WO2016021020A1 - 半導体装置の製造方法、及び、半導体装置 - Google Patents

半導体装置の製造方法、及び、半導体装置 Download PDF

Info

Publication number
WO2016021020A1
WO2016021020A1 PCT/JP2014/070877 JP2014070877W WO2016021020A1 WO 2016021020 A1 WO2016021020 A1 WO 2016021020A1 JP 2014070877 W JP2014070877 W JP 2014070877W WO 2016021020 A1 WO2016021020 A1 WO 2016021020A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
semiconductor layer
conductivity type
type semiconductor
gate
Prior art date
Application number
PCT/JP2014/070877
Other languages
English (en)
French (fr)
Inventor
舛岡 富士雄
広記 中村
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
舛岡 富士雄
広記 中村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド, 舛岡 富士雄, 広記 中村 filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to JP2015513919A priority Critical patent/JP5928658B1/ja
Priority to PCT/JP2014/070877 priority patent/WO2016021020A1/ja
Priority to US14/744,588 priority patent/US9431501B2/en
Publication of WO2016021020A1 publication Critical patent/WO2016021020A1/ja
Priority to US15/213,565 priority patent/US9741801B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823885Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of vertical transistor structures, i.e. with channel vertical to the substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • H01L29/42392Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor fully surrounding the channel, e.g. gate-all-around
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a semiconductor device.
  • SGT Surrounding Gate Transistor
  • one transistor is formed on one silicon column, and an nMOS transistor composed of one silicon column and a pMOS transistor composed of one silicon column are formed on a plane (for example, see Patent Document 4). Since at least two silicon pillars are formed on a plane, an area corresponding to at least two silicon pillars is required.
  • a plurality of gates are formed on one silicon pillar (see, for example, Patent Document 5).
  • a gate insulating film is formed on the side wall of the silicon pillar, and a source line and a bit line are connected to the upper end and the lower end of the silicon pillar.
  • JP-A-2-71556 Japanese Patent Laid-Open No. 2-188966 Japanese Patent Laid-Open No. 3-145761 JP 2008-300558 A JP 2014-57068 A
  • an object is to provide an inverter circuit formed of a single semiconductor pillar.
  • the semiconductor device of the present invention includes a third first conductive semiconductor layer formed on a semiconductor substrate, and a first columnar semiconductor layer formed on the semiconductor substrate, the first conductive semiconductor layer, 1st body region, 2nd 1st conductivity type semiconductor layer, 1st 2nd conductivity type semiconductor layer, 2nd body region, 2nd 2nd conductivity type semiconductor layer, 3rd 2nd conductivity type semiconductor
  • a first columnar semiconductor layer formed in this order from the substrate side; a first gate insulating film formed around the first body region; and a periphery of the first gate insulating film.
  • An output terminal made of a semiconductor connected to the first conductive type semiconductor layer and the first second conductive type semiconductor layer;
  • the first gate insulating film is further formed on the upper and lower surfaces of the first gate, and the second gate insulating film is further formed on the upper and lower surfaces of the second gate.
  • the semiconductor device has a first connection region formed between the second first conductivity type semiconductor layer and the first second conductivity type semiconductor layer.
  • the fourth conductive film has the same impurity as that of the second conductive semiconductor layer, and the fourth insulating film has the same impurity as that of the second second conductive semiconductor layer.
  • a second insulating film that is an oxide film containing a first conductivity type impurity is deposited on a substrate, and a sixth insulating film that is a nitride film is deposited.
  • the first columnar silicon layer and the output terminal include the second first conductive semiconductor layer and the first first layer.
  • a two-conductivity type semiconductor layer is formed.
  • an inverter circuit formed of one semiconductor pillar can be provided.
  • the region, the second first conductivity type semiconductor layer, the first second conductivity type semiconductor layer, the second body region, the second second conductivity type semiconductor layer, and the third second conductivity type semiconductor layer are on the substrate side.
  • the output terminal is formed of a semiconductor, for example, silicon
  • the silicon is not etched by the hot phosphoric acid used when removing the nitride film, so that the first gate and the second gate can be formed simultaneously.
  • the output terminal can be silicided.
  • the first gate insulating film is further formed on the upper and lower surfaces of the first gate, and the second gate insulating film is further formed on the upper and lower surfaces of the second gate.
  • the vertical insulation of the first gate and the vertical insulation of the second gate can be ensured.
  • the first connection region formed between the second first conductivity type semiconductor layer and the first second conductivity type semiconductor layer includes the second first conductivity type semiconductor layer,
  • the first second-conductivity-type semiconductor layer can be separated, and the second first-conductivity-type semiconductor layer, the first second-conductivity-type semiconductor layer, and the output terminal extending in the connection region can be connected. it can.
  • the fourth conductive film has the same impurity as the impurity of the second conductive type semiconductor layer, and the fourth insulating film has the same impurity as the impurity of the second second conductive type semiconductor layer.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • (A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • A) is a top view which concerns on the manufacturing method of the semiconductor device which concerns on this invention.
  • FIG. 4B is a sectional view taken along line xx ′ in FIG. (C) is a sectional view taken along line y-y ′ of (a).
  • FIG. 1 A structure of a semiconductor device according to an embodiment of the present invention is shown in FIG.
  • the semiconductor is silicon, but a semiconductor other than silicon may be used.
  • silicide 135 is formed at the output terminal 119, and the second first conductivity type semiconductor layer 124 and the first second conductivity type semiconductor layer 123 are connected.
  • the first gate 121b and the second gate 121a are preferably made of metal in order to adjust the threshold value of the transistor.
  • the metal is preferably titanium nitride or aluminum titanium nitride.
  • the first gate insulating film 120b and the second gate insulating film 120a are preferably an oxide film, an oxynitride film, and a high dielectric film.
  • the first gate insulating film 120b is further formed on the upper and lower surfaces of the first gate 121b, and the second gate insulating film 120a is further formed on the upper and lower surfaces of the second gate 121a.
  • a first connection region 128 formed between the second first conductivity type silicon layer 124 and the first second conductivity type silicon layer 123 is provided.
  • first insulating film 103 surrounding the first first conductivity type silicon layer 125 and the second insulating film 105 surrounding the second first conductivity type silicon layer 124 are provided.
  • the insulating film 103 has the same impurity as the impurity of the first first conductivity type silicon layer 125, and the second insulating film 105 is the same as the impurity of the second first conductivity type silicon layer 124.
  • the third insulating film 109 has the same impurity as the impurity of the first second conductive silicon layer 123, and the fourth insulating film 111 is formed of the second second conductive silicon layer 122. It has the same impurity as the impurity.
  • the first insulating film 103 and the second insulating film 105 are preferably oxide films containing phosphorus or arsenic at a high concentration.
  • the third insulating film 109 and the fourth insulating film 111 are preferably oxide films containing boron at a high concentration.
  • the first insulating film 103 and the second insulating film 105 are preferably oxide films containing boron at a high concentration.
  • the third insulating film 109 and the fourth insulating film 111 are preferably oxide films containing phosphorus or arsenic at a high concentration.
  • FIGS. 1-10 A manufacturing process for forming an SGT structure according to an embodiment of the present invention will be described with reference to FIGS.
  • silicon is used for the substrate, but other semiconductors may be used.
  • the nMOS is formed below the columnar semiconductor layer and the pMOS is formed above, but the pMOS may be formed below and the nMOS may be formed above.
  • impurities are introduced into the silicon substrate 101 to form a third first conductivity type silicon layer 102.
  • a first insulating film 103 is formed.
  • the first insulating film 103 is preferably an oxide film.
  • An oxide film containing phosphorus or arsenic at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing phosphorus or arsenic at a high concentration.
  • the fifth insulating film 104 is formed.
  • the fifth insulating film 104 is preferably a nitride film.
  • a second insulating film 105 is formed.
  • the second insulating film 105 is preferably an oxide film.
  • An oxide film containing phosphorus or arsenic at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing phosphorus or arsenic at a high concentration.
  • a sixth insulating film 106 is formed.
  • the sixth insulating film 106 is preferably a nitride film.
  • a first resist 107 is formed.
  • the sixth insulating film 106 is etched.
  • the first resist 107 is removed.
  • a seventh insulating film 108 is formed and planarized.
  • the seventh insulating film 108 is preferably an oxide film.
  • the seventh insulating film 108 is etched back to expose the sixth insulating film 106.
  • a third insulating film 109 is formed.
  • the third insulating film 109 is preferably an oxide film.
  • An oxide film containing boron at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing boron at a high concentration.
  • an eighth insulating film 110 is formed.
  • the eighth insulating film 110 is preferably a nitride film.
  • a fourth insulating film 111 is formed.
  • the fourth insulating film 111 is preferably an oxide film.
  • An oxide film containing boron at a high concentration is preferable.
  • an impurity may be implanted to form an oxide film containing boron at a high concentration.
  • a second resist 112 is formed.
  • the second resist 112 is removed.
  • epitaxial growth is performed to form a first columnar silicon layer 114.
  • Polysilicon may be deposited.
  • boron impurities are introduced to form a third second conductivity type silicon layer 201.
  • polysilicon 115 is deposited. Although polysilicon is used, any material can be used as long as it becomes a hard mask.
  • a ninth insulating film 116 is deposited.
  • the ninth insulating film 116 is preferably an oxide film.
  • a third resist 117 is formed.
  • the ninth insulating film 116, the polysilicon 115, the fourth insulating film 111, the eighth insulating film 110, and the third insulating film 109 are etched.
  • the third resist 117 is removed.
  • a tenth insulating film 118 is deposited.
  • the tenth insulating film 118 is preferably an oxide film.
  • the tenth insulating film 118 is etched and left in a sidewall shape.
  • the sixth insulating film 106 is removed. Wet etching with hot phosphoric acid is preferred. Further, dry etching may be used.
  • an output terminal 119 is formed by epitaxial growth of silicon.
  • Polysilicon may be used.
  • silicon etching is performed to remove an excess portion of the output terminal 119.
  • Silicon etching is preferably dry etching.
  • the seventh insulating film 108 and the second insulating film 105 are etched. Dry etching is preferred. At the same time, the ninth insulating film 116 and the tenth insulating film 118 are also etched.
  • the tenth insulating film 118 is removed. Isotropic etching such as wet etching is preferred.
  • the eighth insulating film 110 and the fifth insulating film 104 are removed.
  • Wet etching with hot phosphoric acid is preferred. Further, dry etching may be used. Further, since the output terminal is made of silicon, silicon is not etched by the hot phosphoric acid used when removing the nitride film.
  • the gate insulating film 120 is preferably an oxide film, an oxynitride film, or a high dielectric film.
  • a metal 121 to be a gate is formed.
  • the metal 121 is preferably titanium nitride or aluminum titanium nitride.
  • the metal 121 is etched to form a first gate 121b and a second gate 121a.
  • the gate insulating film 120 becomes the first gate insulating film 120b and the second gate insulating film 120a.
  • heat treatment is performed, and by solid phase diffusion, the first first conductivity type silicon layer 125, the second first conductivity type silicon layer 124, the first second conductivity type silicon layer 123, and the first Two second conductivity type silicon layers 122 are formed. Heat treatment may be performed before forming the first gate 121b and the second gate 121a. Further, the second first conductivity type silicon layer 124 and the first second conductivity type silicon layer 123 are formed at the output terminal 119. A diffusion layer 126 is formed in the polysilicon 115.
  • a first interlayer insulating film 130 is formed.
  • the first interlayer insulating film 130 is planarized and etched back. At this time, the upper portion of the gate insulating film 120, the polysilicon 115, and the upper portion of the third second conductivity type silicon layer 201 are removed.
  • a second interlayer insulating film 131 is deposited.
  • a fourth resist 132 is formed.
  • the second interlayer insulating film 131, the first interlayer insulating film 130, the fourth insulating film 111, and the second gate insulating film 120a are etched.
  • the second gate 120a, the second gate insulating film 120a, and the third insulating film 109 are etched to form a contact hole 133.
  • an eleventh insulating film 134 is deposited.
  • the eleventh insulating film 134 is preferably an oxide film or a nitride film.
  • the eleventh insulating film 134 is etched and left in a sidewall shape.
  • a silicide 135 is formed at the output terminal 119, and the second first conductivity type semiconductor layer 124 and the first second conductivity type semiconductor layer 123 are connected.
  • a metal is deposited to form a contact 136. As shown in FIG.
  • the second interlayer insulating film 131 and the first interlayer insulating film 130 are etched to form contact holes 138.
  • the fifth resist 137 is removed.
  • a sixth resist 139 is formed.
  • the contact hole 140 is formed by etching the 120a, the third insulating film 109, the seventh insulating film 108, the second insulating film 105, and the first gate insulating film 120b.
  • the sixth resist 139 is removed.
  • metal is deposited to form the first contact 141 and the contact 142.
  • the second interlayer insulating film 131 is etched to expose the third second conductivity type silicon layer 201.
  • metal 143 is deposited.
  • seventh resists 144, 145, 146, 147 are formed.
  • the metal 143 is etched to form metal wirings 143a, 143b, 143c, and 143d.
  • the seventh resists 144, 145, 146, 147 are removed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

 一本の半導体柱で形成されたインバータ回路を提供することを課題とする。 半導体基板上に形成された第3の第1導電型半導体層と、前記半導体基板上に形成された第1の柱状半導体層であって、第1導電型半導体層と第1のボディ領域、第2の第1導電型半導体層、第1の第2導電型半導体層、第2のボディ領域、第2の第2導電型半導体層、第3の第2導電型半導体層が基板側からこの順に形成された第1の柱状半導体層と、前記第1のボディ領域の周囲に形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された第1のゲートと、前記第2のボディ領域の周囲に形成された第2のゲート絶縁膜と、 前記第2のゲート絶縁膜の周囲に形成された第2のゲートと、前記第2の第1導電型半導体層と前記第1の第2導電型半導体層とに接続する半導体からなる出力端子と、前記出力端子にさらに形成された前記第2の第1導電型半導体層と前記第1の第2導電型半導体層と、 前記第1のゲートと前記第2のゲートとを接続する第1のコンタクトと、を有することを特徴とする半導体装置により、上記課題を解決する。

Description

半導体装置の製造方法、及び、半導体装置
 本発明は半導体装置の製造方法、及び、半導体装置に関する。
 半導体集積回路、特にMOSトランジスタを用いた集積回路は、高集積化の一途を辿っている。この高集積化に伴って、その中で用いられているMOSトランジスタはナノ領域まで微細化が進んでいる。このようなMOSトランジスタの微細化が進むと、リーク電流の抑制が困難であり、必要な電流量確保の要請から回路の占有面積をなかなか小さくできない、といった問題があった。このような問題を解決するために、基板に対してソース、ゲート、ドレインが垂直方向に配置され、ゲート電極が柱状半導体層を取り囲む構造のSurrounding Gate Transistor(以下、「SGT」という。)が提案されている(例えば、特許文献1、特許文献2、特許文献3を参照)。
 従来のSGTを用いたインバータでは、一本のシリコン柱に一個のトランジスタが形成され、1本のシリコン柱からなるnMOSトランジスタと1本のシリコン柱からなるpMOSトランジスタが平面上に形成されている(例えば特許文献4を参照)。少なくとも2本のシリコン柱が平面上に形成されているため、少なくとも2本のシリコン柱分の面積が必要となる。
 従来の不揮発性メモリにおいて、一本のシリコン柱に複数のゲートが形成されている(例えば特許文献5を参照)。シリコン柱の側壁にゲート絶縁膜が形成され、シリコン柱の上部端と下部端でソース線、ビット線が接続されている。
特開平2-71556号公報 特開平2-188966号公報 特開平3-145761号公報 特開2008-300558号公報 特開2014-57068号公報
 そこで、一本の半導体柱で形成されたインバータ回路を提供することを目的とする。
 本発明の半導体装置は、半導体基板上に形成された第3の第1導電型半導体層と、前記半導体基板上に形成された第1の柱状半導体層であって、第1導電型半導体層、第1のボディ領域、第2の第1導電型半導体層、第1の第2導電型半導体層、第2のボディ領域、第2の第2導電型半導体層、第3の第2導電型半導体層が基板側からこの順に形成された第1の柱状半導体層と、前記第1のボディ領域の周囲に形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された第1のゲートと、前記第2のボディ領域の周囲に形成された第2のゲート絶縁膜と、前記第2のゲート絶縁膜の周囲に形成された第2のゲートと、前記第2の第1導電型半導体層と前記第1の第2導電型半導体層とに接続する半導体からなる出力端子と、前記出力端子にさらに形成された前記第2の第1導電型半導体層と前記第1の第2導電型半導体層と、前記第1のゲートと前記第2のゲートとを接続する第1のコンタクトと、を有することを特徴とする。
 また、前記第1のゲート絶縁膜は前記第1のゲートの上面と下面にさらに形成され、前記第2のゲート絶縁膜は前記第2のゲートの上面と下面にさらに形成されていることを特徴とする。
 また、前記第2の第1導電型半導体層と前記第1の第2導電型半導体層との間に形成された第1の接続領域を有することを特徴とする。
 また、前記第1の第1導電型半導体層を取り囲む第1の絶縁膜と、前記第2の第1導電型半導体層を取り囲む第2の絶縁膜とを有し、前記第1の絶縁膜は、前記第1の第1導電型半導体層の不純物と同じ不純物を有し、前記第2の絶縁膜は、前記第2の第1導電型半導体層の不純物と同じ不純物を有し、前記第1の第2導電型半導体層を取り囲む第3の絶縁膜と、前記第2の第2導電型半導体層を取り囲む第4の絶縁膜とを有し、前記第3の絶縁膜は、前記第1の第2導電型半導体層の不純物と同じ不純物を有し、前記第4の絶縁膜は、前記第2の第2導電型半導体層の不純物と同じ不純物を有することを特徴とする。
 また、本発明の半導体装置の製造方法は、基板上に、第1の導電型の不純物を含む酸化膜である第2の絶縁膜を堆積し、窒化膜である第6の絶縁膜を堆積し、第1の導電型とは異なる導電型である第2の導電型の不純物を含む酸化膜である第3の絶縁膜を堆積し、前記第2の絶縁膜と前記第6の絶縁膜と前記第3の絶縁膜をエッチングしコンタクト孔を形成し、前記コンタクト孔にエピタキシャル成長により第1の柱状シリコン層を形成し、前記第6の絶縁膜を除去し、エピタキシャル成長を行うことにより出力端子を形成することを特徴とする。
 また、前記コンタクト孔にエピタキシャル成長により第1の柱状シリコン層を形成した後に、熱処理を行うことにより、第1の柱状シリコン層と前記出力端子に第2の第1導電型半導体層と第1の第2導電型半導体層を形成することを特徴とする。
 本発明によれば、一本の半導体柱で形成されたインバータ回路を提供することができる。
 半導体基板上に形成された第3の第1導電型半導体層と、前記半導体基板上に形成された第1の柱状半導体層であって、第1の第1導電型半導体層、第1のボディ領域、第2の第1導電型半導体層、第1の第2導電型半導体層、第2のボディ領域、第2の第2導電型半導体層、第3の第2導電型半導体層が基板側からこの順に形成された第1の柱状半導体装置と、前記第1のボディ領域の周囲に形成された第1のゲート絶縁膜と、前記第1のゲート絶縁膜の周囲に形成された第1のゲートと、前記第2のボディ領域の周囲に形成された第2のゲート絶縁膜と、前記第2のゲート絶縁膜の周囲に形成された第2のゲートと、前記第2の第1導電型半導体層と前記第1の第2導電型半導体層とに接続する半導体からなる出力端子と、前記出力端子にさらに形成された前記第2の第1導電型半導体層と前記第1の第2導電型半導体層と、前記第1のゲートと前記第2のゲートとを接続する第1のコンタクトとにより、一本の半導体柱で形成されたインバータが形成されるため、1本の半導体柱分の面積でインバータを実現することができる。
 また、出力端子を半導体、例えばシリコンで形成すると、窒化膜を除去するときに使用する熱燐酸によりシリコンはエッチングされないため、第1のゲートと第2のゲートとを同時に形成することができる。また、出力端子をシリサイド化することができる。
 また、前記第1のゲート絶縁膜は前記第1のゲートの上面と下面にさらに形成され、前記第2のゲート絶縁膜は前記第2のゲートの上面と下面にさらに形成されていることにより、第1のゲートの上下方向の絶縁と、第2のゲートの上下方向の絶縁を確かなものとすることができる。
 また、前記第2の第1導電型半導体層と前記第1の第2導電型半導体層との間に形成された第1の接続領域を有することにより、第2の第1導電型半導体層と第1の第2導電型半導体層とを分離することができ、接続領域に延在する第2の第1導電型半導体層と第1の第2導電型半導体層と出力端子を接続することができる。
 また、前記第1の第1導電型半導体層を取り囲む第1の絶縁膜と、前記第2の第1導電型半導体層を取り囲む第2の絶縁膜とを有し、前記第1の絶縁膜は、前記第1の第1導電型半導体層の不純物と同じ不純物を有し、前記第2の絶縁膜は、前記第2の第1導電型半導体層の不純物と同じ不純物を有し、前記第1の第2導電型半導体層を取り囲む第3の絶縁膜と、前記第2の第2導電型半導体層を取り囲む第4の絶縁膜とを有し、前記第3の絶縁膜は、前記第1の第2導電型半導体層の不純物と同じ不純物を有し、前記第4の絶縁膜は、前記第2の第2導電型半導体層の不純物と同じ不純物を有することを特徴とすることにより、固相拡散により、一本の柱状半導体層に異なる導電型の半導体層を形成することができる。
(a)は本発明に係る半導体装置の平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。 (a)は本発明に係る半導体装置の製造方法に係る平面図である。(b)は(a)のx-x’線での断面図である。(c)は(a)のy-y’線での断面図である。
 以下に、本発明の実施形態について説明する。本発明の実施形態に係る半導体装置の構造を図1に示す。本実施例では、半導体をシリコンとしたが、シリコン以外の半導体としてもよい。
 シリコン基板101上に形成された第3の第1導電型シリコン層102と、前記シリコン基板101上に形成された第1の柱状シリコン層114とを有し、前記第1の柱状シリコン層114は、第1の第1導電型シリコン層125と第1のボディ領域129と第2の第1導電型シリコン層124と第1の第2導電型シリコン層123と第2のボディ領域127と第2の第2導電型シリコン層122と第3の第2導電型シリコン層201とが基板側からこの順に形成され、さらに、前記第1のボディ領域129の周囲に形成された第1のゲート絶縁膜120bと、前記第1のゲート絶縁膜120bの周囲に形成された第1のゲート121bと、前記第2のボディ領域127の周囲に形成された第2のゲート絶縁膜120aと、前記第2のゲート絶縁膜120aの周囲に形成された第2のゲート121aと、前記第2の第1導電型シリコン層124と前記第1の第2導電型シリコン層123とに接続する半導体からなる出力端子119と、前記出力端子119にさらに形成された前記第2の第1導電型半導体層124と前記第1の第2導電型半導体層123と、前記第1のゲート121bと前記第2のゲート121aとを接続する第1のコンタクト141と、を有している。
 また、出力端子119には、シリサイド135が形成され、前記第2の第1導電型半導体層124と前記第1の第2導電型半導体層123とが接続される。
 第1のゲート121bと第2のゲート121aは、トランジスタのしきい値を調整するため、金属であることが好ましい。また、金属は、窒化チタン、窒化アルミチタンが好ましい。また、第1のゲート絶縁膜120bと第2のゲート絶縁膜120aは、酸化膜、酸窒化膜、高誘電体膜が好ましい。
 前記第1のゲート絶縁膜120bは前記第1のゲート121bの上面と下面にさらに形成され、前記第2のゲート絶縁膜120aは前記第2のゲート121aの上面と下面にさらに形成されている。
 前記第2の第1導電型シリコン層124と前記第1の第2導電型シリコン層123との間に形成された第1の接続領域128を有している。
 また、前記第1の第1導電型シリコン層125を取り囲む第1の絶縁膜103と、前記第2の第1導電型シリコン層124を取り囲む第2の絶縁膜105とを有し、前記第1の絶縁膜103は、前記第1の第1導電型シリコン層125の不純物と同じ不純物を有し、前記第2の絶縁膜105は、前記第2の第1導電型シリコン層124の不純物と同じ不純物を有し、前記第1の第2導電型シリコン層123を取り囲む第3の絶縁膜109と、前記第2の第2導電型シリコン層122を取り囲む第4の絶縁膜111とを有し、前記第3の絶縁膜109は、前記第1の第2導電型シリコン層123の不純物と同じ不純物を有し、前記第4の絶縁膜111は、前記第2の第2導電型シリコン層122の不純物と同じ不純物を有する。
 下部のトランジスタがnMOSの場合、第1の絶縁膜103と第2の絶縁膜105は、リンもしくは砒素を高濃度に含む酸化膜が好ましい。上部のトランジスタがpMOSの場合、第3の絶縁膜109と前記第4の絶縁膜111は、ボロンを高濃度に含む酸化膜が好ましい。下部のトランジスタがpMOSの場合、第1の絶縁膜103と第2の絶縁膜105は、ボロンを高濃度に含む酸化膜が好ましい。上部のトランジスタがnMOSの場合、第3の絶縁膜109と前記第4の絶縁膜111は、リンもしくは砒素を高濃度に含む酸化膜が好ましい。
 本発明の実施形態に係るSGTの構造を形成するための製造工程を、図2~図59を参照して説明する。本実施例では、基板にシリコンを使用したが、他の半導体を用いてもよい。また、本実施例では、柱状半導体層の下部にnMOSを、上部にpMOSを形成する工程としたが、下部にpMOSを、上部にnMOSを形成してもよい。
 図2に示すように、シリコン基板101に不純物を導入し、第3の第1導電型シリコン層102を形成する。
 図3に示すように、第1の絶縁膜103を形成する。第1の絶縁膜103は、酸化膜が好ましい。リンもしくは砒素を高濃度に含む酸化膜が好ましい。また、第1の絶縁膜103を形成後、不純物を注入し、リンもしくは砒素を高濃度に含む酸化膜としてもよい。
 図4に示すように、第5の絶縁膜104を形成する。第5の絶縁膜104は窒化膜が好ましい。
 図5に示すように、第2の絶縁膜105を形成する。第2の絶縁膜105は、酸化膜が好ましい。リンもしくは砒素を高濃度に含む酸化膜が好ましい。また、第2の絶縁膜105を形成後、不純物を注入し、リンもしくは砒素を高濃度に含む酸化膜としてもよい。
 図6に示すように、第6の絶縁膜106を形成する。第6の絶縁膜106は窒化膜が好ましい。
 図7に示すように、第1のレジスト107を形成する。
 図8に示すように、第6の絶縁膜106をエッチングする。
 図9に示すように、第1のレジスト107を除去する。
 図10に示すように、第7の絶縁膜108を形成し、平坦化する。第7の絶縁膜108は酸化膜が好ましい。
 図11に示すように、第7の絶縁膜108をエッチバックし、第6の絶縁膜106を露出する。
 図12に示すように、第3の絶縁膜109を形成する。第3の絶縁膜109は、酸化膜が好ましい。ボロンを高濃度に含む酸化膜が好ましい。また、第3の絶縁膜109を形成後、不純物を注入し、ボロンを高濃度に含む酸化膜としてもよい。
 図13に示すように、第8の絶縁膜110を形成する。第8の絶縁膜110は窒化膜が好ましい。
 図14に示すように、第4の絶縁膜111を形成する。第4の絶縁膜111は、酸化膜が好ましい。ボロンを高濃度に含む酸化膜が好ましい。また、第4の絶縁膜111を形成後、不純物を注入し、ボロンを高濃度に含む酸化膜としてもよい。
 図15に示すように、第2のレジスト112を形成する。
 図16に示すように、第4の絶縁膜111、第8の絶縁膜110、第3の絶縁膜109、第6の絶縁膜106、第2の絶縁膜105、第5の絶縁膜104、第1の絶縁膜103をエッチングし、コンタクト孔113を形成する。
 図17に示すように、第2のレジスト112を除去する。
 図18に示すように、エピタキシャル成長を行い、第1の柱状シリコン層114を形成する。ポリシリコンを堆積してもよい。
 図19に示すように、ボロンの不純物導入を行い、第3の第2導電型シリコン層201を形成する。
 図20に示すように、ポリシリコン115を堆積する。ポリシリコンを用いたが、ハードマスクとなる材料であればよい。
 図21に示すように、第9の絶縁膜116を堆積する。第9の絶縁膜116は、酸化膜が好ましい。
 図22に示すように、第3のレジスト117を形成する。
 図23に示すように、第9の絶縁膜116、ポリシリコン115、第4の絶縁膜111、第8の絶縁膜110、第3の絶縁膜109をエッチングする。
 図24に示すように、第3のレジスト117を除去する。
 図25に示すように、第10の絶縁膜118を堆積する。第10の絶縁膜118は、酸化膜が好ましい。
 図26に示すように、第10の絶縁膜118をエッチングし、サイドウォール状に残存させる。
 図27に示すように、第6の絶縁膜106を除去する。熱燐酸によるウエットエッチングが好ましい。また、ドライエッチングを用いてもよい。
 図28に示すように、シリコンのエピタキシャル成長を行うことにより出力端子119を形成する。ポリシリコンを用いてもよい。
 図29に示すように、シリコンエッチングを行うことにより、出力端子119の余分な部分を除去する。シリコンエッチングは、ドライエッチングが好ましい。
 図30に示すように、第7の絶縁膜108、第2の絶縁膜105、をエッチングする。ドライエッチングが好ましい。同時に、第9の絶縁膜116、第10の絶縁膜118もエッチングされる。
 図31に示すように、第10の絶縁膜118を除去する。ウエットエッチングといった等方性エッチングが好ましい。
 図32に示すように、第8の絶縁膜110、第5の絶縁膜104を除去する。熱燐酸によるウエットエッチングが好ましい。また、ドライエッチングを用いてもよい。また、出力端子がシリコンで形成されているため、窒化膜を除去するときに使用する熱燐酸によりシリコンはエッチングされない。
 図33に示すように、ゲート絶縁膜120を形成する。ゲート絶縁膜120は、酸化膜、酸窒化膜、高誘電体膜が好ましい。
 図34に示すように、ゲートとなる金属121を形成する。金属121は、窒化チタン、窒化アルミチタンが好ましい。
 図35に示すように、金属121をエッチングし、第1のゲート121b、第2のゲート121aを形成する。このとき、ゲート絶縁膜120は、第1のゲート絶縁膜120b、第2のゲート絶縁膜120aとなる。
 図36に示すように、熱処理を行い、固相拡散により、第1の第1導電型シリコン層125と第2の第1導電型シリコン層124と第1の第2導電型シリコン層123と第2の第2導電型シリコン層122が形成される。第1のゲート121b、第2のゲート121a形成前に熱処理を行ってもよい。また、出力端子119に第2の第1導電型シリコン層124と第1の第2導電型シリコン層123が形成される。また、ポリシリコン115に拡散層126が形成される。
 図37に示すように、第1の層間絶縁膜130を形成する。
 図38に示すように、第1の層間絶縁膜130を平坦化し、エッチバックする。このとき、ゲート絶縁膜120上部、ポリシリコン115、第3の第2導電型シリコン層201上部を除去する。
 図39に示すように、第2の層間絶縁膜131を堆積する。
 図40に示すように、第4のレジスト132を形成する。
 図41に示すように、第2の層間絶縁膜131、第1の層間絶縁膜130、第4の絶縁膜111、第2のゲート絶縁膜120aをエッチングする。
 図42に示すように、第2のゲート120a、第2のゲート絶縁膜120a、第3の絶縁膜109をエッチングし、コンタクト孔133を形成する。
 図43に示すように、第4のレジスト132を除去する。
 図44に示すように、第11の絶縁膜134を堆積する。第11の絶縁膜134は、酸化膜もしくは窒化膜が好ましい。
 図45に示すように、第11の絶縁膜134をエッチングし、サイドウォール状に残存させる。
 図46に示すように、出力端子119にシリサイド135が形成され、前記第2の第1導電型半導体層124と前記第1の第2導電型半導体層123とが接続される。
 図47に示すように、金属を堆積し、コンタクト136を形成する。
 図48に示すように、第5のレジスト137を形成する。
 図49に示すように、第2の層間絶縁膜131、第1の層間絶縁膜130をエッチングし、コンタクト孔138を形成する。
 図50に示すように、第5のレジスト137を除去する。
 図51に示すように、第6のレジスト139を形成する。
 図52に示すように、第2の層間絶縁膜131、第1の層間絶縁膜130、第4の絶縁膜111、第2のゲート絶縁膜120a、第2のゲート120a、第2のゲート絶縁膜120a、第3の絶縁膜109、第7の絶縁膜108、第2の絶縁膜105、第1のゲート絶縁膜120bをエッチングし、コンタクト孔140を形成する。
 図53に示すように、第6のレジスト139を除去する。
 図54に示すように、金属を堆積し、第1のコンタクト141、コンタクト142を形成する。
 図55に示すように、第2の層間絶縁膜131をエッチングし、第3の第2導電型シリコン層201を露出する。
 図56に示すように、金属143を堆積する。
 図57に示すように、第7のレジスト144、145、146、147を形成する。
 図58に示すように、金属143をエッチングし、金属配線143a、143b、143c、143dを形成する。
 図59に示すように、第7のレジスト144、145、146、147を除去する。
 以上により、本発明の半導体装置の製造方法が示された。
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。
 例えば、上記実施例において、p型(p+型を含む。)とn型(n+型を含む。)とをそれぞれ反対の導電型とした半導体装置の製造方法、及び、それにより得られる半導体装置も当然に本発明の技術的範囲に含まれる。
101.シリコン基板
102.第3の第1導電型シリコン層
103.第1の絶縁膜
104.第5の絶縁膜
105.第2の絶縁膜
106.第6の絶縁膜
107.第1のレジスト
108.第7の絶縁膜
109.第3の絶縁膜
110.第8の絶縁膜
111.第4の絶縁膜
112.第2のレジスト
113.コンタクト孔
114.第1の柱状シリコン層
115.ポリシリコン
116.第9の絶縁膜
117.第3のレジスト
118.第10の絶縁膜
119.出力端子
120.ゲート絶縁膜
120a.第2のゲート絶縁膜
120b.第1のゲート絶縁膜
121.金属
121a.第2のゲート
121b.第1のゲート
122.第2の第2導電型シリコン層
123.第1の第2導電型シリコン層
124.第2の第1導電型シリコン層
125.第1の第1導電型シリコン層
126.拡散層
127.第2のボディ領域
128.第1の接続領域
129.第1のボディ領域
130.第1の層間絶縁膜
131.第2の層間絶縁膜
132.第4のレジスト
133.コンタクト孔
134.第11の絶縁膜
135.シリサイド
136.コンタクト
137.第5のレジスト
138.コンタクト孔
139.第6のレジスト
140.コンタクト孔
141.第1のコンタクト
142.コンタクト
143.金属
143a.金属配線
143b.金属配線
143c.金属配線
143d.金属配線
144.第7のレジスト
145.第7のレジスト
146.第7のレジスト
147.第7のレジスト
201.第3の第2導電型シリコン層

Claims (6)

  1.  半導体基板上に形成された第3の第1導電型半導体層と、
     前記半導体基板上に形成された第1の柱状半導体層であって、第1導電型半導体層と第1のボディ領域、第2の第1導電型半導体層、第1の第2導電型半導体層、第2のボディ領域、第2の第2導電型半導体層、第3の第2導電型半導体層が基板側からこの順に形成された第1の柱状半導体層と、
     前記第1のボディ領域の周囲に形成された第1のゲート絶縁膜と、
     前記第1のゲート絶縁膜の周囲に形成された第1のゲートと、
     前記第2のボディ領域の周囲に形成された第2のゲート絶縁膜と、
     前記第2のゲート絶縁膜の周囲に形成された第2のゲートと、
     前記第2の第1導電型半導体層と前記第1の第2導電型半導体層とに接続する半導体からなる出力端子と、
     前記出力端子にさらに形成された前記第2の第1導電型半導体層と前記第1の第2導電型半導体層と、
     前記第1のゲートと前記第2のゲートとを接続する第1のコンタクトと、
     を有することを特徴とする半導体装置。
  2.  前記第1のゲート絶縁膜は前記第1のゲートの上面と下面にさらに形成され、前記第2のゲート絶縁膜は前記第2のゲートの上面と下面にさらに形成されていることを特徴とする請求項1に記載の半導体装置。
  3.  前記第2の第1導電型半導体層と前記第1の第2導電型半導体層との間に形成された第1の接続領域を有することを特徴とする請求項1に記載の半導体装置。
  4.  前記第1の第1導電型半導体層を取り囲む第1の絶縁膜と、前記第2の第1導電型半導体層を取り囲む第2の絶縁膜とを有し、
     前記第1の絶縁膜は、前記第1の第1導電型半導体層の不純物と同じ不純物を有し、
     前記第2の絶縁膜は、前記第2の第1導電型半導体層の不純物と同じ不純物を有し、
     前記第1の第2導電型半導体層を取り囲む第3の絶縁膜と、前記第2の第2導電型半導体層を取り囲む第4の絶縁膜とを有し、
     前記第3の絶縁膜は、前記第1の第2導電型半導体層の不純物と同じ不純物を有し、
     前記第4の絶縁膜は、前記第2の第2導電型半導体層の不純物と同じ不純物を有することを特徴とする請求項1に記載の半導体装置。
  5.  基板上に、第1の導電型の不純物を含む酸化膜である第2の絶縁膜を堆積し、窒化膜である第6の絶縁膜を堆積し、第1の導電型とは異なる導電型である第2の導電型の不純物を含む酸化膜である第3の絶縁膜を堆積し、前記第2の絶縁膜と前記第6の絶縁膜と前記第3の絶縁膜をエッチングしコンタクト孔を形成し、前記コンタクト孔にエピタキシャル成長により第1の柱状シリコン層を形成し、前記第6の絶縁膜を除去し、エピタキシャル成長を行うことにより出力端子を形成することを特徴とする半導体装置の製造方法。
  6.  前記コンタクト孔にエピタキシャル成長により第1の柱状シリコン層を形成した後に、熱処理を行うことにより、第1の柱状シリコン層と前記出力端子に第2の第1導電型半導体層と第1の第2導電型半導体層を形成することを特徴とする請求項5に記載の半導体装置の製造方法。
PCT/JP2014/070877 2014-08-07 2014-08-07 半導体装置の製造方法、及び、半導体装置 WO2016021020A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015513919A JP5928658B1 (ja) 2014-08-07 2014-08-07 半導体装置の製造方法、及び、半導体装置
PCT/JP2014/070877 WO2016021020A1 (ja) 2014-08-07 2014-08-07 半導体装置の製造方法、及び、半導体装置
US14/744,588 US9431501B2 (en) 2014-08-07 2015-06-19 Method for producing semiconductor device and semiconductor device
US15/213,565 US9741801B2 (en) 2014-08-07 2016-07-19 Method for producing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/070877 WO2016021020A1 (ja) 2014-08-07 2014-08-07 半導体装置の製造方法、及び、半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/744,588 Continuation US9431501B2 (en) 2014-08-07 2015-06-19 Method for producing semiconductor device and semiconductor device

Publications (1)

Publication Number Publication Date
WO2016021020A1 true WO2016021020A1 (ja) 2016-02-11

Family

ID=55263326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070877 WO2016021020A1 (ja) 2014-08-07 2014-08-07 半導体装置の製造方法、及び、半導体装置

Country Status (3)

Country Link
US (2) US9431501B2 (ja)
JP (1) JP5928658B1 (ja)
WO (1) WO2016021020A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5990843B2 (ja) * 2014-07-14 2016-09-14 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 半導体装置の製造方法、及び、半導体装置
JP5841696B1 (ja) * 2014-11-27 2016-01-13 ユニサンティス エレクトロニクス シンガポール プライベート リミテッドUnisantis Electronics Singapore Pte Ltd. 柱状半導体装置と、その製造方法
WO2016139755A1 (ja) * 2015-03-03 2016-09-09 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置
CN109411538B (zh) * 2018-10-08 2020-09-11 中国科学院微电子研究所 半导体器件及其制造方法及包括该器件的电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613623A (ja) * 1992-03-02 1994-01-21 Motorola Inc 半導体装置
EP1804286A1 (en) * 2005-12-27 2007-07-04 Interuniversitair Microelektronica Centrum Elongate nanostructure semiconductor device
JP2011023543A (ja) * 2009-07-15 2011-02-03 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
JP2011108895A (ja) * 2009-11-18 2011-06-02 Renesas Electronics Corp 半導体装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057661B2 (ja) 1988-09-06 2000-07-04 株式会社東芝 半導体装置
JP2703970B2 (ja) 1989-01-17 1998-01-26 株式会社東芝 Mos型半導体装置
US5378652A (en) * 1989-04-19 1995-01-03 Kabushiki Kaisha Toshiba Method of making a through hole in multi-layer insulating films
JP2950558B2 (ja) 1989-11-01 1999-09-20 株式会社東芝 半導体装置
US5721168A (en) * 1996-12-02 1998-02-24 Powerchip Semiconductor Corp. Method for forming a ring-shape capacitor
US7294567B2 (en) * 2002-03-11 2007-11-13 Micron Technology, Inc. Semiconductor contact device and method
JP5130596B2 (ja) 2007-05-30 2013-01-30 国立大学法人東北大学 半導体装置
JP5317343B2 (ja) * 2009-04-28 2013-10-16 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置及びその製造方法
JP5230274B2 (ja) * 2008-06-02 2013-07-10 株式会社東芝 不揮発性半導体記憶装置
US9230810B2 (en) * 2009-09-03 2016-01-05 Vishay-Siliconix System and method for substrate wafer back side and edge cross section seals
KR102015578B1 (ko) 2012-09-11 2019-08-28 삼성전자주식회사 불휘발성 메모리 장치 및 그 형성방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613623A (ja) * 1992-03-02 1994-01-21 Motorola Inc 半導体装置
EP1804286A1 (en) * 2005-12-27 2007-07-04 Interuniversitair Microelektronica Centrum Elongate nanostructure semiconductor device
JP2011023543A (ja) * 2009-07-15 2011-02-03 Renesas Electronics Corp 半導体装置及び半導体装置の製造方法
JP2011108895A (ja) * 2009-11-18 2011-06-02 Renesas Electronics Corp 半導体装置の製造方法

Also Published As

Publication number Publication date
JP5928658B1 (ja) 2016-06-01
US20160043194A1 (en) 2016-02-11
US9741801B2 (en) 2017-08-22
US9431501B2 (en) 2016-08-30
JPWO2016021020A1 (ja) 2017-04-27
US20160329404A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP5990843B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5595619B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5731073B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5989238B2 (ja) 半導体装置、及び、半導体装置の製造方法
JP5928658B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5902868B1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5654184B1 (ja) 半導体装置の製造方法、及び、半導体装置
WO2014199433A1 (ja) 半導体装置の製造方法、及び、半導体装置
JP6310500B2 (ja) 半導体装置、及び、半導体装置の製造方法
JPWO2014073104A1 (ja) 半導体装置の製造方法、及び、半導体装置
WO2015193939A1 (ja) 半導体装置の製造方法、及び、半導体装置
JP5833214B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5643900B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP6230648B2 (ja) 半導体装置
JP6159777B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5926354B2 (ja) 半導体装置
JP6211637B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5869166B2 (ja) 半導体装置の製造方法、及び、半導体装置
WO2014115287A1 (ja) 半導体装置の製造方法、及び、半導体装置
JP6080989B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5936653B2 (ja) 半導体装置
JP6055883B2 (ja) 半導体装置の製造方法、及び、半導体装置
JP5861197B2 (ja) 半導体装置の製造方法、及び、半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015513919

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899461

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14899461

Country of ref document: EP

Kind code of ref document: A1