WO2015198980A1 - ナノ材料-ドーパント組成物複合体の製造方法、ナノ材料-ドーパント組成物複合体およびドーパント組成物 - Google Patents

ナノ材料-ドーパント組成物複合体の製造方法、ナノ材料-ドーパント組成物複合体およびドーパント組成物 Download PDF

Info

Publication number
WO2015198980A1
WO2015198980A1 PCT/JP2015/067697 JP2015067697W WO2015198980A1 WO 2015198980 A1 WO2015198980 A1 WO 2015198980A1 JP 2015067697 W JP2015067697 W JP 2015067697W WO 2015198980 A1 WO2015198980 A1 WO 2015198980A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanomaterial
dopant composition
dopant
seebeck coefficient
anion
Prior art date
Application number
PCT/JP2015/067697
Other languages
English (en)
French (fr)
Inventor
斐之 野々口
壯 河合
元博 中野
Original Assignee
国立大学法人奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人奈良先端科学技術大学院大学 filed Critical 国立大学法人奈良先端科学技術大学院大学
Priority to CN201580022883.9A priority Critical patent/CN106463603B/zh
Priority to KR1020167029385A priority patent/KR101965041B1/ko
Priority to EP15811494.2A priority patent/EP3163639B1/en
Priority to JP2016529537A priority patent/JP6340077B2/ja
Priority to US15/313,790 priority patent/US10355190B2/en
Publication of WO2015198980A1 publication Critical patent/WO2015198980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/178Opening; Filling
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/221Carbon nanotubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/10Filled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/744Carbon nanotubes, CNTs having atoms interior to the carbon cage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • Y10S977/751Single-walled with specified chirality and/or electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • Y10S977/846Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes internal modifications, e.g. filling, endohedral modifications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/948Energy storage/generating using nanostructure, e.g. fuel cell, battery

Definitions

  • the present invention relates to a method for producing a nanomaterial-dopant composition composite, a nanomaterial-dopant composition composite, and a dopant composition.
  • thermoelectric conversion elements field effect transistors, sensors, integrated circuits, rectifying elements, solar cells, catalysts, and electroluminescence, etc.
  • elements having flexibility or elements reduced in size and weight have been configured. Therefore, the use of nanomaterials has attracted attention.
  • thermoelectric conversion element is an element used for thermoelectric power generation.
  • thermoelectric power generation electric power is generated by utilizing a potential difference generated in a substance due to a temperature difference.
  • thermoelectric conversion element provided with only one of a thermoelectric conversion material exhibiting p-type conductivity or a thermoelectric conversion material exhibiting n-type conductivity is used, heat is released from the terminal on the high temperature side, resulting in good power generation efficiency. Absent. FIG.
  • FIG. 1 is a schematic diagram showing a bipolar thermoelectric conversion element using an n-type conductive thermoelectric conversion material (n-type material) and a p-type conductive thermoelectric conversion material (p-type material).
  • n-type material n-type conductive thermoelectric conversion material
  • p-type material p-type conductive thermoelectric conversion material
  • Patent Document 1 and Non-Patent Document 1 disclose thermoelectric conversion materials containing carbon nanotubes.
  • the carbon nanotubes utilized in the techniques described in Patent Document 1 and Non-Patent Document 1 are nanomaterials mainly exhibiting p-type conductivity. As described above, many nanomaterials exhibit p-type conductivity. Therefore, a technique for converting a nanomaterial exhibiting p-type conductivity into a nanomaterial exhibiting n-type conductivity is required.
  • the polarity of the nanomaterial (whether the nanomaterial exhibits p-type conductivity or n-type conductivity) can be determined by the sign of the Seebeck coefficient. That is, it can be said that the technique of changing the polarity of the nanomaterial is a technique of changing the Seebeck coefficient.
  • Non-Patent Documents 2 and 3 For example, research has been conducted on converting carbon nanotubes exhibiting p-type conductivity into carbon nanotubes exhibiting n-type conductivity. So far, it has been reported that p-type conductive carbon nanotubes can be converted to n-type conductive carbon nanotubes by nitrogen atom exchange or alkali metal doping (for example, see Non-Patent Documents 2 and 3).
  • Non-Patent Documents 4 and 5 disclose that p-type conductive carbon nanotubes can be converted to n-type conductive carbon nanotubes by doping polyethyleneimine into carbon nanotubes. Further, it has been reported that benzyl viologen, ammonium and nicotinamide can be used as a dopant capable of converting p-type conductive carbon nanotubes into n-type conductive carbon nanotubes (see Non-Patent Document 6 and Patent Documents 2 and 3). ).
  • Non-Patent Document 7 needs to use a dopant that is somewhat expensive. Furthermore, the technique described in Non-Patent Document 7 requires the use of an organic solvent and is limited to being applied to single-walled carbon nanotubes. Therefore, a simpler and more efficient method for producing an n-type conductive nanomaterial is desired.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a method for changing the value of the Seebeck coefficient of a nanomaterial simply and efficiently.
  • anions can be widely used as dopants, and that the anions are efficiently obtained by capturing cations that are counterions of the anions using a scavenger. I found out that it can be doped.
  • the present inventors have clarified that the Seebeck coefficient of a nanomaterial can be easily and efficiently changed by using the anion as a dopant.
  • the method for producing a nanomaterial-dopant composition composite according to the present invention includes a contact step of bringing a dopant composition for changing the Seebeck coefficient of the nanomaterial into contact with the nanomaterial in a solvent,
  • the dopant composition contains an anion, a cation, and a scavenger that traps the cation.
  • the dopant composition according to the present invention is a dopant composition for changing the Seebeck coefficient of the nanomaterial, and contains an anion, a cation, and a scavenger for capturing the cation.
  • the method for producing a nanomaterial-dopant composition composite according to the present invention includes a contact step of bringing a dopant composition for changing the Seebeck coefficient of the nanomaterial into contact with the nanomaterial in a solvent.
  • the composition contains an anion, a cation, and a scavenger that traps the cation.
  • the value of the Seebeck coefficient of the nanomaterial can be changed simply and efficiently.
  • FIG. 3 is a graph showing Seebeck coefficients of carbon nanotube (CNT) films obtained in Examples 1 to 3 and Comparative Examples 1 to 4.
  • FIG. 5 is a graph showing Seebeck coefficients of CNT films obtained in Examples 4 to 11 and Comparative Examples 5 to 12.
  • the method for producing a nanomaterial-dopant composition composite (hereinafter, also referred to as “the production method of the present invention”) is a method in which a dopant composition for changing the Seebeck coefficient of a nanomaterial is nanocrystallized in a solvent. A contact step of contacting the material.
  • nanomaterial means a substance having a dimension in at least one direction of nanoscale (for example, 100 nm or less), and is a substance used as an electronic material, for example.
  • the nanomaterial may be a low-dimensional nanomaterial.
  • “low dimension” intends a dimension smaller than three dimensions. That is, in the present specification, “low dimension” means zero dimension, one dimension, or two dimensions.
  • “low-dimensional nanomaterial” intends a nanomaterial that can substantially define a three-dimensional structure in “low-dimension”.
  • Examples of zero-dimensional nanomaterials include nanoparticles (quantum dots).
  • Examples of the one-dimensional nanomaterial include nanotubes, nanowires, and nanorods.
  • An example of the two-dimensional nanomaterial is a nanosheet.
  • the nanomaterial may be a nanomaterial containing at least one selected from the group consisting of carbon, semiconductor, metalloid and metal.
  • the nanomaterial may be a nanomaterial made of at least one selected from the group consisting of carbon, semiconductor, metalloid and metal.
  • examples of the nanomaterial made of carbon include carbon nanotubes and graphene (that is, nanosheets made of carbon). In the present specification, the carbon nanotube may be referred to as “CNT”.
  • Examples of the semiconductor include iron silicide, sodium cobaltate, and antimony telluride.
  • Examples of the semimetal include tellurium, boron, germanium, arsenic, antimony, selenium, and graphite.
  • Examples of the metal include gold, silver, copper, platinum, and nickel.
  • the nanotube and the nanosheet may have a single-layer structure or a multilayer structure (two-layer, three-layer, four-layer, or more layers).
  • the nanotube may be composed of carbon.
  • the single-walled carbon nanotube may be referred to as SWNT (single-wall carbon-nanotube)
  • the multi-walled carbon nanotube may be referred to as MWNT (multi-wall carbon-nanotube).
  • the dopant composition intends the composition containing a dopant.
  • a dopant intends the substance which changes the Seebeck coefficient of the material used as the object by which the said dopant is doped.
  • the material used as the object doped is the above-mentioned nanomaterial.
  • the Seebeck coefficient is the ratio of the open circuit voltage to the temperature difference between the high-temperature junction and the low-temperature junction of the circuit showing the Seebeck effect (from “Maglow Hill Science and Technology Terms Dictionary 3rd edition”).
  • the Seebeck coefficient can be an index for determining the polarity of an electronic material such as a nanomaterial. Specifically, for example, a nanomaterial having a positive Seebeck coefficient has p-type conductivity. On the other hand, the nanomaterial whose Seebeck coefficient has a negative value has n-type conductivity.
  • the Seebeck coefficient can be measured using, for example, a Seebeck effect measuring apparatus (manufactured by MMR) used in Examples described later.
  • a “dopant (or dopant composition) that changes the Seebeck coefficient of a nanomaterial” means that the value of the Seebeck coefficient of a nanomaterial doped with such a dopant (or dopant composition) is compared with that before doping.
  • a dopant (or a dopant composition) that can be reduced by the process, or a dopant that can change the value of the Seebeck coefficient of a nanomaterial doped with such a dopant (or dopant composition) from a positive value to a negative value (or A dopant composition) is contemplated.
  • a dopant that can change the value of the Seebeck coefficient of a nanomaterial from a positive value to a negative value may be particularly referred to as an n-type dopant.
  • the dopant is an n-type dopant
  • the nanomaterial-dopant composition composite obtained by the production method of the present invention can be made n-type conductive. It is preferable that the nanomaterial-dopant composition composite has n-type conductivity because the nanomaterial-dopant composition composite can be used as an n-type material in a bipolar device.
  • the production method of the present invention is characterized in that the dopant composition contains an anion as a dopant.
  • Anions change the nanomaterial carrier from holes to electrons.
  • the dopant composition changes the Seebeck coefficient of the nanomaterial.
  • anionic hydroxy ion (OH -), alkoxy ion (CH 3 O -, CH 3 CH 2 O -, i-PrO -, and, t-BuO -, etc.
  • Chioion SH -
  • alkylthio ion CH 3 S ⁇ , C 2 H 5 S ⁇ etc.
  • cyanuric ion CN ⁇ ), I ⁇ , Br ⁇ , Cl ⁇ , carboxy ion (CH 3 COO ⁇ etc.), NO 3 ⁇ , BF 4 ⁇ , ClO 4 ⁇ , TfO ⁇ and Tos ⁇ and the like.
  • anions include OH ⁇ , CH 3 O ⁇ , CH 3 CH 3 O ⁇ , i-PrO ⁇ , t-BuO ⁇ , SH ⁇ , CH 3 S ⁇ , C 2 H 5 S ⁇ , CN ⁇ , I -, Br -, Cl - and CH 3 COO - it is preferably at least one selected from the group consisting of, OH - and CH 3 O - and more preferably at least one of. According to the anion, the Seebeck coefficient of the nanomaterial can be changed efficiently.
  • the anion acts as a dopant is that the anion has an unshared electron pair. It is speculated that the anion interacts with the nanomaterial to be doped through the unshared electron pair or induces a chemical reaction with the nanomaterial to be doped. Also, the examples described below suggest the importance of the Lewis basicity, intermolecular force and dissociation properties of the dopant in the efficiency of doping. In the present specification, “Lewis basic” means the property of donating an electron pair. It is considered that a dopant having strong Lewis basicity has a greater influence on the change in the Seebeck coefficient. Moreover, it is thought that the intermolecular force of the dopant is also related to the adsorptivity of the dopant to the nanomaterial. Examples of the intermolecular force of the dopant include hydrogen bonding, CH- ⁇ interaction, and ⁇ - ⁇ interaction. The dissociation property of the dopant will be described later.
  • anions that form weak hydrogen bonds are preferred.
  • the anion that forms a weak hydrogen bond include OH ⁇ , CH 3 O ⁇ , CH 3 CH 2 O ⁇ , i-PrO ⁇ , and t-BuO ⁇ .
  • the anion is preferably an anion that causes a ⁇ - ⁇ interaction.
  • the anion produces a [pi-[pi interactions, for example, CH 3 COO - and the like.
  • the dopant composition contains an anion, a cation, and a scavenger that traps the cation. Therefore, the anion can be dissociated by capturing the cation by the capturing agent. And the dissociated anion can be efficiently doped into the nanomaterial in a solvent.
  • the dopant composition may contain a compound that generates an anion and a cation by dissociation in a solvent.
  • Examples of the cation include metal ions.
  • Examples of metal ions include typical metal ions and transition metal ions.
  • the metal ions are, for example, lithium ions, sodium ions, potassium ions, rubidium ions, cesium ions, francium ions, beryllium ions, magnesium ions, calcium ions, strontium ions, barium ions, radium ions, or scandium ions. May be.
  • a substance having the ability to take up cations can be used, and is not particularly limited.
  • a general ion adsorbent can be used.
  • the ion adsorbent include organic ligands when the cation is a metal ion.
  • the “organic ligand” means a compound that forms a coordinate bond with a metal ion.
  • the organic ligand is a compound having a coordination unit for a metal ion.
  • the organic ligand may contain at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, and a phosphorus atom as a coordination atom.
  • the organic ligand may be a monodentate organic ligand (ie, a compound having one coordination unit), or a multidentate organic ligand (ie, a compound having two or more coordination units) ).
  • the organic ligand is preferably a multidentate organic ligand.
  • the multidentate organic ligand include cyclodextrin, crown ether, azacrown ether, ethylenediaminetetraacetic acid, calixarene, porphyrin, phthalocyanine, salen, and derivatives thereof. Of these, ethylenediaminetetraacetic acid is preferably used as the organic ligand in the aqueous solution, and crown ether is preferably used as the organic ligand in the organic solvent.
  • n is an integer of 1 or more.
  • n is an integer of 1 or more.
  • Z is the metal ion described above.
  • X ⁇ is the above-mentioned anion. From the above formula (II), it can be seen that anion can be dissociated by using crown ether.
  • crown ethers include crown ethers represented by the following formulas (a) to (c).
  • the above formula (a) is 12-crown-4.
  • the above formula (b) is 15-crown-5.
  • the above formula (c) is 18-crown-6.
  • the crown ether used as the scavenger may be selected according to the size of the metal ion to be captured. For example, when the metal ion is a potassium ion, 18-crown-6 is preferred, when the metal ion is a sodium ion, 15-crown-5 is preferred, and when the metal ion is a lithium ion, 12-crown is preferred. -4 is preferred.
  • Examples of complexes formed by the incorporation of metal ions in the compound by crown ether include complexes represented by the following formulas (d) to (f).
  • 12-crown-4 is a complex formed by incorporating lithium ions derived from lithium hydroxide.
  • the above formula (e) is a complex formed by 15-crown-5 taking in sodium ions derived from sodium hydroxide.
  • the above formula (f) is a complex formed by 18-crown-6 taking in potassium ions derived from potassium hydroxide.
  • crown ether to the solvent so that the molar ratio of metal ions to crown ether is 1: 1.
  • dissociation is important in addition to the Lewis basicity and intermolecular force of the dopant.
  • the dopant is preferably one that dissociates more anions. Therefore, the dissociation constant of a compound that generates an anion and a cation by dissociating in a solvent is important.
  • the dissociation constant pKa of the compound is preferably 7 or more, and more preferably 14 or more.
  • the dopant composition of the present invention may contain substances other than the above-described anions, cations, and scavengers as necessary. Such a substance is not particularly limited as long as it does not inhibit the function of the dopant.
  • the dopant composition of the present invention may contain a plurality of types of dopants.
  • a composite of the nanomaterial and the dopant composition is brought into contact with the nanomaterial by contacting a dopant composition for changing the Seebeck coefficient of the nanomaterial in a solvent. (Composite composite).
  • the nanomaterial and the dopant composition can be brought into contact with each other, and the method is not particularly limited.
  • the nanomaterial is added and suspended in a solution in which the dopant composition is dissolved in a solvent.
  • the two can be brought into contact with each other.
  • the nanomaterial is impregnated with a solution obtained by dissolving the dopant composition in the solvent, or the dopant composition is dissolved in the solvent. It is preferable that the nanomaterial and the dopant composition are brought into contact with each other by shear-dispersing the nanomaterial in a solution.
  • the dopant composition is easily brought into contact with the nanomaterial, and as a result, the dopant composition and the nanomaterial can be sufficiently brought into contact with each other.
  • the homogenizer is not particularly limited as long as it can uniformly disperse the nanomaterial in the solution.
  • known means such as a homogenizer and an ultrasonic homogenizer can be used.
  • homogenizer when it only describes with “homogenizer”, “stirring homogenizer” is intended.
  • the operating conditions of the homogenizer are not particularly limited as long as the nanomaterial can be dispersed in the solution.
  • a homogenizer when a homogenizer is used as a homogenizer, the solution to which the nanomaterial and the dopant composition are added is suspended for 10 minutes at a homogenizer stirring speed (number of rotations) of 20000 rpm at room temperature (23 ° C.). Can disperse the nanomaterial in the solution.
  • the solvent for dissolving the dopant composition may be, for example, water or an organic solvent. Therefore, the production method of the present invention can be applied to various nanomaterials.
  • organic solvents include alcohols (for example, methanol, ethanol, or isopropyl alcohol), ketones (for example, acetone, methyl ethyl ketone, or methyl isobutyl ketone), dimethyl sulfoxide, or dimethylformamide. Although it can be used, the present invention is not limited to these.
  • the concentration at which the dopant composition is dissolved in the solvent may be any concentration.
  • the concentrations of sodium hydroxide and 15-crown-5 in methanol may each be 0.001 mol / L or more.
  • the dopant in the production method of the present invention is an anion. Anions are easier to obtain and less expensive than conventional dopants.
  • As the solvent both an aqueous solvent and an organic solvent can be used. By using these solvents, it can be applied to various nanomaterials. Furthermore, the manufacturing method of the present invention does not require complicated steps such as heating. Therefore, a nanomaterial-dopant composition composite can be produced simply and efficiently. Therefore, according to the manufacturing method of the present invention, the Seebeck coefficient of the nanomaterial can be changed easily and efficiently.
  • the production method of the present invention may include a molding step of molding the nanomaterial or the nanomaterial-dopant composition complex into a desired shape.
  • the nanomaterial or nanomaterial-dopant composition composite may be molded into a film.
  • the “film form” is also referred to as a sheet form or a film form. “Molding into a film” is intended to mold the nanomaterial or nanomaterial-dopant composition complex into a film having a thickness of 1 ⁇ m to 1000 ⁇ m.
  • the method for forming the nanomaterial or nanomaterial-dopant composition composite into a film is not particularly limited, and examples thereof include a method using a membrane filter. Specifically, the suspension of the nanomaterial or nanomaterial-dopant composition composite is suction filtered using a membrane filter having a pore size of 0.1 to 2 ⁇ m, and the resulting membrane is vacuum-treated for 50 to By drying at 150 ° C. for 1 to 24 hours, it can be formed into a film.
  • the nanomaterial may be molded before the contacting step, or the nanomaterial-dopant composition composite that has undergone the contacting step may be molded.
  • a dopant composition can fully be made to adsorb
  • a film-like material in which the nanomaterial inside the film is more uniformly doped can be obtained.
  • the Seebeck effect can be offset.
  • the nanomaterial-dopant composition composite according to the present invention includes the nanomaterial and the dopant composition described above. It is manufactured by the manufacturing method.
  • the nanomaterial-dopant composition composite of the present invention contains a nanomaterial and a dopant composition for changing the Seebeck coefficient of the nanomaterial, and the dopant composition includes an anion and A cation and a scavenger for capturing the cation. Note that the description of the matters already described in the above [Method for producing nanomaterial-dopant composition composite] is omitted.
  • the nanomaterial-dopant composition composite of the present invention preferably exhibits n-type conductivity. If the nanomaterial-dopant composition composite has n-type conductivity, the nanomaterial-dopant composition composite can be used as an n-type material in a bipolar device.
  • the nanomaterial-dopant composition composite of the present invention may contain substances other than the nanomaterial and the dopant composition, and the types of substances other than those described above are not limited.
  • the present invention can also be configured as follows.
  • the method for producing a nanomaterial-dopant composition composite according to the present invention includes a contact step of bringing a dopant composition for changing the Seebeck coefficient of the nanomaterial into contact with the nanomaterial in a solvent,
  • the dopant composition is characterized by containing an anion, a cation, and a scavenger for capturing the cation.
  • the anion and the cation are dissociated from each other by capturing the cation which is a counter ion of the anion by the scavenger, and the anion can be efficiently doped into the nanomaterial.
  • the anion changes the carrier of the nanomaterial from holes to electrons.
  • the dopant composition changes the Seebeck coefficient of the nanomaterial.
  • anions are contained in various compounds, they can be easily obtained. Furthermore, since anions are in the form of ions, they can be used in both aqueous and organic solvents. Further, there is no need to perform an operation such as heating. Furthermore, the dopant composition can be doped to various nanomaterials.
  • the value of the Seebeck coefficient of the nanomaterial can be changed easily and efficiently.
  • the anion includes OH ⁇ , CH 3 O ⁇ , CH 3 CH 2 O ⁇ , i-PrO ⁇ , t-BuO ⁇ , SH ⁇ , CH It may be at least one selected from the group consisting of 3 S ⁇ , C 2 H 5 S ⁇ , CN ⁇ , I ⁇ , Br ⁇ , Cl ⁇ and CH 3 COO ⁇ .
  • the cation may be a metal ion
  • the scavenger may be an organic ligand
  • the nanomaterial may be at least one selected from the group consisting of nanoparticles, nanotubes, nanowires, nanorods, and nanosheets.
  • the nanomaterial in the contact step, is impregnated with a solution obtained by dissolving the dopant composition in a solvent, or the dopant composition
  • the nanomaterial and the dopant composition may be brought into contact by shearing and dispersing the nanomaterial in a solution in which an object is dissolved in a solvent.
  • the anion may be an n-type dopant.
  • the nanomaterial-dopant composition composite according to the present invention is characterized by being manufactured by the method for manufacturing a nanomaterial-dopant composite according to the present invention.
  • the dopant composition according to the present invention is a dopant composition for changing the Seebeck coefficient of a nanomaterial, and is characterized by containing an anion, a cation, and a scavenger for capturing the cation. .
  • the anion includes OH ⁇ , CH 3 O ⁇ , CH 3 CH 3 O ⁇ , i-PrO ⁇ , t-BuO ⁇ , SH ⁇ , CH 3 S ⁇ , C 2 H 5. It may be at least one selected from the group consisting of S ⁇ , CN ⁇ , I ⁇ , Br ⁇ , Cl ⁇ and CH 3 COO ⁇ .
  • the cation may be a metal ion
  • the scavenger may be an organic ligand
  • the anion may be an n-type dopant.
  • the nanomaterial-dopant composition composite according to the present invention may contain a nanomaterial and the dopant composition according to the present invention.
  • Non-Patent Document 6 It has not been known so far that the Seebeck coefficient of nanomaterials can be changed using ions, and the present inventors have discovered for the first time.
  • the benzyl viologen described in Non-Patent Document 6 is an ionic substance, but the technique described in Non-Patent Document 6 uses a reduced benzyl viologen (that is, a benzyl viologen that is not in an ionic form). It is a feature.
  • FIGS. 2 and 3 An embodiment of the present invention will be described with reference to FIGS. 2 and 3 as follows.
  • KOH was used as a compound that generates hydroxy ions.
  • a 5 mg bundle of carbon nanotubes was added to 20 mL of methanol in which 0.1 M KOH and 0.1 M 18-crown-6 were dissolved.
  • the obtained mixture was subjected to shear dispersion with a high-speed homogenizer (manufactured by Ultra Tarrax) at 20000 rpm for 10 minutes.
  • the obtained carbon nanotube dispersion was subjected to suction filtration using a Teflon (registered trademark) membrane filter having a pore diameter of 0.2 ⁇ m.
  • the filter was further dried under reduced pressure for 12 hours, and then the carbon nanotube film was peeled off from the membrane filter.
  • the Seebeck coefficient of the obtained film was measured using a Seebeck effect measuring device SB-200 (manufactured by MMR technologies). Evaluation was performed at 310K (display temperature of Seebeck effect measuring device).
  • the single-walled carbon nanotubes (hereinafter also referred to as SGCNT) manufactured by the National Institute of Advanced Industrial Science and Technology and the single-walled carbon nanotubes (hereinafter also referred to as KHCNT) manufactured by KH Chemicals were used as the carbon nanotubes.
  • films were prepared.
  • the obtained film is also referred to as a CNT film.
  • Example 2 A CNT film was prepared in the same manner as in Example 1 except that NaOH was used instead of KOH and 15-crown-5 was used instead of 18-crown-6, and the Seebeck coefficient was measured.
  • Example 3 A CNT film was prepared in the same manner as in Example 1 except that LiOH was used instead of KOH and 12-crown-4 was used instead of 18-crown-6, and the Seebeck coefficient was measured.
  • Example 1 A CNT film was prepared in the same manner as in Example 1 except that KOH and 18-crown-6 were not added, and the Seebeck coefficient was measured.
  • Example 1 The results of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in FIG.
  • the polarity of the carbon nanotube can be determined based on whether the Seebeck coefficient is positive or negative. It can be seen from Comparative Example 1 that the undoped CNT film exhibits p-type conductivity. Further, in Comparative Examples 2 to 4 in which no crown ether was added, as in Comparative Example 1, the CNT film exhibited p-type conductivity. On the other hand, as shown in Examples 1 to 3, when crown ether was used, the CNT film exhibited n-type conductivity.
  • the value of the Seebeck coefficient can be changed in the CNT film produced by the production method of the present invention as compared with the untreated CNT film not doped. Moreover, it has also confirmed that a hydroxy ion can be used as a dopant. Furthermore, in the production method of the present invention, when crown ether was used, the value of the Seebeck coefficient of the CNT film could be changed more greatly. This confirmed that the value of the Seebeck coefficient can be changed from positive to negative.
  • Example 4 A CNT film was produced in the same manner as in Example 2 except that NaSH was used instead of NaOH, and the Seebeck coefficient was measured.
  • Example 5 A CNT film was produced in the same manner as in Example 2 except that NaI was used instead of NaOH, and the Seebeck coefficient was measured.
  • Example 6 A CNT film was prepared in the same manner as in Example 2 except that NaBr was used instead of NaOH, and the Seebeck coefficient was measured.
  • Example 7 A CNT film was prepared in the same manner as in Example 2 except that NaCl was used instead of NaOH, and the Seebeck coefficient was measured.
  • Example 8 A CNT film was prepared in the same manner as in Example 2 except that NaOMe (sodium methoxide) was used instead of NaOH, and the Seebeck coefficient was measured.
  • NaOMe sodium methoxide
  • Example 9 A CNT film was prepared in the same manner as in Example 2 except that NaOEt (sodium ethoxide) was used instead of NaOH, and the Seebeck coefficient was measured.
  • NaOEt sodium ethoxide
  • Example 10 A CNT film was produced in the same manner as in Example 2 except that NaOBu (sodium butoxide) was used instead of NaOH, and the Seebeck coefficient was measured.
  • NaOBu sodium butoxide
  • Example 11 A CNT film was prepared in the same manner as in Example 2 except that CH 3 COONa was used instead of NaOH, and the Seebeck coefficient was measured.
  • Example 11 A CNT film was prepared in the same manner as in Example 10 except that only NaOBu was used without adding 15-crown-5, and the Seebeck coefficient was measured.
  • Example 12 A CNT film was prepared in the same manner as in Example 11 except that only CH 3 COONa was used without adding 15-crown-5, and the Seebeck coefficient was measured.
  • Example 4 to 11 and Comparative Examples 5 to 12 are shown in FIG. Similar to the CNT film of Comparative Example 1, the CNT films of Comparative Examples 6 to 12 exhibited p-type conductivity. On the other hand, as shown in Examples 4 to 11, when crown ether was used, the CNT film exhibited n-type conductivity.
  • Example 4 When Example 4 is compared with Examples 1 to 3 described above, the effect of changing the Seebeck coefficient is OH ⁇ ⁇ SH ⁇ . Further, when Examples 5 to 7 are compared, the effect of changing the Seebeck coefficient in the order of I ⁇ ⁇ Br ⁇ ⁇ Cl ⁇ is greater. This result suggests the importance of Lewis basicity.
  • the CNT film produced by the production method of the present invention has a Seebeck coefficient in comparison with an untreated CNT film. It was confirmed that the value of can be changed. Furthermore, when crown ether was used in the production method of the present invention, it was confirmed that the value of the Seebeck coefficient of the CNT film can be changed more greatly, and the value of the Seebeck coefficient can be changed from positive to negative. From these results, it is considered that a virtually unlimited number of anions can be applied.
  • the doped nanomaterial can be a tool for constructing various devices such as a field effect transistor, a thermoelectric conversion element, and a solar cell
  • the present invention can be used in various industries using the nanomaterial.

Abstract

 簡便かつ効率よく、ナノ材料のゼーベック係数の値を変化させることができる、ナノ材料-ドーパント組成物複合体の製造方法を提供する。本発明の製造方法は、ドーパント組成物を溶媒中にてナノ材料に接触させる接触工程を包含しており、上記ドーパント組成物は、アニオンと、カチオンと、捕捉剤とを含有している。

Description

ナノ材料-ドーパント組成物複合体の製造方法、ナノ材料-ドーパント組成物複合体およびドーパント組成物
 本発明は、ナノ材料-ドーパント組成物複合体の製造方法、ナノ材料-ドーパント組成物複合体およびドーパント組成物に関する。
 近年、熱電変換素子、電界効果トランジスタ、センサー、集積回路、整流素子、太陽電池、触媒、および、エレクトロルミネッセンス等の分野で、柔軟性を備えた素子、または、小型軽量化された素子を構成するためにナノ材料の利用が注目されている。
 ここで、上記分野では、通常、p型導電性を示す材料およびn型導電性を示す材料の両方を備えた双極型素子を用いることが好ましい。例えば、熱電変換素子は、熱電発電に用いられる素子である。熱電発電では、温度差によって物質内に生じる電位差を利用することにより、発電を行う。p型導電性を示す熱電変換材料またはn型導電性を示す熱電変換材料のいずれか一方のみを備えた熱電変換素子を用いた場合は、高温側の端子から熱が逃げるため、発電効率が良くない。図1は、n型導電性の熱電変換材料(n型材料)とp型導電性の熱電変換材料(p型材料)とを用いた双極型熱電変換素子を示す模式図である。双極型熱電変換素子を用いた場合、n型導電性の熱電変換材料とp型導電性の熱電変換材料とを直列につなぐことにより、効率的に発電することができる。
 ところで、特許文献1および非特許文献1には、カーボンナノチューブを含有している熱電変換材料が開示されている。特許文献1および非特許文献1に記載の技術において利用されているカーボンナノチューブは、主にp型導電性を示すナノ材料である。このようにナノ材料にはp型導電性を示すものが多い。そのため、p型導電性を示すナノ材料を、n型導電性を示すナノ材料に変換する技術が求められている。なお、ナノ材料が示す極性(ナノ材料が、p型導電性を示すか、n型導電性を示すか)は、ゼーベック係数の正負により判別することができる。つまり、ナノ材料の極性を変換する技術は、ゼーベック係数を変化させる技術であるともいえる。
 例えば、p型導電性を示すカーボンナノチューブを、n型導電性を示すカーボンナノチューブへと変換することが研究されている。これまでに、窒素原子交換やアルカリ金属ドーピングなどによって、p型導電性カーボンナノチューブをn型導電性カーボンナノチューブに変換できることが報告されている(例えば、非特許文献2および3参照)。
 また、非特許文献4および5には、ポリエチレンイミンをカーボンナノチューブにドーピングすることによって、p型導電性カーボンナノチューブをn型導電性カーボンナノチューブに変換できることが開示されている。また、ベンジルビオロゲン、アンモニウムおよびニコチンアミドについても、p型導電性カーボンナノチューブをn型導電性カーボンナノチューブに変換できるドーパントとして使用できることが報告されている(非特許文献6、並びに特許文献2および3参照)。
 また、本発明者らは、いくつかのドーパントがp型導電性単層カーボンナノチューブをn型導電性単層カーボンナノチューブに変換できること、及び、これらのドーパントが特定の範囲のHOMO準位を有することを見出した(非特許文献7参照)。
国際公開第2013/065631号パンフレット(2013年5月10日公開) 米国特許第8,603,836号明細書(2013年12月10日登録) 日本国公開特許公報「特開2009-292714号(2009年12月17日公開)」
K. Suemori et al., Appl. Phys. Lett., 2013, 103, 153902. R. Czerw et al, Nano Lett., 2001, VOL. 1, NO. 9, 457-460. R. S. Lee et al.,Nature,2001, VOL. 388, 255-257. M. Shim et al., J. Am. Chem. Soc., 2001, 123, 11512-11513. Y. Ryu et al, Carbon, 2011, 49, 4745-4751. S. M. Kim et al., J. Am. Chem. Soc., 2009, 131, 327-331. Y. Nonoguchi et al., Sci. Rep., 2013, 3, 3344.
 しかしながら、上記の背景技術によれば、ナノ材料のゼーベック係数を変化させる方法は未だ体系化されていない。つまり、p型導電性ナノ材料をn型導電性ナノ材料へと変換するいくつかのドーパント(n型ドーパント)が報告されてはいるものの、これら公知のドーパントと性質または構造が類似している物質は、必ずしも、公知のドーパントと同様にn型ドーパントになるとは限らない。このため、新規ドーパントの開発には試行錯誤を伴う方法を採用せざるを得ない。このような試行錯誤を伴う方法は、新規ドーパントを開発するまでに多大な費用、時間および労力を必要とし、極めて非効率的である。
 また、従来のn型導電性カーボンナノチューブの製造方法では、例えば、加熱(例えば、特許文献3)等を行う必要があるので、操作が簡便ではない。そのため、n型導電性カーボンナノチューブを大量に生産することは容易ではない。また、非特許文献7に記載の技術は、ある程度高価なドーパントを利用する必要がある。さらに非特許文献7に記載の技術は、有機溶媒を使用することが必要であり、かつ単層カーボンナノチューブに適用することに限定されている。よって、より簡便かつ効率のよい、n型導電性ナノ材料の製造方法が望まれている。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、簡便かつ効率よく、ナノ材料のゼーベック係数の値を変化させる方法を提供することにある。
 本発明者らは上記課題を解決するために鋭意検討した結果、アニオンが広くドーパントとして使用可能であること、および、捕捉剤を用いてアニオンの対イオンであるカチオンを捕捉することによりアニオンを効率的にドープできること、を独自に見出した。本発明者らは、当該アニオンをドーパントとして使用することにより、簡便かつ効率よくナノ材料のゼーベック係数を変化させることができることを明らかにした。
 すなわち、本発明に係るナノ材料-ドーパント組成物複合体の製造方法は、ナノ材料のゼーベック係数を変化させるためのドーパント組成物を溶媒中にてナノ材料に接触させる接触工程を包含しており、上記ドーパント組成物は、アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有している。
 また、本発明に係るドーパント組成物は、ナノ材料のゼーベック係数を変化させるためのドーパント組成物であって、アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有している。
 本発明に係るナノ材料-ドーパント組成物複合体の製造方法は、ナノ材料のゼーベック係数を変化させるためのドーパント組成物を溶媒中にてナノ材料に接触させる接触工程を包含しており、上記ドーパント組成物は、アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有している。
 それゆえ、簡便かつ効率よく、ナノ材料のゼーベック係数の値を変化させることができる。
n型材料とp型材料とを備える双極型熱電変換素子の一例を示した模式図である。 実施例1~3および比較例1~4において得られたカーボンナノチューブ(CNT)フィルムのゼーベック係数を示した図である。 実施例4~11および比較例5~12において得られたCNTフィルムのゼーベック係数を示した図である。
 以下、本発明の実施の形態の一例について詳細に説明するが、本発明は、これに限定されない。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。
 〔ナノ材料-ドーパント組成物複合体の製造方法〕
 本発明に係るナノ材料-ドーパント組成物複合体の製造方法(以下では、「本発明の製造方法」ともいう)は、ナノ材料のゼーベック係数を変化させるためのドーパント組成物を溶媒中にてナノ材料に接触させる接触工程を包含している。
 <ナノ材料>
 本明細書において、「ナノ材料」とは、少なくとも1つの方向の寸法がナノスケール(例えば100nm以下)の物質を意味し、例えば電子材料等として用いられる物質である。
 上記ナノ材料は、低次元ナノ材料であってもよい。本明細書において、「低次元」とは、3次元よりも小さい次元を意図する。すなわち、本明細書において、「低次元」とは、0次元、1次元、または、2次元を意図する。そして、本明細書において「低次元ナノ材料」とは、「低次元」にて立体構造を略規定し得るナノ材料を意図する。
 0次元のナノ材料としては、例えば、ナノ粒子(量子ドット)が挙げられる。1次元のナノ材料としては、例えば、ナノチューブ、ナノワイヤ、ナノロッドが挙げられる。2次元のナノ材料としては、例えばナノシートが挙げられる。
 上記ナノ材料は、炭素、半導体、半金属および金属からなる群より選択される少なくとも1つ以上を含んでいるナノ材料であってもよい。上記ナノ材料は、炭素、半導体、半金属および金属からなる群より選択される少なくとも1つ以上からなるナノ材料であってもよい。例えば、炭素からなるナノ材料としては、カーボンナノチューブおよびグラフェン(すなわち、炭素からなるナノシート)等が挙げられる。本明細書においては、カーボンナノチューブを「CNT」と称する場合もある。
 半導体としては、ケイ素化鉄、コバルト酸ナトリウム、および、テルル化アンチモン等が挙げられる。半金属としては、テルル、ホウ素、ゲルマニウム、ヒ素、アンチモン、セレン、および、グラファイト等が挙げられる。金属としては、金、銀、銅、白金、および、ニッケル等が挙げられる。
 上記ナノチューブおよび上記ナノシートは、単層、または多層(二層、三層、四層、またはそれよりも多層)の構造を有していてもよい。上記ナノチューブは炭素から構成されていてもよく、本明細書においては、単層カーボンナノチューブをSWNT(single-wall carbon nanotube)、多層カーボンナノチューブをMWNT(multi-wall carbon nanotube)と称する場合もある。
 <ドーパント組成物>
 本明細書において、ドーパント組成物とは、ドーパントを含有する組成物を意図している。また、本明細書において、ドーパントとは、当該ドーパントがドープされる対象となる材料のゼーベック係数を変化させる物質を意図している。そして、本発明の製造方法において、ドープされる対象となる材料とは、上述のナノ材料である。
 ゼーベック係数とは、ゼーベック効果を示す回路の、高温接合点と低温接合点の間の温度差に対する、開放回路電圧の比をいう(「マグローヒル科学技術用語大辞典 第3版」より)。ゼーベック係数は、ナノ材料等の電子材料の極性を判別するための指標となり得る。具体的には、例えば、ゼーベック係数が正の値を示すナノ材料は、p型導電性を有している。これに対して、ゼーベック係数が負の値を示すナノ材料は、n型導電性を有している。ゼーベック係数は、例えば、後述する実施例で用いたゼーベック効果測定装置(MMR社製)等を用いて測定することができる。
 本明細書において、「ゼーベック係数を変化させる」とは、ゼーベック係数の値を減少させること、または、ゼーベック係数の値を正の値から負の値に変化させることを意図する。よって、「ナノ材料のゼーベック係数を変化させるドーパント(またはドーパント組成物)」とは、かかるドーパント(またはドーパント組成物)を用いてドープされたナノ材料のゼーベック係数の値を、ドーピング前と比較して減少させ得るドーパント(またはドーパント組成物)、または、かかるドーパント(またはドーパント組成物)を用いてドープされたナノ材料のゼーベック係数の値を正の値から負の値に変化させ得るドーパント(またはドーパント組成物)が意図される。
 本明細書では、ナノ材料のゼーベック係数の値を正の値から負の値に変化させ得るドーパントを特にn型ドーパントと称する場合がある。ドーパントがn型ドーパントであれば、本発明の製造方法によって得られたナノ材料-ドーパント組成物複合体をn型導電性とすることができる。ナノ材料-ドーパント組成物複合体がn型導電性を有していれば、双極型素子において、当該ナノ材料-ドーパント組成物複合体をn型材料として使用することができるため、好ましい。
 本発明の製造方法は、上記ドーパント組成物が、ドーパントとしてアニオンを含有していることを特徴としている。アニオンは、ナノ材料のキャリアを正孔から電子へと変化させる。従って、上記ドーパント組成物は、ナノ材料のゼーベック係数を変化させる。アニオンの例としては、ヒドロキシイオン(OH)、アルコキシイオン(CH、CHCH、i-PrO、および、t-BuO等)、チオイオン(SH)、アルキルチオイオン(CH、および、C等)、シアヌルイオン(CN)、I、Br、Cl、カルボキシイオン(CHCOO等)、NO 、BF 、ClO 、TfOおよびTos等が挙げられる。なかでも、アニオンは、OH、CH、CHCH、i-PrO、t-BuO、SH、CH、C、CN、I、Br、ClおよびCHCOOからなる群より選択される少なくとも1つであることが好ましく、OHおよびCHのうち少なくとも一方であることがより好ましい。上記アニオンによれば、効率よくナノ材料のゼーベック係数を変化させることができる。
 アニオンがドーパントとして作用する理由の一つとしては、アニオンが非共有電子対を有していることが考えられる。アニオンは、その非共有電子対を介して、ドーピングの対象となるナノ材料と相互作用するか、または、ドーピングの対象となるナノ材料と化学反応を誘起すると推測される。また、後述の実施例は、ドーピングの効率においては、ドーパントの、ルイス塩基性、分子間力および解離性の重要性を示唆している。本明細書において、「ルイス塩基性」とは、電子対を供与する性質を意図している。ルイス塩基性の強いドーパントは、ゼーベック係数の変化に、より大きな影響を与えると考えられる。また、ドーパントの分子間力も、ナノ材料に対するドーパントの吸着性に関連していると考えられる。ドーパントの分子間力としては、水素結合、CH-π相互作用、および、π-π相互作用等が挙げられる。ドーパントの解離性については後述する。
 以上のことから、上記アニオンのなかでも、弱い水素結合を形成するアニオンが好ましい。弱い水素結合を形成するアニオンとしては、例えば、OH、CH、CHCH、i-PrO、t-BuOが挙げられる。また、アニオンは、π-π相互作用を生じるアニオンであることが好ましい。π-π相互作用を生じるアニオンとしては、例えば、CHCOOが挙げられる。
 本発明の製造方法では、ドーパント組成物は、アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有している。そのため、捕捉剤がカチオンを捕捉することによって、アニオンを解離させることができる。そして、溶媒中にて、当該解離したアニオンを、ナノ材料に効率的にドープすることができる。なお、ドーパント組成物は、溶媒中で解離することによってアニオンおよびカチオンを生じる化合物を含有していてもよい。
 上記カチオンとしては、例えば、金属イオン等が挙げられる。金属イオンとしては、典型金属イオン、および、遷移金属イオン等が挙げられる。上記金属イオンは、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン、フランシウムイオン、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン、ラジウムイオン、または、スカンジウムイオン等であってもよい。
 捕捉剤としては、カチオンを取り込む能力を有する物質を用いることができ、特に限定されないが、例えば、一般的なイオン吸着剤が使用できる。イオン吸着剤としては、カチオンが金属イオンである場合、有機配位子等が挙げられる。本明細書において、「有機配位子」とは、金属イオンと配位結合を形成する化合物を意図する。換言すれば、有機配位子は、金属イオンに対する配位ユニットを有する化合物である。有機配位子は、配位原子として、酸素原子、窒素原子、硫黄原子、および、リン原子からなる群より選ばれる少なくとも1種を含んでいてもよい。有機配位子は、単座の有機配位子(すなわち、1つの配位ユニットを有する化合物)であってもよく、多座の有機配位子(すなわち、2つ以上の配位ユニットを有する化合物)であってもよい。より効率よく金属イオンを取り込むことができるという観点からは、有機配位子は、多座の有機配位子であることが好ましい。多座の有機配位子としては、シクロデキストリン、クラウンエーテル、アザクラウンエーテル、エチレンジアミン四酢酸、カリックスアレーン、ポルフィリン、フタロシアニン、サレン、およびそれらの誘導体等が挙げられる。なかでも、水溶液中においては、有機配位子としてエチレンジアミン四酢酸を用いることが好ましく、有機溶媒中においては、有機配位子としてクラウンエーテルを用いることが好ましい。
 クラウンエーテルとしては、例えば、下記一般式(I)で表されるクラウンエーテルが挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、nは1以上の整数である。
 なお、上記一般式(I)で表されるクラウンエーテルが化合物中の金属イオンを取り込むことによって形成された錯体は、下記一般式(II)で表される。
Figure JPOXMLDOC01-appb-C000002
 式(II)中、nは1以上の整数である。Zは上述の金属イオンである。Xは上述のアニオンである。上記式(II)から、クラウンエーテルの使用により、アニオンを解離できることがわかる。
 クラウンエーテルの具体例としては、例えば下記式(a)~(c)で表されるクラウンエーテルが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記式(a)は、12-クラウン-4である。上記式(b)は、15-クラウン-5である。上記式(c)は、18-クラウン-6である。捕捉剤として使用するクラウンエーテルは、取り込む対象となる金属イオンのサイズに合わせて、選択すればよい。例えば金属イオンがカリウムイオンである場合は、18-クラウン-6が好ましく、金属イオンがナトリウムイオンである場合は、15-クラウン-5が好ましく、金属イオンがリチウムイオンである場合は、12-クラウン-4が好ましい。クラウンエーテルが化合物中の金属イオンを取り込むことによって形成された錯体の例としては、下記式(d)~(f)で表される錯体が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 上記式(d)は、12-クラウン-4が水酸化リチウム由来のリチウムイオンを取り込むことによって形成された錯体である。上記式(e)は、15-クラウン-5が水酸化ナトリウム由来のナトリウムイオンを取り込むことによって形成された錯体である。上記式(f)は、18-クラウン-6が水酸化カリウム由来のカリウムイオンを取り込むことによって形成された錯体である。
 より効率的にアニオンを解離させるという観点からは、金属イオンとクラウンエーテルとのモル比が1:1になるように、溶媒にクラウンエーテルを加えることが好ましい。
 上述のように、本発明の製造方法においては、ドーパントの、ルイス塩基性および分子間力に加えて、解離性が重要である。ドーパントは、より多くアニオンを解離させるものであることが好ましい。従って、溶媒中で解離することによってアニオンおよびカチオンを生じる化合物の解離定数が重要である。例えば、当該化合物の解離定数pKaが7以上であることが好ましく、14以上であることがより好ましい。
 本発明のドーパント組成物には、必要に応じて、上述したアニオン、カチオン、および、捕捉剤以外の物質が含まれていてもよい。このような物質としては、ドーパントの働きを阻害しないものであれば特に限定されない。
 また、本発明のドーパント組成物には、複数の種類のドーパントが含有されていてもよい。
 <接触工程>
 接触工程は、ナノ材料に対して、当該ナノ材料のゼーベック係数を変化させるためのドーパント組成物を、溶媒中にて接触させることによって、ナノ材料とドーパント組成物との複合体(ナノ材料-ドーパント組成物複合体)を形成する工程である。
 接触工程では、ナノ材料とドーパント組成物とを接触させることができればよく、その方法は特に限定されないが、例えば、ドーパント組成物を溶媒中に溶解させた溶液にナノ材料を添加し、懸濁することによって両者を接触させることができる。ドーパント組成物とナノ材料とを十分に接触させる観点から、上記ドーパント組成物を溶媒中に溶解させた溶液を、上記ナノ材料に含浸させることによって、または、上記ドーパント組成物を溶媒中に溶解させた溶液中に上記ナノ材料をせん断分散させることによって、上記ナノ材料と上記ドーパント組成物とを接触させることが好ましい。
 さらには、均質化装置を用いてナノ材料を溶液中に分散させながら、ナノ材料とドーパント組成物とを接触させることが好ましい。均質化装置を用いてナノ材料を溶液中に分散させることによってドーパント組成物がナノ材料に接触し易くなり、その結果、ドーパント組成物とナノ材料とを十分に接触させることができる。
 上記均質化装置としては、ナノ材料を溶液中で均質に分散させることができる装置であれば特に限定されないが、例えば、ホモジナイザー、超音波ホモジナイザー等の公知の手段を用いることができる。なお、本明細書中において、単に「ホモジナイザー」と表記した場合は、「撹拌ホモジナイザー」が意図される。
 均質化装置の運転条件としては、ナノ材料を溶液中に分散させることができる条件であれば特に限定されない。例えば、均質化装置として、ホモジナイザーを用いる場合は、ナノ材料およびドーパント組成物を加えた溶液を、ホモジナイザーの撹拌速度(回転数)20000rpmにて、室温(23℃)にて10分間懸濁することによって、ナノ材料を溶液中に分散させることができる。
 ドーパント組成物を溶解させる溶媒としては、例えば、水であってもよく有機溶媒であってもよい。従って、本発明の製造方法は、様々なナノ材料へ適用することができる。有機溶媒としては、アルコール(例えば、メタノール、エタノール、または、イソプロピルアルコール等)、ケトン(例えば、アセトン、メチルエチルケトン、または、メチルイソブチルケトン等)、ジメチルスルホキシド、または、ジメチルホルムアミド、等の高極性溶媒を用いることができるが、本発明はこれらに限定されない。
 ドーパント組成物を溶媒中に溶解させる濃度としては、任意の濃度であってよい。例えば、メタノール中の水酸化ナトリウム、および、15-クラウン-5の濃度は、それぞれ0.001mol/L以上であってもよい。
 本発明の製造方法におけるドーパントはアニオンである。アニオンは、従来のドーパントと比べて、手に入れやすく、安価である。また、溶媒としては水系溶媒および有機溶媒の両方を使用することができる。これらの溶媒を使用することによって、様々なナノ材料に適用可能である。さらに、本発明の製造方法は、加熱等の複雑な工程が不要である。従って、簡便に且つ効率よくナノ材料-ドーパント組成物複合体を製造することができる。よって、本発明の製造方法によれば、簡便に且つ効率よくナノ材料のゼーベック係数を変化させることができる。
 <成型工程>
 本発明の製造方法は、ナノ材料またはナノ材料-ドーパント組成物複合体を所望の形状に成型する成型工程を包含していてもよい。例えば成型工程において、上記ナノ材料またはナノ材料-ドーパント組成物複合体を、フィルム状に成型してもよい。
 ここで、上記「フィルム状」は、シート状または膜状とも言い換えられる。「フィルム状に成型する」とは、ナノ材料またはナノ材料-ドーパント組成物複合体を1μm~1000μmの厚みの膜に成型することが意図される。
 ナノ材料またはナノ材料-ドーパント組成物複合体をフィルム状に成型する方法としては、特に限定されないが、例えば、メンブレンフィルターを用いる方法が挙げられる。具体的には、ナノ材料またはナノ材料-ドーパント組成物複合体の懸濁液を、孔径が0.1~2μmであるメンブレンフィルターを用いて吸引ろ過し、得られた膜を真空下、50~150℃にて、1~24時間乾燥させることにより、フィルム状に成型することができる。
 本発明の製造方法では、接触工程の前にナノ材料を成型してもよいし、接触工程を経たナノ材料-ドーパント組成物複合体を成型してもよい。接触工程の後で成型工程を行う場合、溶媒中に分散させた1つ1つのナノ材料にドーパント組成物を十分に吸着させることができる。その結果、フィルム内部のナノ材料がより均一にドープされたフィルム状材料を得ることができる。これに対し、例えば、フィルム内にドープされたn型導電性のナノ材料と未ドープのp型導電性のナノ材料とが存在する場合は、ゼーベック効果の相殺が生じ得る。接触工程の後で成型工程を行う場合は、上述のような理由から、ゼーベック効果の相殺が起こる虞がない。
 〔ナノ材料-ドーパント組成物複合体〕
 本発明にかかるナノ材料-ドーパント組成物複合体(以下、「本発明のナノ材料-ドーパント組成物複合体」ともいう。)は、上述したナノ材料とドーパント組成物とを含んでおり、本発明の製造方法によって製造されたことを特徴としている。換言すれば、本発明のナノ材料-ドーパント組成物複合体は、ナノ材料と、当該ナノ材料のゼーベック係数を変化させるためのドーパント組成物とを含有しており、上記ドーパント組成物は、アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有している。なお、上記〔ナノ材料-ドーパント組成物複合体の製造方法〕の項で既に説明した事項については、説明を省略する。
 本発明のナノ材料-ドーパント組成物複合体はn型導電性を示すことが好ましい。ナノ材料-ドーパント組成物複合体がn型導電性を有していれば、双極型素子において、当該ナノ材料-ドーパント組成物複合体をn型材料として使用することができる。
 本発明のナノ材料-ドーパント組成物複合体には、上記ナノ材料および上記ドーパント組成物以外の物質が含まれていてもよく、上記以外の物質の種類は限定されない。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、以下のように構成することも可能である。
 すなわち、本発明に係るナノ材料-ドーパント組成物複合体の製造方法は、ナノ材料のゼーベック係数を変化させるためのドーパント組成物を溶媒中にてナノ材料に接触させる接触工程を包含しており、上記ドーパント組成物は、アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有していることを特徴としている。
 上記構成によれば、ドーパント組成物において、捕捉剤によってアニオンの対イオンであるカチオンを捕捉することにより、アニオンおよびカチオンを互いに解離させ、アニオンをナノ材料に対して効率的にドープできる。上記アニオンは、当該ナノ材料のキャリアを正孔から電子へと変化させる。よって、上記ドーパント組成物は、ナノ材料のゼーベック係数を変化させる。
 アニオンは、様々な化合物に含有されているため、簡便に入手することができる。さらにアニオンは、イオンの形態であるため、水系溶媒および有機溶媒の両方において使用可能である。また、加熱等の操作を行う必要もない。さらに、上記ドーパント組成物は様々なナノ材料に対してドーピングすることができる。
 よって、上記構成によれば、簡便かつ効率よく、ナノ材料のゼーベック係数の値を変化させることができる。
 本発明に係るナノ材料-ドーパント組成物複合体の製造方法では、上記アニオンは、OH、CH、CHCH、i-PrO、t-BuO、SH、CH、C、CN、I、Br、ClおよびCHCOOからなる群より選択される少なくとも1つであってもよい。
 本発明に係るナノ材料-ドーパント組成物複合体の製造方法では、上記カチオンは、金属イオンであり、上記捕捉剤は、有機配位子であってもよい。
 本発明に係るナノ材料-ドーパント組成物複合体の製造方法では、上記ナノ材料は、ナノ粒子、ナノチューブ、ナノワイヤ、ナノロッドおよびナノシートからなる群より選択される少なくとも1つであってもよい。
 本発明に係るナノ材料-ドーパント組成物複合体の製造方法では、上記接触工程において、上記ドーパント組成物を溶媒中に溶解させた溶液を、上記ナノ材料に含浸させることによって、または、上記ドーパント組成物を溶媒中に溶解させた溶液中に上記ナノ材料をせん断分散させることによって、上記ナノ材料と上記ドーパント組成物とを接触させてもよい。
 本発明に係るナノ材料-ドーパント組成物複合体の製造方法では、上記アニオンは、n型ドーパントであってもよい。
 本発明に係るナノ材料-ドーパント組成物複合体は、本発明に係るナノ材料-ドーパント複合体の製造方法によって製造されたものであることを特徴としている。
 本発明に係るドーパント組成物は、ナノ材料のゼーベック係数を変化させるためのドーパント組成物であって、アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有していることを特徴としている。
 本発明に係るドーパント組成物では、上記アニオンは、OH、CH、CHCH、i-PrO、t-BuO、SH、CH、C、CN、I、Br、ClおよびCHCOOからなる群より選択される少なくとも1つであってもよい。
 本発明に係るドーパント組成物では、上記カチオンは、金属イオンであり、上記捕捉剤は、有機配位子であってもよい。
 本発明に係るドーパント組成物では、上記アニオンはn型ドーパントであってもよい。
 本発明に係るナノ材料-ドーパント組成物複合体は、ナノ材料と、本発明に係るドーパント組成物とを含有していてもよい。
 イオンを用いてナノ材料のゼーベック係数を変化させることができることは、これまで知られておらず、本発明者らが初めて見出したものである。なお、非特許文献6に記載のベンジルビオロゲンはイオン性の物質であるが、非特許文献6に記載の技術では、還元されたベンジルビオロゲン(すなわち、イオンの形態ではないベンジルビオロゲン)を用いることを特徴としている。
 本発明の一実施例について図2および3に基づいて説明すれば以下のとおりである。
 〔ヒドロキシイオンによるドーピング〕
 解離することによってアニオンとしてヒドロキシイオンを生じる化合物を用い、ヒドロキシイオンによるドーピングの効果を確認した。
 <実施例1>
 ヒドロキシイオンを生じる化合物としてKOHを用いた。カーボンナノチューブの束5mgを、0.1MのKOHと0.1Mの18-クラウン-6とを溶解させた20mLのメタノールに加えた。得られた混合物を高速ホモジナイザ(ウルトラタラックス社製)によって、20000rpm、10分の条件でせん断分散させた。
 得られたカーボンナノチューブの分散液を孔径0.2μmのテフロン(登録商標)製メンブレンフィルターを用いて吸引濾過した。さらに当該フィルターを12時間減圧乾燥させた後、メンブレンフィルターからカーボンナノチューブのフィルムを剥離した。
 得られたフィルムのゼーベック係数を、ゼーベック効果測定装置SB-200(MMR technologies社製)を用いて測定した。評価は、310K(ゼーベック効果測定装置の表示温度)にて行った。なお、カーボンナノチューブとして独立行政法人産業技術総合研究所製の単層カーボンナノチューブ(以下、SGCNTとも称する)を用いた場合とKH Chemicals社製の単層カーボンナノチューブ(以下、KHCNTとも称する)を用いた場合とについて、それぞれフィルムを作製した。なお、以下では、得られたフィルムをCNTフィルムとも称する。
 <実施例2>
 KOHの代わりにNaOHを用い、18-クラウン-6の代わりに15-クラウン-5を用いたこと以外は実施例1と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実施例3>
 KOHの代わりにLiOHを用い、18-クラウン-6の代わりに12-クラウン-4を用いたこと以外は実施例1と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例1>
 KOHおよび18-クラウン-6を加えなかったこと以外は実施例1と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例2>
 18-クラウン-6を加えずに、KOHのみを用いたこと以外は実施例1と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例3>
 15-クラウン-5を加えずに、NaOHのみを用いたこと以外は実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例4>
 12-クラウン-4を加えずに、LiOHのみを用いたこと以外は実施例3と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実験結果>
 実施例1~3および比較例1~4の結果を図2に示す。上述のように、カーボンナノチューブの極性はゼーベック係数が正であるか、あるいは負であるかにより判別することができる。比較例1からドーピングしていないCNTフィルムはp型導電性を示すことがわかる。また、クラウンエーテルを加えなかった比較例2~4では、比較例1と同様に、CNTフィルムはp型導電性を示した。一方、実施例1~3に示すように、クラウンエーテルを用いた場合、CNTフィルムはn型導電性を示した。
 つまり、実施例1~3においては、金属イオンがクラウンエーテルによって捕捉されたために、金属イオンの対イオンであるヒドロキシイオンがより多く解離し、n型ドーパントとして作用したことが明らかになった。
 これらの結果から、本発明の製造方法によって製造されたCNTフィルムは、ドーピングしていない未処理のCNTフィルムと比較して、ゼーベック係数の値が変化し得ることが確認できた。また、ドーパントとしてヒドロキシイオンが使用可能であることも確認できた。さらに、本発明の製造方法において、クラウンエーテルを用いた場合、CNTフィルムのゼーベック係数の値をより大きく変化させることができた。これにより、ゼーベック係数の値を正から負に変化させ得ることが確認できた。
 また、実施例1~3においては、SGCNTおよびKHCNTのいずれにおいても効果が確認できた。つまり、本発明の製造方法により奏される効果は、カーボンナノチューブの種類によらないことが明らかになった。
 〔ヒドロキシイオン以外のアニオンによるドーピング〕
 ヒドロキシイオン以外のアニオンを生じるナトリウム塩を用いて、ドーピングの効果を確認した。
 <実施例4>
 NaOHの代わりにNaSHを用いたこと以外は、実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実施例5>
 NaOHの代わりにNaIを用いたこと以外は、実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実施例6>
 NaOHの代わりにNaBrを用いたこと以外は、実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実施例7>
 NaOHの代わりにNaClを用いたこと以外は、実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実施例8>
 NaOHの代わりにNaOMe(ナトリウムメトキシド)を用いたこと以外は、実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実施例9>
 NaOHの代わりにNaOEt(ナトリウムエトキシド)を用いたこと以外は、実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実施例10>
 NaOHの代わりにNaOBu(ナトリウムブトキシド)を用いたこと以外は、実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実施例11>
 NaOHの代わりにCHCOONaを用いたこと以外は、実施例2と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例5>
 15-クラウン-5を加えずにNaSHのみを用いたこと以外は、実施例4と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例6>
 15-クラウン-5を加えずにNaIのみを用いたこと以外は、実施例5と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例7>
 15-クラウン-5を加えずにNaBrのみを用いたこと以外は、実施例6と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例8>
 15-クラウン-5を加えずにNaClのみを用いたこと以外は、実施例7と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例9>
 15-クラウン-5を加えずにNaOMeのみを用いたこと以外は、実施例8と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例10>
 15-クラウン-5を加えずにNaOEtのみを用いたこと以外は、実施例9と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例11>
 15-クラウン-5を加えずにNaOBuのみを用いたこと以外は、実施例10と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <比較例12>
 15-クラウン-5を加えずにCHCOONaのみを用いたこと以外は、実施例11と同様にしてCNTフィルムを作製し、ゼーベック係数を測定した。
 <実験結果>
 実施例4~11および比較例5~12の結果を図3に示す。比較例6~12のCNTフィルムは、比較例1のCNTフィルムと同様に、p型導電性を示した。一方、実施例4~11に示すように、クラウンエーテルを用いた場合、CNTフィルムはn型導電性を示した。
 なお、比較例5からわかるように、NaSHを用いた場合、クラウンエーテルを使用しなくても、CNTフィルムはn型導電性を示した。ただし、NaSHとともにクラウンエーテルを使用した実施例4では、ゼーベック係数がより小さくなっている。
 実施例4と上述の実施例1~3とを比較すると、ゼーベック係数を変化させる効果はOH<SHとなっている。また、実施例5~7を比較すると、I<Br<Clの順にゼーベック係数を変化させる効果が大きくなっている。この結果から、ルイス塩基性の重要性が示唆される。
 また、実施例8~10を比較すると、OMe<OEt<OBuの順にゼーベック係数を変化させる効果が大きくなっている。この結果は、塩基性に加え、弱い水素結合、例えばCH-π相互作用の重要性を示唆している。また、CHCOOを用いた場合にも大きな効果が得られている。この結果は、CH-π相互作用およびπ-π相互作用による吸着の重要性を示唆している。
 これらの結果から、アニオンとしてヒドロキシイオン以外のアニオンを使用した場合であっても、本発明の製造方法によって製造されたCNTフィルムは、ドーピングしていない未処理のCNTフィルムと比較して、ゼーベック係数の値が変化し得ることが確認できた。さらに、本発明の製造方法において、クラウンエーテルを用いた場合、CNTフィルムのゼーベック係数の値をより大きく変化させることができ、ゼーベック係数の値を正から負に変化させ得ることが確認できた。これらの結果から、事実上、無数のアニオンを適用可能であると考えられる。
 ドーピングされたナノ材料は、電界効果トランジスタ、熱電変換素子、太陽電池等の多様なデバイス構築のツールとなり得るので、本発明は、ナノ材料を利用する種々広範な産業において利用可能である。

Claims (12)

  1.  ナノ材料のゼーベック係数を変化させるためのドーパント組成物を溶媒中にてナノ材料に接触させる接触工程を包含しており、
     上記ドーパント組成物は、アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有していることを特徴とするナノ材料-ドーパント組成物複合体の製造方法。
  2.  上記アニオンは、OH、CH、CHCH、i-PrO、t-BuO、SH、CH、C、CN、I、Br、ClおよびCHCOOからなる群より選択される少なくとも1つであることを特徴とする請求項1に記載のナノ材料-ドーパント組成物複合体の製造方法。
  3.  上記カチオンは、金属イオンであり、
     上記捕捉剤は、有機配位子であることを特徴とする請求項1または2に記載のナノ材料-ドーパント組成物複合体の製造方法。
  4.  上記ナノ材料は、ナノ粒子、ナノチューブ、ナノワイヤ、ナノロッドおよびナノシートからなる群より選択される少なくとも1つであることを特徴とする請求項1~3のいずれか1項に記載のナノ材料-ドーパント組成物複合体の製造方法。
  5.  上記接触工程において、上記ドーパント組成物を溶媒中に溶解させた溶液を、上記ナノ材料に含浸させることによって、または、上記ドーパント組成物を溶媒中に溶解させた溶液中に上記ナノ材料をせん断分散させることによって、上記ナノ材料と上記ドーパント組成物とを接触させることを特徴とする請求項1~4のいずれか1項に記載のナノ材料-ドーパント組成物複合体の製造方法。
  6.  上記アニオンは、n型ドーパントであることを特徴とする請求項1~5のいずれか1項に記載のナノ材料-ドーパント組成物複合体の製造方法。
  7.  請求項1~6のいずれか1項に記載のナノ材料-ドーパント組成物複合体の製造方法によって製造されたものであることを特徴とするナノ材料-ドーパント組成物複合体。
  8.  ナノ材料のゼーベック係数を変化させるためのドーパント組成物であって、
     アニオンと、カチオンと、当該カチオンを捕捉する捕捉剤とを含有していることを特徴とするドーパント組成物。
  9.  上記アニオンは、OH、CH、CHCH、i-PrO、t-BuO、SH、CH、C、CN、I、Br、ClおよびCHCOOからなる群より選択される少なくとも1つであることを特徴とする請求項8に記載のドーパント組成物。
  10.  上記カチオンは、金属イオンであり、
     上記捕捉剤は、有機配位子であることを特徴とする請求項8または9に記載のドーパント組成物。
  11.  上記アニオンは、n型ドーパントであることを特徴とする請求項8~10のいずれか1項に記載のドーパント組成物。
  12.  ナノ材料と、請求項8~11のいずれか1項に記載のドーパント組成物とを含有していることを特徴とするナノ材料-ドーパント組成物複合体。
PCT/JP2015/067697 2014-06-26 2015-06-19 ナノ材料-ドーパント組成物複合体の製造方法、ナノ材料-ドーパント組成物複合体およびドーパント組成物 WO2015198980A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580022883.9A CN106463603B (zh) 2014-06-26 2015-06-19 纳米材料-掺杂剂组合物复合体制造方法、纳米材料-掺杂剂组合物复合体及掺杂剂组合物
KR1020167029385A KR101965041B1 (ko) 2014-06-26 2015-06-19 나노 재료-도펀트 조성물 복합체의 제조 방법, 나노 재료-도펀트 조성물 복합체 및 도펀트 조성물
EP15811494.2A EP3163639B1 (en) 2014-06-26 2015-06-19 Use of a dopant composition for changing a seeback coefficient of a nanomaterial
JP2016529537A JP6340077B2 (ja) 2014-06-26 2015-06-19 ナノ材料−ドーパント組成物複合体の製造方法、ナノ材料−ドーパント組成物複合体およびドーパント組成物
US15/313,790 US10355190B2 (en) 2014-06-26 2015-06-19 Nanomaterial dopant composition composite, dopant composition, and method for manufacturing nanomaterial dopant composition composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014131909 2014-06-26
JP2014-131909 2014-06-26

Publications (1)

Publication Number Publication Date
WO2015198980A1 true WO2015198980A1 (ja) 2015-12-30

Family

ID=54938064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067697 WO2015198980A1 (ja) 2014-06-26 2015-06-19 ナノ材料-ドーパント組成物複合体の製造方法、ナノ材料-ドーパント組成物複合体およびドーパント組成物

Country Status (6)

Country Link
US (1) US10355190B2 (ja)
EP (1) EP3163639B1 (ja)
JP (2) JP6340077B2 (ja)
KR (1) KR101965041B1 (ja)
CN (1) CN106463603B (ja)
WO (1) WO2015198980A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018147126A1 (ja) * 2017-02-10 2018-08-16 国立大学法人 奈良先端科学技術大学院大学 n型導電材料およびその製造方法
JP2018137399A (ja) * 2017-02-23 2018-08-30 国立大学法人 奈良先端科学技術大学院大学 ナノ材料複合体およびその製造方法
JP2018195679A (ja) * 2017-05-16 2018-12-06 国立大学法人 奈良先端科学技術大学院大学 ナノ材料複合体およびその製造方法
KR20200040696A (ko) 2017-08-25 2020-04-20 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 나노 재료 복합체 및 그의 제조 방법
JP6927401B1 (ja) * 2020-11-26 2021-08-25 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
WO2021177244A1 (ja) * 2020-03-05 2021-09-10 株式会社寿ホールディングス 炭素材及び炭素材の製造方法
WO2021235526A1 (ja) 2020-05-21 2021-11-25 デンカ株式会社 熱電変換用n型材料及びその製造方法、ドーパント並びに熱電変換素子
JP6977854B1 (ja) * 2020-11-26 2021-12-08 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
WO2023058523A1 (ja) * 2021-10-04 2023-04-13 デンカ株式会社 熱電変換モジュール及びその製造方法
WO2023063177A1 (ja) * 2021-10-12 2023-04-20 デンカ株式会社 熱電変換素子及びその製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761473B2 (ja) * 2016-07-11 2020-09-23 富士フイルム株式会社 熱電変換素子
CN108928812B (zh) * 2017-05-22 2020-10-20 中国科学院上海应用物理研究所 一种基于碳基材料的离子收集方法
CN109994623B (zh) * 2017-12-29 2021-04-06 Tcl科技集团股份有限公司 复合金属氧化物纳米颗粒及其制备方法和应用
CN109786542B (zh) * 2019-01-23 2020-08-18 深圳大学 一种卟啉/碳纳米管复合热电材料及其制备方法
WO2022235357A2 (en) * 2021-03-31 2022-11-10 Georgia Tech Research Corporation Conductive polymer materials and methods of making the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023399A1 (fr) * 2006-08-21 2008-02-28 Fujitsu Limited NANOTUBES DE CARBONE SEMICONDUCTEURS DE TYPE n, PROCÉDÉ DE PRODUCTION DE CEUX-CI, ET PROCÉDÉ DE PRODUCTION DE DISPOSITIFS SEMICONDUCTEURS
JP2009292714A (ja) * 2008-06-05 2009-12-17 Samsung Electronics Co Ltd カーボンナノチューブ用n型ドーピング物質およびこれを用いたカーボンナノチューブのn型ドーピング方法
JP2010537410A (ja) * 2007-08-14 2010-12-02 ナノコンプ テクノロジーズ インコーポレイテッド ナノ構造材料ベースの熱電発電装置
WO2014133029A1 (ja) * 2013-02-28 2014-09-04 国立大学法人奈良先端科学技術大学院大学 ドーパントの選択方法、ドーパント組成物、カーボンナノチューブ-ドーパント複合体の製造方法、シート状材料およびカーボンナノチューブ-ドーパント複合体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127534A (ja) * 1994-10-31 1996-05-21 Tsutako Nishishiro ナトリウムイオン捕捉剤
WO2006135439A2 (en) 2004-10-22 2006-12-21 Hyperion Catalysis International, Inc. Improved ozonolysis of carbon nanotubes
KR100790216B1 (ko) 2006-10-17 2008-01-02 삼성전자주식회사 전도성 분산제를 이용한 cnt 투명전극 및 그의 제조방법
KR100931962B1 (ko) 2007-07-20 2009-12-15 삼성전자주식회사 환원제를 이용하여 전자가 주입된 탄소 나노튜브와 그 제조방법 및 그를 이용한 전기 소자
US8365923B2 (en) 2008-10-31 2013-02-05 The University Of Western Australia Methods for selectively separating carbon nanotubes
CN102282709B (zh) 2009-01-19 2014-05-14 东丽株式会社 高分子电解质膜的制造方法
JP5672795B2 (ja) * 2009-07-17 2015-02-18 東レ株式会社 高分子重合方法
JP5520910B2 (ja) * 2011-10-07 2014-06-11 三菱エンジニアリングプラスチックス株式会社 難燃性ポリカーボネート樹脂組成物及びそれからなる成形品
JP5789580B2 (ja) 2011-10-31 2015-10-07 富士フイルム株式会社 熱電変換材料及び熱電変換素子
JP6119127B2 (ja) * 2012-06-25 2017-04-26 大日本印刷株式会社 モンテルカストの製造法
CN103818898B (zh) * 2014-01-21 2015-10-28 东南大学 具有可控形貌的石墨烯杂化材料及其制备和形貌控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008023399A1 (fr) * 2006-08-21 2008-02-28 Fujitsu Limited NANOTUBES DE CARBONE SEMICONDUCTEURS DE TYPE n, PROCÉDÉ DE PRODUCTION DE CEUX-CI, ET PROCÉDÉ DE PRODUCTION DE DISPOSITIFS SEMICONDUCTEURS
JP2010537410A (ja) * 2007-08-14 2010-12-02 ナノコンプ テクノロジーズ インコーポレイテッド ナノ構造材料ベースの熱電発電装置
JP2009292714A (ja) * 2008-06-05 2009-12-17 Samsung Electronics Co Ltd カーボンナノチューブ用n型ドーピング物質およびこれを用いたカーボンナノチューブのn型ドーピング方法
WO2014133029A1 (ja) * 2013-02-28 2014-09-04 国立大学法人奈良先端科学技術大学院大学 ドーパントの選択方法、ドーパント組成物、カーボンナノチューブ-ドーパント複合体の製造方法、シート状材料およびカーボンナノチューブ-ドーパント複合体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163639A4 *
YOSHIYUKI NONOGUCHI ET AL.: "Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants", SCIENTIFIC REPORTS, vol. 3, 26 November 2013 (2013-11-26), XP055248215 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018147126A1 (ja) * 2017-02-10 2019-12-12 国立大学法人 奈良先端科学技術大学院大学 n型導電材料およびその製造方法
WO2018147126A1 (ja) * 2017-02-10 2018-08-16 国立大学法人 奈良先端科学技術大学院大学 n型導電材料およびその製造方法
TWI711577B (zh) * 2017-02-10 2020-12-01 國立大學法人奈良先端科學技術大學院大學 n型導電材料及該製造方法
KR20190123284A (ko) 2017-02-10 2019-10-31 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 n형 도전 재료 및 그의 제조 방법
JP7054103B2 (ja) 2017-02-23 2022-04-13 国立大学法人 奈良先端科学技術大学院大学 ナノ材料複合体およびその製造方法
JP2018137399A (ja) * 2017-02-23 2018-08-30 国立大学法人 奈良先端科学技術大学院大学 ナノ材料複合体およびその製造方法
JP6994731B2 (ja) 2017-05-16 2022-01-14 国立大学法人 奈良先端科学技術大学院大学 ナノ材料複合体およびその製造方法
JP2018195679A (ja) * 2017-05-16 2018-12-06 国立大学法人 奈良先端科学技術大学院大学 ナノ材料複合体およびその製造方法
KR20200040696A (ko) 2017-08-25 2020-04-20 고쿠리츠다이가쿠호징 나라 센탄카가쿠기쥬츠 다이가쿠인 다이가쿠 나노 재료 복합체 및 그의 제조 방법
WO2021177244A1 (ja) * 2020-03-05 2021-09-10 株式会社寿ホールディングス 炭素材及び炭素材の製造方法
WO2021235526A1 (ja) 2020-05-21 2021-11-25 デンカ株式会社 熱電変換用n型材料及びその製造方法、ドーパント並びに熱電変換素子
KR20230014712A (ko) 2020-05-21 2023-01-30 덴카 주식회사 열전변환용 n형 재료와 그 제조 방법, 도펀트 및 열전변환 소자
JP6977854B1 (ja) * 2020-11-26 2021-12-08 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
JP6927401B1 (ja) * 2020-11-26 2021-08-25 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
JP2022084128A (ja) * 2020-11-26 2022-06-07 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
JP2022084127A (ja) * 2020-11-26 2022-06-07 東洋インキScホールディングス株式会社 熱電変換材料および熱電変換素子
WO2023058523A1 (ja) * 2021-10-04 2023-04-13 デンカ株式会社 熱電変換モジュール及びその製造方法
WO2023063177A1 (ja) * 2021-10-12 2023-04-20 デンカ株式会社 熱電変換素子及びその製造方法

Also Published As

Publication number Publication date
CN106463603B (zh) 2019-11-26
JP6340077B2 (ja) 2018-06-06
KR20160138475A (ko) 2016-12-05
US20170197836A1 (en) 2017-07-13
JPWO2015198980A1 (ja) 2017-04-20
EP3163639A1 (en) 2017-05-03
JP2018133573A (ja) 2018-08-23
EP3163639B1 (en) 2021-03-17
CN106463603A (zh) 2017-02-22
US10355190B2 (en) 2019-07-16
KR101965041B1 (ko) 2019-04-02
EP3163639A4 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6340077B2 (ja) ナノ材料−ドーパント組成物複合体の製造方法、ナノ材料−ドーパント組成物複合体およびドーパント組成物
JP6197235B2 (ja) ナノ材料−ドーパント組成物複合体の製造方法、ナノ材料−ドーパント組成物複合体およびドーパント組成物
Yao et al. Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites
Song et al. Progress on PEDOT: PSS/nanocrystal thermoelectric composites
Li et al. Graphene emerges as a versatile template for materials preparation
Culebras et al. Recent progress in flexible organic thermoelectrics
JP6704577B2 (ja) カーボンナノチューブ−ドーパント組成物複合体の製造方法およびカーボンナノチューブ−ドーパント組成物複合体
Feng et al. Copper-phenylacetylide nanobelt/single-walled carbon nanotube composites: mechanochromic luminescence phenomenon and thermoelectric performance
Li et al. High performance polymer thermoelectric composite achieved by carbon-coated carbon nanotubes network
Wang et al. Oxygen-rich polymer polyethylene glycol-functionalized single-walled carbon nanotubes toward air-stable n-type thermoelectric materials
WO2018147126A1 (ja) n型導電材料およびその製造方法
Debnath et al. Reduced hopping barrier potential in NiO nanoparticle-incorporated, polypyrrole-coated graphene with enhanced thermoelectric properties
Yao et al. Enhanced thermoelectric properties of bilayer-like structural graphene quantum dots/single-walled carbon nanotubes hybrids
Adekoya et al. Structure-property relationship and nascent applications of thermoelectric PEDOT: PSS/carbon composites: A review
Hata et al. Surfactant-wrapped n-type organic thermoelectric carbon nanotubes for long-term air stability and power characteristics
Xia et al. Enhancement effect of the C60 derivative on the thermoelectric properties of n-type single-walled carbon nanotube-based films
JP6562403B2 (ja) ナノ材料複合体およびその製造方法
Yin et al. Improved thermoelectric performance of flexible film based on polypyrrole/silver nanocomposites
WO2019021908A1 (ja) カーボンナノチューブ複合体およびその製造方法
JP6994731B2 (ja) ナノ材料複合体およびその製造方法
WO2018142748A1 (ja) ナノ材料複合体、熱電変換モジュールおよびナノ材料複合体の製造方法
JP2019197895A (ja) ナノ材料複合体およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811494

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529537

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015811494

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811494

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167029385

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15313790

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE