WO2016031014A1 - 半導体装置、及び、半導体装置の製造方法 - Google Patents

半導体装置、及び、半導体装置の製造方法 Download PDF

Info

Publication number
WO2016031014A1
WO2016031014A1 PCT/JP2014/072563 JP2014072563W WO2016031014A1 WO 2016031014 A1 WO2016031014 A1 WO 2016031014A1 JP 2014072563 W JP2014072563 W JP 2014072563W WO 2016031014 A1 WO2016031014 A1 WO 2016031014A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
semiconductor layer
gate
conductivity type
type semiconductor
Prior art date
Application number
PCT/JP2014/072563
Other languages
English (en)
French (fr)
Inventor
舛岡 富士雄
広記 中村
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
舛岡 富士雄
広記 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 舛岡 富士雄, 広記 中村 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to JP2015513920A priority Critical patent/JP5989238B2/ja
Priority to PCT/JP2014/072563 priority patent/WO2016031014A1/ja
Priority to US14/743,612 priority patent/US10217665B2/en
Publication of WO2016031014A1 publication Critical patent/WO2016031014A1/ja
Priority to US16/230,151 priority patent/US10340184B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the semiconductor device.
  • SGT Surrounding Gate Transistor
  • one transistor is formed on one silicon column, and an nMOS transistor composed of one silicon column and a pMOS transistor composed of one silicon column are formed on a plane (for example, see Patent Document 4). Since at least two silicon pillars are formed on a plane, an area corresponding to at least two silicon pillars is required.
  • a plurality of gates are formed on one silicon pillar (see, for example, Patent Document 5).
  • a gate insulating film is formed on the side wall of the silicon pillar, and a source line and a bit line are connected to the upper end and the lower end of the silicon pillar.
  • JP-A-2-71556 Japanese Patent Laid-Open No. 2-188966 Japanese Patent Laid-Open No. 3-145761 JP 2008-300558 A JP 2014-57068 A
  • an object is to provide a highly integrated semiconductor device.
  • the semiconductor device of the present invention includes a first columnar semiconductor layer formed on a semiconductor substrate, a first first conductivity type semiconductor layer formed on the first columnar semiconductor layer, and the first columnar semiconductor.
  • a third first-conductivity-type semiconductor layer that is higher than the first-first-conductivity-type semiconductor layer formed in the layer; and the first first-conductivity-type semiconductor layer and the third-first-conductivity-type semiconductor
  • a second gate formed around a gate insulating film, and the first gate and the second gate are connected to each other. And said that you are.
  • a fourth first conductivity type semiconductor layer formed on the semiconductor substrate, and the first columnar semiconductor layer formed on the semiconductor substrate, the first first conductivity type semiconductor layer. And a first body region, a second first conductivity type semiconductor layer, a second body region, the third first conductivity type semiconductor layer, a first second conductivity type semiconductor layer, a second body region, The first columnar semiconductor layer in which the second second conductivity type semiconductor layer and the third second conductivity type semiconductor layer are formed in this order from the substrate side, and the first body region formed around the first body region.
  • the output terminal is a semiconductor and has the third first conductivity type semiconductor layer and the first second conductivity type semiconductor layer further formed on the output terminal.
  • first gate insulating film is further formed on the upper and lower surfaces of the first gate
  • second gate insulating film is further formed on the upper and lower surfaces of the second gate
  • third gate is formed.
  • the gate insulating film is further formed on the upper and lower surfaces of the third gate.
  • the semiconductor device has a first connection region formed between the third first conductivity type semiconductor layer and the first second conductivity type semiconductor layer.
  • a first insulating film having the same impurity as that of the first conductive semiconductor layer, and the second insulating film has a third insulating film surrounding the first insulating film. 2 having the same impurity as the impurity of the first conductive type semiconductor layer, the third insulating film having the same impurity as the impurity of the third first conductive type semiconductor layer, A fourth insulating film surrounding the conductive semiconductor layer; and a fifth insulating film surrounding the second second conductive semiconductor layer, wherein the fourth insulating film is the first second conductive film.
  • the fifth insulating film has the same impurity as the impurity of the second semiconductor layer, and the fifth insulating film has the same impurity as the impurity of the second second conductive semiconductor layer. Characterized in that it has.
  • a first insulating film that is an oxide film containing an impurity of the first conductivity type is deposited on a substrate on which the fourth first conductivity type semiconductor layer is formed.
  • a sixth insulating film that is a nitride film is deposited, a second insulating film that is an oxide film containing an impurity of the first conductivity type is deposited, a seventh insulating film that is a nitride film is deposited,
  • a third insulating film that is an oxide film containing an impurity of one conductivity type is deposited, and the first insulating film, the sixth insulating film, the second insulating film, and the seventh insulating film are etched to form contact holes; Forming a first columnar silicon layer by epitaxial growth in the contact hole, removing the sixth insulating film and the seventh insulating film, forming a first gate and a second gate, A contact for connecting the first gate and the second gate is formed.
  • the first columnar silicon layer is formed in the contact hole by epitaxial growth, the first columnar silicon layer is subjected to a heat treatment, whereby the first first conductivity type semiconductor layer and the second first conductivity type semiconductor are formed on the first columnar silicon layer.
  • a region sandwiched between a third first conductivity type semiconductor layer that is higher than one first conductivity type semiconductor layer, and the first first conductivity type semiconductor layer and the third first conductivity type semiconductor layer A first gate insulating film formed around the first columnar semiconductor layer, a first gate formed around the first gate insulating film, and the first first conductive semiconductor.
  • the present invention can suppress the height of the recess region for each gate, so that metal can be deposited thinly by atomic layer deposition, and the deposition time of atomic layer deposition can be shortened. Time can be reduced.
  • a fourth first conductivity type semiconductor layer formed on the semiconductor substrate, and the first columnar semiconductor layer formed on the semiconductor substrate, the first first conductivity type semiconductor layer. And a first body region, a second first conductivity type semiconductor layer, a second body region, the third first conductivity type semiconductor layer, a first second conductivity type semiconductor layer, a second body region, The first columnar semiconductor layer in which the second second conductivity type semiconductor layer and the third second conductivity type semiconductor layer are formed in this order from the substrate side, and the first body region formed around the first body region.
  • the current amount of the n-type transistor composed of the first gate and the second gate and the current of the p-type transistor composed of the third gate can be equal and the circuit threshold can be half the supply voltage.
  • the output terminal is formed of a semiconductor, for example, silicon
  • silicon is not etched by the hot phosphoric acid used when removing the nitride film, so that the first gate, the second gate, and the third gate are formed simultaneously. Can do. Further, the output terminal can be silicided.
  • first gate insulating film is further formed on the upper and lower surfaces of the first gate
  • second gate insulating film is further formed on the upper and lower surfaces of the second gate
  • third gate is formed.
  • the gate insulating film is further formed on the upper and lower surfaces of the third gate, so that the vertical insulation of the first gate, the vertical insulation of the second gate, and the upper and lower sides of the third gate are formed. Directional insulation can be ensured.
  • connection region formed between the third first conductivity type semiconductor layer and the first second conductivity type semiconductor layer, the third first conductivity type semiconductor layer and The first second-conductivity-type semiconductor layer can be separated, and the third first-conductivity-type semiconductor layer, the first second-conductivity-type semiconductor layer, and the output terminal extending in the connection region can be connected. it can.
  • a first insulating film having the same impurity as that of the first conductive semiconductor layer, and the second insulating film has a third insulating film surrounding the first insulating film. 2 having the same impurity as the impurity of the first conductive type semiconductor layer, the third insulating film having the same impurity as the impurity of the third first conductive type semiconductor layer, A fourth insulating film surrounding the conductive semiconductor layer; and a fifth insulating film surrounding the second second conductive semiconductor layer, wherein the fourth insulating film is the first second conductive film.
  • the fifth insulating film has the same impurity as the impurity of the second semiconductor layer, and the fifth insulating film has the same impurity as the impurity of the second second conductive semiconductor layer.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • C is a sectional view taken along line y-y ′ of (a).
  • FIG. 1 A structure of a semiconductor device according to an embodiment of the present invention is shown in FIG.
  • the semiconductor is silicon, but a semiconductor other than silicon may be used.
  • the first columnar silicon layer 116 formed on the silicon substrate 101, the first first conductivity type silicon layer 125 formed on the first columnar silicon layer 116, and the first columnar silicon layer 116 A third first conductivity type silicon layer 129 at a position higher than the formed first first conductivity type silicon layer 125, the first first conductivity type silicon layer 125, and a third first conductivity type.
  • Gate insulation And 123b, the second gate 124b formed around the second gate insulating film 123b, the first gate 124c and the second gate 124b is characterized in that it is connected.
  • the output terminal 122 is made of silicon, and includes the third first conductivity type silicon layer 129 and the first second conductivity type silicon layer 131 further formed on the output terminal 122. .
  • silicide 140 is formed at the output terminal 122, and the third first conductivity type silicon layer 129 and the first second conductivity type silicon layer 131 are connected.
  • the third first conductivity type silicon layer 129 and the first second conductivity type silicon layer 131 may be connected by a contact.
  • the first gate 124c, the second gate 124b, and the third gate 124a are preferably made of metal in order to adjust the threshold value of the transistor.
  • the metal is preferably titanium nitride or aluminum titanium nitride.
  • the first gate insulating film 123c, the second gate insulating film 123b, and the third gate insulating film 123a are preferably an oxide film, an oxynitride film, or a high dielectric film.
  • the first gate insulating film 123c is further formed on the upper and lower surfaces of the first gate 124c, and the second gate insulating film 123b is further formed on the upper and lower surfaces of the second gate 124b.
  • the third gate insulating film 123a is further formed on the upper and lower surfaces of the third gate 124a.
  • first connection region 130 formed between the third first conductivity type silicon layer 129 and the first second conductivity type silicon layer 131.
  • the second insulating film 105 has the same impurity as the impurity of the second first conductive silicon layer 127, and the third insulating film 107 includes the impurity of the third first conductive silicon layer 129.
  • the fourth insulating film 111 is formed of the first insulating film 111.
  • the fifth insulating film 113 is characterized by having the same impurity as the impurity of the second second conductivity type silicon layer 133.
  • the first insulating film 103, the second insulating film 105, and the third insulating film 107 are preferably oxide films containing phosphorus or arsenic at a high concentration.
  • the fourth insulating film 111 and the fifth insulating film 113 are preferably oxide films containing boron at a high concentration.
  • the first insulating film 103, the second insulating film 105, and the third insulating film 107 are preferably oxide films containing boron at a high concentration.
  • the fourth insulating film 111 and the fifth insulating film 113 are preferably oxide films containing phosphorus or arsenic at a high concentration.
  • two nMOSs are arranged in series at the bottom and one pMOS is arranged at the top.
  • one pMOS is arranged at the bottom and two nMOSs are arranged in series at the top. May be.
  • a plurality of nMOSs may be arranged in series.
  • a plurality of pMOSs may be arranged in series.
  • FIGS. 1-10 A manufacturing process for forming the structure of the SGT according to the embodiment of the present invention will be described with reference to FIGS.
  • silicon is used for the substrate, but other semiconductors may be used.
  • the nMOS is formed below the columnar semiconductor layer and the pMOS is formed above, but the pMOS may be formed below and the nMOS may be formed above.
  • impurities are introduced into the silicon substrate 101 to form a fourth first conductivity type silicon layer 102.
  • a first insulating film 103 is formed.
  • the first insulating film 103 is preferably an oxide film.
  • An oxide film containing phosphorus or arsenic at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing phosphorus or arsenic at a high concentration.
  • a sixth insulating film 104 is formed.
  • the sixth insulating film 104 is preferably a nitride film.
  • a second insulating film 105 is formed.
  • the second insulating film 105 is preferably an oxide film.
  • An oxide film containing phosphorus or arsenic at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing phosphorus or arsenic at a high concentration.
  • the seventh insulating film 106 is formed.
  • the seventh insulating film 106 is preferably a nitride film.
  • a third insulating film 107 is formed.
  • the third insulating film 107 is preferably an oxide film.
  • An oxide film containing phosphorus or arsenic at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing phosphorus or arsenic at a high concentration.
  • an eighth insulating film 108 is formed.
  • the eighth insulating film 108 is preferably a nitride film.
  • a first resist 109 is formed.
  • the eighth insulating film 108 is etched.
  • the first resist 109 is removed.
  • a ninth insulating film 110 is formed and planarized.
  • the ninth insulating film 110 is preferably an oxide film.
  • the ninth insulating film 110 is etched back to expose the eighth insulating film 108.
  • a fourth insulating film 111 is formed.
  • the fourth insulating film 111 is preferably an oxide film.
  • An oxide film containing boron at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing boron at a high concentration.
  • the tenth insulating film 112 is formed.
  • the tenth insulating film 112 is preferably a nitride film.
  • a fifth insulating film 113 is formed.
  • the fifth insulating film 113 is preferably an oxide film.
  • An oxide film containing boron at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing boron at a high concentration.
  • a second resist 114 is formed.
  • the second resist 114 is removed.
  • the first columnar silicon layer 116 is formed by epitaxial growth. Polysilicon may be deposited.
  • boron impurities are introduced to form a third second conductivity type silicon layer 117.
  • polysilicon 118 is deposited. Although polysilicon is used, any material can be used as long as it becomes a hard mask.
  • an eleventh insulating film 119 is deposited.
  • the eleventh insulating film 119 is preferably an oxide film.
  • a third resist 120 is formed.
  • the 11th insulating film 119, the polysilicon 118, the 5th insulating film 113, the 10th insulating film 112, and the 4th insulating film 111 are etched.
  • the third resist 120 is removed.
  • a twelfth insulating film 121 is deposited.
  • the twelfth insulating film 121 is preferably an oxide film.
  • the twelfth insulating film 121 is etched and left in a sidewall shape.
  • the eighth insulating film 108 is removed. Wet etching with hot phosphoric acid is preferred. Further, dry etching may be used.
  • the output terminal 122 is formed by epitaxial growth of silicon. Polysilicon may be used.
  • Silicon etching is preferably dry etching.
  • the ninth insulating film 110, the third insulating film 107, the seventh insulating film 106, and the second insulating film 105 are etched. Dry etching is preferred.
  • the eleventh insulating film 119 and the twelfth insulating film 121 are also etched.
  • the twelfth insulating film 121 is removed. Isotropic etching such as wet etching is preferred.
  • the tenth insulating film 112, the seventh insulating film 106, and the sixth insulating film 104 are removed.
  • Wet etching with hot phosphoric acid is preferred. Further, dry etching may be used. Further, since the output terminal is made of silicon, silicon is not etched by the hot phosphoric acid used when removing the nitride film.
  • the gate insulating film 123 is preferably an oxide film, an oxynitride film, or a high dielectric film.
  • a metal 124 to be a gate is formed.
  • the metal 124 is preferably titanium nitride or aluminum titanium nitride.
  • titanium, tantalum, tungsten, tantalum nitride, or the above-described stack may be used. Since the height of the recess region for each gate can be suppressed, the metal can be deposited thinly by atomic layer deposition, the deposition time of atomic layer deposition can be shortened, and the manufacturing time can be reduced.
  • the metal 124 is etched to form a first gate 124c, a second gate 124b, and a third gate 124a.
  • the gate insulating film 123 becomes the first gate insulating film 123c, the second gate insulating film 123b, and the third gate insulating film 123a.
  • the metal etching is preferably isotropic etching. Also,
  • heat treatment is performed, and by solid phase diffusion, the first first conductivity type silicon layer 125, the second first conductivity type silicon layer 127, the third first conductivity type silicon layer 129, and the first One second conductivity type silicon layer 131 and a second second conductivity type silicon layer 133 are formed.
  • Heat treatment may be performed before forming the first gate 123c, the second gate 123b, and the third gate 123a.
  • a third first conductivity type silicon layer 129 and a first second conductivity type silicon layer 131 are formed at the output terminal 122.
  • a diffusion layer 134 is formed in the polysilicon 118.
  • a first interlayer insulating film 135 is formed.
  • the first interlayer insulating film 135 is planarized and etched back. At this time, the upper portion of the gate insulating film 123, the polysilicon 118, and the upper portion of the third second conductivity type silicon layer 117 are removed.
  • a second interlayer insulating film 136 is deposited.
  • the second interlayer insulating film 136, the first interlayer insulating film 135, the fifth insulating film 113, the third gate insulating film 123a, the third gate 124a, and the third gate insulating film is formed by etching the 132a and the fourth insulating film 111.
  • the fourth resist 137 is removed.
  • the thirteenth insulating film 139 is deposited.
  • the thirteenth insulating film 139 is preferably an oxide film or a nitride film.
  • the thirteenth insulating film 139 is etched and left in a sidewall shape.
  • silicide 140 is formed at the output terminal 122, and the third first conductivity type silicon layer 129 and the first second conductivity type semiconductor layer 131 are connected.
  • a metal is deposited to form a contact 200. As shown in FIG. 48, a metal is deposited to form a contact 200. As shown in FIG. 48, a metal is deposited to form a contact 200. As shown in FIG. 48, a metal is deposited to form a contact 200. As shown in FIG. 48, a metal is deposited to form a contact 200. As shown in FIG. 48, a metal is deposited to form a contact 200.
  • a fifth resist 141 is formed.
  • the second interlayer insulating film 136 and the first interlayer insulating film 135 are etched to form contact holes 142.
  • the fifth resist 141 is removed.
  • a sixth resist 143 is formed.
  • the sixth resist 143 is removed.
  • metal is deposited to form a first contact 146 and a contact 145.
  • the second interlayer insulating film 136 is etched to expose the third second conductivity type silicon layer 117.
  • a metal 147 is deposited.
  • seventh resists 148, 149, 150, 151 are formed.
  • the metal 147 is etched to form metal wirings 147a, 147b, 147c, and 147d.
  • the seventh resists 148, 149, 150, 151 are removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • General Engineering & Computer Science (AREA)
  • Thin Film Transistor (AREA)

Abstract

 高集積な半導体装置を提供することを課題とする。半導体基板上に形成された第1の柱状半導体層と、前記第1の柱状半導体層に形成された第1の第1導電型半導体層と、前記第1の柱状半導体層に形成された前記第1の第1導電型半導体層より高い位置にある第3の第1導電型半導体層と、前記第1の第1導電型半導体層と第3の第1導電型半導体層とに挟まれた領域の前記第1の柱状半導体層の周囲に形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された第1のゲートと、 前記第1の第1導電型半導体層と第3の第1導電型半導体層とに挟まれた領域の前記第1の柱状半導体層の周囲に形成された第2のゲート絶縁膜と、前記第2のゲート絶縁膜の周囲に形成された第2のゲートと、前記第1のゲートと前記第2のゲートは接続されていることを特徴とする半導体装置により、上記課題を解決する。

Description

半導体装置、及び、半導体装置の製造方法
 本発明は半導体装置、及び、半導体装置の製造方法に関する。
 半導体集積回路、特にMOSトランジスタを用いた集積回路は、高集積化の一途を辿っている。この高集積化に伴って、その中で用いられているMOSトランジスタはナノ領域まで微細化が進んでいる。このようなMOSトランジスタの微細化が進むと、リーク電流の抑制が困難であり、必要な電流量確保の要請から回路の占有面積をなかなか小さくできない、といった問題があった。このような問題を解決するために、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲート電極が柱状半導体層を取り囲む構造のSurrounding Gate Transistor(以下、「SGT」という。)が提案されている(例えば、特許文献1、特許文献2、特許文献3を参照)。
 従来のSGTを用いたインバータでは、一本のシリコン柱に一個のトランジスタが形成され、1本のシリコン柱からなるnMOSトランジスタと1本のシリコン柱からなるpMOSトランジスタが平面上に形成されている(例えば特許文献4を参照)。少なくとも2本のシリコン柱が平面上に形成されているため、少なくとも2本のシリコン柱分の面積が必要となる。
 従来の不揮発性メモリにおいて、一本のシリコン柱に複数のゲートが形成されている(例えば特許文献5を参照)。シリコン柱の側壁にゲート絶縁膜が形成され、シリコン柱の上部端と下部端でソース線、ビット線が接続されている。
特開平2-71556号公報 特開平2-188966号公報 特開平3-145761号公報 特開2008-300558号公報 特開2014-57068号公報
 そこで、高集積な半導体装置を提供することを目的とする。
 本発明の半導体装置は、半導体基板上に形成された第1の柱状半導体層と、前記第1の柱状半導体層に形成された第1の第1導電型半導体層と、前記第1の柱状半導体層に形成された前記第1の第1導電型半導体層より高い位置にある第3の第1導電型半導体層と、 前記第1の第1導電型半導体層と第3の第1導電型半導体層とに挟まれた領域の前記第1の柱状半導体層の周囲に形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された第1のゲートと、前記第1の第1導電型半導体層と第3の第1導電型半導体層とに挟まれた領域の前記第1の柱状半導体層の周囲に形成された第2のゲート絶縁膜と、前記第2のゲート絶縁膜の周囲に形成された第2のゲートと、前記第1のゲートと前記第2のゲートは接続されていることを特徴とする。
 また、前記半導体基板上に形成された第4の第1導電型半導体層と、前記半導体基板上に形成された前記第1の柱状半導体層であって、前記第1の第1導電型半導体層と第1のボディ領域、第2の第1導電型半導体層、第2のボディ領域、前記第3の第1導電型半導体層、第1の第2導電型半導体層、第2のボディ領域、第2の第2導電型半導体層、第3の第2導電型半導体層が基板側からこの順に形成された前記第1の柱状半導体層と、前記第1のボディ領域の周囲に形成された前記第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された前記第1のゲートと、前記第2のボディ領域の周囲に形成された前記第2のゲート絶縁膜と、前記第2のゲート絶縁膜の周囲に形成された前記第2のゲートと、前記第3のボディ領域の周囲に形成された第3のゲート絶縁膜と、前記第3のゲート絶縁膜の周囲に形成された第3のゲートと、前記第3の第1導電型半導体層と前記第1の第2導電型半導体層とに接続する出力端子と、前記第1のゲートと前記第2のゲートと前記第3のゲートとを接続する第1のコンタクトと、を有することを特徴とする。
 また、前記出力端子は半導体であって、前記出力端子にさらに形成された前記第3の第1導電型半導体層と前記第1の第2導電型半導体層とを有することを特徴とする。
 また、前記第1のゲート絶縁膜は前記第1のゲートの上面と下面にさらに形成され、前記第2のゲート絶縁膜は前記第2のゲートの上面と下面にさらに形成され、前記第3のゲート絶縁膜は前記第3のゲートの上面と下面にさらに形成されていることを特徴とする。
 また、前記第3の第1導電型半導体層と前記第1の第2導電型半導体層との間に形成された第1の接続領域を有することを特徴とする。
 また、前記第1の第1導電型半導体層を取り囲む第1の絶縁膜と、前記第2の第1導電型半導体層を取り囲む第2の絶縁膜と、前記第3の第1導電型半導体層を取り囲む第3の絶縁膜と、を有し、前記第1の絶縁膜は、前記第1の第1導電型半導体層の不純物と同じ不純物を有し、前記第2の絶縁膜は、前記第2の第1導電型半導体層の不純物と同じ不純物を有し、 前記第3の絶縁膜は、前記第3の第1導電型半導体層の不純物と同じ不純物を有し、前記第1の第2導電型半導体層を取り囲む第4の絶縁膜と、前記第2の第2導電型半導体層を取り囲む第5の絶縁膜とを有し、前記第4の絶縁膜は、前記第1の第2導電型半導体層の不純物と同じ不純物を有し、前記第5の絶縁膜は、前記第2の第2導電型半導体層の不純物と同じ不純物を有することを特徴とする。
 また、本発明の半導体装置の製造方法は、第4の第1導電型半導体層が形成された基板上に、第1の導電型の不純物を含む酸化膜である第1の絶縁膜を堆積し、窒化膜である第6の絶縁膜を堆積し、第1の導電型の不純物を含む酸化膜である第2の絶縁膜を堆積し、窒化膜である第7の絶縁膜を堆積し、第1の導電型の不純物を含む酸化膜である第3の絶縁膜を堆積し、前記第1の絶縁膜、第6の絶縁膜、第2の絶縁膜、第7の絶縁膜をエッチングしコンタクト孔を形成し、前記コンタクト孔にエピタキシャル成長により第1の柱状シリコン層を形成し、前記第6の絶縁膜と前記第7の絶縁膜を除去し、第1のゲートと第2のゲートを形成し、前記第1のゲートと前記第2のゲートを接続するコンタクトを形成することを特徴とする。
 また、前記コンタクト孔にエピタキシャル成長により第1の柱状シリコン層を形成した後に、熱処理を行うことにより、第1の柱状シリコン層に第1の第1導電型半導体層と第2の第1導電型半導体層と第3の第1導電型半導体層とを形成することを特徴とする。
 本発明によれば、高集積な半導体装置を提供することを提供することができる。
 半導体基板上に形成された第1の柱状半導体層と、前記第1の柱状半導体層に形成された第1の第1導電型半導体層と、前記第1の柱状半導体層に形成された前記第1の第1導電型半導体層より高い位置にある第3の第1導電型半導体層と、前記第1の第1導電型半導体層と第3の第1導電型半導体層とに挟まれた領域の前記第1の柱状半導体層の周囲に形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された第1のゲートと、 前記第1の第1導電型半導体層と第3の第1導電型半導体層とに挟まれた領域の前記第1の柱状半導体層の周囲に形成された第2のゲート絶縁膜と、前記第2のゲート絶縁膜の周囲に形成された第2のゲートと、前記第1のゲートと前記第2のゲートは接続されていることを特徴とすることにより、ゲート長が二倍の半導体装置を実現することができる。ゲート長が長いゲートを実現しようとすると、ゲート長分の高さのリセス領域を埋めるため、原子層堆積で金属を厚く堆積しなければならず、原子層堆積は原子層毎に堆積するため堆積時間が長くかかり、製造時間が増大する。一方、本発明は、それぞれのゲートのためのリセス領域の高さを押さえることができるため、原子層堆積で金属を薄く堆積することがき、原子層堆積の堆積時間を短くすることができ、製造時間を減少できる。
 また、前記半導体基板上に形成された第4の第1導電型半導体層と、前記半導体基板上に形成された前記第1の柱状半導体層であって、前記第1の第1導電型半導体層と第1のボディ領域、第2の第1導電型半導体層、第2のボディ領域、前記第3の第1導電型半導体層、第1の第2導電型半導体層、第2のボディ領域、第2の第2導電型半導体層、第3の第2導電型半導体層が基板側からこの順に形成された前記第1の柱状半導体層と、前記第1のボディ領域の周囲に形成された前記第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された前記第1のゲートと、前記第2のボディ領域の周囲に形成された前記第2のゲート絶縁膜と、前記第2のゲート絶縁膜の周囲に形成された前記第2のゲートと、前記第3のボディ領域の周囲に形成された第3のゲート絶縁膜と、前記第3のゲート絶縁膜の周囲に形成された第3のゲートと、前記第3の第1導電型半導体層と前記第1の第2導電型半導体層とに接続する出力端子と、前記第1のゲートと前記第2のゲートと前記第3のゲートとを接続する第1のコンタクトと、を有することを特徴とすることにより、一本の半導体柱で形成されたインバータが形成されるため、1本の半導体柱分の面積でインバータを実現することができる。また、第1導電型をn型、第2導電型をp型とすると、第1のゲートと第2のゲートからなるn型トランジスタの電流量と、第3のゲートからなるp型トランジスタの電流量を等しくすることができ、回路しきい値を電源電圧の半分とすることができる。
 また、出力端子を半導体、例えばシリコンで形成すると、窒化膜を除去するときに使用する熱燐酸によりシリコンはエッチングされないため、第1のゲートと第2のゲートと第3のゲートを同時に形成することができる。また、出力端子をシリサイド化することができる。
 また、前記第1のゲート絶縁膜は前記第1のゲートの上面と下面にさらに形成され、前記第2のゲート絶縁膜は前記第2のゲートの上面と下面にさらに形成され、前記第3のゲート絶縁膜は前記第3のゲートの上面と下面にさらに形成されていることにより、第1のゲートの上下方向の絶縁と、第2のゲートの上下方向の絶縁と、第3のゲートの上下方向の絶縁を確かなものとすることができる。
 また、前記第3の第1導電型半導体層と前記第1の第2導電型半導体層との間に形成された第1の接続領域を有することにより、第3の第1導電型半導体層と第1の第2導電型半導体層とを分離することができ、接続領域に延在する第3の第1導電型半導体層と第1の第2導電型半導体層と出力端子を接続することができる。
 また、前記第1の第1導電型半導体層を取り囲む第1の絶縁膜と、前記第2の第1導電型半導体層を取り囲む第2の絶縁膜と、前記第3の第1導電型半導体層を取り囲む第3の絶縁膜と、を有し、前記第1の絶縁膜は、前記第1の第1導電型半導体層の不純物と同じ不純物を有し、前記第2の絶縁膜は、前記第2の第1導電型半導体層の不純物と同じ不純物を有し、 前記第3の絶縁膜は、前記第3の第1導電型半導体層の不純物と同じ不純物を有し、前記第1の第2導電型半導体層を取り囲む第4の絶縁膜と、前記第2の第2導電型半導体層を取り囲む第5の絶縁膜とを有し、前記第4の絶縁膜は、前記第1の第2導電型半導体層の不純物と同じ不純物を有し、前記第5の絶縁膜は、前記第2の第2導電型半導体層の不純物と同じ不純物を有することを特徴とすることにより、固相拡散により、一本の柱状半導体層に異なる導電型の半導体層を形成することができる。
(a)は本発明に係る半導体装置の平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。
 以下に、本発明の実施形態について説明する。本発明の実施形態に係る半導体装置の構造を図1に示す。本実施例では、半導体をシリコンとしたが、シリコン以外の半導体としてもよい。
 シリコン基板101上に形成された第1の柱状シリコン層116と、前記第1の柱状シリコン層116に形成された第1の第1導電型シリコン層125と、前記第1の柱状シリコン層116に形成された前記第1の第1導電型シリコン層125より高い位置にある第3の第1導電型シリコン層129と、前記第1の第1導電型シリコン層125と第3の第1導電型シリコン層129とに挟まれた領域の前記第1の柱状シリコン層116の周囲に形成された第1のゲート絶縁膜123cと、前記第1のゲート絶縁膜123cの周囲に形成された第1のゲート124cと、 前記第1の第1導電型シリコン層125と第3の第1導電型シリコン層129とに挟まれた領域の前記第1の柱状シリコン層116の周囲に形成された第2のゲート絶縁膜123bと、前記第2のゲート絶縁膜123bの周囲に形成された第2のゲート124bと、前記第1のゲート124cと前記第2のゲート124bは接続されていることを特徴とする。
 前記シリコン基板101上に形成された第4の第1導電型シリコン層102と、前記シリコン基板101上に形成された前記第1の柱状シリコン層116であって、前記第1の第1導電型シリコン層125と第1のボディ領域126、第2の第1導電型シリコン層127、第2のボディ領域128、前記第3の第1導電型シリコン層129、第1の第2導電型シリコン層131、第3のボディ領域132、第2の第2導電型シリコン層133、第3の第2導電型シリコン層117が基板側からこの順に形成された前記第1の柱状シリコン層116と、前記第1のボディ領域126の周囲に形成された前記第1のゲート絶縁膜123cと、前記第1のゲート絶縁膜123cの周囲に形成された前記第1のゲート124cと、前記第2のボディ領域128の周囲に形成された前記第2のゲート絶縁膜123bと、前記第2のゲート絶縁膜123bの周囲に形成された前記第2のゲート124bと、前記第3のボディ領域132の周囲に形成された第3のゲート絶縁膜123aと、前記第3のゲート絶縁膜132aの周囲に形成された第3のゲート124aと、前記第3の第1導電型シリコン層129と前記第1の第2導電型シリコン層131とに接続する出力端子122と、前記第1のゲート124cと前記第2のゲート124bと前記第3のゲート124aとを接続する第1のコンタクト146と、を有することを特徴とする。
 前記出力端子122はシリコンであって、前記出力端子122にさらに形成された前記第3の第1導電型シリコン層129と前記第1の第2導電型シリコン層131とを有することを特徴とする。
 また、出力端子122には、シリサイド140が形成され、前記第3の第1導電型シリコン層129と前記第1の第2導電型シリコン層131とが接続される。コンタクトにより、前記第3の第1導電型シリコン層129と前記第1の第2導電型シリコン層131とを接続してもよい。
 第1のゲート124cと第2のゲート124bと第3のゲート124aは、トランジスタのしきい値を調整するため、金属であることが好ましい。また、金属は、窒化チタン、窒化アルミチタンが好ましい。また、第1のゲート絶縁膜123cと第2のゲート絶縁膜123bと第3のゲート絶縁膜123aは、酸化膜、酸窒化膜、高誘電体膜が好ましい。
 前記第1のゲート絶縁膜123cは前記第1のゲート124cの上面と下面にさらに形成され、前記第2のゲート絶縁膜123bは前記第2のゲート124bの上面と下面にさらに形成され、前記第3のゲート絶縁膜123aは前記第3のゲート124aの上面と下面にさらに形成されていることを特徴とする。
 前記第3の第1導電型シリコン層129と前記第1の第2導電型シリコン層131との間に形成された第1の接続領域130を有することを特徴とする。
 また、前記第1の第1導電型シリコン層125を取り囲む第1の絶縁膜103と、前記第2の第1導電型シリコン層127を取り囲む第2の絶縁膜105と、前記第3の第1導電型シリコン層129を取り囲む第3の絶縁膜107と、を有し、前記第1の絶縁膜103は、前記第1の第1導電型シリコン層125の不純物と同じ不純物を有し、前記第2の絶縁膜105は、前記第2の第1導電型シリコン層127の不純物と同じ不純物を有し、 前記第3の絶縁膜107は、前記第3の第1導電型シリコン層129の不純物と同じ不純物を有し、前記第1の第2導電型シリコン層131を取り囲む第4の絶縁膜111と、前記第2の第2導電型シリコン層133を取り囲む第5の絶縁膜113とを有し、前記第4の絶縁膜111は、前記第1の第2導電型シリコン層131の不純物と同じ不純物を有し、前記第5の絶縁膜113は、前記第2の第2導電型シリコン層133の不純物と同じ不純物を有することを特徴とする。
 下部のトランジスタがnMOSの場合、第1の絶縁膜103と第2の絶縁膜105と第3の絶縁膜107は、リンもしくは砒素を高濃度に含む酸化膜が好ましい。上部のトランジスタがpMOSの場合、第4の絶縁膜111と第5の絶縁膜113は、ボロンを高濃度に含む酸化膜が好ましい。下部のトランジスタがpMOSの場合、第1の絶縁膜103と第2の絶縁膜105と第3の絶縁膜107は、ボロンを高濃度に含む酸化膜が好ましい。上部のトランジスタがnMOSの場合、第4の絶縁膜111と前記第5の絶縁膜113は、リンもしくは砒素を高濃度に含む酸化膜が好ましい。また、本実施例では、下部に2個のnMOSを直列に配置し、上部に1個のpMOSを配置したが、下部に1個のpMOSを配置し、上部に2個のnMOSを直列に配置してもよい。また、nMOSを複数直列に配置してもよい。また、pMOSを複数直列に配置してもよい。
 本発明の実施形態に係るSGTの構造を形成するための製造工程を、図2~図60を参照して説明する。本実施例では、基板にシリコンを使用したが、他の半導体を用いてもよい。また、本実施例では、柱状半導体層の下部にnMOSを、上部にpMOSを形成する工程としたが、下部にpMOSを、上部にnMOSを形成してもよい。
 図2に示すように、シリコン基板101に不純物を導入し、第4の第1導電型シリコン層102を形成する。
 図3に示すように、第1の絶縁膜103を形成する。第1の絶縁膜103は、酸化膜が好ましい。リンもしくは砒素を高濃度に含む酸化膜が好ましい。また、第1の絶縁膜103を形成後、不純物を注入し、リンもしくは砒素を高濃度に含む酸化膜としてもよい。
 図4に示すように、第6の絶縁膜104を形成する。第6の絶縁膜104は窒化膜が好ましい。
 図5に示すように、第2の絶縁膜105を形成する。第2の絶縁膜105は、酸化膜が好ましい。リンもしくは砒素を高濃度に含む酸化膜が好ましい。また、第2の絶縁膜105を形成後、不純物を注入し、リンもしくは砒素を高濃度に含む酸化膜としてもよい。
 図6に示すように、第7の絶縁膜106を形成する。第7の絶縁膜106は窒化膜が好ましい。
 図7に示すように、第3の絶縁膜107を形成する。第3の絶縁膜107は、酸化膜が好ましい。リンもしくは砒素を高濃度に含む酸化膜が好ましい。また、第3の絶縁膜107を形成後、不純物を注入し、リンもしくは砒素を高濃度に含む酸化膜としてもよい。
 図8に示すように、第8の絶縁膜108を形成する。第8の絶縁膜108は窒化膜が好ましい。
 図9に示すように、第1のレジスト109を形成する。
 図10に示すように、第8の絶縁膜108をエッチングする。
 図11に示すように、第1のレジスト109を除去する。
 図12に示すように、第9の絶縁膜110を形成し、平坦化する。第9の絶縁膜110は酸化膜が好ましい。
 図13に示すように、第9の絶縁膜110をエッチバックし、第8の絶縁膜108を露出する。
 図14に示すように、第4の絶縁膜111を形成する。第4の絶縁膜111は、酸化膜が好ましい。ボロンを高濃度に含む酸化膜が好ましい。また、第4の絶縁膜111を形成後、不純物を注入し、ボロンを高濃度に含む酸化膜としてもよい。
 図15に示すように、第10の絶縁膜112を形成する。第10の絶縁膜112は窒化膜が好ましい。
 図16に示すように、第5の絶縁膜113を形成する。第5の絶縁膜113は、酸化膜が好ましい。ボロンを高濃度に含む酸化膜が好ましい。また、第5の絶縁膜113を形成後、不純物を注入し、ボロンを高濃度に含む酸化膜としてもよい。
 図17に示すように、第2のレジスト114を形成する。
 図18に示すように、第5の絶縁膜113、第10の絶縁膜112、第4の絶縁膜111、第8の絶縁膜108、第3の絶縁膜107、第7の絶縁膜106、第2の絶縁膜105、第6の絶縁膜104、第1の絶縁膜103をエッチングし、コンタクト孔115を形成する。
 図19に示すように、第2のレジスト114を除去する。
 図20に示すように、エピタキシャル成長を行い、第1の柱状シリコン層116を形成する。ポリシリコンを堆積してもよい。
 図21に示すように、ボロンの不純物導入を行い、第3の第2導電型シリコン層117を形成する。
 図22に示すように、ポリシリコン118を堆積する。ポリシリコンを用いたが、ハードマスクとなる材料であればよい。
 図23に示すように、第11の絶縁膜119を堆積する。第11の絶縁膜119は、酸化膜が好ましい。
 図24に示すように、第3のレジスト120を形成する。
 図25に示すように、第11の絶縁膜119、ポリシリコン118、第5の絶縁膜113、第10の絶縁膜112、第4の絶縁膜111エッチングする。
 図26に示すように、第3のレジスト120を除去する。
 図27に示すように、第12の絶縁膜121を堆積する。第12の絶縁膜121は、酸化膜が好ましい。
 図28に示すように、第12の絶縁膜121をエッチングし、サイドウォール状に残存させる。
 図29に示すように、第8の絶縁膜108を除去する。熱燐酸によるウエットエッチングが好ましい。また、ドライエッチングを用いてもよい。
 図30に示すように、シリコンのエピタキシャル成長を行うことにより出力端子122を形成する。ポリシリコンを用いてもよい。
 図31に示すように、シリコンエッチングを行うことにより、出力端子122の余分な部分を除去する。シリコンエッチングは、ドライエッチングが好ましい。
 図32に示すように、第9の絶縁膜110、第3の絶縁膜107、第7の絶縁膜106、第2の絶縁膜105、をエッチングする。ドライエッチングが好ましい。同時に、第11の絶縁膜119、第12の絶縁膜121もエッチングされる。
 図33に示すように、第12の絶縁膜121を除去する。ウエットエッチングといった等方性エッチングが好ましい。
 図34に示すように、第10の絶縁膜112、第7の絶縁膜106、第6の絶縁膜104を除去する。熱燐酸によるウエットエッチングが好ましい。また、ドライエッチングを用いてもよい。また、出力端子がシリコンで形成されているため、窒化膜を除去するときに使用する熱燐酸によりシリコンはエッチングされない。
 図35に示すように、ゲート絶縁膜123を形成する。ゲート絶縁膜123は、酸化膜、酸窒化膜、高誘電体膜が好ましい。
 図36に示すように、ゲートとなる金属124を形成する。金属124は、窒化チタン、窒化アルミチタンが好ましい。また、チタン、タンタル、タングステン、窒化タンタル、または上記の積層物を用いてもよい。それぞれのゲートのためのリセス領域の高さを押さえることができるため、原子層堆積で金属を薄く堆積することがき、原子層堆積の堆積時間を短くすることができ、製造時間を減少できる。
 図37に示すように、金属124をエッチングし、第1のゲート124c、第2のゲート124b、第3のゲート124aを形成する。このとき、ゲート絶縁膜123は、第1のゲート絶縁膜123c、第2のゲート絶縁膜123b、第3のゲート絶縁膜123aとなる。金属のエッチングは等方性エッチングが好ましい。また、
 図38に示すように、熱処理を行い、固相拡散により、第1の第1導電型シリコン層125と第2の第1導電型シリコン層127と第3の第1導電型シリコン層129と第1の第2導電型シリコン層131と第2の第2導電型シリコン層133が形成される。第1のゲート123c、第2のゲート123b、第3のゲート123a形成前に熱処理を行ってもよい。また、出力端子122に第3の第1導電型シリコン層129と第1の第2導電型シリコン層131が形成される。また、ポリシリコン118に拡散層134が形成される。
 図39に示すように、第1の層間絶縁膜135を形成する。
 図40に示すように、第1の層間絶縁膜135を平坦化し、エッチバックする。このとき、ゲート絶縁膜123上部、ポリシリコン118、第3の第2導電型シリコン層117上部を除去する。
 図41に示すように、第2の層間絶縁膜136を堆積する。
 図42に示すように、第4のレジスト137を形成する。
 図43に示すように、第2の層間絶縁膜136、第1の層間絶縁膜135、第5の絶縁膜113、第3のゲート絶縁膜123a、第3のゲート124a、第3のゲート絶縁膜132a、第4の絶縁膜111をエッチングし、コンタクト孔138を形成する。
 図44に示すように、第4のレジスト137を除去する。
 図45に示すように、第13の絶縁膜139を堆積する。第13の絶縁膜139は、酸化膜もしくは窒化膜が好ましい。
 図46に示すように、第13の絶縁膜139をエッチングし、サイドウォール状に残存させる。
 図47に示すように、出力端子122にシリサイド140が形成され、前記第3の第1導電型シリコン層129と第1の第2導電型半導体層131とが接続される。
 図48に示すように、金属を堆積し、コンタクト200を形成する。
 図49に示すように、第5のレジスト141を形成する。
 図50に示すように、第2の層間絶縁膜136、第1の層間絶縁膜135をエッチングし、コンタクト孔142を形成する。
 図51に示すように、第5のレジスト141を除去する。
 図52に示すように、第6のレジスト143を形成する。
 図53に示すように、第2の層間絶縁膜136、第1の層間絶縁膜135、第5の絶縁膜113、第3のゲート絶縁膜123a、第3のゲート124a、第3のゲート絶縁膜132a、第4の絶縁膜111、第9の絶縁膜110、第3の絶縁膜107、第2のゲート絶縁膜123b、第2のゲート124b、第2のゲート絶縁膜123b、第2の絶縁膜105、第1のゲート絶縁膜123cをエッチングし、コンタクト孔144を形成する。
 図54に示すように、第6のレジスト143を除去する。
 図55に示すように、金属を堆積し、第1のコンタクト146、コンタクト145を形成する。
 図56に示すように、第2の層間絶縁膜136をエッチングし、第3の第2導電型シリコン層117を露出する。
 図57に示すように、金属147を堆積する。
 図58に示すように、第7のレジスト148、149、150、151を形成する。
 図59に示すように、金属147をエッチングし、金属配線147a、147b、147c、147dを形成する。
 図60に示すように、第7のレジスト148、149、150、151を除去する。
 以上により、本発明の半導体装置の製造方法が示された。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。
 例えば、上記実施例において、p型(p+型を含む。)とn型(n+型を含む。)とをそれぞれ反対の導電型とした半導体装置の製造方法、及び、それにより得られる半導体装置も当然に本発明の技術的範囲に含まれる。
101.シリコン基板
102.第4の第1導電型シリコン層
103.第1の絶縁膜
104.第6の絶縁膜
105.第2の絶縁膜
106.第7の絶縁膜
107.第3の絶縁膜
108.第8の絶縁膜
109.第1のレジスト
110.第9の絶縁膜
111.第4の絶縁膜
112.第10の絶縁膜
113.第5の絶縁膜
114.第2のレジスト
115.コンタクト孔
116.第1の柱状シリコン層
117.第3の第2導電型シリコン層
118.ポリシリコン
119.第11の絶縁膜
120.第3のレジスト
121.第12の絶縁膜
122.出力端子
123.ゲート絶縁膜
123a.第3のゲート絶縁膜
123b.第2のゲート絶縁膜
123c.第1のゲート絶縁膜
124.金属
124a.第3のゲート
124b.第2のゲート
124c.第1のゲート
125.第1の第1導電型シリコン層
126.第1のボディ領域
127.第2の第1導電型シリコン層
128.第2のボディ領域
129.第3の第1導電型シリコン層
130.第1の接続領域
131.第1の第2導電型シリコン層
132.第3のボディ領域
133.第2の第2導電型シリコン層
134.拡散層
135.第1の層間絶縁膜
136.第2の層間絶縁膜
137.第4のレジスト
138.コンタクト孔
139.第13の絶縁膜
140.シリサイド
141.第5のレジスト
142.コンタクト孔
143.第6のレジスト
144.コンタクト孔
145.コンタクト
146.第1のコンタクト
147.金属
147a.金属配線
147b.金属配線
147c.金属配線
147d.金属配線
148.第7のレジスト
149.第7のレジスト
150.第7のレジスト
151.第7のレジスト
200.コンタクト

Claims (8)

  1.  半導体基板上に形成された第1の柱状半導体層と、
     前記第1の柱状半導体層に形成された第1の第1導電型半導体層と、
     前記第1の柱状半導体層に形成された前記第1の第1導電型半導体層より高い位置にある第3の第1導電型半導体層と、
     前記第1の第1導電型半導体層と第3の第1導電型半導体層とに挟まれた領域の前記第1の柱状半導体層の周囲に形成された第1のゲート絶縁膜と、
     前記第1のゲート絶縁膜の周囲に形成された第1のゲートと、
     前記第1の第1導電型半導体層と第3の第1導電型半導体層とに挟まれた領域の前記第1の柱状半導体層の周囲に形成された第2のゲート絶縁膜と、
     前記第2のゲート絶縁膜の周囲に形成された第2のゲートと、
     前記第1のゲートと前記第2のゲートは接続されていることを特徴とする半導体装置。
  2.  前記半導体基板上に形成された第4の第1導電型半導体層と、
     前記半導体基板上に形成された前記第1の柱状半導体層であって、前記第1の第1導電型半導体層と第1のボディ領域、第2の第1導電型半導体層、第2のボディ領域、前記第3の第1導電型半導体層、第1の第2導電型半導体層、第3のボディ領域、第2の第2導電型半導体層、第3の第2導電型半導体層が基板側からこの順に形成された前記第1の柱状半導体層と、
     前記第1のボディ領域の周囲に形成された前記第1のゲート絶縁膜と、
     前記第1のゲート絶縁膜の周囲に形成された前記第1のゲートと、
     前記第2のボディ領域の周囲に形成された前記第2のゲート絶縁膜と、
     前記第2のゲート絶縁膜の周囲に形成された前記第2のゲートと、
     前記第3のボディ領域の周囲に形成された第3のゲート絶縁膜と、
     前記第3のゲート絶縁膜の周囲に形成された第3のゲートと、
     前記第3の第1導電型半導体層と前記第1の第2導電型半導体層とに接続する出力端子と、
     前記第1のゲートと前記第2のゲートと前記第3のゲートとを接続する第1のコンタクトと、
     を有することを特徴とする請求項1に記載の半導体装置。
  3.  前記出力端子は半導体であって、前記出力端子にさらに形成された前記第3の第1導電型半導体層と前記第1の第2導電型半導体層とを有することを特徴とする請求項2に記載の半導体装置。
  4.  前記第1のゲート絶縁膜は前記第1のゲートの上面と下面にさらに形成され、前記第2のゲート絶縁膜は前記第2のゲートの上面と下面にさらに形成され、前記第3のゲート絶縁膜は前記第3のゲートの上面と下面にさらに形成されていることを特徴とする請求項2に記載の半導体装置。
  5.  前記第3の第1導電型半導体層と前記第1の第2導電型半導体層との間に形成された第1の接続領域を有することを特徴とする請求項2に記載の半導体装置。
  6.  前記第1の第1導電型半導体層を取り囲む第1の絶縁膜と、前記第2の第1導電型半導体層を取り囲む第2の絶縁膜と、前記第3の第1導電型半導体層を取り囲む第3の絶縁膜と、を有し、
     前記第1の絶縁膜は、前記第1の第1導電型半導体層の不純物と同じ不純物を有し、
     前記第2の絶縁膜は、前記第2の第1導電型半導体層の不純物と同じ不純物を有し、
     前記第3の絶縁膜は、前記第3の第1導電型半導体層の不純物と同じ不純物を有し、
     前記第1の第2導電型半導体層を取り囲む第4の絶縁膜と、前記第2の第2導電型半導体層を取り囲む第5の絶縁膜とを有し、
     前記第4の絶縁膜は、前記第1の第2導電型半導体層の不純物と同じ不純物を有し、
     前記第5の絶縁膜は、前記第2の第2導電型半導体層の不純物と同じ不純物を有することを特徴とする請求項2に記載の半導体装置。
  7.  第4の第1導電型半導体層が形成された基板上に、第1の導電型の不純物を含む酸化膜である第1の絶縁膜を堆積し、窒化膜である第6の絶縁膜を堆積し、第1の導電型の不純物を含む酸化膜である第2の絶縁膜を堆積し、窒化膜である第7の絶縁膜を堆積し、第1の導電型の不純物を含む酸化膜である第3の絶縁膜を堆積し、前記第1の絶縁膜、第6の絶縁膜、第2の絶縁膜、第7の絶縁膜をエッチングしコンタクト孔を形成し、前記コンタクト孔にエピタキシャル成長により第1の柱状シリコン層を形成し、前記第6の絶縁膜と前記第7の絶縁膜を除去し、第1のゲートと第2のゲートを形成し、前記第1のゲートと前記第2のゲートを接続するコンタクトを形成することを特徴とする半導体装置の製造方法。
  8.  前記コンタクト孔にエピタキシャル成長により第1の柱状シリコン層を形成した後に、熱処理を行うことにより、第1の柱状シリコン層に第1の第1導電型半導体層と第2の第1導電型半導体層と第3の第1導電型半導体層とを形成することを特徴とする請求項7に記載の半導体装置の製造方法。
PCT/JP2014/072563 2014-08-28 2014-08-28 半導体装置、及び、半導体装置の製造方法 WO2016031014A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015513920A JP5989238B2 (ja) 2014-08-28 2014-08-28 半導体装置、及び、半導体装置の製造方法
PCT/JP2014/072563 WO2016031014A1 (ja) 2014-08-28 2014-08-28 半導体装置、及び、半導体装置の製造方法
US14/743,612 US10217665B2 (en) 2014-08-28 2015-06-18 Semiconductor device and method for producing semiconductor device
US16/230,151 US10340184B2 (en) 2014-08-28 2018-12-21 Method for producing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072563 WO2016031014A1 (ja) 2014-08-28 2014-08-28 半導体装置、及び、半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2016031014A1 true WO2016031014A1 (ja) 2016-03-03

Family

ID=55398952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072563 WO2016031014A1 (ja) 2014-08-28 2014-08-28 半導体装置、及び、半導体装置の製造方法

Country Status (3)

Country Link
US (2) US10217665B2 (ja)
JP (1) JP5989238B2 (ja)
WO (1) WO2016031014A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215808A1 (ja) * 2018-05-08 2019-11-14 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009473A1 (ja) * 2014-07-14 2016-01-21 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法、及び、半導体装置
US11177369B2 (en) * 2019-09-25 2021-11-16 International Business Machines Corporation Stacked vertical field effect transistor with self-aligned junctions
US11094819B2 (en) * 2019-12-06 2021-08-17 International Business Machines Corporation Stacked vertical tunnel FET devices
US20220102345A1 (en) * 2020-09-30 2022-03-31 Tokyo Electron Limited Plurality of 3d vertical cmos devices for high performance logic

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613623A (ja) * 1992-03-02 1994-01-21 Motorola Inc 半導体装置
JPH08213477A (ja) * 1995-02-07 1996-08-20 Semiconductor Energy Lab Co Ltd 薄膜半導体集積回路
JPH10112543A (ja) * 1996-10-04 1998-04-28 Oki Electric Ind Co Ltd 半導体素子および半導体素子の製造方法
JP2001044279A (ja) * 1999-07-12 2001-02-16 Motorola Inc 三次元多層半導体回路
JP2005268438A (ja) * 2004-03-17 2005-09-29 Sharp Corp 電界効果トランジスタおよびその作製方法
EP1804286A1 (en) * 2005-12-27 2007-07-04 Interuniversitair Microelektronica Centrum Elongate nanostructure semiconductor device
JP2007250652A (ja) * 2006-03-14 2007-09-27 Sharp Corp 半導体装置
JP2011023543A (ja) * 2009-07-15 2011-02-03 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057661B2 (ja) 1988-09-06 2000-07-04 株式会社東芝 半導体装置
JP2703970B2 (ja) 1989-01-17 1998-01-26 株式会社東芝 Mos型半導体装置
JP2950558B2 (ja) 1989-11-01 1999-09-20 株式会社東芝 半導体装置
US5208172A (en) * 1992-03-02 1993-05-04 Motorola, Inc. Method for forming a raised vertical transistor
US5612563A (en) * 1992-03-02 1997-03-18 Motorola Inc. Vertically stacked vertical transistors used to form vertical logic gate structures
US5252849A (en) * 1992-03-02 1993-10-12 Motorola, Inc. Transistor useful for further vertical integration and method of formation
US7052941B2 (en) * 2003-06-24 2006-05-30 Sang-Yun Lee Method for making a three-dimensional integrated circuit structure
US6027975A (en) 1998-08-28 2000-02-22 Lucent Technologies Inc. Process for fabricating vertical transistors
US7893476B2 (en) * 2006-09-15 2011-02-22 Imec Tunnel effect transistors based on silicon nanowires
EP1900681B1 (en) * 2006-09-15 2017-03-15 Imec Tunnel Field-Effect Transistors based on silicon nanowires
JP5130596B2 (ja) 2007-05-30 2013-01-30 国立大学法人東北大学 半導体装置
KR101226685B1 (ko) 2007-11-08 2013-01-25 삼성전자주식회사 수직형 반도체 소자 및 그 제조 방법.
KR101539697B1 (ko) * 2008-06-11 2015-07-27 삼성전자주식회사 수직형 필라를 활성영역으로 사용하는 3차원 메모리 장치,그 제조 방법 및 그 동작 방법
KR102015578B1 (ko) 2012-09-11 2019-08-28 삼성전자주식회사 불휘발성 메모리 장치 및 그 형성방법
US9449983B2 (en) * 2013-12-19 2016-09-20 Sandisk Technologies Llc Three dimensional NAND device with channel located on three sides of lower select gate and method of making thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613623A (ja) * 1992-03-02 1994-01-21 Motorola Inc 半導体装置
JPH08213477A (ja) * 1995-02-07 1996-08-20 Semiconductor Energy Lab Co Ltd 薄膜半導体集積回路
JPH10112543A (ja) * 1996-10-04 1998-04-28 Oki Electric Ind Co Ltd 半導体素子および半導体素子の製造方法
JP2001044279A (ja) * 1999-07-12 2001-02-16 Motorola Inc 三次元多層半導体回路
JP2005268438A (ja) * 2004-03-17 2005-09-29 Sharp Corp 電界効果トランジスタおよびその作製方法
EP1804286A1 (en) * 2005-12-27 2007-07-04 Interuniversitair Microelektronica Centrum Elongate nanostructure semiconductor device
JP2007250652A (ja) * 2006-03-14 2007-09-27 Sharp Corp 半導体装置
JP2011023543A (ja) * 2009-07-15 2011-02-03 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215808A1 (ja) * 2018-05-08 2019-11-14 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置の製造方法
CN111771266A (zh) * 2018-05-08 2020-10-13 新加坡优尼山帝斯电子私人有限公司 柱状半导体装置的制造方法
JPWO2019215808A1 (ja) * 2018-05-08 2021-04-22 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 柱状半導体装置の製造方法
JP7056994B2 (ja) 2018-05-08 2022-04-19 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 柱状半導体装置の製造方法
US11380780B2 (en) 2018-05-08 2022-07-05 Unisantis Electronics Singapore Pte. Ltd. Method for producing pillar-shaped semiconductor device

Also Published As

Publication number Publication date
JPWO2016031014A1 (ja) 2017-04-27
US10340184B2 (en) 2019-07-02
US10217665B2 (en) 2019-02-26
US20190148228A1 (en) 2019-05-16
US20160064508A1 (en) 2016-03-03
JP5989238B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5990843B2 (ja) 半導体装置の製造方法、及び、半導体装置
TWI573274B (zh) 半導體結構及其製造方法
JP5989238B2 (ja) 半導体装置、及び、半導体装置の製造方法
JP5731073B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP2011204745A (ja) 半導体装置及びその製造方法
TW201407788A (zh) 半導體裝置的製造方法以及半導體裝置
JP5928658B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5902868B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5654184B1 (ja) 半導体装置の製造方法、及び、半導体装置
WO2014057532A1 (ja) 半導体装置の製造方法、及び、半導体装置
JP6310500B2 (ja) 半導体装置、及び、半導体装置の製造方法
JP5596245B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5903139B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5833214B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5646116B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5643900B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6159777B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5936653B2 (ja) 半導体装置
JP6211637B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5869166B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6080989B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6375316B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5869079B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5926354B2 (ja) 半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015513920

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900833

Country of ref document: EP

Kind code of ref document: A1