WO2015198992A1 - ゲル化促進剤 - Google Patents

ゲル化促進剤 Download PDF

Info

Publication number
WO2015198992A1
WO2015198992A1 PCT/JP2015/067757 JP2015067757W WO2015198992A1 WO 2015198992 A1 WO2015198992 A1 WO 2015198992A1 JP 2015067757 W JP2015067757 W JP 2015067757W WO 2015198992 A1 WO2015198992 A1 WO 2015198992A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
reaction injection
norbornene
monomer
injection molding
Prior art date
Application number
PCT/JP2015/067757
Other languages
English (en)
French (fr)
Inventor
鎌田 満
Original Assignee
Rimtec株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rimtec株式会社 filed Critical Rimtec株式会社
Priority to KR1020177000197A priority Critical patent/KR20170023934A/ko
Priority to RU2017102309A priority patent/RU2017102309A/ru
Priority to CA2951826A priority patent/CA2951826A1/en
Priority to MX2016016689A priority patent/MX2016016689A/es
Priority to US15/321,823 priority patent/US20170137565A1/en
Priority to EP15812572.4A priority patent/EP3162832A4/en
Priority to CN201580033281.3A priority patent/CN106459384A/zh
Priority to JP2016529548A priority patent/JPWO2015198992A1/ja
Publication of WO2015198992A1 publication Critical patent/WO2015198992A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00
    • B29C67/24Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00 characterised by the choice of material
    • B29C67/246Moulding high reactive monomers or prepolymers, e.g. by reaction injection moulding [RIM], liquid injection moulding [LIM]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0014Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Definitions

  • the present invention relates to a gelation accelerator used for reaction injection molding and a compounding liquid for reaction injection molding. Furthermore, this invention relates to the manufacturing method of the reaction injection molded object using this gelatinization accelerator or the compounding liquid for reaction injection molding. Furthermore, the present invention relates to a reaction injection molded body manufactured by such a method for manufacturing a reaction injection molded body.
  • reaction injection molding in which a reaction liquid containing a norbornene-based monomer and a metathesis polymerization catalyst is injected into a mold and subjected to bulk ring-opening polymerization to produce a resin molded body (reaction injection molded body) made of a norbornene-based resin.
  • a method called a method (RIM method) is known.
  • Patent Document 1 discloses molding by a bulk ring-opening polymerization of a norbornene-based monomer-containing reaction injection molding compound containing a specific elastomer by the RIM method, regardless of the shape or size of the mold.
  • a technique for obtaining a resin molded body with less sink marks on the body surface is disclosed.
  • Patent Document 2 discloses that a novel metathesis polymerizable monomer containing a specific amount of exo-dicyclopentadiene is subjected to bulk ring-opening polymerization by the RIM method so that the monomer residual ratio is low and a sufficiently cured cross-linked polymer is obtained.
  • a method for producing a resin molded body for obtaining a combined molded product is disclosed.
  • Patent Document 2 describes that the storage stability can be improved by adding an ether compound to a reactive solution used in the production of a resin molded body.
  • the present inventor examined the inventions disclosed in Patent Documents 1 and 2 with the aim of developing a technique for improving the surface state of a resin molded body obtained by the RIM method, and found that the resin residue on the mold surface at the time of mold release , Stickiness of the core surface, and residual bubbles on the product surface may occur, and the surface state of the resulting resin molded body may be rough, and the time required for gelation of the reactive liquid mixture obtained by mixing the required compounding liquid ( Hereinafter, it may be referred to as “gel time”.) It has become clear that gelation may be insufficient.
  • an object of the present invention is to provide a method for producing a reaction injection molded article having excellent surface strength and excellent strength, using a gelling accelerator, a reaction injection molding compound liquid, and a gelling accelerator, and the molded article.
  • the absence of surface appearance defects means that the surface of the molded body is good without any resin residue or air bubble remaining on the product surface at the time of mold release.
  • the gist of the present invention is as follows. [1] Gel that promotes gelation by polymerization of norbornene monomer under the catalyst, essentially consisting of only two components, an activator of a metathesis polymerization catalyst having tungsten as a central metal and a norbornene monomer. Accelerating agent; [2] A reaction injection molding liquid for reaction injection molding in which a norbornene monomer is polymerized under a metathesis polymerization catalyst having tungsten as a central metal, comprising the gelation accelerator according to [1].
  • a reactive liquid mixture obtained by mixing the liquid mixture for reaction injection molding according to the above [2] and a liquid mixture containing a metathesis polymerization catalyst having tungsten as a central metal is bulk-polymerized in a mold,
  • a method for producing a reaction injection molded article comprising a step of performing reaction injection molding;
  • a blending solution A containing a norbornene monomer and a reaction regulator, a blending solution B containing a metathesis polymerization catalyst having tungsten as a central metal, and the gelation accelerator described in [1] above are mixed simultaneously.
  • a process for producing a reaction injection-molded article, comprising a step of subjecting the reactive mixture liquid to bulk polymerization in a mold and performing reaction injection molding; and [5] reaction injection molding obtained by the production method according to the above [4] The body;
  • the gelation accelerator of the present invention By adding the gelation accelerator of the present invention to the reaction injection molding compounded liquid, the effect of shortening the gelation when the reaction injection molding compounded liquid contacts the catalyst is exhibited.
  • the liquid mixture for reaction injection molding of the present invention containing such a gelling accelerator as a liquid mixture for the RIM method, it is possible to produce a molded article having high mechanical strength and good surface condition. And the effect that the resin residue on the used mold can be reduced.
  • the reaction injection molded article of the present invention exhibits the effects that high mechanical strength is maintained and the surface state is good.
  • the RIM method uses a combination liquid 1 containing an activator of a metathesis polymerization catalyst and a metathesis polymerizable monomer, and a combination liquid 2 containing a metathesis polymerization catalyst and a metathesis polymerizable monomer.
  • a combination liquid 1 containing an activator of a metathesis polymerization catalyst and a metathesis polymerizable monomer
  • a combination liquid 2 containing a metathesis polymerization catalyst and a metathesis polymerizable monomer.
  • the present inventor has intensively studied the component composition of the compounding liquid used for reaction injection molding and the preparation method thereof. Surprisingly, the compounding is performed through a process of mixing only two components of the activator and the norbornene monomer.
  • the catalyst reaction regulator is added to the liquid mixture. Even if it mix
  • reaction injection molding in which a norbornene monomer is polymerized under a metathesis polymerization catalyst having tungsten as a central metal, a composition obtained by mixing only the two components of the catalyst activator and the monomer Has the effect of shortening the gel time of the reactive mixture, and based on this finding, the gelation accelerator of the present invention has been completed.
  • the gel time can be controlled, for example, by adding a small amount to the conventional compounding liquid 1, the gel time of the resulting reactive liquid mixture can be shortened to a desired level.
  • the gel time of the resulting reactive liquid mixture can be shortened to a desired level.
  • the present invention is divided into 1) the components used in the present invention, 2) a gelation accelerator, 3) a reaction injection molding liquid, 4) a reactive liquid mixture, 5) a method for producing a reaction injection molded body, and 6)
  • the reaction injection molded product will be described in detail.
  • Component used in the present invention (a) Norbornene-based monomer
  • the norbornene-based monomer used in the present invention has the formula (2)
  • norbornene monomers include norbornene monomers that do not have a ring condensed with a norbornene ring in the molecule, and polycyclic norbornene monomers having three or more rings. Can be mentioned.
  • a monomer (a) can be used individually by 1 type or in mixture of 2 or more types.
  • norbornene-based monomer having no ring condensed with the norbornene ring in the molecule include norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5 -Norbornenes having an unsubstituted or alkyl group such as cyclohexyl norbornene and 5-cyclopentyl norbornene; Alkenyl groups such as 5-ethylidene norbornene, 5-vinyl norbornene, 5-propenyl norbornene, 5-cyclohexenyl norbornene and 5-cyclopentenyl norbornene Norbornenes having an aromatic ring such as 5-phenylnorbornene; 5-methoxycarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5 Methoxycarbonylnorbornene,
  • the polycyclic norbornene monomer having 3 or more rings is a norbornene monomer having in its molecule a norbornene ring and one or more rings condensed with the norbornene ring.
  • Specific examples thereof include monomers represented by the following formula (3) or formula (4).
  • R 5 to R 8 each independently include a hydrogen atom; a halogen atom; an optionally substituted hydrocarbon group having 1 to 20 carbon atoms; or a silicon atom, an oxygen atom, or a nitrogen atom
  • R 6 and R 7 are bonded to each other to form a ring.
  • R 9 to R 12 each independently include a hydrogen atom; a halogen atom; an optionally substituted hydrocarbon group having 1 to 20 carbon atoms; or a silicon atom, an oxygen atom, or a nitrogen atom
  • R 9 and R 10 or R 11 and R 12 may be bonded to each other to form a ring, and m is 1 or 2.
  • Examples of the monomer represented by the formula (3) include dicyclopentadiene, methyldicyclopentadiene, tricyclo [5.2.1.0 2,6 ] dec-8-ene, and tetracyclo [9.2.1.0. 2,10 . 0 3,8 ] tetradeca-3,5,7,12-tetraene (also referred to as 1,4-methano-1,4,4a, 9a-tetrahydro-9H-fluorene), tetracyclo [10.2.1.0 2 , 11 . 0 4,9] pentadeca -4,6,8,13- tetraene (1,4-methano -1,4,4a, 9, 9a, 10- also called hexa hydro anthracene), and the like.
  • Dicyclopentadiene has two stereoisomers, endo-dicyclopentadiene (formula A) and exo-dicyclopentadiene (formula B).
  • the simple term dicyclopentadiene refers to endo-dicyclopentadiene.
  • the main component of dicyclopentadiene currently available industrially is endo-dicyclopentadiene, and the content of exo-dicyclopentadiene is about 0 to 2% by mass.
  • Examples of the monomer represented by the formula (4) include tricyclopentadiene and tetracyclododecene in which m is 1, and hexacycloheptadecenes in which m is 2.
  • tetracyclododecenes include tetracyclododecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, and 8-cyclopentyltetracyclododecene.
  • Tetracyclododecenes having a substituted or alkyl group 8-methylidenetetracyclododecene, 8-ethylidenetetracyclododecene, 8-vinyltetracyclododecene, 8-propenyltetracyclododecene, 8-cyclohexenyltetra Tetracyclododecenes having a double bond outside the ring such as cyclododecene and 8-cyclopentenyltetracyclododecene; tetracyclododecenes having an aromatic ring such as 8-phenyltetracyclododecene; 8-methoxy Carbonyltetracyclododecene, 8-methyl-8 Methoxycarbonyltetracyclododecene, 8-hydroxymethyltetracyclododecene, 8-carboxytetracyclod
  • a tetracyclododecene having a substituent containing a halogen atom such as 8-chlorotetracyclododecene
  • a tetracyclododecene having a substituent containing a silicon atom such as 8-trimethoxysilyltetracyclododecene
  • hexacycloheptadecenes include hexacycloheptadecene, 12-methylhexacycloheptadecene, 12-ethylhexacycloheptadecene, 12-cyclohexylhexacycloheptadecene, 12-cyclopentylhexacycloheptadecene and the like.
  • Hexacycloheptadecenes having a substituted or alkyl group 12-methylidenehexacycloheptadecene, 12-ethylidenehexacycloheptadecene, 12-vinylhexacycloheptadecene, 12-propenylhexacycloheptadecene, 12-cyclohexenylhexa Hexacycloheptadecenes having a double bond outside the ring such as cycloheptadecene, 12-cyclopentenylhexacycloheptadecene, etc .; Heterocyclic rings such as 12-phenylhexacycloheptadecene Sacycloheptadecenes; 12-methoxycarbonylhexacycloheptadecene, 12-methyl-12-methoxycarbonylhexacycloheptadecene, 12-hydroxymethylhexacycloheptadecene,
  • norbornene-based monomers tricyclic or higher polycyclic norbornene-based monomers are preferable from the viewpoint of obtaining resin molded products that are easily available, excellent in reactivity, and excellent in heat resistance.
  • a cyclic or pentacyclic norbornene-based monomer is more preferable.
  • a crosslinkable norbornene monomer having two or more reactive double bonds such as a symmetric cyclopentadiene trimer
  • a norbornene-based monomer that provides a ring-opening polymer having a heavy bond and another norbornene-based monomer (a norbornene-based monomer that provides a ring-opening polymer having no crosslinkable double bond).
  • the use ratio of the crosslinkable norbornene monomer is preferably 2 to 30% by mass in the total norbornene monomer.
  • a monomer that can be ring-opening copolymerized with a norbornene-based monomer may be used as long as the object of the present invention is not impaired.
  • examples of such a monomer include monocyclic cycloolefins such as cyclobutene, cyclopentene, cyclopentadiene, cyclooctene, and cyclododecene.
  • the proportion of such a monomer used is preferably 10 parts by mass or less and more preferably 5 parts by mass or less with respect to 100 parts by mass of the norbornene monomer (a).
  • activator (b) The activator of the metathesis polymerization catalyst used in the present invention (hereinafter sometimes referred to as “activator (b)”) is also called a co-catalyst, and the polymerization activity of the metathesis polymerization catalyst is increased. It is added for the purpose of enhancing.
  • the activator (b) is not particularly limited, and for example, an organoaluminum compound is used.
  • organoaluminum compound examples include alkylaluminum compounds such as triethylaluminum, triisobutylaluminum, and trioctylaluminum, and alkylaluminum halide compounds such as diethylaluminum chloride, ethylaluminum dichloride, and dioctylaluminum iodide.
  • An activator (b) can be used individually by 1 type or in mixture of 2 or more types.
  • reaction regulator is used for the purpose of controlling the polymerization time.
  • the reaction regulator is not particularly limited as long as the desired purpose is achieved.
  • the following ether compounds are preferable.
  • ether compound examples include ether compounds represented by the following formula (1).
  • R 1 , R 2 , R 3 and R 4 each independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 5 and R 6 each independently represents an alkyl group having 1 to 6 carbon atoms. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, isopropyl group, n-propyl group, isobutyl group, sec-butyl group, t-butyl group, n-butyl group, n-pentyl group, and n -Hexyl group and the like.
  • ether compound represented by the formula (1) examples include a compound group represented by the following formula.
  • the ether compound represented by the formula (1) is represented by the following formula (1-1) from the viewpoint of improving the effect of the present invention.
  • R 1 and R 2 have the same meaning as described above.
  • a compound represented by formula (1-1) is preferred, and in formula (1-1), R 1 and R 2 are both hydrogen atoms or alkyl groups having 1 to 3 carbon atoms. More preferably, the compound is represented by the formula (1-1), in which R 1 and R 2 are both hydrogen atoms in the formula (1-1) (diethylene glycol dimethyl ether), and the formula A compound represented by (1-1), in which R 1 and R 2 are both methyl groups in formula (1-1) (dipropylene glycol dimethyl ether) is particularly preferred.
  • a molded article having a good surface state and excellent strength is obtained.
  • the asymmetric carbon atom may exist in the ether compound represented by Formula (1), the configuration is not particularly limited.
  • Any ether compound represented by the formula (1) can be produced by a known method. Moreover, what is marketed as an ether compound represented by Formula (1) can also be used as it is or refine
  • Metathesis polymerization catalyst having tungsten as a central metal is used as a polymerization catalyst (hereinafter sometimes referred to as “metathesis polymerization catalyst (d)”).
  • the metathesis polymerization catalyst (d) is not particularly limited as long as it is a catalyst having tungsten as a central metal and capable of ring-opening polymerization of a norbornene monomer.
  • the metathesis polymerization catalyst (d) can be used alone or in combination of two or more.
  • the metathesis polymerization catalyst (d) is a complex formed by bonding a plurality of ions, atoms, polyatomic ions and / or compounds with a tungsten atom as a central atom.
  • WCl 6, WCl 5, WCl 4, WCl 2, WBr 6, WBr 4, WBr 2, WF 6, WF 4, WI 6, tungsten halides WI 4 such; WOCl 4, WOBr 4, WOF 4, WCl 2 (OC 6 H 5 ) 4 , W (OC 2 H 5 ) 2 Cl 3 and other tungsten oxyhalides; tungsten oxide and other metal oxides; (CO) 5 WC (OCH 3 ) (CH 3 ), (CO ) 5 WC (OC 2 H 5 ) (CH 3 ), (CO) 5 WC (OC 2 H 5 ), W (OC 6 H 5 ) 6 , W (CO) 3.
  • elastomer (e) gives fluidity when added to the reaction injection molding compounded liquid of the present invention. A molded product with a small amount can be obtained.
  • elastomer an elastomer having a shear rate coefficient of 1.30 to 1.60 is preferable.
  • the shear rate coefficient is a numerical value obtained by the method described in Patent Document 1.
  • Elastomers include natural rubber, polybutadiene, polyisoprene, styrene-butadiene copolymer (SBR), ethylene-propylene copolymer, styrene-butadiene-styrene block copolymer (SBS), and styrene-isoprene-styrene copolymer.
  • SBR styrene-butadiene copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • Elastomers include natural rubber, polybutadiene, polyisoprene, styrene-butadiene copolymer (SBR), ethylene-propylene copolymer, styrene-butadiene-styrene block copolymer (SBS), and styrene-isoprene-styrene copolymer.
  • SBR
  • (F) Other components
  • other components are optionally added to produce a resin molded body more efficiently or to improve or maintain the characteristics of the resin molded body.
  • (Hereinafter, also referred to as “other component (f)”) may be blended.
  • the other component (f) is added to the liquid mixture containing the metathesis polymerization catalyst (d) used in combination with the liquid mixture for reaction injection molding of the present invention in the RIM method as long as the effect of the present invention is not impaired. May be.
  • components (f) include polymerization accelerators, fillers, reinforcing materials, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, pigments, colorants, foaming agents, antistatic agents, flame retardants, Examples thereof include a lubricant, a softener, a tackifier, a plasticizer, a mold release agent, a deodorant, a fragrance, a dicyclopentadiene-based thermal polymerization resin, and a hydrogenated product thereof.
  • the polymerization accelerator is added to improve the polymerization conversion rate of the monomer.
  • a chlorine atom-containing compound is preferable, and an organic chlorine compound and a chlorinated silicon compound are more preferable.
  • Specific examples include 2-chlorobenzotrichloride, 2,4-dichlorobenzotrichloride, hexachloro-p-xylene, 2,4-dichloro-trichlorotoluene, and silicon tetrachloride.
  • the amount added is preferably an amount that is usually 10 ppm by mass to 10% by mass in the whole reactive mixture.
  • the filler is not particularly limited, but a fibrous filler having an aspect ratio of usually 5 to 100, preferably 10 to 50, and a particulate filler having an aspect ratio of usually 1 to 2, preferably 1 to 1.5.
  • An inorganic filler made of The aspect ratio of the filler refers to the ratio between the average major axis diameter of the filler and the 50% volume cumulative diameter.
  • the average major axis diameter is a number average major axis diameter calculated as an arithmetic average value obtained by measuring the major axis diameters of 100 fillers randomly selected from an optical micrograph.
  • the 50% volume cumulative diameter is a value obtained by measuring the particle size distribution by the X-ray transmission method.
  • the amount used is preferably 5 to 55 parts by mass with respect to 100 parts by mass of the total amount of the monomer (a) and the metathesis polymerization catalyst (d), and is 10 to 45 parts by mass. It is more preferable. If the amount of the filler is too large, the reaction solution may be settling in the tank or piping when the reaction solution is injected into the mold or the injection nozzle may be clogged. On the other hand, if the amount of the filler is too small, the resulting molded article may have insufficient rigidity and dimensional stability.
  • the method for adding other components can be selected as appropriate depending on the type of additive.
  • the gelation accelerator of the present invention is essentially a mixture of an activator of a metathesis polymerization catalyst having tungsten as a central metal and two components of a norbornene-based monomer. It has the effect of promoting gelation by polymerization of norbornene monomers.
  • “essentially mixing only two components” means mixing only the two components of the activator and the norbornene monomer, and a component that does not substantially affect the action of the gelation accelerator of the present invention. (Hereinafter sometimes referred to as an optional component) means that the two components of the activator and the norbornene monomer are mixed.
  • the above-mentioned activator (b) may be mentioned.
  • the norbornene-based monomer used here include the monomer (a) described above.
  • the mixing ratio of the monomer (a) and the activator (b) in the gelation accelerator is preferably in the range of 1 to 1000 mol of the monomer (a) with respect to 1 mol of the activator (b).
  • the range of 2 to 500 mol is more preferable, and the range of 3 to 100 mol is more preferable.
  • the monomer (a) is preferably 1 mol or more, and from the viewpoint of maintaining a good gelation promotion effect, the monomer (a) is 1000 mol or less. Is preferred.
  • the optional component examples include non-polar components, the elastomer (e), and the other components (f), fillers, reinforcing materials, pigments, colorants, foaming agents, flame retardants, tackifiers, Examples thereof include a plasticizer, a release agent, a deodorant, a fragrance, a dicyclopentadiene-based thermal polymerization resin and a hydrogenated product thereof.
  • the gelation accelerator is composed of the monomer (a) and the activator (b)
  • the ratio of both in the gelation accelerator is 100% by mass, but optional components other than both are included in the gelation accelerator.
  • the content of these components is preferably 5 to 55 parts by mass, more preferably 10 to 45 parts by mass with respect to 100 parts by mass of the total of the monomer (a) and the activator (b).
  • blending of the arbitrary component to a gelatinization promoter is mixing an arbitrary component simultaneously when mixing two components, a monomer (a) and an activator (b), or a monomer (a) and an activator. After mixing only the two components of (b) first, it can carry out by mixing arbitrary components.
  • the temperature at the time of mixing is not particularly limited and is preferably in the range of 0 to 80 ° C.
  • reaction injection molding compounded liquid of the present invention is a reaction injection molding compounded liquid used for polymerizing a norbornene-based monomer under a metathesis polymerization catalyst having tungsten as a central metal. Containing the gelation accelerator of the present invention.
  • a combination liquid 1 containing an activator of a metathesis polymerization catalyst and a metathesis polymerizable monomer and a combination liquid 2 containing a metathesis polymerization catalyst and a metathesis polymerizable monomer are used in combination. Since the compounding liquid for reaction injection molding of the invention contains the activator, it is suitably used as the compounding liquid 1 that does not contain a metathesis polymerization catalyst.
  • the content ratio of the gelation accelerator in the reaction injection molding liquid is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and further preferably 0.1 to 5% by mass. 0.01 mass% or more is preferable from the viewpoint of expressing a good gelation promoting effect, and 20 mass% or less is preferable in consideration of production efficiency.
  • Components other than the gelation accelerator for example, the monomer (a) added separately from the gelation accelerator, and the activator added separately from the gelation accelerator in the reaction injection molding compound liquid of the present invention
  • One or more components selected from the group consisting of (b), reaction modifier and elastomer (e) may be included.
  • the proportion of the monomer (a) in the reaction injection molding compounded liquid is 60 to 99.9 masses. % Is preferable, 70 to 99.7% by mass is more preferable, and 70 to 99.5% by mass is further preferable. 60 mass% or more is preferable from a viewpoint of the intensity
  • the ratio of the activator (b) in the reaction injection molding compounded liquid is: 02 to 10% by mass is preferable, 0.05 to 8% by mass is more preferable, and 0.08 to 5% by mass is further preferable. 0.02 mass% or more is preferable from the viewpoint of promoting polymerization activity and increasing reaction efficiency, and 10 mass% or less is preferable from the viewpoint of reaction control.
  • the proportion of the reaction regulator in the reaction injection molding liquid is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass. Preferably, 0.1 to 5% by mass is more preferable. 0.01 mass% or more is preferable in order to exhibit a desired effect as a reaction regulator, and 20 mass% or less is preferable from a viewpoint of the quality maintenance of a molded object.
  • the proportion of the elastomer (e) in the reaction injection molding liquid is preferably 0.5 to 20% by mass, more preferably 1 to 15% by mass. Preferably, 2 to 10% by mass is more preferable. 0.5 mass% or more is preferable from a viewpoint of the viscosity provision of a compounding liquid, and 20 mass% or less is preferable when production efficiency is considered.
  • the reaction injection molding compounded liquid of the present invention has a gel time of 2 seconds when mixed with the metathesis polymerization catalyst (d), which is measured by the method described in the Examples, from the viewpoint of preventing deterioration of the quality of the resulting molded article.
  • the time is 2 to 360 seconds, more preferably 5 to 300 seconds.
  • the reactive liquid mixture in the present invention comprises the above-described reaction injection molding liquid composition of the present invention or a component of the liquid mixture, and a liquid mixture containing a metathesis polymerization catalyst having tungsten as a central metal.
  • a metathesis polymerization catalyst having tungsten as a central metal.
  • the metathesis polymerization catalyst used here include the above-mentioned metathesis polymerization catalyst (d).
  • the amount of the metathesis polymerization catalyst (d) in the mixed solution containing the metathesis polymerization catalyst (d) is preferably 0.01 to 50 mmol / kg, and more preferably 0.1 to 20 mmol / kg.
  • the metathesis polymerization catalyst (d) may be used after being suspended in an inert solvent such as benzene, toluene and chlorobenzene and solubilized by adding a small amount of an alcohol compound and / or a phenol compound.
  • an alcohol compound used here include ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, and t-butanol.
  • the phenol compound used include t-butylphenol, t-octylphenol, nonylphenol, and dodecylphenol.
  • Lewis base or chelating agent examples include acetylacetone, acetoacetic acid alkyl ester, tetrahydrofuran and benzonitrile.
  • the compound liquid containing the metathesis polymerization catalyst (d) may further contain the monomer (a). In this case, the uniformity of the resulting reactive liquid mixture is improved, which is preferable.
  • the amount of the monomer (a) in the blended solution is preferably 60 to 99.9% by mass, and more preferably 80 to 99.5% by mass.
  • Specific embodiments for preparing the reactive liquid mixture include, for example, an aspect of mixing the liquid mixture for reaction injection molding of the present invention and a liquid mixture containing the metathesis polymerization catalyst (d) (mixing of two components), Alternatively, a mixed liquid A containing the monomer (a) and the reaction regulator, a mixed liquid B containing the metathesis polymerization catalyst (d), and the gelation accelerator of the present invention are mixed simultaneously (three-component system). Mixed).
  • blending liquid A may contain the said activator, the gelatinization promoter of this invention is not included.
  • the mixing ratio of the compounding solution for reaction injection molding and the compounding solution containing the monomer (a) and the metathesis polymerization catalyst (d) is not particularly limited.
  • 1 part by mass of the compounding solution for reaction injection molding Is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass, and further 0.5 to 2 parts by mass, containing the monomer (a) and the metathesis polymerization catalyst (d). preferable.
  • the compounded liquid containing the monomer (a) and the metathesis polymerization catalyst (d) is preferably 0.1 parts by mass or more, from the viewpoint of maintaining the quality of the molded product and production efficiency, It is preferable that this liquid mixture is 10 mass parts or less.
  • the mixing ratio of the above-mentioned reaction injection molding compounded liquid, the compounded liquid containing the metathesis polymerization catalyst (d), and the gelation accelerator of the present invention is not particularly limited.
  • the blending solution is preferably 0.1 to 10 parts by weight and the accelerator is preferably 0.01 to 20 parts by weight, and the blending solution is 0.3 to 5 parts by weight with respect to 1 part by weight of the compounding liquid for injection molding.
  • the accelerator is more preferably 0.05 to 10 parts by mass, the compounding liquid is preferably 0.5 to 2 parts by mass, and the accelerator is more preferably 0.1 to 5 parts by mass.
  • the blending solution is preferably 0.1 parts by mass or more, and from the viewpoint of maintaining the quality of the molded article, the blending solution is preferably 10 parts by mass or less.
  • the accelerator is preferably 0.01 parts by mass or more, and from the viewpoint of preventing deterioration of the quality of the molded article, the accelerator is preferably 20 parts by mass or less.
  • the concentration of the monomer (a) in the reaction injection molding liquid used in this embodiment is preferably 60 to 99.9% by mass, more preferably 70 to 99.7% by mass, and 80 to 99.5% by mass. Is more preferable.
  • the concentration of the activator (b) is preferably 0.02 to 10% by mass, more preferably 0.05 to 8% by mass, and further preferably 0.08 to 5% by mass.
  • the concentration of the reaction regulator is preferably 0.01 to 20% by mass, more preferably 0.05 to 10% by mass, and further preferably 0.1 to 5% by mass.
  • the method for producing the reaction injection molded product of the present invention is characterized by including a step of polymerizing the above reactive mixed solution in a mold and performing reaction injection molding.
  • the reaction injection molding (RIM) apparatus is not particularly limited, and a known collision mixing apparatus can be used. Note that a low-pressure injector such as a dynamic mixer or a static mixer can be used instead of the collision mixing device.
  • the temperature of each raw material component before being supplied to the reaction injection molding apparatus is preferably 10 to 60 ° C., and the viscosity of each raw material component is preferably 5 to 3,000 mPa ⁇ s at 30 ° C., more preferably, for example. It is about 50 to 1,000 mPa ⁇ s.
  • the mold used for reaction injection molding is not particularly limited, but usually a mold formed of a male mold and a female mold is used.
  • the material of the mold is not particularly limited, and examples thereof include metals such as steel, aluminum, zinc alloy, nickel, copper, and chromium, and resins. These dies may be manufactured by any method such as casting, forging, thermal spraying, electroforming, or may be plated.
  • the mold structure may be determined in consideration of the pressure when the reactive liquid mixture is injected into the mold.
  • the mold clamping pressure is a gauge pressure, preferably 0.1 to 9.8 MPa.
  • the molding time depends on the type, amount, mold temperature and the like of the norbornene-based monomer used, but is preferably 5 seconds to 6 minutes, more preferably 10 seconds to 5 minutes.
  • the mold temperature T1 Is preferably set higher than the mold temperature T2 (° C.) of the mold corresponding to the design surface.
  • T1-T2 may be 0 ° C., preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and the upper limit is preferably 60 ° C. or lower.
  • T1 is preferably 110 ° C. or lower, more preferably 95 ° C. or lower, and the lower limit is preferably 50 ° C. or higher.
  • T2 is preferably 90 ° C. or lower, more preferably 70 ° C. or lower, further preferably 60 ° C. or lower, and the lower limit is preferably 30 ° C. or higher.
  • Examples of the method of adjusting the mold temperature include a method of adjusting with a heater; a method of adjusting the temperature with a heat medium such as temperature-controlled water and oil that is circulated in a pipe embedded in the mold; and the like.
  • a space formed by the molded body and the mold can be separated into the mold separately.
  • the reaction injection molded body After completion of the bulk polymerization (after the in-mold coating method is performed), the reaction injection molded body can be obtained by opening the mold and removing the mold.
  • reaction injection molded product of the present invention is obtained by the above-described "method for producing a reaction injection molded product" of the present invention.
  • the reaction injection molded article of the present invention can be efficiently produced on an industrial production scale using the gelation accelerator of the present invention and the reaction injection molding compounded liquid of the present invention.
  • reaction injection molded article of the present invention can be used immediately as it is, but may be plated and / or painted according to a known method if desired in order to improve or maintain the characteristics of the molded article.
  • the reaction injection molded article of the present invention is excellent in the surface state of the molded article and has high mechanical strength, so that it is used in automobiles such as bumpers and air deflectors; used in construction and industrial machines such as wheel loaders and power shovels; golf carts and game machines It can be used suitably for leisure use such as medical use such as medical equipment; industrial use such as large panels and chairs; use of housing equipment such as shower pans and wash bowls.
  • the increase in viscosity of the mixed solution accompanying polymerization was measured with a B-type viscometer installed in the container.
  • the time from the start of mixing of the blended liquid (A) and the blended liquid (B) until the viscosity of the mixed liquid showed 1000 mPa ⁇ s was defined as “gel time”.
  • the flexural modulus of the molded body was measured according to JIS K7171 at a test speed of 2 mm / min.
  • Resin residue on the mold surface After the production of the molded body was repeated 10 times, the mold was cooled, and 10 arbitrary 10 mm ⁇ 10 mm areas on the mold surface were observed with an optical microscope at a magnification of 10 times. Resin residue on the mold surface was evaluated. ⁇ Evaluation criteria ⁇ Excellent: No resin residue in all areas. Good: Resin residue is present in the region from 1 to 2 locations. Possible: Resin remains in the region of 3 to 5 locations. Impossible: Resin remains in 6 or more areas.
  • Example 1 Preparation of gelation accelerator] Preparation of a gelation accelerator for polymerizing norbornene monomers by mixing both components so that the molar ratio of dicyclopentadiene (DCPD) to triethylaluminum (TEAL) (DCPD: TEAL) is 5: 1. did.
  • DCPD dicyclopentadiene
  • TEAL triethylaluminum
  • Example 2 [Preparation of reaction injection molding compounded solution (compounded solution (X))] To a mixture of norbornene monomers consisting of 90 parts of DCPD and 10 parts of tricyclopentadiene, 4.1 parts of an ethylene-propylene copolymer (89% of propylene units, 11% of ethylene units) is added and mixed, and then finally obtained. The resulting blended liquid (in X, the TEAL concentration was 22 mmol / kg (0.25%) was added and mixed with the activator mixed liquid 1. Further, in the finally obtained blended liquid (X) The gelation accelerator was added and mixed so that the concentration was 1% to obtain a blended liquid (X).
  • Comparative Example 1 [Preparation of Reaction Injection Molding Solution (Compounding Solution (X ′))] A compounded solution (X ′) was prepared in the same manner as in Example 2 except that the gelation accelerator was not added.
  • Test example 1 Gel time was measured according to the said method using said compounding liquid (X) and compounding liquid (Y), or compounding liquid (X ') and compounding liquid (Y). The results are shown in Table 1.
  • Test example 2 Furthermore, a reaction injection molded article was produced as follows using the above-described blended liquid (X) and blended liquid (Y), or blended liquid (X ′) and blended liquid (Y).
  • reaction injection mold made of two aluminum plates capable of forming a cavity of length 245 mm ⁇ width 210 mm ⁇ thickness 3 mm was prepared and heated to 90 ° C.
  • the reaction injection molding die has a structure in which one aluminum plate has injection holes for the reaction injection molding compound liquid.
  • blended liquid (X) and blended liquid (Y), or blended liquid (X ′) and blended liquid (Y) were prepared, and the temperature was 30 ° C., respectively.
  • the mixture is injected into the reaction injection mold from the injection hole, and bulk polymerization is performed for 120 seconds.
  • a molded body 1 made of a polymerization-cured norbornene resin was obtained.
  • the same operation was performed for the compounded liquid (X ′) and the compounded liquid (Y) to obtain a molded body 2.
  • any of the obtained molded bodies had a specific gravity of 1.04 and a glass transition temperature (Tg) measured by DSC method of 145 ° C.
  • the curing time of the molded body 1 and the molded body 2 was measured as described above, the average of 10 times was obtained, and the first decimal place was rounded off to obtain the curing time (seconds). The results are shown in Table 1.
  • the gelation accelerator, reaction injection molding compounded liquid and reaction injection molded body production method of the present invention can be suitably used in the field of reaction injection molded body production. Furthermore, since the reaction injection molded article of the present invention is excellent in mechanical properties and finished in terms of product surface, it can be suitably used for applications such as automobile parts and housing equipment members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

 本発明は、メタセシス重合触媒の活性化剤とノルボルネン系モノマーとを混合して得られる、該触媒下でノルボルネン系モノマーを重合させる際のゲル化促進剤であって、前記活性化剤と前記ノルボルネン系モノマーの2成分のみを本質的に混合してなるゲル化促進剤、並びに該ゲル化促進剤を含有してなる反応射出成形用配合液に関する。本発明のゲル化促進剤を反応射出成形用配合液に添加することによって、該配合液が触媒に接した際のゲル化を短縮させることができるという効果が発揮される。かかるゲル化促進剤を含有する本発明の反応射出成形用配合液をRIM法の配合液に使用することによって、高い機械強度が維持され、かつ表面状態が良好な成形体を製造することができるという効果や、使用した金型への樹脂残りを低減できるという効果が発揮される。本発明の反応射出成形体は、高い機械強度が維持され、かつ表面状態が良好なものであるという効果を発揮する。

Description

ゲル化促進剤
 本発明は、反応射出成形に用いられるゲル化促進剤及び反応射出成形用配合液に関する。さらに本発明は、かかるゲル化促進剤又は反応射出成形用配合液を用いた反応射出成形体の製造方法に関する。さらに本発明は、かかる反応射出成形体の製造方法により製造された反応射出成形体に関する。
 従来、ノルボルネン系モノマー及びメタセシス重合触媒を含む反応液を金型内に注入し、塊状開環重合させることにより、ノルボルネン系樹脂からなる樹脂成形体(反応射出成形体)を製造する、反応射出成形法(RIM法)と称される方法が知られている。
 例えば、特許文献1には、RIM法により、特定のエラストマーを含有するノルボルネン系モノマー含有反応射出成形用配合液を塊状開環重合させることで、金型の形状や大きさ等によらず、成形体表面にヒケの少ない樹脂成形体を得る技術が開示されている。
 また、特許文献2には、RIM法により、特定量のエキソ-ジシクロペンタジエンを含有する新規なメタセシス重合性モノマーを塊状開環重合させることで、モノマー残留率が低く、十分に硬化した架橋重合体成形物を得る樹脂成形体の製造方法が開示されている。また、特許文献2には、樹脂成形体の製造に用いる反応性溶液にエーテル化合物を加えると保存安定性が向上しうることが記載されている。
特開2008-163105号公報 特開2003-025364号公報
 本発明者は、RIM法により得られる樹脂成形体の表面状態の改良技術の開発をめざし上記特許文献1と2に開示される発明について検討したところ、離型時の金型表面への樹脂残り、コア面のべたつき、および製品面における気泡残りなどが生じ、得られる樹脂成形体の表面状態が荒れる場合があり、所要の配合液を混合してなる反応性混合液のゲル化に要する時間(以下、「ゲルタイム」ということがある。)が長く、ゲル化が不充分になる場合があることが明らかになった。
 従って本発明の課題は、ゲル化促進剤、反応射出成形用配合液、及びゲル化促進剤を用いる、表面の外観不良が無く、強度に優れた反応射出成形体の製造方法、並びに当該成形体を提供することにある。ここで、表面の外観不良が無いこととは、離型時に型表面に樹脂残りや製品面の気泡残りが生ずることがなく、成形体の表面が良好であることをいう。
 即ち、本発明の要旨は、
〔1〕 タングステンを中心金属とするメタセシス重合触媒の活性化剤とノルボルネン系モノマーの2成分のみを本質的に混合してなる、前記触媒下でのノルボルネン系モノマーの重合によるゲル化を促進させるゲル化促進剤;
〔2〕 タングステンを中心金属とするメタセシス重合触媒下でノルボルネン系モノマーを重合させる反応射出成形用配合液であって、前記〔1〕に記載のゲル化促進剤を含有してなる、反応射出成形用配合液;
〔3〕 前記〔2〕に記載の反応射出成形用配合液と、タングステンを中心金属とするメタセシス重合触媒を含有する配合液とを混合してなる反応性混合液を型内で塊状重合させ、反応射出成形を行う工程を含む、反応射出成形体の製造方法;
〔4〕 ノルボルネン系モノマー及び反応調節剤を含む配合液Aと、タングステンを中心金属とするメタセシス重合触媒を含有する配合液Bと、前記〔1〕に記載のゲル化促進剤とを同時に混合してなる反応性混合液を型内で塊状重合させ、反応射出成形を行う工程を含む、反応射出成形体の製造方法;並びに
〔5〕 前記〔4〕に記載の製造方法により得られる反応射出成形体;に関するものである。
 本発明のゲル化促進剤を反応射出成形用配合液に添加することによって、反応射出成形用配合液が触媒に接した際のゲル化を短縮させることができるという効果が発揮される。かかるゲル化促進剤を含有する本発明の反応射出成形用配合液をRIM法の配合液に使用することによって、高い機械強度が維持され、かつ表面状態が良好な成形体を製造することができるという効果や、使用した金型への樹脂残りを低減できるという効果が発揮される。本発明の反応射出成形体は、高い機械強度が維持され、かつ表面状態が良好なものであるという効果を発揮する。
 RIM法では一般に、メタセシス重合触媒の活性化剤とメタセシス重合性モノマーを含む配合液1と、メタセシス重合触媒とメタセシス重合性モノマーを含む配合液2とを組み合わせて用いられており、それらの配合液は通常、活性化剤およびメタセシス重合触媒を、それぞれ別個のメタセシス重合性モノマー液に混合することで調製される。しかしながら、本発明者が、反応射出成形に用いられる配合液の成分組成やその調製方法について鋭意検討したところ、意外にも、活性化剤とノルボルネン系モノマーの2成分のみを混合する工程を経て配合液1を調製した場合、当該配合液1と、メタセシス重合触媒とノルボルネン系モノマーとからなる配合液2とを混合して得られた反応性混合液では、当該混合液に前記触媒の反応調節剤を配合したとしても、反応調節剤の効果が減殺されてしまい、ゲルタイムが異常に速くなる場合があることを新たに見出した。さらに検討を進めた結果、タングステンを中心金属とするメタセシス重合触媒下でノルボルネン系モノマーを重合させる反応射出成形において、該触媒の活性化剤と該モノマーの2成分のみを混合して得られる組成物には、反応性混合液のゲルタイムを短縮する作用があることが分かり、かかる知見に基づいて、本発明のゲル化促進剤を完成させるに至った。本発明のゲル化促進剤によれば、例えば、従来の配合液1に少量添加することで、得られる反応性混合液のゲルタイムを所望の程度まで短縮することができるなど、ゲルタイムの制御が可能となり、延いては、当該反応性混合液を型内で塊状重合させて得られる樹脂成形体の表面状態を有利に改善することができる。
 以下、本発明を、1)本発明に使用される成分、2)ゲル化促進剤、3)反応射出成形用配合液、4)反応性混合液、5)反応射出成形体の製造方法、及び6)反応射出成形体に項分けして詳細に説明する。
1)本発明に使用される成分
(a)ノルボルネン系モノマー
 本発明に用いるノルボルネン系モノマーは、式(2)
Figure JPOXMLDOC01-appb-C000001
で表されるノルボルネン構造を有する化合物である。
 ノルボルネン系モノマー(以下、「モノマー(a)」ということがある。)としては、分子内にノルボルネン環と縮合する環を有しないノルボルネン系モノマー、および3環以上の多環式ノルボルネン系モノマー等が挙げられる。モノマー(a)は、一種を単独で、あるいは二種以上を混合して用いることができる。
 前記分子内にノルボルネン環と縮合する環を有しないノルボルネン系モノマーの具体例としては、ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等の無置換又はアルキル基を有するノルボルネン類;5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;5-フェニルノルボルネン等の芳香環を有するノルボルネン類;5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-メチル-5-エトキシカルボニルノルボルネン、ノルボルネニル-2-メチルプロピオネイト、ノルボルネニル-2-メチルオクタネイト、5-ヒドロキシメチルノルボルネン、5,6-ジ(ヒドロキシメチル)ノルボルネン、5,5-ジ(ヒドロキシメチル)ノルボルネン、5-ヒドロキシ-i-プロピルノルボルネン、5,6-ジカルボキシノルボルネン、5-メトキシカルボニル-6-カルボキシノルボルネン、等の酸素原子を含む極性基を有するノルボルネン類;5-シアノノルボルネン等の窒素原子を含む極性基を有するノルボルネン類;等が挙げられる。
 3環以上の多環式ノルボルネン系モノマーとは、分子内にノルボルネン環と、該ノルボルネン環と縮合している1つ以上の環とを有するノルボルネン系モノマーである。その具体例としては、下記に示す式(3)又は式(4)で示されるモノマーが挙げられる。
Figure JPOXMLDOC01-appb-C000002
(式中、R5~R8はそれぞれ独立に、水素原子;ハロゲン原子;置換基を有していてもよい炭素数1~20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表し、R6とR7は互いに結合して環を形成している。)
Figure JPOXMLDOC01-appb-C000003
(式中、R9~R12はそれぞれ独立に、水素原子;ハロゲン原子;置換基を有していてもよい炭素数1~20の炭化水素基;又はケイ素原子、酸素原子もしくは窒素原子を含む置換基;を表し、R9とR10又はR11とR12は互いに結合して環を形成していてもよい。mは1又は2である。)
 式(3)で示されるモノマーとしては、例えば、ジシクロペンタジエン、メチルジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ-8-エン、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)、等が挙げられる。
 ジシクロペンタジエンにはエンド-ジシクロペンタジエン(式A)とエキソ-ジシクロペンタジエン(式B)の二種類の立体異性体がある。単にジシクロペンタジエンと言うとエンド-ジシクロペンタジエンを指す。現在工業的に入手できるジシクロペンタジエンの主成分はエンド-ジシクロペンタジエンであり、エキソ-ジシクロペンタジエンの含有量は0~2質量%程度である。
Figure JPOXMLDOC01-appb-C000004
 式(4)で示されるモノマーとしては、mが1であるトリシクロペンタジエン、テトラシクロドデセン類、mが2であるヘキサシクロヘプタデセン類が挙げられる。
 テトラシクロドデセン類の具体例としては、テトラシクロドデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン等の無置換又はアルキル基を有するテトラシクロドデセン類;8-メチリデンテトラシクロドデセン、8-エチリデンテトラシクロドデセン、8-ビニルテトラシクロドデセン、8-プロペニルテトラシクロドデセン、8-シクロヘキセニルテトラシクロドデセン、8-シクロペンテニルテトラシクロドデセン等の環外に二重結合を有するテトラシクロドデセン類;8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;8-クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;8-トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類等が挙げられる。
 ヘキサシクロヘプタデセン類の具体例としては、ヘキサシクロヘプタデセン、12-メチルヘキサシクロヘプタデセン、12-エチルヘキサシクロヘプタデセン、12-シクロヘキシルヘキサシクロヘプタデセン、12-シクロペンチルヘキサシクロヘプタデセン等の無置換又はアルキル基を有するヘキサシクロヘプタデセン類;12-メチリデンヘキサシクロヘプタデセン、12-エチリデンヘキサシクロヘプタデセン、12-ビニルヘキサシクロヘプタデセン、12-プロペニルヘキサシクロヘプタデセン、12-シクロヘキセニルヘキサシクロヘプタデセン、12-シクロペンテニルヘキサシクロヘプタデセン等の環外に二重結合を有するヘキサシクロヘプタデセン類;12-フェニルヘキサシクロヘプタデセン等の芳香環を有するヘキサシクロヘプタデセン類;12-メトキシカルボニルヘキサシクロヘプタデセン、12-メチル-12-メトキシカルボニルヘキサシクロヘプタデセン、12-ヒドロキシメチルヘキサシクロヘプタデセン、12-カルボキシヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン-12,13-ジカルボン酸、ヘキサシクロヘプタデセン-12,13-ジカルボン酸無水物等の酸素原子を含む置換基を有するヘキサシクロヘプタデセン類;12-シアノヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン-12,13-ジカルボン酸イミド等の窒素原子を含む置換基を有するヘキサシクロヘプタデセン類;12-クロロヘキサシクロヘプタデセン等のハロゲン原子を含む置換基を有するヘキサシクロヘプタデセン類;12-トリメトキシシリルヘキサシクロヘプタデセン等のケイ素原子を含む置換基を有するヘキサシクロヘプタデセン類等が挙げられる。
 これらのノルボルネン系モノマーは一種を単独で、あるいは二種以上を組み合わせて用いることができる。
 これらのノルボルネン系モノマーの中でも、入手が容易であり、反応性に優れ、耐熱性に優れる樹脂成形体が得られる観点から、三環体以上の多環ノルボルネン系モノマーが好ましく、三環体、四環体又は五環体のノルボルネン系モノマーがより好ましい。
 また、熱硬化型の開環重合体が得られる観点からは、対称性のシクロペンタジエン三量体等の、反応性の二重結合を二個以上有する架橋性ノルボルネン系モノマー(架橋反応性の二重結合を有する開環重合体を与えるノルボルネン系モノマー)と、他のノルボルネン系モノマー(架橋反応性の二重結合をもたない開環重合体を与えるノルボルネン系モノマー)とを併用するのが好ましい。架橋性ノルボルネン系モノマーを使用する場合の架橋性ノルボルネン系モノマーの使用割合は、全ノルボルネン系モノマー中の2~30質量%であることが好ましい。
 さらに、本発明の目的を損なわない範囲で、ノルボルネン系モノマーと開環共重合し得るモノマーを用いてもよい。このようなモノマーとしては、シクロブテン、シクロペンテン、シクロペンタジエン、シクロオクテン、シクロドデセン等の単環シクロオレフィン等が挙げられる。このようなモノマーの使用割合は、ノルボルネン系モノマー(a)100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
(b)活性化剤
 本発明に使用されるメタセシス重合触媒の活性化剤(以下、「活性化剤(b)」ということがある。)は、共触媒ともよばれ、メタセシス重合触媒の重合活性を高める目的で添加されるものである。
 活性化剤(b)としては特に限定されず、例えば、有機アルミニウム化合物が用いられる。有機アルミニウム化合物としては、トリエチルアルミニウム、トリイソブチルアルミニウム、トリオクチルアルミニウム等のアルキルアルミニウム化合物、ジエチルアルミニウムクロライド、エチルアルミニウムジクロライド、ジオクチルアルミニウムアイオダイド等のアルキルアルミニウムハライド化合物が挙げられる。活性化剤(b)は、一種を単独で、あるいは二種以上を混合して用いることができる。
(c)反応調節剤
 本発明において反応調節剤は、重合時間の制御を目的として使用される。反応調節剤としては、所望の目的を達成する限り特に限定されるものではないが、例えば、以下のエーテル化合物が好ましいものとして例示できる。
 エーテル化合物としては、下記式(1)で表されるエーテル化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000005
 前記式(1)中、R1、R2、R3及びRはそれぞれ独立して、水素原子又は炭素数1~6のアルキル基を表す。R及びRはそれぞれ独立して、炭素数1~6のアルキル基を表す。炭素数1~6のアルキル基としては、メチル基、エチル基、イソプロピル基、n-プロピル基、イソブチル基、sec-ブチル基、t-ブチル基、n-ブチル基、n-ペンチル基、及びn-ヘキシル基等が挙げられる。
 式(1)で表されるエーテル化合物の具体例としては、下記式で表される化合物群が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 これらの中でも、式(1)で表されるエーテル化合物としては、本発明の効果を向上させる観点から、下記式(1-1)
Figure JPOXMLDOC01-appb-C000009
(R1、R2は前記と同じ意味を表す。)
で表される化合物が好ましく、式(1-1)で表される化合物であって、式(1-1)中、R1、R2がいずれも水素原子又は炭素数1~3のアルキル基である化合物がより好ましく、式(1-1)で表される化合物であって、式(1-1)中、R1、R2がいずれも水素原子である化合物(ジエチレングリコールジメチルエーテル)、並びに式(1-1)で表される化合物であって、式(1-1)中、R1、R2がいずれもメチル基である化合物(ジプロピレングリコールジメチルエーテル)が特に好ましい。中でも、ジプロピレングリコールジメチルエーテルを本発明の反応射出成形用配合液に配合して用いると、表面状態が良好で強度に優れた成形体が得られ、好適である。
 なお、式(1)で表されるエーテル化合物には不斉炭素原子が存在し得るが、その立体配置は特に限定されない。
 式(1)で表されるエーテル化合物はいずれも公知の方法により製造することができる。また、式(1)で表されるエーテル化合物として市販されているものをそのままで、あるいは必要に応じて精製して使用することもできる。かかるエーテル化合物は、一種を単独で、あるいは二種以上を混合して用いることができる。
(d)タングステンを中心金属とするメタセシス重合触媒
 本発明においては、重合触媒として、タングステンを中心金属とするメタセシス重合触媒を用いる(以下、「メタセシス重合触媒(d)」ということがある。)。
 メタセシス重合触媒(d)としては、タングステンを中心金属とし、ノルボルネン系モノマーを開環重合させることができる触媒であれば特に限定されない。メタセシス重合触媒(d)は、一種を単独で、あるいは二種以上を混合して用いることができる。
 メタセシス重合触媒(d)は、タングステン原子を中心原子として、複数のイオン、原子、多原子イオン及び/又は化合物が結合してなる錯体である。例えば、WCl6、WCl5、WCl4、WCl2、WBr6、WBr4、WBr2、WF6、WF4、WI6、WI4等のタングステンハロゲン化物;WOCl4、WOBr4、WOF4、WCl2(OC654、W(OC252Cl3等のタングステンオキシハロゲン化物;酸化タングステン等の金属酸化物;(CO)5WC(OCH3)(CH3)、(CO)5WC(OC25)(CH3)、(CO)5WC(OC25)、W(OC656、W(CO)3・(CH3CN)3等の有機タングステン化合物;W(N-2,6-C63Pri 2)(CHBut)(OCMe2CF32、W(N-2,6-C63Pri 2)(CHBut)(OCMe2CF322)、W(N-2,6-C63Pri 2)(CHCMe2Ph)(OBut2、W(N-2,6-C63Pri 2)(CHCMe2Ph)(OCMe2CF32、W(N-2,6-C63Pri 2)(CHCMe2Ph)(OCMe2CF322)、(式中のPriはi-プロピル基、Butはt-ブチル基、Meはメチル基、Phはフェニル基を表す。)等のタングステンアルキリデン化合物;等が挙げられる。
 これらの中でも、タングステンハロゲン化物及びタングステンオキシハロゲン化物が好ましく、より具体的にはWCl6及びWOCl4がより好ましい。
(e)エラストマー
 エラストマー(以下、「エラストマー(e)」ということがある。)は、本発明の反応射出成形用配合液に添加されると、流動性を与え、当該配合液を用いることでヒケの少ない成形体が得られる。エラストマーとしては、剪断速度係数が1.30~1.60のエラストマーが好ましい。ここで、剪断速度係数は、前記特許文献1に記載される方法で得られる数値である。
 エラストマーとしては、天然ゴム、ポリブタジエン、ポリイソプレン、スチレン-ブタジエン共重合体(SBR)、エチレン-プロピレン共重合体、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレン共重合体(SIS)、エチレン-プロピレン-ジエンターポリマー(EPDM)、エチレン-酢酸ビニル共重合体(EVA)及びこれらの水素化物等が挙げられる。
(f)その他の成分
 本発明の反応射出成形用配合液には、樹脂成形体をより効率よく製造するために、あるいは、樹脂成形体の特性の改良や維持のために、所望によりその他の成分(以下、「その他の成分(f)」ということがある。)を配合してもよい。その他の成分(f)は、本発明の効果を阻害しない限り、RIM法において、本発明の反応射出成形用配合液と組み合わせて用いられる、メタセシス重合触媒(d)を含有する配合液に添加しても良い。
 その他の成分(f)としては、重合促進剤、充填剤、補強材、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、発泡剤、帯電防止剤、難燃剤、滑剤、軟化剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料、ジシクロペンタジエン系熱重合樹脂及びその水添物等が挙げられる。
 重合促進剤は、モノマーの重合転化率を向上させるために添加される。重合促進剤としては、塩素原子含有化合物が好ましく、有機塩素化合物及び塩素化ケイ素化合物がより好ましい。具体例としては、2-クロロベンゾトリクロリド、2,4-ジクロロベンゾトリクロリド、ヘキサクロロ-p-キシレン、2,4-ジクロロ-トリクロロトルエン及び四塩化ケイ素等が挙げられる。
 重合促進剤を用いる場合、その添加量は、反応性混合液全体中、通常10質量ppmから10質量%となる量が好ましい。
 充填材としては、特に限定されないが、アスペクト比が通常5~100、好ましくは10~50の繊維状充填材、及びアスペクト比が通常1~2、好ましくは1~1.5の粒子状充填材からなる無機充填材であることが好ましい。なお、充填材のアスペクト比とは、充填材の平均長軸径と50%体積累積径との比をいう。ここで、平均長軸径は、光学顕微鏡写真で無作為に選んだ100個の充填材の長軸径を測定し、その算術平均値として算出される個数平均長軸径である。また、50%体積累積径は、X線透過法で粒度分布を測定することにより求められる値である。
 充填材を用いる場合、その使用量は、モノマー(a)及びメタセシス重合触媒(d)の合計量100質量部に対して、5~55質量部であることが好ましく、10~45質量部であることがより好ましい。充填材量が多すぎると、反応液を型内に注入する際にタンクや配管内で沈降したり、注入ノズルが詰まったりするおそれがある。一方、充填材量が少なすぎると、得られる成形体の剛性や寸法安定性が不十分な場合がある。
 その他の成分の添加方法は、添加剤の種類等により適宜選定することができる。
2)ゲル化促進剤
 本発明のゲル化促進剤は、タングステンを中心金属とするメタセシス重合触媒の活性化剤とノルボルネン系モノマーの2成分のみを本質的に混合してなり、前記触媒下でのノルボルネン系モノマーの重合によるゲル化を促進させる作用を有する。ここで、「2成分のみを本質的に混合」するとは、前記活性化剤とノルボルネン系モノマーの2成分のみを混合すること、および本発明のゲル化促進剤の作用に実質的に影響しない成分(以下、任意成分ということがある。)の存在下に、前記活性化剤とノルボルネン系モノマーの2成分を混合すること、を意味する。本発明のゲル化促進剤を反応射出成形用のモノマーを含有する組成物に添加することにより、該組成物がメタセシス重合触媒と接触した際のゲルタイムを短縮することができる。
 ここで用いられるタングステンを中心金属とするメタセシス重合触媒の活性化剤としては、上記の活性化剤(b)が挙げられる。ここで用いられるノルボルネン系モノマーとしては、上記のモノマー(a)が挙げられる。
 ゲル化促進剤におけるモノマー(a)と活性化剤(b)との混合割合としては、活性化剤(b)1モルに対してモノマー(a)が1~1000モルの範囲であることが好ましく、2~500モルの範囲であることがより好ましく、3~100モルの範囲であることがさらに好ましい。ゲル化促進剤の保存安定性を高める観点から、モノマー(a)は1モル以上であることが好ましく、良好なゲル化促進効果を維持する観点から、モノマー(a)は1000モル以下であることが好ましい。
 前記任意成分としては、例えば、非極性成分、前記エラストマー(e)、前記その他の成分(f)として列挙した、充填剤、補強材、顔料、着色剤、発泡剤、難燃剤、粘着付与剤、可塑剤、離型剤、防臭剤、香料、ジシクロペンタジエン系熱重合樹脂及びその水添物等が挙げられる。ゲル化促進剤がモノマー(a)と活性化剤(b)とからなる場合、ゲル化促進剤における両者の占める割合は100質量%であるが、両者以外に任意成分がゲル化促進剤に含まれる場合、モノマー(a)と活性化剤(b)の合計の100質量部に対してこれらの成分の含有量は5~55質量部が好ましく、10~45質量部がより好ましい。
 なお、ゲル化促進剤への任意成分の配合は、モノマー(a)と活性化剤(b)の2成分を混合する際、任意成分を同時に混合するか、またはモノマー(a)と活性化剤(b)の2成分のみをまず最初に混合した後に、任意成分を混合することにより、行うことができる。混合時の温度としては、特に限定されず、0~80℃の範囲が好ましい。
3)反応射出成形用配合液
 本発明の反応射出成形用配合液は、タングステンを中心金属とするメタセシス重合触媒下でノルボルネン系モノマーを重合させるのに用いる反応射出成形用配合液であって、上記の本発明のゲル化促進剤を含有するものである。
 前記の通り、RIM法では一般に、メタセシス重合触媒の活性化剤とメタセシス重合性モノマーを含む配合液1と、メタセシス重合触媒とメタセシス重合性モノマーを含む配合液2とを組み合わせて用いられるが、本発明の反応射出成形用配合液は、前記活性化剤を含むことから、メタセシス重合触媒を含まない前記配合液1として好適に用いられる。
 反応射出成形用配合液に占めるゲル化促進剤の含有割合としては、0.01~20質量%が好ましく、0.05~10質量%がより好ましく、0.1~5質量%がさらに好ましい。良好なゲル化促進効果を発現させる観点から0.01質量%以上が好ましく、生産効率を考慮すると20質量%以下が好ましい。
 本発明の反応射出成形用配合液には、ゲル化促進剤以外の成分、例えば、ゲル化促進剤とは別に添加されるモノマー(a)、ゲル化促進剤とは別に添加される活性化剤(b)、反応調節剤及びエラストマー(e)からなる群より選択される一種以上の成分が含まれていても良い。
 反応射出成形用配合液に、ゲル化促進剤とは別に添加されるモノマー(a)を添加する場合、反応射出成形用配合液における該モノマー(a)の割合としては、60~99.9質量%が好ましく、70~99.7質量%がより好ましく、70~99.5質量%がさらに好ましい。成形体の強度向上の観点から60質量%以上が好ましく、配合液品質維持の観点から99.9質量%以下が好ましい。
 反応射出成形用配合液に、ゲル化促進剤とは別に添加される活性化剤(b)を添加する場合、反応射出成形用配合液における該活性化剤(b)の割合としては、0.02~10質量%が好ましく、0.05~8質量%がより好ましく、0.08~5質量%がさらに好ましい。重合活性を促進し、反応効率を高める観点から0.02質量%以上が好ましく、反応制御の観点から10質量%以下が好ましい。
 反応射出成形用配合液に反応調節剤を添加する場合、反応射出成形用配合液における該反応調節剤の割合としては、0.01~20質量%が好ましく、0.05~10質量%がより好ましく、0.1~5質量%がさらに好ましい。反応調節剤として所望の効果を発揮するために0.01質量%以上が好ましく、成形体の品質維持の観点から20質量%以下が好ましい。
 反応射出成形用配合液にエラストマー(e)を添加する場合、反応射出成形用配合液における該エラストマー(e)の割合としては、0.5~20質量%が好ましく、1~15質量%がより好ましく、2~10質量%がさらに好ましい。配合液の粘度付与の観点から0.5質量%以上が好ましく、生産効率を考慮すると20質量%以下が好ましい。
 本発明の反応射出成形用配合液は、得られる成形体の品質低下防止の観点から、実施例に記載される方法で測定される、メタセシス重合触媒(d)と混合した際のゲルタイムが2秒以上であることが好ましく、2~360秒であることがより好ましく、5~300秒であることがさらに好ましい。
4)反応性混合液
 本発明における反応性混合液は、上記の本発明の反応射出成形用配合液または当該配合液の構成成分と、タングステンを中心金属とするメタセシス重合触媒を含有する配合液とを混合して調製されるものである。ここで使用されるメタセシス重合触媒としては、上記のメタセシス重合触媒(d)が挙げられる。
 本明細書において、メタセシス重合触媒(d)を含有する配合液におけるメタセシス重合触媒(d)の量は、0.01~50mmol/kgが好ましく、0.1~20mmol/kgがより好ましい。
 メタセシス重合触媒(d)は、予めベンゼン、トルエン及びクロロベンゼンなどの不活性溶媒に懸濁させ、少量のアルコール系化合物及び/またはフェノール系化合物を添加することによって可溶化させて使用しても良い。ここで用いるアルコール系化合物としては、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、t-ブタノール等が挙げられる。また、用いるフェノール系化合物としては、t-ブチルフェノール、t-オクチルフェノール、ノニルフェノール、ドデシルフェノールなどが例示される。
 また、メタセシス重合触媒(d)1モルに対し、好ましくは約1~5モルのルイス塩基又はキレート化剤を添加すると、不要な重合を防止できる場合がある。かかるルイス塩基及びキレート化剤としては、アセチルアセトン、アセト酢酸アルキルエステル、テトラヒドロフラン及びベンゾニトリルなどが例示される。
 メタセシス重合触媒(d)を含有する配合液には、さらにモノマー(a)が含有されていても良い。この場合、得られる反応性混合液の均一性が向上し、好ましい。該配合液におけるモノマー(a)の量としては、60~99.9質量%が好ましく、80~99.5質量%がより好ましい。
 反応性混合液を調製する具体的態様としては、例えば、本発明の反応射出成形用配合液とメタセシス重合触媒(d)を含有する配合液とを混合する態様(二成分系の混合)や、あるいは、モノマー(a)及び前記反応調節剤を含む配合液Aと、メタセシス重合触媒(d)を含有する配合液Bと、本発明のゲル化促進剤とを同時に混合する態様(三成分系の混合)が挙げられる。なお、前記配合液Aは、前記活性化剤を含んでもよいが、本発明のゲル化促進剤は含まない。
4.1)二成分系の混合
 反応射出成形用配合液とメタセシス重合触媒(d)を含有する配合液とは、それぞれ別の容器で調製される。かかる各原料成分は、反応射出成形体を製造する際、両者を、例えば、衝突混合装置内で混合して、反応性混合液の形で型内に注入して用いられる。
 両者を混合する場合、反応射出成形用配合液とモノマー(a)及びメタセシス重合触媒(d)を含有する配合液との混合割合は特に限定されないが、例えば、反応射出成形用配合液1質量部に対して、モノマー(a)及びメタセシス重合触媒(d)を含有する配合液0.1~10質量部が好ましく、0.3~5質量部がより好ましく、0.5~2質量部がさらに好ましい。充分な重合活性を得る観点から、モノマー(a)及びメタセシス重合触媒(d)を含有する配合液が0.1質量部以上であることが好ましく、成形体の品質維持及び生産効率の観点から、該配合液が10質量部以下であることが好ましい。
4.2)三成分系の混合
 上記の反応射出成形用配合液と、メタセシス重合触媒(d)を含有する配合液と、本発明のゲル化促進剤とを同時に混合して反応性混合液を調製する場合、三者はそれぞれ別の容器で調製される。かかる各原料成分は、反応射出成形体を製造する際、三者を、例えば、衝突混合装置内で混合して、反応性混合液の形で型内に注入して用いられる。
 三者を混合する場合、上記の反応射出成形用配合液と、メタセシス重合触媒(d)を含有する配合液と、本発明のゲル化促進剤との混合割合は特に限定されないが、例えば、反応射出成形用配合液1質量部に対して、該配合液が0.1~10質量部及び該促進剤が0.01~20質量部が好ましく、該配合液が0.3~5質量部及び該促進剤が0.05~10質量部がより好ましく、該配合液が0.5~2質量部及び該促進剤が0.1~5質量部がさらに好ましい。充分な重合活性を得る観点から、該配合液が0.1質量部以上であることが好ましく、成形体の品質維持の観点から、該配合液が10質量部以下であることが好ましい。ゲル化促進効果の観点から、該促進剤が0.01質量部以上であることが好ましく、成形体の品質低下防止の観点から、該促進剤が20質量部以下であることが好ましい。
 この態様で使用される反応射出成形用配合液におけるモノマー(a)の濃度としては、60~99.9質量%が好ましく、70~99.7質量%がより好ましく、80~99.5質量%がさらに好ましい。活性化剤(b)の濃度としては、0.02~10質量%が好ましく、0.05~8質量%がより好ましく、0.08~5質量%がさらに好ましい。前記反応調節剤の濃度としては、0.01~20質量%が好ましく、0.05~10質量%がより好ましく、0.1~5質量%がさらに好ましい。
5)反応射出成形体の製造方法
 本発明の反応射出成形体の製造方法は、上記の反応性混合液を型内で塊状重合させ、反応射出成形を行う工程を含むことを特徴とする。
 反応射出成形(RIM)装置としては特に限定されず、公知の衝突混合装置を用いることができる。なお、衝突混合装置に代えて、ダイナミックミキサーやスタティックミキサー等の低圧注入機を使用することも可能である。
 反応射出成形装置に供給する前の各原料成分の温度は、好ましくは10~60℃であり、各原料成分の粘度は、例えば30℃において、好ましくは5~3,000mPa・s、より好ましくは50~1,000mPa・s程度である。
 反応射出成形に使用する型としては、特に限定はないが、通常、雄型と雌型とで形成される型を用いる。型の材質は、特に限定されず、スチール、アルミニウム、亜鉛合金、ニッケル、銅、クロム等の金属及び樹脂等が挙げられる。また、これらの型は、鋳造、鍛造、溶射、電鋳等のいずれの方法で製造されたものでもよく、また、メッキされたものであってもよい。
 型の構造は、型に反応性混合液を注入する際の圧力を勘案して決めればよい。また、型の型締め圧力は、ゲージ圧で、好ましくは0.1~9.8MPaである。
 成形時間は、用いるノルボルネン系モノマー等の種類、量、型温度等によるが、好ましくは5秒から6分、より好ましくは10秒から5分である。
 例えば、雄型及び雌型を対とする型を用い、それらの型で形成されるキャビティ内に反応性混合液を供給して塊状重合させる場合において、一般に意匠面側の型の型温度T1(℃)を、意匠面に対応する側の型の型温度T2(℃)より高く設定しておくことが好ましい。これにより、成形体の表面を、ヒケや気泡のない表面外観の美麗な面とすることができる。
 T1-T2は、0℃であってもよく、好ましくは5℃以上、より好ましくは10℃以上であり、上限は好ましくは60℃以下である。T1は、好ましくは110℃以下、より好ましくは95℃以下であり、下限は好ましくは50℃以上である。T2は、好ましくは90℃以下、より好ましくは70℃以下、さらに好ましくは60℃以下であり、下限は好ましくは30℃以上である。
 型温度を調整する方法としては、例えば、ヒータにより調整する方法;型内部に埋設した配管中に循環させる、温調水、油等の熱媒体による温度調整方法;等が挙げられる。
 また、例えば、特開2007-313395号公報を参照して、上記のようにして成形体を得た後、所望により、引き続き、成形体と金型とで形成される空間に、金型に別途設けた被覆剤注入口から、被覆剤を注入して成形体表面に被覆剤層を形成させるインモールドコーティング法を実施してもよい。
 塊状重合の終了後(インモールドコーティング法を実施した場合はその後)、型を型開きして脱型することにより、反応射出成形体を得ることができる。
6)反応射出成形体
 本発明の反応射出成形体は、上述した、本発明の「反応射出成形体の製造方法」によって得られるものである。本発明の反応射出成形体は、本発明のゲル化促進剤や本発明の反応射出成形用配合液を用い、工業的生産規模で効率よく製造することができる。
 本発明の反応射出成形体は、そのまま直ちに使用可能であるが、成形体の特性の改良や維持のために、所望により、公知の方法に従ってメッキ及び/又は塗装を施してもよい。
 本発明の反応射出成形体は、成形体の表面状態に優れ、機械強度が高いので、バンパーやエアデフレクター等の自動車用途;ホイルローダーやパワーショベル等の建設・産業機械用途;ゴルフカートやゲーム機等のレジャー用途;医療機器等の医療用途;大型パネルや椅子等の産業用途;シャワーパンや洗面ボウル等の住宅設備用途;等に好適に用いることができる。
 以下、本発明を実施例に基づいて説明するが、本発明は実施例により何ら限定されるものではない。なお、特に断りがない限り、「部」及び「%」は質量基準である。
 以下の実施例等において、各特性を次のように評価した。
(ゲルタイム)
 撹拌子を入れて窒素置換した50mLの容器を30℃下に維持した。当該容器に、予め窒素置換した30℃の配合液(B)10mLを注入し、マグネチックスターラーを用いて回転数1000rpmで撹拌した。次いで、予め窒素置換した30℃の配合液(A)10mLを上記容器に注入し、5秒間撹拌して配合液(B)と混合した。当該混合により、配合液(A)と配合液(B)とが反応して重合が開始される。重合に伴う混合液の粘度上昇を上記容器に設置したB型粘度計により測定した。配合液(A)と配合液(B)の混合開始時点から混合液の粘度が1000mPa・sを示すまでの時間を「ゲルタイム」とした。
(硬化時間)
 撹拌子を入れて窒素置換した50mLの容器を30℃下に維持した。当該容器に、予め窒素置換した30℃の配合液(B)10mLを注入し、マグネチックスターラーを用いて回転数1000rpmで撹拌した。次いで、予め窒素置換した30℃の配合液(A)10mLを上記容器に注入し、5秒間撹拌して配合液(B)と混合した。当該混合により、配合液(A)と配合液(B)とが反応して重合が開始される。重合の進行に伴って発生する白煙を目視で確認し、配合液(A)と配合液(B)の混合開始時点から白煙発生までの時間を「硬化時間」とした。
(曲げ強度)
 成形体の曲げ強度は、JIS K7171に準拠して、測定温度23℃の条件にて測定した。
(曲げ弾性率)
 成形体の曲げ弾性率は、JIS K7171に準拠し、試験速度2mm/分の条件にて測定した。
(成形体コア面のベタツキ)
 成形体の製造後、型から取り出した直後の成形体のコア面に、未反応モノマー等の液滴が確認された場合、これを「ベタツキがある」とした。
 成形体の製造を10回繰り返した後、最後に製造された成形体のコア面の任意の10mm×10mmの領域10ヵ所につき、目視にて、以下の評価基準でベタツキを評価した。
 〔評価基準〕
優:全領域で液滴がない。
良:1ヵ所以上2ヵ所以下の領域でベタツキがある。
可:3ヵ所以上5ヵ所以下の領域でベタツキがある。
不可:6ヵ所以上の領域でベタツキがある。
(金型表面における樹脂残り)
 成形体の製造を10回繰り返した後、金型を冷却し、金型表面に関して任意の10mm×10mmの領域10ヵ所につき、光学顕微鏡で10倍に拡大して観察し、以下の評価基準で金型表面における樹脂残りを評価した。
〔評価基準〕
優:全ての領域で樹脂残りがない。
良:1ヵ所以上2ヵ所以下の領域で樹脂残りがある。
可:3ヵ所以上5ヵ所以下の領域で樹脂残りがある。
不可:6ヵ所以上の領域で樹脂残りがある。
(製品面の気泡残り)
 成形体の製造を10回繰り返した後、最後に製造された製品(成形体)面の任意の10mm×10mmの領域10ヵ所につき、光学顕微鏡で10倍に拡大して観察し、以下の評価基準で気泡残りを評価した。
〔評価基準〕
優:全領域で気泡が無かった。
良:1ヵ所以上3ヵ所以下の領域で気泡が確認された。
可:4ヵ所以上6ヵ所以下の領域で気泡が確認された。
不可:7ヵ所以上10ヵ所以下の領域で気泡が確認された。
実施例1〔ゲル化促進剤の調製〕
 ジシクロペンタジエン(DCPD)とトリエチルアルミニウム(TEAL)とのモル比(DCPD:TEAL)が5:1となるように両成分を混合して、ノルボルネン系モノマーを重合させる際のゲル化促進剤を調製した。
製造例1〔活性化剤混合液の調製〕
 反応調節剤のジエチレングリコールジメチルエーテル(DG)とDCPDとを混合し、得られた混合物にTEALを添加してさらに混合して、活性化剤混合液1を調製した。なお、混合時のDG、DCPD及びTEALのモル比(DG:DCPD:TEAL)を2:5:1とした。
実施例2〔反応射出成形用配合液(配合液(X))の調製〕
 DCPD90部とトリシクロペンタジエン10部とからなるノルボルネン系モノマーの混合物に、エチレン-プロピレンコポリマー〔プロピレン単位89%、エチレン単位11%〕4.1部を添加して混合し、次いで、最終的に得られる配合液(X中、TEAL濃度が22mmol/kg(0.25%)となるように前記活性化剤混合液1を添加して混合した。さらに、最終的に得られる配合液(X)中、その濃度が1%となるように前記ゲル化促進剤を添加して混合し、配合液(X)を得た。
製造例2〔メタセシス重合触媒を含有する配合液(配合液(Y))の調製〕
 メタセシス重合触媒として六塩化タングステン17部、t-ブタノール1部、ドデシルフェノール14部及びアセチルアセトン9部をトルエン中で混合し、タングステン濃度として11%のメタセシス重合触媒溶液を調製した。
 次いで、前記ノルボルネン系モノマーの混合物に、前記エチレン-プロピレンコポリマー4.1部を溶解させた。この溶液に、さらに、メタセシス重合触媒の濃度が7.6mmol/kgとなるように前記メタセシス重合触媒溶液を添加して混合し、配合液(Y)を得た。
比較例1〔反応射出成形用配合液(配合液(X’))の調製〕
 ゲル化促進剤を添加しないこと以外は実施例2と同様の方法によって、配合液(X’)を調製した。
試験例1
 上記の配合液(X)と配合液(Y)、あるいは配合液(X’)と配合液(Y)を用いて、前記方法に従ってゲルタイムを測定した。結果を表1に示す。
試験例2
 さらに、上記の配合液(X)と配合液(Y)、あるいは配合液(X’)と配合液(Y)を用いて、以下のようにして反応射出成形体を製造した。
 内部に、縦245mm×横210mm×厚さ3mmのキャビティを形成しうる2枚のアルミニウム板からなる反応射出成形用金型を用意し、90℃に加温した。なお、この反応射出成形用金型は、一方のアルミニウム板に反応射出成形用配合液の注入孔を有する構造となっている。
 上記の配合液(X)と配合液(Y)、あるいは配合液(X’)と配合液(Y)を用意し、温度をそれぞれ30℃とした。
 配合液(X)と配合液(Y)とを1:1(質量比)の割合でスタティックミキサーにより混合しながら、注入孔より反応射出成形用金型内に注入し、塊状重合を120秒間行い、型を型開きして脱型することにより、重合硬化したノルボルネン系樹脂からなる成形体1を得た。配合液(X’)と配合液(Y)についても同じ操作を行って、成形体2を得た。成形体1及び成形体2のそれぞれについて、成形体の製造を10回行った。得られたいずれの成形体(ノルボルネン系樹脂)も、その比重は1.04であり、DSC法により測定したガラス転移温度(Tg)は145℃であった。
 成形体1及び成形体2についての硬化時間の測定を上記のように行い、10回の平均を求めてその小数点第一位を四捨五入し、硬化時間(秒)とした。結果を表1に示す。
 次いで、上記で得られた10個の成形体1のうちの任意の5個、及び上記で得られた10個の成形体2のうちの任意の5個について、曲げ強度と曲げ弾性率の測定を行い、それらの平均値を求めた。10回の製造操作後の最後に得られた成形体について、ベタツキ及び気泡残りを上記のようにして評価した。さらに、上記方法において使用した金型について、10回の製造操作後のその表面における樹脂残りの評価を行った。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000010
 表1より、ゲル化促進剤を添加することで、反応性混合液のゲルタイムを16秒から10秒に短くすることができ、その結果、成形体の曲げ強度等の機械強度を維持しつつ、成形体コア面のベタツキが低減し、金型表面の樹脂残り(金型汚れ)や製品面の気泡残りを低減できることが分かる。
 なお、前記配合液(X’)を用いても、当該配合液(X’)、前記配合液(Y)及び前記ゲル化促進剤を前記配合量にて同時に混合した場合には、前記配合液(X)と前記配合液(Y)とを混合した場合と同様の結果が得られた。
 本発明のゲル化促進剤、反応射出成形用配合液及び反応射出成形体の製造方法は、反応射出成形体の製造分野に好適に用いることができる。さらに本発明の反応射出成形体は機械物性に優れ、製品面の仕上がりに優れているので、自動車部品や住宅設備の部材等の用途に好適に使用することができる。

Claims (8)

  1.  タングステンを中心金属とするメタセシス重合触媒の活性化剤とノルボルネン系モノマーの2成分のみを本質的に混合してなる、前記触媒下でのノルボルネン系モノマーの重合によるゲル化を促進させるゲル化促進剤。
  2.  前記活性化剤と前記ノルボルネン系モノマーとの混合割合が、活性化剤1モルに対して、ノルボルネン系モノマーが1~1000モルの範囲である、請求項1に記載のゲル化促進剤。
  3.  タングステンを中心金属とするメタセシス重合触媒下でノルボルネン系モノマーを重合させる反応射出成形用配合液であって、請求項1又は2に記載のゲル化促進剤を含有してなる、反応射出成形用配合液。
  4.  タングステンを中心金属とするメタセシス重合触媒と混合した際のゲルタイムが2秒以上である、請求項3に記載の反応射出成形用配合液。
  5.  請求項3又は4に記載の反応射出成形用配合液と、タングステンを中心金属とするメタセシス重合触媒を含有する配合液とを混合してなる反応性混合液を型内で塊状重合させ、反応射出成形を行う工程を含む、反応射出成形体の製造方法。
  6.  前記タングステンを中心金属とするメタセシス重合触媒を含有する配合液がノルボルネン系モノマーをさらに含有するものである、請求項5に記載の製造方法。
  7.  ノルボルネン系モノマー及び反応調節剤を含む配合液Aと、タングステンを中心金属とするメタセシス重合触媒を含有する配合液Bと、請求項1又は2に記載のゲル化促進剤とを同時に混合してなる反応性混合液を型内で塊状重合させ、反応射出成形を行う工程を含む、反応射出成形体の製造方法。
  8.  請求項5~7のいずれか1項に記載の製造方法により得られる反応射出成形体。
PCT/JP2015/067757 2014-06-27 2015-06-19 ゲル化促進剤 WO2015198992A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020177000197A KR20170023934A (ko) 2014-06-27 2015-06-19 겔화 촉진제
RU2017102309A RU2017102309A (ru) 2014-06-27 2015-06-19 Промотр гелеобразования
CA2951826A CA2951826A1 (en) 2014-06-27 2015-06-19 Gelling promoter
MX2016016689A MX2016016689A (es) 2014-06-27 2015-06-19 Promotor de gelificacion.
US15/321,823 US20170137565A1 (en) 2014-06-27 2015-06-19 Gelling promoter
EP15812572.4A EP3162832A4 (en) 2014-06-27 2015-06-19 Gelling promoter
CN201580033281.3A CN106459384A (zh) 2014-06-27 2015-06-19 凝胶化促进剂
JP2016529548A JPWO2015198992A1 (ja) 2014-06-27 2015-06-19 ゲル化促進剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-132009 2014-06-27
JP2014132009 2014-06-27

Publications (1)

Publication Number Publication Date
WO2015198992A1 true WO2015198992A1 (ja) 2015-12-30

Family

ID=54938076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067757 WO2015198992A1 (ja) 2014-06-27 2015-06-19 ゲル化促進剤

Country Status (9)

Country Link
US (1) US20170137565A1 (ja)
EP (1) EP3162832A4 (ja)
JP (1) JPWO2015198992A1 (ja)
KR (1) KR20170023934A (ja)
CN (1) CN106459384A (ja)
CA (1) CA2951826A1 (ja)
MX (1) MX2016016689A (ja)
RU (1) RU2017102309A (ja)
WO (1) WO2015198992A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105610A (ja) * 1985-11-01 1987-05-16 Nippon Zeon Co Ltd 電子・電気部品の樹脂封止方法
JPH03115322A (ja) * 1989-09-28 1991-05-16 Teijin Hercules Kk メタセシス重合体成形物の製造方法
JPH06228285A (ja) * 1992-08-31 1994-08-16 Nippon Zeon Co Ltd ノルボルネン系ポリマーの製造方法
JP2002121266A (ja) * 2000-10-12 2002-04-23 Sekisui Chem Co Ltd ノルボルネン系モノマーの重合方法
JP2005153265A (ja) * 2003-11-25 2005-06-16 Hitachi Housetec Co Ltd 高分子成形品の製造方法及びその方法により得られた高分子成形品

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4822839A (en) * 1987-11-25 1989-04-18 Hercules Incorporated Polyunsaturated hydrocarbon polymer-compatible antioxidant compositions
JPH07317B2 (ja) * 1988-09-09 1995-01-11 日本ゼオン株式会社 反応射出成形品
US4882401A (en) * 1988-09-28 1989-11-21 Hercules Incorporated Slow gel/cure systems based on dialkylzinc for dicyclopentadiene polymerization
US5015705A (en) * 1988-09-28 1991-05-14 Hercules Incorporated Polymerization feed composition comprising slow gel/cure systems based on dialkylzinc
JP3284699B2 (ja) * 1993-09-30 2002-05-20 日本ゼオン株式会社 ノルボルネン系樹脂成形品製造用反応原液及びノルボルネン系樹脂成形品の製造方法
JP2003025364A (ja) * 2001-07-16 2003-01-29 Nippon Petrochemicals Co Ltd メタセシス重合性モノマーの重合による架橋重合体成形物の製造方法
EP1849832A1 (en) * 2005-02-18 2007-10-31 Rimtec Corporation Norbornene resin molded body and method for manufacturing same
JP2008163105A (ja) 2006-12-27 2008-07-17 Rimtec Kk 配合液、反応射出成形体の製造方法及び反応射出成形体
MX2015008429A (es) * 2012-12-27 2016-04-04 Rimtec Corp Mezcla liquida para moldeo por inyeccion de reaccion, metodo para producir cuerpo moldeado por inyeccion de reaccion, y cuerpo moldeado por inyeccion de reaccion.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62105610A (ja) * 1985-11-01 1987-05-16 Nippon Zeon Co Ltd 電子・電気部品の樹脂封止方法
JPH03115322A (ja) * 1989-09-28 1991-05-16 Teijin Hercules Kk メタセシス重合体成形物の製造方法
JPH06228285A (ja) * 1992-08-31 1994-08-16 Nippon Zeon Co Ltd ノルボルネン系ポリマーの製造方法
JP2002121266A (ja) * 2000-10-12 2002-04-23 Sekisui Chem Co Ltd ノルボルネン系モノマーの重合方法
JP2005153265A (ja) * 2003-11-25 2005-06-16 Hitachi Housetec Co Ltd 高分子成形品の製造方法及びその方法により得られた高分子成形品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3162832A4 *

Also Published As

Publication number Publication date
CN106459384A (zh) 2017-02-22
MX2016016689A (es) 2017-07-11
US20170137565A1 (en) 2017-05-18
EP3162832A4 (en) 2018-04-04
RU2017102309A (ru) 2018-07-30
EP3162832A1 (en) 2017-05-03
KR20170023934A (ko) 2017-03-06
CA2951826A1 (en) 2015-12-30
JPWO2015198992A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
US11066497B2 (en) Liquid formulation for reaction injection molding and manufacturing method thereof
JP5681837B2 (ja) 反応射出成形用配合液、反応射出成形体の製造方法および反応射出成形体
JP5772600B2 (ja) 表面被覆型補強材、反応射出成形用配合液、及び反応射出成形体
JP5563748B2 (ja) 反応射出成形用反応原液、反応射出成形方法及び反応射出成形体
JP5363982B2 (ja) ノルボルネン系モノマー含有反応射出成形用配合液、反応射出成形体の製造方法及び反応射出成形体
JP2008163105A (ja) 配合液、反応射出成形体の製造方法及び反応射出成形体
WO2015198992A1 (ja) ゲル化促進剤
JPWO2007125787A1 (ja) 表面に被覆膜を有する反応射出成形体及びその製造方法
US11597797B2 (en) Liquid blend for reaction injection molding, method for producing reaction injection molded body, and reaction injection molded body
JP3767134B2 (ja) 反応射出成形方法
JP2005271535A (ja) 反応射出成形方法およびそれに用いる反応原液
JP2009029865A (ja) 反応射出成形用配合液、反応射出成形体の製造方法及び反応射出成形体
JP2009072958A (ja) ノルボルネン系樹脂成形体および配合液
JPH0791371B2 (ja) 重合体成型物の製造方法
JPH01213332A (ja) 重合体成型物の製造方法
JP2007009063A (ja) ノルボルネン系樹脂成形体およびその製造方法
JP2007009043A (ja) ノルボルネン系樹脂成形体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15812572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529548

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2951826

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/016689

Country of ref document: MX

REEP Request for entry into the european phase

Ref document number: 2015812572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015812572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15321823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177000197

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016030544

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017102309

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016030544

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20161226