 本発明によれば、耐衝撃性が向上したポリ乳酸樹脂組成物を得ることができる。本発明は、このような耐衝撃性を活かして、フィルム、シート、ボトルなどの種々の樹脂成形体に成形することができ、様々な工業製品に有用である。

Claims (7)

  1.  ポリ乳酸と、90%以上の立体規則性および50万から500万の重量平均分子量を有するトランス型ポリイソプレンとを含有する、ポリ乳酸樹脂組成物。
  2.  前記トランス型ポリイソプレンが、99.9%以上の立体規則性を有する、請求項1に記載のポリ乳酸樹脂組成物。
  3.  前記トランス型ポリイソプレンがトチュウ由来のポリイソプレンである、請求項1または2に記載のポリ乳酸樹脂組成物。
  4.  前記ポリ乳酸がポリ(L-乳酸)である、請求項1から3のいずれかに記載のポリ乳酸樹脂組成物。
  5.  全体重量に対し、前記ポリ乳酸の含有量が40重量%から99重量%であり、そして前記トランス型ポリイソプレンの含有量が1重量%から60重量%である、請求項1から4のいずれかに記載のポリ乳酸樹脂組成物。
  6.  ポリ乳酸樹脂組成物の製造方法であって、
     ポリ乳酸と、90%以上の立体規則性および50万から500万の重量平均分子量を有するトランス型ポリイソプレンとを溶融かつ混練する工程を含む、方法。
  7.  請求項1から5のいずれかに記載のポリ乳酸樹脂組成物を用いて得られた樹脂成形体。
PCT/JP2015/074179 2014-12-26 2015-08-27 ポリ乳酸樹脂組成物 WO2016103788A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014266334A JP2018027991A (ja) 2014-12-26 2014-12-26 ポリ乳酸樹脂組成物
JP2014-266334 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016103788A1 true WO2016103788A1 (ja) 2016-06-30

Family

ID=56149830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074179 WO2016103788A1 (ja) 2014-12-26 2015-08-27 ポリ乳酸樹脂組成物

Country Status (2)

Country Link
JP (1) JP2018027991A (ja)
WO (1) WO2016103788A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175365A (zh) * 2020-09-28 2021-01-05 青岛科技大学 一种具有形状记忆效应的改性杜仲胶/聚乳酸热塑性弹性体及其制备方法
CN112226055A (zh) * 2020-09-28 2021-01-15 青岛科技大学 一种牙托及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996160A (ja) * 1982-11-24 1984-06-02 Daicel Chem Ind Ltd 金属またはポリエチレンテレフタレート接着用樹脂組成物
JP2000095898A (ja) * 1998-09-24 2000-04-04 Jsr Corp 生分解性材料の改質剤、およびそれを用いた生分解性材料組成物
JP2005320409A (ja) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd 耐衝撃性熱可塑性樹脂組成物
JP2012107137A (ja) * 2010-11-18 2012-06-07 Aron Kasei Co Ltd 改質ポリエステル樹脂組成物、および上記ポリエステル樹脂組成物の成形体
JP2014231552A (ja) * 2013-05-28 2014-12-11 帝人株式会社 抗菌性ポリ乳酸樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996160A (ja) * 1982-11-24 1984-06-02 Daicel Chem Ind Ltd 金属またはポリエチレンテレフタレート接着用樹脂組成物
JP2000095898A (ja) * 1998-09-24 2000-04-04 Jsr Corp 生分解性材料の改質剤、およびそれを用いた生分解性材料組成物
JP2005320409A (ja) * 2004-05-07 2005-11-17 Mitsubishi Rayon Co Ltd 耐衝撃性熱可塑性樹脂組成物
JP2012107137A (ja) * 2010-11-18 2012-06-07 Aron Kasei Co Ltd 改質ポリエステル樹脂組成物、および上記ポリエステル樹脂組成物の成形体
JP2014231552A (ja) * 2013-05-28 2014-12-11 帝人株式会社 抗菌性ポリ乳酸樹脂組成物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112175365A (zh) * 2020-09-28 2021-01-05 青岛科技大学 一种具有形状记忆效应的改性杜仲胶/聚乳酸热塑性弹性体及其制备方法
CN112226055A (zh) * 2020-09-28 2021-01-15 青岛科技大学 一种牙托及其制备方法
CN112175365B (zh) * 2020-09-28 2022-05-13 青岛科技大学 一种具有形状记忆效应的改性杜仲胶/聚乳酸热塑性弹性体及其制备方法

Also Published As

Publication number Publication date
JP2018027991A (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
CN109796734B (zh) 一种聚乳酸全生物降解复合材料
TWI687481B (zh) 聚酯樹脂組成物及成形體
EP2844685B1 (en) Copolymers based on reactive polyesters and plasticisers for the manufacture of transparent, biodegradable packaging film
WO2022252266A1 (zh) 一种复合增韧耐高温聚乳酸改性材料及其制备方法
JP7431326B2 (ja) 生分解性樹脂組成物及びその製造方法
US10538662B2 (en) Polylactic acid resin composition and method for producing same
KR101651319B1 (ko) 높은 변형성을 갖는 생분해성 중합체 조성물
JP2007063516A (ja) 樹脂組成物
CA2917356A1 (en) Heat resistant polylactic acid
Said Effects of gamma irradiation on the crystallization, thermal and mechanical properties of poly (l-lactic acid)/ethylene-co-vinyl acetate blends
JP2007126589A (ja) 射出成形体
JP6039712B2 (ja) 環境にやさしい軟質mbs樹脂の組成物、及びその製造方法、並びに前記組成物を利用したビニールレザー
JP6019930B2 (ja) 熱可塑性エラストマー組成物及びその製造方法
JP6556427B2 (ja) 生分解性樹脂組成物
WO2016103788A1 (ja) ポリ乳酸樹脂組成物
Lopattananon et al. Bioplastics from blends of cassava and rice flours: The effect of blend composition
Obasi et al. Effects of native cassava starch and compatibilizer on biodegradable and tensile properties of polypropylene
Sangeetha et al. Super toughened renewable poly (lactic acid) based ternary blends system: effect of degree of hydrolysis of ethylene vinyl acetate on impact and thermal properties
JP2024012074A (ja) 茶繊維/phbv/pbat三元複合材料とその製造方法及び使用
JP2007023188A (ja) 樹脂組成物
Zhen et al. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly (lactic acid) and poly (butylene succinate)
CN114080425A (zh) 包含ppgdge的高pla含量塑料材料
JP5573355B2 (ja) 樹脂組成物
CN107868427A (zh) 一种汽车座椅降解保护膜及其制备方法
WO2023145743A1 (ja) ポリ乳酸樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15872357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP