WO2015194469A1 - 空気入りタイヤ - Google Patents
空気入りタイヤ Download PDFInfo
- Publication number
- WO2015194469A1 WO2015194469A1 PCT/JP2015/066994 JP2015066994W WO2015194469A1 WO 2015194469 A1 WO2015194469 A1 WO 2015194469A1 JP 2015066994 W JP2015066994 W JP 2015066994W WO 2015194469 A1 WO2015194469 A1 WO 2015194469A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- region
- peripheral surface
- less
- ratio
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C3/00—Tyres characterised by the transverse section
- B60C3/04—Tyres characterised by the transverse section characterised by the relative dimensions of the section, e.g. low profile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C11/00—Tyre tread bands; Tread patterns; Anti-skid inserts
- B60C11/0083—Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the curvature of the tyre tread
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C17/00—Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor
- B60C17/0009—Tyres characterised by means enabling restricted operation in damaged or deflated condition; Accessories therefor comprising sidewall rubber inserts, e.g. crescent shaped inserts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C9/0042—Reinforcements made of synthetic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C9/00—Reinforcements or ply arrangement of pneumatic tyres
- B60C2009/0071—Reinforcements or ply arrangement of pneumatic tyres characterised by special physical properties of the reinforcements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C13/00—Tyre sidewalls; Protecting, decorating, marking, or the like, thereof
- B60C2013/005—Physical properties of the sidewall rubber
- B60C2013/007—Thickness
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C15/00—Tyre beads, e.g. ply turn-up or overlap
- B60C15/06—Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead
- B60C15/0603—Flipper strips, fillers, or chafing strips and reinforcing layers for the construction of the bead characterised by features of the bead filler or apex
- B60C2015/061—Dimensions of the bead filler in terms of numerical values or ratio in proportion to section height
Definitions
- the present invention relates to a pneumatic tire with improved fuel efficiency.
- Patent Document 1 Conventionally, there has been proposed a pneumatic tire for reducing fuel consumption of a vehicle (see, for example, Patent Document 1).
- the ratio W / L of the tire cross-sectional width W to the outer diameter L is set to 0.25 or less, and the front projected area of the tire (when viewed from the rolling direction of the pneumatic tire). This is a technology that reduces the air resistance around the tire by reducing the projected area.
- the present invention has been made in view of the above circumstances, and has an object to provide a pneumatic tire in which fuel economy performance, steering stability performance, and load durability performance are improved in a well-balanced manner.
- the pneumatic tire according to the present invention has a carcass layer spanned in a toroidal shape from a pair of bead portions to a tread portion via a pair of sidewall portions, and has a total width SW and an outer diameter OD of SW / While satisfying the relationship of OD ⁇ 0.3, the inner diameter ID and the outer diameter OD satisfy the relationship of ID / OD ⁇ 0.7.
- a pair of second boundary lines that pass through the rim check line and are perpendicular to the tire inner peripheral surface are virtually assumed, and regions between the first boundary line and the second boundary line are defined as first regions, respectively.
- a region on the inner side in the tire radial direction from the two boundary lines is defined as a second region.
- the ratio X1 / Y1 between the area X1 (mm 2 ) of the first region and the peripheral length Y1 (mm) of the inner peripheral surface of the first region is 12 or more and 30 or less.
- the ratio X2 / Y2 between the area X2 (mm 2 ) of the second region and the peripheral length Y2 (mm) of the inner peripheral surface of the second region is 10 or more and 15 or less.
- the relationship between the total width SW and the outer diameter OD, the relationship between the inner diameter ID and the outer diameter OD, and the shape of the predetermined region in the tire meridional section are limited.
- FIG. 1 is a tire meridian cross-sectional view of a pneumatic tire according to an embodiment of the present invention.
- FIG. 2 is a tire meridian cross-sectional view showing an enlarged one side in the tire width direction of the pneumatic tire shown in FIG. 1.
- the tire radial direction means a direction orthogonal to the rotational axis of the pneumatic tire
- the tire radial inner side is the side toward the rotational axis in the tire radial direction
- the tire radial outer side is in the tire radial direction.
- the tire circumferential direction refers to a circumferential direction with the rotation axis as a central axis.
- the tire width direction means a direction parallel to the rotation axis
- the inner side in the tire width direction means the side toward the tire equatorial plane CL (tire equator line) in the tire width direction
- the outer side in the tire width direction means the tire width direction. Is the side away from the tire equator plane CL (tire equator line).
- the tire equator plane CL (tire equator line) is a plane (line) perpendicular to the rotation axis of the pneumatic tire and passing through the center of the tire width of the pneumatic tire.
- various regulations referred to in the present embodiment are defined in accordance with the regulations of the International Standard (ISO) established by the International Organization for Standardization.
- ISO International Standard
- JIS Japanese Industrial Standards
- FIG. 1 is a tire meridian cross-sectional view showing a region from a tread portion to a bead portion of a pneumatic tire according to an embodiment of the present invention. That is, in the pneumatic tire 1 shown in the figure, a pair of shoulder portions B and B, sidewall portions C and C, and bead portions D and D are continuously formed around the tread portion A. And from the tread part A to the bead parts D and D each extends continuously in the tire circumferential direction, and the entire pneumatic tire has a toroidal shape.
- a bead core 12 a bead filler 14 a carcass layer 16, a belt layer 18, a tread rubber 20, a pair of side wall rubbers 22 and 22, and an inner liner 24 are disposed as components of the pneumatic tire 1.
- a bead core 12 a bead core 12
- a bead filler 14 a carcass layer 16
- a belt layer 18 a tread rubber 20
- a pair of side wall rubbers 22 and 22, and an inner liner 24 are disposed as components of the pneumatic tire 1.
- the bead core 12 has, for example, a structure in which a bead wire is wound in an annular shape in the tire circumferential direction, and the bead filler 14 positioned on the outer side in the tire radial direction is provided with other It is made of a rubber material harder than the rubber material.
- the carcass layer 16 is a member that is bridged between the bead cores 12 and 12 on both sides in the tire width direction via the respective portions D, C, B, A, B, C, and D to form a tire skeleton.
- the carcass layer 16 shown in FIG. 1 is composed of a single carcass, the present embodiment is not limited to this, and the carcass layer 16 may be composed of a plurality of carcasses.
- the fineness of the carcass cord can be 1400 dtex / 2 or more and 2000 dtex / 2 or less, and preferably 1440 dtex / 2 or more and 1860 dtex / 2 or less.
- the number of driven carcass cords per 50 mm in the tire width direction can be 40 or more and 50 or less.
- the belt layer 18 is a member that is positioned on the outer side in the tire radial direction of the carcass layer 16 and that strongly tightens the carcass layer 16 and increases the rigidity of the tread portion A.
- the belt layer 18 includes a plurality of belts 18a and 18b formed in order from the inner side to the outer side in the tire radial direction, in the example shown in FIG.
- the belts 18a and 18b have a structure in which belt cords cross each other.
- the tread rubber 20 is an outer skin member of the tire that mainly prevents the carcass layer 16 and the belt layer 18 from being worn or damaged in the tread portion A.
- the sidewall rubber 22 is located on the outer side in the tire width direction of the tread rubber 20, and in the region from the shoulder portion B to the sidewall portion C, the outer skin of the tire located on the outer side in the tire radial direction or the outer side in the tire width direction of the carcass layer 16. It is a member.
- the side wall rubber 22 withstands repeated bending deformation when the tire is running, protects the carcass layer 16 from external force, and prevents its damage.
- the inner liner 24 is a belt-like rubber sheet member that is positioned on the inner peripheral surface of the tire and covers the carcass layer 16, and that prevents oxidation due to exposure of the carcass layer 16 and prevents leakage of air filled in the tire. It is.
- the pneumatic tire 1 including each of the above-described components 12, 14, 16, 18, 20, 22, and 24 may or may not be specified in the vehicle mounting direction.
- the pneumatic tire 1 has a main groove on the surface (tread surface) of the tread portion A shown in FIG.
- the main groove refers to a groove having a groove width of 3 mm or more and a groove depth of 2.5 mm or more.
- the main groove includes a main groove extending in any direction that defines various tread patterns formed on the tread surface. That is, the main groove may be a main groove extending in the tire circumferential direction (hereinafter sometimes referred to as “circumferential main groove”), or a main groove inclined with respect to the tire circumferential direction. (Including a main groove extending in the tire width direction, hereinafter may be referred to as an “inclined main groove”).
- main groove when the main groove is an inclined main groove, a main groove that is not communicated is included as well as a main groove at least one end of which communicates with the circumferential main groove.
- main grooves 26a, 26b, 26c, and 26d are shown as these main grooves.
- the total width SW, the outer diameter OD, and the inner diameter ID are defined as follows.
- the total width SW (see FIG. 1) is the maximum dimension in the tire width direction in a no-load state in which the pneumatic tire 1 is assembled with a rim and filled with a specified air pressure, and is formed on the outer surface of the sidewall portion C. It is a dimension including the designed part.
- the outer diameter OD (see FIG. 1) is the maximum dimension in the tire radial direction when the pneumatic tire 1 is assembled with a rim.
- the inner diameter ID refers to a dimension obtained by removing the rim thickness from the dimension normally recognized as the rim diameter. In the present embodiment, the units of the total width SW, the outer diameter OD, and the inner diameter ID are all mm.
- the total width SW and the outer diameter OD satisfy the relationship of SW / OD ⁇ 0.3, and the inner diameter ID and the outer diameter OD are Satisfies the relationship of ID / OD ⁇ 0.7.
- a region between b1 and the second boundary line b2 is a first region R1
- a region radially inward of the second boundary line b2 is a second region R2.
- the shoulder arc a1 means an arc that defines the contour of the tread surface of the land portion located on the outermost side in the tire width direction of the tread portion A
- the side arc a2 means the tire width direction of the tread portion A in the tire width direction. It means an arc that defines the contour of the side wall surface of the outermost land portion.
- the present embodiment although not shown, basically, a profile line of the tire outer periphery in which another arc is interposed between the shoulder arc a1 and the side arc a2 is assumed.
- the present embodiment exceptionally includes a case where the other arc does not exist, and in that case, the shoulder arc a1 and the side arc a2 are in contact with each other. For this reason, when the other arc does not exist, the intersection point of the extension line of the shoulder arc a1 and the extension line of the side arc a2 described above is replaced with the intersection point of the shoulder arc a1 and the side arc a2.
- X1 / Y1 is 12 or more and 30 or less.
- the ratio X2 / Y2 between the area X2 (mm 2 ) of the second region R2 and the peripheral length Y2 (mm) of the inner peripheral surface of the second region R2 is 10 or more and 15 or less.
- the ratio SW / OD between the total width SW and the outer diameter OD is set to 0.3 or less.
- the total width SW can be sufficiently narrowed with respect to the outer diameter OD, and the front projected area of the tire can be reduced.
- the air resistance of the tire can be reduced and the fuel efficiency can be improved. it can.
- the ratio ID / OD between the inner diameter ID and the outer diameter OD is set to 0.7 or more, and the sectional height is reduced. Thereby, a cornering force can be sufficiently generated when the vehicle turns, and as a result, excellent steering stability performance can be exhibited.
- the ratio between the area (X1, X2) of the specific region (first region and second region) and the peripheral length (Y1, Y2) of the inner peripheral surface ( X1 / Y1, X2 / Y2).
- the ratio of the area of the specific region to the peripheral length of the inner peripheral surface that is, the value obtained by dividing the area of the specific region by the peripheral length of the inner peripheral surface is a direction perpendicular to the extending direction (longitudinal direction) of the region It is a value which shows the average value (average width) of the width
- the first region (second region)
- ratio X1 / Y1 ratio X2 / Y2
- Y2 ratio X2 / Y2
- the first region (during tire rolling) ( The rigidity in the deformation direction of the second region) ( The rigidity in the deformation direction of the second region) can be sufficiently secured, and excellent steering stability performance can be exhibited.
- region) by making ratio X1 / Y1 (ratio X2 / Y2) 12 or more (10 or more), the bending of the predetermined area
- the load endurance performance can be demonstrated.
- the tire width can be increased without excessively increasing the average width. Suppressing and by extension, excellent fuel efficiency can be exhibited.
- ratio X1 / Y1 ratio X2 / Y2
- ratio X2 / Y2 ratio X2 / Y2
- the relationship between the total width SW and the outer diameter OD, the relationship between the inner diameter ID and the outer diameter OD, and the predetermined region in the tire meridional section view By appropriately controlling the shape, in particular, fuel efficiency performance, steering stability performance, and load durability performance can be improved in a well-balanced manner.
- the pneumatic tire of the present embodiment described above is a normal manufacturing process, that is, a tire material mixing process, a tire material processing process, a green tire molding process, a vulcanization process, and a vulcanized process. It is obtained through an inspection process.
- a tire material mixing process that is, a tire material processing process, a green tire molding process, a vulcanization process, and a vulcanized process. It is obtained through an inspection process.
- the total width SW and the outer diameter OD described above are applied.
- the green tire is molded and vulcanized so as to realize the relationship between the inner diameter ID and the outer diameter OD, and the shape of the predetermined region in the tire meridian cross-sectional view.
- the value obtained by dividing the area X3 (mm 2 ) of the third region R3 by the peripheral length Y3 (mm) of the inner peripheral surface is a direction perpendicular to the extending direction (tire width direction) of the third region R3. It is a value which shows the average value (average width) of the width
- the ratio X3 / Y3 can be set to 11 or more, the depth of the groove disposed in the tread portion A can be sufficiently secured, and the drainage performance can be improved. Further, by setting the ratio X3 / Y3 to 15 or less, it is possible to further improve the fuel consumption performance by suppressing the tire weight and consequently the rolling resistance without excessively increasing the thickness of the tread portion. Further, by setting the ratio X3 / Y3 to 15 or less, the thickness of the tread portion can be suppressed and the land portion can be prevented from falling when the vehicle is turning, so that the steering stability performance can be further improved.
- the ratio X3 / Y3 is set to 12 or more and 14 or less, the above effects can be exhibited at a higher level.
- the ratio X1 / Y1 is preferably larger than the ratio X2 / Y2 (additional form 2).
- the ratio X1 / Y1 By making the ratio X1 / Y1 larger than the ratio X2 / Y2, it is possible to further increase the average width of the first region in which the amount of deflection during tire rolling is relatively large. Thereby, the bending of the sidewall portion C can be suppressed, and as a result, the load durability performance can be further enhanced.
- FIG. 2 is a tire meridian cross-sectional view showing an enlarged one side in the tire width direction of the pneumatic tire shown in FIG. 1.
- the intersection of the tire outer circumferential profile line and the tire equatorial plane CL in the tire meridional section is tread.
- the fourth region R4 refers to a portion located on the inner side in the tire radial direction in the first region R1 defined as a region between the first boundary line b1 and the second boundary line b2.
- the tire cross-section height SH is a dimension obtained by dividing a value obtained by subtracting the tire inner diameter ID from the tire outer diameter OD by 2.
- the tire maximum thickness means the dimension of the longest line segment among the line segments that can be drawn in a mode orthogonal to the tire inner peripheral surface in the first region R1.
- the thickness of the fourth region R4 which has a large amount of deflection at the time of rolling of the tire in the first region R1, is increased, and the load durability. The performance can be further enhanced.
- a tread apex T is defined as a pair of fourth tires that pass through a position on the tire outer peripheral surface whose tire radial direction position is 0.5 times the tire cross-section height from the tread apex T and orthogonal to the tire inner peripheral surface.
- the boundary line b4 is hypothesized and the region between the first boundary line b1 and the fourth boundary line b4 is a fifth region R5, the amount of change in the tire thickness in the fifth region R5 is 2 mm or less. (Additional form 4) is preferred.
- the fifth region R5 refers to a portion located on the outer side in the tire radial direction in the first region R1 defined as a region between the first boundary line b1 and the second boundary line b2.
- the amount of change in the tire thickness in the fifth region R5 is set to 2 mm or less, and a portion of the fifth region R5 is locally locally generated, particularly during tire rolling, without excessively increasing the variation in the tire thickness in the fifth region R5. Straining can be suppressed, and as a result, load durability can be further enhanced.
- a crescent-shaped side reinforcing rubber 28 may be provided (additional form 5).
- the side reinforcing rubber 28 is a rubber having a higher hardness than the side wall rubber 22 and is a rubber usually used in a run flat tire.
- the crescent-shaped side reinforcing rubber 28 When the crescent-shaped side reinforcing rubber 28 is disposed on the inner side in the tire width direction of the carcass layer 16, the deformation of the shoulder portion B and the side wall portion C at the time of tire rolling can be further reduced, and as a result, load durability The performance can be further improved.
- the side reinforcing rubber 28 shown in FIGS. 1 and 2 is disposed, even if the tire is punctured and the air pressure becomes 100 kPa or less, the side reinforcing rubber 28 suppresses the deflection of the tire, It is possible to travel a certain distance at a certain speed.
- the loss tangent (tan ⁇ ) at 60 ° C. of the side reinforcing rubber is preferably 0.01 or more and 0.1 or less (additional form 6).
- the loss tangent (tan ⁇ ) is a frequency of 20 Hz, initial strain 10%, dynamic strain ⁇ 2%, temperature 60 ° C. using a viscoelastic spectrometer (manufactured by Toyo Seiki Seisakusho) in accordance with JIS-K6394. It is measured under conditions.
- the loss tangent (tan ⁇ ) is an index of energy loss together with the so-called loss elastic modulus.
- the loss tangent (tan ⁇ ) at 60 ° C. of the side reinforcing rubber is 0.1 or less.
- the JIS-A hardness at 20 ° C. of the side reinforcing rubber is preferably 60 or more and 80 or less (additional form 7).
- JIS hardness is durometer hardness measured at a temperature of 20 ° C. using an A type durometer in accordance with JIS K-6253.
- the JIS-A hardness at 20 ° C. of the reinforcing rubber to 60 or more, rigidity can be increased in the region from the shoulder portion B to the sidewall portion C, and deformation during tire rolling can be suppressed. As a result, it is possible to suppress wear due to the improvement of the rigidity and further improve the load durability performance.
- the JIS-A hardness at 20 ° C. of the reinforcing rubber to 80 or less, it is possible to improve riding comfort performance without excessively increasing rigidity in the region from the shoulder portion B to the sidewall portion C. it can.
- FIG. 8 As shown in FIG. 1, the intersection of the first boundary line b1 on both sides in the tire width direction and the profile line of the tire outer peripheral surface is defined as reference points P1 and P2, and the profile line of the tire outer peripheral surface between the two reference points P1 and P2 A length along the tread is defined as a tread development width TDW. Further, as shown in FIG. 1, a line segment connecting the reference point P1 (P2) and the tread apex P3 with the intersection point P3 of the tire outer peripheral profile line and the tire equatorial plane CL as the tread apex P3 is the tire width. The angle formed with respect to the direction is ⁇ .
- the ratio TDW / SW of the tread development width TDW to the total width SW is 0.8 or more and less than 1, and
- the angle ⁇ is preferably 1 ° or more and 5 ° or less (additional form 8). Note that the size of the angle ⁇ shown in FIG. 1 is an exaggerated size compared to the actual size in order to clarify how to take the angle ⁇ . It is not assumed.
- ratio TDW / SW By setting the ratio TDW / SW to 0.8 or more, a sufficient ground contact width can be secured, cornering force can be easily generated, and steering stability can be further improved. Further, by setting the ratio TDW / SW to less than 1, it is possible to sufficiently realize the effect of reducing rolling resistance and further improve the fuel consumption performance.
- the tire size is 155 / 55R20, each component shown in FIG. 1 (excluding the side reinforcement rubber 28), and various conditions shown in Table 1-1, Table 1-2, or Table 1-3 (total width SW, Outer diameter OD, inner diameter ID, ratio X1 / Y1 of area X1 of first region R1 to peripheral length Y1 of inner peripheral surface, ratio X2 / Y2 of area X2 of second region R2 and peripheral length Y2 of inner peripheral surface
- the ratio X3 / Y3 between the area X3 of the third region R3 and the peripheral length Y3 of the inner peripheral surface, the tire maximum thickness position in the first region R1, the amount of change in the tire thickness in the fifth region R5, the side reinforcing rubber 22
- Table 1-1, Table 1-2, and Table 1-3 they belong to the technical scope of the present invention (relationship between total width SW and outer diameter OD, relationship between inner diameter ID and outer diameter OD, and tire Regarding the pneumatic tires of Examples 1 to 11 (satisfying the predetermined condition regarding the shape of the predetermined region in the meridional section), any of the pneumatic tires of the conventional examples that do not belong to the technical scope of the present invention, It can be seen that the fuel economy performance, the steering stability performance, and the load durability performance are improved in a well-balanced manner.
- the tire of Comparative Example 1 is a pneumatic tire in which the ratio X1 / Y1, the ratio X2 / Y2, and the ratio X3 / Y3 are set as in the conventional example, the tire size is 155 / 55R20, so the fuel efficiency is improved. However, steering stability performance and load endurance performance were reduced. The tire of Comparative Example 2 was insufficient in improving the load durability performance only by increasing the ratio X1 / Y1 as compared with the conventional example.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Tires In General (AREA)
Abstract
Description
以下に、本発明に係る空気入りタイヤについて、その基本形態を説明する。以下の説明において、タイヤ径方向とは、空気入りタイヤの回転軸と直交する方向をいい、タイヤ径方向内側とはタイヤ径方向において回転軸に向かう側、タイヤ径方向外側とはタイヤ径方向において回転軸から離れる側をいう。また、タイヤ周方向とは、上記回転軸を中心軸とする周り方向をいう。さらに、タイヤ幅方向とは、上記回転軸と平行な方向をいい、タイヤ幅方向内側とはタイヤ幅方向においてタイヤ赤道面CL(タイヤ赤道線)に向かう側、タイヤ幅方向外側とはタイヤ幅方向においてタイヤ赤道面CL(タイヤ赤道線)から離れる側をいう。なお、タイヤ赤道面CL(タイヤ赤道線)とは、空気入りタイヤの回転軸に直交するとともに、空気入りタイヤのタイヤ幅の中心を通る平面(線)である。
本実施の形態においては、総幅SWと外径ODとの比SW/ODを0.3以下としている。これにより、外径ODに対して総幅SWを十分に狭くして、タイヤの前面投影面積を小さくすることができ、その結果、タイヤの空気抵抗を低減して、燃費性能を向上させることができる。
次に、本発明に係る空気入りタイヤの上記基本形態に対して、任意選択的に実施可能な、付加的形態1から8を説明する。
基本形態においては、図1に示す一対の第1境界線b1、b1間の領域を第3領域R3とした場合に、第3領域R3の面積X3(mm2)と第3領域の内周面のペリフェリ長Y3(mm)との比X3/Y3が11以上15以下であること(付加的形態1)が好ましい。
基本形態及び基本形態に付加的形態1を組み合わせた形態においては、上記比X1/Y1が上記比X2/Y2よりも大きいこと(付加的形態2)が好ましい。
図2は、図1に示す空気入りタイヤのタイヤ幅方向一方側を拡大して示すタイヤ子午断面図である。基本形態及び基本形態に付加的形態1又は付加的形態2を組み合わせた形態においては、図2に示すように、タイヤ子午断面視でタイヤ外周面のプロファイルラインとタイヤ赤道面CLとの交点をトレッド頂点Tとして、タイヤ径方向位置がトレッド頂点Tからタイヤ断面高さSHの0.25倍の距離にあるタイヤ外周面上の位置を通り、タイヤ内周面に直交する一対の第3境界線b3を仮想し、第2境界線b2と第3境界線b3との間の領域をそれぞれ第4領域R4とした場合に、第1領域R1におけるタイヤ最大厚さ位置が、第4領域R4に存在すること(付加的形態3)が好ましい。
基本形態及び基本形態に付加的形態1から付加的形態3の少なくとも1つを組み合わせた形態においては、図2に示すように、タイヤ子午断面視でタイヤ外周面のプロファイルラインとタイヤ赤道面CLとの交点をトレッド頂点Tとして、タイヤ径方向位置がトレッド頂点Tからタイヤ断面高さの0.5倍の距離にあるタイヤ外周面上の位置を通り、タイヤ内周面に直交する一対の第4境界線b4を仮想し、第1境界線b1と第4境界線b4との間の領域をそれぞれ第5領域R5とした場合に、第5領域R5におけるタイヤ厚さの変化量は2mm以下であること(付加的形態4)が好ましい。
基本形態及び基本形態に付加的形態1から付加的形態4の少なくとも1つを組み合わせた形態においては、図1、2に示すように、タイヤ子午断面視で、カーカス層16のタイヤ幅方向内側に三日月状のサイド補強ゴム28が配設されていてもよい(付加的形態5)。ここで、サイド補強ゴム28とは、サイドウォールゴム22と比較して硬度が高いゴムであり、通常ランフラットタイヤにおいて用いられるゴムである。
基本形態に少なくとも付加的形態5を組み合わせた形態においては、上記サイド補強ゴムの60℃での損失正接(tanδ)が、0.01以上0.1以下であること(付加的形態6)が好ましい。本発明において、損失正接(tanδ)は、JIS-K6394に準拠して、粘弾性スペクトロメーター(東洋精機製作所製)を用い、周波数20Hz、初期歪み10%、動歪み±2%、温度60℃の条件にて測定されるものである。
基本形態に少なくとも付加的形態5を組み合わせた形態においては、上記サイド補強ゴムの20℃でのJIS-A硬度は60以上80以下であること(付加的形態7)が好ましい。本発明において、JIS硬度は、JIS K-6253に準拠して、Aタイプのデュロメータを用いて温度20℃の条件にて測定されるデュロメータ硬さである。
図1に示すように、タイヤ幅方向両側における第1境界線b1とタイヤ外周面のプロファイルラインとの交点を基準点P1、P2として、2つの基準点P1、P2間のタイヤ外周面のプロファイルラインに沿った長さをトレッド展開幅TDWとする。また、図1に示すように、タイヤ外周面のプロファイルラインとタイヤ赤道面CLとの交点P3をトレッド頂点P3として、基準点P1(P2)とトレッド頂点P3とを結んだ線分が、タイヤ幅方向に対してなす角度をθとする。
各試験タイヤをリム組みして、排気量1800ccの前輪駆動車に装着し、1周2kmのテストコースを時速100km/hで50周走行し、燃料消費率を算出した。そして、従来例の燃料消費率を基準(100)とした場合の、各実施例における燃費改善率を算出した。この評価は、数値が大きいほど燃費性能が高いことを示す。
各試験タイヤをリム組みして、排気量1800ccの前輪駆動車に装着し、1周2kmのテストコースをレーンチェンジしながら3周走行した際の、ドライバー3名による官能性評価を実施し、評価値の平均値を算出した。そして、この算出結果に基づいて従来例を基準(100)とした指数評価を行った。この評価は、指数が大きいほど操縦安定性能が高いことを示す。
ドラム径1707mmのドラム試験機を用い、JlS D-4230に規定されている荷重耐久性能試験を実施した。当該試験は、5時間毎に最大負荷能力の20%ずつ荷重を増加させて、タイヤが破壊した時点の走行距離を測定した。そして、この測定結果に基づいて従来例を基準とした耐久改善率算出し、従来例を基準(100)とした指数評価を行った。この評価は、指数が大きい荷重耐久性能が高いことを示す。
これらの試験結果を、表1-1、表1-2及び表1-3に併記する。
12 ビードコア
14 ビードフィラー
16 カーカス層
18 ベルト層
18a、18b ベルト
20 トレッドゴム
22 サイドウォールゴム
24 インナーライナー
26a、26b、26c、26d 主溝
28 サイド補強ゴム
A トレッド部
B ショルダー部
C サイドウォール部
CL タイヤ赤道面
D ビード部
ID 内径
OD 外径
P1、P2 基準点
P3 トレッド頂点
R1 第1領域
R2 第2領域
R3 第3領域
R4 第4領域
R5 第5領域
SW 総幅
TDW トレッド展開幅
Y1 第1領域の内周面のペリフェリ長
Y2 第2領域の内周面のペリフェリ長
Y3 第3領域の内周面のペリフェリ長
a1 ショルダー円弧
a2 サイド円弧
b1 第1境界線
b2 第2境界線
b3 第3境界線
b4 第4境界線
θ 角度
Claims (9)
- 一対のビード部から一対のサイドウォール部を介してトレッド部にトロイダル状に架け渡されたカーカス層を有する空気入りタイヤにおいて、
総幅SWと外径ODとが、SW/OD≦0.3の関係を満たすとともに、内径IDと外径ODとが、ID/OD≧0.7の関係を満たし、
タイヤ子午断面視で、
タイヤ赤道面を挟むタイヤ幅方向各側で、ショルダー円弧の延長線とサイド円弧の延長線との交点を通り、タイヤ内周面に垂直な一対の第1境界線と、リムチェックラインを通りタイヤ内周面に垂直な一対の第2境界線とを仮想し、前記第1境界線と前記第2境界線との間の領域をそれぞれ第1領域とするとともに、前記第2境界線よりもタイヤ径方向内側の領域をそれぞれ第2領域とした場合に、
前記第1領域の面積X1(mm2)と前記第1領域の内周面のペリフェリ長Y1(mm)との比X1/Y1が12以上30以下であり、
前記第2領域の面積X2(mm2)と前記第2領域の内周面のペリフェリ長Y2(mm2)との比X2/Y2が10以上15以下である、
ことを特徴とする空気入りタイヤ。 - 前記一対の第1境界線間の領域を第3領域とした場合に、前記第3領域の面積X3(mm2)と第3領域の内周面のペリフェリ長Y3(mm)との比X3/Y3が11以上15以下である、請求項1に記載の空気入りタイヤ。
- 前記比X1/Y1が前記比X2/Y2よりも大きい、請求項1又は2に記載の空気入りタイヤ。
- タイヤ子午断面視でタイヤ外周面のプロファイルラインとタイヤ赤道面との交点をトレッド頂点として、タイヤ径方向位置が前記トレッド頂点からタイヤ断面高さの0.25倍の距離にあるタイヤ外周面上の位置を通り、タイヤ内周面に直交する一対の第3境界線を仮想し、前記第2境界線と前記第3境界線との間の領域をそれぞれ第4領域とした場合に 前記第1領域におけるタイヤ最大厚さ位置が、前記第4領域に存在する、請求項1から3のいずれか1項に記載の空気入りタイヤ。
- タイヤ子午断面視でタイヤ外周面のプロファイルラインとタイヤ赤道面との交点をトレッド頂点として、タイヤ径方向位置が前記トレッド頂点からタイヤ断面高さの0.5倍の距離にあるタイヤ外周面上の位置を通り、タイヤ内周面に直交する一対の第4境界線を仮想し、前記第1境界線と前記第4境界線との間の領域をそれぞれ第5領域とした場合に、 前記第5領域におけるタイヤ厚さの変化量は2mm以下である、請求項1から4のいずれか1項に記載の空気入りタイヤ。
- タイヤ子午断面視で、前記カーカス層のタイヤ幅方向内側に三日月状のサイド補強ゴムが配設されている、請求項1から5のいずれか1項に記載の空気入りタイヤ。
- 前記サイド補強ゴムの60℃での損失正接(tanδ)が、0.01以上0.1以下である、請求項6に記載の空気入りタイヤ。
- 前記サイド補強ゴムの20℃でのJIS-A硬度は60以上80以下である、請求項6又は7に記載の空気入りタイヤ。
- タイヤ幅方向両側における前記第1境界線とタイヤ外周面のプロファイルラインとの交点を基準点として、2つの前記基準点間の前記プロファイルラインに沿った長さをトレッド展開幅TDWとし、
前記プロファイルラインとタイヤ赤道面との交点をトレッド頂点として、前記基準点と前記トレッド頂点とを結んだ線分が、タイヤ幅方向に対してなす角度をθとした場合に、 トレッド展開幅TDWと総幅SWとの比(TDW/SW)が0.8以上1未満であり、かつ、前記角度θが1°以上5°以下である、請求項1から8のいずれか1項に記載の空気入りタイヤ。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112015002855.2T DE112015002855T5 (de) | 2014-06-17 | 2015-06-12 | Luftreifen |
US15/319,746 US10449803B2 (en) | 2014-06-17 | 2015-06-12 | Pneumatic tire |
CN201580030168.XA CN106457896B (zh) | 2014-06-17 | 2015-06-12 | 充气轮胎 |
JP2015530191A JP6601215B2 (ja) | 2014-06-17 | 2015-06-12 | 空気入りタイヤ |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-124715 | 2014-06-17 | ||
JP2014124715 | 2014-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015194469A1 true WO2015194469A1 (ja) | 2015-12-23 |
Family
ID=54935456
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/066994 WO2015194469A1 (ja) | 2014-06-17 | 2015-06-12 | 空気入りタイヤ |
Country Status (5)
Country | Link |
---|---|
US (1) | US10449803B2 (ja) |
JP (1) | JP6601215B2 (ja) |
CN (1) | CN106457896B (ja) |
DE (1) | DE112015002855T5 (ja) |
WO (1) | WO2015194469A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017159865A (ja) * | 2016-03-11 | 2017-09-14 | 株式会社ブリヂストン | ランフラットタイヤ |
EP3315327A1 (en) * | 2016-10-26 | 2018-05-02 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7047703B2 (ja) * | 2018-10-26 | 2022-04-05 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP7131395B2 (ja) * | 2019-01-07 | 2022-09-06 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP7529962B2 (ja) * | 2019-12-12 | 2024-08-07 | 横浜ゴム株式会社 | 空気入りタイヤ |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60234008A (ja) * | 1984-05-06 | 1985-11-20 | Sumitomo Rubber Ind Ltd | 低圧用タイヤ |
JPH02147417A (ja) * | 1988-11-30 | 1990-06-06 | Sumitomo Rubber Ind Ltd | 空気入り安全タイヤ |
JPH05254310A (ja) * | 1992-03-11 | 1993-10-05 | Bridgestone Corp | 空気入りラジアルタイヤ |
JP2002301912A (ja) * | 2001-04-03 | 2002-10-15 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2004510627A (ja) * | 2000-10-10 | 2004-04-08 | ソシエテ ド テクノロジー ミシュラン | 截頭円錐状のカーカス部分を備えたタイヤ |
JP2012091738A (ja) * | 2010-10-28 | 2012-05-17 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
WO2013094147A1 (ja) * | 2011-12-22 | 2013-06-27 | 株式会社ブリヂストン | 重荷重用タイヤ |
JP5360333B1 (ja) * | 2013-02-25 | 2013-12-04 | 横浜ゴム株式会社 | 空気入りタイヤ |
JP2014054967A (ja) * | 2012-09-14 | 2014-03-27 | Yokohama Rubber Co Ltd:The | ランフラットタイヤ |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1069028B (it) | 1976-10-27 | 1985-03-21 | Angelini S | Procedimento e apparecchiatura per la cromatura di barre |
JPS558903A (en) * | 1978-06-29 | 1980-01-22 | Yokohama Rubber Co Ltd:The | Pneumatic tire |
US4811771A (en) * | 1988-01-07 | 1989-03-14 | General Tire, Inc. | Aerodynamic profile tire |
JP3477312B2 (ja) * | 1996-04-22 | 2003-12-10 | 住友ゴム工業株式会社 | 空気入りラジアルタイヤ |
FR2765151A1 (fr) * | 1997-06-26 | 1999-01-01 | Michelin & Cie | Armature de sommet pour pneumatique radial |
US6631748B1 (en) * | 1998-07-06 | 2003-10-14 | The Goodyear Tire & Rubber Company | Sidewall with insert construction for runflat tire |
US20050006017A1 (en) | 2000-10-10 | 2005-01-13 | Michelin Recherche Et Technique S.A. | Tire having a carcass portion in the shape of a truncated cone |
JP5856050B2 (ja) | 2010-04-30 | 2016-02-09 | 株式会社ブリヂストン | 乗用車用空気入りラジアルタイヤ |
CN103717406B (zh) * | 2011-07-28 | 2016-05-04 | 株式会社普利司通 | 乘用车用充气子午线轮胎及该轮胎的使用方法 |
-
2015
- 2015-06-12 JP JP2015530191A patent/JP6601215B2/ja active Active
- 2015-06-12 CN CN201580030168.XA patent/CN106457896B/zh active Active
- 2015-06-12 US US15/319,746 patent/US10449803B2/en active Active
- 2015-06-12 WO PCT/JP2015/066994 patent/WO2015194469A1/ja active Application Filing
- 2015-06-12 DE DE112015002855.2T patent/DE112015002855T5/de active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60234008A (ja) * | 1984-05-06 | 1985-11-20 | Sumitomo Rubber Ind Ltd | 低圧用タイヤ |
JPH02147417A (ja) * | 1988-11-30 | 1990-06-06 | Sumitomo Rubber Ind Ltd | 空気入り安全タイヤ |
JPH05254310A (ja) * | 1992-03-11 | 1993-10-05 | Bridgestone Corp | 空気入りラジアルタイヤ |
JP2004510627A (ja) * | 2000-10-10 | 2004-04-08 | ソシエテ ド テクノロジー ミシュラン | 截頭円錐状のカーカス部分を備えたタイヤ |
JP2002301912A (ja) * | 2001-04-03 | 2002-10-15 | Sumitomo Rubber Ind Ltd | 空気入りタイヤ |
JP2012091738A (ja) * | 2010-10-28 | 2012-05-17 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
WO2013094147A1 (ja) * | 2011-12-22 | 2013-06-27 | 株式会社ブリヂストン | 重荷重用タイヤ |
JP2014054967A (ja) * | 2012-09-14 | 2014-03-27 | Yokohama Rubber Co Ltd:The | ランフラットタイヤ |
JP5360333B1 (ja) * | 2013-02-25 | 2013-12-04 | 横浜ゴム株式会社 | 空気入りタイヤ |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017159865A (ja) * | 2016-03-11 | 2017-09-14 | 株式会社ブリヂストン | ランフラットタイヤ |
EP3315327A1 (en) * | 2016-10-26 | 2018-05-02 | Sumitomo Rubber Industries, Ltd. | Pneumatic tire |
Also Published As
Publication number | Publication date |
---|---|
US10449803B2 (en) | 2019-10-22 |
DE112015002855T5 (de) | 2017-02-23 |
CN106457896A (zh) | 2017-02-22 |
JPWO2015194469A1 (ja) | 2017-04-20 |
US20170136818A1 (en) | 2017-05-18 |
JP6601215B2 (ja) | 2019-11-06 |
CN106457896B (zh) | 2018-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4670880B2 (ja) | 重荷重用空気入りタイヤ | |
JP4295795B2 (ja) | 空気入りタイヤ | |
JP5193166B2 (ja) | 自動二輪車用タイヤ | |
WO2009150941A1 (ja) | 空気入りタイヤ | |
JP6494156B2 (ja) | 空気入りタイヤ | |
JP6601215B2 (ja) | 空気入りタイヤ | |
WO2016051651A1 (ja) | ランフラットタイヤ | |
WO2013042254A1 (ja) | 空気入りタイヤ | |
US10870318B2 (en) | Pneumatic tire | |
JP2009166819A (ja) | 空気入りタイヤ | |
WO2014132551A1 (ja) | 乗用車用空気入りラジアルタイヤ | |
WO2016117274A1 (ja) | 空気入りタイヤ | |
WO2019220680A1 (ja) | 空気入りタイヤ | |
JP2012131459A (ja) | 空気入りタイヤ | |
JP2007331411A (ja) | 空気入りタイヤ | |
JP6658789B2 (ja) | 空気入りタイヤ | |
JP5298797B2 (ja) | 空気入りタイヤ | |
JP2009214769A (ja) | 空気入りタイヤ | |
JP6197399B2 (ja) | 空気入りタイヤ | |
JP7545022B2 (ja) | 空気入りタイヤ | |
JP2015120428A (ja) | 空気入りタイヤ | |
JP6291965B2 (ja) | タイヤユニット及びそれを備えた車両 | |
JP6155852B2 (ja) | 空気入りタイヤ | |
JP6766578B2 (ja) | 空気入りタイヤ | |
JP6455095B2 (ja) | 空気入りタイヤ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015530191 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15810074 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15319746 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015002855 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15810074 Country of ref document: EP Kind code of ref document: A1 |