WO2016031265A1 - キレート剤添加量決定装置及びキレート剤添加量決定方法 - Google Patents

キレート剤添加量決定装置及びキレート剤添加量決定方法 Download PDF

Info

Publication number
WO2016031265A1
WO2016031265A1 PCT/JP2015/053797 JP2015053797W WO2016031265A1 WO 2016031265 A1 WO2016031265 A1 WO 2016031265A1 JP 2015053797 W JP2015053797 W JP 2015053797W WO 2016031265 A1 WO2016031265 A1 WO 2016031265A1
Authority
WO
WIPO (PCT)
Prior art keywords
chelating agent
metal
absorbance
sample
unreacted
Prior art date
Application number
PCT/JP2015/053797
Other languages
English (en)
French (fr)
Inventor
伊藤 一郎
直明 藤吉
恵一 水品
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201580037150.2A priority Critical patent/CN106488808B/zh
Publication of WO2016031265A1 publication Critical patent/WO2016031265A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Definitions

  • the present invention relates to a chelating agent addition amount determining device and a chelating agent addition amount determining method, and more specifically, an apparatus for determining the amount of a chelating agent necessary for insolubilizing heavy metals contained in solid waste such as waste incineration fly ash. And a method.
  • fly ash When incinerated waste, ash containing heavy metals (hereinafter also referred to as “fly ash”) is generated. Fly ash is designated as specially managed general waste by the Waste Disposal Law, and it is obliged to dispose of it by landfill after intermediate treatment.
  • a chelate heavy metal fixing agent is mixed with fly ash to insolubilize heavy metals contained in fly ash. If the addition amount of the chelating agent is insufficient, there will be a problem in terms of processing stability, and if the addition amount of the chelating agent is excessive, there will be a problem in terms of economy. It is extremely important to determine
  • the oxidation-reduction potential of the slurry when a certain amount of the chelating heavy metal immobilizing agent is added to the slurry of heavy metal-containing ash and water is measured over time. It has been proposed to obtain a positive change amount of the oxidation-reduction potential after addition of the chelate heavy metal immobilizing agent and determine the required addition amount based on the positive change amount (for example, Patent Document 1). reference).
  • a liquid chelating agent to a predetermined amount of the sample, react the heavy metal in the sample with the liquid chelating agent, and add the liquid chelating agent.
  • the absorbance IB at a specific wavelength is determined
  • the amount B of the unreacted liquid chelating agent in the sample is determined from the absorbance IB
  • the absorbance IA at the wavelength corresponding to the total amount of the liquid chelating agent added by the blank test is determined.
  • the total amount A of the liquid chelating agent added from IA is determined
  • the amount C of the liquid chelating agent reacted with the heavy metal is determined from the difference between the total amount A and the amount B, and based on the ratio between the amount C and a predetermined amount of the sample.
  • Patent Document 2 It has been proposed to determine the amount of liquid chelating agent added to treat waste (see, for example, Patent Document 2).
  • Patent Document 2 also describes that when the chelating agent is dithiocarbamic acid, the chelating agent has maximum absorption at 286 nm, 257 nm, and 215 nm.
  • fly ash contains not only heavy metals and other metals, but also many components that are difficult to identify.
  • these components affect the absorbance and the required amount of liquid chelating agent is calculated, there is a possibility that it may be calculated higher than the minimum required amount. is there. Therefore, there is still room for improvement in terms of increasing the measurement accuracy even by the methods described in Patent Documents 2 and 3.
  • the present invention has been made in view of the above circumstances, and is to provide a method for more accurately estimating the amount of chemicals necessary for insolubilization of heavy metals contained in waste such as waste incineration fly ash. .
  • the present inventors have insolubilized the heavy metal contained in the waste with a chelating agent, and then added a metal compound to the sample so that it has not reacted with the heavy metal.
  • the above problem is solved by generating a chelated metal, which is a reaction product of the unreacted chelating agent and the metal compound, and measuring the absorbance of the sample at a wavelength that allows the content of the chelated metal to be measured.
  • the present inventors have found that this can be done and have completed the present invention. Specifically, the present invention provides the following.
  • the present invention is a wavelength capable of measuring the content of a chelated metal that is a reaction product of an unreacted unreacted chelating agent and a metal compound in the reaction of a heavy metal and a chelating agent contained in waste, Absorbance measuring means for measuring the absorbance of the chelated metal-containing sample containing the chelating metal, and a chelating agent for calculating the amount of the chelating agent necessary for the treatment of the waste based on the measurement result by the absorbance measuring means
  • a chelating agent addition amount determination device comprising an amount calculation means.
  • this invention is a chelating agent addition amount determination apparatus as described in (1) whose said chelating metal containing sample is a sample which does not contain the reaction product of the said heavy metal and the said chelating agent substantially. is there.
  • this invention is a chelating agent addition amount determination apparatus as described in (1) or (2) in which the said chelating metal containing sample contains a pH buffer.
  • this invention is a chelating agent addition amount determination apparatus in any one of (1) to (3) in which the said chelating agent contains a dithiocarbamic acid type chelating agent.
  • the metal compound includes one or more metal salts selected from divalent iron salts, trivalent iron salts, copper salts, nickel salts, cadmium salts, and magnesium salts. ) To the chelating agent addition amount determination device according to any one of (4).
  • the present invention provides the chelate according to any one of (1) to (5), wherein the absorbance measurement unit measures the absorbance of the chelated metal-containing sample at a wavelength of 400 nm to 700 nm. It is an agent addition amount determination apparatus.
  • the present invention also includes a chelating agent addition step of adding an excessive amount of a chelating agent to a waste containing heavy metal to insolubilize the heavy metal, adding a metal compound to the sample after the addition of the chelating agent, and the chelating agent.
  • An absorbance measurement step for measuring the absorbance of the chelated metal-containing sample containing the chelated metal at a measurable wavelength, and a chelating agent necessary for the treatment of the waste based on the measurement result in the absorbance measurement step A chelating agent addition amount determination method including a chelating agent amount calculation step.
  • this invention is the solid-liquid mixing which contains the reaction product of the said heavy metal and the said chelating agent after the said chelating agent addition process, and the said heavy metal, and a liquid unreacted chelating agent.
  • the chelating agent addition amount determination method according to (7) further including a solid-liquid separation step of solid-liquid separation of the sample, wherein the metal compound addition step is a step performed after the solid-liquid separation step.
  • this invention further includes the pH buffer agent addition process of adding a pH buffer agent to a sample before the said metal compound addition process, The chelating agent addition amount as described in (7) or (8) It is a decision method.
  • the present invention is not a wavelength suitable for measuring an unreacted chelating agent itself unreacted with a heavy metal, but an absorbance method of a sample at a wavelength suitable for a chelated metal that is a reaction product of an unreacted chelating agent and a metal compound. taking measurement.
  • an absorbance method of a sample at a wavelength suitable for a chelated metal that is a reaction product of an unreacted chelating agent and a metal compound. taking measurement.
  • it is possible to suppress the influence of numerous difficult-to-specify components on absorbance, resulting in insolubilization of heavy metals contained in waste such as garbage incineration fly ash. It is possible to estimate the required amount of drug addition more accurately.
  • FIG. 1 is a block diagram for explaining a schematic configuration of a chelating agent addition amount determining apparatus 1 according to the present embodiment.
  • the chelating agent addition amount determination device 1 is a wavelength capable of measuring the content of a chelating metal that is a reaction product of an unreacted unreacted chelating agent and a metal compound in the reaction of a heavy metal and a chelating agent contained in waste. Then, based on the absorbance measurement unit 2 for measuring the absorbance of the chelated metal-containing sample containing the chelated metal and the measurement result by the absorbance measuring means 2, the amount of the chelating agent necessary for the treatment of the waste is calculated.
  • the absorbance measurement unit 2 is a chelate having a wavelength capable of measuring the content of a chelated metal that is a reaction product of an unreacted unreacted chelating agent and a metal compound in the reaction of a heavy metal and a chelating agent contained in waste. It has a function of measuring the absorbance of a chelated metal-containing sample containing a metal halide.
  • the waste is not particularly limited as long as it contains heavy metals.
  • the present embodiment is characterized in that, in addition to various metals contained in the waste, the influence of many difficult-to-specify components on the absorbance can be suppressed. Therefore, the waste contains many hard-to-specify components.
  • waste incineration fly ash, electric furnace dust, biomass incineration ash and the like are preferable.
  • heavy metals contained in waste include lead, mercury, cadmium, hexavalent chromium, arsenic, selenium, nickel, molybdenum, antimony, copper, zinc, manganese, and the like.
  • the type of the chelating agent is not particularly limited, but the chelating agent is preferably a dithiocarbamic acid-based chelating agent in that it can react favorably with heavy metals and suitably insolubilize heavy metals, and is a dithiocarbamate, dialkyldithiocarbamine. More preferred are acid salts, cycloalkyldithiocarbamates, piperazine dithiocarbamates, tetraethylenepentamine dithiocarbamates, and polyamine dithiocarbamates.
  • a chelating agent may be used individually by 1 type, and may use 2 or more types together.
  • the “unreacted chelating agent” refers to an unreacted chelating agent in the reaction between the heavy metal and the chelating agent.
  • the sample after the addition of the chelating agent is not particularly limited as long as it contains the unreacted chelating agent, but in order to improve the measurement accuracy, the sample substantially contains the reaction product of the heavy metal and the chelating agent. It is preferable that the sample does not contain.
  • the reaction product produced by the reaction between the heavy metal and the chelating agent is insoluble in water, and precipitates and precipitates in the sample. Therefore, the method for removing the reaction product is not particularly limited as long as it can solid-liquid separate the reaction product that is solid and the unreacted chelating agent that is liquid. Examples include centrifugation and membrane separation.
  • the sample after adding the chelating agent preferably contains a pH buffer.
  • the pH buffering agent preferably has a pH in the buffer range of 6 or more and 7 or less.
  • a pH in the buffer range 6 or more and 7 or less.
  • the pH buffer is piperazine-1,4-diethanesulfonic acid.
  • a pH buffer may be used individually by 1 type, and may use 2 or more types together.
  • the type of the metal compound to be reacted with the unreacted chelating agent is not particularly limited, but the metal compound is a divalent iron salt in that it can react with the unreacted chelating agent to suitably generate a chelated metal precipitate. It is preferably one or more metal salts selected from trivalent iron salts, copper salts, nickel salts, cadmium salts and magnesium salts. Moreover, it is preferable that a metal compound is a sulfate or hydrochloride. Since no special treatment is required at the time of discharge after the completion of analytical work or the degree of color development, metal compounds are divalent iron salts or trivalent iron salts such as ferrous chloride, ferrous sulfate, ferric chloride. Or it is more preferable that it is ferric sulfate.
  • the wavelength for measuring the absorbance of the chelated metal-containing sample containing the chelated metal only needs to be a wavelength capable of measuring the content of the chelated metal.
  • the measurement wavelength is preferably 400 nm or more and 700 nm or less, and more preferably 500 nm or more and 700 nm or less. If the wavelength is within this range, it can be said that the influence of pH buffer and unreacted metal compound contained in the eluate on the absorbance is extremely small.
  • a suitable measurement wavelength is 400 nm or more and 700 nm or less
  • a spectrophotometer that is generally widely used is sufficient for the absorbance measurement apparatus. Therefore, there is no problem in safety or the like even in automatic driving. If the measurement wavelength is 400 nm or more, the absorption peak due to the glass cell is on the shorter wavelength side than the main wavelength, so that an ordinary glass cell can be used instead of an expensive quartz cell, which is highly convenient.
  • the chelating agent amount calculation unit 3 has a function of calculating the amount of the chelating agent necessary for waste treatment based on the measurement result by the absorbance measurement unit 2.
  • the calculation method is not particularly limited, for example, using a calibration curve indicating the relationship between the concentration of the chelated metal that is a reaction product of the chelating agent and the metal compound and the absorbance at the measurement wavelength, Calculate the concentration of chelating metal contained in the chelated metal-containing sample from the absorbance of the chelated metal-containing sample minus the absorbance of the blank test, and calculate the amount of chelating agent required for waste treatment from this concentration To do.
  • the sample for the blank test is not a sample containing neither waste nor a chelating agent, but is preferably a sample containing waste but not containing a chelating agent.
  • a sample from which only the agent has been removed that is, a sample containing waste, a pH buffering agent and a metal compound, but not containing a chelating agent is more preferred. By doing so, it is possible to suppress the influence of many difficult-to-specify components contained in the waste on the absorbance, and it is possible to more accurately estimate the amount of drug added necessary for the insolubilization of heavy metals contained in the waste. it can.
  • FIG. 2 is a flowchart for explaining the chelating agent addition amount determining method according to the present embodiment.
  • the chelating agent addition amount determination method includes at least a chelating agent addition step S1, a metal compound addition step S4, an absorbance measurement step S5, and a chelating agent amount calculation step S6.
  • the chelating agent addition amount determination method further includes a solid-liquid separation step S2 and a pH buffer addition step S3.
  • the chelating agent addition amount determining method according to the present embodiment will be described in order.
  • the chelating agent addition step S1 is a step of adding an excessive amount of the chelating agent to the waste containing the heavy metal to insolubilize the heavy metal.
  • the method of adding a chelating agent to waste and insolubilizing the heavy metals contained in the waste is not particularly limited, and contains waste by adding a small amount of water to the waste and the chelating agent and mixing this with a spatula etc. You may add a lot of water to the sample and shake it horizontally, or add a small amount of water to the waste and mix it with a spatula etc. to add a chelating agent and a lot of water. You may make it shake horizontally. Moreover, after adding much water with respect to a waste material and a chelating agent, you may make it stir with a magnetic stirrer.
  • the amount of water added is not particularly limited as long as it is an amount that can prevent the ash from scattering.
  • a parameter representing the degree of dilution a parameter called a liquid-solid ratio defined by the mass of water / the mass of waste is employed.
  • the liquid-solid ratio of the sample is not particularly limited, but the liquid-solid ratio is preferably 10 or more and 1000 or less, more preferably 50 or more and 500 or less, and further preferably 100 or more and 300 or less. If the liquid-solid ratio is too small, the degree of dilution is not sufficient, and the absorbance may exceed the measurement upper limit of the measuring instrument when measuring the absorbance of the sample. Moreover, insolubilization of heavy metals may not proceed sufficiently, and subsequent solid-liquid separation may not proceed properly. If the liquid-solid ratio is too large, the absorbance may be too small and the accuracy of the absorbance of the sample may be lacking. In addition, a large apparatus is required to promote insolubilization, which is inefficient.
  • the type of water is not particularly limited, but the water is preferably distilled water or pure water in order to minimize the influence of impurities contained in the water on the absorbance.
  • the content of a chelated metal that is a reaction product of an unreacted unreacted chelating agent and a metal compound in the reaction of a heavy metal and a chelating agent contained in the waste is measured. Therefore, in the reaction between the heavy metal and the chelating agent, the addition amount of the chelating agent needs to be excessive, that is, more than the chemical equivalent required for the reaction with the heavy metal contained in the waste. If the amount of the chelating agent added is less than the above chemical equivalent, it is not preferable in that the unreacted chelating agent is not produced in the first place.
  • the reaction time between the heavy metal and the chelating agent is not particularly limited, but is preferably 5 minutes or more and 60 minutes or less, more preferably 10 minutes or more and 30 minutes or less, and further preferably 10 minutes or more and 20 minutes or less. preferable. If the reaction time is too short, the chelation reaction may not reach equilibrium. If the reaction time is too long, the reaction between the heavy metal and the chelating agent continues even though the chelation reaction has already reached equilibrium, which is inefficient.
  • Solid-liquid separation step S2 In the solid-liquid separation step S2, after the chelating agent addition step S2, the reaction product of the heavy metal and the chelating agent and the solid-liquid mixed sample that has not reacted with the heavy metal and contains the liquid unreacted chelating agent are subjected to solid-liquid separation. It is a process to do.
  • the method of solid-liquid separation is not particularly limited, and examples thereof include sedimentation separation, filtration, centrifugation, and membrane separation. Among them, it is preferable to employ filtration as a technique for removing the reaction product because it is excellent in separability between a solid and a liquid and is simple. Filtration is preferably performed using glass fiber filter paper or a membrane filter.
  • the pore size of the filter is not particularly limited, but considering the separability between the reaction product that is a solid and the unreacted chelating agent that is a liquid, the filtration time, etc., the pore size of the filter is 0.45 ⁇ m or more and 1 It is preferably 0.0 ⁇ m or less, and more preferably 0.80 ⁇ m or more and 1 ⁇ m or less.
  • the pH buffering agent adding step S3 is a step of adding a pH buffering agent to the sample before the metal compound adding step S4 described later.
  • a pH buffering agent adding step S3 is a step of adding a pH buffering agent to the sample before the metal compound adding step S4 described later.
  • the metal ions in the metal compound react with the hydroxide ions to form insoluble hydroxides, which is necessary for the disposal of waste. May affect the accuracy of calculating the amount of a chelating agent. Therefore, it is preferable to adjust the pH of the sample by performing a pH buffering agent adding step S3.
  • the metal compound addition step S4 is a step of adding a metal compound to the sample after the addition of the chelating agent and chelating the metal compound with the heavy metal and the unreacted unreacted chelating agent in the chelating agent addition step S1.
  • the absorbance measurement step S5 is a step of measuring the absorbance of the chelated metal-containing sample containing the chelated metal at a wavelength capable of measuring the content of the chelated metal that is a reaction product of the unreacted chelating agent and the metal compound. It is.
  • the chelating agent amount calculating step S6 is a step of calculating the amount of chelating agent necessary for the treatment of the waste based on the measurement result in the absorbance measuring step S5.
  • the calculation method is not particularly limited, for example, using a calibration curve indicating the relationship between the concentration of the chelated metal that is a reaction product of the chelating agent and the metal compound and the absorbance at the measurement wavelength, Calculate the concentration of chelating metal contained in the chelated metal-containing sample from the absorbance of the chelated metal-containing sample minus the absorbance of the blank test, and calculate the amount of chelating agent required for waste treatment from this concentration To do.
  • the blank test is to minimize the influence of many difficult-to-specify components contained in waste on the absorbance and estimate the amount of chemicals required for insolubilization of heavy metals contained in waste more accurately. Do. Therefore, the blank test is the same for all samples except that no chelating agent is added, that is, from the solid-liquid separation step S2 to the absorbance measurement step S5 except that no chelating agent is added in the above-described chelating agent addition step S1. It is preferable to measure the absorbance by going through the same steps all the way.
  • FIG. 3 shows the relationship between the chelating agent addition rate to fly ash and the lead concentration in the eluate obtained as described above. From FIG. 3, it was found that the appropriate amount of chelating agent added satisfying the lower limit of analysis of lead (less than 0.05 mg / L) was 2.5% by weight with respect to fly ash.
  • Example 1 Color reagent: chelating metal, measurement wavelength: 525 nm
  • Example 2 Color reagent: chelating metal, measurement wavelength: 525 nm
  • Example 1 Color reagent: chelating metal, measurement wavelength: 525 nm
  • the calibration curve in Example 1 was obtained by linearly approximating the relationship between the content of the chelated metal that is a reaction product of the chelating agent and iron (II) chloride tetrahydrate and the absorbance at a wavelength of 525 nm. ).
  • the chelated metal concentration corresponding to this absorbance was calculated from a calibration curve prepared in advance.
  • the chelated metal concentration calculated in this manner corresponds to the residual chelating agent concentration in the solution. From the concentration of the residual chelating agent and the solid-liquid ratio of the eluate, the addition rate of the residual chelating agent to fly ash was determined. Subsequently, the difference between the addition rate of the chelating agent and the residual chelating agent was determined as the appropriate addition rate. Table 1 shows the measured values and calculated values.
  • the chelating agent concentration corresponding to this absorbance was calculated from a calibration curve prepared in advance. From the concentration of the residual chelating agent and the solid-liquid ratio of the eluate, the addition rate of the residual chelating agent to fly ash was determined. Subsequently, the difference between the addition rate of the chelating agent and the residual chelating agent was determined as the appropriate addition rate. Table 1 shows the measured values and calculated values.
  • Comparative Example 2 Color reagent: chelating agent, measurement wavelength: 350 nm Except for setting the wavelength at the time of measuring absorbance to 350 nm, the same operation as in Comparative Example 1 was performed to calculate the appropriate addition rate. Table 1 shows the measured values and calculated values.
  • the optimum addition rate determined according to Example 1 is 2.4% by weight, and it is appropriate to satisfy the addition rate of the chelate additive determined by the preliminary experiment, that is, the lower limit of analysis of lead (less than 0.05 mg / L). It almost coincided with the chelate addition rate (2.5 wt%).
  • the appropriate addition rate obtained by Comparative Example 1 was 2.8% by weight, which was slightly excessive as compared with the addition rate of the chelate additive obtained by the preliminary experiment. Moreover, in the comparative example 2, the calculated residual chelating agent addition rate exceeded the original chelating agent addition rate, and an appropriate addition rate was not able to be calculated
  • the appropriate addition rate by measuring the absorbance when the chelating agent itself is a color reagent and the measurement wavelength is 286 nm or 350 nm, a number of difficultly specified components contained in fly ash affected the absorbance. It seems to be.
  • Example 2 Color reagent: chelating metal Absorbance (a) was measured by the same operation as in Example 1 except that the measurement wavelength of absorbance was a continuous range of 200 nm to 700 nm. The results are shown in FIG.
  • the chelating agent addition amount determination apparatus or the chelating agent addition amount determination method of the present invention fly ash, incineration ash, and soot generated at a garbage incineration site; mineral waste discharged from a mine, activated sludge generated during wastewater treatment, It is possible to determine the amount of chelating agent necessary for preventing heavy metals from eluting from contaminated soil such as a chemical factory site, etc., simply, quickly, inexpensively and accurately.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mathematical Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

 飛灰等の廃棄物中の重金属の不溶化に必要な薬剤添加量を、正確に見積もる。 本発明に係る装置1は、廃棄物中の重金属及びキレート剤の反応において未反応のキレート剤と、金属化合物との反応生成物であるキレート化金属の含有量を測定可能な波長で、試料の吸光度を測定する吸光度測定手段2と、この測定結果に基づいて、処理に必要なキレート剤の量を算出するキレート剤量算出手段3とを備える。また、本発明に係る方法は、重金属含有廃棄物にキレート剤を過剰量添加し、重金属を不溶化するキレート剤添加工程S1と、試料に金属化合物を添加し、未反応のキレート剤でキレート化する金属化合物添加工程S4と、この工程によるキレート化金属の含有量を測定可能な波長で、試料の吸光度を測定する吸光度測定工程S5と、この測定結果に基づいて、廃棄物の処理に必要なキレート剤の量を算出する、キレート剤量算出工程S6とを含む。

Description

キレート剤添加量決定装置及びキレート剤添加量決定方法
 本発明は、キレート剤添加量決定装置及びキレート剤添加量決定方法、より詳しくは、ごみ焼却飛灰等の固体廃棄物に含まれる重金属を不溶化するために必要なキレート剤の量を決定する装置及び方法に関する。
 廃棄物を焼却すると、重金属を含有する灰(以下、「飛灰」ともいう。)が発生する。飛灰は、廃棄物処理法により特別管理一般廃棄物に指定されており、中間処理を施したのち、埋立等により処分することが義務づけられている。
 中間処理の一手法として、キレート系重金属固定剤を飛灰に混合し、飛灰に含まれる重金属を不溶化することが知られている。キレート剤の添加量が不足すると、処理の安定性の面で課題を有し、キレート剤の添加量が過剰であると、経済性の面で課題を有することから、キレート剤の適正な添加量を決定することは、極めて重要である。
 キレート剤の適正な添加量を決定する手法として、重金属含有灰と水とのスラリーに、一定量の該キレート系重金属固定化剤を添加したときの該スラリーの酸化還元電位を経時的に測定し、該キレート系重金属固定化剤添加後の該酸化還元電位の正の変化量を求め、この正の変化量に基づいて前記必要添加量を決定することが提案されている(例えば、特許文献1参照)。
 また、廃棄物からサンプルを採取し、サンプルの所定量に対して液体キレート剤を添加してサンプル中の重金属と液体キレート剤とを反応させ、液体キレート剤を添加したサンプルについて、液体キレート剤について特異的な波長における吸光度IBを求め、吸光度IBからサンプル中の未反応の液体キレート剤の量Bを求め、空試験により添加した液体キレート剤の全量に相当する上記波長における吸光度IAを求め、吸光度IAから添加した液体キレート剤の全量Aを求め、この全量Aと量Bとの差から重金属と反応した液体キレート剤の量Cを求め、この量Cとサンプルの所定量との比に基づいて廃棄物を処理するに適正な液体キレート剤の添加量を決定することが提案されている(例えば、特許文献2参照)。そして、特許文献2には、キレート剤がジチオカルバミン酸系の場合、該キレート剤は、286nm、257nm、215nmで極大吸収をもつことも記載されている。
 ところで、重金属は、紫外線領域(200nm~250nm)に吸収ピークを有している。特許文献2に記載の手法では、286nm、257nm又は215nmにおける吸光度を求めることになるため、未反応の重金属による外乱を受ける可能性がある。そこで、重金属を含有する固体廃棄物にキレート剤を過剰量添加し、反応させた後、未反応のキレート剤量を330nm以上であり、吸光度が1ABS~3ABSのピークを有する波長の吸光度で測定し、該測定値から固体廃棄物中の重金属の不溶化に必要なキレート剤の添加量を決定することが提案されている(例えば、特許文献3参照)。
特開2002-126685号公報 特開平10-337550号公報 特開2010-260010号公報
 しかしながら、特許文献1に記載の手法では、スラリーのpH及びスラリーに含まれる未反応の金属が酸化還元電位に影響を与え得る。そのため、測定精度を高める点で、なお改良の余地がある。
 また、飛灰は、重金属や他の金属だけでなく、特定困難な数多くの成分を含む。特許文献2及び3に記載の手法では、それらの成分が吸光度に影響を与え、必要な液体キレート剤の添加量を算出する際、真に必要な最小添加量よりも高く算出される可能性がある。そのため、特許文献2及び3に記載の手法によってもなお、測定精度を高める点で改良の余地がある。
 本発明は、以上の実情に鑑みてなされたものであり、ごみ焼却飛灰等の廃棄物に含まれる重金属の不溶化に必要な薬剤添加量を、よりいっそう正確に見積もる手法を提供することである。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、廃棄物に含まれる重金属をキレート剤で不溶化した後、試料に金属化合物を加えることで、上記重金属と未反応であった未反応キレート剤と上記金属化合物との反応生成物であるキレート化金属を生成し、そのキレート化金属の含有量を測定可能な波長で試料の吸光度を測定することで、上記の課題を解決できることを見出し、本発明を完成するに至った。具体的に、本発明は以下を提供する。
 (1)本発明は、廃棄物に含まれる重金属及びキレート剤の反応において未反応の未反応キレート剤と、金属化合物との反応生成物であるキレート化金属の含有量を測定可能な波長で、前記キレート化金属を含有するキレート化金属含有試料の吸光度を測定する吸光度測定手段と、前記吸光度測定手段による測定結果に基づいて、前記廃棄物の処理に必要なキレート剤の量を算出するキレート剤量算出手段とを備える、キレート剤添加量決定装置である。
 (2)また、本発明は、前記キレート化金属含有試料が前記重金属と前記キレート剤との反応生成物を実質的に含有しない試料である、(1)に記載のキレート剤添加量決定装置である。
 (3)また、本発明は、前記キレート化金属含有試料がpH緩衝剤を含有する、(1)又は(2)に記載のキレート剤添加量決定装置である。
 (4)また、本発明は、前記キレート剤がジチオカルバミン酸系キレート剤を含む、(1)から(3)のいずれかに記載のキレート剤添加量決定装置である。
 (5)また、本発明は、前記金属化合物が、二価鉄塩、三価鉄塩、銅塩、ニッケル塩、カドミウム塩及びマグネシウム塩から選択される1種以上の金属塩を含む、(1)から(4)のいずれかに記載のキレート剤添加量決定装置である。
 (6)また、本発明は、前記吸光度測定手段が、400nm以上700nm以下の波長で前記キレート化金属含有試料の吸光度を測定する、(1)から(5)のいずれか1項に記載のキレート剤添加量決定装置である。
 (7)また、本発明は、重金属を含む廃棄物にキレート剤を過剰量添加し、前記重金属を不溶化するキレート剤添加工程と、キレート剤添加後の試料に金属化合物を添加し、前記キレート剤添加工程で前記重金属と未反応の未反応キレート剤で前記金属化合物をキレート化する金属化合物添加工程と、前記未反応キレート剤と前記金属化合物との反応生成物であるキレート化金属の含有量を測定可能な波長で、前記キレート化金属を含有するキレート化金属含有試料の吸光度を測定する吸光度測定工程と、前記吸光度測定工程での測定結果に基づいて、前記廃棄物の処理に必要なキレート剤の量を算出する、キレート剤量算出工程とを含む、キレート剤添加量決定方法である。
 (8)また、本発明は、前記キレート剤添加工程の後、前記重金属と前記キレート剤との反応生成物、及び前記重金属と未反応であり、液体の未反応キレート剤を含有する固液混合試料を固液分離する固液分離工程をさらに含み、前記金属化合物添加工程は、前記固液分離工程の後に行われる工程である、(7)に記載のキレート剤添加量決定方法である。
 (9)また、本発明は、前記金属化合物添加工程よりも前に、試料にpH緩衝剤を添加するpH緩衝剤添加工程をさらに含む、(7)又は(8)に記載のキレート剤添加量決定方法である。
 本発明は、重金属と未反応の未反応キレート剤そのものの測定に好適な波長ではなく、未反応キレート剤と金属化合物との反応生成物であるキレート化金属に好適な波長で試料の吸光度法で測定する。本発明によると、飛灰に含まれる各種金属のほか、特定困難な数多くの成分が吸光度に与える影響を抑えることができ、結果として、ごみ焼却飛灰等の廃棄物に含まれる重金属の不溶化に必要な薬剤添加量を、よりいっそう正確に見積もることができる。
本実施形態に係るキレート剤添加量決定装置1の概略構成を説明するためのブロック図である。 本実施形態に係るキレート剤添加量決定方法を説明するためのフローチャートである。 飛灰に対するキレート剤添加率と溶出液中の鉛濃度との関係を示す図である。 実施例2及び比較例3~5に係るサンプルの測定波長200~700nmにおける吸光度を示す図である。
 以下、本発明の実施形態を説明するが、これらが本発明を限定するものではない。
<キレート剤添加量決定装置1>
 図1は、本実施形態に係るキレート剤添加量決定装置1の概略構成を説明するためのブロック図である。キレート剤添加量決定装置1は、廃棄物に含まれる重金属及びキレート剤の反応において未反応の未反応キレート剤と、金属化合物との反応生成物であるキレート化金属の含有量を測定可能な波長で、キレート化金属を含有するキレート化金属含有試料の吸光度を測定する吸光度測定部2と、この吸光度測定手段2による測定結果に基づいて、廃棄物の処理に必要なキレート剤の量を算出するキレート剤量算出部3とを備える。
〔吸光度測定部2〕
 吸光度測定部2は、廃棄物に含まれる重金属及びキレート剤の反応において未反応の未反応キレート剤と、金属化合物との反応生成物であるキレート化金属の含有量を測定可能な波長で、キレート化金属を含有するキレート化金属含有試料の吸光度を測定する機能を有する。
[廃棄物]
 廃棄物は、重金属を含むものであれば特に限定されない。本実施形態は、廃棄物に含まれる各種金属のほか、特定困難な数多くの成分が吸光度に与える影響を抑えられることを特徴とするため、廃棄物は、特定困難な数多くの成分を含有するもの、例えば、ごみ焼却飛灰、電炉ダスト、バイオマス焼却灰等であることが好ましい。
 廃棄物中に含まれる重金属の例として、鉛、水銀、カドミウム、6価クロム、砒素、セレン、ニッケル、モリブデン、アンチモン、銅、亜鉛、マンガン等が挙げられる。
[キレート剤]
 キレート剤の種類は特に限定されるものでないが、重金属と好適に反応し、重金属を好適に不溶化できる点で、キレート剤は、ジチオカルバミン酸系キレート剤であることが好ましく、ジチオカルバミン酸塩、ジアルキルジチオカルバミン酸塩、シクロアルキルジチオカルバミン酸塩、ピペラジンジチオカルバミン酸塩、テトラエチレンペンタミンジチオカルバミン酸塩、ポリアミンのジチオカルバミン酸塩であることがより好ましい。キレート剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[未反応キレート剤]
 本明細書において、「未反応キレート剤」とは、上記重金属とキレート剤との反応において未反応のキレート剤をいう。キレート剤添加後の試料は、この未反応キレート剤を含有するものであれば特に限定されるものでないが、測定精度を高めるため、試料は、重金属とキレート剤との反応生成物を実質的に含有しない試料であることが好ましい。
 重金属とキレート剤との反応によって生成される反応生成物は、水に不溶であり、試料内で析出し、沈殿する。そこで、この反応生成物を除去する手法は、固体である反応生成物と、液体である未反応キレート剤とを固液分離できるものであれば特に限定されるものでなく、沈降分離、ろ過、遠心分離、膜分離等が挙げられる。
 また、試料がアルカリ性である場合、試料に金属化合物を加える際、金属化合物中の金属イオンが水酸化物イオンと反応し、不溶性の水酸化物を形成するため、廃棄物の処理に必要なキレート剤の量を算出する精度に影響を及ぼすことがある。そこで、キレート剤添加後の試料は、pH緩衝剤を含有するものであることが好ましい。
 pH緩衝剤は、緩衝域のpHが6以上7以下であることが好ましく、例えば、トリス(ヒドロキシメチル)アミノメタン、ピペラジン-1,4-ジエタンスルホン酸又は2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸であることが挙げられる。pH緩衝剤は、ピペラジン-1,4-ジエタンスルホン酸であることがより好ましい。pH緩衝剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
[金属化合物]
 未反応キレート剤と反応させる金属化合物の種類は特に限定されるものでないが、未反応キレート剤と反応し、キレート化金属の沈殿物を好適に生成できる点で、金属化合物は、二価鉄塩、三価鉄塩、銅塩、ニッケル塩、カドミウム塩及びマグネシウム塩から選択される1種以上の金属塩であることが好ましい。また、金属化合物は、硫酸塩又は塩酸塩であることが好ましい。発色の度合や分析作業終了後の放流時に特段の処理が不要であることから、金属化合物は、二価鉄塩又は三価鉄塩、例えば塩化第一鉄、硫酸第一鉄、塩化第二鉄又は硫酸第二鉄であることがより好ましい。
[キレート化金属含有試料の吸光度の測定]
 キレート化金属を含有するキレート化金属含有試料の吸光度を測定する波長は、上記キレート化金属の含有量を測定可能な波長であれば足りる。具体的に、測定波長は、400nm以上700nm以下であることが好ましく、500nm以上700nm以下であることがより好ましい。波長がこの範囲内にあれば、溶出液に含まれるpH緩衝剤や未反応の金属化合物が吸光度に与える影響は極めて小さいといえる。
 本実施形態では、好適な測定波長が400nm以上700nm以下であるため、吸光度の測定装置は、一般に広く用いられる分光光度計で足りる。そのため、自動運転に際しても、安全性等に何ら支障がない。また、測定波長が400nm以上であると、ガラスセルによる吸収ピークが本波長よりも短波長側にあるため、高価な石英セルではなく、通常のガラスセルを用いることができ、利便性が高い。
〔キレート剤量算出部3〕
 キレート剤量算出部3は、吸光度測定部2による測定結果に基づいて、廃棄物の処理に必要なキレート剤の量を算出する機能を有する。
 算出の手法は特に限定されるものではないが、例えば、キレート剤と金属化合物との反応生成物であるキレート化金属の濃度と、測定波長での吸光度との関係を示す検量線を用いて、キレート化金属含有試料の吸光度から空試験の吸光度を差し引いた吸光度からキレート化金属含有試料に含まれるキレート化金属の濃度を算出し、この濃度から廃棄物の処理に必要なキレート剤の量を算出することが挙げられる。
 この場合、空試験の試料は、廃棄物、キレート剤のいずれも含有しない試料ではなく、廃棄物を含有するが、キレート剤を含有しない試料であることが好ましく、特に、本試験の試料からキレート剤だけを取り除いた試料、すなわち、廃棄物、pH緩衝剤及び金属化合物を含有するが、キレート剤を含有しない試料であることがより好ましい。そうすることで、廃棄物に含まれる特定困難な数多くの成分が吸光度に与える影響を抑えることができ、廃棄物に含まれる重金属の不溶化に必要な薬剤添加量を、よりいっそう正確に見積もることができる。
<キレート剤添加量決定方法>
 図2は、本実施形態に係るキレート剤添加量決定方法を説明するためのフローチャートである。キレート剤添加量決定方法は、少なくとも、キレート剤添加工程S1と、金属化合物添加工程S4と、吸光度測定工程S5と、キレート剤量算出工程S6とを含む。また、必須ではないが、キレート剤添加量決定方法は、固液分離工程S2と、pH緩衝剤添加工程S3とをさらに含むことが好ましい。以下、本実施形態に係るキレート剤添加量決定方法について、順をおって説明する。
〔キレート剤添加工程S1〕
 キレート剤添加工程S1は、重金属を含む廃棄物にキレート剤を過剰量添加し、重金属を不溶化する工程である。
 廃棄物にキレート剤を添加し、廃棄物に含まれる重金属を不溶化する手法は特に限定されるものでなく、廃棄物及びキレート剤に少量の水を加え、これをスパーテル等で混合した廃棄物含有試料に多くの水をさらに加え、水平振とうするようにしてもよいし、廃棄物に少量の水を加え、これをスパーテル等で混合した廃棄物含有試料にキレート剤及び多くの水をさらに加え、水平振とうするようにしてもよい。また、廃棄物及びキレート剤に対して多くの水を一度に加えた後、マグネチックスターラーで撹拌するようにしてもよい。
 スパーテル等での混合前に、廃棄物に少量の水を加えるのは、混合によって、灰が飛散するのを避けるためである。したがって、水の添加量は、灰が飛散するのを抑えられる量であれば特に限定されるものではない。
 一方で、スパーテル等での混合後に、廃棄物に多くの水を加えるのは、測定対象物の濃度を適切に希釈するためであり、この希釈によって、試料の吸光度を測定する際の測定精度が高まる。ところで、測定対象物の濃度を希釈することで、水に含まれる不純物が吸光度に影響を与えるという考え方もある。そのため、測定波長を、測定対象物の極大吸収をもつ波長からあえて外し、測定対象物の濃度をあえて希釈しないという考え方もある(例えば、上記特許文献3)。しかしながら、本実施形態においては、水に含まれる不純物が吸光度に与える影響は無視できる程度であり(下記実施例2)、むしろ、測定波長を、測定対象物の極大吸収をもつ波長から外すことによる影響の方が大きい(下記実施例1)。そのため、本実施形態においては、スパーテル等での混合後に、廃棄物に水を加え、測定対象物の濃度を適切に希釈することが好ましい。
 本実施形態では、希釈の程度を表すパラメータとして、水の質量/廃棄物の質量で定義される液固比というパラメータを採用している。試料の液固比は特に限定されるものでないが、液固比は10以上1000以下であることが好ましく、50以上500以下であることがより好ましく、100以上300以下であることがさらに好ましい。液固比が小さすぎると、希釈の程度が十分でなく、試料の吸光度を測定する際、吸光度が測定機器の測定上限を超える可能性がある。また、重金属の不溶化が十分に進まない可能性があるとともに、その後の固液分離が好適に進まない可能性もある。液固比が大きすぎると、吸光度が小さすぎ、試料の吸光度の正確性に欠ける可能性がある。また、不溶化を好適に進めるために大型の装置を要することになり、非効率である。
 また、水の種類は特に限定されるものでないが、水に含まれる不純物が吸光度に与える影響を最小限に抑えるため、水は蒸留水や純水等であることが好ましい。
 本実施形態では、廃棄物に含まれる重金属及びキレート剤の反応において未反応の未反応キレート剤と、金属化合物との反応生成物であるキレート化金属の含有量を測定する。そのため、重金属とキレート剤との反応において、キレート剤の添加量は、過剰量であること、すなわち、廃棄物に含まれる重金属との反応に必要な化学当量よりも多いことを要する。キレート剤の添加量が上記化学当量よりも少ないと、そもそも上記未反応キレート剤が生成されない点で好ましくない。
 重金属とキレート剤との反応時間は特に制限されないが、5分以上60分以下であることが好ましく、10分以上30分以下であることがより好ましく、10分以上20分以下であることがさらに好ましい。反応時間が短すぎると、キレート化反応が平衡に達しないことがある。反応時間が長すぎると、すでにキレート化反応が平衡に達しているにもかかわらず重金属とキレート剤との反応を続けることになり、非効率である。
〔固液分離工程S2〕
 固液分離工程S2は、キレート剤添加工程S2の後、重金属とキレート剤との反応生成物、及び重金属と未反応であり、液体の未反応キレート剤を含有する固液混合試料を固液分離する工程である。
 固液分離の手法は特に限定されるものでなく、沈降分離、ろ過、遠心分離、膜分離等が挙げられる。中でも、固体と液体との分離性に優れ、しかも簡便であることから、反応生成物を除去する手法としてろ過を採用することが好ましい。ろ過は、ガラス繊維ろ紙又はメンブレンフィルターを用いて行うことが好ましい。
 フィルターの孔径は特に限定されるものでないが、固体である反応生成物と、液体である未反応キレート剤との分離性、及びろ過時間等を考慮すると、フィルターの孔径は、0.45μm以上1.0μm以下であることが好ましく、0.80μm以上1μm以下であることがより好ましい。
〔pH緩衝剤添加工程S3〕
 pH緩衝剤添加工程S3は、後に説明する金属化合物添加工程S4よりも前に、試料にpH緩衝剤を添加する工程である。上述したとおり、試料がアルカリ性である場合、試料に金属化合物を加える際、金属化合物中の金属イオンが水酸化物イオンと反応し、不溶性の水酸化物を形成するため、廃棄物の処理に必要なキレート剤の量を算出する精度に影響を及ぼすことがある。そこで、pH緩衝剤添加工程S3を行い、試料のpHを調整することが好ましい。
〔金属化合物添加工程S4〕
 金属化合物添加工程S4は、キレート剤添加後の試料に金属化合物を添加し、キレート剤添加工程S1で重金属と未反応の未反応キレート剤で金属化合物をキレート化する工程である。
〔吸光度測定工程S5〕
 吸光度測定工程S5は、未反応キレート剤と金属化合物との反応生成物であるキレート化金属の含有量を測定可能な波長で、キレート化金属を含有するキレート化金属含有試料の吸光度を測定する工程である。
〔キレート剤量算出工程S6〕
 キレート剤量算出工程S6は、吸光度測定工程S5での測定結果に基づいて、廃棄物の処理に必要なキレート剤の量を算出する工程である。算出の手法は特に限定されるものではないが、例えば、キレート剤と金属化合物との反応生成物であるキレート化金属の濃度と、測定波長での吸光度との関係を示す検量線を用いて、キレート化金属含有試料の吸光度から空試験の吸光度を差し引いた吸光度からキレート化金属含有試料に含まれるキレート化金属の濃度を算出し、この濃度から廃棄物の処理に必要なキレート剤の量を算出することが挙げられる。
 ところで、空試験は、廃棄物に含まれる特定困難な数多くの成分が吸光度に与える影響をできるだけ少なく抑え、廃棄物に含まれる重金属の不溶化に必要な薬剤添加量を、よりいっそう正確に見積もるために行う。そこで、空試験は、キレート剤を添加しないこと以外は全て同じである試料、すなわち、上述のキレート剤添加工程S1においてキレート剤を添加しないこと以外は、固液分離工程S2から吸光度測定工程S5に至るまで全て同様の工程を経ることで、吸光度を測定することが好ましい。
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 以下の全ての実験において、廃棄物として都市ごみ焼却飛灰を用い、いずれも同一の試料を用いた。また、キレート剤はいずれもジチオカルバミン酸塩(製品名:K-8122、栗田工業株式会社製)を用いた。
<予備実験>
 はじめに、鉛の埋め立て基準値(0.3mg/L未満)を確実に満たす適正なキレート添加量を把握するために、鉛の分析下限値(0.05mg/L未満)を満たすキレート添加量を適正な添加量とし、予備実験を行った。
 飛灰50gに対し、蒸留水30重量%を加えた後、さらに、キレート剤を飛灰に対して0重量%(無添加)、1.5重量%、2.0重量%、2.5重量%加えた後、スパーテルで混合し、4種の試料を調製した。次いで、容量500mLの容器に、水の質量/飛灰の質量で定義される液固比が10となるように、試料50gと蒸留水500mlとを加え、6時間水平振とうし、溶出液を得た。その後、得られた溶出液を孔径1μmのメンブレンフィルターを用いてろ過し、液中の鉛濃度を原子吸光法によって測定した。
 以上のようにして得られた、飛灰に対するキレート剤添加率と溶出液中の鉛濃度との関係を図3に示す。図3から、鉛の分析下限値(0.05mg/L未満)を満たす適正なキレート剤添加量は、飛灰に対し2.5重量%であることがわかった。
<実験1> キレート剤添加量の測定精度の比較
〔実施例1〕呈色試薬:キレート化金属、測定波長:525nm
[検量線の作成]
 キレート剤と塩化鉄(II)四水和物との反応生成物であるキレート化金属の含有量と、波長525nmにおける吸光度との関係を直線近似し、実施例1での検量線(図示せず)とした。
[適正添加率の算出]
 容量500mLの容器に、灰2.5gを入れ、試料に含まれる測定対象物の濃度を希釈するため、液固比が200になるように蒸留水500mLを加えた後、回転子を入れマグネチックスターラーで撹拌しながら、さらにキレート剤を飛灰に対し5重量部%加え、20分間撹拌し、溶出液を得た。次いで、この溶出液を孔径1μmのメンブレンフィルターを用いてろ過した。このろ液10mLに、pH緩衝剤であるピペラジン-1,4-ジエタンスルホン酸、及び金属化合物である塩化鉄(II)四水和物をそれぞれ500mg/L含む混合溶液1mLを添加し、波長525nmにおける吸光度(a)を測定した。また、キレート剤を添加しないこと以外同様の操作を行い、測定した吸光度を空試験の吸光度(b)とした。以上より求められた、キレート剤含有試料の吸光度と空試験の吸光度との差(a-b)を、キレート剤含有試料中の実際のキレート化金属の吸光度とした。
 次いで、この吸光度に対応するキレート化金属濃度を、予め作成した検量線より算出した。このようにして算出されたキレート化金属濃度が溶液中の残留キレート剤濃度に対応するものである。残留キレート剤の濃度と溶出液の固液比から、飛灰に対する残留キレート剤の添加率を求めた。続いて、キレート剤添加率と残留キレート剤の添加率の差を適正添加率とした。各測定値及び計算値は表1のとおりであった。
〔比較例1〕呈色試薬:キレート剤、測定波長:286nm
[検量線の作成]
 キレート剤の含有量と、波長286nmにおける吸光度との関係を直線近似し、比較例1での検量線(図示せず)とした。
[適正添加率の算出]
 容量500mLの容器に、飛灰2.5gを入れ、液固比が200になるように蒸留水500mLを加えたのち、回転子を入れマグネチックスターラーで攪拌しながら、さらにキレート剤を飛灰に対し5重量部%加え、20分間攪拌し、溶出液を得た。次いで、この溶出液を孔径1μmのメンブレンフィルターを用いてろ過した。このろ液の波長286nmにおけるキレート剤含有試料の吸光度を測定した。また、キレート剤を添加しないこと以外同様の操作を行い、測定した吸光度を空試験の吸光度とした。以上より求められた、キレート剤含有試料の吸光度(a)と空試験の吸光度(b)との差を、キレート剤含有試料に含まれる残留キレート剤の吸光度とした。
 次いで、この吸光度に対応するキレート剤濃度を、予め作成した検量線より算出した。残留キレート剤の濃度と溶出液の固液比から、飛灰に対する残留キレート剤の添加率を求めた。続いて、キレート剤添加率と残留キレート剤の添加率の差を適正添加率とした。各測定値及び計算値は表1のとおりであった。
〔比較例2〕呈色試薬:キレート剤、測定波長:350nm
 吸光度を測定する際の波長を350nmとする以外は、比較例1と同様の操作を行い、適正添加率を算出した。各測定値及び計算値は表1のとおりであった。
Figure JPOXMLDOC01-appb-T000001
〔結果〕
 実施例1により求められた最適添加率は2.4重量%であり、予備実験により求められたキレート添加剤の添加率、すなわち鉛の分析下限値(0.05mg/L未満)を満たす適正なキレート添加率(2.5重量%)とほぼ一致した。
 一方で、比較例1により求められた適正添加率は2.8重量%であり、予備実験により求められたキレート添加剤の添加率に比べてやや過剰であった。また、比較例2では、算出された残留キレート剤添加率がもとのキレート剤添加率を上回り、適正添加率を求めることができなかった。キレート剤そのものを呈色試薬とし、測定波長が286nm又は350nmである場合の吸光度を測定することで適正添加率を求めるとき、飛灰に含まれる特定困難な数多くの成分が吸光度に影響を与えたものと思われる。
<実験2> pH緩衝剤、金属化合物及び溶出液中の成分が吸光度に与える影響
〔実施例2〕呈色試薬:キレート化金属
 吸光度の測定波長が200nm以上700nm以下の連続した範囲であること以外は、実施例1と同様の操作によって、吸光度(a)を測定した。結果を図4に示す。
〔比較例3〕呈色試薬:キレート剤
 吸光度の測定波長が200nm以上700nm以下の連続した範囲であること以外は、比較例1と同様の操作によって、吸光度(a)を測定した。結果を図4に示す。
〔比較例4〕呈色試薬:なし、pH緩衝剤及び金属化合物:なし
 キレート剤を添加しなかったこと以外、比較例3と同様の操作によって、吸光度(a)を測定した。結果を図4に示す。
〔比較例5〕呈色試薬:なし、pH緩衝剤及び金属化合物:あり
 キレート剤を添加しなかったこと以外、実施例2と同様の操作によって、吸光度(a)を測定した。結果を図4に示す。
〔結果〕
 図4の比較例4及び比較例5から、測定波長が400nm以上700nm以下である場合において、pH緩衝剤であるピペラジン-1,4-ジエタンスルホン酸と、金属化合物である塩化鉄(II)四水和物とが吸光度に与える影響は極めて小さいといえる。また、実施例2のように、キレート化金属を呈色試薬にすると、この測定波長の範囲で十分に高い吸光度を有するため、キレート剤の適正添加率を正確に見積もることができるといえる。
 一方で、比較例3及び比較例4から、測定波長が215nm以上350nm以下である場合において、溶出液中のキレート剤以外の成分が吸光度に与える影響は無視できないといえる。そのため、キレート剤を呈色試薬にし、215nm以上350nm以下を測定波長とすると、溶出液中のキレート剤以外の成分が吸光度に影響を与え、測定誤差を生じさせ得ると思われる。
 本発明のキレート剤添加量決定装置又はキレート剤添加量決定方法によると、ゴミ焼却場等で生じる飛灰、焼却灰、煤じん;鉱山から排出される鉱さい、廃水処理の際に生じる活性汚泥、化学工場跡地等の汚染された土壌等から重金属が溶出するのを防止するのに必要なキレート剤の量を過不足なく、簡便、迅速、安価かつ正確に決定することできる。
 1  キレート剤添加量決定装置
 2  吸光度測定部
 3  キレート剤算出部
 S1  キレート剤添加工程
 S2  固液分離工程
 S3  pH緩衝剤添加工程
 S4  金属化合物添加工程
 S5  吸光度測定工程
 S6  キレート剤量算出工程
 

Claims (9)

  1.  廃棄物に含まれる重金属及びキレート剤の反応において未反応の未反応キレート剤と、金属化合物との反応生成物であるキレート化金属の含有量を測定可能な波長で、前記キレート化金属を含有するキレート化金属含有試料の吸光度を測定する吸光度測定手段と、
     前記吸光度測定手段による測定結果に基づいて、前記廃棄物の処理に必要なキレート剤の量を算出するキレート剤量算出手段とを備える、キレート剤添加量決定装置。
  2.  前記キレート化金属含有試料が前記重金属と前記キレート剤との反応生成物を実質的に含有しない試料である、請求項1に記載のキレート剤添加量決定装置。
  3.  前記キレート化金属含有試料がpH緩衝剤を含有する、請求項1又は2に記載のキレート剤添加量決定装置。
  4.  前記キレート剤がジチオカルバミン酸系キレート剤を含む、請求項1から3のいずれかに記載のキレート剤添加量決定装置。
  5.  前記金属化合物は、二価鉄塩、三価鉄塩、銅塩、ニッケル塩、カドミウム塩及びマグネシウム塩から選択される1種以上の金属塩を含む、請求項1から4のいずれか1項に記載のキレート剤添加量決定装置。
  6.  前記吸光度測定手段は、400nm以上700nm以下の波長で前記キレート化金属含有試料の吸光度を測定する、請求項1から5のいずれか1項に記載のキレート剤添加量決定装置。
  7.  重金属を含む廃棄物にキレート剤を過剰量添加し、前記重金属を不溶化するキレート剤添加工程と、
     キレート剤添加後の試料に金属化合物を添加し、前記キレート剤添加工程で前記重金属と未反応の未反応キレート剤で前記金属化合物をキレート化する金属化合物添加工程と、
     前記未反応キレート剤と前記金属化合物との反応生成物であるキレート化金属の含有量を測定可能な波長で、前記キレート化金属を含有するキレート化金属含有試料の吸光度を測定する吸光度測定工程と、
     前記吸光度測定工程での測定結果に基づいて、前記廃棄物の処理に必要なキレート剤の量を算出する、キレート剤量算出工程とを含む、キレート剤添加量決定方法。
  8.  前記キレート剤添加工程の後、前記重金属と前記キレート剤との反応生成物、及び前記重金属と未反応であり、液体の未反応キレート剤を含有する固液混合試料を固液分離する固液分離工程をさらに含み、
     前記金属化合物添加工程は、前記固液分離工程の後に行われる工程である、請求項7に記載のキレート剤添加量決定方法。
  9.  前記金属化合物添加工程よりも前に、試料にpH緩衝剤を添加するpH緩衝剤添加工程をさらに含む、請求項7又は8に記載のキレート剤添加量決定方法。
PCT/JP2015/053797 2014-08-29 2015-02-12 キレート剤添加量決定装置及びキレート剤添加量決定方法 WO2016031265A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580037150.2A CN106488808B (zh) 2014-08-29 2015-02-12 螯合剂添加量确定装置和螯合剂添加量确定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014175336A JP5962722B2 (ja) 2014-08-29 2014-08-29 キレート剤添加量決定装置及びキレート剤添加量決定方法
JP2014-175336 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031265A1 true WO2016031265A1 (ja) 2016-03-03

Family

ID=55399173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053797 WO2016031265A1 (ja) 2014-08-29 2015-02-12 キレート剤添加量決定装置及びキレート剤添加量決定方法

Country Status (3)

Country Link
JP (1) JP5962722B2 (ja)
CN (1) CN106488808B (ja)
WO (1) WO2016031265A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181504A (ja) * 2016-03-29 2017-10-05 住重環境エンジニアリング株式会社 キレート剤の定量方法、及びキレート剤定量システム
CN113720833A (zh) * 2021-07-26 2021-11-30 杭州春来科技有限公司 铅检测方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765200B2 (ja) * 2015-03-25 2020-10-07 住友重機械エンバイロメント株式会社 キレート剤の定量方法、及びキレート剤定量システム
CN108593693B (zh) * 2018-01-21 2021-03-05 上海环境卫生工程设计院有限公司 一种基于xrf检测的飞灰稳定化处理的药剂投加方法及其系统
CN108414467A (zh) * 2018-05-25 2018-08-17 中科广化(重庆)新材料研究院有限公司 一种溶液中二甲基二硫代氨基甲酸钠含量的紫外分光光度计测定方法
CN108998781A (zh) * 2018-07-18 2018-12-14 湖北大冶汉龙汽车有限公司 一种车身涂装前表面锆化处理工艺
JP6847082B2 (ja) * 2018-09-10 2021-03-24 大成建設株式会社 原位置不溶化方法
JP7279501B2 (ja) * 2019-05-13 2023-05-23 栗田工業株式会社 飛灰処理装置および飛灰処理方法
JP7192733B2 (ja) * 2019-09-27 2022-12-20 Jfeエンジニアリング株式会社 重金属濃度計測装置及び方法、重金属濃度計測装置を有する飛灰処理装置
CN112756372A (zh) * 2020-12-19 2021-05-07 宁波明州环境能源有限公司 飞灰稳定化过程中的螯合剂加量判定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164886A (ja) * 2001-11-30 2003-06-10 Kurita Water Ind Ltd キレート系重金属処理剤の必要添加量の決定方法及び薬注制御方法
JP2004216209A (ja) * 2003-01-09 2004-08-05 Dowa Mining Co Ltd 飛灰の処理法
JP2004258022A (ja) * 2003-02-06 2004-09-16 Jfe Engineering Kk 液体キレート剤の適正添加量決定装置
JP2005118733A (ja) * 2003-10-20 2005-05-12 Takuma Co Ltd 灰類中の重金属類溶出防止方法と重金属類溶出防止システム
JP2009229146A (ja) * 2008-03-19 2009-10-08 Oriental Giken Kogyo Kk 焼却飛灰中の重金属を固定化するための固定剤の適正添加量を決定する方法および装置
JP2012161724A (ja) * 2011-02-04 2012-08-30 Kurita Water Ind Ltd 重金属捕集剤の薬注制御方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4964887B2 (ja) * 2006-08-28 2012-07-04 興和株式会社 鉛濃度測定用試薬及び鉛濃度測定方法
CN102466616A (zh) * 2010-11-01 2012-05-23 袁俊海 一种测量重金属螯合剂加入量对铅离子去除率影响的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003164886A (ja) * 2001-11-30 2003-06-10 Kurita Water Ind Ltd キレート系重金属処理剤の必要添加量の決定方法及び薬注制御方法
JP2004216209A (ja) * 2003-01-09 2004-08-05 Dowa Mining Co Ltd 飛灰の処理法
JP2004258022A (ja) * 2003-02-06 2004-09-16 Jfe Engineering Kk 液体キレート剤の適正添加量決定装置
JP2005118733A (ja) * 2003-10-20 2005-05-12 Takuma Co Ltd 灰類中の重金属類溶出防止方法と重金属類溶出防止システム
JP2009229146A (ja) * 2008-03-19 2009-10-08 Oriental Giken Kogyo Kk 焼却飛灰中の重金属を固定化するための固定剤の適正添加量を決定する方法および装置
JP2012161724A (ja) * 2011-02-04 2012-08-30 Kurita Water Ind Ltd 重金属捕集剤の薬注制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017181504A (ja) * 2016-03-29 2017-10-05 住重環境エンジニアリング株式会社 キレート剤の定量方法、及びキレート剤定量システム
CN107238585A (zh) * 2016-03-29 2017-10-10 住友重机械环境工程株式会社 螯合剂的定量方法及螯合剂定量系统
CN113720833A (zh) * 2021-07-26 2021-11-30 杭州春来科技有限公司 铅检测方法和装置

Also Published As

Publication number Publication date
CN106488808B (zh) 2018-01-23
CN106488808A (zh) 2017-03-08
JP5962722B2 (ja) 2016-08-03
JP2016049481A (ja) 2016-04-11

Similar Documents

Publication Publication Date Title
JP5962722B2 (ja) キレート剤添加量決定装置及びキレート剤添加量決定方法
JP5728983B2 (ja) 重金属捕集剤の薬注制御方法
JP5150853B2 (ja) 焼却飛灰中の重金属を固定化するための固定剤の適正添加量を決定する方法および装置
RU2690819C2 (ru) Добавление алюминиевых реагентов в оксианион-содержащие водные потоки
JP2008184469A (ja) 混合組成物及びそれを用いた重金属処理方法
JP2008309767A (ja) 固体試料の分解方法及びそれを用いたクロム定量方法
JP2016019968A (ja) 焼却灰の処理方法
JP5378873B2 (ja) キレート剤の必要量決定方法及び飛灰の処理方法
JP2013253216A (ja) 有害物質不溶化材及びそれを用いた処理方法
JP4599913B2 (ja) 重金属処理剤の必要添加量決定方法並びにそれに用いる装置
JP2017181504A (ja) キレート剤の定量方法、及びキレート剤定量システム
JPH10337550A (ja) 重金属安定化剤の適正添加量の決定方法および廃棄物の薬剤処理方法
JP4784309B2 (ja) 重金属固定化効果の判定方法
WO2015083688A1 (ja) セシウム吸着剤及びその製造方法並びにセシウム吸着剤を使用したセシウムの除去方法
JP2010075849A (ja) 塩素含有微粉状廃棄物の処理方法
JP3911539B2 (ja) 焼却灰または飛灰の無害化処理法
JP2011147867A (ja) 水銀除去方法
Nguyen et al. Stannous chloride reductive treatment and kinetics using hexavalent chromium in water supplies
Hendrickson et al. Removal of silver and mercury from spent COD test solutions
JP5306977B2 (ja) ホウ素含有水の処理方法及びホウ素除去剤
JP2016172682A (ja) 石膏の製造方法およびセメント組成物の製造方法
US20120006101A1 (en) Method for determining the optimal treatment dosage for metals removal
JP5870717B2 (ja) 石膏体中のアスベスト分析方法、アスベスト及び重金属類分析方法
CN109019986B (zh) 一种去除氟离子的方法
US20210261452A1 (en) Sulfate and trace metal precipitation methods and compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836178

Country of ref document: EP

Kind code of ref document: A1