WO2015190594A1 - 感光性樹脂組成物、波長変換基板および発光デバイス - Google Patents

感光性樹脂組成物、波長変換基板および発光デバイス Download PDF

Info

Publication number
WO2015190594A1
WO2015190594A1 PCT/JP2015/067002 JP2015067002W WO2015190594A1 WO 2015190594 A1 WO2015190594 A1 WO 2015190594A1 JP 2015067002 W JP2015067002 W JP 2015067002W WO 2015190594 A1 WO2015190594 A1 WO 2015190594A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
photosensitive resin
light
substrate
photosensitive
Prior art date
Application number
PCT/JP2015/067002
Other languages
English (en)
French (fr)
Inventor
勝一 香村
晶子 岩田
博史 中野
柏 張
松清 秀次
青森 繁
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/318,034 priority Critical patent/US10018912B2/en
Publication of WO2015190594A1 publication Critical patent/WO2015190594A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/0007Filters, e.g. additive colour filters; Components for display devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/20Electroluminescent [EL] light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photosensitive resin composition, a wavelength conversion substrate, and a light emitting device.
  • the present application claims priority based on Japanese Patent Application No. 2014-122195 filed on June 13, 2014 and Japanese Patent Application No. 2015-11789 filed on June 10, 2015, and the contents thereof. Is hereby incorporated by reference.
  • a light emitting layer (phosphor layer) containing a phosphor material has been widely used in various apparatuses.
  • a phosphor substrate provided with a phosphor layer is important as a component of a display device such as an organic EL display or a liquid crystal display or a lighting device.
  • Such a phosphor layer is formed by, for example, applying a photosensitive resin composition in which a phosphor material is dissolved or dispersed on a substrate to form a resin layer, and then forming a resin layer obtained by using a photolithography method. It can be formed by patterning into a desired shape (see, for example, Patent Documents 1 to 4).
  • the phosphor material may be deteriorated during patterning, which may be lower than the light emission characteristics originally possessed by the phosphor material. .
  • Such a problem is not limited to the phosphor material, and can occur similarly if it is a material that absorbs light and emits light of a different wavelength, such as a phosphorescent material.
  • the present invention has been made in view of such circumstances, and is a photosensitivity capable of suppressing the deterioration of a wavelength conversion material including a phosphor material and forming a wavelength conversion portion such as a phosphor layer having good light emission characteristics. It aims at providing a resin composition. Another object of the present invention is to provide a wavelength conversion substrate having a wavelength conversion portion with good light emission characteristics, and a light emitting device having such a wavelength conversion substrate, formed using such a photosensitive resin composition. To do.
  • one embodiment of the present invention includes a positive photosensitive resin having a photosensitive portion that undergoes a cleavage reaction upon exposure, and a wavelength conversion material dispersed in the photosensitive resin,
  • the photosensitive resin and the wavelength conversion material provide a photosensitive resin composition that satisfies the following (i) to (iv).
  • the product produced by the cleavage reaction of the photosensitive site and the photosensitive resin does not neutralize with the wavelength conversion material.
  • the photosensitive site and the product do not cause hydrolysis reaction of the wavelength conversion material.
  • the photosensitive portion and the HOMO of the product are lower than the LUMO of the wavelength conversion material.
  • the LUMO of the photosensitive site and the product is higher than the HOMO of the wavelength conversion material. (However, a combination of the chemically amplified photosensitive resin and the photosensitive portion or the product in which the photosensitive portion is acidic and the acidic wavelength conversion material is excluded).
  • the photosensitive resin may be configured such that the photosensitive site and the product are neutral.
  • the photosensitive resin includes, as the photosensitive site, a cyclobutanediimide skeleton, an o-nitrobenzylamide skeleton, an o-nitrobenzyl ether skeleton, a methyl carbonate skeleton, a 1-benzyloxy-1- It is good also as a structure which has at least 1 chosen from the group which consists of alkylethanol frame
  • the photosensitive resin may have a cyclobutanediimide skeleton as the photosensitive site.
  • the wavelength conversion material may have a proton accepting group or a proton donating group.
  • the wavelength conversion material may have a dehydration condensation group.
  • the wavelength conversion material may have a coumarin skeleton or a boron-dipyrromethine skeleton.
  • the photosensitive resin may have a light transmitting property in a visible light region.
  • it may be configured to further include a solvent that dissolves the photosensitive resin.
  • One embodiment of the present invention includes a substrate and a wavelength conversion unit provided on the substrate, and the wavelength conversion unit includes a wavelength conversion substrate using the photosensitive resin composition as a forming material. provide.
  • one embodiment of the present invention provides a light-emitting device that includes the wavelength conversion substrate described above and a light source that irradiates the wavelength conversion substrate with excitation light.
  • a configuration including a wavelength conversion substrate having a substrate and the wavelength conversion unit provided on the substrate may be employed.
  • the wavelength conversion substrate may have a structure that is in contact with at least one surface of the wavelength conversion unit and reflects or diffuses light emitted from the wavelength conversion unit.
  • the structure forming material may include a metal material.
  • the wavelength conversion unit may have a light emission internal quantum yield of 80% or more.
  • the wavelength conversion substrate may include a plurality of wavelength conversion units arranged in a matrix, and the plurality of wavelength conversion units may be provided with a density of 450 ppi or more.
  • a photosensitive resin composition capable of suppressing the deterioration of the wavelength conversion material and forming a wavelength conversion part having good light emission characteristics.
  • Another object of the present invention is to provide a wavelength conversion substrate having a wavelength conversion portion with good light emission characteristics, and a light emitting device having such a wavelength conversion substrate, formed using such a photosensitive resin composition. To do.
  • FIG. 1 It is a schematic perspective view which shows one Embodiment of the electronic device which concerns on this invention. It is a schematic perspective view which shows one Embodiment of the electronic device which concerns on this invention. It is a schematic perspective view which shows one Embodiment of the electronic device which concerns on this invention. It is a schematic perspective view which shows one Embodiment of the illuminating device which concerns on this invention. It is sectional drawing which shows typically one Embodiment of the light emission board
  • a material that absorbs light and emits light of a different wavelength may be referred to as a “wavelength conversion material”.
  • a functional unit that includes a wavelength conversion material and absorbs light and emits light having a different wavelength may be referred to as a “wavelength conversion unit”.
  • a member having a substrate and a wavelength conversion unit may be referred to as a “wavelength conversion substrate”.
  • the photosensitive resin composition according to the first embodiment of the present invention includes a positive photosensitive resin and a wavelength conversion material.
  • the photosensitive resin used in the photosensitive resin composition of the present embodiment is a positive photosensitive resin having a photosensitive portion that undergoes a cleavage reaction upon exposure.
  • the photosensitive resin of the present embodiment the molecular weight of the photosensitive resin or the generation of a functional group that is solubilized in a specific solvent occurs due to the cleavage reaction. Therefore, the photosensitive resin of this embodiment is solubilized in a specific solvent by exposure, and functions as a positive photosensitive resin.
  • a chemically amplified photosensitive resin that is a conventional positive photosensitive resin, it is generated after a chemical species such as acid is generated by a photochemical reaction of a compound added to the photosensitive resin or a part of the photosensitive resin.
  • the chemical species and the photosensitive resin are solubilized in a specific solvent by further chemical reaction by a treatment such as heating. That is, in the chemically amplified photosensitive resin, in the solubilization process, (1) a photochemical reaction of the added compound or a part of the photosensitive resin and (2) a reaction for solubilizing the photosensitive resin. More than one stage of chemical reaction occurs.
  • the photosensitive resin of this embodiment can be solubilized by a one-step chemical reaction of the cleavage reaction, it is considered when selecting the wavelength conversion material rather than using it together with the chemically amplified photosensitive resin.
  • the chemical reaction of the photosensitive resin should be small, and the selection range of the wavelength conversion material can be expanded. For example, even a wavelength conversion material that has high emission quantum efficiency but cannot coexist with a chemically amplified photosensitive resin can coexist with the photosensitive resin of this embodiment. Such a wavelength conversion material can be selected.
  • the photosensitive resin is preferably one in which the photosensitive part and the product produced by cleavage of the photosensitive part upon exposure are neutral. Such a photosensitive resin hardly reacts with the wavelength conversion material coexisting in the photosensitive resin composition, and does not easily degrade the wavelength conversion material.
  • neutral refers to a range from weakly acidic pH 6 to weakly basic pH 8 (pH 6 to 8).
  • the photosensitive resin is a group comprising a cyclobutanediimide skeleton, an o-nitrobenzylamide skeleton, an o-nitrobenzyl ether skeleton, a methyl carbonate skeleton, a 1-benzyloxy-1-alkylethanol skeleton, and a disilane skeleton as photosensitive moieties. What has at least 1 chosen from these is preferable.
  • cyclobutanediimide skeleton which is a photosensitive site of the photosensitive resin
  • a structure (N, N′-diphenylcyclobutanediimide skeleton) represented by the following formula (1) can be employed.
  • the dotted line (-----) indicates the position to be cleaved by light irradiation.
  • the structure represented by the formula (1) is cleaved according to the reaction formula represented by the following formula (a1) by absorbing light having a central wavelength of 254 nm.
  • one or more hydrogen atoms are replaced with atoms constituting the main chain or side chain of the photosensitive resin, and are inserted into one or both of the main chain or side chain of the photosensitive resin. Has been.
  • the following formula (101) shows a cleavage reaction in a photosensitive resin containing the chemical structure represented by the formula (1) as a photosensitive site.
  • the photosensitive resin represented by the formula (a) in the formula (101) is a photosensitive resin in each phenylene group on one side and the other side across the dotted line (-----) represented by the formula (1). And is inserted into the photosensitive resin.
  • the cyclobutane ring is cleaved by absorbing the light having the center wavelength described above, and a product is generated by the cleavage reaction.
  • o-nitrobenzylamide skeleton which is a photosensitive site of the photosensitive resin
  • a structure represented by the following formula (2) can be employed as the o-nitrobenzylamide skeleton, which is a photosensitive site of the photosensitive resin.
  • the structure represented by formula (2) is cleaved at the position indicated by the dotted line in accordance with the reaction formula represented by the following formula (a2) by absorbing light having a central wavelength of 365 nm.
  • R represents a hydrocarbon group or a hydrogen atom
  • a structure represented by the following formula (3) can be adopted as the o-nitrobenzyl ether skeleton that is the photosensitive site of the photosensitive resin.
  • the structure represented by the formula (3) is cleaved at the position indicated by the dotted line in accordance with the reaction formula represented by the following formula (a3) by absorbing light having a central wavelength of 365 nm.
  • R represents a hydrocarbon group or a hydrogen atom
  • a structure represented by the following formula (4) can be adopted as the methyl phenyl carbonate skeleton which is a photosensitive portion of the photosensitive resin.
  • the structure represented by formula (4) is cleaved at the position indicated by the dotted line in accordance with the reaction formula represented by the following formula (a4) by absorbing light having a central wavelength of 254 nm.
  • the hydrogen atom of the methyl group or the hydrogen atom of the phenyl group of the above formula (4) is substituted and inserted into one or both of the main chain and the side chain in the photosensitive resin. ing.
  • the 1-benzyloxy-1-alkylethanol skeleton which is the photosensitive site of the photosensitive resin
  • a structure represented by the following formula (5) can be employed as the 1-benzyloxy-1-alkylethanol skeleton, which is the photosensitive site of the photosensitive resin.
  • the structure represented by the formula (5) is cleaved at a position indicated by a dotted line according to the reaction formula represented by the following formula (a5) by absorbing light having a central wavelength of 248 nm.
  • R represents a hydrocarbon group or a hydrogen atom
  • a structure represented by the following formula (6) can be adopted as a disilane skeleton which is a photosensitive portion of the photosensitive resin.
  • the structure represented by the formula (2) is cleaved at the position indicated by the dotted line in accordance with the reaction formula represented by the following formula (a6) by absorbing light having a central wavelength of 254 nm.
  • R represents a hydrocarbon group or a hydrogen atom
  • the photosensitive resin preferably has a cyclobutanediimide skeleton.
  • the photosensitive resin having a cyclobutanediimide skeleton is obtained by using a polyamic acid having a cyclobutane skeleton as a precursor and imidizing by heating the precursor. Therefore, when forming a resin film using the photosensitive resin composition, a polyamic acid having a cyclobutane skeleton is used and imidized before patterning, so that the resin film remaining after patterning is a photosensitive resin having a cyclobutane diimide skeleton. Resin.
  • polyamic acid has higher solubility in a solvent than a resin (polyimide) obtained by imidizing polyamic acid. Therefore, when polyamic acid is used during the formation of the resin film, a solution of polyamic acid is applied to form a coating film, and a uniform resin film can be easily formed.
  • polyimide is hardly soluble, even if there is a step using a wet process after forming the wavelength conversion portion, it is difficult to deteriorate, and the degree of freedom of the step increases. Furthermore, polyimide has higher chemical resistance than polyamic acid and is less likely to deteriorate. Therefore, the resin film remaining after patterning can be made stable and difficult to deteriorate.
  • the photosensitive resin has optical transparency in the visible light region. Furthermore, the photosensitive resin is preferably colorless and transparent in the visible light region. Thereby, the “light whose wavelength has been converted” emitted from the wavelength conversion material can be suitably extracted.
  • the wavelength conversion material used in the photosensitive resin composition of the present embodiment is dispersed in the above-described photosensitive resin to constitute the photosensitive resin composition.
  • the “wavelength conversion material” includes a phosphor material and a phosphorescent material.
  • the phosphor material used in the photosensitive resin composition of the present embodiment is dispersed in the above-described photosensitive resin to constitute the photosensitive resin composition.
  • Examples of the phosphor material that can be used in the photosensitive resin composition of the present embodiment include known organic phosphor materials and inorganic phosphor materials.
  • Stilbenzene dyes such as 1,4-bis (2-methylstyryl) benzene and trans-4,4′-diphenylstilbenzene; 7-hydroxy-4-methylcoumarin, ethyl 2,3,6,7-tetrahydro-11-oxo-1H, 5H, 11H- [1] benzopyrano [6,7,8-ij] quinolidine-10-carboxylate ( Coumarin 314)
  • Coumarins such as 10-acetyl-2,3,6,7-tetrahydro-1H, 5H, 11H- [1] benzopyrano [6,7,8-ij] quinolizin-11-one (coumarin 334) Pigment;
  • Anthracene dyes such as 9,10-bis (phenylethynyl) anthracene; Perylene and the like.
  • green fluorescent dye for example, 2,3,5,6-1H, 4H-tetrahydro-8-trifluoromethylquinolidine (9,9a, 1-gh) coumarin (coumarin 153), 3- (2′-benzothiazolyl) -7-diethylaminocoumarin ( Coumarin 6), 3- (2′-Benzimidazolyl) -7-N, N-diethylaminocoumarin (coumarin 7), 10- (benzothiazol-2-yl) -2,3,6,7-tetrahydro-1H, 5H , 11H- [1] benzopyrano [6,7,8-ij] quinolizin-11-one (coumarin 545), coumarin 545T, coumarin 545P, and the like; Boron-dipyrromethine (BODIPY) dyes such as BODIPY493 / 503, BODIPY FL-X, BODIPY FL, BODIPY R6G, BODIPY 530/550
  • red fluorescent dye for example, DCM-based dyes such as 4-dicyanomethylene-2-methyl-6- (p-dimethylaminostyryl) -4H-pyran (DCM), DCM-2, DCJTB; Pyridine dyes such as 1-ethyl-2- [4- (p-dimethylaminophenyl) -1,3-butadienyl] -pyridinium-perchlorate (pyridine 1); Xanthene dyes such as rhodamine 640 (R640), rhodamine B, rhodamine 6G, rhodamine 3B, rhodamine 101, rhodamine 110, basic violet 11, sulforhodamine 101, basic violet 11, basic red 2; Boron-dipyrromethine (BODIPY) dyes such as BODIPY TR-X, BODIPY 630 / 650-X, BODIPY 650 / 665-X
  • BODIPY
  • each color phosphor When an organic phosphor material is used as each color phosphor, it is desirable to use a dye that is not easily deteriorated by external light such as excitation light, sunlight, or illumination.
  • Examples of the inorganic phosphor material include blue phosphors such as Sr 2 P 2 O 7 : Sn 4+ , Sr 4 Al 14 O 25 : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , SrGa 2 S 4 : Ce 3+ , CaGa 2 S 4 : Ce 3+ , (Ba, Sr) (Mg, Mn) Al 10 O 17 : Eu 2+ , (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu 2+ , BaAl 2 SiO 8 : Eu 2+ , Sr 2 P 2 O 7 : Eu 2+ , Sr 5 (PO 4 ) 3 Cl: Eu 2+ , (Sr, Ca, Ba) 5 (PO 4 ) 3 Cl: Eu 2+ , BaMg 2 al 16 O 27: Eu 2+, (Ba, Ca) 5 (PO 4) 3 Cl: Eu 2+, Ba 3 MgSi 2 O 8: Eu 2+, Sr
  • the green phosphor for example, (BaMg) Al 16 O 27 : Eu 2+ , Mn 2+ , Sr 4 Al 14 O 25 : Eu 2+ , (SrBa) Al 12 Si 2 O 8 : Eu 2+ , (BaMg) 2 SiO 4 : Eu 2+ , Y 2 SiO 5 : Ce 3+ , Tb 3+ , Sr 2 P 2 O 7 -Sr 2 B 2 O 5 : Eu 2+ , (BaCaMg) 5 (PO 4 ) 3 Cl: Eu 2+ , Sr 2 Si 3 O 8 -2SrCl 2 : Eu 2+ , Zr 2 SiO 4 , MgAl 11 O 19 : Ce 3+ , Tb 3+ , Ba 2 SiO 4 : Eu 2+ , Sr 2 SiO 4 : Eu 2+ , (BaSr) SiO 4 : Eu 2+ and the like.
  • red phosphor examples include Y 2 O 2 S: Eu 3+ , YAlO 3 : Eu 3+ , Ca 2 Y 2 (SiO 4 ) 6 : Eu 3+ , LiY 9 (SiO 4 ) 6 O 2 : Eu 3+ , YVO 4 : Eu 3+ , CaS: Eu 3+ , Gd 2 O 3 : Eu 3+ , Gd 2 O 2 S: Eu 3+ , Y (P, V) O 4 : Eu 3+ , Mg 4 GeO 5.5 F: Mn 4+, Mg 4 GeO 6: Mn 4+, K 5 Eu 2.5 (WO 4) 6.25, Na 5 Eu 2.5 (WO 4) 6.25, K 5 Eu 2.5 (MoO 4) 6. 25 , Na 5 Eu 2.5 (MoO 4 ) 6.25 and the like.
  • the inorganic phosphor material is a nanoparticle or a quantum dot phosphor.
  • CdSe, ZnS, or a mixture thereof can be used, and each color can emit light by controlling the particle size.
  • the phosphor material preferably has a coumarin skeleton or a boron-dipyrromethine skeleton in the above-mentioned group. Since the phosphor materials having these skeletons have high emission quantum yields, it is possible to form a high-performance phosphor layer (wavelength conversion unit). Moreover, the phosphor material having the above skeleton is particularly susceptible to the influence of acid and alkali, and existing photosensitive resins, particularly chemically amplified photosensitive resins, can be used even though they have high emission quantum efficiency. was difficult. However, the combination with the photosensitive resin of the present invention can be used without impairing the original light emission characteristics.
  • These phosphor materials may be used alone or in combination of two or more.
  • the phosphorescent material used for the photosensitive resin composition of the present embodiment is dispersed in the above-described photosensitive resin to constitute the photosensitive resin composition.
  • Examples of phosphorescent materials that can be used in the photosensitive resin composition of the present embodiment include known phosphorescent materials.
  • Examples of phosphorescent materials include: Tris (2-phenylpyridine) iridium (III) (Ir (ppy) 3), bis (2-phenylpyridine) (acetylacetonate) iridium (III) (Ir (ppy) 2 (acac)), Tris [2- (P-Tolyl) pyridine] iridium (III) (Ir (mppy) 3), bis [(4,6-difluorophenyl) -pyridinato-N, C2 ′] picolinate iridium (III) (FIrPic), bis (4 ′ , 6′-Difluorophenylpolydinato) tetrakis (1-pyrazoyl) borateiridium (III) (FIr6), tris (1-phenyl-3-methylbenzimidazoline-2-ylidene-C, C2 ′) iridium (III) ( Ir (Pmb) 3), bis (2,4-bifluoroph
  • These phosphorescent materials may be used alone or in combination of two or more.
  • the photosensitive resin composition of this embodiment is obtained by selecting each so that the photosensitive resin and the wavelength conversion material do not chemically react. Specifically, the following (i) to (iv) are satisfied.
  • the product produced by the cleavage reaction of the photosensitive site and the photosensitive resin does not neutralize with the wavelength conversion material.
  • the photosensitive site and the product do not cause hydrolysis reaction of the wavelength conversion material.
  • the photosensitive site and the product have a lower HOMO (Highest Occupied Molecular Orbital) than the LUMO (Lowest Unoccupied Molecular Orbital) of the wavelength conversion material.
  • the LUMO of the photosensitive site and the product is higher than the HOMO of the wavelength conversion material.
  • the wavelength conversion material may have a dehydration condensation group.
  • “Hydrolysis reaction” as used herein refers to a reaction that enters between the outside of the wavelength conversion part or occurs between the moisture remaining inside and the wavelength conversion material.
  • “does not cause hydrolysis reaction of the wavelength conversion material” means that the product produced by the cleavage reaction of the photosensitive site and the photosensitive resin is the hydrolysis reaction (moisture content of the wavelength conversion material). It does not function as a catalyst for the reaction that takes place between the liquid crystal and the wavelength conversion material.
  • the reaction rate of the hydrolysis described above is extremely slow and the reaction is unlikely to occur.
  • the photosensitive site or the product generated by the cleavage reaction is an acid or an alkali
  • the generated acid or alkali acts as a catalyst. It is conceivable to accelerate the hydrolysis reaction.
  • acids and alkalis are generated during the patterning process, and the resulting acids and alkalis hydrolyze dehydration condensation groups such as ester groups, amide groups, imide groups, and ether groups of wavelength conversion materials.
  • the wavelength conversion material may be altered and deteriorated.
  • the deterioration of the wavelength conversion material can be suppressed by satisfying the condition (ii).
  • the wavelength conversion material is reduced by electron transfer from the HOMO of the photosensitive resin and the product after the cleavage reaction to the LUMO of the wavelength conversion material. This can prevent the deterioration of the wavelength conversion material.
  • the wavelength conversion material is oxidized by transferring electrons from the HOMO of the wavelength conversion material to the photosensitive resin and the product LUMO after the cleavage reaction. This can prevent the deterioration of the wavelength conversion material.
  • Table 1 exemplifies the cleavage sites of the photosensitive resin and the HOMO and LUMO energy levels of the product after cleavage.
  • Table 2 illustrates the HOMO and LUMO energy levels of the phosphor material among the wavelength conversion materials. The energy level was calculated at Gaussian 09 B3LYP 6-31 + G (d) level.
  • the photosensitive resin composition of this embodiment is good also as having further the solvent which melt
  • the photosensitive resin composition becomes a liquid and can be applied to an object by various known printing methods and coating methods. Therefore, it is possible to easily form the wavelength conversion unit.
  • the photosensitive resin composition of the present embodiment is configured as described above.
  • the photosensitive resin composition having the above-described configuration, it is possible to provide a photosensitive resin composition that can suppress the deterioration of the wavelength conversion material and can form a wavelength conversion portion having good light emission characteristics.
  • the wavelength conversion board concerning one mode of the present invention has a substrate and a wavelength conversion part patterned on the board, and the wavelength conversion part forms the above-mentioned photosensitive resin composition concerning one mode of the present invention. As material.
  • the wavelength conversion part When using a photosensitive resin composition containing a phosphor material as a material for forming the wavelength conversion part, the wavelength conversion part may be referred to as a “phosphor layer”.
  • a wavelength conversion substrate having a phosphor layer may be referred to as a “phosphor substrate”.
  • a phosphor substrate will be described as an example of a wavelength conversion substrate, but it is needless to say that a photosensitive resin composition containing a phosphorescent material can be used as a material for forming the wavelength conversion portion.
  • the photosensitive resin composition according to one embodiment of the present invention is used as a forming material for one or both of a phosphor layer emitting green light and a phosphor layer emitting red light.
  • a phosphor layer emitting green light and a phosphor layer emitting red light are preferably formed from the photosensitive resin composition according to one embodiment of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing a phosphor substrate according to an embodiment of the wavelength conversion substrate of the present invention. The following embodiments are specifically described for better understanding of the gist of the invention, and do not limit the present invention unless otherwise specified.
  • a bank 13 is provided on a substrate 11 via a black matrix 12, and a predetermined region on the substrate 11 is partitioned by the bank 13 to form subpixels.
  • the phosphor layer 14b is provided on the red color filter 14a
  • the phosphor layer 15b is provided on the green color filter 15a.
  • a light scattering layer 16b for scattering blue light is provided on the blue color filter 16a.
  • the red color filter 14a and the phosphor layer 14b constitute a red pixel 14, the green color filter 15a and the phosphor layer 15b constitute a green pixel 15, and the blue color filter 16a and the light scattering layer 16b constitute a blue pixel 16.
  • a plurality of phosphor layers 14b and 15b are arranged in a matrix.
  • a substrate having a light transmittance of 90% or more for example, an inorganic material substrate made of glass, quartz or the like; a plastic substrate made of polyethylene terephthalate, polycarbazole, polyimide, or the like; A coated substrate; an insulating substrate such as a ceramic substrate made of alumina or the like may be mentioned, but is not limited thereto.
  • the plastic substrate is preferable in that a curved portion and a bent portion can be formed without stress, and a substrate obtained by coating the plastic substrate with an inorganic material is more preferable.
  • an organic EL element is deteriorated even by a small amount of moisture and oxygen.
  • deterioration due to permeation of moisture and oxygen in the substrate becomes a serious problem.
  • a substrate obtained by coating the above plastic substrate with an inorganic material has a high effect of suppressing the permeation of moisture and oxygen.
  • the organic EL element is deteriorated by moisture and oxygen. Highly controllable.
  • the thickness of the substrate 11 is preferably 10 ⁇ m to 2000 ⁇ m, and more preferably 100 ⁇ m to 1000 ⁇ m.
  • the phosphor substrate 1 preferably includes a black matrix 12.
  • the black matrix 12 is a light-absorbing black partition wall, and by providing this, the contrast between each pixel is further improved.
  • the black matrix 12 may be made of a known material, and a preferable example is a light blocking material made of a resin containing a black pigment.
  • the thickness of the black matrix 12 (the height in the direction perpendicular to the contact surface with the substrate 11) is preferably 100 nm to 100 ⁇ m, and more preferably 500 nm to 2 ⁇ m.
  • the bank 13 has light reflectivity or light scattering property on the surface.
  • the fluorescence emitted in the lateral direction is emitted from pixels of other adjacent colors, thereby reducing the color purity. Can be prevented.
  • light emission can be used effectively and power consumption can be reduced.
  • the bank 13 may be made of a known material, and is preferably a light-reflective material made of a resin containing metal particles such as gold, silver, and aluminum; a light made of a resin containing light scattering particles such as titanium oxide.
  • the resin include an epoxy resin, an acrylic resin, and a silicon resin.
  • a structure in which the metal particles or light scattering particles are laminated on the surface of a base resin such as an epoxy resin, an acrylic resin, or a silicon resin by a vapor deposition method or a sputtering method so as to have a thickness of 10 nm to 1000 nm. 13 is preferable.
  • the light-reflective or light-scattering bank 13 corresponds to “a structure that reflects or diffuses light emitted from the wavelength conversion unit” in the present invention.
  • the material for forming the bank 13 has a metal material in particular because it exhibits high light reflectivity.
  • the bank 13 using the “comprising metal material” forming material is a bank formed using a resin composition in which metal particles are dispersed or a bank formed using a resin with a metal film formed on the surface of the bank. Applicable. When a conventional photosensitive resin composition is used, the metal particles corrode due to the generation of acid or development with an alkaline aqueous solution during the patterning process of the photosensitive resin composition, thereby exhibiting the original light reflectivity. It was difficult to do.
  • the solubility is improved in one stage of the cleavage reaction, acid is not generated, and development with an organic solvent is possible. Therefore, in the wavelength conversion substrate of this embodiment, it is possible to apply a metal material as a material for forming the bank 13. Therefore, according to the photosensitive resin composition of the present embodiment, it is possible to easily and surely impart high light reflectivity to the bank 13 and greatly reduce power consumption.
  • the height of the bank 13 (the height in the direction perpendicular to the contact surface with the black matrix 12) is the total thickness of the color filter and the phosphor layer in each pixel, or the total of the color filter and the light scattering layer. It is preferably thicker than the film thickness. By doing in this way, said effect is acquired more notably.
  • the phosphor substrate 1 preferably includes a red color filter 14a and a green color filter 15a.
  • a red color filter 14a and a green color filter 15a By providing these, leakage of excitation light that is transmitted without being absorbed by the phosphor layer 14b or the phosphor layer 15b can be prevented, and light emission and excitation light from the phosphor layer 14b or the phosphor layer 15b can be prevented. It is possible to prevent a decrease in the color purity of the light emission due to the color mixture. Furthermore, the color reproduction range of the organic EL element can be further expanded by increasing the color purity of each pixel.
  • the phosphor substrate 1 may include a blue color filter 16a.
  • a blue color filter 16a By providing this, scattering of outside light in the light scattering layer 16b can be suppressed, and a decrease in contrast can be suppressed.
  • the light scattering layer 16b may be unnecessary because it reduces the transmittance of light from an organic EL element, which is a light source, or a backlight such as a liquid crystal display or a microelectromechanical system (MEMS) display.
  • MEMS microelectromechanical system
  • red color filter 14a As the red color filter 14a, the green color filter 15a, and the blue color filter 16a, known materials can be appropriately used.
  • the film thickness of the red color filter 14a, the green color filter 15a, and the blue color filter 16a is preferably 0.5 ⁇ m to 10 ⁇ m, and more preferably 1 ⁇ m to 3 ⁇ m.
  • emits green fluorescence is shown here, the fluorescent substance substrate which concerns on this invention is not restricted to this. Absent. In addition to these, a phosphor layer that emits cyan fluorescence, a phosphor layer that emits yellow fluorescence, and other phosphor layers that emit fluorescence of other colors may be provided. You may provide the color filter corresponding to.
  • the materials (components) of the phosphor layer 14b and the phosphor layer 15b are as described above.
  • the film thickness of the phosphor layer 14b and the phosphor layer 15b is preferably 100 nm to 100 ⁇ m, and more preferably 1 ⁇ m to 20 ⁇ m.
  • the film thickness is equal to or greater than the lower limit, excitation light from the excitation light source can be sufficiently absorbed, luminous efficiency is improved, and light from an undesired excitation light source is mixed with the required color. , Deterioration of color purity is suppressed. Moreover, it can avoid that it becomes an excessive film thickness because a film thickness is below the said upper limit, and can reduce cost.
  • the phosphor substrate 1 includes a blue pixel 16 that directly uses light emitted from excitation light, and a red pixel 14 and a green pixel 15 that use fluorescence emitted from the phosphor layer and have different light distribution characteristics from the blue pixel 16. It has.
  • the light scattering layer 16b reduces changes in luminance and color due to a shift in the light distribution characteristics depending on the viewing angle between the pixels having different light distribution characteristics.
  • the light scattering layer 16b can be formed, for example, by curing a binder resin using a curable composition (a composition for forming a light scattering layer) in which light scattering particles and a binder resin are blended.
  • the light scattering particles may be made of either an organic material or an inorganic material.
  • the organic material include polymethyl methacrylate (refractive index 1.49), acrylic resin (refractive index 1.50), acrylic-styrene copolymer (refractive index 1.54), melamine resin (refractive index 1.57). ), High refractive index melamine resin (refractive index 1.65), polycarbonate (refractive index 1.57), polystyrene (refractive index 1.60), cross-linked polystyrene (refractive index 1.61), polyvinyl chloride (refractive index 1). .60), benzoguanamine-melamine formaldehyde resin (refractive index 1.68), silicone (refractive index 1.50), and the like.
  • the inorganic material examples include oxides of one or more metals selected from the group consisting of silicon, titanium, zirconium, aluminum, indium, zinc, tin, and antimony.
  • silica reffractive index 1.44
  • alumina reffractive index 1.63
  • titanium oxide reffractive index 2.50 (anaters type), 2.70 (rutile type)
  • zirconium dioxide are preferable.
  • examples thereof include (refractive index 2.05), zinc oxide (refractive index 2.00), barium titanate (BaTiO 3 ) (refractive index 2.4), and the like.
  • the light scattering particles are preferably made of an inorganic material.
  • light having directivity from the outside for example, a light emitting element
  • the stability of the light scattering layer 16b to light and heat can be improved.
  • the light scattering particles preferably have high transparency, and those in which fine particles having a higher refractive index than the base material are dispersed in the base material having a low refractive index are preferable.
  • the particle diameter of the light scattering particles is preferably 100 nm to 500 nm. By being in such a range, blue light is more effectively scattered by Mie scattering in the light scattering layer 16b.
  • the binder resin preferably has translucency.
  • acrylic resin reffractive index 1.49
  • melamine resin reffractive index 1.57
  • nylon reffractive index 1.53
  • polystyrene reffractive index 1.60
  • polycarbonate reffractive index
  • polyvinyl chloride reffractive index 1.60
  • polyvinylidene chloride reffractive index 1.61
  • polyvinyl acetate reffractive index 1.46
  • polyethylene reffractive index 1.53
  • polymethacrylic acid Methyl reffractive index 1.49
  • medium density polyethylene reffractive index 1.53
  • high density polyethylene reffractive index 1.54
  • poly (trifluoroethylene chloride) reffractive index 1.42
  • polytetrafluoroethylene examples thereof include a refractive index of 1.35).
  • the film thickness of the light scattering layer 16b is the same as the film thickness of the phosphor layer 14b and the phosphor layer 15b.
  • the phosphor substrate 1 has a refractive index between the color filter (the red color filter 14a and the green color filter 15a) and the phosphor layer (the phosphor layer 14b and the phosphor layer 15b) as compared with the substrate 11 and the phosphor layer.
  • a low low refractive index layer may be provided.
  • the phosphor substrate 1 may be provided with a low refractive index layer having a lower refractive index than the substrate 11 and the light scattering layer 16b between the blue color filter 16a and the light scattering layer 16b.
  • a low refractive index layer having a lower refractive index than that of the substrate 11 and the phosphor layer may be provided between the substrate 11 and the phosphor layer.
  • a low refractive index layer having a lower refractive index than the substrate 11 and the light scattering layer 16b may be provided between the substrate 11 and the light scattering layer 16b.
  • light emitted from the phosphor layer may be guided through the substrate 11 and guided to the side surface of the substrate 11 to cause a light emission loss.
  • the low refractive index layer at the position as described above, light having a critical angle or more in the low refractive index layer can be reflected to the phosphor layer side.
  • the reflected light is reflected again by the semi-transparent electrode or reflective electrode provided in the organic EL section, etc., and is emitted to the outside, reducing the light emission loss and reducing the power consumption of the organic EL element and improving the brightness. Can be made.
  • a reflection film (for example, a dielectric multilayer film, a bandpass filter, an ultra-thin metal film, etc.) that transmits light that excites the phosphor layer and reflects light emitted from the phosphor layer is formed between the phosphor layer and the organic layer.
  • excitation light sources such as EL
  • a fluorescent substance can light-emit and the light inject
  • the low refractive index layer As the material of the low refractive index layer, poly (1,1,1,3,3,3-hexafluoroisopropyl acrylate) (refractive index 1.375), poly (2,2,3,3,4,4) , 4-Heptafluorobutyl methacrylate) (refractive index 1.383), poly (2,2,3,3,3-pentafluoropropyl methacrylate) (refractive index 1.395), poly (2,2,2-tri Examples thereof include fluororesins (resin having a fluorine atom) such as fluoroethyl methacrylate (refractive index 1.418); mesoporous silica (refractive index 1.2); airgel (refractive index 1.05). Further, the low refractive index layer may be constituted by a void filled with a gas such as dry air or nitrogen gas or a void reduced in pressure.
  • a gas such as dry air or nitrogen gas or a void reduced in pressure.
  • the phosphor substrate 1 preferably includes a sealing film on the phosphor layer 14b, the phosphor layer 15b, and the light scattering layer 16b.
  • a sealing film By providing the sealing film in this way, the entry of oxygen and moisture from the outside to these phosphor layers and the light scattering layer can be highly suppressed, and the deterioration of these phosphor layers and the light scattering layer can be highly suppressed.
  • the phosphor substrate 1 is applied to a display device or the like, from these phosphor layers and light scattering layers, for example, mixing of oxygen and moisture into the organic EL layer can be suppressed, and deterioration of the organic EL element is also highly suppressed. it can.
  • the phosphor substrate 1 further includes a planarizing film on the sealing film.
  • a planarizing film By providing such a planarizing film, it is possible to prevent the occurrence of depletion when combined with an excitation light source described later, and to improve the adhesion between the excitation light source and the phosphor substrate 1.
  • the sealing film and the planarizing film may be known ones.
  • the phosphor substrate 1 can be manufactured by the same method as a conventional phosphor substrate except that one or both of the phosphor layer 14b and the phosphor layer 15b are formed using the specific photosensitive resin.
  • FIG. 2 an example of a method for manufacturing the phosphor substrate 1 will be described with reference to FIG. 2 that are the same as those shown in FIG. 1 are assigned the same reference numerals as in FIG. 1, and detailed descriptions thereof are omitted. The same applies to the following drawings.
  • a black matrix 12 is formed on a substrate 11.
  • the black matrix 12 can be formed by a photolithography method.
  • a curable composition (a composition for forming a black matrix) comprising a monomer, a photopolymerization initiator, a black pigment, a binder and a solvent is applied onto the substrate 11 and a photo is applied to the resulting coating film. It can be formed by irradiating (exposing) light through a mask to cure a desired portion of the coating film, and then developing and patterning using a developer.
  • the curable composition can be applied by, for example, a coating method such as a spin coating method. Moreover, you may perform prebaking, postbaking, etc. as needed.
  • the substrate 11 is used after being washed with water, an organic solvent or the like, if necessary.
  • a bank 13 is formed on the black matrix 12.
  • the bank 13 uses, for example, a bank forming composition (bank forming composition) in which a monomer, a photopolymerization initiator, light reflecting particles or light scattering particles, a binder and a solvent are blended as the curable composition. Other than that, it can be formed by the same photolithography method as in the case of the black matrix 12 described above. A photomask having a pattern that allows the bank 13 to be stacked on the black matrix 12 may be used.
  • a structure in which a structure of the bank 13 is formed by using an existing positive type or negative type photoresist and a reflective film such as aluminum is formed on at least a side surface of the structure is used. May be.
  • the metal reflective film provided on the surface of the bank 13 corresponds to the “structure that reflects or diffuses the light emitted from the wavelength conversion unit” in the present invention.
  • a red color filter 14a, a green color filter 15a, and a blue color filter 16a are formed in each sub-pixel region partitioned by the bank 13.
  • the red color filter 14a, the green color filter 15a, and the blue color filter 16a can be formed by the same photolithography method as in the case of the black matrix 12 except that a curable composition capable of forming them is used.
  • a photomask having a pattern that can form a target color filter in each subpixel region may be used.
  • the phosphor layer 14b is formed on the red color filter 14a, the phosphor layer 15b is formed on the green color filter 15a, and the light scattering layer 16b is formed on the blue color filter 16a.
  • the method for forming the phosphor layer 14b and the phosphor layer 15b is as described above as the method for forming the phosphor layer.
  • the light scattering layer 16b is, for example, the case of the above black matrix 12 except that the light scattering layer forming composition described above (light scattering layer forming composition) is used as the curable composition. It can be formed by the same photolithography method.
  • the photomask has a pattern in which the phosphor layer 14b can be stacked on the red color filter 14a, the phosphor layer 15b can be stacked on the green color filter 15a, and the light scattering layer 16b can be stacked on the blue color filter 16a. Use it.
  • the phosphor layer 14b, the phosphor layer 15b, and the light scattering layer 16b are preferably formed of the same type at the same time (for example, a plurality of phosphor layers 14b are formed at the same time). It is not limited.
  • the phosphor substrate 1 can be obtained.
  • the phosphor layer 14b is formed after the red color filter 14a, the green color filter 15a, and the blue color filter 16a are formed.
  • a low refractive index layer may be formed on these color filters.
  • the sealing film can be formed by applying a resin on the phosphor layer 14b, the phosphor layer 15b, and the light scattering layer 16b by a spin coat method, an ODF method, a laminate method, or the like. Further, after forming an inorganic film such as SiO, SiON, SiN or the like by plasma CVD, ion plating, ion beam, sputtering, or the like, the sealing film is further coated on this inorganic film by spin coating or ODF. It can also be formed by applying a resin by a method, a laminating method or the like, or bonding a resin film.
  • the phosphor substrate of the present embodiment has the above configuration.
  • a phosphor substrate having the above-described configuration since the above-described photosensitive resin composition according to one embodiment of the present invention is used, a phosphor substrate having a phosphor layer with favorable light emission characteristics is provided. Can be provided.
  • a light-emitting device includes a light source that emits excitation light and a wavelength conversion unit that absorbs the excitation light and emits light having a wavelength different from that of the excitation light.
  • the wavelength conversion part uses the above-mentioned photosensitive resin composition as a forming material.
  • the wavelength conversion unit may be provided directly on the light source.
  • substrate mentioned above may be sufficient as a light-emitting device.
  • an organic EL element or an inorganic EL element that emits blue or ultraviolet excitation light for example, (1) an organic EL element or an inorganic EL element that emits blue or ultraviolet excitation light, (2) LED elements that emit excitation light in the blue or ultraviolet region, (3) A liquid crystal substrate comprising a backlight that emits excitation light in the blue or ultraviolet region, and a liquid crystal element having a shutter function for light emitted from the backlight, (4) A MEMS substrate comprising a backlight that emits excitation light in the blue or ultraviolet region, and a MEMS element having a shutter function for light emitted from the backlight, Can be mentioned.
  • the “blue or ultraviolet excitation light” light in the wavelength band from ultraviolet light to blue-green light (ultraviolet light, deep blue light, blue light, blue-green light) can be used in detail.
  • an organic EL element that emits blue light is preferably used as the light emitting portion.
  • FIG. 3 is a cross-sectional view schematically showing a wavelength conversion type light emitting device according to one embodiment of the present invention.
  • a light emitting device 10 shown in the figure is formed by bonding an organic EL substrate 2 and a phosphor substrate 1 shown in FIG. However, here, the phosphor substrate 1 and the organic EL substrate 2 are shown separated from each other in order to easily understand the state of wavelength (color) conversion in the phosphor substrate 1.
  • Such a light emitting device 10 can be used as an organic EL display.
  • the organic EL substrate 2 includes an organic EL element having a substrate 21, a thin film transistor 22, an interlayer insulating film 23, an anode (pixel electrode) 25, an organic EL layer 26, and a cathode 27.
  • a thin film transistor 22 is provided on the substrate 21, and an interlayer insulating layer 23 is provided on the thin film transistor 22.
  • the thin film transistor 22 includes a source electrode 22a, a drain electrode 22b, a semiconductor layer 22c, a gate electrode 22d, and a gate insulating layer 22e.
  • the interlayer insulating layer 23 is provided with a contact hole 24 in a portion on the source electrode 22a, and an anode 25 provided on the interlayer insulating layer 23 is electrically connected to the source electrode 22a through the contact hole 24. Yes.
  • An organic EL layer 26 is provided on the anode 25, and a cathode 27 is provided on the organic EL layer 26.
  • one thin film transistor 22 is illustrated for each subpixel.
  • a plurality of thin film transistors is provided for each subpixel. 22 may be provided.
  • the substrate 21 an inorganic material substrate made of glass, quartz or the like can be exemplified.
  • the thickness of the substrate 21 is preferably 100 ⁇ m to 1000 ⁇ m.
  • Examples of the semiconductor layer 22c include amorphous silicon; polycrystalline silicon; organic semiconductors such as pentacene, polythiophene, and fullerene C60; and inorganic oxides such as indium-gallium-zinc oxide. 200 nm is preferable.
  • Examples of the source electrode 22a and the drain electrode 22b include a semiconductor layer 22c doped with an impurity element such as phosphorus; a metal layer such as gold, silver, copper, or aluminum, with a thickness of 10 nm to 500 nm. Preferably there is.
  • a metal such as gold, platinum, silver, copper, aluminum, tantalum, doped silicon, or the like; an organic compound such as 3,4-polyethylenedioxythiophene (PEDOT) / polystyrene sulfonate (PSS)
  • PES polystyrene sulfonate
  • Examples of the gate insulating layer 22e include inorganic compounds such as silicon nitride and silicon oxide; organic compounds such as cycloten, cytop, and parylene, and the thickness is preferably 50 nm to 300 nm.
  • interlayer insulating layer 23 examples include inorganic compounds such as silicon nitride and silicon oxide; organic compounds such as cycloten, cytop and parylene, and the thickness is preferably 100 nm to 2000 nm.
  • Examples of the anode 25 include a laminate of a reflective electrode made of silver or aluminum and a transparent electrode made of indium oxide-zinc oxide (IZO) or the like, and the reflective electrode is provided on the substrate 21 side.
  • the thickness of the reflective electrode is preferably 10 nm to 1000 nm, and the thickness of the transparent electrode is preferably 10 nm to 100 nm.
  • Examples of the organic EL layer 26 include a layer in which only a hole injection layer, a hole transport layer, a blue light emitting layer, a hole block layer, an electron transport layer, an electron injection layer, and the like are appropriately stacked.
  • the thickness is preferably selected arbitrarily in the range of 0.5 nm to 200 nm.
  • Examples of the cathode 27 include alloys such as magnesium silver and aluminum lithium; those composed of a single metal such as silver and aluminum, and may be composed of either a single layer or a plurality of layers.
  • the thickness of the cathode 27 is preferably 10 nm to 1000 nm.
  • excitation light (blue light) L1 from the organic EL substrate 2 enters the phosphor substrate 1, and this excitation light L1 is converted into red light L11 by the phosphor layer 14b. Similarly, the excitation light L1 is converted into green light L12 by the phosphor layer 15b. The red light L11 and the green light L12 are emitted from the substrate 11 side of the phosphor substrate 1 together with the blue light L13 transmitted through the light scattering layer 16b.
  • the light emitting device 10 can be manufactured by the same method as a conventional organic EL display except that the phosphor substrate 1 is used.
  • a method for manufacturing the light emitting device 10 will be described with reference to FIG.
  • the organic EL substrate 2 is produced.
  • a thin film transistor 22 is formed on a substrate 21 by an existing semiconductor process, and a sputtering method, a vacuum deposition method, a spin coating method, etc. are formed on the substrate 21 so as to cover the thin film transistor 22.
  • the interlayer insulating layer 23 is formed by a printing method such as an inkjet method.
  • a contact hole 24 is formed in a portion of the interlayer insulating layer 23 on the source electrode 22a to form an active matrix TFT substrate.
  • an anode 25 is formed on the interlayer insulating layer 23 and in the contact hole 24 by sputtering or the like.
  • an organic EL layer 26 is formed on the interlayer insulating layer 23 so as to cover the anode 25 by a vacuum deposition method or the like.
  • a cathode 27 is formed on the organic EL layer 26 by vacuum deposition or the like.
  • the cathode 27 of the obtained organic EL substrate 2 and the phosphor layer 14b, the phosphor layer 15b, and the light scattering layer 16b of the phosphor substrate 1 are opposed to each other. Then, the organic EL substrate 2 and the phosphor substrate 1 are arranged, bonded together, and fixed. Thus, the light emitting device 10 is obtained.
  • the phosphor substrate according to one aspect of the present invention described above is included, high quality display is possible.
  • An electronic apparatus includes the above-described light emitting device according to the present invention.
  • FIG. 5 is a schematic front view showing an embodiment of an electronic apparatus according to the present invention.
  • the electronic device shown here is a television receiver.
  • a television receiver 1220 shown here includes a display portion 1221, a speaker 1222, a cabinet 1223, a stand 1224, and the like, and further includes a light-emitting device (display) according to one embodiment of the present invention described above.
  • the display is an ultra-high-definition display having a diagonal size of 60 inches and the number of pixels: horizontal 7680 ⁇ vertical 4320, the power consumption is dramatic compared to conventional liquid crystal televisions and organic EL televisions. It is preferable because a decrease can be expected.
  • the television receiver 1220 includes the display, the internal quantum yield of the wavelength conversion unit is high, and thus power consumption is low. Further, since the wavelength conversion material is extremely little deteriorated in the wavelength conversion section, the reliability is further increased.
  • FIG. 6 is a schematic front view showing an embodiment of an electronic apparatus according to the present invention.
  • the electronic device shown here is a portable game machine.
  • a portable game machine 1230 shown here includes an operation button 1231, an infrared port 1232, an LED lamp 1233, a display portion 1234, a housing 1235, and the like, and the display portion 1234 includes a light-emitting device according to one embodiment of the present invention ( Display).
  • the portable game machine 1230 includes the display, the internal quantum yield of the wavelength conversion unit is high, and thus power consumption is low. Further, since the wavelength conversion material is extremely little deteriorated in the wavelength conversion section, the reliability is further increased.
  • FIG. 7 is a schematic perspective view showing an embodiment of an electronic apparatus according to the present invention.
  • the electronic device shown here is a notebook computer.
  • a laptop computer 1240 shown here includes a display portion 1241, a keyboard 1242, a pointing device 1243, a power switch 1244, a camera 1245, an external connection port 1246, a housing 1247, and the like, and the display portion 1241 includes one embodiment of the above-described invention.
  • the light emitting device (display) according to the above is provided.
  • the notebook personal computer 1240 includes the display, since the internal quantum yield of the wavelength conversion unit is high due to the display, power consumption is low. Further, since the wavelength conversion material is extremely little deteriorated in the wavelength conversion section, the reliability is further increased.
  • FIG. 8 is a schematic perspective view showing an embodiment of an electronic apparatus according to the present invention.
  • the electronic device shown here is a smartphone (tablet terminal).
  • a smartphone 1210 shown here includes an audio input portion 1211, an audio output portion 1212, an operation switch 1213, a display portion 1214, a touch panel 1215, a housing 1216, and the like, and the display portion 1214 emits light according to one embodiment of the present invention described above. It is configured with a device (display).
  • the smartphone 1210 includes the display, the internal quantum yield of the wavelength conversion unit is high, and thus power consumption is low. Further, since the wavelength conversion material is extremely little deteriorated in the wavelength conversion section, the reliability is further increased.
  • FIG. 9 is a schematic perspective view showing an embodiment of an electronic apparatus according to the present invention.
  • the electronic device shown here is a wristwatch type display (wearable computer).
  • a wristwatch-type display 1250 shown here includes a power switch 1251, a display portion 1252, a fixed band 1253, and the like, and the display portion 1252 includes the light-emitting device (display) according to one embodiment of the present invention. .
  • the wristwatch type display 1250 includes the display, the internal quantum yield of the wavelength conversion unit is high, and thus power consumption is low. Further, since the wavelength conversion material is extremely little deteriorated in the wavelength conversion section, the reliability is further increased. In addition, according to the display of the present invention, high definition can be achieved, so that a clear and high-quality image can be provided even when the object is close to the eye.
  • FIG. 10 is a schematic perspective view showing an embodiment of an electronic apparatus according to the present invention.
  • the electronic device shown here is a head mounted display (wearable computer).
  • a head mounted display 1260 shown here includes a power switch 1261, a display portion 1262, a fixed band 1263, a frame 1264, and the like, and further includes a light emitting device (display) according to one embodiment of the present invention described above. Has been.
  • the head mounted display 1260 includes the display, the internal quantum yield of the wavelength conversion unit is high, and thus power consumption is low. Further, since the wavelength conversion material is extremely little deteriorated in the wavelength conversion section, the reliability is further increased. Further, according to the display of one embodiment of the present invention, high definition can be achieved, so that a clear and high-quality image can be provided even when the object is close to the eye.
  • An illumination device includes the wavelength conversion substrate according to one embodiment of the present invention described above.
  • FIG. 11 is a schematic perspective view showing an embodiment of a lighting device according to the present invention.
  • the lighting device shown here is a lighting stand.
  • An illumination stand 1290 shown here includes an illumination unit 1291, a stand 1292, a power switch 1293, a power cord 1294, and the like, and the illumination unit 1291 includes the wavelength conversion substrate according to one embodiment of the present invention described above. Yes.
  • the illumination stand 1290 includes the wavelength conversion substrate, the internal quantum yield of the wavelength conversion unit is high, and thus power consumption is low. Further, since the wavelength conversion material is extremely little deteriorated in the wavelength conversion section, the reliability is further increased.
  • FIG. 12 is a cross-sectional view schematically showing an embodiment of a light emitting substrate in a lighting device.
  • the light emitting substrate 600 shown here includes a light emitting portion 69 on a substrate 21, a bank 68 is erected on the substrate 21, and a reflective layer 60 is provided on a side surface 68 a and an upper surface 68 b thereof.
  • the bank 68 partitions the light emitting unit 69.
  • the reflective layer 60 is provided only on the side surface 68a of the partition wall 68 and may not be provided on the upper surface 68b.
  • the wavelength conversion substrate 6 is configured by the substrate 21, the light emitting portion 69, the partition wall 68, and the reflective layer 60.
  • the light emitting substrate 600 includes a wavelength conversion unit 642 at a position where the light emitted from the light emission unit 69 is incident so as to face the light emission unit 69, and the peripheral portion of the wavelength conversion unit 642 is formed of the partition wall 68. It is disposed in close contact with the reflective layer 60 on the side surface 68a.
  • the light emitting unit 69 and the wavelength converting unit 642 are shown separated from each other.
  • the light emitting substrate 600 is bonded to face the wavelength conversion substrate 63 provided with the wavelength conversion unit 642.
  • the light-emitting board 600 a part of the outgoing light R 61 from the light emitting portion 69 is converted into a different light R 62 in the wavelength conversion unit 642, in the outgoing light R 61 unconverted this converted light R 62, still different Light R 63 is generated, and finally this generated light R 63 is emitted.
  • the light emitting portion 69 is not particularly limited, and may be, for example, a laminated structure of an anode, an organic EL layer, and a cathode, or a laminated structure of an anode, an inorganic EL layer, and a cathode.
  • the wavelength conversion unit 642 includes at least a wavelength conversion material that generates corresponding light and a molecular cleavage type photosensitive resin.
  • the type of the wavelength conversion unit 642 may be adjusted as appropriate according to the wavelength of light from the light emitting unit 69.
  • the light emitting substrate 600 include a light emitting portion 69 that is a blue light emitting portion and a wavelength converting portion 642 that is a yellow wavelength converting portion that converts blue light into yellow light.
  • a light emitting substrate 600 part of the blue light (emitted light) R 61 from the light emitting unit 69 is converted into yellow light (converted light) R 62 by the wavelength converting unit (yellow wavelength converting unit) 642, and this conversion is performed.
  • the yellow light R 62 and the unconverted blue light R 61 generate white light (generated light) R 63 , and finally the white light R 63 is emitted.
  • a yellow light emitting substance that absorbs blue light and generates yellow light may be used as the light emitting substance in the wavelength conversion unit 642.
  • a solar cell according to one embodiment of the present invention includes the wavelength conversion substrate according to one embodiment of the present invention described above.
  • FIG. 13 is a schematic view showing a main part of one embodiment of a solar cell.
  • the solar cell using the wavelength conversion substrate according to one embodiment of the present invention is not limited to the one shown here.
  • the solar cell 7 shown here includes the wavelength conversion substrate 5 shown in FIG. 13, a light emitting unit S composed of a light source such as the sun or illumination, and a solar cell element 71 disposed to face the wavelength conversion substrate 5. It is configured.
  • the wavelength conversion substrate 5 is installed such that the second wavelength conversion unit 552 faces the sun S.
  • the solar cell element 71 is arrange
  • FIG. here, in order to easily understand the arrangement relationship between the wavelength conversion substrate 5 and the solar cell element 71, they are shown separated from each other. Only the wavelength conversion substrate 5 is shown in cross section.
  • the solar cell element 71 is the same as a conventional solar cell (element).
  • the solar cell 7 In the solar cell 7, light in a predetermined wavelength region is converted into light in a target wavelength region out of sunlight incident on the wavelength conversion substrate 5 and emitted from the substrate 11 side. Power is generated by entering the solar cell element 71 from 71a.
  • the first wavelength conversion unit 542 is a green wavelength conversion unit that converts blue light into green light
  • the second wavelength conversion unit 552 is a blue wavelength conversion unit that converts ultraviolet light into blue light. This is an example.
  • ultraviolet light R 1 in sunlight incident on the wavelength conversion substrate 5 is converted into blue light in the second wavelength converter (blue wavelength converting unit) 552, the converted blue blue light and in sunlight
  • the light R 2 is converted into the green light R 3 by the first wavelength conversion unit (green wavelength conversion unit) 542 and finally the green light R 3 , the yellow light R 4 , the orange light R 5, and the red light R 6.
  • Light having a wavelength longer than that of blue light such as the like is emitted from the wavelength conversion substrate 5, and light having a wavelength region with high power generation efficiency is incident on a solar cell element (not shown), thereby forming a solar cell with high power generation efficiency. it can.
  • the wavelength conversion material is extremely little deteriorated in the wavelength conversion section, the reliability is further increased.
  • Example 1 A polyamic acid having a cyclobutane skeleton (photosensitive resin, the following formula (11)) was synthesized according to Non-Patent Document 1 (Chemistry of Materials 1989, 1, 163). Next, the obtained polyamic acid was dissolved in N-methyl-2-pyrrolidone (NMP) to make a 10% by mass solution, and 1% by mass of coumarin 6 was added to the mass of the polyamic acid and stirred. The photosensitive resin composition 1 of Example 1 was obtained.
  • NMP N-methyl-2-pyrrolidone
  • the photosensitive resin composition 1 was spin-coated on a glass substrate to form a coating film containing polyamic acid and coumarin 6.
  • the spin coating conditions were 20 seconds at 3000 rpm.
  • the obtained coating film was baked at 175 ° C. for 2 hours to imidize, thereby forming a resin film containing a photosensitive resin having a cyclobutanediimide structure (the following formula (12)) and coumarin 6.
  • the exposed substrate was immersed in dimethylacetamide and developed, and a resin film containing a photosensitive resin having a cyclobutanediimide structure and coumarin 6 was patterned.
  • the internal quantum yield was measured using QE-1000 manufactured by Otsuka Electronics. Specifically, the phosphor material is excited by light having the maximum absorption wavelength, and the number of photons absorbed by the phosphor material and the number of photons emitted by the phosphor material are counted. The rate was calculated.
  • [Internal quantum yield] [Number of photons emitted from phosphor] / [Number of photons absorbed by phosphor]
  • Example 2 A photosensitive resin (the following formula (13)) having a nitrobenzylamide skeleton as a photosensitive site was synthesized according to J. Mater. Chem. 4 (1994) 1769.
  • the obtained photosensitive resin was dissolved in NMP to make a 10% by mass solution, and 1% by mass of lumogen red was added to the mass of the photosensitive resin and stirred to obtain the photosensitive resin composition 2 of Example 2. Obtained.
  • a photosensitive resin having a nitrobenzylamide skeleton was used in the same manner as in Example 1 except that irradiation was performed with ultraviolet light having a central wavelength of 356 nm at an exposure dose of 800 mJ / cm 2 and using isopropyl alcohol as a developer. A resin film containing lumogen red was patterned.
  • Example 3 A photosensitive resin (the following formula (14)) having a nitrobenzyl ether skeleton as a photosensitive site was synthesized according to Journal of Polymer Science: Part A: Polymer Chemistry 45, (2007) 776. (N is a natural number)
  • the obtained photosensitive resin was dissolved in NMP to make a 10% by mass solution, and further, 1% by mass of fluorescein was added to the mass of the photosensitive resin and stirred, whereby the photosensitive resin composition 3 of Example 3 was used.
  • the photosensitive resin composition 3 of Example 3 was used.
  • TMAH tetramethylammonium hydroxide
  • Example 4 A high-definition wavelength conversion type organic EL display was manufactured according to the third embodiment. Specifically, it is as follows.
  • a 21.0 cm ⁇ 16.0 cm glass substrate having a thickness of 0.5 mm was washed with water, then immersed in acetone and subjected to ultrasonic cleaning for 10 minutes, and then immersed in a 0.1 mol / L sodium hydroxide aqueous solution to obtain a super substrate.
  • the substrate was dried at 100 ° C. for 1 hour after ultrasonic cleaning was performed for 10 minutes by immersing in ultrasonic cleaning for 10 minutes.
  • a BK resist manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • a black matrix forming composition is applied onto the substrate by a spin coating method, and prebaked at 90 ° C. for 1 minute.
  • a 1 ⁇ m coating film was formed.
  • an area of 19.7 cm ⁇ 14.8 cm (aspect ratio 4: 3, 9.7 inches) from the center of the substrate has a line width of 7.2 ⁇ m and an opening of 10 ⁇ m ⁇ 44.6 ⁇ m (subpixel).
  • a polyimide-based positive resist material manufactured by Toray Industries, Inc.
  • a photomask obtained by inverting the positive / negative with respect to the photomask used when forming the black matrix was similarly 19.7 cm ⁇ 14.8 cm (aspect ratio 4: 3, 9.7 inches), alignment was performed so that the formed black mac matrix was exposed, and i-line was irradiated at an exposure amount of 300 mJ / cm 2 to expose the coating film.
  • Formation of reflective layer Aluminum was formed as a reflective layer by 200 nm vacuum deposition on the entire surface of the substrate where the partition walls were formed. Next, in order to remove the aluminum in the opening where the black matrix is not formed, a positive resist for aluminum patterning (manufactured by Tokyo Ohka Kogyo Co., Ltd.) is applied to the surface of the substrate on which the aluminum is formed by spin coating. And prebaked at 110 ° C. for 1 minute to form a coating film having a thickness of 1.2 ⁇ m. On this coating film, the photomask used when the partition walls were formed was placed, aligned so that the openings where the formed black mac matrix was not formed, and the i-line was exposed to an exposure amount of 68.5 mJ. / Cm 2 was irradiated to expose the coating film.
  • a positive resist for aluminum patterning manufactured by Tokyo Ohka Kogyo Co., Ltd.
  • a light scattering layer was formed on the blue color filter by the following method. Titanium oxide having an average particle size of 200 nm as light scattering particles is added to an epoxy resin (“SU-8” manufactured by Nippon Kayaku Co., Ltd.) as a binder resin, and thoroughly mixed in an automatic mortar. The composition for forming a light scattering layer was prepared by stirring the mixture for 15 minutes using “Fillmix (registered trademark) 40-40”.
  • composition for forming a light scattering layer was applied onto the substrate, and a coating film was formed by a spin coating method.
  • the obtained coating film was irradiated with i-line of parallel light at 600 mJ / cm 2 through a photomask patterned so that light was irradiated only on the blue color filter in a nitrogen atmosphere.
  • the coating film was cured.
  • cured material was immersed in PGMEA, and it developed by dissolving the coating film of an unexposed part, and formed the pattern.
  • the glass substrate in which this pattern was formed was heated on a 90 degreeC hotplate, and the light-scattering layer (blue light-scattering layer) was formed by removing the remaining solvent.
  • the thickness of the obtained light scattering layer was 4 ⁇ m.
  • the photomask of Example 1 was formed using the method of Example 1 except that a photomask that was patterned only on the green color filter was used. Furthermore, in order to form a red wavelength conversion portion, in addition to rumogen red as a luminescent material of Example 2, using a photomask patterned only on the red color filter in the photomask of Example 2, It was formed using the method of Example 2 except that 0.3% by mass of Coumarin 6 was added to the mass of the photosensitive resin.
  • the green and red wavelength conversion portions were 10 ⁇ m ⁇ 44.6 ⁇ m, the subpixel size was 17.2 ⁇ m ⁇ 51.8 ⁇ m, and the aperture ratio was 50%. Moreover, when blue light with a peak wavelength of 450 nm (half-value width 40 nm) was incident on the obtained substrate and the internal quantum yield of the wavelength conversion unit was evaluated, it was 90%. Thus, a wavelength conversion substrate was obtained.
  • a blue phosphorescent organic EL element substrate was produced as a light emitting part. Specifically, it is as follows.
  • a thin film transistor whose semiconductor layer is made of IGZO is formed on a thin film transistor having the same material and the same size as the wavelength conversion substrate, and an interlayer insulating layer made of silicon nitride is formed on the thin film transistor. Further, a part of the interlayer insulating layer above the source electrode of the thin film transistor was removed to form a contact hole. Next, silver is deposited on the interlayer insulating layer as a reflective electrode for organic EL by a vacuum deposition method so that the film thickness is 100 nm, and ITO is deposited on the entire surface as a transparent electrode so that the film thickness is 20 nm.
  • a film was formed by sputtering. Then, by photolithography, the anode (pixel electrode) was a rectangle of 10 ⁇ m ⁇ 44.6 ⁇ m, and a pattern with a pixel density of 490 ppi was formed with a distance of 7.2 ⁇ m from the adjacent anode. The anode was electrically connected to the source electrode of the transistor through a contact hole.
  • the substrate formed up to the anode is fixed to the substrate holder in the in-line type resistance heating vapor deposition apparatus, and the pressure is reduced to a pressure of 1 ⁇ 10 ⁇ 4 Pa or less, and a hole injection layer, a hole transport layer, a blue light emitting layer, a hole block layer
  • the electron transport layer and the electron injection layer were formed in this order with the materials and film thicknesses shown in Table 3 to form an organic EL layer.
  • the power consumption when the display of this example was lit white at 160 cd / cm 2 was 10.3 W.
  • Example 5 Both the concentration of lumogen red in the red wavelength conversion part of Example 4 with respect to the resin and the concentration of coumarin 6 in green wavelength conversion were 10% by mass, 7% by mass, 5% by mass, 3% by mass, 2% by mass, and 1. By changing to 5% by mass, wavelength conversion substrates having internal quantum yields of 52%, 63%, 70%, 76%, 80%, and 85%, respectively, were produced. This was attached to the same organic EL substrate as in Example 4 to produce a display, and the power consumption was evaluated in the same manner as in Example 4.
  • Example 1 As a representative example of a conventional display, an active matrix drive IPS liquid crystal display having the same substrate size and pixel density (490 ppi) as in Example 4 was obtained, and the power consumption was evaluated in the same manner as in Example 4. Estimated 1W. It has been shown that a dramatic reduction in power consumption can be achieved with the display of the present invention.
  • FIG. 14 is a graph plotting power consumption values versus internal quantum yield for the displays of Examples 4 and 5 and Comparative Example 1.
  • the horizontal axis represents the internal quantum yield (unit:%), and the vertical axis represents the power consumption (unit: W).
  • Example 6 A wavelength conversion substrate and an organic EL substrate were prepared in the same manner except that the pixel density in Example 4 was changed to 300 ppi, 350 ppi, 400 ppi, 450 ppi, 600 ppi, and 700 ppi, respectively, and these were used as a bonded display.
  • the planar image of the optical microscope was observed for the vertical x horizontal line width of each wavelength conversion part at this time, 72.8 x 16.4, 62.4 x 14.1, and 54.6 x 12.3, respectively. 36.4 ⁇ 8.2, 31.2 ⁇ 7.0.
  • the power consumption of the obtained display was evaluated by the same method as in Example 4.
  • Comparative Example 2 The liquid crystal display of Comparative Example 1 was prepared in the same manner except that the pixel density was different from 300 ppi, 350 ppi, 400 ppi, and 550 ppi, and the power consumption was evaluated.
  • FIG. 15 is a graph plotting power consumption values versus pixel density for the displays of Examples 4 and 5 and Comparative Examples 5 and 6.
  • the horizontal axis represents the pixel density (unit: ppi) of the display, and the vertical axis represents the power consumption (unit: W).
  • the power consumption of the liquid crystal display increases rapidly as the pixel density increases. This is because with the increase in pixel density, the ratio of light non-transmission areas of thin film transistors and wirings per sub-pixel increases and the aperture ratio decreases, so that the required brightness for turning on the backlight in the liquid crystal display increases. This is probably because of this.
  • the power consumption of the display of the present invention increases as the pixel density increases, but there is no significant increase. Therefore, at a pixel density of 450 ppi or higher, lower power consumption than that of a conventional liquid crystal display is realized.
  • SYMBOLS 1 Phosphor substrate (wavelength conversion substrate), 5, 6, 63 ... Wavelength conversion substrate, 10 ... Light emitting device, 11, 21 ... Substrate, 14b, 15b ... Phosphor layer (wavelength conversion portion), 642 ... Wavelength conversion portion , L1 ... excitation light

Abstract

 露光により開裂反応を生じる感光性部位を有するポジ型の感光性樹脂と、感光性樹脂中に分散した波長変換材料とを含み、感光性樹脂と波長変換材料とは(i)~(iv)を満たす感光性樹脂組成物。 (i)感光性部位および感光性樹脂が開裂反応して生じた生成物が波長変換材料と中和反応しない。 (ii)感光性部位および生成物が波長変換材料の加水分解反応を起こさせない。 (iii)感光性部位および生成物のHOMOが波長変換材料のLUMOよりも低い。 (iv)感光性部位および生成物のLUMOが波長変換材料のHOMOよりも高い。 (ただし、化学増幅型の前記感光性樹脂であって感光性部位または生成物が酸性を示すものと、酸性の前記波長変換材料との組み合わせを除く)。

Description

感光性樹脂組成物、波長変換基板および発光デバイス
 本発明は、感光性樹脂組成物、波長変換基板および発光デバイスに関するものである。
 本願は、2014年06月13日に出願された日本国特願2014-122195号および2015年06月10日に出願された日本国特願2015-117689号に基づき優先権を主張し、その内容をここに援用する。
 従来、蛍光体材料を含む発光層(蛍光体層)は、種々の装置で幅広く利用されている。例えば、蛍光体層を備えた蛍光体基板は、有機ELディスプレイや液晶ディスプレイ等の表示装置や照明装置の構成要素として重要である。
 このような蛍光体層は、例えば、蛍光体材料を溶解または分散させた感光性樹脂組成物を基板上に塗工して樹脂層を形成し、フォトリソグラフィー法を用いて得られた樹脂層を所望の形状にパターニングすることで形成することができる(例えば、特許文献1~4参照)。
日本国特開2000-3047号公報 日本国特開平09-208704号公報 日本国特開平08-262728号公報 国際公開第00/48044号
 しかしながら、上記特許文献に記載された技術を用いて蛍光体層を形成しようとすると、パターニング時に蛍光体材料が劣化し、蛍光体材料が本来有する発光特性に比べて低下してしまうことがあった。
 このような課題は、蛍光体材料に限ったものではなく、例えば燐光材料など、光を吸収し異なる波長の光を射出する材料であれば同様に生じうる。
 本発明はこのような事情に鑑みてなされたものであって、蛍光体材料を含む波長変換材料の劣化を抑制し、良好な発光特性の蛍光体層などの波長変換部を形成可能な感光性樹脂組成物を提供することを目的とする。
 また、このような感光性樹脂組成物を用いて形成し、良好な発光特性の波長変換部を有する波長変換基板、およびこのような波長変換基板を有する発光デバイスを提供することをあわせて目的とする。
 上記の課題を解決するため、本発明の一態様は、露光により開裂反応を生じる感光性部位を有するポジ型の感光性樹脂と、前記感光性樹脂中に分散した波長変換材料と、を含み、前記感光性樹脂と前記波長変換材料とは、下記(i)から(iv)を満たす感光性樹脂組成物を提供する。
(i)前記感光性部位および前記感光性樹脂が開裂反応して生じた生成物が、前記波長変換材料と中和反応しない。
(ii)前記感光性部位および前記生成物が、前記波長変換材料の加水分解反応を起こさせない。
(iii)前記感光性部位および前記生成物のHOMOが、前記波長変換材料のLUMOよりも低い。
(iv)前記感光性部位および前記生成物のLUMOが、前記波長変換材料のHOMOよりも高い。
(ただし、化学増幅型の前記感光性樹脂であって前記感光性部位または前記生成物が酸性を示す感光性樹脂と、酸性の前記波長変換材料との組み合わせを除く)。
 本発明の一態様においては、前記感光性樹脂は、前記感光性部位および前記生成物が中性である構成としてもよい。
 本発明の一態様においては、前記感光性樹脂は、前記感光性部位として、シクロブタンジイミド骨格、o-ニトロベンジルアミド骨格、o-ニトロベンジルエーテル骨格、炭酸メチルフェニル骨格、1-ベンジルオキシ-1-アルキルエタノール骨格およびジシラン骨格からなる群から選ばれる少なくとも1つを有する構成としてもよい。
 本発明の一態様においては、前記感光性樹脂は、前記感光性部位としてシクロブタンジイミド骨格を有する構成としてもよい。
 本発明の一態様においては、前記波長変換材料は、プロトン受容基またはプロトン供与基を有する構成としてもよい。
 本発明の一態様においては、前記波長変換材料は、脱水縮合基を有する構成としてもよい。
 本発明の一態様においては、前記波長変換材料は、クマリン骨格またはボロン-ジピロメチン骨格を有する構成としてもよい。
 本発明の一態様においては、前記感光性樹脂は、可視光領域で光透過性を有する構成としてもよい。
 本発明の一態様においては、前記感光性樹脂を溶解する溶媒をさらに有する構成としてもよい。
 また、本発明の一態様は、基板と、前記基板上に設けられた波長変換部と、を有し、前記波長変換部は、上記の感光性樹脂組成物を形成材料とする波長変換基板を提供する。
 また、本発明の一態様は、上記の波長変換基板と、前記波長変換基板に励起光を照射する光源と、を有する発光デバイスを提供する。
 本発明の一態様においては、基板と、前記基板上に設けられた前記波長変換部と、を有する波長変換基板を有する構成としてもよい。
 本発明の一態様においては、前記波長変換基板は、前記波長変換部と少なくとも一面で接し、前記波長変換部から射出される光を反射する、または拡散させる構造体を有する構成としてもよい。
 本発明の一態様においては、前記構造体の形成材料は、金属材料を有する構成としてもよい。
 本発明の一態様においては、前記波長変換部の発光内部量子収率が80%以上である構成としてもよい。
 本発明の一態様においては、前記波長変換基板は、マトリクス状に配列した複数の波長変換部を有し、前記複数の波長変換部は、450ppi以上の密度で設けられている構成としてもよい。
 本発明によれば、波長変換材料の劣化を抑制し、良好な発光特性の波長変換部を形成可能な感光性樹脂組成物を提供することができる。また、このような感光性樹脂組成物を用いて形成し、良好な発光特性の波長変換部を有する波長変換基板、およびこのような波長変換基板を有する発光デバイスを提供することをあわせて目的とする。
本発明の波長変換基板の一態様に係る蛍光体基板を模式的に示す断面図である。 蛍光体基板の製造方法の一例を示す工程図である。 本発明の一態様に係る発光デバイスを模式的に示す断面図である。 発光デバイスの製造方法の一例を示す工程図である。 本発明に係る電子機器の一実施形態を示す概略正面図である。 本発明に係る電子機器の一実施形態を示す概略正面図である。 本発明に係る電子機器の一実施形態を示す概略斜視図である。 本発明に係る電子機器の一実施形態を示す概略斜視図である。 本発明に係る電子機器の一実施形態を示す概略斜視図である。 本発明に係る電子機器の一実施形態を示す概略斜視図である。 本発明に係る照明装置の一実施形態を示す概略斜視図である。 照明装置における発光基板の一実施形態を模式的に示す断面図である。 太陽電池の一実施形態の要部を示す概略図である。 実施例4、5および比較例1のディスプレイについて、内部量子収率に対する消費電力値をプロットしたグラフである。 実施例4,5および比較例5,6のディスプレイについて、画素密度に対する消費電力値をプロットしたグラフである。
 本明細書においては、以下の説明において「光を吸収し異なる波長の光を射出する材料」のことを「波長変換材料」と称することがある。
 また、波長変換材料を含み、光を吸収し異なる波長の光を射出する機能部のことを「波長変換部」と称することがある。
 また、基板と波長変換部とを有する部材のことを「波長変換基板」と称することがある。
[第1実施形態]
<感光性樹脂組成物>
 本発明の第1実施形態に係る感光性樹脂組成物は、ポジ型の感光性樹脂と、波長変換材料とを含む。
(感光性樹脂)
 本実施形態の感光性樹脂組成物に用いられる感光性樹脂は、露光により開裂反応を生じる感光性部位を有するポジ型の感光性樹脂である。
 本実施形態の感光性樹脂は、開裂反応により、感光性樹脂の分子量、または特定の溶媒に可溶化する官能基の発生が生じる。そのため、本実施形態の感光性樹脂は、露光することで、特定の溶媒に可溶化し、ポジ型感光性樹脂として機能する。
 従来のポジ型感光性樹脂である化学増幅型の感光性樹脂では、感光性樹脂に添加した化合物や、感光性樹脂中の一部分の光化学反応により酸などの化学種を発生させた後に、発生させた化学種と感光性樹脂とが、加熱などの処理により更に化学反応することで特定の溶媒に可溶化する。つまり、化学増幅型の感光性樹脂では、可溶化の過程において、(1)添加した化合物や、感光性樹脂中の一部分の光化学反応と(2)感光性樹脂が可溶化するための反応という二段階以上の化学反応が生じる。そのため、化学増幅型の感光性樹脂と波長変換材料とを共存させる場合には、化学増幅型の感光性樹脂の可溶化の過程で生じる各化学反応や、各化学反応で生じる化学種が波長変換材料に及ぼす影響を充分に考慮した上で、波長変換材料を選択する必要がある。
 対して、本実施形態の感光性樹脂は、開裂反応の一段階の化学反応で可溶化することができるため、化学増幅型の感光性樹脂と共に用いる場合よりも、波長変換材料の選択時に考慮すべき感光性樹脂の化学反応が少なく、波長変換材料の選択範囲を広げることができる。例えば、発光量子効率は高いが化学増幅型の感光性樹脂とは共存させることができない波長変換材料であっても、本実施形態の感光性樹脂とは共存させることが可能なものもあり、そのような波長変換材料を選択することが可能となる。
 感光性樹脂は、感光性部位、および露光により感光性部位が開裂して生じる生成物が中性であるものが好ましい。このような感光性樹脂は、感光性樹脂組成物中で共存する波長変換材料と反応しにくく、波長変換材料を劣化させにくい。なお、本明細書において「中性」とは、pH6の弱酸性からpH8の弱塩基性の範囲(pH6~8)を指している。
 また、感光性樹脂は、感光性部位としてシクロブタンジイミド骨格、o-ニトロベンジルアミド骨格、o-ニトロベンジルエーテル骨格、炭酸メチルフェニル骨格、1-ベンジルオキシ-1-アルキルエタノール骨格およびジシラン骨格からなる群から選ばれる少なくとも1つを有するものが好ましい。
 感光性樹脂が有する感光性部位であるシクロブタンジイミド骨格として、具体的には下記式(1)に示す構造(N,N’-ジフェニルシクロブタンジイミド骨格)を採用することができる。
Figure JPOXMLDOC01-appb-C000001
 式(1)において点線(-----)は、光照射により開裂する位置を示している。式(1)に示す構造は、中心波長254nmの光を吸収することにより、下記式(a1)で示す反応式に従って開裂する。
Figure JPOXMLDOC01-appb-C000002
 上記式(1)に示す構造は、1以上の水素原子が感光性樹脂の主鎖または側鎖を構成する原子と置換され、感光性樹脂の主鎖または側鎖のいずれか一方または両方に挿入されている。
 一例として、下記式(101)には、上記式(1)で示した化学構造を感光性部位として含む感光性樹脂における開裂反応を示している。式(101)において式(a)で示す感光性樹脂は、上記式(1)で示す点線(-----)を挟んで一方の側および他方の側のそれぞれのフェニレン基において感光性樹脂と結合し、感光性樹脂に挿入されている。
Figure JPOXMLDOC01-appb-C000003
 上記式(a)で示す感光性樹脂では、上述した中心波長の光を吸収することによりシクロブタン環が開裂し、開裂反応による生成物を生じる。
 感光性樹脂が有する感光性部位であるo-ニトロベンジルアミド骨格として、具体的には下記式(2)に示す構造を採用することができる。式(2)に示す構造は、中心波長365nmの光を吸収することにより、下記式(a2)で示す反応式に従って点線で示す位置で開裂する。
Figure JPOXMLDOC01-appb-C000004
(式中Rは、炭化水素基または水素原子を示す)
Figure JPOXMLDOC01-appb-C000005
 感光性樹脂が有する感光性部位であるo-ニトロベンジルエーテル骨格として、具体的には下記式(3)に示す構造を採用することができる。式(3)に示す構造は、中心波長365nmの光を吸収することにより、下記式(a3)で示す反応式に従って点線で示す位置で開裂する。
Figure JPOXMLDOC01-appb-C000006
(式中Rは、炭化水素基または水素原子を示す)
Figure JPOXMLDOC01-appb-C000007
 上記式(2)(3)に示す構造は、上記式(2)(3)で示す点線(-----)を挟んで一方の側および他方の側のそれぞれにおいて、上記式(2)(3)が有する水素原子のうち開裂反応を阻害しない位置の水素原子(ベンジル位の水素原子を除く水素原子)が置換され、感光性樹脂における主鎖または側鎖のいずれか一方または両方に挿入されている。
 感光性樹脂が有する感光性部位である炭酸メチルフェニル骨格として、具体的には下記式(4)に示す構造を採用することができる。式(4)に示す構造は、中心波長254nmの光を吸収することにより、下記式(a4)で示す反応式に従って点線で示す位置で開裂する。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 上記式(4)に示す構造は、上記式(4)が有するメチル基の水素原子またはフェニル基の水素原子が置換され、感光性樹脂における主鎖または側鎖のいずれか一方または両方に挿入されている。
 感光性樹脂が有する感光性部位である1-ベンジルオキシ-1-アルキルエタノール骨格として、具体的には下記式(5)に示す構造を採用することができる。式(5)に示す構造は、中心波長248nmの光を吸収することにより、下記式(a5)で示す反応式に従って点線で示す位置で開裂する。
Figure JPOXMLDOC01-appb-C000010
(式中Rは、炭化水素基または水素原子を示す)
Figure JPOXMLDOC01-appb-C000011
 上記式(5)に示す構造は、上記式(5)で示す点線(-----)を挟んで一方の側および他方の側のそれぞれにおいて水素原子が置換され、感光性樹脂における主鎖または側鎖のいずれか一方または両方に挿入されている。
 感光性樹脂が有する感光性部位であるジシラン骨格として、具体的には下記式(6)に示す構造を採用することができる。式(2)に示す構造は、中心波長254nmの光を吸収することにより、下記式(a6)で示す反応式に従って点線で示す位置で開裂する。
Figure JPOXMLDOC01-appb-C000012
(式中Rは、炭化水素基または水素原子を示す)
Figure JPOXMLDOC01-appb-C000013
 上記式(6)に示す構造は、上記式(6)で示す点線(-----)を挟んで一方の側および他方の側のそれぞれにおいて水素原子が置換され、またはケイ素原子に直接結合することで、感光性樹脂における主鎖または側鎖のいずれか一方または両方に挿入されている。
 感光性樹脂は、シクロブタンジイミド骨格を有するものが好ましい。シクロブタンジイミド骨格を有する感光性樹脂は、前駆体としてシクロブタン骨格を有するポリアミック酸を用い、当該前駆体を加熱してイミド化することにより得られる。そのため、感光性樹脂組成物を用いて樹脂膜を形成する際にはシクロブタン骨格を有するポリアミック酸を用い、パターニング前にイミド化することで、パターニングした後に残存する樹脂膜はシクロブタンジイミド骨格を有する感光性樹脂とすることができる。
 一般に、ポリアミック酸は、ポリアミック酸をイミド化して得られる樹脂(ポリイミド)よりも溶媒に対する溶解度が高い。そのため、樹脂膜の形成時にポリアミック酸を用いると、ポリアミック酸の溶液を塗布して塗膜を形成し、容易に均質な樹脂膜を形成することができる。
 また、得られたポリイミドは難溶化するため、波長変換部を形成後にウェットプロセスを用いた工程があったとしても劣化しにくく、工程の自由度が高まる。さらに、ポリイミドは、ポリアミック酸よりも耐薬品性が高く劣化しにくい。そのため、パターニングした後に残存する樹脂膜を劣化しにくい安定なものとすることができる。
 また、感光性樹脂は、可視光領域で光透過性を有することが好ましい。さらに、感光性樹脂は、可視光領域において無色透明であることが好ましい。これにより、波長変換材料から発せられる「波長が変換された光」を好適に取り出すことができる。
 本実施形態の感光性樹脂組成物に用いられる波長変換材料は、上述の感光性樹脂中に分散し、感光性樹脂組成物を構成する。本発明において、「波長変換材料」には、蛍光体材料と燐光材料とが含まれる。
(蛍光体材料)
 本実施形態の感光性樹脂組成物に用いられる蛍光体材料は、上述の感光性樹脂中に分散し、感光性樹脂組成物を構成する。
 本実施形態の感光性樹脂組成物に用いることが可能な蛍光体材料としては、公知の有機系蛍光体材料、無機系蛍光体材料を挙げることができる。
 有機系蛍光体材料としては、青色蛍光色素として、例えば、
 1,4-ビス(2-メチルスチリル)ベンゼン、トランス-4,4’-ジフェニルスチルベンゼンなどのスチルベンゼン系色素;
 7-ヒドロキシ-4-メチルクマリン、2,3,6,7-テトラヒドロ-11-オキソ-1H,5H,11H-[1]ベンゾピラノ[6,7,8-ij]キノリジン-10-カルボン酸エチル(クマリン314)、10-アセチル-2,3,6,7-テトラヒドロ-1H,5H,11H-[1]ベンゾピラノ[6,7,8-ij]キノリジン-11-オン(クマリン334)などのクマリン系色素;
 9,10-ビス(フェニルエチニル)アントラセンなどのアントラセン系色素;
 ペリレン等が挙げられる。
 また、緑色蛍光色素として、例えば、
 2,3,5,6-1H,4H-テトラヒドロ-8-トリフロメチルキノリジン(9,9a、1-gh)クマリン(クマリン153)、3-(2’-ベンゾチアゾリル)-7-ジエチルアミノクマリン(クマリン6)、3-(2’-ベンゾイミダゾリル)-7-N,N-ジエチルアミノクマリン(クマリン7)、10-(ベンゾチアゾール-2-イル)-2,3,6,7-テトラヒドロ-1H,5H,11H-[1]ベンゾピラノ[6,7,8-ij]キノリジン-11-オン(クマリン545)、クマリン545T、クマリン545Pなどのクマリン系色素;
 BODIPY493/503、BODIPY FL-X、BODIPY FL、BODIPY R6G、BODIPY 530/550などのボロン-ジピロメチン(BODIPY)系色素;
 ベーシックイエロー51、ソルベントイエロー11、ソルベントイエロー98、ソルベントイエロー116、ソルベントイエロー43、ソルベントイエロー44などのナフタルイミド系色素;
 ルモゲンイエロー、ルモゲングリーン、ソルベントグリーン5などのペリレン系色素;
 フルオレセイン系色素;アゾ系色素;フタロシアニン系色素;アントラキノン系色素;キナクリドン系色素;イソインドリノン系色素;チオインジゴ系色素;ジオキサジン系色素等が挙げられる。
 また、赤色蛍光色素としては、例えば、
 4-ジシアノメチレン-2-メチル-6-(p-ジメチルアミノスチルリル)-4H-ピラン(DCM)、DCM-2、DCJTBなどのDCM系色素;
 1-エチル-2-[4-(p-ジメチルアミノフェニル)-1,3-ブタジエニル]-ピリジニウム-パークロレート(ピリジン1)などのピリジン系色素;
 ローダミン640(R640)、ローダミンB、ローダミン6G、ローダミン3B、ローダミン101、ローダミン110、ベーシックバイオレット11、スルホローダミン101、ベーシックバイオレット11、ベーシックレッド2などのキサンテン系色素;
 BODIPY TR-X、BODIPY 630/650-X、BODIPY 650/665-Xなどのボロン-ジピロメチン(BODIPY)系色素;
 ルモゲンオレンジ、ルモゲンピンク、ルモゲンレッド、ソルベントオレンジ55などのペリレン系色素;
 オキサジン系色素;クリセン系色素;チオフラビン系色素;ピレン系色素;アントラセン系色素;アクリドン系色素;アクリジン系色素;フルオレン系色素;ターフェニル系色素;エテン系色素;ブタジエン系色素;ヘキサトリエン系色素;オキサゾール系色素;クマリン系色素;スチルベン系色素;トリフェニルメタン系色素;チアゾール系色素;チアジン系色素;ナフタルイミド系色素;アントラキノン系色素等が挙げられる。
 各色蛍光体として有機蛍光体材料を用いる場合には、励起光や太陽光、照明などの外光によって劣化しにくい色素を用いることが望ましい。
 また、無機系蛍光体材料としては、青色蛍光体として、例えば、Sr:Sn4+、SrAl1425:Eu2+、BaMgAl1017:Eu2+、SrGa:Ce3+、CaGa:Ce3+、(Ba、Sr)(Mg、Mn)Al1017:Eu2+、(Sr、Ca、Ba、Mg)10(POCl:Eu2+、BaAlSiO:Eu2+、Sr:Eu2+、Sr(POCl:Eu2+、(Sr,Ca,Ba)(POCl:Eu2+、BaMgAl1627:Eu2+、(Ba,Ca)(POCl:Eu2+、BaMgSi:Eu2+、SrMgSi:Eu2+等が挙げられる。
 また、緑色蛍光体として、例えば、(BaMg)Al1627:Eu2+,Mn2+、SrAl1425:Eu2+、(SrBa)Al12Si:Eu2+、(BaMg)SiO:Eu2+、YSiO:Ce3+,Tb3+、Sr-Sr:Eu2+、(BaCaMg)(POCl:Eu2+、SrSi-2SrCl:Eu2+、ZrSiO、MgAl1119:Ce3+,Tb3+、BaSiO:Eu2+、SrSiO:Eu2+、(BaSr)SiO:Eu2+等が挙げられる。
 また、赤色蛍光体としては、例えば、YS:Eu3+、YAlO:Eu3+、Ca(SiO:Eu3+、LiY(SiO:Eu3+、YVO:Eu3+、CaS:Eu3+、Gd:Eu3+、GdS:Eu3+、Y(P,V)O:Eu3+、MgGeO5.5F:Mn4+、MgGeO:Mn4+、KEu2.5(WO6.25、NaEu2.5(WO6.25、KEu2.5(MoO6.25、NaEu2.5(MoO6.25等が挙げられる。
 無機系蛍光体材料として、ナノ粒子または量子ドット蛍光体であることも好ましい。具体的には、CdSeやZnS、またはその混合物が挙げられ、粒径を制御することで、各色に発光することができる。
 蛍光体材料は、上述した群のうち、クマリン骨格またはボロン-ジピロメチン骨格を有するものが好ましい。これらの骨格を有する蛍光体材料は、発光量子収率が高いため、高性能な蛍光体層(波長変換部)を形成することが可能となる。また、上記骨格の蛍光体材料は、酸やアルカリの影響を特に受け易く、既存の感光性樹脂、特に化学増幅型の感光性樹脂では、発光量子効率が高いにも関わらず、使用することが難しかった。しかし、本発明の感光性樹脂との組合せにより、本来の発光特性を損ねることなく使用することができる。
 これらの蛍光体材料は、1種のみ用いてもよく2種以上を併用してもよい。
(燐光材料)
 本実施形態の感光性樹脂組成物に用いられる燐光材料は、上述の感光性樹脂中に分散し、感光性樹脂組成物を構成する。
 本実施形態の感光性樹脂組成物に用いることが可能な燐光材料としては、公知の燐光材料を挙げることができる。
 燐光材料としては、例えば、
 トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)、ビス(2-フェニルピリジン)(アセチルアセトネート)イリジウム(III)(Ir(ppy)2(acac))、トリス[2-(p-トリル)ピリジン]イリジウム(III)(Ir(mppy)3)、ビス[(4,6-ジフルオロフェニル)-ピリジナト-N,C2’]ピコリネート イリジウム(III)(FIrPic)、ビス(4’,6’-ジフルオロフェニルポリジナト)テトラキス(1-ピラゾイル)ボレートイリジウム(III)(FIr6)、トリス(1-フェニル-3-メチルベンゾイミダゾリン-2-イリデン-C,C2’)イリジウム(III)(Ir(Pmb)3)、ビス(2,4-ビフルオロフェニルピリジナト)(5-(ピリジン-2-イル)-1H-テトラゾネート)イリジウム(III)(FIrN4)、ビス(2-ベンゾ[b]チオフェン-2-イル-ピリジン)(アセチルアセトナト)イリジウム(III)(Ir(btp)2(acac))、トリス(1-フェニルイソキノリン)イリジウム(III)(Ir(piq)3)、トリス(1-フェニルイソキノリン)(アセチルアセトネート)イリジウム(III)(Ir(piq)2(acac))、ビス[1-(9,9-ジメチル-9H-フルオレン-2-イル)-イソキノリン](アセチルアセトネート)イリジウム(III)(Ir(fliq)2(acac))、ビス[2-(9,9-ジメチル-9H-フルオレン-2-イル)-イソキノリン](アセチルアセトネート)イリジウム(III)(Ir(flq)2(acac))、トリス(2-フェニルキノリン)イリジウム(III)(Ir(2-phq)3)、トリス(2-フェニルキノリン)(アセチルアセトネート)イリジウム(III)(Ir(2-phq)2(acac))等のイリジウム錯体;
 ビス(3-トリフルオロメチル-5-(2-ピリジル)-ピラゾネート)(ジメチルフェニルフォスフィン)オスミウム(Os(fppz)2(PPhMe2)2)、ビス(3-トリフルオロメチル)-5-(4-tert-ブチルピリジル)-1,2,4-トリアゾネート)(ジフェニルメチルフォスフィン)オスミウム(Os(bpftz)2(PPh2Me)2)等のオスミウム錯体;
 5,10,15,20-テトラフェニルテトラベンゾポリフィリン白金等の白金錯体;
 トリス(トリフルオロアセチルアセトナート)ユーロピウム(III)、トリス(1,1,1,2,2,3,3-ヘプタフルオロ-7,7-ジメチル-4,6-オクタンジオナート)モノ(1,10-フェナントロリナート)ユーロピウム(III)、トリス(トリフルオロアセチルアセトナート)モノ(1,10-フェナントロリナート)ユーロピウム(III)、トリス(トリフルオロアセチルアセトナート)モノ(テトラメチル-フェナントロニナート)ユーロピウム(III)等のユーロピウム錯体;
などを用いることができる。
 これらの燐光材料は、1種のみ用いてもよく2種以上を併用してもよい。
(感光性樹脂組成物)
 本実施形態の感光性樹脂組成物は、感光性樹脂および波長変換材料が化学反応しないようにそれぞれを選択することで得られる。具体的には下記(i)から(iv)を満たすものである。
(i)前記感光性部位および前記感光性樹脂が開裂反応して生じた生成物が、前記波長変換材料と中和反応しない。
(ii)前記感光性部位および前記生成物が、前記波長変換材料の加水分解反応を起こさせない。
(iii)前記感光性部位および前記生成物のHOMO(Highest Occupied Molecular Orbital:最高占有軌道)が、前記波長変換材料のLUMO(Lowest Unoccupied Molecular Orbital:最低非占有軌道)よりも低い。
(iv)前記感光性部位および前記生成物のLUMOが、前記波長変換材料のHOMOよりも高い。
(ただし、化学増幅型の前記感光性樹脂であって前記感光性部位または前記生成物が酸性を示す感光性樹脂と、酸性の前記波長変換材料との組み合わせを除く)。
 以下、順に説明する。
 まず、感光性樹脂および波長変換材料が上記条件(i)を満たすと、中和反応による波長変換材料の変質を防ぎ、波長変換材料の劣化を抑制することができる。
 条件(i)を満たすには、
(i-a)感光性部位および開裂反応して生じた生成物と、波長変換材料とが共に酸性
(i-b)感光性部位および開裂反応して生じた生成物と、波長変換材料とが共にpH=7
(i-c)感光性部位および開裂反応して生じた生成物と、波長変換材料とが共に塩基性
という組み合わせが考えられる。
 条件(i)を満たすならば、波長変換材料は、プロトン受容基またはプロトン供与基を有することとしてもよい。
 次いで、感光性樹脂および波長変換材料が上記条件(ii)を満たすと、加水分解反応による波長変換材料の変質を防ぎ、波長変換材料の劣化を抑制することができる。条件(ii)を満たすならば、波長変換材料は、脱水縮合基を有することとしてもよい。
 ここで言う「加水分解反応」は、波長変換部の外界から侵入する、もしくは内部に残存する水分と波長変換材料との間で起こる反応を指す。
 また、上記条件(ii)における「波長変換材料の加水分解反応を起こさせない」とは、感光性部位および感光性樹脂が開裂反応して生じた生成物が、波長変換材料の加水分解反応(水分と波長変換材料との間で起こる反応)の触媒としては機能しないことを指す。
 通常、上述の加水分解の反応速度は極めて遅く、反応は起こり難いが、感光性部位または開裂反応して生じた生成物が、酸またはアルカリの場合には、生じた酸やアルカリが触媒として働き、加水分解反応を加速させることが考えられる。既存の感光性樹脂では、パターニングする工程の中で酸やアルカリが生じ、生じた酸やアルカリが、波長変換材料のエステル基、アミド基、イミド基、エーテル基のような脱水縮合基を加水分解させることで、波長変換材料を変質させ劣化させるおそれがあった。しかし、上記条件(ii)を満たすことで、波長変換材料の劣化を抑制することができる。
 次いで、感光性樹脂および波長変換材料が上記条件(iii)を満たすと、感光性樹脂および開裂反応後の生成物のHOMOから波長変換材料のLUMOへ電子移動することによる、波長変換材料の還元を防ぎ、波長変換材料の劣化を抑制することができる。
 次いで、感光性樹脂および波長変換材料が上記条件(iv)を満たすと、波長変換材料のHOMOから感光性樹脂および開裂反応後の生成物のLUMOへ電子移動することによる、波長変換材料の酸化を防ぎ、波長変換材料の劣化を抑制することができる。
 下記表1には、感光性樹脂の開裂部位や開裂後生成物のHOMOおよびLUMOのエネルギー準位を例示している。また下記表2には、波長変換材料のうち蛍光体材料のHOMOおよびLUMOのエネルギー準位を例示している。なお、エネルギー準位の計算はGaussian09 B3LYP 6-31+G(d)レベルで行った。
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 上記例によれば、表1の1-1で示す開裂部位(上記式(1))や、表1の1-3で示す開裂部位(上記式(2))を含む感光性樹脂と、表2の2-1,2-2で示す蛍光体材料(波長変換材料)とは、上記条件(iii),(iv)を満たすことが分かる。
 また、本実施形態の感光性樹脂組成物は、感光性樹脂組成物に含まれる感光性樹脂を溶解する溶媒をさらに有することとしてもよい。このような溶媒を有することにより、感光性樹脂組成物は、液状体となり、通常知られた各種の印刷方法や塗布方法により対象物に塗布することができる。そのため、容易に波長変換部を形成することが可能となる。
 本実施形態の感光性樹脂組成物は、以上のような構成となっている。
 以上のような構成の感光性樹脂組成物によれば、波長変換材料の劣化を抑制し、良好な発光特性の波長変換部を形成可能な感光性樹脂組成物を提供することができる。
[第2実施形態]
<波長変換基板>
 本発明の一態様に係る波長変換基板は、基板と、基板上にパターニングされた波長変換部と、を有し、波長変換部は上述の本発明の一態様に係る感光性樹脂組成物を形成材料としている。
 波長変換部の形成材料として、蛍光体材料を含む感光性樹脂組成物を用いる場合、波長変換部のことを「蛍光体層」と称することがある。また、蛍光体層を有する波長変換基板のことを「蛍光体基板」称することがある。以下の説明においては、波長変換基板の一例として蛍光体基板を挙げて説明するが、もちろん波長変換部の形成材料として燐光材料を含む感光性樹脂組成物を用いることもできる。
 好ましい蛍光体基板としては、緑色光を射出する蛍光体層及び赤色光を射出する蛍光体層のいずれか一方または両方に、本発明の一態様に係る感光性樹脂組成物を形成材料として用いたものが例示できる。緑色光を射出する蛍光体層と赤色光を射出する蛍光体層との両方が、本発明の一態様に係る感光性樹脂組成物を形成材料とすると好ましい。
 図1は、本発明の波長変換基板の一態様に係る蛍光体基板を模式的に示す断面図である。なお、以下に示す実施形態は、発明の趣旨をよりよく理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 また、以下の説明で用いる図面は、本発明の特徴を分かり易くするために、便宜上、要部となる部分を拡大して示している場合があり、各構成要素の寸法比率等が実際と同じであるとは限らない。
 ここに示す蛍光体基板1は、基板11上にブラックマトリックス12を介してバンク13が設けられ、基板11上の所定の領域が、バンク13で区画され、サブピクセルを形成している。基板11上のこの区画された領域内において、蛍光体層14bは赤色カラーフィルタ14a上に設けられ、蛍光体層15bは緑色カラーフィルタ15a上に設けられている。また、青色カラーフィルタ16a上には青色光を散乱させるための光散乱層16bが設けられている。赤色カラーフィルタ14a及び蛍光体層14bは赤色画素14を構成し、緑色カラーフィルタ15a及び蛍光体層15bは緑色画素15を構成し、青色カラーフィルタ16a及び光散乱層16bは青色画素16を構成する。蛍光体基板1においては、複数の蛍光体層14b,15b(波長変換部)がマトリクス状に配列している。
 基板11としては、光の透過率が90%以上の基板、例えば、ガラス、石英等からなる無機材料基板;ポリエチレンテレフタレート、ポリカルバゾール、ポリイミド等からなるプラスチック基板;前記プラスチック基板の表面を無機材料でコーティングした基板;アルミナ等からなるセラミックス基板等の絶縁性基板が挙げられるが、これらに限定されない。これらのなかでも、ストレスなく湾曲部、折り曲げ部を形成できる点においては、前記プラスチック基板が好ましく、前記プラスチック基板に無機材料をコーティングした基板がより好ましい。
 例えば、有機EL素子は、微量の水分や酸素によっても劣化することが知られており、プラスチック基板を用いた有機EL素子では、この基板における水分及び酸素の透過による劣化が大きな問題となる。これに対して、上記のプラスチック基板に無機材料をコーティングした基板は水分及び酸素の透過を抑制する効果が高く、かかる基板を有機EL素子に適用した場合、水分及び酸素による有機EL素子の劣化を高度に抑制できる。
 基板11の厚さは10μm~2000μmであることが好ましく、100μm~1000μmであることがより好ましい。
 蛍光体基板1は、ブラックマトリックス12を備えていることが好ましい。ブラックマトリックス12は光吸収性の黒色隔壁であり、これを備えることで、各画素間のコントラストがより向上する。
 ブラックマトリックス12は、公知の材質のものでよく、好ましいものとしては、黒色顔料を含む樹脂からなる遮光性のものが例示できる。
 ブラックマトリックス12の厚さ(基板11との接触面に対して垂直な方向の高さ)は、100nm~100μmであることが好ましく、500nm~2μmであることがより好ましい。
 バンク13は、光反射性又は表面における光散乱性を有する。このようなバンク13を備えることで、各蛍光体層において等方発光する蛍光のうち、側面方向へ射出される蛍光が、隣り合う他の色の画素から射出されることによる色純度の低下を防止できる。さらに、光を画素内で反射させることにより、発光を有効利用でき、消費電力を低下させることができる。
 バンク13は、公知の材質のものでよく、好ましいものとしては、金、銀、アルミニウム等の金属粒子を含む樹脂からなる光反射性のもの;酸化チタン等の光散乱粒子を含む樹脂からなる光散乱性のものが例示できる。ここで、前記樹脂としては、エポキシ樹脂、アクリル樹脂、シリコン樹脂等が例示できる。また、エポキシ樹脂、アクリル樹脂又はシリコン樹脂等のベース樹脂の表面に、前記金属粒子又は光散乱粒子等を、蒸着法又はスパッタ法により、10nm~1000nmの厚さとなるように積層したものも、バンク13として好ましい。
 光反射性または光散乱性のバンク13は、本発明における「波長変換部から射出される光を反射する、または拡散させる構造体」に該当する。
 上述のように、バンク13の形成材料は、特に金属材料を有することが、高い光反射性を示すことから好ましい。「金属材料を有する」形成材料を用いたバンク13とは、金属粒子が分散した樹脂組成物を用いて形成されたバンクや、樹脂を用いて形成したバンクの表面に金属膜を形成したものが該当する。従来の感光性樹脂組成物を用いた場合には、感光性樹脂組成物をパターニングする過程で、酸の発生や、アルカリ水溶液での現像により、金属粒子が腐食し、本来の光反射性を発揮することが困難となっていた。
 しかし、本実施形態の感光性樹脂組成物によれば、開裂反応の一段階で溶解性が向上し酸などを生じず、また、有機溶媒での現像が可能である。そのため、本実施形態の波長変換基板においては、バンク13の形成材料として金属材料を適用することが可能である。したがって、本実施形態の感光性樹脂組成物によれば、バンク13に高い光反射性を容易に且つ確実に付与することが可能であり、大きく消費電力を下げることが可能となる。
 バンク13の高さ(ブラックマトリックス12との接触面に対して垂直な方向の高さ)は、各画素におけるカラーフィルタと蛍光体層との合計膜厚、またはカラーフィルタと光散乱層との合計膜厚よりも厚いことが好ましい。このようにすることで、上記の効果がより顕著に得られる。
 蛍光体基板1は、赤色カラーフィルタ14a及び緑色カラーフィルタ15aを備えていることが好ましい。これらを備えることで、蛍光体層14b又は蛍光体層15bにより吸収されずに透過してしまう励起光の外部への漏れを防止でき、蛍光体層14b又は蛍光体層15bからの発光と励起光との混色による発光の色純度の低下を防止できる。さらに、各画素の色純度を高めることで、有機EL素子の色再現範囲をより拡大できる。また、蛍光体層14b及び蛍光体層15b中の発光物質を励起する可能性がある外光を吸収することで、外光による蛍光体層14b及び蛍光体層15bでの発光を抑制でき、コントラストの低下を抑制できる。
 そして、蛍光体基板1は、青色カラーフィルタ16aを備えていてもよい。これを備えることで、光散乱層16bでの外光の散乱を抑制でき、コントラストの低下を抑制できる。ただし、光散乱層16bは、光源である有機EL素子または液晶ディスプレイやマイクロエレクトロメカニカルシステム(MEMS)ディスプレイ等のバックライトからの光の透過率を低下させるため、不要な場合もある。
 赤色カラーフィルタ14a、緑色カラーフィルタ15a及び青色カラーフィルタ16aとしては、公知の材質のものが適宜使用できる。
 赤色カラーフィルタ14a、緑色カラーフィルタ15a及び青色カラーフィルタ16aの膜厚は0.5μm~10μmであることが好ましく、1μm~3μmであることがより好ましい。
 なお、ここでは、赤色の蛍光を射出する蛍光体層14b及び緑色の蛍光を射出する蛍光体層15bを備えた蛍光体基板を示しているが、本発明に係る蛍光体基板は、これに限らない。これら以外にシアンの蛍光を射出する蛍光体層、黄色の蛍光を射出する蛍光体層等の他の色の蛍光を射出する蛍光体層を備えたものでもよく、この場合には、それぞれの色に対応したカラーフィルタを設けてもよい。
 蛍光体層14b及び蛍光体層15bの材質(構成成分)は、先に説明したとおりである。
 蛍光体層14b及び蛍光体層15bの膜厚は、100nm~100μmであることが好ましく、1μm~20μmであることがより好ましい。膜厚が前記下限値以上であることで、励起光源からの励起光を十分に吸収でき、発光効率が向上して、必要とする色に目的外の励起光源からの光が混合されることによる、色純度の悪化が抑制される。また、膜厚が前記上限値以下であることで、過剰な膜厚となることが避けられ、コストを低減できる。
 蛍光体基板1は、励起光からの発光を直接利用する青色画素16と、青色画素16とは配光特性が異なり、蛍光体層から射出される蛍光を利用する赤色画素14及び緑色画素15とを備えている。光散乱層16bは、配光特性が異なるこれら画素間で、視野角による配光特性のずれに伴う輝度及び色の変化を低減する。
 光散乱層16bは、例えば、光散乱粒子及びバインダー樹脂が配合されてなる硬化性組成物(光散乱層形成用組成物)を用いて、バインダー樹脂を硬化させることで形成できる。
 前記光散乱粒子は、有機材料及び無機材料のいずれからなるものでもよい。
 前記有機材料としては、ポリメタクリル酸メチル(屈折率1.49)、アクリル樹脂(屈折率1.50)、アクリル-スチレン共重合体(屈折率1.54)、メラミン樹脂(屈折率1.57)、高屈折率メラミン樹脂(屈折率1.65)、ポリカーボネート(屈折率1.57)、ポリスチレン(屈折率1.60)、架橋ポリスチレン(屈折率1.61)、ポリ塩化ビニル(屈折率1.60)、ベンゾグアナミン-メラミンホルムアルデヒド樹脂(屈折率1.68)、シリコーン(屈折率1.50)等が例示できる。
 前記無機材料としては、ケイ素、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫及びアンチモンからなる群から選ばれる1種又は2種以上の金属の酸化物が例示できる。これらの中でも好ましいものとしては、シリカ(屈折率1.44)、アルミナ(屈折率1.63)、酸化チタン(屈折率2.50(アナタース型)、2.70(ルチル型))、二酸化ジルコニウム(屈折率2.05)、酸化亜鉛(屈折率2.00)、チタン酸バリウム(BaTiO)(屈折率2.4)等が例示できる。
 これらの中でも、前記光散乱粒子は、無機材料からなるものが好ましい。無機材料からなる光散乱粒子を用いることにより、外部(例えば、発光素子)からの指向性を有する光を、より等方的に効果的に拡散又は散乱させることができる。また、光散乱層16bの光及び熱に対する安定性を向上させることができる。
 前記光散乱粒子は、透明度が高いものが好ましく、低屈折率の母材中にこの母材よりも高屈折率の微粒子が分散されてなるものが好ましい。
 また、光散乱粒子の粒径は、100nm~500nmであることが好ましい。このような範囲であることで、光散乱層16bにおいて青色光がミー散乱によってより効果的に散乱される。
 前記バインダー樹脂は、透光性を有することが好ましい。
 前記バインダー樹脂の材質としては、アクリル樹脂(屈折率1.49)、メラミン樹脂(屈折率1.57)、ナイロン(屈折率1.53)、ポリスチレン(屈折率1.60)、ポリカーボネート(屈折率1.57)、ポリ塩化ビニル(屈折率1.60)、ポリ塩化ビニリデン(屈折率1.61)、ポリ酢酸ビニル(屈折率1.46)、ポリエチレン(屈折率1.53)、ポリメタクリル酸メチル(屈折率1.49)、中密度ポリエチレン(屈折率1.53)、高密度ポリエチレン(屈折率1.54)、ポリ三フッ化塩化エチレン(屈折率1.42)、ポリテトラフルオロエチレン(屈折率1.35)等が例示できる。
 光散乱層16bの膜厚は、蛍光体層14b及び蛍光体層15bの膜厚と同様である。
 蛍光体基板1は、カラーフィルタ(赤色カラーフィルタ14a及び緑色カラーフィルタ15a)と蛍光体層(蛍光体層14b及び蛍光体層15b)との間に、基板11および蛍光体層よりも屈折率が低い低屈折率層を設けてもよい。同様に、蛍光体基板1は、青色カラーフィルタ16aと光散乱層16bとの間に、基板11および光散乱層16bよりも屈折率が低い低屈折率層を設けてもよい。
 また、カラーフィルタを設けない場合には、基板11と蛍光体層との間に、基板11と蛍光体層よりも屈折率が低い低屈折率層を設けてもよい。同様に、青色カラーフィルタ16aを設けない場合には、基板11と光散乱層16bとの間に、基板11および光散乱層16bよりも屈折率が低い低屈折率層を設けてもよい。
 蛍光体基板では、蛍光体層からの発光が基板11を導波し、基板11の側面に導波して発光ロスを生じることがある。しかし、上述のような位置に低屈折率層を設けることで、低屈折率層における臨界角以上の光を、蛍光体層側に反射させることができる。反射した光は、有機EL部等に設けられた半透明電極若しくは反射電極で再度反射して外部に射出されるため、発光ロスを低減でき有機EL素子等の消費電力を低減し、輝度を向上させることができる。さらに、蛍光体層を励起させる光は透過させ、且つ蛍光体層からの発光を反射させる反射膜(例えば、誘電体多層膜、バンドパスフィルタ、金属の超薄膜等)を、蛍光体層と有機EL等の励起光源との間に設けることで、蛍光体が発光し、有機EL等の励起光源側へ射出する光を効率的に反射させることができる。
 前記低屈折率層の材質としては、ポリ(1,1,1,3,3,3-ヘキサフルオロイソプロピルアクリレート)(屈折率1.375)、ポリ(2,2,3,3,4,4,4-ヘプタフルオロブチルメタクリレート)(屈折率1.383)、ポリ(2,2,3,3,3-ペンタフルオロプロピルメタクリレート)(屈折率1.395)、ポリ(2,2,2-トリフルオロエチルメタクリレート)(屈折率1.418)等のフッ素系樹脂(フッ素原子を有する樹脂);メソポーラスシリカ(屈折率1.2);エアロゲル(屈折率1.05)等が例示できる。また、乾燥空気若しくは窒素ガス等の気体が充填された空隙部、又は減圧された空隙部で、前記低屈折率層を構成してもよい。
 蛍光体基板1は、蛍光体層14b、蛍光体層15b及び光散乱層16b上に、それぞれ封止膜を備えていることが好ましい。このように封止膜を備えることで、これら蛍光体層及び光散乱層への外部からの酸素及び水分の混入を高度に抑制でき、これら蛍光体層及び光散乱層の劣化を高度に抑制できる。そして、蛍光体基板1を表示装置等へ適用した場合、これら蛍光体層及び光散乱層から、例えば、有機EL層への酸素及び水分の混入も抑制でき、有機EL素子の劣化も高度に抑制できる。
 蛍光体基板1は、さらに、前記封止膜上に平坦化膜を備えていることが好ましい。このように平坦化膜を備えることで、後述する励起光源と組み合わせたときに、空乏の発生を防止できるともに、励起光源と蛍光体基板1との密着性を向上させることができる。
 前記封止膜及び平坦化膜は、公知のものでよい。
 蛍光体基板1は、蛍光体層14b及び蛍光体層15bの一方又は両方を、上記の特定の感光性樹脂を用いて形成する点以外は、従来の蛍光体基板と同様の方法で製造できる。以下、蛍光体基板1の製造方法の一例について、図2を参照しながら、説明する。なお、図2に示す構成要素のうち、図1に示すものと同じものには、図1の場合と同じ符号を付し、その詳細な説明は省略する。これは、以降の図においても同様である。
 まず、図2(a)に示すように、基板11上にブラックマトリックス12を形成する。
 ブラックマトリックス12は、フォトリソグラフィー法で形成できる。例えば、モノマー、光重合開始剤、黒色顔料、バインダー及び溶媒が配合されてなる硬化性組成物(ブラックマトリックス形成用組成物)を基板11上に塗工し、得られた塗膜に対してフォトマスクを介して光を照射(露光)することにより、塗膜の所望の箇所を硬化させる、次いで、現像液を用いて現像し、パターニングすることで形成できる。硬化性組成物の塗工は、例えば、スピンコート法等の塗布法で行うことができる。また、必要に応じてプリベーク、ポストベーク等を行ってもよい。基板11は、必要に応じて、水、有機溶媒等で洗浄してから使用する。
 次いで、図2(b)に示すように、ブラックマトリックス12上にバンク13を形成する。
 バンク13は、例えば、硬化性組成物として、モノマー、光重合開始剤、光反射粒子又は光散乱粒子、バインダー及び溶媒が配合されてなるバンク形成用のもの(バンク形成用組成物)を用いる点以外は、上記のブラックマトリックス12の場合と同様のフォトリソグラフィー法で形成できる。フォトマスクとしては、ブラックマトリックス12上にバンク13を積層できるようなパターンのものを用いればよい。他にも、バンク13としては、既存のポジ型またはネガ型フォトレジストにより、バンク13の構造体を形成した後に、該構造体の少なくとも側面に、アルミニウムなどの反射膜が形成されたものを用いても良い。バンク13の表面に設けられる金属製の反射膜は、本発明における「波長変換部から射出される光を反射する、または拡散させる構造体」に該当する。
 次いで、図2(c)に示すように、バンク13で区画された各サブピクセル領域に、赤色カラーフィルタ14a、緑色カラーフィルタ15a及び青色カラーフィルタ16aを形成する。
 赤色カラーフィルタ14a、緑色カラーフィルタ15a及び青色カラーフィルタ16aは、これらを形成可能な硬化性組成物を用いる点以外は、上記のブラックマトリックス12の場合と同様のフォトリソグラフィー法で形成できる。フォトマスクとしては、各サブピクセル領域に目的とするカラーフィルタを形成できるようなパターンのものを用いればよい。
 次いで、図2(d)に示すように、赤色カラーフィルタ14a上に蛍光体層14bを形成し、緑色カラーフィルタ15a上に蛍光体層15bを形成し、青色カラーフィルタ16a上に光散乱層16bを形成する。蛍光体層14b及び蛍光体層15bの形成方法は、蛍光体層の形成方法として先に説明したとおりである。
 また、光散乱層16bは、例えば、硬化性組成物として、先に説明した光散乱層形成用のもの(光散乱層形成用組成物)を用いる点以外は、上記のブラックマトリックス12の場合と同様のフォトリソグラフィー法で形成できる。
 フォトマスクとしては、赤色カラーフィルタ14a上に蛍光体層14bを、緑色カラーフィルタ15a上に蛍光体層15bを、青色カラーフィルタ16a上に光散乱層16bを、それぞれ積層できるようなパターンのものを用いればよい。
 蛍光体層14b、蛍光体層15b及び光散乱層16bは、それぞれ同じ種類のものを同時に形成する(例えば、複数個の蛍光体層14bを同時に形成する)ことが好ましく、各層の形成順序は特に限定されない。
 以上により、蛍光体基板1が得られるが、蛍光体基板1に前記低屈折率層を設ける場合には、赤色カラーフィルタ14a、緑色カラーフィルタ15a及び青色カラーフィルタ16aの形成後、蛍光体層14b、蛍光体層15b及び光散乱層16bの形成前に、これらカラーフィルタ上に低屈折率層を形成すればよい。
 また、封止膜は、例えば、蛍光体層14b、蛍光体層15b及び光散乱層16b上に、スピンコート法、ODF法、ラミネート法等により樹脂を塗布することによって形成できる。さらに封止膜は、プラズマCVD法、イオンプレーティング法、イオンビーム法、スパッタ法等により、SiO、SiON、SiN等の無機膜を形成した後、さらにこの無機膜上に、スピンコート法、ODF法、ラミネート法等により樹脂を塗布するか、又は樹脂膜を貼合することによっても形成できる。
 本実施形態の蛍光体基板は、以上のような構成となっている。
 以上のような構成の蛍光体基板によれば、上述した本発明に一態様に係る感光性樹脂組成物を用いて形成しているため、良好な発光特性の蛍光体層を有する蛍光体基板を提供することができる。
[第3実施形態]
<発光デバイス>
 本発明の一態様に係る発光デバイスは、励起光を射出する光源と、励起光を吸収し励起光とは異なる波長の光を射出する波長変換部と、を有している。波長変換部は、上述の感光性樹脂組成物を形成材料としている。
 発光デバイスにおいて、波長変換部は、光源に直接設けられていてもよい。また、発光デバイスは、光源と、上述した波長変換基板とを有する構成であってもよい。
 光源としては、例えば
(1)青色もしくは紫外領域の励起光を射出する有機EL素子や無機EL素子、
(2)青色もしくは紫外領域の励起光を射出するLED素子、
(3)青色もしくは紫外領域の励起光を発するバックライトと、該バックライトから射出される光のシャッター機能を有する液晶素子とを備えた液晶基板、
(4)青色もしくは紫外領域の励起光を発するバックライトと、該バックライトから射出される光のシャッター機能を有するMEMS素子とを備えたMEMS基板、
を挙げることができる。
 「青色もしくは紫外領域の励起光」としては、詳しくは紫外光から青緑色光の波長帯域の光(紫外光、深青色光、青色光、青緑色光)を用いることができる。
 特に、低消費電力、高精細の観点から、青色光を放出する有機EL素子が発光部として用いられることが好ましい。
 図3は、本発明の一態様に係る波長変換方式の発光デバイスを模式的に示す断面図である。図に示す発光デバイス10は、有機EL基板2と、図1に示す蛍光体基板1とが貼り合わされてなるものである。ただし、ここでは、蛍光体基板1における波長(色)変換の様子を分かり易く説明するために、蛍光体基板1と有機EL基板2とを離間して示している。このような発光デバイス10は、有機ELディスプレイとして用いることができる。
 有機EL基板2は、基板21と、薄膜トランジスタ22と、層間絶縁膜23と、陽極(画素電極)25と、有機EL層26と、陰極27とを有する有機EL素子を備えている。
 基板21上には、薄膜トランジスタ22が設けられ、薄膜トランジスタ22上に層間絶縁層23が設けられている。薄膜トランジスタ22は、ソース電極22a、ドレイン電極22b、半導体層22c、ゲート電極22d及びゲート絶縁層22eを備えている。
 層間絶縁層23にはソース電極22a上の部位にコンタクトホール24が設けられ、このコンタクトホール24を介して、層間絶縁層23上に設けられた陽極25がソース電極22aと電気的に接続されている。
 陽極25上には有機EL層26が設けられ、有機EL層26上に陰極27が設けられている。
 なお、ここでは紙面の都合上、サブピクセル毎に1個の薄膜トランジスタ22を図示しているが、有機EL層26を安定的及び効率的に駆動するためには、サブピクセル毎に複数個の薄膜トランジスタ22を備えていてもよい。
 基板21としては、ガラス、石英等からなる無機材料基板が例示できる。基板21の厚さは100μm~1000μmであることが好ましい。
 半導体層22cとしては、アモルファスシリコン;多結晶シリコン;ペンタセン、ポリチオフェン、フラーレンC60等の有機半導体;インジウム-ガリウム-亜鉛酸化物等の無機酸化物からなるものが例示でき、その厚さは、20nm~200nmであることが好ましい。
 ソース電極22a、ドレイン電極22bとしては、半導体層22cにリン等の不純物元素をドーピングしたもの;金、銀、銅又はアルミニウム等の金属からなるものが例示でき、その厚さは、10nm~500nmであることが好ましい。
 ゲート電極22dとしては、金、白金、銀、銅、アルミニウム、タンタル、ドープシリコン等の金属;3,4-ポリエチレンジオキシチオフェン(PEDOT)/ポリスチレンサルフォネイト(PSS)等の有機化合物からなるものが例示でき、その厚さは、20nm~200nmであることが好ましい。
 ゲート絶縁層22eとしては、窒化シリコン、酸化シリコン等の無機化合物;シクロテン、サイトップ、パリレン等の有機化合物からなるものが例示でき、その厚さは、50nm~300nmであることが好ましい。
 層間絶縁層23としては、窒化シリコン、酸化シリコン等の無機化合物;シクロテン、サイトップ、パリレン等の有機化合物からなるものが例示でき、その厚さは、100nm~2000nmであることが好ましい。
 陽極25としては、銀やアルミニウム等からなる反射電極と、酸化インジウム-酸化亜鉛(IZO)等からなる透明電極とが積層されたものが例示でき、反射電極が基板21側に設けられる。反射電極の厚さは10nm~1000nmであることが好ましく、透明電極の厚さは10nm~100nmであることが好ましい。
 有機EL層26としては、ホール注入層、ホール輸送層、青色発光層、ホールブロック層、電子輸送層、電子注入層等が必要とされるものだけ適宜積層されてなるものが例示でき、各層の厚さは、0.5nm~200nmの範囲で任意に選択されることが好ましい。
 陰極27としては、マグネシウム銀、アルミニウムリチウム等の合金;銀、アルミニウム等の単体金属からなるものが例示でき、単層及び複数層のいずれからなるものでもよい。陰極27の厚さは、10nm~1000nmであることが好ましい。
 発光デバイス10は、有機EL基板2からの励起光(青色光)L1が蛍光体基板1に入射し、この励起光L1が、蛍光体層14bによって赤色光L11に変換される。同様に励起光L1は、蛍光体層15bによって緑色光L12に変換される。赤色光L11および緑色光L12は、光散乱層16bを透過した青色光L13と共に、蛍光体基板1の基板11側から出射される。
 発光デバイス10は、蛍光体基板1を用いる点以外は、従来の有機ELディスプレイと同様の方法で製造できる。以下、発光デバイス10の製造方法の一例について、図4を参照しながら、説明する。
 まず、有機EL基板2を作製する。
 図4(a)に示すように、基板21上に既存の半導体プロセスにより、薄膜トランジスタ22を形成し、さらに、薄膜トランジスタ22を覆うように基板21上に、スパッタ法、真空蒸着法、スピンコート法等、またはインクジェット法等の印刷法により層間絶縁層23を形成する。そして、層間絶縁層23のソース電極22a上の部位にコンタクトホール24を形成し、アクティブマトリックスTFT基板とする。
 次いで、図4(b)に示すように、スパッタ法等により、層間絶縁層23上とコンタクトホール24中に陽極25を形成する。
 次いで、図4(c)に示すように、真空蒸着法等により、陽極25を覆うように層間絶縁層23上に有機EL層26を形成する。
 次いで、図4(d)に示すように、真空蒸着法等により、有機EL層26上に陰極27を形成する。
 以上により、有機EL基板2が得られる。
 次いで、図4(e)に示すように、得られた有機EL基板2の陰極27と、上記の蛍光体基板1の蛍光体層14b、蛍光体層15b及び光散乱層16bとが対向するように、有機EL基板2及び蛍光体基板1を配置して、貼り合わせて固定する。
 以上により、発光デバイス10が得られる。
 以上のような構成の発光デバイスディスプレイによれば、上述した本発明に一態様に係る蛍光体基板を有しているため、高品質な表示が可能となる。
<電子機器>
 本発明に係る電子機器は、上述の本発明に係る発光デバイスを備えたものである。
 図5は、本発明に係る電子機器の一実施形態を示す概略正面図である。ここに示す電子機器は、テレビ受信装置である。
 ここに示すテレビ受信装置1220は、表示部1221、スピーカ1222、キャビネット1223及びスタンド1224等を備え、さらに表示部1221に上述の本発明の一態様に係る発光デバイス(ディスプレイ)を備えて構成されている。特に、ディスプレイの大きさが、対角線寸法で60インチ、画素数:横7680×縦4320の超高精細ディスプレイである場合には、従来の液晶テレビや有機ELテレビに比べ、消費電力の劇的な低下が見込めるため好ましい。
 テレビ受信装置1220は、前記ディスプレイを備えていることで、波長変換部の内部量子収率が高いため、消費電力が低い。また、波長変換部において波長変換材料の劣化が極めて小さいため信頼性がさらに高くなる。
 図6は、本発明に係る電子機器の一実施形態を示す概略正面図である。ここに示す電子機器は、携帯型ゲーム機である。
 ここに示す携帯型ゲーム機1230は、操作ボタン1231、赤外線ポート1232、LEDランプ1233、表示部1234並びに筐体1235等を備え、さらに表示部1234に上述の本発明の一態様に係る発光デバイス(ディスプレイ)を備えて構成されている。
 携帯型ゲーム機1230は、前記ディスプレイを備えていることで、波長変換部の内部量子収率が高いため、消費電力が低い。また、波長変換部において波長変換材料の劣化が極めて小さいため信頼性がさらに高くなる。
 図7は、本発明に係る電子機器の一実施形態を示す概略斜視図である。ここに示す電子機器は、ノートパソコンである。
 ここに示すノートパソコン1240は、表示部1241、キーボード1242、ポインティングデバイス1243、電源スイッチ1244、カメラ1245、外部接続ポート1246及び筐体1247等を備え、さらに表示部1241に上述の本発明の一態様に係る発光デバイス(ディスプレイ)を備えて構成されている。
 ノートパソコン1240は、前記ディスプレイを備えていることで、前記ディスプレイを備えていることで、波長変換部の内部量子収率が高いため、消費電力が低い。また、波長変換部において波長変換材料の劣化が極めて小さいため信頼性がさらに高くなる。
 図8は、本発明に係る電子機器の一実施形態を示す概略斜視図である。ここに示す電子機器は、スマートフォン(タブレット端末)である。
 ここに示すスマートフォン1210は、音声入力部1211、音声出力部1212、操作スイッチ1213、表示部1214、タッチパネル1215及び筐体1216等を備え、さらに表示部1214に上述の本発明の一態様に係る発光デバイス(ディスプレイ)を備えて構成されている。
 スマートフォン1210は、前記ディスプレイを備えていることで、波長変換部の内部量子収率が高いため、消費電力が低い。また、波長変換部において波長変換材料の劣化が極めて小さいため信頼性がさらに高くなる。
 図9は、本発明に係る電子機器の一実施形態を示す概略斜視図である。ここに示す電子機器は、腕時計型ディスプレイ(ウエアラブルコンピュータ)である。
 ここに示す腕時計型ディスプレイ1250は、電源スイッチ1251、表示部1252及び固定バンド1253等を備え、さらに表示部1252に上述の本発明の一態様に係る発光デバイス(ディスプレイ)を備えて構成されている。
 腕時計型ディスプレイ1250は、前記ディスプレイを備えていることで、波長変換部の内部量子収率が高いため、消費電力が低い。また、波長変換部において波長変換材料の劣化が極めて小さいため信頼性がさらに高くなる。また、本発明のディスプレイによれば、高精細化が可能であるため、物体と眼との距離を近づけた使用においても、鮮明で高画質な像を提供することができる。
 図10は、本発明に係る電子機器の一実施形態を示す概略斜視図である。ここに示す電子機器は、ヘッドマウントディスプレイ(ウエアラブルコンピュータ)である。
 ここに示すヘッドマウントディスプレイ1260は、電源スイッチ1261、表示部1262、固定バンド1263及びフレーム1264等を備え、さらに表示部1262に上述の本発明の一態様に係る発光デバイス(ディスプレイ)を備えて構成されている。
 ヘッドマウントディスプレイ1260は、前記ディスプレイを備えていることで、波長変換部の内部量子収率が高いため、消費電力が低い。また、波長変換部において波長変換材料の劣化が極めて小さいため信頼性がさらに高くなる。また、本発明の一態様のディスプレイによれば、高精細化が可能であるため、物体と眼との距離を近づけた使用においても、鮮明で高画質な像を提供することができる。
<照明装置>
 本発明の一態様に係る照明装置は、上述の本発明の一態様に係る波長変換基板を備えたものである。
 図11は、本発明に係る照明装置の一実施形態を示す概略斜視図である。ここに示す照明装置は、照明スタンドである。
 ここに示す照明スタンド1290は、照明部1291、スタンド1292、電源スイッチ1293、及び電源コード1294等を備え、さらに照明部1291に上述の本発明の一態様に係る波長変換基板を備えて構成されている。
 照明スタンド1290は、前記波長変換基板を備えていることで、波長変換部の内部量子収率が高いため、消費電力が低い。また、波長変換部において波長変換材料の劣化が極めて小さいため信頼性がさらに高くなる。
 照明部1291で好ましいものとしては、図12示す発光基板と波長変換基板を有するものが例示できる。図12は、照明装置における発光基板の一実施形態を模式的に示す断面図である。
 ここに示す発光基板600は、基板上21上に発光部69を備え、さらに基板21上にバンク68が立設されており、その側面68a及び上面68bには反射層60を備える。バンク68は発光部69を区画している。なお、反射層60は、隔壁68の側面68aのみに設けられ、上面68bには設けられていなくてもよい。発光基板600においては、基板上21、発光部69、隔壁68及び反射層60により、波長変換基板6が構成されている。
 また、発光基板600は、発光部69に対向して、発光部69から放出された光が入射する位置に、波長変換部642を備えており、波長変換部642の周縁部は、隔壁68の側面68a上の反射層60に密着して配置されている。ただし、ここでは、発光部69及び波長変換部642の配置関係を分かり易く説明するために、これらを離間して示している。
 また、発光基板600は、波長変換部642を備えた波長変換基板63と対向して貼り合わされている。
 発光基板600においては、発光部69からの出射光R61の一部が波長変換部642で異なる光R62に変換され、この変換光R62と未変換の出射光R61とで、さらに異なる光R63が生成されて、最終的にはこの生成光R63が出射される。
 発光部69は特に限定されず、例えば、陽極、有機EL層及び陰極の積層構造体であってもよいし、陽極、無機EL層及び陰極の積層構造体であってもよい。
 波長変換部642は、対応する光を発生する波長変換材料と分子開裂型感光性樹脂を少なくとも含む。
 波長変換部642の種類は、発光部69からの光の波長に応じて、適宜調節すればよい。
 発光基板600で好ましいものとしては、発光部69が青色発光部で、かつ波長変換部642が青色光を黄色光に変換する黄波長変換部であるものが例示できる。このような発光基板600では、発光部69からの青色光(出射光)R61の一部が波長変換部(黄波長変換部)642で黄色光(変換光)R62に変換され、この変換された黄色光R62と未変換の青色光R61とで、白色光(生成光)R63が生成されて、最終的にはこの白色光R63が出射される。この場合の、波長変換部642における発光物質としては、青色光を吸収して黄色光を発生する黄色発光物質を用いればよい。
<太陽電池>
 本発明の一態様に係る太陽電池は、上述の本発明の一態様に係る波長変換基板を備えたものである。
 図13は、太陽電池の一実施形態の要部を示す概略図である。ただし、本発明の一態様に係る波長変換基板を用いた太陽電池は、ここに示すものに限定されない。
 ここに示す太陽電池7は、図13示す波長変換基板5と、太陽もしくは照明などの光源からなる発光部Sと、波長変換基板5に対向して配置された太陽電池素子71と、を備えて構成されたものである。
 波長変換基板5は、第2波長変換部552が太陽Sに対向するようにして設置される。そして、波長変換基板5の基板11に対して、光の入射面となる表面71aが対向するように、太陽電池素子71が配置されている。ただし、ここでは、波長変換基板5及び太陽電池素子71の配置関係を分かり易く説明するために、これらを離間して示している。また、波長変換基板5のみ断面表示している。
 太陽電池素子71は、従来の太陽電池(素子)と同様のものである。
 太陽電池7においては、波長変換基板5に入射した太陽光のうち、所定の波長域の光が目的とする波長域の光に変換され、基板11側から出射された後、この出射光が表面71aから太陽電池素子71に入射して発電される。ここでは、波長変換基板5として、第1波長変換部542が青色光を緑色光に変換する緑波長変換部であり、第2波長変換部552が紫外光を青色光に変換する青波長変換部であるものを例示している。この場合、波長変換基板5に入射した太陽光中の紫外光Rが第2波長変換部(青波長変換部)552で青色光に変換され、この変換された青色光と太陽光中の青色光Rとが第1波長変換部(緑波長変換部)542で緑色光Rに変換されて、最終的には緑色光R、黄色光R、橙色光R及び赤色光R等の青色光よりも長波長の光が波長変換基板5から出射され、これら発電効率の高い波長域の光が太陽電池素子(図示略)に入射することで、発電効率が高い太陽電池を構成できる。
 また、波長変換部において波長変換材料の劣化が極めて小さいため信頼性がさらに高くなる。
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1)
 シクロブタン骨格を有するポリアミック酸(感光性樹脂、下記式(11))を非特許文献1(Chemistry of Materials 1989, 1, 163)に従って合成した。
 次いで、得られたポリアミック酸をN-メチル-2-ピロリドン(NMP)に溶解して10質量%溶液とし、さらにクマリン6をポリアミック酸の質量に対して1質量%加えて攪拌することで、実施例1の感光性樹脂組成物1を得た。
Figure JPOXMLDOC01-appb-C000016
 (nは自然数)
 感光性樹脂組成物1をガラス基板にスピンコートし、ポリアミック酸とクマリン6とを含む塗膜を形成した。スピンコートの条件は、3000rpmで20秒とした。
 次いで、得られた塗膜を175℃で2時間焼成してイミド化し、シクロブタンジイミド構造を有する感光性樹脂(下記式(12))とクマリン6とを含む樹脂膜を形成した。
Figure JPOXMLDOC01-appb-C000017
 (nは自然数)
 得られた膜に対し、ライン/スペース(L/S)=10μm/50μmのフォトマスクを介して、254nmを中心波長とする紫外線を照射した(照射量:1000mJ/cm)。次いで、露光した基板をジメチルアセトアミドに浸漬して現像し、シクロブタンジイミド構造を有する感光性樹脂とクマリン6とを含む樹脂膜をパターニングした。
 現像後の基板について断面SEM観察したところ、未露光部に樹脂膜が残り、露光部では樹脂膜が除去されていることが確認できた。
 さらに未露光部の樹脂膜について、樹脂膜が含有するクマリン6の内部量子収率を測定したところ、ポリスチレンやポリビニルアセタール中に分散させたクマリン6の内部量子収率と同等の値を示した。また、樹脂膜について変色も確認されなかった。
 なお、内部量子収率は、大塚電子社製QE-1000を用いて測定した。具体的には、蛍光体材料の最大吸収波長の光にて励起し、該蛍光体材料の吸収したフォトン数と、該蛍光体材料が発光したフォトン数をカウントし、以下の式より内部量子収率を算出した。
[内部量子収率]=[蛍光体から放出されたフォトン数]/[蛍光体が吸収したフォトン数]
(実施例2)
 感光性部位としてニトロベンジルアミド骨格を有する感光性樹脂(下記式(13))をJ. Mater. Chem.4 (1994) 1769に従って合成した。
Figure JPOXMLDOC01-appb-C000018
 (nは自然数)
 得られた感光性樹脂をNMPに溶解して10質量%溶液とし、さらにルモゲンレッドを感光性樹脂の質量に対して1質量%加えて攪拌することで、実施例2の感光性樹脂組成物2を得た。
 露光時に中心波長が356nmの紫外線を照射量800mJ/cmで照射すること、および現像液としてイソプロピルアルコールを用いること以外は、実施例1と同様にして、ニトロベンジルアミド骨格を有する感光性樹脂とルモゲンレッドとを含む樹脂膜をパターニングした。
 現像後の基板について断面SEM観察したところ、未露光部に樹脂膜が残り、露光部では樹脂膜が除去されていることが確認できた。
 さらに未露光部の樹脂膜について、樹脂膜が含有するルモゲンレッドの内部量子収率を測定したところ、ポリスチレンやポリビニルアセタール中に分散させたルモゲンレッドの内部量子収率と同等の値を示した。また、樹脂膜について変色も確認されなかった。
(実施例3)
 感光性部位としてニトロベンジルエーテル骨格を有する感光性樹脂(下記式(14))をJournal of Polymer Science: Part A: Polymer Chemistry 45, (2007) 776に従って合成した。
Figure JPOXMLDOC01-appb-C000019
 (nは自然数)
 得られた感光性樹脂をNMPに溶解して10質量%溶液とし、さらにフルオロセインを感光性樹脂の質量に対して1質量%加えて攪拌することで、実施例3の感光性樹脂組成物3を得た。
 露光時に中心波長が356nmの紫外線を照射量6000mJ/cmで照射すること、および現像液として2.38%水酸化テトラメチルアンモニウム(TMAH)水溶液を用いること以外は、実施例1と同様にして、ニトロベンジルエーテル骨格を有する感光性樹脂とフルオロセインとを含む樹脂膜をパターニングした。
 現像後の基板について断面SEM観察したところ、未露光部に樹脂膜が残り、露光部では樹脂膜が除去されていることが確認できた。
 さらに未露光部の樹脂膜について、樹脂膜が含有するフルオロセインの内部量子収率を測定したところ、ポリスチレンやポリビニルアセタール中に分散させたフルオロセインの内部量子収率と同等の値を示した。また、樹脂膜について変色も確認されなかった。
(実施例4)
 第3実施形態に従い、高精細波長変換方式有機ELディスプレイを製造した。具体的には、以下のとおりである。
(ブラックマトリックスの形成)
 基板として、厚さが0.5mmの21.0cm×16.0cmのガラス基板を水洗後、アセトンに浸漬して超音波洗浄を10分間、0.1mol/L水酸化ナトリウム水溶液に浸漬して超音波洗浄を10分間、超純水に浸漬して超音波洗浄を10分間順次行った後、100℃で1時間、基板を乾燥させた。
 次いで、紫外線オゾン洗浄を1分間行った後に、ブラックマトリックス形成用組成物としてBKレジスト(東京応化社製)を、スピンコート法によって前記基板上に塗布し、90℃で1分間プリベークして膜厚1μmの塗膜を形成した。この塗膜上に、基板の中心より19.7cm×14.8cm(縦横比、4:3、9.7インチ)の領域に、線幅7.2μm、開口部10μm×44.6μm(サブピクセルサイズ17.2μm×51.8μm、画素密度490ppi、開口率50%)のパターンが形成されたフォトマスクを配置し、i線を露光量100mJ/cmで照射し、塗膜を露光した。次いで、現像液として2.38%TMAH水溶液を用いて現像し、純水でリンス処理を行うことで、膜厚1μm、線幅7.2μmの画素パターンを有するブラックマトリックスを形成した。
(隔壁の形成)
 次いで、ポリイミド系ポジ型レジスト材料(東レ社製)を、スピンコート法によって前記基板上に塗布し、120℃で3分間プリベークして膜厚7μmの塗膜を形成した。この塗膜上に、ブラックマトリックスを形成した際に用いたフォトマスクに対してポジ-ネガ反転したフォトマスクを、同様に基板の中心より19.7cm×14.8cm(縦横比、4:3、9.7インチ)の領域に配置し、形成されたブラックマックマトリックス上が露光されるようにアライメントし、i線を露光量300mJ/cmで照射し、塗膜を露光した。
 次いで、現像液として1.5%TMAH水溶液を用いて現像し、純水でリンス処理を行った。さらに、ポストベークとして200℃60分、窒素雰囲気下のオーブンで加熱することで、膜厚6μm、ブラックマトリックス上に線幅7.0μmの隔壁を形成した。
(反射層の形成)
 前記基板の前記隔壁が形成されている面の全面に、反射層としてアルミニウムを200nm真空蒸着により形成した。次いで、ブラックマトリックスが形成されていない開口部のアルミニウムを除去するために、前記基板のアルミニウムが形成されている面に、アルミパターニング用ポジ型レジスト(東京応化社製)を、スピンコート法によって塗布し、110℃で1分間プリベークして膜厚1.2μmの塗膜を形成した。この塗膜上に、隔壁を形成した際に用いたフォトマスクを配置し、形成されたブラックマックマトリックスが形成されていない開口部が露光されるようにアライメントし、i線を露光量68.5mJ/cm照射し、塗膜を露光した。
 次いで、現像液として2.38%TMAH水溶液を用いて現像し、純水でリンス処理を行った。さらに、ポストベークとして120℃3分間、ホットプレートで加熱することで、膜厚1μm、隔壁上のアルミニウムを覆うように、アルミパターニング用ポジ型レジストをパターニングした。次いで、ブラックマトリックスが形成されていない開口部のアルミニウムをエッチングにより除去するために、エッチング液であるSLAエッチャントに3分間浸漬した。さらに、隔壁上に形成されたアルミニウムパターニング用ポジ型レジストを除去するために、アセトン中に浸漬して除去した。
(カラーフィルタの形成)
 次いで、ブラックマトリックスが形成されていない開口部のうち、連続する3つをRGB画素とするために、3つの開口部にそれぞれ赤色カラーフィルタ、緑色カラーフィルタ及び青色カラーフィルタを、既存のフォトリソグラフィー法によってパターニングして形成した。形成したカラーフィルタの厚さは、すべて2μmであった。
(光散乱層の形成)
 次いで、青色カラーフィルタ上に光散乱層を以下の手法により形成した。光散乱粒子として平均粒径200nmの酸化チタンを、バインダー樹脂であるエポキシ樹脂(日本化薬社製「SU-8」)に加えて、自動乳鉢でよくすり混ぜた後、分散攪拌装置(プライミクス社製「フィルミックス(登録商標)40-40型」)を用いて、これを15分間攪拌することにより、光散乱層形成用組成物を調製した。
 次いで、光散乱層形成用組成物を前記基板上に塗布し、スピンコート法により塗膜を形成した。
 次いで、得られた塗膜に対して、窒素雰囲気下において、青色カラーフィルタ上のみに光が照射されるようにパターニングされたフォトマスクを介して、平行光のi線を600mJ/cmで照射し、前記塗膜を硬化させた。さらに、この硬化物を備えたガラス基板をPGMEAに浸漬し、未露光部の塗膜を溶解させることで現像し、パターンを形成した。そして、このパターンを形成したガラス基板を90℃のホットプレート上で加熱し、残存する溶媒を除去することで、光散乱層(青色光散乱層)を形成した。得られた光散乱層の厚さは4μmであった。
(波長変換部の形成)
 次いで、緑色カラーフィルタ上および赤色カラーフィルタ上に、それぞれ緑色波長変換部と赤色波長変換部を以下の手法により形成した。
 まず、緑色波長変換部を形成するために、実施例1のフォトマスクにおいて緑色カラーフィルタ上のみにパターン形成されるフォトマスクを用いた以外は、実施例1の手法を用いて形成した。さらに、赤色波長変換部を形成するために、実施例2のフォトマスクにおいて赤色カラーフィルタ上のみにパターン形成されるフォトマスクを用いた点と、実施例2の発光材料として、ルモゲンレッドに加えて、クマリン6を感光性樹脂の質量に対して0.3質量%加えた点以外は、実施例2の手法を用いて形成した。
 得られた基板を光学顕微鏡にて平面像を観察すると、緑色および赤色波長変換部は10μm×44.6μm、サブピクセルサイズ17.2μm×51.8μm、開口率が50%であることが分かった。また、得られた基板に、ピーク波長450nm(半値幅40nm)の青色光を入射し、波長変換部の内部量子収率を評価したところ90%であった。
 以上により、波長変換基板を得た。
(有機EL素子基板の製造)
 図4に従って、発光部として青色燐光有機EL素子基板を製造した。具体的には、以下のとおりである。
(薄膜トランジスタ、層間絶縁層および陽極の形成)
 基板として、波長変換基板と同じ材質で同じ大きさの基板に、既存の半導体プロセスにより、半導体層がIGZOからなる薄膜トランジスタを形成し、さらに窒化シリコンからなる層間絶縁層を薄膜トランジスタ上に形成した。さらに、該薄膜トランジスタのソース電極の上の一部の層間絶縁層を除去し、コンタクトホールを形成した。次いで、層間絶縁層上に有機ELの反射電極として、膜厚が100nmとなるように真空蒸着法により銀を成膜し、その上に透明電極として、膜厚が20nmとなるようにITOを全面にスパッタ法により成膜した。そして、フォトリソグラフィー法により、陽極(画素電極)を10μm×44.6μmの長方形で、隣接する陽極との間隔が7.2μmで画素密度490ppiでパターンを形成した。また、陽極はコンタクトホールを介して電気的にトランジスタのソース電極と接続した。
(有機EL層の形成)
 陽極までを形成した基板をインライン型抵抗加熱蒸着装置内の基板ホルダーに固定し、1×10-4Pa以下の圧力まで減圧して、ホール注入層、ホール輸送層、青色発光層、ホールブロック層、電子輸送層及び電子注入層をこの順に、表3に示す材料及び膜厚で形成し、有機EL層とした。
Figure JPOXMLDOC01-appb-T000020
(陰極の形成)
 真空蒸着法により、有機EL層の表面にシャドーマスクを介してマグネシウム及び銀を共蒸着し、厚さ1nmのマグネシウム銀層を形成し、さらにその上に、厚さ19nmの銀層を形成して、陰極(半透明電極)を形成した。
 以上により、発光部として有機EL基板を得た。
(貼り合わせ)
 得られた波長変換基板の外周部に光硬化性シール材(積水化学社製)をディスペンサーで塗布した後に、有機EL基板と窒素雰囲気下で貼り合わせ、波長変換基板と有機EL基板との各画素の位置が一致するように調整した。さらに、画素部を遮光した後に紫外線を露光することで硬化させ接着した。さらに薄膜トランジスタを制御用の駆動回路と、有機EL基板とを電気的に接続し、波長変換方式青色燐光有機ELディスプレイを製造した。
(駆動および消費電力の見積り)
 本実施例の有機EL基板に10mA/cmの電流密度で駆動し、青色で発光させると、波長変換基板を介して白色が表示されていることが確認できた。
 さらに、本実施例のディスプレイを160cd/cmにて白色点灯した時の、消費電力を評価したところ10.3Wであった。
(実施例5)
 実施例4の赤色波長変換部におけるルモゲンレッドの樹脂に対する濃度と、緑色波長変換におけるクマリン6の濃度の両方を、10質量%、7質量%、5質量%、3質量%、2質量%、1.5質量%に変えることで、波長変換部の内部量子収率がそれぞれ52%、63%、70%、76%、80%、85%の波長変換基板を作製した。これを実施例4と同様の有機EL基板と貼り合わせることで、ディスプレイを作製し、実施例4と同様の手法で消費電力を評価した。
(比較例1)
 従来のディスプレイの代表例として、実施例4と同じ基板サイズおよび画素密度(490ppi)のアクティブマトリックス駆動のIPS液晶ディスプレイを入手し、実施例4と同様の手法で消費電力を評価したところ、15.1Wと見積もられた。本発明のディスプレイにより劇的な消費電力の低下が実現可能であることが示された。
 図14は、実施例4、5および比較例1のディスプレイについて、内部量子収率に対する消費電力値をプロットしたグラフである。図14に示すグラフにおいて、横軸は内部量子収率(単位:%)、縦軸は消費電力(単位:W)を示す。
 図14からも分かるように、内部量子収率が80%以上の時、従来のIPS液晶ディスプレイよりも消費電力が低く、優れていることが明らかとなった。
(実施例6)
 実施例4における画素密度を、それぞれ300ppi、350ppi、400ppi、450ppi、600ppi、700ppiに代えた以外は同じ方法で作製した波長変換基板と有機EL基板を準備し、これらを貼り合せディスプレイとした。このときの各波長変換部位の縦×横の線幅を光学顕微鏡の平面像を観察したところ、それぞれ、72.8×16.4、62.4×14.1、54.6×12.3、36.4×8.2、31.2×7.0であった。得られたディスプレイの消費電力を実施例4と同様の手法で評価した。
(比較例2)
 比較例1の液晶ディスプレイに対して、画素密度が、300ppi、350ppi、400ppi、550ppiと異なる以外は同じものを準備し、消費電力を評価した。
 図15は、実施例4,5および比較例5,6のディスプレイについて、画素密度に対する消費電力値をプロットしたグラフである。図15のグラフにおいて、横軸はディスプレイの画素密度(単位:ppi)、縦軸は消費電力(単位:W)を示す。
 図15からも分かるように、液晶ディスプレイは画素密度の向上に伴い、急激に消費電力が向上する。これは、画素密度の向上に伴い、サブピクセルあたりの薄膜トランジスタや配線の光非透過領域の割合が増加し、開口率が低下するため、液晶ディスプレイにおけるバックライトが点灯するための必要輝度が上昇するためと考えられる。
 一方で、本発明のディスプレイは画素密度の上昇に伴い、消費電力が上昇するが、大きな上昇はない。そのため、450ppi以上の画素密度において、従来の液晶ディスプレイよりも低消費電力が実現される。
 以上の結果より、本発明が有用であることが分かった。
 1…蛍光体基板(波長変換基板)、5,6,63…波長変換基板、10…発光デバイス、11,21…基板、14b,15b…蛍光体層(波長変換部)、642…波長変換部、L1…励起光

Claims (16)

  1.  露光により開裂反応を生じる感光性部位を有するポジ型の感光性樹脂と、
     前記感光性樹脂中に分散した波長変換材料と、を含み、
     前記感光性樹脂と前記波長変換材料とは、下記(i)から(iv)を満たす感光性樹脂組成物。
    (i)前記感光性部位および前記感光性樹脂が開裂反応して生じた生成物が、前記波長変換材料と中和反応しない。
    (ii)前記感光性部位および前記生成物が、前記波長変換材料の加水分解反応を起こさせない。
    (iii)前記感光性部位および前記生成物のHOMOが、前記波長変換材料のLUMOよりも低い。
    (iv)前記感光性部位および前記生成物のLUMOが、前記波長変換材料のHOMOよりも高い。
    (ただし、化学増幅型の前記感光性樹脂であって前記感光性部位または前記生成物が酸性を示す感光性樹脂と、酸性の前記波長変換材料との組み合わせを除く)。
  2.  前記感光性樹脂は、前記感光性部位および前記生成物が中性である請求項1に記載の感光性樹脂組成物。
  3.  前記感光性樹脂は、前記感光性部位として、シクロブタンジイミド骨格、o-ニトロベンジルアミド骨格、o-ニトロベンジルエーテル骨格、炭酸メチルフェニル骨格、1-ベンジルオキシ-1-アルキルエタノール骨格およびジシラン骨格からなる群から選ばれる少なくとも1つを有する請求項2に記載の感光性樹脂組成物。
  4.  前記感光性樹脂は、前記感光性部位としてシクロブタンジイミド骨格を有する請求項3に記載の感光性樹脂組成物。
  5.  前記波長変換材料は、プロトン受容基またはプロトン供与基を有する請求項1から4のいずれか1項に記載の感光性樹脂組成物。
  6.  前記波長変換材料は、脱水縮合基を有する請求項1から5のいずれか1項に記載の感光性樹脂組成物。
  7.  前記波長変換材料は、クマリン骨格またはボロン-ジピロメチン骨格を有する請求項1から6のいずれか1項に記載の感光性樹脂組成物。
  8.  前記感光性樹脂は、可視光領域で光透過性を有する請求項1から7のいずれか1項に記載の感光性樹脂組成物。
  9.  前記感光性樹脂を溶解する溶媒をさらに有する請求項1から8のいずれか1項に記載の感光性樹脂組成物。
  10.  基板と、
     前記基板上に設けられた波長変換部と、を有し、
     前記波長変換部は、請求項1から9のいずれか1項に記載の感光性樹脂組成物を形成材料とする波長変換基板。
  11.  励起光を射出する光源と、
     前記励起光を吸収し、前記励起光とは異なる波長の光を射出する波長変換部と、を有し、
     前記波長変換部は、請求項1から9のいずれか1項に記載の感光性樹脂組成物を形成材料とする発光デバイス。
  12.  基板と、
     前記基板上に設けられた前記波長変換部と、を有する波長変換基板を有する請求項11に記載の発光デバイス。
  13.  前記波長変換基板は、前記波長変換部と少なくとも一面で接し、前記波長変換部から射出される光を反射するまたは拡散させる構造体を有する請求項12に記載の発光デバイス。
  14.  前記構造体の形成材料は、金属材料を有する請求項13に記載の発光デバイス。
  15.  前記波長変換部の発光内部量子収率が80%以上である請求項11から14のいずれか1項に記載の発光デバイス。
  16.  前記波長変換基板は、マトリクス状に配列した複数の波長変換部を有し、
     前記複数の波長変換部は、450ppi以上の密度で設けられている請求項11から15のいずれか1項に記載の発光デバイス。
PCT/JP2015/067002 2014-06-13 2015-06-12 感光性樹脂組成物、波長変換基板および発光デバイス WO2015190594A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/318,034 US10018912B2 (en) 2014-06-13 2015-06-12 Photosensitive resin composition, wavelength conversion substrate and light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014122195 2014-06-13
JP2014-122195 2014-06-13
JP2015117689 2015-06-10
JP2015-117689 2015-06-10

Publications (1)

Publication Number Publication Date
WO2015190594A1 true WO2015190594A1 (ja) 2015-12-17

Family

ID=54833677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067002 WO2015190594A1 (ja) 2014-06-13 2015-06-12 感光性樹脂組成物、波長変換基板および発光デバイス

Country Status (2)

Country Link
US (1) US10018912B2 (ja)
WO (1) WO2015190594A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004336A1 (ja) * 2018-06-26 2020-01-02 東京応化工業株式会社 液状組成物、量子ドット含有膜、光学フィルム、発光表示素子パネル、及び発光表示装置
JP2020501176A (ja) * 2016-10-26 2020-01-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 金属酸化物感光性樹脂組成物、これを利用して製造されたカラーフィルターおよび画像表示装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996515B2 (en) * 2015-08-28 2021-05-04 Samsung Display Co., Ltd. Color conversion panel, display device comprising the same and manufacturing method of the color conversion panel
CN105353555B (zh) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
KR20180011398A (ko) * 2016-07-21 2018-02-01 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR102608507B1 (ko) 2016-08-30 2023-12-01 삼성디스플레이 주식회사 표시장치 및 그 제조방법
US10164156B2 (en) * 2017-03-31 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Structure and formation method of image sensor structure with grid structure
KR102497787B1 (ko) * 2017-11-15 2023-02-09 삼성디스플레이 주식회사 표시패널의 제조방법 및 이를 포함하는 표시장치
KR102423864B1 (ko) * 2017-11-28 2022-07-21 엘지디스플레이 주식회사 발광 소자 및 컬러 필터를 포함하는 디스플레이 장치
FR3083370B1 (fr) * 2018-06-28 2021-10-15 Aledia Dispositif émetteur, écran d'affichage associé et procédé de fabrication d'un dispositif émetteur
DE102018126355B4 (de) * 2018-10-23 2021-06-17 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Lichtemittierendes bauelement und verwendung eines lichtemittierenden bauelements zur minimierung von stokesverlusten durch photonmultiplikationsprozesse für ir-anwendungen
CN111146353A (zh) * 2018-11-06 2020-05-12 广东聚华印刷显示技术有限公司 彩膜基板及其制备方法、显示器件及其制备方法
KR20210152058A (ko) * 2020-06-04 2021-12-15 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
KR20210152102A (ko) * 2020-06-05 2021-12-15 삼성디스플레이 주식회사 표시 장치
KR20210155443A (ko) * 2020-06-15 2021-12-23 삼성디스플레이 주식회사 디스플레이 장치
US11626534B2 (en) 2021-06-08 2023-04-11 Sharp Kabushiki Kaisha UV patternable matrix containing blue light emitting quantum dots

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150048A (ja) * 1983-11-26 1985-08-07 バスフ アクチェン ゲゼルシャフト レジストパタ−ンの作製方法及び該方法の実施に適するドライフイルムレジスト
JPS61251652A (ja) * 1985-04-12 1986-11-08 チバ − ガイギ− アクチエンゲゼルシヤフト オキシムスルホネ−ト及び該化合物から製造されるポリマ−
JPS6380247A (ja) * 1986-09-24 1988-04-11 Hitachi Ltd レジスト
JPS63280240A (ja) * 1987-05-13 1988-11-17 Canon Inc リソグラフィ用レジスト組成物
JPH024260A (ja) * 1988-02-12 1990-01-09 Hoechst Celanese Corp 放射線感応性記録材料及び画像の形成法
JPH04120173A (ja) * 1989-12-26 1992-04-21 General Electric Co <Ge> レーザ切除可能な高分子誘電体およびそれの形成方法
JPH05232703A (ja) * 1992-02-25 1993-09-10 Toppan Printing Co Ltd 感光性樹脂組成物およびそれを用いた画像記録材料
JP2000012217A (ja) * 1998-06-19 2000-01-14 Idemitsu Kosan Co Ltd エレクトロルミネッセンス表示用色変換フィルターの製造方法
WO2005116770A1 (ja) * 2004-05-31 2005-12-08 Toyo Boseki Kabushiki Kaisha 感光性ポリイミド前駆体組成物

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3473065D1 (en) 1983-11-26 1988-09-01 Basf Ag Process for the production of resist images and dry resist film for this process
EP0725315B1 (en) 1995-01-25 2001-05-02 Nippon Paint Co., Ltd. Photosensitive resin composition and method for forming pattern using the same
JP3616685B2 (ja) 1995-01-25 2005-02-02 日本ペイント株式会社 感光性樹脂組成物およびそれを用いるパターン形成方法
JPH09208704A (ja) 1996-01-31 1997-08-12 Toshiba Corp 有機ケイ素高分子材料及び着色部材の製造方法
JP2000003047A (ja) 1998-06-17 2000-01-07 Nippon Paint Co Ltd 感光性樹脂組成物およびそれを用いるパターン形成方法
CN1170204C (zh) 1999-02-15 2004-10-06 克拉瑞特金融(Bvi)有限公司 敏射线树脂组合物
US20140009905A1 (en) * 2010-12-16 2014-01-09 Sharp Kabushiki Kaisha Fluorescent substrate, display apparatus, and lighting apparatus
TW201242414A (en) * 2011-01-25 2012-10-16 Panasonic Corp Planate light emitting device
JP2015026418A (ja) * 2011-11-18 2015-02-05 シャープ株式会社 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法
JP2013196854A (ja) * 2012-03-16 2013-09-30 Sharp Corp 蛍光体基板およびこれを備えた表示装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60150048A (ja) * 1983-11-26 1985-08-07 バスフ アクチェン ゲゼルシャフト レジストパタ−ンの作製方法及び該方法の実施に適するドライフイルムレジスト
JPS61251652A (ja) * 1985-04-12 1986-11-08 チバ − ガイギ− アクチエンゲゼルシヤフト オキシムスルホネ−ト及び該化合物から製造されるポリマ−
JPS6380247A (ja) * 1986-09-24 1988-04-11 Hitachi Ltd レジスト
JPS63280240A (ja) * 1987-05-13 1988-11-17 Canon Inc リソグラフィ用レジスト組成物
JPH024260A (ja) * 1988-02-12 1990-01-09 Hoechst Celanese Corp 放射線感応性記録材料及び画像の形成法
JPH04120173A (ja) * 1989-12-26 1992-04-21 General Electric Co <Ge> レーザ切除可能な高分子誘電体およびそれの形成方法
JPH05232703A (ja) * 1992-02-25 1993-09-10 Toppan Printing Co Ltd 感光性樹脂組成物およびそれを用いた画像記録材料
JP2000012217A (ja) * 1998-06-19 2000-01-14 Idemitsu Kosan Co Ltd エレクトロルミネッセンス表示用色変換フィルターの製造方法
WO2005116770A1 (ja) * 2004-05-31 2005-12-08 Toyo Boseki Kabushiki Kaisha 感光性ポリイミド前駆体組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020501176A (ja) * 2016-10-26 2020-01-16 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 金属酸化物感光性樹脂組成物、これを利用して製造されたカラーフィルターおよび画像表示装置
US11194250B2 (en) 2016-10-26 2021-12-07 Dongwoo Fine-Chem Co., Ltd. Metal oxide photosensitive resin composition, and color filter and image display device manufactured using same
WO2020004336A1 (ja) * 2018-06-26 2020-01-02 東京応化工業株式会社 液状組成物、量子ドット含有膜、光学フィルム、発光表示素子パネル、及び発光表示装置
JPWO2020004336A1 (ja) * 2018-06-26 2021-08-05 東京応化工業株式会社 液状組成物、量子ドット含有膜、光学フィルム、発光表示素子パネル、及び発光表示装置
JP7119087B2 (ja) 2018-06-26 2022-08-16 東京応化工業株式会社 液状組成物、量子ドット含有膜、光学フィルム、発光表示素子パネル、及び発光表示装置
US11542397B2 (en) * 2018-06-26 2023-01-03 Tokyo Ohka Kogyo Co., Ltd. Liquid composition, quantum dot-containing film, optical film, light-emitting display element panel, and light-emitting display device

Also Published As

Publication number Publication date
US10018912B2 (en) 2018-07-10
US20170123317A1 (en) 2017-05-04

Similar Documents

Publication Publication Date Title
WO2015190594A1 (ja) 感光性樹脂組成物、波長変換基板および発光デバイス
US9182631B2 (en) Phosphor substrate, display device, and electronic apparatus
US20150171372A1 (en) Fluorescent material, fluorescent coating material, phosphor substrate, electronic apparatus, and led package
US9099409B2 (en) Organic electroluminescent display device, electronic apparatus including the same, and method for producing organic electroluminescent display device
WO2014084012A1 (ja) 散乱体基板
WO2012108384A1 (ja) 蛍光体基板、およびこれを用いた表示装置、照明装置
WO2013111696A1 (ja) 蛍光体基板、表示装置および電子機器
JP2016218151A (ja) 波長変換基板、発光装置並びにこれを備えた表示装置、照明装置および電子機器
WO2013039072A1 (ja) 発光デバイス、表示装置、照明装置および発電装置
WO2016204166A1 (ja) 波長変換方式発光装置並びにこれを備えた表示装置、照明装置および電子機器
WO2013154133A1 (ja) 光散乱体、光散乱体膜、光散乱体基板、光散乱体デバイス、発光デバイス、表示装置、および照明装置
JP2010520507A (ja) 表示装置、および表示装置を含む携帯電話、コンピュータ、テレビ
WO2013183751A1 (ja) 蛍光体基板、発光デバイス、表示装置、及び照明装置
JP2015128027A (ja) 有機el装置、表示装置
WO2012090786A1 (ja) 発光デバイス、表示装置、及び照明装置
JP2014052606A (ja) 蛍光体基板、発光デバイス、表示装置、及び照明装置
JP2013196854A (ja) 蛍光体基板およびこれを備えた表示装置
WO2012081568A1 (ja) 蛍光体基板、表示装置および照明装置
WO2013133139A1 (ja) 波長変換基板およびそれを用いた表示装置、電子機器、並びに、波長変換基板の製造方法
JP2014038702A (ja) 波長変換基板およびそれを用いた表示装置、電子機器
JP2017161604A (ja) 波長変換基板、波長変換基板の製造方法、表示装置
WO2013065649A1 (ja) 有機発光素子
JP2015026417A (ja) 有機エレクトロルミネッセンス表示装置およびそれを用いた電子機器、並びに、有機エレクトロルミネッセンス表示装置の製造方法
WO2012081536A1 (ja) 発光デバイス、表示装置、電子機器及び照明装置
WO2012043172A1 (ja) 蛍光体基板、およびこれを用いた表示装置、照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15806036

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15318034

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15806036

Country of ref document: EP

Kind code of ref document: A1