WO2005116770A1 - 感光性ポリイミド前駆体組成物 - Google Patents

感光性ポリイミド前駆体組成物 Download PDF

Info

Publication number
WO2005116770A1
WO2005116770A1 PCT/JP2005/009770 JP2005009770W WO2005116770A1 WO 2005116770 A1 WO2005116770 A1 WO 2005116770A1 JP 2005009770 W JP2005009770 W JP 2005009770W WO 2005116770 A1 WO2005116770 A1 WO 2005116770A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
group
polyimide precursor
hours
added
Prior art date
Application number
PCT/JP2005/009770
Other languages
English (en)
French (fr)
Inventor
Satoshi Imahashi
Hiroyuki Wakui
Naohiro Honda
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004161177A external-priority patent/JP4165454B2/ja
Priority claimed from JP2004161977A external-priority patent/JP4165455B2/ja
Priority claimed from JP2004162022A external-priority patent/JP4165456B2/ja
Priority claimed from JP2004170416A external-priority patent/JP4165459B2/ja
Priority claimed from JP2004170414A external-priority patent/JP4165458B2/ja
Priority claimed from JP2004236920A external-priority patent/JP4165473B2/ja
Priority claimed from JP2004270232A external-priority patent/JP4165484B2/ja
Priority claimed from JP2005068996A external-priority patent/JP2006251475A/ja
Priority claimed from JP2005068997A external-priority patent/JP2006251476A/ja
Priority claimed from JP2005068999A external-priority patent/JP2006251478A/ja
Priority claimed from JP2005068998A external-priority patent/JP2006251477A/ja
Priority claimed from JP2005068995A external-priority patent/JP2006251474A/ja
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Publication of WO2005116770A1 publication Critical patent/WO2005116770A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0387Polyamides or polyimides

Definitions

  • the present invention relates to a photosensitive polyimide precursor composition used for forming a semiconductor surface protective film and an interlayer insulating film for improving the reliability of a semiconductor device.
  • the polyimide main chain needs to have a rigid and straight rod-like structure due to its chemical structure.
  • para-bonding of the ring structure is particularly important. This is because a polyimide having such a para bond has a large degree of in-plane orientation of the polyimide skeleton, and therefore, has a rigid and linear rod-like structure.
  • Patent Document 1 JP-A-60-37550
  • Patent Document 2 Japanese Patent Laid-Open No. 4-204945
  • Patent Document 3 JP-A-4-120171
  • Patent Document 4 JP-A-5-113668
  • Patent Document 5 JP-A-2000-187324
  • Patent Document 6 JP 2001-214055 A
  • Non-Patent Document 1 "Latest Polyimides: Basics and Applications” (NTT) p.327-338
  • Non-patent document 2 "Latest trends in polymer materials for electronic components III” (Sumibe Techno Search) p. 88-119
  • the present invention has been made to alleviate problems such as a decrease in adhesion to a substrate and a warpage of a substrate caused by a large thermal expansion coefficient of a conventional photosensitive resin. Yes, its coefficient of thermal expansion is small, so the adhesion to the substrate and the warpage of the substrate are reduced, and the electrical characteristics and resolution are not deteriorated. It is an object of the present invention to provide a photosensitive resin composition that can be used. An object of the present invention is to provide a photosensitive polyimide precursor composition having high photosensitivity in the ultraviolet region while maintaining the toughness of the film.
  • the inventors of the present invention have conducted intensive studies and have found that a polyimide precursor having a benzoazole skeleton in the main chain and containing a specific group in a side chain or a main chain and a photosensitizer as necessary.
  • the present inventors have found that a photosensitive polyimide precursor composition characterized by the following can achieve the above object, and have completed the present invention.
  • the present invention also has the following constitutional power.
  • R 1 represents a tetravalent organic group having a tetravalent aromatic ring or an aliphatic ring which may have a phenolic hydroxyl group
  • R 2 has a hydroxyl group and a phenolic hydroxyl group.
  • An organic group a monovalent organic group capable of being decomposed into a hydroxyl group by the action of an acid, a photolabile group or another monovalent organic group
  • R 3 is represented by any of the general formulas (2) to (5). Represents an aromatic benzoazole residue.
  • X represents an oxygen atom, a sulfur atom, or NR 8 (wherein R 8 represents a hydrogen atom, an alkyl group or a phenyl group), R.
  • R. Are each independently a phenolic hydroxyl group or an aromatic ring group or heterocyclic group having a monocyclic or plural ring force which may have a monovalent organic group which can be decomposed by the action of an acid and converted into a hydroxyl group.
  • R 5 and R 7 each independently represent a phenolic hydroxyl group or a monovalent organic group capable of being decomposed and converted to a hydroxyl group by the action of an acid! /, Or It represents an aromatic ring group, a heterocyclic group or an aliphatic ring group composed of a single ring or a plurality of rings.
  • a photosensitive polyimide precursor composition containing a photosensitizer as needed is provided.
  • the photosensitizer is an acid derivative composed of cholic acid, deoxycholic acid, and Z or lithocholic acid by o-triarylmethylesteridation.
  • -Type photosensitive polyimide precursor composition is an acid derivative composed of cholic acid, deoxycholic acid, and Z or lithocholic acid by o-triarylmethylesteridation.
  • the photosensitive agent is an acid derivative composed of cholic acid, deoxycholic acid, and Z or lithocholic acid by P-triarylmethylesteridation, and further comprises a sensitizer.
  • the photosensitizing agent may be a group having a hydrogen atom of a carboxyl group of cholic acid, deoxycholic acid, Z or lithocholic acid having a funacyl structure or a group having a benzozinyl structure.
  • the total amount of the carboxyl group and the phenolic hydroxyl group of the polyimide precursor is 0.3 to 3 mol per 1 mol of the polyimide precursor repeating unit represented by the general formula (1).
  • the positive photosensitive polyimide precursor composition according to any one of the above.
  • At least a part of the substituents of R 2, R 4 , R 6 , R 5 , and R 7 is a monovalent organic group that can be decomposed by the action of an acid and converted to a hydroxyl group, and contains a photoacid generator. Claims characterized by the following:
  • the photosensitive agent contains a photoacid generator and an acid-decomposable compound having an acid-decomposable group that is decomposed by an acid-catalyzed reaction, and the acid-decomposable compound has an acid-decomposable group decomposed.
  • the polyimide precursor is insoluble in alkali, and when the acid-decomposable group is decomposed by an acid catalyst, the acid-decomposable compound is converted into alkali in the acid-decomposable compound.
  • the photosensitizer is an acid derivative constituted by replacing the hydrogen atom of the carboxyl group of cholic acid, deoxycholic acid, and Z or lithocholic acid with an acid-decomposable group, and further contains a photoacid generator.
  • Polyimide precursor composition is an acid derivative constituted by replacing the hydrogen atom of the carboxyl group of cholic acid, deoxycholic acid, and Z or lithocholic acid with an acid-decomposable group, and further contains a photoacid generator.
  • the photo-leaving group is a group having a p- -troarylmethyl structure, o- -troarylmethyl 12.
  • At least one terminal of the polyimide precursor is blocked via a binding extender having a binding group that binds to aromatic diamine or diacid anhydride via the binding group, and the chain extension is performed.
  • the agent further has a linking group for linking the polyimide precursors via the chain extender under conditions different from those for forming a polyimide precursor from aromatic diamine and dianhydride. 17.
  • the positive photosensitive polyimide precursor composition according to any one of claims 1 to 16.
  • the photosensitive polyimide precursor composition of the present invention has a small difference in the coefficient of thermal expansion between the polyimide obtained after coating and thermal cyclization on a substrate having a low coefficient of thermal expansion such as a silicon wafer. Further, the adhesion between the polyimide and the base material is good, and the warpage and the like can be reduced, and the developability and the photosensitivity can be maintained well. As a result, a good pattern can be obtained. Further, by introducing a non-aromatic ring structure into the main chain structure to increase the transmittance of the polyimide precursor at short wavelengths of ultraviolet rays, the sensitivity is high and the pattern formability is good, and Since the rigidity does not become excessive, the toughness of the formed film can be maintained.
  • the photosensitive polyimide precursor of the present invention contains a structural unit represented by the general formula (1) as a main component.
  • a resin having an imide ring can be obtained, and a polyimide having excellent heat resistance is formed by forming an imide ring.
  • R 1 represents a tetravalent organic group having a tetravalent aromatic ring or an aliphatic ring which may have a phenolic hydroxyl group
  • R 2 represents a hydroxyl group or a phenolic group
  • R 3 represents an organic group having a neutral hydroxyl group, a monovalent organic group that can be decomposed by the action of an acid and converted into hydrogen, a photolabile group, or another monovalent organic group; Represents an aromatic benzoazole residue represented by 5).
  • R 1 is not particularly limited as long as it is a tetravalent organic group having an aromatic ring or an aliphatic ring. Alternatively, it is preferably a group having 6 to 30 carbon atoms containing an aromatic heterocyclic group. Preferred examples of R 1 include pyromellitic acid, naphthalenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 3,3,4,4, -diphenylethertetracarboxylic acid.
  • Acid 3,3,4,4, -diphenylhexafluoropropanetetracarboxylic acid, 3,3 ', 4,4'diphenylsulfonetetracarboxylic acid, 3,3', 4,4 ' Examples thereof include structures derived from tetracarboxylic acid such as zophenonetetracarboxylic acid.
  • the number of carbon atoms which preferably contains an aliphatic ring, is preferably from 6 to 30.
  • R 2 is a hydroxyl group, an organic group having a phenolic hydroxyl group, a monovalent organic group which can be decomposed by the action of an acid and converted into hydrogen, and a photo-labile group.
  • it is another monovalent organic group, and can be introduced into the polyimide precursor structure through an ester bond.
  • the photosensitive polyimide precursor of the present invention is characterized in that the polyimide resin obtained by imidization has a small thermal expansion coefficient and is close to the thermal expansion coefficient of a metal such as a silicon wafer or a substrate made of inorganic material. are doing.
  • the polyimide main chain has a rigid and linear rod-like structure due to its chemical structure.
  • para-bonding of the ring structure is particularly important. It is considered that such a polyimide having a ring structure having a para bond has a large in-plane orientation of the polyimide skeleton, and therefore has a rigid and linear rod-like structure.
  • R 3 in the above-mentioned general formula (1) has the following general formula as a suitable structure for reducing the coefficient of thermal expansion of such a polyimide.
  • X is an oxygen atom, a sulfur atom, or NR 8 (wherein R 8 is a hydrogen atom, R 4 and R 6 each independently have a phenolic hydroxyl group or a monovalent organic group which can be decomposed by the action of an acid and converted to a hydroxyl group. represents may also be monocyclic or more rings power composed aromatic ring group or a heterocyclic group, conversion independently R 5, R 7 Waso respectively, the hydroxyl group is decomposed by the action of phenolic hydroxyl group or an acid And / or an aromatic ring group, a heterocyclic group or an aliphatic ring group composed of a single ring or a plurality of rings. )
  • the aromatic group or the heterocyclic group represented by R 4 in the formulas (2) to (5) is a tetravalent group corresponding to an aromatic compound or a heterocyclic compound, which is obtained by removing four hydrogen atoms.
  • Examples of R 4 in equations (2) to (5) include:
  • the aromatic group, heterocyclic group or alicyclic group represented by R 5 in formulas (2) to (5) is obtained by removing two hydrogen atoms from an aromatic compound, a complex ring compound or an alicyclic compound. It is a divalent group corresponding to the one.
  • Specific examples of R 5 in formulas (2) to (5) include:
  • the aromatic group or heterocyclic group represented by R 6 in the formulas (2) to (5) is a trivalent group corresponding to a compound obtained by removing three hydrogens from an aromatic compound or a heterocyclic compound. It is.
  • R 6 in equations (2) to (5) include:
  • the aromatic group, heterocyclic group or alicyclic group represented by R 7 in the formulas (2) to (5) is obtained by removing two hydrogen atoms from an aromatic compound, a complex ring compound or an alicyclic compound. It is a divalent group corresponding to the one.
  • Specific examples of R 7 in the formulas (2) to (5) include:
  • Equation (2) ⁇ X is NR 8 to references (5), the alkyl group represented by R 8 preferably has carbon atoms 1-10, more preferably is 1 to 6 alkyl groups .
  • the organic group represented by R 3 in formula (1) is preferably a base Nzookisazoru residues, Benzochiazo Le residues or base lens imidazole residues, especially downy Nzookisazoru residue preferred ⁇ .
  • benzoxazole residues include 2,6- (4,4,1-diaminodiphenyl) -benzo [1,2-d: 5,4-d,] bisoxazole and 5-amino-2- (p Aminophenyl) -benzoxazole, 5-amino-2- (m-aminophenol) -benzobenzoxazole, 2,2,1-p-phenylenebis- (5-aminobenzoxazole), 2,6- (4,4, -diaminodicyclohexyl) -benzo [1,2-d: 5,4-d '] bisoxazole, 5-amino-1- (4-aminocyclohexyl) -benzoxazole, Examples thereof include diaminobenzozoxazole residues such as 5-amino-2- (3-aminocyclohexyl) -benzobenzoazole and 2,2 '-(1,4-cyclohexylene) bis (5-aminobenz
  • benzothiazole residues include 2,6 -— (4,4′-diaminodiphenyl) -benzo [1,2-d: 5,4-d,] bisthiazole and 5-amino-2- (p-aminophenyl- Benzothiazole, 5-amino-1 2- (m-aminophenyl) -benzothiazole, 2, 2,1-p-phenylenebis (5-aminobenzothiazonoole), 2,6- (4,4, diaminodicyclohexyl) -benzo [1,2-d: 5,4-d,] bisthiazole, 5 —Amino-2- (4-aminocyclohexyl) -benzothiazole, 5-amino-2- (3-aminocyclohexyl) —benzothiazole, 2, 2 '-(1,4-cyclohexylene) bis (5 —Aminobenzothiazole) and the like.
  • benzimidazole residue examples include 2,6- (4,4, diaminodiphenyl) -benzo [1,2-d: 5,4—d,] bisimidazole, Amino-2- (p-aminophenol) -benzimidazole, 5-amino-1- (m-aminophenyl) -benzimidazole, 2,2,1-p-phenylamine (5-aminobenzimidazole) , 2,6- (4,4,1-diaminodicyclohexyl) -benzo [1,2-d: 5,4-d,] bisimidazole, 5-amino-2- (4-aminocyclohexyl) Diaminobenzides such as 1-benzimidazole, 5-amino-2- (3-aminocyclohexyl) -benzimidazole and 2,2 '-(1,4-cyclohexylene) bis (5-aminobenzimidazole)
  • an aliphatic group having a siloxane structure may be copolymerized in R 1 R 3 within the range of not lowering the heat resistance.
  • the diamine component include bis (3-aminopropyl) tetramethyldisiloxane copolymerized at 1 to 10 mol%.
  • a bonding group that binds to aromatic diamine or dianhydride and a condition different from the conditions for forming a polyimide precursor from aromatic diamine and dianhydride are used. It is preferable that at least one terminal of the polyimide precursor is blocked via a bonding group by a chain extender having two types of functional groups, ie, a connecting group connecting the polyimide precursors.
  • a chain extender having two types of functional groups, ie, a connecting group connecting the polyimide precursors.
  • the chain extender used in the present invention is not particularly limited. Are included. Specifically, maleic anhydride, 5-norbornene-2,3-dicarboxylic anhydride, butylphthalic anhydride, 1,2 dimethyl maleic anhydride, 4-cyclohexene-1,2 dicarboxylic anhydride, 1 , 2,3,6-tetradrophthalic anhydride, phlechueruline, etuchurin, 3- (3-fuetlujurphenoxy) a-line, propargylamine, aminobenzocyclobutene, etc. No.
  • the photosensitive polyimide precursor of the present invention is synthesized by a known method of reacting tetracarboxylic dianhydride with diaminobenzoazole.
  • a phenolic hydroxyl group is introduced, at least one of tetracarboxylic dianhydride and diaminobenzoazole, which has a phenolic hydroxyl group in the main chain, must have a phenolic hydroxyl group.
  • a phenolic hydroxyl group is introduced as R 2 so as to have a phenolic hydroxyl group in the selected force or side chain.
  • the tetracarboxylic dianhydride is reacted with the phenolic hydroxyl group-containing alcohol conjugate or the amine conjugate to synthesize a tetracarboxylic diester or tetracarboxylic diamide, and then the diester or diamide is converted to a salt.
  • a tetracarboxylic diester chloride or a diamide chloride is synthesized. Thereafter, the obtained chloride is dissolved in an organic solvent and reacted with diaminobenzoxazole dissolved in an organic solvent containing a dehalogenating hydrogenating agent such as pyridine.
  • a suitable dehydrating agent such as-(2,3 dihydroxoxo-3-benzoxazonole) phosphonate.
  • a suitable dehydrating agent such as-(2,3 dihydroxoxo-3-benzoxazonole) phosphonate.
  • a suitable dehydrating agent such as-(2,3 dihydroxoxo-3-benzoxazonole) phosphonate.
  • the solvent a polar solvent containing NMP, N, N dimethylacetamide, N, N dimethylformamide, dimethylsulfoxide, hexamethylphosphorotriamide or the like as a main component, or a solvent containing ⁇ -petit mouth ratatone as a main component are used.
  • a photo-labile group or a photo-crosslinkable group it can be synthesized in the same manner.
  • a vinyl ether conjugate which becomes a skeleton of an acid-decomposable group by a nucleophilic addition reaction of phenol, or a carboxylic acid, dicarbonate, acid chloride or a mouth-forming conjugate having a skeleton of an acid-decomposable group can be synthesized by reacting
  • the photosensitive polyimide precursor of the present invention can be used as a positive type or negative type photosensitive polyimide precursor by appropriately using a method for imparting photosensitivity.
  • the method for imparting a positive type photosensitivity to the photosensitive polyimide precursor of the present invention includes:
  • a photosensitive dissolution inhibitor with a phenolic hydroxyl group-containing polyimide precursor
  • a polyimide precursor having a phenolic hydroxyl group is used as a polyimide precursor, and a photosensitive dissolution inhibitor is blended.
  • the amount of the phenolic hydroxyl group contained in the entire polyimide precursor is preferably 0.3 to 3 mol per 1 mol of the repeating unit represented by the general formula (1). If the amount of the phenolic hydroxyl group is too small, it will not show sufficient solubility in an alkaline developer! There is a possibility that good positive-type photosensitive function cannot be exhibited. If the amount of the phenolic hydroxyl group is too large, a good pattern with large film loss during development can be formed. I can't.
  • the photosensitive dissolution inhibitor is a substance that is hardly soluble in an aqueous alkali solution before exposure, acts as a dissolution inhibitor for the above-mentioned polyimide precursor, and is readily soluble in an aqueous alkali solution by exposure. It is a substance that acts as a dissolution promoter for the polyimide precursor.
  • Such substances are known in the field of positive photosensitive resins. For example, "Photopolymer Handbook” (edited by the Industrial Research Association), edited by Photopolymer Society, pages 56-58, page 241; The basics and applications of polymers ”(CMC Publishing), pages 85-87, pages 175-179, etc. are described together with the mechanism of action.
  • the photosensitive dissolution inhibitor suitable for the positive photosensitive polyimide precursor composition of the present invention includes, for example, o quinonediazide conjugates. Among them, compounds having a phenolic hydroxyl group are particularly preferable. It is preferable that the sulfonyl acid of naphthoquinonediazide is ester-bonded. Examples of the sulfonyl group of naphthoquinonediazide include a 4-naphthoquinonediazidosulfol group and a 5-naphthoquinonediazidosulfol group. Examples of the compound having a phenolic hydroxyl group include, for example, bisphenol A, bisphenol?
  • phenolic conjugates used for a novolak resin resist and the like such as trihydroxybenzophenone, may be used. Specific examples thereof include an ester bond obtained by reacting trihydroxybenzophenone with a 1,2-naphthoquinonediazido 5-sulfonic acid chloride compound. Such a diazokinoni dagger is
  • the photosensitive dissolution inhibitor is added in an amount of 0.01 to 50 parts by mass, preferably 0.1 to 40 parts by mass, based on 100 parts by mass of the polyimide precursor.
  • a polyimide precursor containing at least! Positive photosensitive polyimide precursor composition Get a polyimide precursor containing at least! Positive photosensitive polyimide precursor composition Get.
  • the amount of the carboxyl group and the phenolic hydroxyl group contained in the polyimide precursor is determined as follows: the total amount of the carboxyl group and the phenolic hydroxyl group contained in the entire polyimide precursor is 0 per mole of the repeating unit represented by the general formula (1). It is preferably from 3 to 3 mol. If the total amount of the carboxyl group and the phenolic hydroxyl group is too small, sufficient solubility in an alkali developing solution may not be exhibited, and a good positive photosensitive function may not be exhibited. is there. If the amount is too large, it is impossible to form a good pattern with a large film loss during development.
  • Examples of the photosensitive cholic acid-based compound include acid derivatives composed of cholic acid, deoxycholic acid, and Z or lithocholic acid, and p-nitroaryl methyl esters. Acid derivatives, fenacyl esterified acid derivatives, and benzoyl esterified acid derivatives are used.
  • O-troarylmethyl group of the acid derivative examples include an O-torobenzyl group, an o-toro-p-methinolebendinole group, an o-toro-p cyanobenzinole group, an o-toro-p-methoxybenzyl group, o -Toro-p-cyclobenzyl group, o, p-di-benzyl group, ⁇ -methyl-o-trobenzyl group, 2--2-tro-1naphthylmethyl group and the like.
  • ⁇ -troarylmethyl group of the acid derivative examples include, for example, ⁇ -trobenzyl group, ⁇ nitro-1m-methinolebenzinole group, ⁇ -methinole-1p-nitrobenzinole group, 4-nitoh 1 naphthylmethyl group And the like.
  • phenacyl group of the acid derivative examples include an ⁇ -methylphenacyl group, an ⁇ -methyl-4-trophenacyl group, an ex-phenylphenacyl group, a 4-methoxyphenacyl group, an ⁇ (2,4-dichlorophenyl) phenacyl group, ⁇ - ⁇ -butylphenacyl group, ⁇ - (3-methoxyphenyl) -4-chlorophenacyl group and the like.
  • benzoynyl group of the acid derivative examples include a 3′-methoxybenzoyl group, a 3,5, -dimethoxybenzoyl group, and a 2,2 ′, 3,3-tetramethoxybenzoyl group.
  • the acid derivative is preferably added in an amount of 2 to 100 parts by mass, more preferably 5 to 50 parts by mass, based on 100 parts by mass of the polyimide precursor.
  • the hydroxyl group contained in each of the cholic acid, deoxycholic acid and Z or lithocholic acid constituting the acid derivative may be partially or entirely protected with a substituent.
  • Preferred substituents for protecting the hydroxyl group include lower haloalkylcarboxy groups such as a lower alkylcarbol group such as a methylcarbonyl group and a trihalomethylcarbol group (for example, a trifluoromethylcarbon group). -Ru group and the like. Specifically, an acetyl group, a trifluoroacetyl group and the like are preferable.
  • a polyimide precursor having at least! / Of the main chain and side chain and a phenolic hydroxyl group is used as a polyimide precursor, and acid decomposition is performed by a photoacid generator and acid catalyzed reaction.
  • acid decomposition is performed by a photoacid generator and acid catalyzed reaction.
  • an acid-decomposable group having an acid-decomposable compound having an acid-decomposable group is contained and the acid-decomposable group is decomposed by an acid catalyst, the solubility of the acid-decomposable compound in the aqueous alkali solution of the polyimide precursor is increased.
  • a positive photosensitive polyimide precursor composition is obtained.
  • the phenolic hydroxyl group contained in the entire polyimide precursor is preferably 0.3 to 3 mol per 1 mol of the repeating unit represented by the general formula (1). If the amount of the phenolic hydroxyl group is too small, it may not show sufficient solubility in an alkali developing solution, and may not be able to exhibit a good positive photosensitive function. If the amount of the phenolic hydroxyl group is too large, it is impossible to form a good pattern with a large film loss during development.
  • the acid-decomposable conjugate inhibits the solubility of the polyimide precursor in alkali when the acid-decomposable group is not decomposed, and when the acid-decomposable group is decomposed by an acid catalyst,
  • the acid-decomposable compound promotes the solubility of the polyimide precursor in an alkali, and increases the solubility of the polyimide precursor in an aqueous alkali solution.
  • the photoacid generator generates an acid in the exposed portion by light irradiation, and the acid-decomposable group of the acid-decomposable compound is decomposed by an acid-catalyzed reaction of the acid generated by the acid generator,
  • the acid-decomposable compound promotes the solubility of the polyimide precursor in alkali, and increases the solubility of the polyimide precursor in an aqueous alkali solution.
  • the photoacid generator suitable for the present invention exhibits acidity when irradiated with light such as ultraviolet light.
  • Such a photoacid generator include diaryl sulfo-pam salts, triaryl sulfo-pam salts, dialkylphenacyl sulfo-pam salts, diaryl pho-pam salts, and aryl diazo-pam salts. Salts, aromatic tetracarboxylic esters, aromatic sulfonic esters, nitrobenzyl esters, aromatic sulfamides, naphthoquinonediazido 4-sulfonic esters and the like are used. If necessary, two or more of these compounds can be used in combination, or used in combination with other sensitizers.
  • the photoacid generator is added in an amount of 0.01 to 50 parts by mass, preferably 0.1 to 40 parts by mass, based on 100 parts by mass of the polyimide precursor.
  • the compound having an acid-decomposable group suitable for the present invention and having increased solubility in an aqueous alkali solution by an acid-catalyzed reaction is referred to as a compound which undergoes a decomposition reaction using an acid generated from a photoacid generator upon exposure as a catalyst, and Is a compound having a function of increasing the solubility of the compound in an aqueous alkaline solution.
  • alkali-soluble resins such as polyvinyl phenol, bisphenol ⁇ ⁇
  • polymers or compounds in which a hydroxyl group such as phenols, trisphenols, trisphenol alkanes, and tetrakisphenols are protected with an acid-decomposable group such as an acetal group or a ketal group In addition, a carboxyl group-containing acrylic such as polyacrylic acid or a copolymer of styrene and acrylic acid, or a styrene-acrylic polymer in which some or all of the carboxyl groups are protected with an acid-decomposable group can be used.
  • the acid-decomposable group decomposed by an acid-catalyzed reaction include, for example,
  • R independently represents an alkyl group having 1 to 3 carbon atoms.
  • the acid-decomposable conjugate is added in an amount of 2 to: LOO parts by mass, preferably 5 to 50 parts by mass, based on 100 parts by mass of the polyimide precursor.
  • the positive photosensitive polyimide precursor composition of the present invention has a benzoazole skeleton such as benzoxazole in the main chain, and has a carboxyl group and a phenolic hydroxyl group in at least one of the main chain and side chains.
  • a photoacid generator, and an acid derivative constituted by replacing a hydrogen atom of a carboxyl group of colic acid, deoxycholic acid, or lithocholic acid with an acid-decomposable group (Hereinafter sometimes simply referred to as “acid derivative”).
  • the acid-decomposable group is decomposed by an acid generated by the photoacid generator, but is decomposed by the acidity of the weakly acidic group. Is not substantially decomposed.
  • the acid derivative inhibits the solubility of the polyimide precursor in alkali when the acid-decomposable group is not decomposed, and when the acid derivative is decomposed by an acid catalyst, the cholic acid-based compound becomes acidic.
  • the solubility of the polyimide precursor in alkali is promoted, and the solubility of the polyimide precursor in an aqueous alkali solution is increased, so that good positive photosensitive characteristics can be obtained.
  • Examples of the acid-decomposable group of the acid derivative satisfying the above requirements include a tertiary alkyl group, a primary alkoxyethyl group, an alkylsilyl group and an alkoxymethyl group. These are known as protecting groups for carboxyl groups.
  • tertiary alkyl groups such as t-butyl group, t-amyl group, etc., isopropyl groups, 1-ethoxyl group, 1-butoxyl group, 1-alkoxyethyl group such as 1-isoproxyethyl group, 1 Alkoxymethyl groups such as 1-methoxymethyl group and 1-ethoxymethyl group, tetrahydrovinyl group, tetrahydrofuranyl group, trimethylsilyl group, benzyl group and the like are not limited thereto.
  • the most preferred V, groups are t-butyl and tetrahydrovinyl.
  • the acid derivative is preferably added in an amount of 2 to LOO parts by mass, more preferably 5 to 50 parts by mass, based on 100 parts by mass of the polyimide precursor.
  • the hydroxyl group of each of cholic acid, deoxycholic acid, and Z or lithocholic acid constituting the acid derivative may be partially or entirely protected with a substituent.
  • Preferred substituents for protecting the hydroxyl group are, for example, a lower alkylcarbon group such as a methylcarbonyl group ⁇ a trihalomethylcarbon group (for example, trifluoromethylcarbyl). Lower haloalkyl carboxy group, and the like. Specifically, an acetyl group, a trifluoroacetyl group and the like are preferable.
  • a polyimide precursor as a polyimide precursor, at least a part of the phenolic hydroxyl group and the carboxyl group of the main chain or the side chain has a hydrogen atom of an acid-decomposable group (a monovalent organic compound which can be decomposed by the action of an acid and converted to a hydroxyl group). ), which itself has reduced solubility in aqueous alkali solutions.
  • an acid-decomposable group a monovalent organic compound which can be decomposed by the action of an acid and converted to a hydroxyl group.
  • Examples of the acid-decomposable group satisfying the above requirements include a tertiary alkyl group, a primary alkoxyethyl group, an alkylsilyl group, an alkoxymethyl group, an acetal group, and a ketal group. These are known as protecting groups for alkali-soluble groups.
  • tertiary alkyl groups such as t-butyl group and tert-amyl group, isopropyloxy group, 1-ethoxyl group, 1-butoxyl group, 1-alkoxyethyl group such as 1-isoproxyethyl group, and 1-methoxymethyl group
  • alkoxymethyl group such as ethoxymethyl group, tetrahydrovinyl group, tetrahydrofuranyl group, trimethylsilyl group, benzyl group and the like are not limited to these.
  • the group is a tetrahydroviranyl group.
  • the photolabile group is not particularly limited as long as it is a group capable of leaving by irradiation with actinic rays such as ultraviolet rays.
  • Preferred examples thereof include a group having a p-troarylmethyl structure and o- A group having a nitroarylmethyl structure; a group having a phenacyl structure; and a group having a benzoyl structure.
  • the troarylmethyl group includes, for example, o--trobenzyl group, o-toro-p-methylbenzyl group, o-toro-p cyanobenzyl group, o nitro-1p-methoxybenzinole group, o nitro-1p Benzolipid group, o, p-dinit benzoyl group, ⁇ -methyl-o-trobenzyl group, 2-—tro-1 naphthylmethyl group and the like.
  • ⁇ troarylmethyl group examples include a ⁇ -trobenzinole group, a ⁇ nitro-1m-methinolebenzinole group, an ⁇ -methinole-1p-nitrobenzinole group, a 4-nitro-1-naphthylmethyl group, and the like.
  • phenacyl group examples include a methylphenacyl group, an ⁇ -methyl-4-trophenacyl group, an ⁇ -phenylphenacyl group, a 4-methoxyphenacyl group, an ⁇ - (2,4-dichlorophenyl) phenacyl group, an ⁇ - ⁇ -butylphenacyl group, ⁇ - (3-methoxyphenyl) 4-chlorophenacyl group and the like.
  • benzoyl group examples include 3,1-methoxybenzoyl group, 3,5,1-dimethoxybenzoyl group, 2,2 ′, 3,3′-tetramethoxybenzoyl group, and the like. Are mentioned.
  • the positive photosensitive polyimide precursor composition of the present invention has a photo-leaving group, particularly, ⁇ -troarylmethyl, in order to obtain high sensitivity and high resolution in pattern formation after development.
  • a photo-leaving group particularly, ⁇ -troarylmethyl
  • sensitizers suitable for the present invention include aromatic polycyclic hydrocarbons, for example, anthracene, anthraquinone, pyrene, perylene, bislanthrene, and the like. And the like, for example, aminoketone, ⁇ -substituted aminostyryl, xanthene, thioxanthone, polyaryl compound, polymethylene dye and the like.
  • preferred compounds include 2-chloroxanthone, Michler's ketone, 9,10-dimethoxyanthracene, 2-ethyl-9,10-dimethoxyanthracene, anthracene, 10-diethoxy-16,17-dimethoxyvilanthrene. These are used alone or in combination.
  • the sensitizer is preferably added in an amount of 0.1 to 10 parts by mass, more preferably 0.5 to 5 parts by mass, based on 100 parts by mass of the polyimide precursor.
  • Method of blending a photoinitiator with a polyimide precursor having a crosslinkable group introduced by a covalent bond a polyimide precursor containing a photocrosslinkable group with a covalent bond in a side chain is used as a polyimide precursor, and a photoinitiator is contained to obtain a negative photosensitive polyimide precursor composition. .
  • R 2 in the general formula (1) is an organic group containing a photocrosslinkable group. If the organic group containing the photocrosslinkable group is less than 20%, the photocrosslinkable group causes a cross-linking reaction and cannot effectively exhibit the negative function!
  • photo-crosslinkable group in the organic group containing a photocrosslinkable group R 2 represents a leaving group that is eliminated by light irradiation, but such dimeric I inhibit Ya copolymer radicals by light irradiation and the like
  • Particularly preferred specific groups include groups having an ethylenically unsaturated bond.
  • ethylenically unsaturated bond for example, Atariroiru group; methacryloyl group; methacryloyloxy Ruo carboxymethyl group, 3 - methacryloyloxy number of carbon atoms in the alkyl group such as Roy Ruo propyl group having 1 to 10 methacryloyloxy Ruo carboxyalkyl
  • Suitable groups include an atalyloyloxyalkyl group having an alkyl group having 1 to 10 carbon atoms, such as a 2-atalyloyloxyshethyl group or a 3-atariloyloxypropyl group.
  • Other examples include a butyl group and an aryl group.
  • the alcohol compound used for synthesizing an organic group containing a photocrosslinkable group through an ester bond is not particularly limited, but is preferably an unsaturated alcohol compound having 1 to 10 carbon atoms.
  • a hydroxyalkyl phthalate or a hydroxyalkyl methacrylate having an alkyl chain having 1 to 10 carbon atoms is particularly preferred.
  • hydroxyethyl atalylate, hydroxyethyl methacrylate, hydroxymethyl atalylate, Hydroxymethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate and the like can be mentioned.
  • an amine compound used for synthesizing an organic group containing a photocrosslinkable group through an amide bond for example, unsaturated amines such as aminoalkyl atalylate and aminoalkyl metharylate can be used.
  • the other monovalent organic group represented by R 2 is not particularly limited as long as the group does not have a photocrosslinkable group, for example, an alkyl group having 1 to 10 carbon atoms, an alkoxy group, Fe-, phenoxy-, and phenyl-having 6 to 10 carbon atoms, such as alkylamino groups. Examples include a mino group and a benzyl group.
  • the photoinitiator is not particularly restricted but includes, for example, benzoin methyl ether, benzoine ethyl ether, benzoin isopropyl ether, 2-tert-butylanthraquinone, 2-ethylanthraquinone, Michler's ketone, and acetophenone , Benzophenone, thioxanthone, 2,2-dimethoxy-12-phenylacetophenone, 1-hydroxycyclohexylphenylketone, benzyl, diphenylsulfide, phenanthraquinone, 2-isopropylthioxanthone, N-phenyl -Luglycine, N-Fu-lejetanolamine, 3-Furou 5-isoxazolone, 1-Phenylpropanedione-1- (o-ethoxycarbo-l) -oxime, o Methyl benzoylbenzoate, Dibenz
  • the photoinitiator is preferably blended in an amount of 0.1 to 30 parts by mass with respect to 100 parts by mass of the polyimide precursor, and a more preferred amount of the photoinitiator is 0.1 to 30 parts by mass of the polyimide precursor. It is 3 to 10 parts by mass.
  • a polyimide precursor having a carboxyl group is used as a polyimide precursor, and an amine compound having a photocrosslinkable group and a photoinitiator are contained to obtain a negative photosensitive polyimide precursor.
  • the amine compound containing a photocrosslinkable group forms a salt in the polyimide precursor by forming an ionic bond with a hydroxyl group (carboxyl group) contained at a ratio of 50 mol% or more of R 2 in the polyimide precursor. Form it.
  • the amine compound containing the photocrosslinkable group is preferably contained in an equimolar ratio with the carboxyl group in the polyimide precursor.
  • the amine compound having a photocrosslinkable group is not particularly limited as long as it contains a photocrosslinkable group. Examples thereof include dimethylaminoethyl acrylate, getylaminoethyl acrylate, and methacryl.
  • the photoinitiator is not particularly limited, but those similar to (7) are used.
  • the amount of the photoinitiator is preferably 0.1 to 30 parts by mass based on 100 parts by mass of the polyimide precursor as in (7), but the more preferable amount of the photoinitiator is 0.3 to 10 parts by mass with respect to 100 parts by mass.
  • the negative photosensitive polyimide precursor composition obtained by the methods (7) and (8) is further increased in order to obtain high sensitivity and high resolution in pattern formation after development.
  • It preferably contains a sensitizer.
  • the sensitizer include, but are not particularly limited to, aromatic monoazides such as azidoanthraquinone and azidobenzalacetophenone, coumarin compounds such as 3,3,1-carbonbis (getylaminocoumarin), and benzene Examples of compounds generally used in photosensitive resins, such as aromatic ketones such as anthrone and phenanthrenequinone.
  • the above-mentioned sensitizer is preferably added in an amount of 0.01 to 30% by mass, more preferably 0.1 to 20% by mass, based on the polyimide precursor. If it is out of this range, problems such as a decrease in sensitivity and a decrease in mechanical strength occur.
  • adhesion promotion is performed. Agents can be used.
  • adhesion promoter examples include organosilane conjugates, aluminum chelate conjugates, titanium chelate compounds, and silicon-containing polyamic acids. Further, other additives such as a plasticizer, a dye, and a polymerization inhibitor may be contained as long as the adhesiveness to the substrate, sensitivity, resolution, heat resistance, and the like are not impaired.
  • the photosensitive polyimide precursor composition of the present invention can be obtained in the form of a solution by dissolving it in a solvent.
  • Solvents include N-methyl 2-pyrrolidone (also called NMP), N-acetyl-1 —Pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, hexamethylphosphortriamide, ⁇ —butyrolataton, ethylene carbonate, propylene carbonate, sulfolane, dimethylimidazoline, diethylene glycol dimethyl ether And triethylene glycol dimethyl ether. These may be used alone or as a mixed system.
  • the photosensitive polyimide precursor composition of the present invention is applied to the surface of a substrate such as a silicon wafer, a metal substrate, or a ceramic substrate by dipping, spraying, screen printing, spin coating, or the like, and heated. Then, by removing most of the solvent, a coating film having no tackiness can be provided on the substrate surface.
  • the thickness of the coating film is not particularly limited, but is preferably 4 to 50 m.
  • the coating film is exposed to actinic radiation such as ultraviolet light, visible light, X-rays, and electron beams through a mask having a predetermined pattern, and after being exposed in a pattern, an unexposed portion of the film is appropriately imaged.
  • actinic radiation such as ultraviolet light, visible light, X-rays, and electron beams
  • a mask having a predetermined pattern By developing and removing with a liquid, a desired patterned film can be obtained.
  • Possible projectors and sources can be used.
  • inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and aqueous ammonia are used.
  • Primary amines such as, ethylamine, n-propylamine, secondary amines such as ethylamine, di-n-propylamine, tertiary amines such as triethylamine (also referred to as TEA), methylethylethylamine, diethanolamine
  • TEA triethylamine
  • methylethylethylamine diethanolamine
  • alcoholamines such as triethanolamine
  • quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide
  • alcohols such as methanol and ethanol.
  • a good solvent for example, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, etc.
  • a mixed solvent of the good solvent and the poor solvent for example, lower alcohol, ketones, water, aromatic hydrocarbon, etc.
  • Liquid developer and the like for example, lower alcohol, ketones, water, aromatic hydrocarbon, etc.
  • the film on which the pattern is formed After the development, if necessary, it is desirable to wash with water and then dry at about 100 ° C. to stabilize the pattern.
  • the heating temperature is preferably from 150 to 500 ° C, more preferably from 300 to 450 ° C. Heating time: 0.05 to: LO time is preferred.
  • the heat treatment is usually performed while increasing the temperature stepwise or continuously.
  • Methods for measuring the coefficient of thermal expansion include the TMA (thermomechanical analysis) method, direct reading method, optical interference method, push rod method, capacitance method, and SQUID method.
  • the film was also peeled off from the silicon wafer base material, and the expansion and contraction rate was measured by the TMA (thermo-mechanical analysis) method at a temperature rise rate of 10 ° CZ within the range of 25 to 200 ° C under the following conditions.
  • Residual film ratio (%) ⁇ (film thickness of unexposed area after development) / (film thickness of unexposed area before development) ⁇ X 10
  • a flask 1 equipped with a nitrogen inlet tube add 1 mol of pyromellitic anhydride (hereinafter referred to as “PMDA”), 2. 1 mol of 4-hydroxybenzyl alcohol and 2 L of NMP, and stir. 2. One mole of TEA was added dropwise over 30 minutes. After the addition, the mixture was allowed to stand for 3 hours in this state, and after completion of the reaction, 1 mol of 5-amino-2- (paminophenol) -benzoxoxazole (hereinafter also referred to as “p-DAMBO”) was removed.
  • PMDA pyromellitic anhydride
  • the obtained slurry-like mixture was poured into a large amount of methanol for washing, and the obtained solid resin was dried by a vacuum dryer for 12 hours.
  • Methods for measuring the coefficient of thermal expansion include the TMA (thermo-mechanical analysis) method, the direct reading method, the optical interference method, the push rod method, the capacitance method, the SQUID method, and the like. Peeled off from the silicon wafer and measured by TMA (Thermo-mechanical analysis) method at a temperature rise rate of 10 ° CZ in the range of 25 to 200 ° C. The resin has a low thermal expansion coefficient of 6 ppmZ ° C. Was confirmed.
  • TMA thermo-mechanical analysis
  • a photosensitive varnish was prepared in the same manner as in Example A1, except that the polyimide precursor of Synthesis Examples A2 to A7 was used instead of the polyimide precursor of Synthesis Example A1 used in Example A1. Evaluation was performed in the same manner as in Example A1.
  • a photosensitive varnish was prepared in the same manner as in Example A1, except that the polyimide precursor of Synthesis Examples A8 to All was used in place of the polyimide precursor of Synthesis Example A1 used in Example A1. Then, evaluation was performed in the same manner as in Example A1.
  • Examples A1 to A7 and Comparative Examples A1 to A4 are shown in Table 1 below. According to the results shown in Table 1, according to the present invention shown in Examples A1 to A7, as apparent from comparison of the thermal expansion coefficients of Examples A1 to A7 and Comparative Examples A1 to A4.
  • the polyimide obtained from the positive photosensitive imide precursor composition has a clearly reduced coefficient of thermal expansion as compared with conventional polyimides (Comparative Examples A1 to A4).
  • Examples A1 to A7 are both comparative examples A1 to A4 in both sensitivity and residual film ratio and developed appearance. It can be seen that the polyimide obtained by the positive photosensitive polyimide precursor according to the present invention is not deteriorated in comparison, and has excellent developability and sensitivity.
  • a polyimide precursor B6 was synthesized in the same manner as in Synthesis Example B1, except for the following changes. • 2,6- (4,4'-diaminodiphenyl) -benzo [1,2-d: 5,4-d '] instead of bisthiazole 2,6 -— (4,4,1-diaminodiphenyl) One benz [1,2-d: 5,4-d,] bisimidazole was used.
  • a polyimide precursor B10 was synthesized in the same manner as in Synthesis Example B1. • In flasks 1 and 2, ethyl alcohol was added instead of 4-hydroxybenzyl alcohol.
  • a quinone diazide conjugate (MG-300, manufactured by Toyo Gosei Co., Ltd.) is dissolved in NMP with 100 parts by mass of the polyimide precursor B1, and a varnish of the photosensitive polyimide precursor composition is dissolved.
  • the varnish was spin-coated on a silicon wafer with a spin coater, and dried at 100 ° C. for 5 minutes using a hot plate to obtain a 10-m coating film.
  • the coating film was irradiated with ultraviolet light using an ultra-high pressure mercury lamp through a mask (remaining pattern and punching pattern of 1 to 50 ⁇ m). Thereafter, development was carried out using a 2.38% aqueous solution of tetramethylammonium hydroxide.
  • the silicon wafer was rinsed with water and dried.
  • the result As a result, a good pattern was formed by irradiation at an exposure dose of 400 mjZcm 2 , and the residual film ratio was 92%.
  • the appearance after development was good.
  • heat treatment was performed at 200 ° C. for 30 minutes and then at 400 ° C. for 60 minutes in a nitrogen atmosphere.
  • the thermal expansion coefficient of the film after the heat treatment was 4 ppmZ ° C.
  • a varnish was prepared in the same manner as in Example B1, except that the polyimide precursors B2 to B10 were used instead of the polyimide precursor B1, and evaluated in the same manner as in Example B1.
  • a varnish was prepared in the same manner as in Example B1, except that the polyimide precursors B11 and B12 were used instead of the polyimide precursor B1, and evaluated in the same manner as in Example B1.
  • Table 2 summarizes the evaluation results of the examples and comparative examples.
  • the polyimide of the present invention which also provides the positive photosensitive polyimide precursor composition, has excellent thermal expansion coefficient power, quick developability and sensitivity.
  • Example C1 The same procedures as in Example C1 were repeated except that the polyimide precursors C2 to C6 of Synthesis Examples C2 to C6 were used instead of the polyimide precursor C1 of Synthesis Example C1 used in Example C1.
  • a varnish was prepared and evaluated in the same manner as in Example C1.
  • Example C1 the same as Example C1, except that the polyimide precursor C7 to C12 of Synthesis Examples C7 to C12 was used instead of the polyimide precursor C1 of Synthesis Example C1 used V, By operating, a photosensitive varnish was prepared and evaluated in the same manner as in Example C1.
  • Example 3 The evaluation results of Examples C1 to C6 and Comparative Examples C1 to C6 are shown in Table 3 below. According to the results shown in Table 3, as can be seen by comparing Examples C1 to C6 and Comparative Examples C1 to C6, the polyimide obtained from the positive photosensitive polyimide precursor composition of the present invention (Examples C1 to C6) C6) has a small thermal expansion coefficient and is excellent in developability and sensitivity.
  • a 300 ml three-necked flask was equipped with a mechanical stirrer, Dimroth and mantle heater.
  • 75 ml of water and 15 milliliters of cornoleic acid were added and stirred, and an aqueous solution of IN NaOH was added to dissolve cholic acid.
  • a solution prepared by dissolving 7.5 mmol of ⁇ - ⁇ trobenzyl bromide in 62.5 ml of ethanol was added in advance, and the mixture was heated under reflux for 3 hours.
  • ester D1 o--trobenzyl cholate
  • a photosensitive varnish was prepared in the same manner as in Example D1, except that the polyimide precursors of Synthesis Examples D2 to D8 were used in place of the polyimide precursor of Synthesis Example D1 used in Example Dl. Was prepared and evaluated in the same manner as in Example D1.
  • Example D6 a photosensitive varnish was prepared in the same manner as in Example D1, except that the ester bodies D2 to D3 were used instead of the ester body D1 used in Example D6. It was evaluated as follows.
  • Example D1 In the same manner as in Example D1, except that the polyimide precursor D9 to D10 of Synthesis Examples D9 to D10 was used in place of the polyimide precursor of Synthesis Example D1 used in Example Dl, the photosensitivity was changed. A varnish was prepared and evaluated in the same manner as in Example D1.
  • Example D1 The same operation as in Example D1 was performed, except that MG-300 (manufactured by Toyo Gosei Kogyo Co., Ltd.), which is a naphthoquinone diazide conjugate, was used in place of the ester D1 used in Example D1. To prepare a photosensitive varnish, and evaluated in the same manner as in Example D1.
  • Examples D1 to D10 and Comparative Examples D1 to D3 are shown in Table 4 below. According to the results shown in Table 4, the thermal expansion coefficients of Examples D1 to D10 and the thermal expansion coefficients of Comparative Examples D1 to D2 are clearly compared with each other according to the present invention shown in Examples D1 to D10.
  • the polyimide obtained from the positive photosensitive polyimide precursor composition has a clearly lower coefficient of thermal expansion than conventional polyimides (Comparative Examples D1 and D2). Also, comparing the sensitivity, the residual film ratio, and the appearance after development of Examples D1 to D10 and Comparative Example D3, it can be seen that V and deviation are excellent.
  • a 300-ml three-necked flask was equipped with a mechanical stirrer, Dimroth, and mantle heater.
  • a three-necked flask mix 75 ml of water and 15 mm of cornoleic acid, stir, and add The solution was added to dissolve the cholic acid.
  • a solution of 7.5 mmol of p-trobenzyl bromide in 200 ml of ethanol was added in advance, and the mixture was heated under reflux for 3 hours.
  • ester E1 p-trobenzyl cholic acid
  • esters E2 p dinitrobenzyl ester of cholic acid (ester E2), p-trobenzyl ester of deoxycholic acid (ester E3), and p-trobenzyl lithocholic acid (ester E4) were obtained.
  • Example El the photosensitive operation was performed in the same manner as in Example E1, except that the polyimide precursors E2 to E8 of Synthesis Examples E2 to E8 were used instead of the polyimide precursor of Synthesis Example E1 used previously.
  • a varnish was prepared and evaluated in the same manner as in Example E1.
  • Example E6 a photosensitive varnish was prepared in the same manner as in Example E1, except that the ester bodies E2 to E4 were used instead of the ester body E1 used in Example E6. And evaluated.
  • Photosensitivity was obtained in the same manner as in Example E1 except that the naphthoquinonediazide compound MG-300 (manufactured by Toyo Gosei Kogyo Co., Ltd.) was used in place of the ester form E1 used in Example E1.
  • a varnish was prepared and evaluated in the same manner as in Example E1.
  • Examples E1 to E11 and Comparative Examples E1 to E3 are shown in Table 5 below. According to the results shown in Table 5, the thermal expansion coefficients of Examples E1 to E10 and the thermal expansion coefficients of Comparative Examples E1 to E2 are clearly compared with each other according to the present invention shown in Examples E1 to E10.
  • the polyimide obtained from the positive photosensitive polyimide precursor composition has a clearly lower coefficient of thermal expansion than the conventional polyimides (Comparative Examples E1 to E2).
  • Examples E1 to E7 show Comparative Examples E1 to E4 in both sensitivity, residual film ratio, and developed appearance. It can be seen that the polyimide obtained from the positive photosensitive polyimide precursor according to the present invention is excellent in developability and sensitivity as compared with Comparative Example 1.
  • Example F1 the photosensitive operation was performed in the same manner as in Example F1, except that the polyimide precursors of Synthesis Examples F2 to F8 were used instead of the polyimide precursor of Synthesis Example F1 used in Example F1.
  • a varnish was prepared and evaluated in the same manner as in Example F1.
  • a photosensitive varnish was prepared in the same manner as in Example F1, except that the acid derivatives F2 to F3 were used instead of the acid derivative F1 used in Example F1, and the same procedure as in Example F1 was performed. Evaluation 7
  • Example F6 the same procedure as in Example F1 was carried out except that the polyimide precursors F9 to F10 of Synthesis Examples F9 to F10 were used instead of the polyimide precursor F1 of Synthesis Example F1 used in Example F6.
  • a varnish was prepared and evaluated in the same manner as in Example F1.
  • Photosensitivity was obtained in the same manner as in Example F1, except that the ester F1 used in Example F1 was replaced with MG-300 (manufactured by Toyo Gosei Kogyo Co., Ltd.), a naphthoquinonediazide compound. A varnish was prepared and evaluated in the same manner as in Example F1.
  • Examples F1 to F11 and Comparative Examples F1 to F3 are shown in Table 6 below. According to the results shown in Table 6, the thermal expansion coefficients of Examples F1 to F11 and the thermal expansion coefficients of Comparative Examples F1 to F2 are evident from comparison of the thermal expansion coefficients according to the present invention shown in Examples F1 to F11.
  • the polyimide obtained from the positive photosensitive polyimide precursor composition has a clearly lower coefficient of thermal expansion than the conventional polyimides (Comparative Examples F1 and F2). Further, comparing the sensitivity, the residual film ratio, and the appearance after development in Examples F1 to F11 and Comparative Example F3, it can be seen that all are excellent.
  • polyhydroxy compound having a tetrahydrovinyl group as an acid-decomposable group ⁇ , ⁇ , ⁇ ′-tris (4-hydroxyphenyl)
  • 1ethyl 4 to isopropylbenzene 4 20 parts by mass of a hydroxy benzyl group hexone (tetrahydr
  • the obtained photosensitive polyimide precursor composition was spin-coated on a silicon wafer using a spin coater, and dried at 100 ° C. for 5 minutes using a hot plate to obtain a 10-m coating film.
  • This coating film was irradiated with ultraviolet light through a mask (1-50 m remaining pattern and punching pattern) using an ultra-high pressure mercury lamp, and then heated at 120 ° C. for 2 minutes. Then, the film was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide, rinsed with water, and dried.
  • a good pattern was formed by irradiation at an exposure dose of 600 mjZcm 2 , and the residual film ratio was 90%.
  • the appearance after development was also good.
  • heat treatment was performed at 200 ° C for 30 minutes and at 400 ° C for 60 minutes. The coefficient of thermal expansion was 5 ppmZ ° C, and it was confirmed that the coefficient of thermal expansion was low.
  • a photosensitive varnish was prepared in the same manner as in Example G1, except that the polyimide precursor of Synthesis Example G2 to G7 was used instead of the polyimide precursor of Synthesis Example G1 used in Example G1. Evaluation was performed in the same manner as in Example G1.
  • a photosensitive varnish was prepared in the same manner as in Example G1 except that the polyimide precursor of Synthesis Examples G8 to G11 was used instead of the polyimide precursor of Synthesis Example G1 used in Example G1. It was prepared and evaluated in the same manner as in Example G1.
  • Examples G1 to G7 and Comparative Examples G1 to G4 are shown in Table 7 below. According to the results shown in Table 7, the thermal expansion coefficients of Examples G1 to G7 and the thermal expansion coefficients of Comparative Examples G1 to G4 are clearly compared with each other.
  • the polyimide obtained from the positive photosensitive polyimide precursor composition has a clearly lower coefficient of thermal expansion than conventional polyimides (Comparative Examples G1 to G4).
  • Examples G1 to G7 were both comparative examples G1 to G4. Compared to Compared to this, it can be seen that the polyimide obtained from the positive photosensitive polyimide precursor according to the present invention has excellent developability and sensitivity.
  • a 300-ml three-necked flask was equipped with a mechanical stirrer, Dimroth, and mantle heater.
  • a three-necked flask is charged with 100 ml of N, N dimethylformamide and 15 mmol of cholic acid, stirred at a rotation speed of 300 rpm, then, 15 mmol of 3,4 dihydro- ⁇ -pyran is added, and ⁇ toluenesulfonic acid is further dissolved in 15 mmol. Then, the mixture was stirred at room temperature.
  • a diacetylcholate derivative (acid derivative H2) having a carboxyl hydrogen atom substituted with a tetrahydroviranyl group
  • a deoxycholic acid derivative (acid derivative H3) having a carboxyl hydrogen atom substituted with a tetrahydroviranyl group
  • a lithocholic acid derivative (acid derivative H4) was obtained in which the hydrogen atom of the carboxyl group was replaced with a vinyl group.
  • the obtained varnish was spin-coated on a silicon wafer with a spin coater, and dried at 100 ° C. for 5 minutes using a hot plate to obtain a 10-m coating film.
  • This coating film was irradiated with ultraviolet light through a mask (1-50 ⁇ m residual pattern and punched pattern) using an ultrahigh pressure mercury lamp, and then heated at 120 ° C. for 2 minutes.
  • Synthesis Example used in Example HI A photosensitive varnish was prepared in the same manner as in Example HI, except that the polyimide precursors H2 to H8 of Synthesis Examples H2 to H8 were used instead of the polyimide precursor of HI. was prepared and evaluated in the same manner as in Example HI.
  • a photosensitive varnish was prepared in the same manner as in Example HI, except that the acid derivatives H2 to H4 were used in place of the ester HI used in Example H6. evaluated.
  • Example HI The same operation as in Example HI was performed except that the polyimide precursor of Synthesis Example H9 to H10 was used in place of the polyimide precursor of Synthesis Example HI used in Example HI.
  • a light varnish was prepared and evaluated in the same manner as in Example HI.
  • Example HI photosensitivity was obtained in the same manner as in Example HI, except that MG-300 (manufactured by Toyo Gosei Kogyo Co., Ltd.), a naphthoquinonediazide compound, was used instead of the acid derivative HI used in Example HI A varnish was prepared and evaluated in the same manner as in Example HI.
  • Examples H1 to H11 and Comparative Examples H1 to H3 are shown in Table 8 below. According to the results shown in Table 8, the thermal expansion coefficients of Examples HI to HI 1 and Comparative Examples HI to H2 are clearly shown by comparing the thermal expansion coefficients of Examples HI to H2.
  • the polyimide obtained from the positive photosensitive polyimide precursor composition according to the present invention has a clearly reduced coefficient of thermal expansion as compared with conventional polyimides (Comparative Examples H1 to H2). Also, comparing the sensitivity, the residual film ratio, and the appearance after development of Examples H1 to H11 and Comparative Example H3, it is found that V and deviation are excellent.
  • the film was developed with a 2.38% aqueous solution of tetramethylammonium hydroxide, rinsed with pure water, and dried. As a result, a good pattern was formed by irradiation at an exposure dose of 400 mjZcm 2 , and the residual film ratio was 94%. The appearance after development was also good. Further, heat treatment was performed at 200 ° C for 30 minutes and at 400 ° C for 60 minutes. The coefficient of thermal expansion was 5 ppmZ ° C, and it was confirmed that the resin had a low coefficient of thermal expansion.
  • a photosensitive varnish was prepared in the same manner as in Example II except that polyimide precursors 12 to 17 were used instead of the polyimide precursor II used in Example II, and the same as in Example II. Was evaluated.
  • Example II instead of the polyimide precursor II used above, the polyimide precursors I8 to I11 A photosensitive varnish was prepared in the same manner as in Example II, except that was used, and evaluated in the same manner as in Example II.
  • Diic anhydride (5 norbornene-2,3 dicarboxylic anhydride), 2.1 mol of 2-—trobenzyl alcohol and 1 L of NMP were mixed and stirred, and then 2.1 mol of TEA was added. Dropped over minutes. After the dropwise addition, the solution was allowed to stand for 3 hours in this state, and the flask 1 was mixed with the solution of flask 2 and stirred for 30 minutes. Next, 2.1 moles of diphenyl (2,3 dihydrothioxo-3-benzoxazole) phosphonate was added in five portions, and after the addition, condensation was carried out for 5 hours in that state. The obtained slurry-like mixture was poured into a large amount of methanol for washing, and the obtained solid resin was dried by a vacuum dryer for 12 hours.
  • the polyimide precursor of Synthesis System 1 was dissolved in water so that the varnish had a viscosity of about 50 voids to obtain a photosensitive varnish.
  • a varnish was spin-coated on the silicon wafer with a spin coater, and dried at 100 ° C. for 5 minutes using a hot plate to obtain a 5 m-thick coating film.
  • This coating film was irradiated with ultraviolet light using a super-high pressure mercury lamp through a mask (remaining pattern and punching pattern of 1 to 50 m). Then, pre-beta treatment at 80 ° C for 2 minutes on a hot plate After that, development was performed. Development Mizusani ⁇ tetramethylammonium 0/0 2. 39 - were developed with ⁇ beam aqueous solution.
  • the evaluation was performed in the same manner as in the system.
  • the photosensitive varnish was prepared in the same manner as in the system except that the polyimide precursor of 8 to jio was used instead of the polyimide precursor of the system used in the system. It was prepared and evaluated in the same manner as in Example 1.
  • the thermal expansion coefficient of the system was compared with the thermal expansion coefficient of the system iil to J7.
  • the polyimide obtained from the positive-type photosensitive polyimide precursor composition according to the present invention shown in the figure is a conventional polyimide (compared with a conventional polyimide).
  • the coefficient of thermal expansion is clearly reduced.
  • the sensitivity, residual film ratio and appearance after development in the system iil to J3 the sensitivity, the residual film ratio and the appearance after development were compared in the system iil to J7. It can be seen that the polyimide which is not deteriorated as compared with 1 to J3 and can obtain the positive photosensitive polyimide precursor power according to the present invention also has excellent developability and sensitivity.
  • Synthesis Example A polyimide varnish was obtained by dissolving the polyimide precursor of K1 in NMP so that the varnish had a viscosity of about 50 boise.
  • a varnish was spin-coated on the silicon wafer with a spin coater, and dried at 100 ° C. for 5 minutes using a hot plate to obtain a 5 m-thick coated film.
  • This coating was irradiated with ultraviolet rays using a super-high pressure mercury lamp through a mask (remaining pattern and punching pattern of 1 to 50 m). Thereafter, prebaking treatment was performed at 80 ° C for 2 minutes on a hot plate, and then development was performed. Development Mizusani ⁇ tetramethylammonium 0/0 2. 39 - were developed with ⁇ anhydrous solution.
  • a photosensitive varnish was prepared in the same manner as in Example K1, except that the polyimide precursor of Synthesis Examples # 3 to # 7 was used instead of the polyimide precursor of Synthesis Example K1 used in Example K1. The evaluation was performed in the same manner as in Example K1.
  • a photosensitive varnish was prepared in the same manner as in Example K1, except that the polyimide precursor of Synthesis Examples # 8 to # 9 was used instead of the polyimide precursor of Synthesis Example K1 used in Example K1. The evaluation was performed in the same manner as in Example K1.
  • Examples # 1 to # 7 and Comparative Examples # 1 and # 2 are shown in Table 11 below. According to the results shown in Table 11, the thermal expansion coefficients of Examples ⁇ 1 to ⁇ 7 and the thermal expansion coefficients of Comparative Examples ⁇ 1 to ⁇ 2 are clearly compared with each other.
  • the polyimide obtained from the poly-type photosensitive polyimide precursor composition has a clearly lower coefficient of thermal expansion than conventional polyimides (Comparative Examples # 1 and # 2). Further, comparing the sensitivity, the residual film ratio, and the appearance after development in Examples K1 to # 7 and Comparative Examples # 1 to # 2, the results of Examples # 1 to # 7 are the same as those of Comparative Examples # 1 to # 2 in both sensitivity, residual film ratio, and developed appearance. Is not deteriorated as compared with that of the positive photosensitive polyimide precursor according to the present invention. It can be seen that polyimide has excellent developability and sensitivity.
  • a photosensitive varnish was prepared in the same manner as in Example L1, except that the polyimide precursor of Synthesis Example L2 to L9 was used instead of the polyimide precursor of Synthesis Example 1 used in Example LI.
  • the evaluation was performed in the same manner as in Example L1.
  • a photosensitive varnish was prepared in the same manner as in Example L1, except that the polyimide precursor of Synthesis Examples L10 to L12 was used instead of the polyimide precursor of Synthesis Example L1 used in Example L1. The evaluation was performed in the same manner as in Example L1.
  • Examples L1 to L9 and Comparative Examples L1 to L3 are shown in Table 12 below. According to the results shown in Table 12, the thermal expansion coefficients of Examples L1 to L9 and the thermal expansion coefficients of Comparative Examples L1 to L3 are evident from comparison with each other according to the present invention shown in Examples L1 to L9. It is clear that the polyimide which can also obtain the negative photosensitive polyimide precursor composition has a lower thermal expansion coefficient than the conventional polyimides (Comparative Examples L1 to L3). In addition, comparing the sensitivity, the remaining film ratio and the appearance after development in Examples L1 to L9 and Comparative Examples L1 to L3, Examples L1 to L9 show Comparative Examples L1 to L9 in both sensitivity, remaining film ratio and developed appearance. It can be seen that the polyimide which is not deteriorated as compared with L3 and obtained the negative photosensitive polyimide precursor according to the present invention has excellent developability and sensitivity.
  • varnish 100 parts by weight of varnish 5 parts by weight of N-phenyljetanolamine, 1 part by weight of phenylpropanedione-2- (o-ethoxycarbol) oxime, 7 parts by weight of 7-ethylamino 0.5 parts by mass of benzoylcoumarin was added, and getylaminoethyl methacrylate was added so as to be 2 mol per 1 mol of the structural unit of the polyimide precursor. Further, the varnish was diluted with NMP so that the viscosity of the varnish became about 50 boise to obtain a photosensitive varnish.
  • the photosensitive varnish was spin-coated on a silicon wafer with a spin coater, and dried at 100 ° C.
  • This coating film was irradiated with ultraviolet light using an ultra-high pressure mercury lamp through a mask (remaining pattern and punching pattern of 1 to 50 m). Thereafter, prebaking treatment was performed on a hot plate at 80 ° C for 2 minutes, and then development was performed. Development was performed using a mixed solvent of NMP (70 parts) and methanol (30 parts). Then rinsed with isopropanol and dried. As a result, a good pattern is formed by irradiation of exposure 350 mjZcm 2
  • the residual film ratio was 92%.
  • the appearance after development was also good.
  • heat treatment was performed at 200 ° CZ for 30 minutes and 400 ° CZ60 minutes in a nitrogen atmosphere.
  • the coefficient of thermal expansion was 15 ppm / ° C.
  • Example M1 varnishes M10 to M12 were used instead of varnish M1. Except for the above, a photosensitive varnish was prepared in the same manner as in Example Ml, and evaluated in the same manner as in Example Ml.
  • Examples M1 to M9 and Comparative Examples M1 to M3 are shown in Table 13 below. According to the results shown in Table 13, the thermal expansion coefficients of Examples M1 to M9 and the thermal expansion of Comparative Examples M1 to M3 are shown. As apparent from the comparison with the coefficient, the polyimide obtained from the negative photosensitive polyimide precursor composition according to the present invention shown in Examples M1 to M9 is a conventional polyimide (Comparative Examples M1 to M9). Compared to M3), the coefficient of thermal expansion is clearly reduced.
  • Examples M1 to M9 show Comparative Examples M1 to M3 in both sensitivity, residual film ratio, and developed appearance. It can be seen that the polyimide obtained from the negative photosensitive polyimide precursor according to the present invention is excellent in developability and sensitivity as compared with that of Comparative Example 1.
  • NMP 3,3 ', 4,4, -biphenyltetracarboxylic dianhydride was used, and 2,6- (4,4'diaminodiphenyl) 1-benzo [1,2- d: 5,4-d '] Bisthiazole was replaced with 5-amino-2- (p-aminophenyl) -benzothiazole except that a polyimide precursor N6 was synthesized in the same manner as in Synthesis Example N4. did.
  • NMP 3,3 ', 4,4, -biphenyltetracarboxylic dianhydride was used, and 2,6- (4,4'diaminodiphenyl) 1-benzo [1,2- d: 5,4-d '] Bisthiazole was replaced by 5 amino-2- (paminophenyl) -benzimidazole, and a polyimide precursor N12 was synthesized in the same manner as in Synthesis Example N4.
  • the coating film was irradiated with ultraviolet light through a mask (1-50 ⁇ m residual pattern and punched pattern) using an ultra-high pressure mercury lamp. After that, pre-beta treatment at 80 ° C for 2 minutes on a hot plate After that, development was performed. Development was performed using a mixed solvent of NMP (70 parts) and methanol (30 parts). Next, the silicon wafer was rinsed with isopropanol and dried. As a result, a good pattern was formed by irradiation at an exposure dose of 450 mjZcm 2 , and the residual film ratio was 90%. The appearance after development was good. Further, heat treatment was performed at 200 ° C.
  • the film after the heat treatment was peeled off from the silicon wafer, and measured by TMA (thermomechanical analysis) at a temperature rising rate of 10 ° CZ in a range of 25 to 200 ° C to find that it was 5 ppm / ° C.
  • a photosensitive varnish was prepared in the same manner as in Example N1, except that the polyimide precursors N2 to N3 and N7 to N9 were used instead of the polyimide precursor N1, and evaluated in the same manner as in Example N1. .
  • the photosensitive varnish was spin-coated on a silicon wafer with a spin coater and dried at 100 ° C. for 5 minutes using a hot plate to obtain a 10-m coating film.
  • This coating film was irradiated with ultraviolet rays using a super-high pressure mercury lamp through a mask (remaining pattern and punching pattern of 1 to 50 m).
  • pre-beta treatment was performed at 80 ° C for 2 minutes on a hot plate, and then development was performed. Development was performed using a mixed solvent of NMP (70 parts) and methanol (30 parts).
  • the silicon wafer was rinsed with isopropanol and dried.
  • Examples N5 to N6, N10 to N12 A photosensitive varnish was prepared in the same manner as in Example N4, except that the polyimide precursors N5 to N6 and N10 to N12 were used instead of the polyimide precursor N4, and evaluated in the same manner as in Example N4. .
  • a photosensitive varnish was prepared in the same manner as in Example N1 except that the polyimide precursors N13 to N14 were used instead of the polyimide precursor N1, and evaluated in the same manner as in Example N1.
  • Table 14 summarizes the evaluation results of the examples and comparative examples.
  • the polyimide from which the negative photosensitive polyimide precursor composition of the present invention can also be obtained has excellent thermal expansion coefficient, excellent developability and sensitivity.
  • a 300 ml three-neck separable flask equipped with a stirrer and a condenser was charged with 100 ml of NMP and 13.86 g (60 mmol) of 5-amino-2- (4-aminocyclohexyl) -benzoxazole to form a suspension.
  • the flask was gently purged with nitrogen for 30 minutes.
  • the reaction system was cooled on ice (5.C or less), and 12.04 g (55. 205 mmol) of PMDA and 0.95 g (9.6 mmol) of maleic anhydride were added to the reaction system. Stir before the polyimide A precursor composition PI was obtained.
  • a polyimide precursor P9 was synthesized by the same operation as in Synthesis Example P6 except that 1,2,3,4-cyclohexanetetracarboxylic anhydride was used instead of NMP.
  • a polyimide precursor P10 was synthesized in the same manner as in Synthesis Example P6 except that 1,2,3,4-cyclobutanetetracarboxylic anhydride was used instead of NMP.
  • the coating film was passed through a mask (remaining pattern and punching pattern of 1 to 50 m) and a filter was attached to an ultra-high pressure mercury lamp. Then on a hot plate at 80 ° C for 2 minutes After performing the pre-beta treatment, development was performed. Development was performed using a mixed solvent of NMP (70 parts) and methanol (30 parts). Next, the silicon wafer was rinsed with isopropanol and dried. As a result, a good pattern was formed by irradiation with an exposure dose of 400 mjZcm 2 , and the residual film ratio was 90%. The appearance after development was good. Further, heat treatment was performed at 200 ° C.
  • the film after the heat treatment was peeled off from the silicon wafer, and measured by TMA (thermomechanical analysis) at a temperature rising rate of 10 ° CZ for a range of 25 to 200 ° C. and found to be 7 ppmZ ° C.
  • a photosensitive varnish was prepared in the same manner as in Example P1 except that the polyimide precursors P2 to P5 were used instead of the polyimide precursor PI, and evaluated in the same manner as in Example P1. (Example P6)
  • the photosensitive varnish was spin-coated on a silicon wafer with a spin coater and dried at 100 ° C. for 5 minutes using a hot plate to obtain a 10-m coating film.
  • the coating film was passed through a mask (1-50 m leaving pattern and punching pattern), a filter was attached to an ultra-high pressure mercury lamp, and irradiation was performed using only i-line. Thereafter, pre-beta treatment was performed at 80 ° C. for 2 minutes on a hot plate, and then development was performed. The development was performed using a mixed solvent of NMP (70 parts) and methanol (30 parts). Next, the silicon wafer was rinsed with isopropanol and dried.
  • the polyimide from which the negative photosensitive polyimide precursor composition of the present invention can be obtained also has excellent thermal expansion coefficient power, quick developability and sensitivity.
  • the photosensitive polyimide precursor composition of the present invention is used as an electrical or electronic insulating material in the production of semiconductor devices and the like, specifically, as a surface protective film for semiconductor elements such as ICs and LSIs, an interlayer insulating film, and the like. Used. In particular, it can be effectively used for those requiring fine pattern processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)

Abstract

【課題】 熱膨張係数が小さく、このため、基材との密着性の低下や基材の反り等が軽減され、電気特性、解像性などが劣化することがない樹脂膜を与えることができる感光性ポリイミド前駆体組成物を提供すること。 【解決手段】 本発明の感光性ポリイミド前駆体組成物は、主鎖にベンゾアゾール骨格を有し、且つ側鎖又は主鎖に特定の基を含有するポリイミド前駆体と必要に応じて感光剤を含有することを特徴とする。本発明の感光性ポリイミド前駆体組成物は、ポリイミド化後の熱膨張係数が小さいので、シリコンウエハなどの低熱膨張係数の基材上に塗布、熱環化した後に得られるポリイミドと基材との熱膨張係数の差が小さく、また、基材とポリイミドとの密着性が良く、かつ反りなどを軽減でき、また、現像性、感光性などを良好に維持でき、良好なパターンが得られる。

Description

明 細 書
感光性ポリイミド前駆体組成物
技術分野
[0001] 本発明は、半導体素子の信頼性向上のための半導体表面保護膜や層間絶縁膜の 形成に使用される感光性ポリイミド前駆体組成物に関する。
背景技術
[0002] 従来から、半導体素子の表面保護膜や層間絶縁膜の形成には、耐熱性、電気特 性、機械特性に優れたポリイミド榭脂が使用されてきた (例えば、非特許文献 1参照)
。また、近時、メモリやマイクロプロセッサーなどの主要デバイスの生産性向上に対応 するように半導体素子の高集積化と大型化とが進められ、また、情報機器用デバイス の薄型パッケージングに対応するように封止榭脂パッケージの薄型化と小型化とが 進められ、さらに、半田リフローによる表面実装への移行が進められるようになつてき ている。これら事情に伴って、これらに使用される表面保護膜や層間絶縁膜に対して も耐熱サイクル性、耐熱ショック性などの大幅な性能向上が要求されてきており、より 高性能なポリイミド榭脂が望まれて!/、る。
また、回路パターン製造工程を簡略ィ匕するために、感光性ポリイミドが使用すること が注目されてきている。
[0003] これら用途にぉ 、て感光性ポリイミドを使用する場合、これまで、露光部が硬化する ネガ型が知られている。これらネガ型では、現像工程での安全性に問題があり、また 、現像工程にて環境上好ましくない NMPなどの溶剤を使用するので、近年、従来の ネガ型に代わって、アルカリ水溶液で現像できるポジ型感光性ポリイミド榭脂も開発さ れている(例えば、非特許文献 2参照)。このポジ型感光性ポリイミド榭脂は、高い耐 熱性、優れた電気特性、高い解像性を持っているため、特に注目されている。また、 感光性ポリイミド榭脂に代わって、耐湿性に優れた感光性ポリべンゾォキサゾール榭 脂も開発されてきた。
[0004] しかし、従来のポリイミド榭脂やポリベンゾォキサゾール榭脂は、金属や無機材料と 比べると、熱膨張係数 (以下、線膨張係数ともいう)が大きいという問題があった。 榭脂の熱膨張係数が大きい場合、金属や無機材料の基材に塗布すると、熱膨張 係数の差に起因する熱応力によって、膜にクラックが発生したり、膜が基材から剥離 したり、基板に反りが発生したり、基材が破壊されたり等が起こる。さらに、基材に大き な反りを生じた状態で、パターユングのためのリソグラフィーを行うと、パターユングの 解像度が悪くなり問題となる。この問題は、特に、大型の基材を使用した場合や、基 材上に厚く塗布する場合に大きくなる。そのため、熱膨張係数の小さいポジ型感光 性榭脂の開発が強く望まれている。特にシリコンウェハは基材として重要である力 熱 膨張係数が 3ppmZ°Cと非常に小さぐ榭脂との熱膨張差力も生じるウェハの反りは 、製造工程での不良品の発生、搬送不良、割れの要因、あるいはデバイス特性への 影響を考えると好ましくない。
[0005] 一般にポリイミドの熱膨張係数を小さくするためには、化学構造上、ポリイミド主鎖が 剛直で直線状の棒状構造を有していることが必要であると言われている。そして、こ のような剛直で直線状の棒状構造を形成するためには、環構造のパラ結合が特に重 要である。このようなパラ結合を有するポリイミドでは、ポリイミド骨格の面内配向度が 大きくなり、そのために、剛直で直線状の棒状構造を有するようになると考えられるか らである。
[0006] し力しながら、ポリイミドが剛直すぎると、膜の強靭性が失われて実用価値がなくな つてしまう。また、剛直であるが故に、ポリイミド骨格の共役が長くなり、分子内電荷移 動や分子間電荷移動に基づく光吸収が大きくなつて、着色が大きくなる。そのため、 感光性ポリイミド前駆体組成物膜の短波長での紫外線の透過率が小さくなつて、光 感度が低くなるという問題が起こる場合がある。
特許文献 1:特開昭 60— 37550号公報
特許文献 2:特開平 4— 204945号公報
特許文献 3:特開平 4— 120171号公報
特許文献 4:特開平 5 - 113668号公報
特許文献 5 :特開 2000— 187324号公報
特許文献 6 :特開 2001— 214055号公報
非特許文献 1 :「最新ポリイミド〜基礎と応用」(ェヌ 'ティー'エス) p. 327〜338 非特許文献 2 :「電子部品用高分子材料の最新動向 III」(住べテクノサーチ) p. 88〜 119
発明の開示
発明が解決しょうとする課題
[0007] 本発明は、従来の感光性榭脂の熱膨張係数が大きいことに起因する、基材との密 着性の低下や基材の反りなどの問題を軽減するためになされたものであり、熱膨張 係数が小さぐこのために、基材との密着性の低下や基材の反り等が軽減され、電気 特性、解像性などが劣化することがな ヽ榭脂膜を与えることができる感光性榭脂組成 物を提供することを目的としたものである。本発明は、更に膜の強靭性を維持しつつ 、紫外線領域での光感度が高 ヽ感光性ポリイミド前駆体組成物を提供することを目 的としたものである。
課題を解決するための手段
[0008] 本発明者らは鋭意検討した結果、主鎖にベンゾァゾール骨格を有し、且つ側鎖又 は主鎖に特定の基を含有するポリイミド前駆体と必要に応じて感光剤を含有すること を特徴とする感光性ポリイミド前駆体組成物が前記目的を達成できることを見出し、 本発明を完成させた。
すなわち本発明は、下記の構成力もなる。
(1) 一般式(1)で示されるポリイミド前駆体と、
[化 3]
CO— RLCONH— RJ— NH -
Figure imgf000005_0001
I つ
(COR )2
(一般式(1)中、 R1はフエノール性水酸基を有していてもよい 4価芳香族環又は脂肪 族環を有する 4価の有機基を示し、 R2は水酸基、フエノール性水酸基を有する有機 基、酸の作用で分解し水酸基に変換し得る一価の有機基、光脱離性基又はその他 の 1価の有機基を示し、 R3は一般式(2)〜(5)で示される芳香族ベンゾァゾール残 基を表す。 ) 、 X
Figure imgf000006_0001
(一般式 (2)〜(5)中、 Xは酸素原子、硫黄原子、又は NR8 (式中 R8は水素原子、ァ ルキル基又はフエ二ル基を示す)を示し、
Figure imgf000006_0002
R。は、それぞれ独立して、フエノール 性水酸基又は酸の作用で分解し水酸基に変換し得る一価の有機基を有していても よい単環又は複数の環力 構成される芳香族環基又は複素環基を表し、 R5、 R7はそ れぞれ独立して、フエノール性水酸基又は酸の作用で分解し水酸基に変換し得る一 価の有機基を有して!/、てもよ 、単環又は複数の環から構成される芳香族環基、複素 環基又は脂肪族環基を示す。 )
必要に応じて感光剤を含有することを特徴とする感光性ポリイミド前駆体組成物。
(2) 感光剤が、感光性溶解阻害剤であることを特徴とする請求項 1に記載のポジ型 感光性ポリイミド前駆体組成物。
(3) 感光剤が、コール酸、デォキシコール酸、および Z又はリトコール酸を o— -トロ ァリールメチルエステルイ匕して構成される酸誘導体であることを特徴とする請求項 1に 記載のポジ型感光性ポリイミド前駆体組成物。
(4) 感光剤が、コール酸、デォキシコール酸、および Z又はリトコール酸を P— -トロ ァリールメチルエステルイ匕して構成される酸誘導体であり、更に増感剤を含有するこ とを特徴とする請求項 1に記載のポジ型感光性榭脂組成物。
(5) 感光剤が、コール酸、デォキシコール酸、および Z又はリトコール酸のカルボキ シル基の水素原子をフ ナシル構造を有する基およびべンゾィニル構造を有する基 から選択される光脱離性基により置換して構成される酸誘導体から選ばれる少なくと も一種であることを特徴とする請求項 1に記載のポジ型感光性ポリイミド前駆体組成 物。
(6) ポリイミド前駆体が有するカルボキシル基とフ ノール性水酸基との合計量が、 一般式(1)で示されるポリイミド前駆体繰り返し単位 1モルあたり 0. 3〜3モルである 請求項 3〜7いずれかに記載のポジ型感光性ポリイミド前駆体組成物。
(7)
R2および R4、 R6、 R5、 R7の置換基の少なくとも一部が酸の作用で分解し水酸基 に変換し得る一価の有機基であり、光酸発生剤とを含有することを特徴とする請求項
1に記載のポジ型感光性ポリイミド前駆体組成物。
(8)
ポリイミド前駆体全体に含まれる酸の作用で分解し水酸基に変換し得る一価の有機 基の合計量が、繰り返し単位 1モルあたり 0. 5〜3モルである、請求項 7に記載のポ ジ型感光性ポリイミド前駆体組成物。
(9) 感光剤が、光酸発生剤と、酸触媒反応により分解する酸分解性基を有する酸 分解性ィ匕合物とを含有し、該酸分解性化合物は、酸分解性基が分解していないとき には該ポリイミド前駆体をアルカリに対して不溶ィ匕しており、該酸分解性基が酸触媒 により分解すると、該酸分解性ィ匕合物が該ポリイミド前駆体をアルカリに対して溶解促 進し、該ポリイミド前駆体のアルカリ水溶液に対する溶解度が増加することを特徴とす る請求項 1に記載のポジ型感光性ポリイミド前駆体組成物。
do) 感光剤が、コール酸、デォキシコール酸、および Z又はリトコール酸のカルボ キシル基の水素原子を酸分解性基により置換することにより構成された酸誘導体で あり、更に光酸発生剤を含有し、該酸分解性基は該光酸発生剤が発生する酸によつ て分解するが、該弱酸性基の酸性によっては分解しないことを特徴とする請求項 1〖こ 記載のポジ型感光性ポリイミド前駆体組成物。
(11) R2の少なくとも一部が光脱離性基であることを特徴とする請求項 1に記載のポ ジ型感光性ポリイミド前駆体組成物。
(12) 光脱離基が、 p— -トロアリールメチル構造を有する基、 o— -トロアリールメチ ル構造を有する基、フ ナシル構造を有する基およびべンゾィニル構造を有する基 から選択される基である請求項 11に記載のポジ型感光性ポリイミド前駆体組成物。
(13) R2の 20%以上が光脱離性基である請求項 11又は 12のいずれかに記載のポ ジ型感光性ポリイミド前駆体組成物。
(14) ポリイミド前駆体が側鎖に光架橋性基を有し、更に光開始剤を含有することを 特徴とする請求項 1に記載のネガ型感光性ポリイミド前駆体組成物。
(15) R2のうちの 20〜: LOOモル%が光架橋性基である請求項 14に記載のネガ型 感光性ポリイミド前駆体組成物。
(16) 更に増感剤を含有する請求項 14又は 15いずれかに記載のネガ型感光性ポ リイミド前駆体組成物。
(17) 前記ポリイミド前駆体の少なくとも一方の末端は、芳香族ジァミン又は二酸無 水物と結合する結合性基を有する連鎖延長剤によって該結合性基を介して封鎖され ており、該連鎖延長剤は、芳香族ジァミンと二酸無水物とからポリイミド前駆体を形成 するための条件とは異なる条件下で該ポリイミド前駆体同士を該連鎖延長剤を介して 連結する連結性基をさらに有して ヽる、請求項 1〜 16の ヽずれかに記載のポジ型感 光性ポリイミド前駆体組成物。
発明の効果
[0009] 本発明の感光性ポリイミド前駆体組成物は、シリコンウェハなどの低熱膨張係数の 基材上に塗布、熱環化した後に得られるポリイミドと基材との熱膨張係数の差が小さ ぐまた、ポリイミドと基材との密着性が良ぐかつ反りなどを軽減でき、また、現像性、 感光性などを良好に維持でき、これらの結果として、良好なパターンが得られる。また 、主鎖構造中に非芳香族性の環構造を導入することによりポリイミド前駆体の短波長 での紫外線の透過率を高くすることにより、感度が高ぐパターン形成性も良好であり 、かつ剛直性が過度になることがないので形成される膜の強靭性を維持することがで きる。
発明を実施するための最良の形態
[0010] 以下、本発明を詳細に説明する。
本発明の感光性ポリイミド前駆体は、一般式(1)で表される構造単位を主成分とし ており、加熱するか、又は適当な触媒を添加することにより、イミド環を有する榭脂と なり得るものであり、イミド環形成により耐熱性に優れたポリイミドが形成される。
[化 5]
Figure imgf000009_0001
[0012] (一般式(1)中、 R1はフ ノール性水酸基を有していてもよい 4価芳香族環又は脂肪 族環を有する 4価の有機基を示し、 R2は水酸基、フエノール性水酸基を有する有機 基、酸の作用で分解し水素に変換し得る一価の有機基、光脱離性基又はその他の 1 価の有機基を示し、 R3は一般式 (2)〜(5)で示される芳香族べンゾァゾール残基を 表す。)
[0013] 上記一般式(1)中、 R1は芳香族環又は脂肪族環を有する 4価の有機基であれば 特に限定されないが、ポリイミドに耐熱性を持たせるために、芳香族環基又は芳香族 複素環基を含有する炭素数 6〜30の基であることが好ま 、。 R1の好ま 、具体例 としては、ピロメリット酸、ナフタレンテトラカルボン酸、 3, 3' , 4, 4'—ビフエ-ルテトラ カルボン酸、 3, 3,, 4, 4,—ジフエ-ルエーテルテ卜ラカルボン酸、 3, 3,, 4, 4, - ジフエニルへキサフルォロプロパンテトラカルボン酸、 3, 3' , 4, 4'ージフエニルスル ホンテトラカルボン酸、 3, 3' , 4, 4'一べンゾフエノンテトラカルボン酸などといったテ トラカルボン酸由来の構造などが挙げられる。
[0014] 得られるポリイミドに透明性を持たせるためには、脂肪族環を含有することが好まし ぐ炭素数は 6〜30が好ましい。この場合、好ましくは、 1, 2, 3, 4 シクロブタンテト ラカルボン酸二無水物、 1, 2 ジメチルー 1, 2, 3, 4ーシクロブタンテトラカルボン酸 二無水物、 1, 2, 3, 4ーテトラメチルー 1, 2, 3, 4ーシクロブタンテトラカルボン酸二 無水物、 1, 2, 34 シクロペンタンテトラカルボン酸二無水物、 1, 2, 4, 5 シクロへ キサンテトラカルボン酸二無水物、 3, 4 ジカルボキシ 1, 2, 3, 4ーテトラヒドロー 1 ナフタレンコハク酸無水物、 2, 3, 5 トリカルボキシーシクロペンタン酢酸二無 水物、ビシクロ [2, 2, 2]オタトー 7 ェンー 2, 3, 5, 6—テトラカルボン酸二無水物、 2, 3, 4, 5—テトラヒドロフランテトラカルボン酸二無水物、 3, 5, 6 トリカルボキシー 2—ノルボルナン酢酸二無水物などが挙げられる。
[0015] 上記一般式(1)式中、 R2は、水酸基、フ ノール性水酸基を有する有機基、酸の作 用で分解し水素に変換し得る一価の有機基、光脱離性基又はその他の 1価の有機 基であり、ポリイミド前駆体構造中にエステル結合により導入することがでる。
[0016] 本発明の感光性ポリイミド前駆体は、イミド化して得られるポリイミド榭脂の熱膨張係 数が小さくシリコンウェハなどの金属や無機物力 なる基材の熱膨張係数に近いとい う特徴を有している。
一般にポリイミドの熱膨張係数を小さくするためには、化学構造上、ポリイミド主鎖が 剛直で直線状の棒状構造を有していることが必要であると考えられる。そして、このよ うな剛直で直線状の棒状構造を形成するためには、環構造のパラ結合が特に重要 である。このようなパラ結合を有する環構造のポリイミドでは、ポリイミド骨格の面内配 向度が大きくなり、そのために、剛直で直線状の棒状構造を有するようになると考えら れる。
[0017] 本発明の感光性ポリイミド前駆体は、このようなポリイミドの熱膨張係数を小さくする ために適したィ匕学構造として、上記一般式(1)において、 R3が、以下の一般式(2)〜 (5)の!、ずれかで表されるベンゾァゾール骨格を有して!/、る。
[0018] [化 6]
Figure imgf000010_0001
[0019] (一般式 (2)〜(5)中、 Xは酸素原子、硫黄原子、又は NR8 (式中 R8は水素原子、ァ ルキル基又はフエ-ル基を示す)を示し、 R4、 R6は、それぞれ独立して、フエノール 性水酸基又は酸の作用で分解し水酸基に変換し得る一価の有機基を有していても よい単環又は複数の環力 構成される芳香族環基又は複素環基を表し、 R5、 R7はそ れぞれ独立して、フエノール性水酸基又は酸の作用で分解し水酸基に変換し得る一 価の有機基を有して!/、てもよ 、単環又は複数の環から構成される芳香族環基、複素 環基又は脂肪族環基を示す。 )
[0020] 式(1)の R3が参照する式(2)〜(5)につ 、て更に説明する。
式 (2)〜 (5)の R4が示す芳香族基又は複素環基は、芳香族化合物又は複素環化 合物力も 4つの水素を除 、たものに相当する 4価の基である。式(2)〜(5)の R4の具 体例としては、
[0021] [化 7]
Figure imgf000011_0001
(式中、 X4は、酸素原子、硫黄原子、 SO、 S = 0、 CH、 C = 0、へキサフルォロイソ
2 2
プロピリデン又はイソプロピリデンである。 )などが挙げられる。
[0022] 式 (2)〜 (5)の R5が示す芳香族基、複素環基又は脂環族基は、芳香族化合物、複 素環化合物又は脂環族化合物から 2つの水素を除いたものに相当する 2価の基であ る。式(2)〜(5)の R5の具体例としては、
[0023] [化 8]
Figure imgf000011_0002
(式中、 X5は、酸素原子、硫黄原子、 SO、 S = 0、 CH、 C = 0、へキサフルォロイソ
2 2
プロピリデン又はイソプロピリデンである。)、もしくは、シクロへキシレン基などが挙げ られる。
[0024] 式 (2)〜 (5)の R6が示す芳香族基又は複素環基は、芳香族化合物又は複素環化 合物から 3つの水素を除 、たものに相当する 3価の基である。式(2)〜(5)の R6の具 体例としては、
[0025] [化 9]
Figure imgf000012_0001
(式中、 X6は、酸素原子、硫黄原子、 SO 、 S = 0、 CH 、 C = 0、へキサフルォロイソ
2 2
プロピリデン又はイソプロピリデンである。 )などが挙げられる。
[0026] 式 (2)〜 (5)の R7が示す芳香族基、複素環基又は脂環族基は、芳香族化合物、複 素環化合物又は脂環族化合物から 2つの水素を除いたものに相当する 2価の基であ る。式(2)〜(5)の R7の具体例としては、
[0027] [化 10]
Figure imgf000012_0002
たは
(式中、 X7は、酸素原子、硫黄原子、 SO 、 S = 0、 CH 、 C = 0、へキサフルォロイソ
2 2
プロピリデン又はイソプロピリデンである。)、もしくは、シクロへキシレン基などが挙げ られる。
[0028] 式(2)〜(5)の Xが参照する NR8の、 R8が示すアルキル基は、炭素数が好ましくは 1〜 10個、より好ましくは 1〜6個のアルキル基である。
[0029] 式(1)の R3が示す有機基は、好ましくはべンゾォキサゾール残基、ベンゾチアゾー ル残基又はべンズイミダゾール残基であり、特にべンゾォキサゾール残基が好まし ヽ 。好ましいベンゾォキサゾール残基の具体例として、 2, 6—(4, 4,一ジアミノジフエ- ル)一ベンゾ [1, 2— d: 5, 4— d,]ビスォキサゾール、 5 アミノー 2— (p ァミノフエ -ル)—ベンゾォキサゾール、 5 アミノー 2— (m—ァミノフエ-ル)一ベンゾォキサゾ ール、 2, 2, 一 p フエ-レンビス一(5 ァミノベンゾォキサゾール)、 2, 6— (4, 4, —ジアミノジシクロへキシル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスォキサゾール、 5 ァ ミノ一 2— (4—アミノシクロへキシル)一ベンゾォキサゾール、 5—アミノー 2— (3—ァ ミノシクロへキシル)一ベンゾォキサゾール、 2, 2'— (1, 4 シクロへキシレン)ビス( 5 ァミノべンゾォキサゾール)などのジァミノべンゾォキサゾール残基が挙げられる。 好ましいベンゾチアゾール残基の具体例として、 2, 6—(4, 4'ージアミノジフエ-ル) —ベンゾ [1, 2— d: 5, 4— d,]ビスチアゾール、 5 アミノー 2— (p ァミノフエ-ル) —ベンゾチアゾール、 5 ァミノ一 2— (m—ァミノフエ-ル)一ベンゾチアゾール、 2, 2,一p—フエ-レンビス(5—ァミノべンゾチアゾーノレ)、 2, 6— (4, 4,ージアミノジシ クロへキシル)一ベンゾ [1, 2— d: 5, 4— d,]ビスチアゾール、 5—アミノー 2— (4—ァ ミノシクロへキシル)一ベンゾチアゾール、 5—アミノー 2— (3—アミノシクロへキシル) —ベンゾチアゾール、 2, 2' - (1, 4—シクロへキシレン)ビス(5—ァミノべンゾチアゾ ール)などのジァミノべンゾォキサゾール残基が挙げられる。好まし 、ベンズイミダゾ ール残基の具体例として、 2, 6- (4, 4,ージアミノジフエ-ル)一べンゾ [1, 2-d: 5 , 4— d,]ビスイミダゾール、 5—アミノー 2— (p—ァミノフエ-ル)一ベンズイミダゾー ル、 5—ァミノ一 2— (m—ァミノフエ-ル)一ベンズイミダゾール、 2, 2,一 p—フエ-レ ンビス(5—ァミノべンズイミダゾール)、 2, 6— (4, 4,一ジアミノジシクロへキシル) - ベンゾ [1, 2-d: 5, 4— d,]ビスイミダゾール、 5—アミノー 2— (4—アミノシクロへキ シル)一べンズイミダゾール、 5—ァミノ一 2— (3—アミノシクロへキシル)一ベンズイミ ダゾール、 2, 2' - (1, 4—シクロへキシレン)ビス(5—ァミノべンズイミダゾール)など のジァミノべンズイミダゾール残基が挙げられる力 これらに限定されな 、。
[0030] また、基板との接着性を向上させるために、耐熱性を低下させな!/ヽ範囲内で R1 R3 にシロキサン構造を有する脂肪族の基を共重合しても良い。具体的には、ジァミン成 分として、ビス(3—ァミノプロピル)テトラメチルジシロキサンなどを 1〜10モル%共重 合したものなどが挙げられる。
[0031] また、本発明においては、芳香族ジァミン又は二酸無水物と結合する結合性基と、 芳香族ジァミンと二酸無水物とからポリイミド前駆体を形成するための条件とは異なる 条件で該ポリイミド前駆体同士を連結する連結性基との二種類の官能基を有する連 鎖延長剤によって、ポリイミド前駆体の少なくとも一方の末端が結合性基を介して封 鎖されていることが好ましい。ポリイミド前駆体がこのような連鎖延長剤によって封鎖さ れていると、芳香族ジァミンと二酸無水物とからポリイミド前駆体を形成した後に、連 結性基を用いて、前駆体形成とは異なる条件で、ポリイミド前駆体の分子量を増大さ せることができる。この分子量の増大は、添加する連鎖延長剤の量を調整することに よって任意に制御することができる。
[0032] 本発明において使用される連鎖延長剤は、特に限定はないが、例えば、アルケニ ル基、アルキニル基、シクロブテン環を含有する二酸無水物又は 1級又は 2級のアミ ンが挙げられる。具体的には、無水マレイン酸、 5—ノルボルネン—2, 3—ジカルボ ン酸無水物、ビュルフタル酸無水物、 1, 2 ジメチル無水マレイン酸、 4ーシクロへ キセン— 1, 2 ジカルボン酸無水物、 1, 2, 3, 6—テトラドロ無水フタル酸、フエ-ル ェチュルァ-リン、ェチュルァ-リン、 3- (3—フエ-ルェチユルフェノキシ)ァ-リン 、プロパルギルァミン、ァミノベンゾシクロブテンなどが挙げられる。一般的に、添加さ れる連鎖延長剤の量が多くなると、ポリイミド前駆体の分子量が減少し、それゆえそ れを含む溶液の粘度が減少する。また、塗布方法により最適な溶液粘度が存在する 。したがって、望ましい分子量および溶液粘度が得られるように考慮して、連鎖延長 剤の濃度ど塗布方法とが選択される。
本発明の感光性ポリイミド前駆体は、テトラカルボン酸二無水物とジァミノべンゾァ ゾールとを反応させる公知の方法により合成される。フエノール性水酸基を導入する 場合には、主鎖にフエノール性水酸基を有するようにテトラカルボン酸二無水物およ びジァミノベンゾァゾールの少なくとも 、ずれかにフエノール性水酸基を含有するも のを選択する力 又は側鎖にフ ノール性水酸基を有するように、フエノール性水酸 基を R2として導入する。フエノール性水酸基を R2として導入する場合、アルコールィ匕 合物又はアミンィ匕合物を反応させる方法が公知である。テトラカルボン酸二無水物と フエノール性水酸基含有アルコールィ匕合物又はアミンィ匕合物を反応させて、テトラ力 ルボン酸ジエステル又はテトラカルボン酸ジアミドを合成し、ついで、該ジエステル又 はジアミドを塩ィ匕チォ-ルなどと反応させて、テトラカルボン酸ジエステル塩ィ匕物又は ジアミド塩ィ匕物を合成する。その後、得られた該塩化物を有機溶媒に溶解させて、ピ リジンなどの脱ハロゲンィ匕水素剤を含有した有機溶剤に溶解したジァミノベンゾォキ サゾールと反応させる力 ジシクロへキシルカルボジイミドゃジフエ-ル(2, 3 ジヒド ローチォキソ 3—ベンゾォキサゾーノレ)ホスホナートなどの適当な脱水剤を用いて ジァミノベンゾォキサゾールとを反応させる。溶媒として NMP、 N, N ジメチルァセ トアミド、 N, N ジメチルホルムアミド、ジメチルスルホキシド、へキサメチルホスホロト リアミドなどを主成分とする極性溶剤や γ プチ口ラタトンを主成分とする溶媒を用い る。光脱離性基や光架橋性基を導入する場合も同様にして合成できる。酸分解性基 を導入する場合、同様のして合成するか、フエノール性水酸基含有ポリイミド前駆体 に、フエノールの求核付加反応により酸分解性基の骨格となるビニルエーテルィ匕合 物、又は酸分解性基の骨格を持つカルボン酸、二炭酸エステル、酸クロライドもしく はクロ口フォーメートィ匕合物を反応させて合成できる。
[0034] 本発明の感光性ポリイミド前駆体は、感光性を付与する方法を適宜用いてポジ型、 ネガ型いずれかの型の感光性ポリイミド前駆体として使用できる。
本発明の感光性ポリイミド前駆体にぉ 、て、ポジ型の感光性を付与する方法として は、
(1)フ ノール性水酸基含有ポリイミド前駆体に感光性溶解阻害剤を配合する方法
(2)ポリイミド前駆体に感光性コール酸系化合物を配合する方法
(3)ポリイミド前駆体に酸分解性基含有化合物と光酸発生剤を配合する方法
(4)ポリイミド前駆体に酸分解性基含有コール酸系化合物と光酸発生剤を配合する 方法
(5)酸分解性基含有ポリイミド前駆体に光酸発生剤を配合する方法
(6)光脱離性基含有ポリイミド前駆体を用いる方法
がある。
また、ネガ型の感光性を付与する方法としては、
(7)共有結合により架橋性基を導入したポリイミド前駆体に光開始剤を配合する方法
(8)イオン結合により架橋性基を導入したポリイミド前駆体に光開始剤を配合する方 法がある。
[0035] 以下、それぞれの方法について詳細に説明する。
(1)フ ノール性水酸基含有ポリイミド前駆体に感光性溶解阻害剤を配合する方法 本方法では、ポリイミド前駆体としてフエノール性水酸基を有するポリイミド前駆体を 用い、感光性溶解阻害剤を配合してポジ型感光性ポリイミド前駆体組成物を得る。 ポリイミド前駆体全体に含まれるフエノール性水酸基の量は、一般式(1)で示される 繰り返し単位 1モルあたり、 0. 3〜3モルであることが好ましい。フエノール性水酸基 の量が少なすぎる場合は、アルカリ現像液に対して十分な溶解性を示さな!/、おそれ があり、良好なポジ型感光性の機能を発揮することができないおそれがある。フエノ ール性水酸基の量が多すぎると、現像時に膜減りが大きぐ良好なパターンを形成で きない。
[0036] 感光性溶解阻害剤とは、露光前はアルカリ水溶液に対して難溶な物質であって上 述のポリイミド前駆体の溶解阻害剤として作用し、かつ、露光によってアルカリ水溶液 に易溶となってポリイミド前駆体の溶解促進剤として作用する物質である。そのような 物質はポジ型感光性榭脂の分野で公知であり、例えば、フォトポリマー懇話会編「フ オトポリマーハンドブック」(工業調査会)、 56— 58頁、 241頁、山岡亜夫監修「フォト ポリマーの基礎と応用」(シーエムシー出版)、 85— 87頁、 175— 179頁などにその 作用機構とともに記載されて 、る。
[0037] 本発明のポジ型感光性ポリイミド前駆体組成物に適した感光性溶解阻害剤として は、例えば、 o キノンジアジドィ匕合物類が挙げられる力 この中でも特に、フエノー ル性水酸基を有する化合物とナフトキノンジアジドのスルホニル酸とがエステル結合 したものが好ましい。ナフトキノンジアジドのスルホニル基としては、 4 ナフトキノンジ アジドスルホ -ル基、 5—ナフトキノンジアジドスルホ-ル基を挙げることができる。フ ェノール性水酸基を有する化合物としては、例えば、ビスフエノール A、ビスフエノー ル?、トリヒドロキシベンゾフエノンなどが挙げられる力 ノボラック榭脂レジストなどに用 いられる各種フエノールイ匕合物を使用してもよい。具体例としては、トリヒドロキシベン ゾフエノンと 1, 2 ナフトキノンジアジドー 5—スルホン酸クロリド化合物とを反応させ たエステル結合ィ匕合物などを例示することができる。このようなジァゾキノンィ匕合物は
、それ自体ではアルカリ水溶液に対して難溶な物質であり、ポリイミド前駆体をアル力 リ液に対して不溶ィ匕する溶解阻害剤として作用するが、露光によってエステル結合が 切断されると、カルボキシル基を生成してアルカリ水溶液に易溶となり、ポリイミド前駆 体の溶解促進剤として作用する。
感光性溶解阻害剤はポリイミド前駆体 100質量部に対して 0. 01〜50質量部、好 ましくは 0. 1〜40質量部が添加される。
[0038] (2)ポリイミド前駆体に感光性コール酸系化合物を配合する方法
本方法では、ポリイミド前駆体として主鎖および側鎖の少なくとも!/、ずれかにカルボ キシル基およびフエノール性水酸基の少なくとも一方を含有するポリイミド前駆体を用 V、、感光性のコール酸系化合物を含有させてポジ型感光性ポリイミド前駆体組成物 を得る。
ポリイミド前駆体に含まれるカルボキシル基とフエノール性水酸基の量は、ポリイミド 前駆体全体に含まれるカルボキシル基とフエノール性水酸基の量の合計量が一般 式(1)で示される繰り返し単位 1モルあたり、 0. 3〜3モルであることが好ましい。カル ボキシル基とフエノール性水酸基の合計量が少なすぎる場合は、アルカリ現像液に 対して十分な溶解性を示さな 、場合があり、良好なポジ型感光性の機能を発揮する ことができないおそれがある。多すぎる場合は、現像時に膜減りが大きぐ良好なバタ ーンを形成できない。
感光性コール酸系化合物としては、コール酸、デォキシコール酸、および Z又はリ トコール酸を〇一-トロアリールメチルエステルイ匕して構成される酸誘導体、 p ニトロ ァリールメチルエステルイ匕して構成される酸誘導体、フエナシルエステル化して構成 される酸誘導体およびべンゾィ-ルエステル化して構成される酸誘導体が用いられ る。
該酸誘導体の O -トロアリールメチル基としては、例えば、 O -トロベンジル基、 o -トロ一 p—メチノレべンジノレ基、 o -トロ一 p シァノベンジノレ基、 o -トロ一 p —メトキシベンジル基、 o -トロ一 p クロ口べンジル基、 o, p ジ-トロベンジル基 、 α—メチルー o -トロベンジル基、 2— -トロー 1 ナフチルメチル基などが挙げら れる。該酸誘導体の Ρ -トロアリールメチル基としては、例えば、 ρ -トロべンジル 基、 ρ ニトロ一 m—メチノレべンジノレ基、 α—メチノレ一 p ニトロべンジノレ基、 4—ニト 口 1 ナフチルメチル基などが挙げられる。該酸誘導体のフエナシル基としては、 例えば、 α メチルフエナシル基、 α—メチルー 4 -トロフエナシル基、 ex—フエ二 ルフエナシル基、 4—メトキシフエナシル基、 α (2, 4 ジクロロフエ-ル)フエナシ ル基、 α— η—ブチルフエナシル基、 α—(3—メトキシフエ-ル)— 4—クロ口フエナ シル基などが挙げられる。該酸誘導体のベンゾィニル基としては、例えば、 3 'ーメトキ シベンゾィ-ル基、 3,, 5,—ジメトキシベンゾィ-ル基、 2, 2' , 3, 3,—テトラメトキシ ベンゾィ -ル基などが挙げられる。
該酸誘導体は、ポリイミド前駆体 100質量部に対して、好ましくは 2〜: L00質量部、 より好ましくは 5〜50質量部が添加される。 該酸誘導体を構成するコール酸、デォキシコール酸、および Z又はリトコール酸の それぞれが有する水酸基は、その一部又は全部が置換基で保護されて 、てもよ 、。 水酸基を保護するための好ま U、置換基としては、メチルカルボニル基などの低級ァ ルキルカルボ-ル基ゃトリハロメチルカルボ-ル基(例えば、トリフルォロメチルカル ボ-ル基)などの低級ハロアルキルカルボ-ル基などが挙げられる。具体的には、ァ セチル基、トリフルォロアセチル基などが好まし 、。
[0040] (3)ポリイミド前駆体に酸分解性基含有化合物と光酸発生剤を配合する方法
本方法では、ポリイミド前駆体として主鎖および側鎖の少なくとも!/、ずれか〖こフエノ ール性水酸基を有するポリイミド前駆体を用い、光酸発生剤と、酸触媒反応により分 解する酸分解性基を有する酸分解性化合物とを含有させて、酸分解性基が酸触媒 により分解すると、酸分解性ィ匕合物が該ポリイミド前駆体のアルカリ水溶液に対する 溶解度が増加することを利用してポジ型感光性ポリイミド前駆体組成物を得る。
[0041] ポリイミド前駆体は、ポリイミド前駆体全体に含まれるフエノール性水酸基が一般式( 1)で示される繰り返し単位 1モルあたり、 0. 3〜3モルであることが好ましい。フエノー ル性水酸基の量が少なすぎる場合は、アルカリ現像液に対して十分な溶解性を示さ ない場合があり、良好なポジ型感光性の機能を発揮することができないおそれがある 。フエノール性水酸基が多すぎると、現像時に膜減りが大きぐ良好なパターンを形 成できない。
[0042] 酸分解ィ匕合物は、酸分解性基が分解していないときには該ポリイミド前駆体のアル カリに対する溶解性を阻害しており、該酸分解性基が酸触媒により分解すると、該酸 分解性ィ匕合物が該ポリイミド前駆体のアルカリに対する溶解性を促進し、該ポリイミド 前駆体のアルカリ水溶液に対する溶解度が増加する。
[0043] 本方法では、光照射により露光部において光酸発生剤が酸を発生し、この酸発生 剤が発生した酸による酸触媒反応により、酸分解性化合物の酸分解性基が分解し、 該酸分解性ィ匕合物が該ポリイミド前駆体のアルカリに対する溶解性を促進し、該ポリ イミド前駆体のアルカリ水溶液に対する溶解度が増加する。その結果として、アルカリ 現像時にお ヽて、光が照射された露光部のアルカリ溶液に対する溶解性が増加する ことにより、良好なポジ型感光特性が得られる。 [0044] 本発明に適した光酸発生剤は紫外線のような光の照射によって酸性を呈する。こ のような光酸発生剤としては、具体的にはジァリールスルホ -ゥム塩、トリアリールス ルホ -ゥム塩、ジアルキルフエナシルスルホ -ゥム塩、ジァリールョーヂ -ゥム塩、ァリ ールジァゾ -ゥム塩、芳香族テトラカルボン酸エステル、芳香族スルホン酸エステル、 ニトロべンジルエステル、芳香族スルフアミド、ナフトキノンジアジドー 4—スルホン酸 エステルなどが用いられる。このような化合物は必要に応じて 2種以上併用したり、他 の増感剤と組み合せて使用R CしI たりすることができる。
光酸発生剤はポリイミド前駆体 100質量部に対して 0. 01〜50質量部、好ましくは 0. 1〜40質量部が添加される。
[0045] 本発明に適した、酸触媒反応によりアルカリ水溶液に対する溶解度が増加する酸 分解性基を有する化合物とは、露光により光酸発生剤から発生した酸を触媒として 分解反応を起こし、露光部のアルカリ水溶液への溶解性を増大させる機能を有する 化合物である。例えば、ポリビニルフエノールなどのアルカリ可溶性榭脂、ビスフエノ ο ΐ
ール類、トリスフエノール類、トリスフエノールアルカン類、テトラキスフエノール類など の水酸基をァセタール基、ケタール基などの酸分解性基で保護した重合体又は化 合物が挙げられる。また、ポリアクリル酸又は、スチレンとアクリル酸の共重合体など のカルボキシル基含有アクリル又はスチレン アクリル系重合体の一部又は全部の カルボキシル基を酸分解性基で保護したィ匕合物が挙げられる。酸触媒反応により分 解する酸分解性基としては、例えば、
[0046] [化 11]
0 0 0 Η 0 C R 3 0 ―
0
(但し、 Rはそれぞれ独立して炭素数 1〜3のアルキル基を示す。)などが挙げられる
[0047] この酸分解性ィ匕合物は、ポリイミド前駆体 100質量部に対して、 2〜: LOO質量部、好 ましくは 5〜50質量部が添加される。
[0048] (4)ポリイミド前駆体に酸分解性基含有コール酸系化合物と光酸発生剤を配合する 方法 本発明のポジ型感光性ポリイミド前駆体組成物は、主鎖にベンゾォキサゾールなど のべンゾァゾール骨格を有し、且つ主鎖および側鎖の少なくとも 、ずれかにカルボキ シル基およびフ ノール性水酸基の少なくとも一方を含有するポリイミド前駆体と、光 酸発生剤と、コ一ル酸又はデォキシコ一ル酸又はリトコール酸のカルボキシル基の 水素原子を酸分解性基により置換することにより構成された酸誘導体 (以下、単に「 酸誘導体」と記載することがある。)とを含有し、該酸分解性基は、該光酸発生剤が発 生する酸によって分解するが、該弱酸性基の酸性によっては実質上分解しないこと を特徴とする。
[0049] 酸誘導体は、酸分解性基が分解していないときには該ポリイミド前駆体のアルカリ に対する溶解性を阻害しており、酸誘導体が酸触媒により分解すると、コール酸系化 合物が酸性に変化して該ポリイミド前駆体のアルカリに対する溶解性を促進し、該ポ リイミド前駆体のアルカリ水溶液に対する溶解度が増加することにより、良好なポジ型 感光特性が得られる。
酸誘導体が有する酸分解性基としては、上記要件を満足するものとして、例えば 3 級アルキル基、 1 アルコキシェチル基、アルキルシリル基、アルコキシメチル基など が挙げられる。これらは、カルボキシル基の保護基として知られているものである。
[0050] 具体的には、 t ブチル基、 tーァミル基などの 3級アルキル基、イソポロ-ル基、 1 エトキシェチル基、 1 ブトキシェチル基、 1 イソプロキシェチル基などの 1ーァ ルコキシェチル基、 1ーメトキシメチル基、 1 エトキシメチル基などのアルコキシメチ ル基、テトラヒドロビラ-ル基、テトラヒドロフラニル基、トリメチルシリル基、ベンジル基 などが典型的な例として例示される力 これらに限定されるものではない。最も好まし V、基は、 t—ブチル基とテトラヒドロビラ-ル基である。
該酸誘導体は、ポリイミド前駆体 100質量部に対して、好ましくは 2〜: LOO質量部、 より好ましくは 5〜50質量部が添加される。
[0051] 該酸誘導体を構成するコール酸、デォキシコール酸、および Z又はリトコール酸の それぞれが有する水酸基は、その一部又は全部が置換基で保護されて 、てもよ 、。 水酸基を保護するための好ま U、置換基としては、メチルカルボニル基などの低級ァ ルキルカルボ-ル基ゃトリハロメチルカルボ-ル基(例えば、トリフルォロメチルカル ボ-ル基)などの低級ハロアルキルカルボ-ル基などが挙げられる。具体的には、ァ セチル基、トリフルォロアセチル基などが好まし 、。
[0052] (5)酸分解性基含有ポリイミド前駆体に光酸発生剤を配合する方法
本方法においては、ポリイミド前駆体として、主鎖または側鎖のフエノール性水酸基 およびカルボキシル基の少なくとも一部の水素原子が酸分解性基 (酸の作用で分解 し水酸基に変換し得る一価の有機基)で置換されており、それ自体アルカリ水溶液に 対する溶解性が小さくなつている。紫外線等の所定の化学線を照射すると、光酸発 生剤より発生する酸の触媒反応により酸分解性基が分解し水酸基に変換するために 、ポリイミド前駆体のアルカリ水溶液への溶解性が増大することにより、良好なポジ型 感光特性が得られる。
[0053] 酸分解性基としては、上記要件を満足するものとして、例えば 3級アルキル基、 1 アルコキシェチル基、アルキルシリル基、アルコキシメチル基、ァセタール基、ケター ル基などが挙げられる。これらは、アルカリ可溶性基の保護基として知られているもの である。
具体的には、 t—ブチル基、 tーァミル基などの 3級アルキル基、イソポロ-ル基、 1 エトキシェチル基、 1 ブトキシェチル基、 1 イソプロキシェチル基などの 1ーァ ルコキシェチル基、 1ーメトキシメチル基、 1 エトキシメチル基などのアルコキシメチ ル基、テトラヒドロビラ-ル基、テトラヒドロフラニル基、トリメチルシリル基、ベンジル基 などが典型的な例として例示される力 これらに限定されるものではない。最も好まし V、基はテトラヒドロビラニル基である。
[0054] (6)光脱離性基含有ポリイミド前駆体を用いる方法
本方法にぉ 、ては、ポリイミド前駆体として側鎖のカルボキシル基の少なくとも一部 の水素原子が光脱離性基で置換されており、それ自体アルカリ水溶液に対する溶解 性が小さくなつているが、紫外線等の所定の化学線を照射すると、光脱離性基が分 解脱離してカルボキシル基に変化するので、アルカリ水溶液への溶解性が増大する ポリイミド前駆体を用いる。これにより、良好なポジ型感光特性が得られる。
[0055] 光脱離性基としては、紫外線などの化学線照射のより脱離する基であれば特に限 定されないが、好ましいものとしては、 p -トロアリールメチル構造を有する基、 o— 二トロアリールメチル構造を有する基、フエナシル構造を有する基およびベンゾィ- ル構造を有する基が挙げられる。 o トロアリールメチル基としては、例えば、 o— - トロべンジル基、 o -トロ— p—メチルベンジル基、 o -トロ— p シァノベンジル基 、 o ニトロ一 p—メトキシベンジノレ基、 o ニトロ一 p クロ口べンジノレ基、 o, p ジニト 口べンジル基、 α—メチルー o -トロベンジル基、 2— -トロー 1 ナフチルメチル 基などが挙げられる。 ρ トロアリールメチル基としては、例えば、 ρ -トロベンジ ノレ基、 ρ ニトロ一 m—メチノレべンジノレ基、 α—メチノレ一 p ニトロべンジノレ基、 4—二 トロ一 1—ナフチルメチル基などが挙げられる。フエナシル基としては、例えば、 ひ メチルフエナシル基、 α メチル—4— -トロフエナシル基、 α—フエ-ルフエナシル 基、 4—メトキシフエナシル基、 α— (2, 4—ジクロロフエ-ル)フエナシル基、 α— η— ブチルフエナシル基、 α— (3—メトキシフエ-ル) 4—クロ口フエナシル基などが挙 げられる。ベンゾィ -ル基としては、例えば、 3,一メトキシベンゾィ-ル基、 3,, 5,一 ジメトキシベンゾィ-ル基、 2, 2' , 3, 3 '—テトラメトキシベンゾィ-ル基などが挙げら れる。
[0056] また、本発明のポジ型感光性ポリイミド前駆体組成物は、現像後のパターン形成に おいて、高い感度、高い解像度を得るため、特に光脱離基が、 ρ -トロアリールメチ ル基の場合に、増感剤を含有することが好ましい。
本発明に適した増感剤の例として、芳香族多環式炭化水素、例えばアントラセン、 アントラキノン、ピレン、ペリレン、ビ才ランスレンなどが挙げられるが、特に好適なもの として、電子供与性置換基を有するもの、例えば、アミノケトン、 ρ—置換アミノスチリ ル、キサンテン、チォキサントン、ポリアリール化合物、ポリメチレン染料などが挙げら れる。具体的には、 2 クロ口チォキサントン、ミヒラーケトン、 9, 10 ジメトキシアント ラセン、 2 ェチルー 9, 10 ジメトキシアントラセン、アントラセン、 10 ジエトキシー 16, 17 ジメトキシビォランスレンが好ましい化合物として挙げられる。これらは単独 又は組み合わせて用いられる。
増感剤は、ポリイミド前駆体 100質量部に対して、好ましくは 0. 1〜10質量部、より 好ましくは 0. 5〜5質量部が添加される。
[0057] (7)共有結合により架橋性基を導入したポリイミド前駆体に光開始剤を配合する方法 本方法にお!、ては、ポリイミド前駆体として側鎖に共有結合で光架橋性基を含有す るポリイミド前駆体を用い、光開始剤を含有させネガ型感光性ポリイミド前駆体組成 物とする。
一般式(1)中の R2のうち 20%以上が光架橋性基を含む有機基であることが必要で ある。光架橋性基を含む有機基が、 20%未満であると、光架橋性基が架橋反応を起 こして有効にネガ型機能を発揮することができな!/、。
[0058] R2が表す光架橋性基を含む有機基における光架橋性基としては、光照射により脱 離する脱離基、光照射により二量ィヒゃ共重合する基などが挙げられるが、特に好ま しい具体的な基としては、エチレン性不飽和結合を有する基が挙げられる。エチレン 性不飽和結合としては特に限定はないが、例えば、アタリロイル基;メタクリロイル基; メタクリロイルォキシメチル基、 3—メタクリロイルォキシプロピル基等のアルキル基の 炭素数が 1〜10のメタクリロイルォキシアルキル基; 2—アタリロイルォキシェチル基、 3—アタリロイルォキシプロピル基等のアルキル基の炭素数が 1〜10のアタリロイルォ キシアルキル基などが好適なものとして挙げられる。他の例としては、ビュル基、ァリ ル基等も挙げられる。
[0059] 光架橋性基を含有する有機基をエステル結合により合成するために用いられるァ ルコール化合物は、特に限定されないが、炭素数 1〜10の不飽和アルコール化合 物が好ましぐこの中では、アルキル鎖の炭素数が 1〜10であるヒドロキシアルキルァ タリラート又はヒドロキシアルキルメタタリラートが特に好ましぐ具体的には、ヒドロキシ ェチルアタリラート、ヒドロキシェチルメタタリラート、ヒドロキシメチルアタリラート、ヒドロ キシメチルメタタリラート、ヒドロキシプロピルアタリラート、ヒドロキシプロピルメタクリラ ートなどが挙げられる。
光架橋性基を含有する有機基をアミド結合により合成するために用いられるァミン 化合物としては、例えば、アミノアルキルアタリラートゃァミノアルキルメタタリラートなど の不飽和アミンを用いることができる。
また、 R2が表すその他の 1価の有機基としては、光架橋性基を有さない基であれば 特に限定されないが、例えば、炭素数が 1〜10である、アルキル基、アルコキシ基、 アルキルアミノ基など、炭素数が 6〜 10である、フエ-ル基、フエノキシ基、フエ-ルァ ミノ基、ベンジル基などが挙げられる。
[0060] 光開始剤としては、特に限定されな 、が、例えば、ベンゾインメチルエーテル、ベン ゾインェチルエーテル、ベンゾインイソプロピルエーテル、 2—tert—ブチルアントラ キノン、 2—ェチルアントラキノン、ミヒラーズケトン、ァセトフエノン、ベンゾフエノン、チ ォキサントン、 2, 2—ジメトキシ一 2—フエニルァセトフエノン、 1—ヒドロキシシクロへキ シルフェ-ルケトン、ベンジル、ジフエ-ルスルフイド、フエナントラキノン、 2—イソプロ ピルチオキサントン、 N—フエ-ルグリシン、 N—フエ-ルジェタノールァミン、 3—フエ 二ルー 5 イソォキサゾロン、 1 フエニルプロパンジオン一 2—(o エトキシカルボ -ル)ォキシム、 o ベンゾィル安息香酸メチル、ジベンジルケトン、 3, 3, 4, 4ーテト ラ(tert ブチルペルォキシカルボ-ル)ベンゾフエノン、ビス(シクロペンタジェ -ル) ビス [2, 6 ジフルォロ一 3— (ピリ一 1—ィル)フエ-ル]チタン、アジドアントラキノン 、アジドベンザルァセトフェノンなどの芳香族モノアジドなどが挙げられる。
光開始剤はポリイミド前駆体 100質量部に対して、 0. 1〜30質量部配合されること が好ましいが、さらに好ましい光開始剤の量は、ポリイミド前駆体 100質量部に対して 、 0. 3〜 10質量部である。
[0061] (8)イオン結合により架橋性基を導入したポリイミド前駆体に光開始剤を配合する方 法
本方法にぉ 、ては、ポリイミド前駆体としてカルボキシル基を有するポリイミド前駆体 を用い、光架橋性基を含有するァミン化合物と光開始剤を含有させネガ型感光性ポ リイミド前駆体とする。
光架橋性基を含有するァミン化合物は、ポリイミド前駆体中の R2の 50モル%以上 の割合で含有される水酸基 (カルボキシル基)とイオン結合を形成することによって、 ポリイミド前駆体中で塩を形成して ヽる。この光架橋性基を含有するァミン化合物は、 ポリイミド前駆体におけるカルボキシル基と等モルの割合で含まれることが好ましい。
[0062] 光架橋性基を含有するァミン化合物は、光架橋性基を含有して!/ゝれば特に限定さ れないが、例えば、アクリル酸ジメチルアミノエチル、アクリル酸ジェチルアミノエチル 、メタクリル酸ジメチルアミノエチル、メタクリル酸ジェチルアミノエチル、 N—(2—ジメ チルアミノエチル)メタクリルアミド、 N— (2—ジメチルァミノプロピル)メタクリルアミド、 N- (2—ジェチルアミノエチル)メタクリルアミド、 N- (2—ジメチルアミノエチル)ァク リルアミド、 N— (2—ジメチルァミノプロピル)アクリルアミド、 N— (2—ジェチルァミノ ェチル)アクリルアミド、アタリロイルモルホリン、メタクリロイルモルホリン、アタリロイル ピぺラジン、ァリルァミン、トリアリルァミン、ビュルピリジン、アジド安息香酸ジメチルァ ミノェチルエステル、アジド安息香酸ジメチルァミノプロピルエステル、アジドスルホ- ル安息香酸ジメチルアミノエチルエステルなどが挙げられる。
[0063] 光開始剤としては、特に限定されないが、 (7)と同様のものが用いられる。光開始剤 の量は、(7)と同様でポリイミド前駆体 100質量部に対して、 0. 1〜30質量部配合さ れることが好ましいが、さらに好ましい光開始剤の量は、ポリイミド前駆体 100質量部 に対して、 0. 3〜 10質量部である。
[0064] (7)、 (8)の方法によるネガ型感光性ポリイミド前駆体組成物には、現像後のパター ン形成にお ヽて高 ヽ感度および高 ヽ解像度を得るために、をさらに増感剤を含有す ることが好ましい。増感剤としては、特に限定されないが、例えば、アジドアントラキノ ン、アジドベンザルァセトフエノンなどの芳香族モノアジド、 3, 3,一カルボ-ルビス( ジェチルァミノクマリン)などのクマリン化合物、ベンズアントロン、フエナントレンキノン などの芳香族ケトンなど一般的に感光性榭脂に使用される化合物が挙げられる。 上記の増感剤はポリイミド前駆体に対して、好ましくは 0. 01〜30質量%、より好ま しくは 0. 1〜20質量%添加される。この範囲からはずれると、感度が低下したり、機 械的強度が低下したりする問題が生じる。
[0065] また、本発明の感光性ポリイミド前駆体組成物にぉ 、ては、本発明の組成物の塗 膜又は加熱処理後のポリイミド膜と基板との接着性を向上させるために、接着促進剤 を用いることができる。
接着促進剤としては、有機シランィ匕合物、アルミニウムキレートイ匕合物、チタニウム キレート化合物、珪素含有ポリアミド酸などが好ましい。さらに、基板との接着性、感 度、解像度、耐熱性などを損なわない範囲で可塑剤、色素、重合禁止剤などの他の 添加物を含有させても良 ヽ。
[0066] 本発明の感光性ポリイミド前駆体組成物は、溶媒に溶解して溶液状態で得ることが できる。溶媒としては、 N—メチル 2—ピロリドン(NMPともいう)、 N ァセチル一 2 —ピロリドン、 N, N—ジメチルァセトアミド、 N, N—ジメチルホルムアミド、ジメチルス ルホキシド、へキサメチルホスホルトリアミド、 γ —ブチロラタトン、エチレンカーボネー ト、プロピレンカーボネート、スルホラン、ジメチルイミダゾリン、ジエチレングリコールジ メチルエーテル、トリエチレングリコールジメチルエーテルなどを用いることができる。 これらは単独で用いても良いし、混合系として用いても良 、。
[0067] 本発明の感光性ポリイミド前駆体組成物は、浸漬法、スプレー法、スクリーン印刷法 、スピンコート法などによって、シリコンウエノ、、金属基板、セラミック基板などの基材 表面に塗布し、加熱して溶剤の大部分を除くことにより、基材表面に粘着性のない塗 膜を与えることができる。塗膜の厚みには特に制限はないが、 4〜50 mであること が好ましい。
この塗膜に、所定のパターンを有するマスクを通して、紫外線、可視光線、 X線、電 子線などの化学線を照射して、パターン状に露光後、膜の未露光部分を、適切な現 像液で現像して除去することにより、所望のパターン化された膜を得ることができる。 化学線照射装置として、 g線ステツパ、 i線ステツパ、超高圧水銀灯を用いるコンタク ト Zプロキシミティ露光機、ミラープロジェクシヨン露光機、又はその他の紫外線、可 視光線、 X線、電子線などを照射可能な投影機や線源を使用することができる。
[0068] 現像液としては、ポジ型感光性ポリイミド前駆体組成物の場合、水酸ィ匕ナトリウム、 水酸ィ匕カリウム、炭酸ナトリウム、ケィ酸ナトリウム、メタケイ酸ナトリウム、アンモニア水 などの無機アルカリ類、ェチルァミン、 n—プロピルァミンなどの第一アミン類、ジェチ ルァミン、ジ一 n—プロピルァミンなどの第二アミン類、トリェチルァミン (TEAともいう) 、メチルジェチルァミンなどの第三アミン類、ジエタノールァミン、トリエタノールァミン などのアルコールアミン類、テトラメチルアンモ-ゥムヒドロキシド、テトラエチルアンモ ユウムヒドロキシドなどの第四級アンモ-ゥム塩アルカリ類の水溶液およびこれにメタ ノール、エタノールのようなアルコール類などの水溶性有機溶剤や界面活性剤を適 量添加した水溶液を好適に使用することができる。ネガ型感光性ポリイミド前駆体組 成物の場合、有機溶媒現像液として、良溶媒 (例えば、 N—メチル—2—ピロリドン、 N, N—ジメチルァセトアミド、 N, N—ジメチルホルムアミドなど)、前記良溶媒と貧溶 媒 (例えば、低級アルコール、ケトン類、水、芳香族炭化水素など)との混合溶媒およ びアル力リ現像液などが挙げられる。
上記現像の後に、必要に応じて、水で洗浄し、ついで約 100°C前後で乾燥し、バタ ーンを安定ィ匕することが望ましい。パターンを形成させた膜を加熱して、ポリイミド前 駆体をポリイミドに転ィ匕することで優れた耐熱性、機械特性、電気特性を有する膜を 得ることができる。加熱温度は、 150〜500°Cが好ましぐ 300〜450°Cがさらに好ま しい。加熱時間は 0. 05〜: LO時間が好ましい。加熱処理は通常、段階的又は連続的 に昇温しながら行う。
実施例
以下、実施例により本発明を更に詳細に説明するが、本発明はこれに限定されるも のではない。なお、以下の実施例における物性の評価方法は以下の通りである。
(1)熱膨張係数
熱膨張係数 (線膨張率ともいう)の測定方法としては、 TMA (熱機械分析)法、直読 法、光干渉法、押棒法、電気容量法、 SQUID法などがあるが、本実施例では、膜を シリコンウェハの基材カも剥がし、 TMA (熱機械分析)法により 25〜200°Cの範囲で 昇温速度 10°CZ分で、下記条件にて伸縮率を測定して算出した。
装置名 ; MACサイエンス社製 TMA4000S
試料長さ ; 20mm
試料幅 ; 2mm
雰囲気 ; アルゴン
(2)感度
解像度 10 μ mのパターン形成のために要する露光量を測定した値である。
(3)残膜率
残膜率の算定'算出は、以下の方法により行った。
残膜率 (%) = { (現像後の未露光部の膜厚) / (現像前の未露光部の膜厚) } X 10
0
(4)現像後外観
現像後の膜の外観評価は、露光部の現像残りがなぐパターンのエッジが平滑であ れば、「良好」と評価した。 (合成例 Al)
窒素導入管を備えたフラスコ 1に、 1モルの 4, 4'ーォキシジフタル酸無水物、 2. 1 モルの 4 -ヒドロキシベンジルアルコールおよび 2Lの N メチル 2 -ピロリドン(以 下、「NMP」と表記する)をカ卩えて攪拌し、続けて 2. 1モルのトリェチルァミン (以下、 「TEA」と表記する)を 30分間にわたって滴下した。滴下後、この状態で 3時間放置し 、反応終了後に 1モルの 2, 6— (4, 4,ージアミノジフエ-ル)一べンゾ [1, 2-d: 5, 4— d' ]ビスォキサゾールを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチ ォキソー3—べンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、その 状態で 5時間縮合する。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マ レイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMPとをカ卩えて 攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モルのジフエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナー トを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の 混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機に よって 12時間乾燥した。
(合成例 A2)
窒素導入管を備えたフラスコ 1に、 1モルのピロメリット酸無水物(以下、「PMDA」と 表記する)、 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 2Lの NMPをカ卩えて 攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ 2— (p ァミノフエ-ル)—ベンゾォ キサゾール(以下、「p— DAMBO」とも表記する)をカ卩えた。次に 2. 1モルのジフエ- ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて 添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラス コ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよ び 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 3 0分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾ ォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合し た。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 A3)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ— 2— (p —アミノー m—ヒドロキシフエニル)一ベンゾォキサゾールをカ卩えた。次に 2. 1モルの ジフエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回 に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備え たフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下 後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪 拌した。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾ ール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得ら れたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂 を真空乾燥機によって 12時間乾燥した。
(合成例 A4)
窒素導入管を備えたフラスコ 1に、 1モルの 4, 4,ーォキシジフタル酸、 2. 1モルの エチルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30 分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 アミノー 6 ヒドロキシ一 2— (p ァミノフエ-ル)一ベンゾォキサゾールをカ卩えた 。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール) ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の 窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのェチルアル コールおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわた つて滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を 混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、 得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 A5)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ— 6 ヒド 口キシ一 2— (p アミノー m—ヒドロキシフエ-ル)一ベンゾォキサゾールをカ卩えた。 次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾール)ホ スホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒 素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのェチルアルコ ールおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたつ て滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混 合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3— ベンゾォキサゾーノレ)ホスホナートを 5回に分け
て添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量 のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間 乾燥した。
(合成例 A6)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナジック酸無水物(5 ノルボルネン—2, 3 ジカルボン酸無水物)と 2. 1モルの 4ーヒドロキシベンジル アルコールおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶 液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキ ソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態 で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗 浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 A7)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの 1, 2, 3, 4ーテトラヒ ドロフタル酸無水物と 2. 1モルの 4ーヒドロキシベンジルアルコールおよび 1Lの NM Pとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後 、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌 した。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾー ル)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られ たスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を 真空乾燥機によって 12時間乾燥した。
(合成例 A8)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2, 2'—ビス(3— アミノー 4 ヒドロキシフエニル)へキサフルォロプロパンをカ卩えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの N MPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下 後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪 拌した。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾ ール)ホスホナートを 5回に分けて添加し、添加後、この状態で 5時間縮合した。得ら れたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂 を真空乾燥機によって 12時間乾燥した。
(合成例 A9)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2, 2 ビス(3 ァ ミノ一 4 ヒドロキシフエ-ル)エーテルをカ卩える。次に 2. 1モルのジフエ-ル(2, 3— ジヒドロ チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添 加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モ ルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの NMPとをカ卩えて攪 拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3 時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1 モルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナート を 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混 合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によ つて 12時間乾燥した。
(合成例 A10)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。この状態で 3時間放置し、反応終了後に 1モルの 2, 2'—ビ ス(4 ァミノフエ-ル)へキサフルォロプロパンをカ卩えた。次に 2. 1モルのジフエ-ル (2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添 加し、添付後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2 に、 2モルの無水マレイン酸と 2. 1モルの 4ーヒドロキシベンジルアルコールおよび 1 Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。 滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分 間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキ サゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。 得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形 榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 Al l)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4 , 4'—ジアミノジフエ-ルエーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒ ドロ―チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添カロ 後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モル の無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMP とを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、 この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌し た。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾール) ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたス ラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空 乾燥機によって 12時間乾燥した。
(実施例 A1)
合成例 A1で得られたポリイミド前駆体 100質量部、キノンジアジドィ匕合物として MG - 300 (東洋合成工業 (株)製) 20質量部を NMPに溶解させ、感光性ポリイミド前駆 体組成物のワニスを得た。得られたワニスをスピンコーターでシリコンウェハ上に回転 塗布し、ホットプレートを用いて 100°Cで 5分間乾燥を行い、 10 mの塗膜を得た。こ の塗膜をマスク(1〜50 mの残しパターンおよび抜きパターン)を通して、超高圧水 銀灯を用いて紫外線を照射した。そして 2. 38%の水酸ィ匕テトラメチルアンモ -ゥム 水溶液で現像した。次に水でリンスし、乾燥した。その結果、露光量 450mjZcm2の 照射で良好なパターンが形成され、残膜率は 93%であった。また、現像後の外観も 良好であった。さらに、窒素雰囲気下で 200°Cで 30分、 400°Cで 60分の熱処理を行 つた。熱膨張係数は、試料を適当な温度範囲で昇温した時の熱膨張率を測定し、得 られた熱膨張率の温度に対するプロットから求められる。熱膨張率の測定方法として は、 TMA (熱機械分析)法、直読法、光干渉法、押棒法、電気容量法、 SQUID法な どがあるが、本実施例 A1では、熱処理後の膜をシリコンウェハから剥がし、 TMA (熱 機械分析)法により 25〜200°Cの範囲で昇温速度 10°CZ分で測定したところ、 6pp mZ°Cであり、熱膨張係数が低い榭脂であることが確認された。
(実施例 A2〜A7)
実施例 A1にお 、て用いた合成例 A1のポリイミド前駆体の代わりに、合成例 A2〜 A7のポリイミド前駆体を用いた以外は、実施例 A1と同様に操作して感光性ワニスを 調製し、実施例 A1と同様にして評価した。
(比較例 A1〜A4)
実施例 A1にお 、て用いた合成例 A1のポリイミド前駆体の代わりに、合成例 A8〜 Al lのポリイミド前駆体を用いた以外は、実施例 A1と同様に操作して感光性ワニス を調製し、実施例 A1と同様にして評価した。
実施例 A1〜A7、比較例 A1〜A4の評価結果については以下の表 1に示した。 表 1に示される結果によると、実施例 A1〜A7の熱膨張係数と比較例 A1〜A4の熱 膨張係数とを比較して明らかなように、実施例 A1〜A7に示される本発明に係るポジ 型感光性リイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比較例 A1 〜A4)に比較して、明らかに熱膨張係数が低減されている。また、実施例 A1〜A7と 比較例 A1〜A4とにおける感度および残膜率および現像後外観を比較すると、感度 および残膜率および現像外観ともに実施例 A1〜A7は、比較例 A1〜A4に比較して 劣化しておらず、本発明に係るポジ型感光性ポリイミド前駆体力 得られるポリイミド は、現像性や感度も優れていることが分かる。
[表 1] 熱膨 係数 残膜率 現像後外観 ( pp m/°C ) ( % ) ( - ) 実施例 A 1 6 450 93 良好
実施例 A 2 5 380 92 良好
実施例 A 3 5 370 90 良好
実施例 A 4 1 5 350 89 良好
実施例 A 5 4 400 92 良好
実施例 A 6 5 420 95 良好
実施例 A 7 4 420 93 良好
比^ (列 ή 1 25 350 93 良好
比^ ί列 A 2 27 380 89 良好
比^例 A 3 26 400 90 良好
比^例 A 4 29 380 92 良好
(合成例 B1)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間滴下した。この状態で 3時間放置した後に 1モルの 2, 6- (4, 4'ージアミノジフエ -ル)一ベンゾ [1, 2-d: 5, 4— d,]ビスチアゾールをカ卩えた。次に 2. 1モルのジフ ェ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分 けて添加し、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に 、 2モルの無水マレイン酸と 2. 1モルの 4ーヒドロキシベンジルアルコールおよび 1L の NMPを加えて攪拌し、続けて 2. 1モルの TEAを 30分間滴下した。この状態で 3 時間放置した後、フラスコ 1にフラスコ 2の溶液を入れて混合し、 30分間攪拌した。次 に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール)ホス ホナートを 5回に分けて添加し、その状態で 5時間縮合した。得られたスラリー状の混 合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によ つて 12時間乾燥して、ポリイミド前駆体 B 1を合成した。
(合成例 B2)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B2を合成し た。
•2, 6— (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 5 アミノー 2— (p ァミノフエ-ル)一ベンゾチアゾールを用いた。 (合成例 B3)
以下の変更点以外は合成例 Blと同様の操作によってポリイミド前駆体 B3を合成し た。
•フラスコ 1および 2に 4 ヒドロキシベンジルアルコールの代わりにェチルアルコール を加えた。
•2, 6- (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 5 アミノー 2— (p アミノー m—ヒドロキシフエ-ル)一ベンゾチアゾール を用いた。
(合成例 B4)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B4を合成し た。
•NMPの代わりに 3, 3' , 4, 4,ービフエ-ルテトラカルボン酸二無水物を用いた。 •フラスコ 1および 2に 4 ヒドロキシベンジルアルコールの代わりにェチルアルコール を加えた。
•2, 6— (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 5 アミノー 6 ヒドロキシ一 2— (p ァミノフエ-ル)一ベンゾチアゾール を用いた。
(合成例 B5)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B5を合成し た。
•フラスコ 1および 2に 4 ヒドロキシベンジルアルコールの代わりにェチルアルコール を加えた。
•2, 6— (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 5 アミノー 6 ヒドロキシ一 2— (p アミノー m—ヒドロキシフエ-ル)一ベ ンゾチアゾーノレを用いた。
(合成例 B6)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B6を合成し •2, 6- (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 2, 6— (4, 4,一ジァミノジフエ-ル)一ベンズ [1, 2— d: 5, 4— d,]ビスィ ミダゾールを用いた。
(合成例 B7)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B7を合成し た。
•2, 6— (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 5 アミノー 2— (p ァミノフエ-ル)一ベンズイミダゾールを用いた。 合成例 B8)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B8を合成し た。
•フラスコ 1および 2に 4 ヒドロキシベンジルアルコールの代わりにェチルアルコール を加えた。
•2, 6— (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 5 アミノー 2— (p アミノー m—ヒドロキシフエ-ル)一ベンズイミダゾール を用いた。
(合成例 B9)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B9を合成し た。
•NMPの代わりに 3, 3' , 4, 4,ービフエ-ルテトラカルボン酸二無水物を用いた。 •フラスコ 1および 2に 4 ヒドロキシベンジルアルコールの代わりにェチルアルコール を加えた。
•2, 6— (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 5 アミノー 6 ヒドロキシ一 2— (p ァミノフエ-ル)一ベンズイミダゾール を用いた。
(合成例 B10)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B10を合成 した。 •フラスコ 1および 2に 4 ヒドロキシベンジルアルコールの代わりにェチルアルコール を加えた。
•2, 6- (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 5 アミノー 6 ヒドロキシ一 2— (p アミノー m—ヒドロキシフエ-ル)一ベ ンズイミダゾールを用いた。
[0076] (合成例 B11)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B11を合成 した。
•フラスコ 1および 2に 4 ヒドロキシベンジルアルコールの代わりにェチルアルコール を加えた。
•2, 6— (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 2, 2,一ビス(3 アミノー 4 ヒドロキシフエ-ル)へキサフルォロプロパン を用いた。
(合成例 B12)
以下の変更点以外は合成例 B1と同様の操作によってポリイミド前駆体 B12を合成 した。
•フラスコ 1および 2に 4 ヒドロキシベンジルアルコールの代わりにェチルアルコール を加えた。
•2, 6— (4, 4'—ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d' ]ビスチアゾール の代わりに 2, 2 ビス(3 ァミノ 4 ヒドロキシフエ-ル)エーテルを用 、た。
[0077] (実施例 B1)
100質量部のポリイミド前駆体 B1に対して、 20質量部のキノンジアジドィ匕合物 (東 洋合成工業 (株)製、 MG— 300)を NMPに溶解させて感光性ポリイミド前駆体組成 物のワニスを得た。このワニスをスピンコーターでシリコンウェハ上に回転塗布して、 ホットプレートを用いて 100°Cで 5分間乾燥を行い、 10 mの塗膜を得た。この塗膜 に対してマスク(1〜50 μ mの残しパターンおよび抜きパターン)を介して、超高圧水 銀灯を用いて紫外線を照射した。その後、 2. 38%の水酸ィ匕テトラメチルアンモ-ゥ ム水溶液で現像を行った。次に、シリコンウェハを水でリンスして、乾燥した。その結 果、露光量 400mjZcm2の照射で良好なパターンが形成され、残膜率は 92%であ つた。また、現像後の外観は良好であった。さらに、窒素雰囲気下で 200°Cにて 30 分間、次いで、 400°Cにて 60分間の熱処理を行った。前記熱処理後の膜の熱膨張 係数は、 4ppmZ°Cであった。
(実施例 B2〜B10)
ポリイミド前駆体 B1の代わりに、ポリイミド前駆体 B2〜B10を用いたこと以外は、実 施例 B1と同様に操作してワニスを調製し、実施例 B1と同様にして評価した。
(比較例 B1〜B2)
ポリイミド前駆体 B1の代わりに、ポリイミド前駆体 B11〜B12を用いたこと以外は、 実施例 B1と同様に操作してワニスを調製し、実施例 B1と同様にして評価した。 各実施例、比較例についての評価結果を表 2にまとめる。
表 2から明らかなように、本発明のポジ型感光性ポリイミド前駆体組成物力も得られ るポリイミドは熱膨張係数力 、さぐ現像性や感度も優れている。
[表 2]
Figure imgf000039_0001
(合成例 C1)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4—ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 —アミノー 2— (4—アミノシクロへキシル)一ベンゾォキサゾールをカ卩えた。次に、 2. 1モルのジフエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナー トを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入 管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジル アルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶 液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキ ソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態 で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗 浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C1 を合成した。
(合成例 C2)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 —アミノー 2— (4—アミノシクロへキシル)一ベンゾチアゾールをカ卩えた。次に 2. 1モ ルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を 備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアル コールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわた つて滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を 混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、 得られた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C2を合成 した。
(合成例 C3)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 アミノー 2—(4 —アミノシクロへキシル)一ベンズイミダゾールをカ卩えた。次に 2. 1モルのジフエ-ル( 2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添 加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2 に、 2モルの無水マレイン酸と 2. 1モルの 4ーヒドロキシベンジルアルコールおよび 1 Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。 滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分 間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキ サゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。 得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形 榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C3を合成した。
(合成例 C4)
窒素導入管を備えたフラスコ 1に、 1モルの 1, 2, 3, 4ーシクロへキサンテトラカルボ ン酸ニ無水物、 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 2Lの NMPをカロ えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状 態で 3時間放置し、反応終了後に 1モルの 5 ァミノ 2— (4—アミノシクロへキシル) 一べンゾォキサゾールをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォ キソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、その状 態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレ イン酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMPをカ卩えて攪 拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3 時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1 モルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナート を 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混 合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によ つて 12時間乾燥し、ポリイミド前駆体 C4を合成した。
(合成例 C5) 窒素導入管を備えたフラスコ 1に、 1モルの 1, 2, 4, 5 シクロブタンテトラカルボン 酸二無水物、 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 2Lの NMPをカロえ て攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態 で 3時間放置し、反応終了後に 1モルの 5 アミノー 2—(4 アミノシクロへキシル) ベンゾチアゾールをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5 時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸 と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、 続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放 置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルの ジフエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回 に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物 を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 1 2時間乾燥し、ポリイミド前駆体 C5を合成した。
(合成例 C6)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 —アミノー 2— (3—アミノシクロへキシル)一ベンゾォキサゾールをカ卩えた。次に 2. 1 モルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナート を 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管 を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルァ ルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわ たって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液 を混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ —3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄 し、得られた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C6を 合成した。
(合成例 C7)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 —アミノー 2— (p ァミノフエ-ル)一ベンゾォキサゾールをカ卩えた。次に 2. 1モルの ジフエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回 に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備え たフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4ーヒドロキシベンジルアルコー ルおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって 滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混 合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得ら れた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C7を合成した
(合成例 C8)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 —アミノー 2— (p ァミノフエ-ル)一ベンゾチアゾールを加えた。次〖こ 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコール および 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し 、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C8を合成した。 (合成例 C9)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 —アミノー 2— (p ァミノフエ-ル)一ベンズイミダゾールをカ卩えた。次に 2. 1モルの ジフエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回 に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備え たフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4ーヒドロキシベンジルアルコー ルおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって 滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混 合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得ら れた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C9を合成した
(合成例 C10)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2 , 2,一ビス(4 ァミノフエ-ル)へキサフルォロプロパンをカ卩えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコール および 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し 、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C10を合成した。 (合成例 C 11)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2, 2'—ビス(3— アミノー 4 ヒドロキシフエニル)へキサフルォロプロパンをカ卩えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの N MPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後 、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌 した。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾー ル)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られ たスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を 真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 C11を合成した。
(合成例 C 12)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2, 2 ビス(3 ァ ミノ— 4 ヒドロキシフエ-ル)エーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3— ジヒドロ チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添 加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モ ルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの NMPをカ卩えて攪拌 し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時 間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モ ルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混 合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によ つて 12時間乾燥し、ポリイミド前駆体 C12を合成した。
[0082] (実施例 C1)
合成例 C 1で得られたポリイミド前駆体 C 1の 100質量部に対して、キノンジアジドィ匕 合物として MG - 300 (東洋合成工業 (株)製) 20質量部を NMPに溶解させ、感光 性ポリイミド前駆体組成物のワニスを得た。得られたワニスをスピンコーターでシリコン ウェハ上に回転塗布し、ホットプレートを用いて 100°Cで 5分間乾燥を行い、 10 /z m の塗膜を得た。この塗膜をマスク(1〜50 μ mの残しパターンおよび抜きパターン)を 通して、超高圧水銀灯にフィルターを取り付け、 i線のみで照射した。そして 2. 38% の水酸ィ匕テトラメチルアンモ -ゥム水溶液で現像した。次に水でリンスし、乾燥した。 その結果、露光量 450mjZcm2の照射で良好なパターンが形成され、残膜率は 92 %であった。また、現像後の外観も良好であった。さらに、窒素雰囲気下、 200°Cで 3 0分、 400°Cで 60分の熱処理を行った。熱膨張係数は、 6ppmZ°Cであり、熱膨張 係数が低!ヽ榭脂であることが確認された。
(実施例 C2〜C6)
実施例 C1にお 、て用いた合成例 C1のポリイミド前駆体 C1の代わりに、合成例 C2 〜C6のポリイミド前駆体 C2〜C6を用いた以外は、実施例 C1と同様に操作して感光 性ワニスを調製し、実施例 C1と同様にして評価した。
(比較例 C1〜C6)
実施例 C1にお 、て用いた合成例 C1のポリイミド前駆体 C1の代わりに、合成例 C7 〜C 12のポリイミド前駆体 C7〜C 12を用 V、た以外は、実施例 C 1と同様に操作して 感光性ワニスを調製し、実施例 C1と同様にして評価した。
実施例 C1〜C6、比較例 C1〜C6の評価結果については以下の表 3に示した。 表 3に示される結果によると、実施例 C1〜C6と比較例 C1〜C6を比較して明らか なように、本発明のポジ型感光性ポリイミド前駆体組成物から得られるポリイミド (実施 例 C1〜C6)は熱膨張係数が小さぐ現像性や感度も優れていることが分力ゝる。
[0083] [表 3]
Figure imgf000047_0001
(合成例 D1)
攪拌装置および冷却管を備えた 300mlの三口セパラブルフラスコに 100mlの NMP 20. 54g (60mmol)の 2, 6— (4, 4'ジアミノジフエ-ル)—ベンゾ [1, 2— d: 5, 4— d, ]ビスォキサゾール(ジァミン D1)を入れて懸濁液とし、このフラスコ内を窒素で静 かに 30分間パージする。反応系を氷冷(5°C以下)し、 12. 04g (55. 205mmol)の PMDAおよび 0. 95g (9. 6mmol)の無水マレイン酸を添カ卩し、室温にて約 68時間 攪拌し、ポリイミド前駆体 D1を得た。
(合成例 D2)
合成例 D1の技術を応用して、 100mlの NMP、 13. 52g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン D2)、 0. 95g (9. 6mmol) の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応 させて、ポリイミド前駆体 D2を得た。
(合成例 D3)
合成例 D1の技術を応用して、 100mlの NMP、 13. 52g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン D2)、 0. 95g (9. 6mmol) の無水マレイン酸および 16. 25g (55. 205mmol)の 3, 3' 4, 4,ービフエ-ルテトラ カルボン二無水物(s— BPDAともいう)を 45時間室温で反応させて、ポリイミド前駆 体 D3を得た。 (合成例 D4)
合成例 D1の技術を応用して、 100mlの NMP、 14. 46g (60mmol)の 5 アミノー 2— (p ァミノフエ-ル)一ベンゾチアゾール(ジァミン D3)、 0. 95g (9. 6mmol)の 無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反 応させて、ポリイミド前駆体 D4を得た。
(合成例 D5)
合成例 D1の技術を応用して、 100mlの NMP、 13. 56g (60mmol)の 5 アミノー 2— (p ァミノフエ-ル)一ベンズイミダゾール(ジァミン D4)、 0. 95g (9. 6mmol)の 無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反 応させて、ポリイミド前駆体 D5を得た。
(合成例 D6)
合成例 D1の技術を応用して、 100mlの NMP、 13. 86g (60mmol)の 5 アミノー 2— (4 アミノシクロへキシル)一ベンゾォキサゾール(ジァミン D5)、 95g (9. 6mmo 1)の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反 応させて、ポリイミド前駆体 D6を得た。
(合成例 D7)
合成例 D1の技術を応用して、 100mlの NMP、 13. 86g (60mmol)の 5 アミノー 2— (4 アミノシクロへキシル)一ベンゾォキサゾール(ジァミン D5)、 95g (9. 6mmo 1)の無水マレイン酸および 12. 37g (55. 205mmol)の 1, 2, 3, 4ーシクロへキサン テトラカルボン酸二無水物(H— PMDAともいう)を 45時間室温で反応させて、ポリイ ミド前駆体 D7を得た。
(合成例 D8)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 1モルの 4 ヒドロキシベンジ ルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 1モルの TEAを 30分間にわ たって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ - 2- (p ァミノフエ-ル)一ベンゾォキサゾール(ジァミン D2)をカ卩えた。次に 2. 1 モルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナート を 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管 を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4—ヒドロキシベンジルァ ルコールおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわ たって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液 を混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3—ジヒドローチォキソ —3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄 し、得られた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 D8を 得た。
(合成例 D9)
合成例 D1の技術を応用して、 100mlの NMP、 12. 01g (60mmol)の 4, 4,ジアミ ノジフエ-ルエーテル(ジァミン D6)、 0. 95g (9. 6mmol)の無水マレイン酸およ 12 . 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体 D9 を得た。
(合成例 D10)
合成例 D1の技術を応用して、 100mlの NMP、 19. 90g (60mmol)の 4, 4,ージ アミノジフエ-ルスルフォン(ジァミン D7)、 0. 95g (9. 6mmol)の無水マレイン酸お よび 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前 駆体 D 10を得た。
(コール酸 o— -トロベンジルエステルの合成)
300mlの三口フラスコにメカ-カルスターラーとジムロート、マントルヒーターを装備 した。三口フラスコに水 75ml、コーノレ酸 15ミリモノレをカ卩えて攪拌し、 IN NaOH水 溶液を加えてコール酸を溶解した。予め 62. 5mlのエタノールに 7. 5ミリモルの臭化 〇—-トロベンジルを溶解させた溶液を加えて、加熱還流を 3時間続けた。冷却後、 沈殿をろ別し、水洗し、エタノール Z水(1Z1) 180mlで再結晶し、真空乾燥し、コー ル酸 o— -トロベンジルエステル(以下ではエステル体 D1と称する)を得た(収量 3. 5 g) o
同様にして、デォキシコール酸 o— -トロベンジルエステル(エステル体 D2)および リトコール酸 o— -トロベンジルエステル(エステル体 D3)を得た。 (実施例 Dl)
合成例 Dlで得られたポリイミド前駆体 100質量部、酸誘導体合成例のエステル体 D1の 25質量部を NMPに溶解させ、感光性ワニスを得た。得られたワニスをスピンコ 一ターでシリコンウェハ上に回転塗布し、ホットプレートを用いて 100°Cで 5分間乾燥 を行い、 10 mの塗膜を得た。この塗膜をマスク(1〜50 mの残しパターンおよび 抜きパターン)を通して、超高圧水銀灯を用いて紫外線を照射した。そして 2. 38% の水酸ィ匕テトラメチルアンモ -ゥム水溶液で現像した。次に水でリンスし、乾燥した。 その結果、露光量 700mjZcm2の照射で良好なパターンが形成され、残膜率は 92 %であった。また、現像後の外観も良好であった。さらに、窒素雰囲気下で 200°Cで 30分、 400°Cで 60分の熱処理を行った。熱膨張係数は、 6ppmZ°Cであり、熱膨張 係数が低!ヽ榭脂であることが確認された。
(実施例 D2〜D8)
実施例 Dlにお 、て用いた合成例 D1のポリイミド前駆体の代わりに、合成例 D2〜 D8のポリイミド前駆体 D2〜D8を用いた以外は、実施例 D1と同様に操作して感光 性ワニスを調製し、実施例 D1と同様にして評価した。
(実施例 D9〜D10)
実施例 D6にお!/、て用いたエステル体 D1の代わりに、エステル体 D2〜D3を用い た以外は、実施例 D1と同様に操作して感光性ワニスを調製し、実施例 D1と同様に して評価した。
(比較例 D1〜D2)
実施例 Dlにお 、て用いた合成例 D1のポリイミド前駆体の代わりに、合成例 D9〜 D10のポリイミド前駆体 D9〜D10を用いた以外は、実施例 D1と同様に操作して感 光性ワニスを調製し、実施例 D1と同様にして評価した。
(比較例 D3)
実施例 D1にお 、て用いたエステル体 D1の代わりに、ナフトキノンジアジドィ匕合物 である MG— 300 (東洋合成工業 (株)製)を用いた以外は、実施例 D1と同様に操作 して感光性ワニスを調製し、実施例 D1と同様にして評価した。
実施例 D1〜D10、比較例 D1〜D3の評価結果については以下の表 4に示した。 表 4に示される結果によると、実施例 D1〜D10の熱膨張係数と比較例 D1〜D2の 熱膨張係数とを比較して明らかなように、実施例 D1〜D10に示される本発明に係る ポジ型感光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比 較例 D1〜D2)に比較して、明らかに熱膨張係数が低減されている。また、実施例 D 1〜D10と比較例 D3とにおける感度および残膜率および現像後外観を比較すると、 V、ずれも優れて 、ることが分かる。
[0088] [表 4]
Figure imgf000051_0001
[0089] (合成例 E1)
攪拌装置および冷却管を備えた 300mlの三口セパラブルフラスコに 100mlの NM Pと 20. 54g (60mmol)の 2, 6— (4, 4,ジアミノジフエ二ノレ)一ベンゾ [1, 2— d: 5, 4 — d' ]ビスォキサゾール(ジァミン El)を入れて懸濁液とし、このフラスコ内を窒素で 静かに 30分間パージする。反応系を氷冷(5°C以下)し、 12. 04g (55. 205mmol) の PMDAおよび 0. 95g (9. 6mmol)の無水マレイン酸を添カ卩し、室温にて約 68時 間攪拌し、ポリイミド前駆体 E1を得た。
(合成例 E2)
合成例 E1の技術を応用して、 100mlの NMP、 13. 52g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン E2)、 0. 95g (9. 6mmol) の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応 させて、ポリイミド前駆体 E2を得た。
(合成例 E3)
合成例 E1の技術を応用して、 100mlの NMP、 13. 52g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン E2)、 0. 95g (9. 6mmol) の無水マレイン酸および 16. 25g (55. 205mmol)の 3, 3' 4, 4,ービフエ-ルテトラ カルボン二無水物(s— BPDA)を 45時間室温で反応させて、ポリイミド前駆体 E3を 得た。
(合成例 E4)
合成例 E1の技術を応用して、 100mlの NMP、 14. 46g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾチアゾール(ジァミン E3)、 0. 95g (9. 6mmol)の 無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反 応させて、ポリイミド前駆体 E4を得た。
(合成例 E5)
合成例 E1の技術を応用して、 100mlの NMP、 13. 56g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンズイミダゾール(ジァミン E4)、 0. 95g (9. 6mmol)の 無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反 応させて、ポリイミド前駆体 E5を得た。
(合成例 E6)
合成例 E1の技術を応用して、 100mlの NMP、 13. 86g (60mmol)の 5—アミノー 2— (4—アミノシクロへキシル)一ベンゾォキサゾール(ジァミン E5)、 95g (9. 6mmo 1)の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反 応させて、ポリイミド前駆体 E6を得た。
(合成例 E7)
合成例 E1の技術を応用して、 100mlの NMP、 13. 86g (60mmol)の 5—アミノー 2— (4—アミノシクロへキシル)一ベンゾォキサゾール(ジァミン E5)、 95g (9. 6mmo 1)の無水マレイン酸および 12. 37g (55. 205mmol)の 1, 2, 3, 4ーシクロへキサン テトラカルボン酸二無水物(H— PMDAともいう)を 45時間室温で反応させて、ポリイ ミド前駆体 E7を得た。 (合成例 E8)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 1モルの 4 ヒドロキシベンジ ルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 1モルの TEAを 30分間にわ たって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ - 2- (p ァミノフエ-ル)一ベンゾォキサゾール(ジァミン E2)をカ卩えた。次に 2. 1 モルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナート を 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管 を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルァ ルコールおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわ たって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液 を混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ —3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄 し、得られた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 E8を得 た。
(合成例 E9)
合成例 E1の技術を応用して、 100mlの NMP、 12. 01g (60mmol)の 4, 4,ジアミ ノジフエ-ルエーテル(ジァミン E6)、 0. 95g (9. 6mmol)の無水マレイン酸およ 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体 E9を 得た。
(合成例 E10)
合成例 E1の技術を応用して、 100mlの NMP、 19. 90g (60mmol)の 4, 4,ージ アミノジフエ-ルスルフォン(ジァミン E7)、 0. 95g (9. 6mmol)の無水マレイン酸およ び 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆 体 E 10を得た。
(コール酸 p -トロベンジルエステルの合成)
300mlの三口フラスコにメカ-カルスターラーとジムロート、マントルヒーターを装備 した。三口フラスコに水 75ml、コーノレ酸 15ミリモノレをカ卩えて攪拌し、 IN NaOH水 溶液を加えてコール酸を溶解した。予め 200mlのエタノールに 7. 5ミリモルの臭化 p -トロベンジルを溶解させた溶液を加えて、加熱還流を 3時間続けた。冷却後、沈 殿をろ別し、水洗し、エタノール Zジェチルエーテル(1Z10) 180mlで再結晶し、真 空乾燥し、コール酸 p -トロべンジルエステル(以下ではエステル体 E1と称する)を 得た (収量 3. 2g)。
同様にして、コール酸 o, p ジニトロべンジルエステル(エステル体 E2)、デォキシ コール酸 P -トロベンジルエステル(エステル体 E3)、リトコール酸 p -トロベンジ ルエステル(エステル体 E4)を得た。
(実施例 E1)
合成例 E1で得られたポリイミド前駆体 100質量部、酸誘導体合成例のエステル体 E1を 25質量部、 9, 10 ジメトキシアントラセン 3質量部を NMPに溶解させ、感光性 ワニスを得た。得られたワニスをスピンコーターでシリコンウェハ上に回転塗布し、ホッ トプレートを用いて 100°Cで 5分間乾燥を行い、 10 /z mの塗膜を得た。この塗膜をマ スク(1〜50 /ζ πιの残しパターンおよび抜きパターン)を通して、超高圧水銀灯を用い て紫外線を照射した。そして 2. 38%の水酸ィ匕テトラメチルアンモ -ゥム水溶液で現 像した。次に水でリンスし、乾燥した。その結果、露光量 500mjZcm2の照射で良好 なパターンが形成され、残膜率は 90%であった。また、現像後の外観も良好であつ た。さらに、窒素雰囲気下で 200°Cで 30分、 400°Cで 60分の熱処理を行った。熱膨 張係数は、 6ppmZ°Cであり、熱膨張係数が低い榭脂であることが確認された。
(実施例 E2〜E8)
実施例 Elにお 、て用いた合成例 E1のポリイミド前駆体の代わりに、合成例 E2〜E 8のポリイミド前駆体 E2〜E8を用いた以外は、実施例 E1と同様に操作して感光性ヮ ニスを調製し、実施例 E1と同様にして評価した。
(実施例 E9〜E11)
実施例 E6にお!/、て用いたエステル体 E1の代わりに、エステル体 E2〜E4を用いた 以外は、実施例 E1と同様に操作して感光性ワニスを調製し、実施例 E1と同様にして 評価した。
(比較例 E1〜E2) 実施例 Elにお 、て用いた合成例 Elのポリイミド前駆体の代わりに、合成例 E9〜E 10のポリイミド前駆体 E9〜E10を用いた以外は、実施例 E1と同様に操作して感光 性ワニスを調製し、実施例 E1と同様にして評価した。
(比較例 E3)
実施例 E1にお 、て用いたエステル体 E1の代わりに、ナフトキノンジアジド化合物 である MG— 300 (東洋合成工業 (株)製)を用いた以外は、実施例 E1と同様に操作 して感光性ワニスを調製し、実施例 E1と同様にして評価した。
実施例 E 1〜E 11、比較例 E 1〜E3の評価結果にっ 、ては以下の表 5に示した。 表 5に示される結果によると、実施例 E1〜E10の熱膨張係数と比較例 E1〜E2の 熱膨張係数とを比較して明らかなように、実施例 E1〜E10に示される本発明に係る ポジ型感光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比 較例 E1〜E2)に比較して、明らかに熱膨張係数が低減されている。また、実施例 E1 〜E10と比較例 E3とにおける感度および残膜率および現像後外観を比較すると、感 度および残膜率および現像外観ともに実施例 E 1〜E7は、比較例 E 1〜E4に比較し て劣化しておらず、本発明に係るポジ型感光性ポリイミド前駆体力 得られるポリイミ ドは、現像性や感度も優れていることが分かる。
[表 5] 熱膨張係数 感度 残膜率 現像後外観
( PP m/。C ) (mj/cm (一)
実施例 E 1 6 500 90 良好
実施例 E 2 6 450 92 良好
実施例 E 3 7 450 92 良好
実施冽 E 4 5 480 93 良好
実施例 E 5 6 450 95 良好
実施例 E 6 8 350 93 良好
実施例 E 7 1 5 300 92 良好
実施例 E 8 5 500 90 良好
実施例 E 9 9 400 90 良好
実施例 E 1 0 8 400 92 良好
実施例 E 1 1 8 350 92 良好
比^例 E 1 30 530 90 良好
比^例 E 2 33 550 88 良好
比^例 E 3 5 > 1 200 84 不良 (合成例 Fl)
攪拌装置および冷却管を備えた 300mlの三口セパラブルフラスコに 100mlの NM Pと 20. 54g (60mmol)の 2, 6— (4, 4,ジアミノジフエ二ノレ)一ベンゾ [1, 2— d: 5, 4 — d' ]ビスォキサゾール(ジァミン Fl)を入れて懸濁液とし、このフラスコ内を窒素で 静かに 30分間パージする。反応系を氷冷(5°C以下)し、 12. 04g (55. 205mmol) の PMDAおよび 0. 95g (9. 6mmol)の無水マレイン酸を添カ卩し、室温にて約 68時 間攪拌し、ポリイミド前駆体 F1を得た。
(合成例 F2)
合成例 F1の技術を応用して、 100mlの NMP、 13. 52g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン F2)、 0. 95g (9. 6mmol) の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応 させて、ポリイミド前駆体 F2を得た。
(合成例 F3)
合成例 F1の技術を応用して、 100mlの NMP、 13. 52g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン F2)、 0. 95g (9. 6mmol) の無水マレイン酸および 16. 25g (55. 205mmol)の 3, 3' 4, 4,ービフエ-ルテトラ カルボン二無水物(s— BPDA)を 45時間室温で反応させて、ポリイミド前駆体 F3を 得た。
(合成例 F4)
合成例 F1の技術を応用して、 100mlの NMP、 14. 46g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾチアゾール(ジァミン F3)、 0. 95g (9. 6mmol)の 無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反 応させて、ポリイミド前駆体 F4を得た。
(合成例 F5)
合成例 F1の技術を応用して、 100mlの NMP、 13. 56g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンズイミダゾール(ジァミン F4)、 0. 95g (9. 6mmol)の 無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反 応させて、ポリイミド前駆体 F5を得た。 (合成例 F6)
合成例 F1の技術を応用して、 100mlの NMP、 13. 86g (60mmol)の 5 アミノー 2— (4 アミノシクロへキシル)一ベンゾォキサゾール(ジァミン F5)、 95g (9. 6mmo 1)の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反 応させて、ポリイミド前駆体 F6を得た。
(合成例 F7)
合成例 F1の技術を応用して、 100mlの NMP、 13. 86g (60mmol)の 5 アミノー 2— (4 アミノシクロへキシル)一ベンゾォキサゾール(ジァミン F5)、 95g (9. 6mmo 1)の無水マレイン酸および 12. 37g (55. 205mmol)の 1, 2, 3, 4ーシクロへキサン テトラカルボン酸二無水物(H— PMDAともいう)を 45時間室温で反応させて、ポリイ ミド前駆体 F7を得た。
(合成例 F8)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 1モルの 4 ヒドロキシベンジ ルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 1モルの TEAを 30分間にわ たって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ - 2- (p ァミノフエ-ル)一ベンゾォキサゾール(ジァミン F2)を加えた。次に 2. 1モ ルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を 備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアル コールおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわた つて滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を 混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、 得られた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 F8を得た
(合成例 F9)
合成例 F1の技術を応用して、 100mlの NMP、 12. 01g (60mmol)の 4, 4,ジアミ ノジフエ-ルエーテル(ジァミン F6)、 0. 95g (9. 6mmol)の無水マレイン酸およ 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体 F9を 得た。
(合成例 F10)
合成例 F1の技術を応用して、 100mlの NMP、 19. 90g (60mmol)の 4, 4,—ジ アミノジフエ-ルスルフォン(ジァミン F7)、 0. 95g (9. 6mmol)の無水マレイン酸およ び 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆 体 F 10を得た。
[0096] (酸誘導体の合成)
300mlのナスフラスコに、 N, N ジメチルホルムアミドを 20ml入れ、攪拌しながら コール酸 15ミリモルを徐々に加え溶解した。さらに、 TEA15ミリモルを加え、氷冷し て攪拌した。次に、 a—メチルフヱナシルプロミドを、 13. 5ミリモル加えて、溶解させ 、 5°Cで 2日間静置した後、 150mlの水をカ卩え、沈殿した固形物を水で洗浄、乾燥し た。さらにエチルアルコールで再結晶することにより、 a メチルフエナシルコール酸 (以下では酸誘導体 F1と称する)を得た。
同様にして、 3,, 5,ージメトキシベンゾィ-ルコール酸(酸誘導体 F2)、 α メチル フエナシルデォキシコール酸(酸誘導体 F3)、 a—メチルフエナシルリトコール酸(酸 誘導体 F4)を得た。
[0097] (実施例 F1)
合成例 F1で得られたポリイミド前駆体 100質量部、酸誘導体合成例の酸誘導体 F 1の 25質量部を NMPに溶解させ、感光性ワニスを得た。得られたワニスをスピンコー ターでシリコンウェハ上に回転塗布し、ホットプレートを用いて 100°Cで 5分間乾燥を 行!、、 10 μ mの塗膜を得た。この塗膜をマスク(1〜50 μ mの残しパターンおよび抜 きパターン)を通して、超高圧水銀灯を用いて紫外線を照射した。そして 2. 38%の 水酸ィ匕テトラメチルアンモ -ゥム水溶液で現像した。次に水でリンスし、乾燥した。そ の結果、露光量 450mjZcm2の照射で良好なパターンが形成され、残膜率は 93% であった。また、現像後の外観も良好であった。さらに、窒素雰囲気下で 200°Cで 30 分、 400°Cで 60分の熱処理を行った。熱膨張係数は、 6ppmZ°Cであり、熱膨張係 数が低 、榭脂であることが確認された。
(実施例 F2〜F8)
実施例 F1にお 、て用いた合成例 F1のポリイミド前駆体の代わりに、合成例 F2〜F 8のポリイミド前駆体 F2〜F8を用いた以外は、実施例 F1と同様に操作して感光性ヮ ニスを調製し、実施例 F1と同様にして評価した。
(実施例 F9〜F11)
実施例 F1にお ヽて用いた酸誘導体 F1の代わりに、酸誘導体 F2〜F3を用いた以 外は、実施例 F1と同様に操作して感光性ワニスを調製し、実施例 F1と同様にして評 価し 7こ。
(比較例 F1〜F2)
実施例 F6にお 、て用いた合成例 F1のポリイミド前駆体 F1の代わりに、合成例 F9 〜F10のポリイミド前駆体 F9〜F10を用いた以外は、実施例 F1と同様に操作して感 光性ワニスを調製し、実施例 F1と同様にして評価した。
(比較例 F3)
実施例 F1にお 、て用いたエステル体 F1の代わりに、ナフトキノンジアジド化合物で ある MG— 300 (東洋合成工業 (株)製)を用いた以外は、実施例 F1と同様に操作し て感光性ワニスを調製し、実施例 F1と同様にして評価した。
実施例 F1〜F11、比較例 F1〜F3の評価結果については以下の表 6に示した。 表 6に示される結果によると、実施例 F1〜F11の熱膨張係数と比較例 F1〜F2の 熱膨張係数とを比較して明らかなように、実施例 F1〜F11に示される本発明に係る ポジ型感光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比 較例 F1〜F2)に比較して、明らかに熱膨張係数が低減されている。また、実施例 F1 〜F11と比較例 F3とにおける感度および残膜率および現像後外観を比較すると、い ずれも優れて 、ることが分かる。
[表 6] 熱膨^係数 残膜率 現像後外観
( pp m/°C ) ( % ) ( -)
実施例 F 1 5 680 92 良好
実施例 F 2 6 600 92 良好
実施例 F 3 7 600 92 良好
実施例 F 4 6 650 90 良好
実施例 F 5 6 600 93 良好
実施例 F 6 9 550 93 良好
実施例 F 7 1 5 450 90 良好
実施例 F 8 6 600 90 良好
実施例 F 9 9 550 90 良好
実施例 F 1 0 9 620 93 良好
実施例 F 1 1 9 600 92 良好
比 ^例 F 1 29 650 90 良好
比^例 F 2 32 650 88 良好
t m F 3 6 > 1 200 85 不良
(合成例 G1)
窒素導入管を備えたフラスコ 1に、 1モルの 4, 4'ーォキシジフタル酸無水物、 2. 1 モルの 4 ヒドロキシベンジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2 . 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反 応終了後に 1モルの 2, 6- (4, 4,ジアミノジフエ-ル)一べンゾ [1, 2-d: 5, 4 d, ]ビスォキサゾールをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3—ジヒドロ一チォキソ —3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン 酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMPとをカ卩えて攪拌 し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時 間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モ ルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混 合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によ つて 12時間乾燥した。
(合成例 G2)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した 後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ -ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分け て添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量 のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間 乾燥した。
(合成例 G3)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ— 2— (p —アミノー m—ヒドロキシフエニル)一ベンゾォキサゾールをカ卩えた。次に 2. 1モルの ジフエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回 に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備え たフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴 下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間 攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキサ ゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得 られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭 脂を真空乾燥機によって 12時間乾燥した。
(合成例 G4)
窒素導入管を備えたフラスコ 1に、 1モルの 4, 4,ーォキシジフタル酸、 2. 1モルの エチルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30 分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 アミノー 6 ヒドロキシ一 2— (p アミノーフエ-ル)一ベンゾォキサゾールをカロえ た。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール )ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別 の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのェチルァ ルコールおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわ たって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液 を混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ —3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄 し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 G5)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ— 6 ヒド 口キシ一 2— (p アミノー m—ヒドロキシフエ-ル)一ベンゾォキサゾールをカ卩えた。 次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾール)ホ スホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒 素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのェチルアルコ ールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたつ て滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混 合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得ら れた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 G6)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナジック酸無水物(5 ノルボルネン—2, 3 ジカルボン酸無水物)と 2. 1モルの 4ーヒドロキシベンジル アルコールおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶 液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキ ソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態 で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗 浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 G7)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの 1, 2, 3, 4—テトラヒ ドロフタル酸無水物と 2. 1モルの 4ーヒドロキシベンジルアルコールおよび 1Lの NM Pとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後 、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌 した。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾー ル)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られ たスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を 真空乾燥機によって 12時間乾燥した。
(合成例 G8)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2, 2'—ビス(3— アミノー 4 ヒドロキシフエニル)へキサフルォロプロパンをカ卩えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの N MPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後 、この状態で 3時間放置した後、フラスコにフラスコ 2の溶液を混合し、 30分間攪拌し た。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール )ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られた スラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真 空乾燥機によって 12時間乾燥する。
(合成例 G9)
窒素導入管を備えたフラスコに、 1モルの PMDA、 2. 1モルのエチルアルコールお よび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。滴下後、この状態で 3時間放置し、反応終了後に 1モルのビス(3 ァミノ— 4 ヒ ドロキシフエ-ル)エーテルを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ— チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、そ の状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水 マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの NMPとを加えて攪拌し、続け て 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し た後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モルのジフ ェ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分 けて添加し、添加後、この状態で 5時間縮合した。得られたスラリー状の混合物を大 量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時 間乾燥した。
(合成例 G10)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2 , 2, 一ビス(4 ァミノフエ-ル)へキサフルォロプロパンをカ卩えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコール および 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し 、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 G11)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4 , 4'—ジアミノジフエ-ルエーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒ ドロ―チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添カロ 後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モル の無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMP をカロえて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、こ の状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した 。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール) ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたス ラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空 乾燥機によって 12時間乾燥した。
(実施例 G1)
合成例 G1で得られたポリイミド前駆体 100質量部、ジフエ-ルョードニゥム 9, 10 —ジメトキシアントラセン一 2—スルホネート 10質量部、テトラヒドロビラ-ル基を酸分 解性基に持つポリヒドロキシ化合物( α , α , α '—トリス (4 ヒドロキシフエ-ル)— 1 ェチル 4 イソプロピルベンゼンへの 4 ヒドロキシベンジル基へキサ付カ卩体)( テトラヒドロビラ-ル基置換率 0. 8) 20質量部を ΝΜΡに溶解させ、感光性ポリイミド前 駆体組成物のワニスを得た。得られた感光性ポリイミド前駆体組成物をスピンコータ 一でシリコンウェハ上に回転塗布し、ホットプレートを用いて 100°Cで 5分間乾燥を行 い、 10 mの塗膜を得た。この塗膜をマスク(1〜50 mの残しパターンおよび抜き パターン)を通して、超高圧水銀灯を用いて紫外線を照射した後、 120°Cで 2分間加 熱した。そして 2. 38%の水酸ィ匕テトラメチルアンモ -ゥム水溶液で現像した後、水で リンスし、乾燥した。その結果、露光量 600mjZcm2の照射で良好なパターンが形成 され、残膜率は 90%であった。また、現像後の外観も良好であった。さらに、 200°C で 30分、 400°Cで 60分の熱処理を行った。熱膨張係数は、 5ppmZ°Cであり、熱膨 張係数が低 ヽ榭脂であることが確認された。
(実施例 G2〜G7)
実施例 G1にお 、て用いた合成例 G1のポリイミド前駆体の代わりに、合成例 G2〜 G7のポリイミド前駆体を用いた以外は、実施例 G1と同様に操作して感光性ワニスを 調製し、実施例 G1と同様にして評価した。
(比較例 G1〜G4)
実施例 G1にお 、て用いた合成例 G1のポリイミド前駆体の代わりに、合成例 G8〜 G 11のポリイミド前駆体を用いた以外は、実施例 G 1と同様に操作して感光性ワニス を調製し、実施例 G1と同様にして評価した。
実施例 G 1〜G7、比較例 G 1〜G4の評価結果につ 、ては以下の表 7に示した。 表 7に示される結果によると、実施例 G1〜G7の熱膨張係数と比較例 G1〜G4の熱 膨張係数とを比較して明らかなように、実施例 G1〜G7に示される本発明に係るポジ 型感光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比較例 G1〜G4)に比較して、明らかに熱膨張係数が低減されている。また、実施例 G1〜G 7と比較例 G1〜G4とにおける感度および残膜率および現像後外観を比較すると、 感度および残膜率および現像外観ともに実施例 G1〜G7は、比較例 G1〜G4に比 較して劣化しておらず、本発明に係るポジ型感光性ポリイミド前駆体力 得られるポリ イミドは、現像性や感度も優れて 、ることが分かる。
[表 7]
Figure imgf000067_0001
(合成例 HI)
攪拌装置および冷却管を備えた 300mlの三口セパラブルフラスコに 100mlの NM Pとと 20. 54g (60mmol)の 2, 6— (4, 4,ジアミノジフエ二ノレ)一べンゾ [1, 2— d: 5, 4— d' ]ビスォキサゾール(ジァミン HI)を入れて懸濁液とし、このフラスコ内を窒素で 静かに 30分間パージする。反応系を氷冷(5°C以下)し、 12. 04g (55. 205mmol) の PMDAおよび 0. 95g (9. 6mmol)の無水マレイン酸を添カ卩し、室温にて約 68時 間攪拌し、ポリイミド前駆体 HIを得た。
(合成例 H2)
合成例 HIの技術を応用して、 100mlの NMP、 13. 52g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン H2)、 0. 95g (9. 6mmol) の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応 させて、ポリイミド前駆体 H2を得た。
(合成例 H3)
合成例 HIの技術を応用して、 100mlの NMP、 13. 52g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン H2)、 0. 95g (9. 6mmol) の無水マレイン酸および 16. 25g (55. 205mmol)の 3, 3' 4, 4,ービフエ-ルテトラ カルボン二無水物(s— BPDA)を 45時間室温で反応させて、ポリイミド前駆体 H3を 得た。
(合成例 H4)
合成例 HIの技術を応用して、 100mlの NMP、 14. 46g (60mmol)の 5—アミノー 2—(p—ァミノフエ-ル)一べンゾチアゾール(ジァミン H3)、 0. 95g (9. 6mmol)の 無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反 応させて、ポリイミド前駆体 H4を得た。
(合成例 H5)
合成例 HIの技術を応用して、 100mlの NMP、 13. 56g (60mmol)の 5—アミノー 2— (p—ァミノフエ-ル)一ベンズイミダゾール(ジァミン H4)、 0. 95g (9. 6mmol)の 無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反 応させて、ポリイミド前駆体 H5を得た。
(合成例 H6)
合成例 HIの技術を応用して、 100mlの NMP、 13. 86g (60mmol)の 5—アミノー 2— (4—アミノシクロへキシル)一ベンゾォキサゾール(ジァミン H5)、 95g (9. 6mmo 1)の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反 応させて、ポリイミド前駆体 H6を得た。
(合成例 H7)
合成例 HIの技術を応用して、 100mlの NMP、 13. 86g (60mmol)の 5—アミノー 2— (4—アミノシクロへキシル)一ベンゾォキサゾール(ジァミン H5)、 95g (9. 6mmo 1)の無水マレイン酸および 12. 37g (55. 205mmol)の 1, 2, 3, 4ーシクロへキサン テトラカルボン酸二無水物(H— PMDAともいう)を 45時間室温で反応させて、ポリイ ミド前駆体 H7を得た。
(合成例 H8)
窒素導入管を備えたフラスコ 1に、 1モルの NMP、 1モルの 4—ヒドロキシベンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 1モルの TEAを 30分間にわた つて滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5—アミノー 2- (p—ァミノフエ-ル)一ベンゾォキサゾール(ジァミン H2)をカ卩えた。次に 2. 1モ ルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を 備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアル コールおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわた つて滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を 混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、 得られた固形榭脂を真空乾燥機によって 12時間乾燥し、ポリイミド前駆体 H8を得た
(合成例 H9)
合成例 HIの技術を応用して、 100mlの NMP、 12. 01g (60mmol)の 4, 4,ジアミ ノジフエ-ルエーテル(ジァミン 6)、 0. 95g (9. 6mmol)の無水マレイン酸およ 12. 0 4g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体 H9を 得た。
(合成例 H10)
合成例 HIの技術を応用して、 100mlの NMP、 19. 90g (60mmol)の 4, 4,ージ アミノジフエ-ルスルフォン(ジァミン 7)、 0. 95g (9. 6mmol)の無水マレイン酸およ び 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆 体 H10を得た。
(酸誘導体の合成)
300mlの三口フラスコにメカ-カルスターラーとジムロート、マントルヒーターを装備 した。三口フラスコに 100mlの N, N ジメチルホルムアミドとコール酸 15mmolをカロ え、 300rpmの回転速度で攪拌し、次に、 15mmolの 3, 4 ジヒドロ— α—ピランを 加え、さらに、 ρ トルエンスルホン酸を 15mmol添カ卩し、室温でー晚攪拌した。生じ た沈殿をろ別し、水洗し、エタノール Z水(1Z1) 180mlで再結晶し、真空乾燥する ことにより、テトラヒドロビラ-ル基でカルボキシル基の水素原子を置換したコール酸 誘導体 (以下、酸誘導体 HIと称する。)を得た。 同様の方法により、テトラヒドロビラニル基でカルボキシル基の水素原子を置換した ジァセチルコール酸誘導体 (酸誘導体 H2)、テトラヒドロビラニル基でカルボキシル 基の水素原子を置換したデォキシコール酸誘導体 (酸誘導体 H3)、テトラヒドロビラ -ル基でカルボキシル基の水素原子を置換したリトコール酸誘導体 (酸誘導体 H4) を得た。
(実施例 HI)
合成例 HIで得られたポリイミド前駆体 100質量部、ジフエ-ルョードニゥム— 9, 10 —ジメトキシアントラセン— 2—スルホネート 3質量部、酸誘導体 HIの 25質量部を N MPに溶解させ、感光性ワニスを得た。得られたワニスをスピンコーターでシリコンゥェ ハ上に回転塗布し、ホットプレートを用いて 100°Cで 5分間乾燥を行い、 10 mの塗 膜を得た。この塗膜をマスク(1〜50 μ mの残しパターンおよび抜きパターン)を通し て、超高圧水銀灯を用いて紫外線を照射した後、 120°Cで 2分間加熱した。そして 3 8の水酸ィ匕テトラメチルアンモ -ゥム水溶液で現像した。次に水でリンスし、乾燥した 。その結果、露光量 450miZcm2の照射で良好なパターンが形成され、残膜率は 9 1%であった。また、現像後の外観も良好であった。さらに、窒素雰囲気下で 200°C で 30分、 400°Cで 60分の熱処理を行った。熱膨張係数は、 5ppmZ°Cであり、熱膨 張係数が低 ヽ榭脂であることが確認された。
(実施例 H2〜H8)
実施例 HIにお 、て用いた合成例 HIのポリイミド前駆体の代わりに、合成例 H2〜 H8のポリイミド前駆体 H2〜H8を用いた以外は、実施例 HIと同様に操作して感光 性ワニスを調製し、実施例 HIと同様にして評価した。
(実施例 H9〜H11)
実施例 H6にお 、て用いたエステル体 HIの代わりに、酸誘導体 H2〜H4を用いた 以外は、実施例 HIと同様に操作して感光性ワニスを調製し、実施例 HIと同様にし て評価した。
(比較例 H1〜H2)
実施例 HIにお 、て用いた合成例 HIのポリイミド前駆体の代わりに、合成例 H9〜 H10のポリイミド前駆体 H9〜H10を用いた以外は、実施例 HIと同様に操作して感 光性ワニスを調製し、実施例 HIと同様にして評価した。
(比較例 H3)
実施例 HIにお 、て用いた酸誘導体 HIの代わりに、ナフトキノンジアジド化合物で ある MG— 300 (東洋合成工業 (株)製)を用いた以外は、実施例 HIと同様に操作し て感光性ワニスを調製し、実施例 HIと同様にして評価した。
実施例 H 1〜H 11、比較例 H 1〜H3の評価結果にっ 、ては以下の表 8に示した。 表 8に示される結果によると、実施例 HI〜: HI 1の熱膨張係数と比較例 HI〜H2の 熱膨張係数とを比較して明らかなように、実施例 HI〜: HI 1に示される本発明に係る ポジ型感光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比 較例 H1〜H2)に比較して、明らかに熱膨張係数が低減されている。また、実施例 H 1〜H11と比較例 H3とにおける感度および残膜率および現像後外観を比較すると、 V、ずれも優れて 、ることが分かる。
[表 8]
Figure imgf000071_0001
(合成例 II)
窒素導入管を備えたフラスコ 1に、 1モルの 4, 4'ーォキシジフタル酸無水物、 2. 1 モルの 4—ヒドロキシベンジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2 . 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反 応終了後に 1モルの 2, 6- (4, 4,ジアミノジフエ-ル)一べンゾ [1, 2-d: 5, 4 d, ]ビスォキサゾールをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ —3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン 酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMPとをカ卩えて攪拌 し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時 間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モ ルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混 合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によ つて 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を高速 に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により乾 燥してポリイミド前駆体 IIを得た。
(合成例 12)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMPとをカ卩えて攪拌し、続け て 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し た後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モルのジフ ェ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分 けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大 量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時 間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を高速 に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により乾 燥してポリイミド前駆体 12を得た。
(合成例 13)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ— 2— (p —アミノー m—ヒドロキシフエニル)一ベンゾォキサゾールをカ卩えた。次に 2. 1モルの ジフエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回 に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備え たフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴 下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間 攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキサ ゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得 られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭 脂を真空乾燥機によって 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を高速 に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により乾 燥してポリイミド前駆体 13を得た。
(合成例 14)
窒素導入管を備えたフラスコ 1に、 1モルの 4, 4'ーォキシジフタル酸無水物、 2. 1 モルのエチルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEA を 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モ ルの 5 アミノー 6 ヒドロキシ一 2— (p アミノーフエ-ル) ベンゾォキサゾールを カロえた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾ ール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また 、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのェチ ルアルコールおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間 にわたつて滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の 溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォ キソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、その状 態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して 洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を、高 速に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により 乾燥してポリイミド前駆体 14を得た。
(合成例 15)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ— 6 ヒド 口キシ一 2— (p アミノー m—ヒドロキシフエ-ル)一ベンゾォキサゾールをカ卩えた。 次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾール)ホ スホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒 素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのェチルアルコ ールおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたつ て滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混 合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得ら れた固形榭脂を真空乾燥機によって 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を高速 に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により乾 燥してポリイミド前駆体 15を得た。
(合成例 16)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナジック酸無水物(5 ノルボルネン—2, 3 ジカルボン酸無水物)と 2. 1モルの 4ーヒドロキシベンジル アルコールおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶 液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキ ソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態 で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗 浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を、高 速に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により 乾燥してポリイミド前駆体 16を得た。
(合成例 17) 窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの 1, 2, 3, 4—テトラヒ ドロフタル酸無水物と 2. 1モルの 4ーヒドロキシベンジルアルコールおよび 1Lの NM Pとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後 、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌 した。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾー ル)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られ たスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を 真空乾燥機によって 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を高速 に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により乾 燥してポリイミド前駆体 17を得た。
(合成例 18)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2, 2'—ビス(3— アミノー 4 ヒドロキシフエニル)へキサフルォロプロパンをカ卩えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの N MPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下 後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪 拌した。次に 2. 1モルのジフエニル(2, —ジヒドロ一チォキソ一 3 ベンゾォキサゾー ル)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られ たスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を 真空乾燥機によって 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を、高 速に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により 乾燥してポリイミド前駆体 18を得た。
(合成例 19)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのエチルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルのビス(3 ァミノ— 4 —ヒドロキシフエ-ル)エーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ -チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、 その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無 水マレイン酸と 2. 1モルのエチルアルコールおよび 1Lの NMPとを加えて攪拌し、続 けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置 した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を 大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12 時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を、高 速に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により 乾燥してポリイミド前駆体 19を得た。 (合成例 110)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2 , 2, 一ビス(4 ァミノフエ-ル)へキサフルォロプロパンをカ卩えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコール および 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し 、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を、高 速に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により 乾燥してポリイミド前駆体 110を得た。
(合成例 111)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 ヒドロキシベン ジルアルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4 , 4'—ジアミノジフエ-ルエーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒ ドロ―チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添カロ 後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モル の無水マレイン酸と 2. 1モルの 4 ヒドロキシベンジルアルコールおよび 1Lの NMP とを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、 この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌し た。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール )ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られた スラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真 空乾燥機によって 12時間乾燥した。
次に、乾燥空気導入管を備えたフラスコに、得られた固形榭脂 10g、テトラヒドロフラ ン 50gを加えて攪拌し、そこへ 3, 4 ジヒドロ一(2H)—ピラン 26g、 p トルエンスル ホン酸を触媒量加えて、室温で 5時間反応させた。得られたスラリー状の榭脂を、高 速に攪拌した 10Lの 2—プロパノール溶媒中で攪拌し、洗浄した後、減圧乾燥により 乾燥してポリイミド前駆体 II 1を得た。
(実施例 II)
合成例 IIで得られたポリイミド前駆体 100質量部とジフエ-ルョードニゥム 9, 10 ージメトキシアントラセン 2—スルホネート 10質量部とを NMPに溶解させ、感光性 ポリイミド前駆体組成物のワニスを得た。スピンコーターでシリコンウェハ上にワニスを 回転塗布し、ホットプレートを用いて 100°Cで 5分間乾燥を行い、 10 mの塗膜を得 た。この塗膜をマスク(1〜50 mの残しパターンおよび抜きパターン)を通して、超 高圧水銀灯を用いて紫外線を照射し、 95°Cで 5分間加熱した。さらに 2. 38%の水 酸ィ匕テトラメチルアンモ -ゥム水溶液で現像した後、純水でリンスし、乾燥した。その 結果、露光量 400mjZcm2の照射で良好なパターンが形成され、残膜率は 94%で あった。また、現像後の外観も良好であった。さらに、 200°Cで 30分、 400°Cで 60分 の熱処理を行った。熱膨張係数は、 5ppmZ°Cであり、熱膨張係数が低い榭脂であ ることが確認された。
(実施例 12〜17)
実施例 IIにお 、て用いたポリイミド前駆体 IIの代わりに、ポリイミド前駆体 12〜17を 用いた以外は、実施例 IIと同様に操作して感光性ワニスを調整し、実施例 IIと同様 にして評価した。
(比較例 Π〜Ι4)
実施例 IIにお 、て用いたポリイミド前駆体 IIの代わりに、ポリイミド前駆体 I8〜I11 を用いた以外は、実施例 IIと同様に操作して感光性ワニスを調整し、実施例 IIと同 様にして評価した。
実施例 11〜17、比較例 11〜14の評価結果については以下の表 9に示した。
表 9に示される結果によると、実施例 II〜17の熱膨張係数と比較例 II〜14の熱膨 張係数とを比較して明らかなように、実施例 11〜17に示される本発明に係るポジ型感 光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比較例 11〜1 4)に比較して、明らかに熱膨張係数が低減されている。また、実施例 11〜17と比較 例 11〜14とにおける感度および残膜率および現像後外観を比較すると、感度および 残膜率および現像外観ともに実施例 11〜17は、比較例 11〜14に比較して劣化して おらず、本発明に係るポジ型感光性ポリイミド前駆体力も得られるポリイミドは、現像 性や感度も優れて ヽることが分かる。
[0114] [表 9]
Figure imgf000080_0001
[0115] (合成 f歹 ΐ)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 2, 6— (4, 4'ジアミノジフエ-ル)一べンゾ [1, 2-d: 5, 4 d' ]ビスォキサゾールをカ卩えた 。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール) ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の 窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 2— -トロべ ンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2 の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チ ォキソー3—べンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、その 状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入し て洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成飾 2)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— D AMBOをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モ ルの 4 -トロべンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モ ルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フ ラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2 , 3 ジヒドロ チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カロ し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノ ール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥し た。
(合成飾 3)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— D AMBOをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モ ルの 2— -トロべンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モ ルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フ ラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2 , 3 ジヒドロ チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カロ し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノ ール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥し た。
(合成綱
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの α メチルフエナ シルアルコールおよび 2Lの ΝΜΡをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p — DAMBOを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの α—メチルフエナシルアルコールおよび 1Lの ΝΜΡをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した 後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ -ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分け て添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量 のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間 乾燥した。
(合成飾 5)
窒素導入管を備えたフラスコ 1に、 1モルの 3, 3' , 4, 4,—ビフエ-ルテトラカルボ ン酸ニ無水物、 2. 1モルの 2— -トロべンジルアルコールおよび 2Lの NMPをカ卩えて 攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— DAMBOを加えた。次に 2. 1モルのジフエ -ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分け て添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラ スコ 2に、 2モルの無水マレイン酸と 2. 1モルの 2— -トロベンジルアルコールおよび 1 Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。 滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分 間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキ サゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。 得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形 榭脂を真空乾燥機によって 12時間乾燥した。
(合成 f歹 6)
窒素導入管を備えたフラスコ 1に、 1モルの 4, 4'ーォキシジフタル酸無水物、 2. 1 モルの 2— -トロべンジルアルコールおよび 2Lの ΝΜΡをカ卩えて攪拌し、続けて 2. 1 モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応 終了後に 1モルの P— DAMBOをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒド 口 チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回〖こ分けて添加し、添加後 、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの 無水マレイン酸と 2. 1モルの 2— -トロベンジルアルコールおよび 1Lの NMPをカロえ て攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。この状態で 3時間 放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モル のジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5 回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合 物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によつ て 12時間乾燥した。
(合成飾 7)
窒素導入管を備えたフラスコ 1に、 1モルの 3, 3' , 4, 4,一ベンゾフエノンテトラカル ボン酸二無水物、 2. 1モルの 2— -トロベンジルアルコールおよび 2Lの NMPをカロえ て攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態 で 3時間放置し、反応終了後に 1モルの p— DAMBOを加えた。次〖こ 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 2— -トロべンジルアルコールおよ び 1Lの NMPを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 3 0分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾ ォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合し た。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成綱
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4, 4' —ジアミノジフエ-ルエーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ -チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、滴下後、 その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナ ジック酸無水物(5 ノルボルネンー 2, 3 ジカルボン酸無水物)と 2. 1モルの 2— - トロべンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEA を 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフ ラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒド 口 チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回〖こ分けて添加し、添加後 、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に 投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成飾 9)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4, 4' —ジアミノジフエ-ルスルホンをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ -チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、 その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナ ジック酸無水物(5 ノルボルネンー 2, 3 ジカルボン酸無水物)と 2. 1モルの 2— - トロべンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEA を 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフ ラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒド 口 チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回〖こ分けて添加し、添加後 、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に 投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成飾 10)
窒素導入管を備えたフラスコ 1に、 1モルの 2, 2,—ビス—(3, 4 ジカルボキシフエ -ル)へキサフルォロプロパン二無水物、 2. 1モルの 2— -トロベンジルアルコール および 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4, 4'—ジアミノジ フエ-ルエーテルを加えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ—チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、その状態で 5時間縮合 した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナジック酸無水物(5 ノ ルボルネンー 2, 3 ジカルボン酸無水物)と 2. 1モルの 2 -トロベンジルアルコー ルおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって 滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混 合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得ら れた固形榭脂を真空乾燥機によって 12時間乾燥した。
(実施 f歹 ΐ)
合成 ί歹 1のポリイミド前駆体をワニス粘度が 50ボイズ程度〖こなるように ΝΜΡに溶解 し、感光性ワニスを得た。スピンコーターでシリコンウェハ上にワニスを回転塗布し、 ホットプレートを用いて 100°Cで 5分間乾燥を行い、 5 mの塗膜を得た。この塗膜を マスク(1〜50 mの残しパターンおよび抜きパターン)を通して、超高圧水銀灯を用 いて紫外線を照射した。その後、ホットプレート上で 80°Cで 2分間のプリベータ処理 を行った後、現像を行った。現像は 2. 38の0 /0の水酸ィ匕テトラメチルアンモ-ゥム水 溶液で現像した。次に水でリンスし、乾燥した。その結果、露光量 550mJ,cm2の照 射で良好なパターンが形成され、残膜率は 90%であった。また、現像後の外観も良 好であった。さらに、窒素雰囲気下で 200°Cで 30分間、 400°Cで 60分間の熱処理を 行った。熱膨張係数は、 5ppmZ°Cであり、熱膨張係数が低い榭脂であることが確認 された。
(実施飾 2)
合成 ί¾[2のポリイミド前駆体 100質量部に対して 3質量部の 2—ェチル—9, 10- ジメトキシアントラセンをワニス粘度が 50ボイズ程度になるように ΝΜΡに溶解し、感光 性ワニスを得、実施 ilと同様に評価した。
(実施飾 3〜J7)
実施 ί歹 ΐにお 、て用いた合成 ί歹 ΐのポリイミド前駆体の代わりに、合成 ί歹 iF3〜J7の ポリイミド前駆体を用いた以外は、実施 ί歹 ΐと同様に操作して感光性ワニスを調製し
、実施 ί歹 ΐと同様にして評価した。
(比較 i¾[l〜J3)
実施 ί歹 ΐにお 、て用いた合成 ί歹 ΐのポリイミド前駆体の代わりに、合 8〜jioの ポリイミド前駆体を用いた以外は、実施 ί歹 ΐと同様に操作して感光性ワニスを調製し 、実施 ί歹 ΐと同様にして評価した。
実施例 1〜7、比較 f歹 (til〜J3の評価結果については以下の表 10に示した。
表 10に示される結果によると、実施 ί歹 iil〜J7の熱膨張係数と比較 ί歹 (til〜J3の熱膨 張係数とを比較して明らかなように、実施 ί歹 ΐ〜】7に示される本発明に係るポジ型感 光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比較 f歹 ΐ〜】
3)に比較して、明らかに熱膨張係数が低減されている。また、実施 ί歹 iil〜J7と比較 f歹 iil〜J3とにおける感度および残膜率および現像後外観を比較すると、感度および 残膜率および現像外観ともに実施 ί歹 1〜J7は、比較 ί歹 1〜J3に比較して劣化して おらず、本発明に係るポジ型感光性ポリイミド前駆体力も得られるポリイミドは、現像 性や感度も優れて ヽることが分かる。
[表 10] 熱膨張係数 残膜率 現像後外観
( ppm/°C ) (一)
実施例 J 1 5 550 90 良好
実施例 J 2 4 450 92 良好
実施例 J 3 3 530 92 良好
実施例 J 4 4 480 93 良好
実施例 J 5 9 500 90 良好
実施例 J 6 12 450 92 良好
実施例 J ? 15 580 94 良好
比 ^例 J 1 35 500 90 良好
比^例 J 2 40 550 90 良好
比^例 J 3 50 450 92 良好
(合成例 K1)
^
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 アミ ノー 2— (4 アミノシクロへキシル)ブンゾォキサゾールを加えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 2— -トロべンジルアルコールおよ び 1Lの NMPを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し 30 分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォ キサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した 。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固 形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 K2)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 4 -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 アミ ノー 2— (4—アミノシクロへキシル)ベンゾォキサゾールをカ卩えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 4 -トロべンジルアルコールおよ び 1Lの NMPを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 3 0分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾ ォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合し た。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 K3)
窒素導入管を備えたフラスコ 1に、 1モルの 1, 2, 4, 5 シクロへキサンテトラカルボ ン酸ニ無水物、 2. 1モルの 2— -トロべンジルアルコールおよび 2Lの NMPをカ卩えて 攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ— 2— (4 アミノシクロへキシル)ベン ゾォキサゾールをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 2— -トロべンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した 後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ -ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分け て添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量 のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間 乾燥した。
(合成例 K4)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの α メチルフエナ シルアルコールおよび 2Lの ΝΜΡをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分 間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 —アミノー 2— (4 アミノシクロへキシル)ベンゾォキサゾールをカ卩えた。次に 2. 1モ ルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を 備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの α メチルフエナシルアル コールおよび 1Lの ΝΜΡをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわた つて滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を 混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、 得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 K5)
窒素導入管を備えたフラスコ 1に、 1モルの 3, 3' , 4, 4,—ビフエ-ルテトラカルボ ン酸ニ無水物、 2. 1モルの 2— -トロべンジルアルコールおよび 2Lの NMPをカ卩えて 攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 ァミノ 2— (4—アミノシクロへキシル)ベン ゾォキサゾールをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 2— -トロべンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した 後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ -ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分け て添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量 のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間 乾燥した。
(合成例 K6)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 アミ ノー 2— (4—アミノシクロへキシル)ベンゾチアゾールをカ卩えた。次に 2. 1モルのジフ ェ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分 けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフ ラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 2— -トロべンジルアルコールおよ び 1Lの NMPを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪 拌した。次に 2. 1モルのジフエニル(2, 3 ジヒドローチォキソ 3 ベンゾォキサゾ ール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得ら れたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂 を真空乾燥機によって 12時間乾燥した。
(合成例 K7)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 5 アミ ノー 2— (4 アミノシクロへキシル)ベンズイミダゾールを加えた。次に 2. 1モルのジ フエニル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に 分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えた フラスコ 2に、 2モルの無水マレイン酸と 2. 1モルの 2— -トロべンジルアルコールおよ び 1Lの NMPを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 3 0分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾ ォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合し た。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 K8)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4, 4' —ジアミノジフエ-ルエーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ -チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、滴下後、 その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナ ジック酸無水物(5 ノルボルネンー 2, 3 ジカルボン酸無水物)と 2. 1モルの 2— - トロべンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEA を 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフ ラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒド 口 チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回〖こ分けて添加し、添加後 、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に 投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 K9)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルの 2— -トロべンジル アルコールおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4, 4' —ジアミノジフエ-ルスルホンをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ -チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、 その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナ ジック酸無水物(5 ノルボルネンー 2, 3 ジカルボン酸無水物)と 2. 1モルの 2— - トロべンジルアルコールおよび 1Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEA を 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフ ラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 ジヒド 口 チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回〖こ分けて添加し、添加後 、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に 投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(実施例 K1)
合成例 K1のポリイミド前駆体をワニス粘度が 50ボイズ程度になるように NMPに溶 解し、感光性ワニスを得た。スピンコーターでシリコンウェハ上にワニスを回転塗布し 、ホットプレートを用いて 100°Cで 5分間乾燥を行い、 5 mの塗膜を得た。この塗膜 をマスク(1〜50 mの残しパターンおよび抜きパターン)を通して、超高圧水銀灯を 用いて紫外線を照射した。その後、ホットプレート上で 80°Cで 2分間のプリべーク処 理を行った後、現像を行った。現像は 2. 38の0 /0の水酸ィ匕テトラメチルアンモ -ゥム 水溶液で現像した。次に水でリンスし、乾燥した。その結果、露光量 550mjZcm2の 照射で良好なパターンが形成され、残膜率は 90%であった。また、現像後の外観も 良好であった。さらに、窒素雰囲気下で 200°Cで 30分間、 400°Cで 60分間の熱処 理を行った。熱膨張係数は、 5ppmZ°Cであり、熱膨張係数が低い榭脂であることが 確認された。
(実施例 K2)
合成例 K2のポリイミド前駆体 100質量部に対して 3質量部の 2—ェチル—9, 10- ジメトキシアントラセンをワニス粘度が 50ボイズ程度になるように NMPに溶解し、感光 性ワニスを得、実施例 K1と同様に評価した。
(実施例 K3〜K7)
実施例 K1にお 、て用いた合成例 K1のポリイミド前駆体の代わりに、合成例 Κ3〜 Κ7のポリイミド前駆体を用いた以外は、実施例 K1と同様に操作して感光性ワニスを 調製し、実施例 K1と同様にして評価した。
(比較例 Κ1〜Κ2)
実施例 K1にお 、て用いた合成例 K1のポリイミド前駆体の代わりに、合成例 Κ8〜 Κ9のポリイミド前駆体を用いた以外は、実施例 K1と同様に操作して感光性ワニスを 調製し、実施例 K1と同様にして評価した。
実施例 Κ1〜Κ7、比較例 Κ1〜Κ2の評価結果については以下の表 11に示した。 表 11に示される結果によると、実施例 Κ1〜Κ7の熱膨張係数と比較例 Κ1〜Κ2の 熱膨張係数とを比較して明らかなように、実施例 Κ1〜Κ7に示される本発明に係るポ ジ型感光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比較 例 Κ1〜Κ2)に比較して、明らかに熱膨張係数が低減されている。また、実施例 K1 〜Κ7と比較例 Κ1〜Κ2とにおける感度および残膜率および現像後外観を比較する と、感度および残膜率および現像外観ともに実施例 Κ1〜Κ7は、比較例 Κ1〜Κ2に 比較して劣化しておらず、本発明に係るポジ型感光性ポリイミド前駆体力 得られる ポリイミドは、現像性や感度も優れて 、ることが分かる。
[0122] [表 11]
Figure imgf000093_0001
[0123] (合成例 L1)
窒素導入管を備えたフラスコ 1に、 1モルの 4, 4'ーォキシジフタル酸無水物、 2. 1 モルのヒドロキシェチルメタタリレートおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1 モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応 終了後に 1モルの 2, 6- (4, 4,ジアミノジフエ-ル)一べンゾ [1, 2-d: 5, 4 d,]ビ スォキサゾールをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのヒドロキシェチルメタタリレートおよび 1Lの NMPとをカ卩えて攪拌し、続け て 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し た後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モルのジフ ェ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分 けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大 量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時 間乾燥した。
(合成例 L2)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのヒドロキシェチルメ タクリレートおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— D AMBOをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モ ルのヒドロキシェチルメタタリレートおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1 モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、 フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル (2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添 加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタ ノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥し た。
(合成例 L3)
窒素導入管を備えたフラスコ 1に、 1モルの 2, 2,—ビス(3, 4 ジカルボキシフエ- ル)へキサフルォロプロパン二無水物、 2. 1モルのヒドロキシェチルメタタリレートおよ び 2Lの NMPを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— DAMBOを加えた 。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール) ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の 窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのヒドロキシェ チルメタタリレートおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30 分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラス コ 2の溶液を混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一 チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、そ の状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入 して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 L4)
窒素導入管を備えたフラスコ 1に、 1モルの 3, 3' , 4, 4,—ビフエ-ルテトラカルボ ンニ無水物、 2. 1モルのヒドロキシェチルメタタリレートおよび 2Lの NMPをカ卩えて攪 拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3 時間放置し、反応終了後に 1モルの p— DAMBOをカ卩えた。次に 2. 1モルのジフエ -ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分け て添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラ スコ 2に、 2モルの無水マレイン酸と 2. 1モルのヒドロキシェチルメタタリレートおよび 1 Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。 滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分 間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキ サゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。 得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形 榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 L5)
窒素導入管を備えたフラスコ 1に、 1モルの 3, 3' , 4, 4,—ジフエ-ルスルホンテト ラカルボン二無水物、 2. 1モルのヒドロキシェチルメタタリレートおよび 2Lの NMPを 加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この 状態で 3時間放置し、反応終了後に 1モルの p— DAMBOを加えた。次〖こ 2. 1モル のジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5 回に分けて添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備 えたフラスコ 2に、 2モルの無水マレイン酸と 2. 1モルのヒドロキシェチルメタタリレート および 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴 下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し 、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた 固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 L6)
窒素導入管を備えたフラスコ 1に、 1モルの 3, 3' , 4, 4,一べンゾフエノンテトラカル ボン二無水物、 2. 1モルのヒドロキシェチルメタタリレートおよび 2Lの NMPをカ卩えて 攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— DAMBOを加えた。次に 2. 1モルのジフエ -ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分け て添加し、添加後、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラ スコ 2に、 2モルの無水マレイン酸と 2. 1モルのヒドロキシェチルメタタリレートおよび 1 Lの NMPとを加えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。 滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分 間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベンゾォキ サゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。 得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形 榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 L7)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのヒドロキシェチルメ タクリレートおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— D AMBOをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのフエ二ルェチニルフタル 酸無水物と 2. 1モルのヒドロキシェチルメタタリレートおよび 1Lの NMPとをカ卩えて攪 拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、この状態で 3 時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した。次に 2. 1 モルのジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナート を 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたスラリー状の混 合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によ つて 12時間乾燥した。
(合成例 L8)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのヒドロキシェチルメ タクリレートおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— D AMBOをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのシス一 1, 2, 3, 4—テトラ ヒドロフタル酸無水物と 2. 1モルのヒドロキシェチルメタタリレートおよび 1Lの NMPと をカロえて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下した。滴下後、こ の状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混合し、 30分間攪拌した 。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 べンゾォキサゾール) ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合した。得られたス ラリー状の混合物を大量のメタノール中に投入して洗浄し、得られた固形榭脂を真空 乾燥機によって 12時間乾燥した。
(合成例 L9)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのヒドロキシェチルメ タクリレートおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの p— D AMBOをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ 3 ベン ゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間縮合 した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナジック酸無水物(5 ノ ルボルネンー 2, 3 ジカルボン酸無水物)と 2. 1モルのヒドロキシェチルメタクリレー トおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって 滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を混 合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、得ら れた固形榭脂を真空乾燥機によって 12時間乾燥した。
(合成例 L10)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのヒドロキシェチルメ タクリレートおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4, 4' —ジアミノジフエ-ルエーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3—ジヒドロ -チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、 その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナ ジック酸無水物(5—ノルボルネンー 2, 3—ジカルボン酸無水物)と 2. 1モルのヒドロ キシェチルメタタリレートおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TE Aを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1に フラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3—ジヒ ドロ―チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添カロ 後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中 に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。 (合成例 L11)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのヒドロキシェチルメ タクリレートおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間に わたって滴下した。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4, 4' —ジアミノジフエ-ルスルホンをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3—ジヒドロ -チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添加後、 その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナ ジック酸無水物(5—ノルボルネンー 2, 3—ジカルボン酸無水物)と 2. 1モルのヒドロ キシェチルメタタリレートおよび 1Lの NMPとを加えて攪拌し、続けて 2. 1モルの TE Aを 30分間にわたって滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1に フラスコ 2の溶液を混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3—ジヒ ドロ―チォキソ— 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カ卩し、添カロ 後、その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中 に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥した。 (合成例 L12)
窒素導入管を備えたフラスコ 1に、 1モルの 2, 2,—ビス—(3, 4—ジカルボキシフエ -ル)へキサフルォロプロパン二無水物、 2. 1モルのヒドロキシェチルメタタリレートお よび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわたって滴下し た。滴下後、この状態で 3時間放置し、反応終了後に 1モルの 4, 4'—ジアミノジフエ -ルエーテルをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチォキソ—3— ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時間 縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルのナジック酸無水物(5 ノルボルネン 2, 3 ジカルボン酸無水物)と 2. 1モルのヒドロキシェチルメタタリ レートおよび 1Lの NMPとをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間にわた つて滴下した。滴下後、この状態で 3時間放置した後、フラスコ 1にフラスコ 2の溶液を 混合し、 30分間攪拌した。次に 2. 1モルのジフエ-ル(2, 3 ジヒドロ一チォキソ一 3 一べンゾォキサゾール)ホスホナートを 5回に分けて添加し、添加後、その状態で 5時 間縮合した。得られたスラリー状の混合物を大量のメタノール中に投入して洗浄し、 得られた固形榭脂を真空乾燥機によって 12時間乾燥した。
(実施例 L1)
合成例 L1のポリイミド前駆体 100質量部に対して、 N—フエ-ルジェタノールァミン 2質量部、 1 フエ-ルプロパンジオン— 2—(o エトキシカルボ-ル)ォキシム 4質 量部、 7 ジェチルアミノー 3 べンゾイルクマリン 0. 5質量部、テトラエチレングリコ ールジメタタリレート 10質量部、 γ—グリシドキシプロピルメチルジメトキシシラン 2質 量部、 Ν—-トロソジフエ-ルァミン 0. 1質量部を添カ卩した。さらにワニス粘度が 50ポ ィズ程度になるように ΝΜΡで希釈し、感光性ワニスを得た。スピンコーターでシリコン ウェハ上に回転塗布し、ホットプレートを用いて 100°Cで 5分間の乾燥を行い、 10 m厚の塗膜を得た。この塗膜をマスク(1〜50 mの残しパターンおよび抜きパター ン)を通して、超高圧水銀灯を用いて紫外線を照射した。その後、ホットプレート上で 80°C2分間のプリベータ処理を行った後、現像を行った。現像は NMP (70部)とメタ ノール(30部)との混合溶媒を用いて行った。次にイソプロノ V—ルでリンスし、乾燥 した。その結果、露光量 360miZcm2の照射で良好なパターンが形成され、残膜率 は 90%であった。また、現像後の外観も良好であった。さらに、窒素雰囲気下で 200 °CZ30分、 400°CZ60分の熱処理を行った。熱膨張係数は、 15ppmZ°Cであった (実施例 L2〜L9)
実施例 LIにお 、て用いた合成例 1のポリイミド前駆体の代わりに、合成例 L2〜L9 のポリイミド前駆体を用いた以外は、実施例 L1と同様に操作して感光性ワニスを調製 し、実施例 L1と同様にして評価した。
(比較例 L1〜L3)
実施例 L1にお 、て用いた合成例 L1のポリイミド前駆体の代わりに、合成例 L10〜 L12のポリイミド前駆体を用いた以外は、実施例 L1と同様に操作して感光性ワニスを 調製し、実施例 L1と同様にして評価した。
実施例 L1〜L9、比較例 L1〜L3の評価結果については以下の表 12に示した。 表 12に示される結果によると、実施例 L1〜L9の熱膨張係数と比較例 L1〜L3の 熱膨張係数とを比較して明らかなように、実施例 L1〜L9に示される本発明に係るネ ガ型感光性ポリイミド前駆体組成物力も得られるポリイミドは、従来のポリイミド (比較 例 L1〜L3)と比較して、熱膨張係数が低減されていることは明らかである。また、実 施例 L1〜L9と比較例 L1〜L3とにおける感度および残膜率および現像後外観を比 較すると、感度および残膜率および現像外観ともに実施例 L1〜L9は、比較例 Ll〜 L3に比較して劣化しておらず、本発明に係るネガ型感光性ポリイミド前駆体力 得ら れるポリイミドは、現像性や感度も優れて 、ることが分かる。
[表 12] 熱膨^係数 残膜率 現像後外観 ( pp m/°C ) ( % ) ( -) 実施例 し 1 1 5 360 90 良好
実施例 L 2 3 420 93 良好
実施例 L 3 1 4 330 93 良好
実施例 し 4 6 400 90 良好
実施例 し 5 4 400 92 良好
実施例 し 6 5 420 93 良好
実施例 し 7 1 2 380 94 良好
実施例 L 8 1 5 400 92 良好
実施例 し 9 6 400 93 良好
比^例 し 1 26 450 90 良好
比^例 し 2 26 390 89 良好
比^例 L 3 45 370 90 良好 [0131] (合成例 Ml)
攪拌装置および冷却管を備えた 300mlの三口セパラブルフラスコに、 100mlの N MPと 20. 54g (60mmol)の 2, 6— (4, 4,ジアミノジフエ二ノレ)一ベンゾ [1, 2— d: 5 , 4 d' ]ビスォキサゾールとを入れて懸濁液とし、このフラスコ内を窒素で静かに 30 分間パージする。反応系を氷冷(5°C以下)し、 17. 13g (55. 205mmol)の 4, 4' ォキシジフタル酸無水物および 0. 95g (9. 6mmol)の無水マレイン酸を添カ卩し、室 温にて約 68時間攪拌し、得られたポリイミド前駆体組成物をワニス Mlとした。
(合成例 M2) 合成例 Mlと同様の方法によって、 100mlの NMP、 13. 52g (60m mol)の p— DAMBO、 0. 95g (9. 6mmol)の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体を合成し、ヮ- ス M2とした。
(合成例 M3)
合成例 Mlと同様の方法によって、 100mlの NMP、 13. 52g (60mmol)の p— DA MBO、0. 95g (9. 6mmol)の無水マレイン酸および 24. 53g (55. 205mmol)の 2 , 2,—ビス(3, 4 ジカルボキシフエ-ル)へキサフルォロプロパン二無水物を 45時 間室温で反応させて、ポリイミド前駆体を合成し、ワニス M3とした。
(合成例 M4)
合成例 Mlと同様の方法によって、 100mlの NMP、 13. 52g (60mmol)の p— DA MBO、0. 95g (9. 6mmol)の無水マレイン酸および 16. 25g (55. 205mmol)の 3 , 3' , 4, 4'ービフエ-ルテトラカルボン二無水物を 45時間室温で反応させて、ポリイ ミド前駆体を合成し、ワニス M4とした。
(合成例 M5)
合成例 Mlと同様の方法によって、 100mlの NMP、 13. 52g (60mmol)の p— DA MBO、0. 95g (9. 6mmol)の無水マレイン酸および 19. 78g (55. 205mmol)の 3 , 3' , 4, 4'ージフエ-ルスルホンテトラカルボン二無水物を 45時間室温で反応させ て、ポリイミド前駆体を合成し、ワニス M5とした。
[0132] (合成例 M6)
合成例 Mlと同様の方法によって、 100mlの NMP、 13. 52g (60mmol)の p— DA MBO、0. 95g (9. 6mmol)の無水マレイン酸および 17. 79g (55. 205mmol)の 3 , 3' , 4, 4'一べンゾフエノンテトラカルボン二無水物を 45時間室温で反応させて、ポ リイミド前駆体を合成し、ワニス M6とした。
(合成例 M7)
合成例 Mlと同様の方法によって、 100mlの NMP、 13. 52g (60mmol)の p— DA MBO、 2. 38g (9. 6mmol)のフエ-ルェチュルフタル酸無水物および 12. 04g (55 . 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体を合成し、ヮ- ス M7とした。
(合成例 M8)
合成例 Mlと同様の方法によって、 100mlの NMP、 13. 52g (60mmol)の p— DA MBO、 1. 47g (9. 6mmol)のシス 1, 2, 3, 4ーテトラヒドロフタル酸無水物および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体 を合成し、ワニス M8とした。
(合成例 M9)
合成例 Mlと同様の方法によって、 100mlの NMP、 13. 52g (60mmol)の p— DA MBO、 1. 58g (9. 6mmol)のナジック酸無水物(5 ノルボルネン—2, 3 ジカル ボン酸無水物)および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応さ せて、ポリイミド前駆体を合成し、ワニス M9とした。
(合成例 M10)
合成例 Mlと同様の方法によって、 100mlの NMP、 12. 01g (60mmol)の 4, 4, —ジアミノジフエ-ルエーテル、 0. 95g (9. 6mmol)の無水マレイン酸および 12. 04 g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体を合成し 、ワニス Ml 0とした。
(合成例 Mi l)
合成例 Mlと同様の方法によって、 100mlの NMP、 19. 90g (60mmol)の 4, 4, —ジアミノジフエ-ルスルフォン、 0. 95g (9. 6mmol)の無水マレイン酸および 12. 0 4g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイミド前駆体を合成 し、ワニス Mi lとした。 (合成例 Ml 2)
合成例 Mlと同様の方法によって、 100mlの NMP、 12. 01g (60mmol)の 4, 4, —ジアミノジフエ-ルエーテル、 0. 95g (9. 6mmol)の無水マレイン酸および 24. 45 g (55. 205mmol)の 2, 2,—ビス(3, 4 ジカルボキシフエ-ル)へキサフルォロプ 口パンニ無水物を 45時間室温で反応させて、ポリイミド前駆体を合成し、ワニス M12 とした。
(実施例 Ml)
100質量部のワニス Mlのポリイミド前駆体に対して、 N—フエ-ルジェタノールアミ ン 5質量部、 1 フエ-ルプロパンジオン— 2—(o エトキシカルボ-ル)ォキシム 1 質量部、 7 ジェチルァミノ 3 ベンゾイルクマリン 0. 5質量部を添カ卩し、メタクリル 酸ジェチルアミノエチルをポリイミド前駆体の構造単位 1モルに対して 2モルになるよ うに添カ卩した。さらにワニスの粘度が 50ボイズ程度になるように NMPで希釈し、感光 性ワニスを得た。この感光性ワニスをスピンコーターでシリコンウェハ上に回転塗布し 、ホットプレートを用いて 100°Cで 5分間乾燥を行い、 10 /z mの塗膜を得た。この塗 膜をマスク(1〜50 mの残しパターンおよび抜きパターン)を通して、超高圧水銀灯 を用いて紫外線を照射した。その後、ホットプレート上で 80°C2分間のプリべーク処 理を行った後、現像を行った。現像は NMP (70部)とメタノール(30部)の混合溶媒 を用いて行った。次にイソプロパノールでリンスし、乾燥した。その結果、露光量 350 mjZcm2の照射で良好なパターンが形成され
、残膜率は 92%であった。また、現像後の外観も良好であった。さらに、窒素雰囲気 下で 200°CZ30分、 400°CZ60分の熱処理を行った。熱膨張係数は、 15ppm/°C であった。
(実施例 M2〜M9)
実施例 Mlにお!/、て用いたワニス Mlの代わりに、ワニス M2〜M9を用いた以外は 、実施例 Mlと同様に操作して感光性ワニスを調製し、実施例 Mlと同様にして評価 した。
(比較例 M1〜M3)
実施例 M 1において用!、たワニス M 1の代わりに、ワニス M 10〜M12を用 、た以 外は、実施例 Mlと同様に操作して感光性ワニスを調製し、実施例 Mlと同様にして 評価した。
実施例 M1〜M9、比較例 M1〜M3の評価結果については以下の表 13に示した 表 13に示される結果によると、実施例 M1〜M9の熱膨張係数と比較例 M1〜M3 の熱膨張係数とを比較して明らかなように、実施例 M1〜M9に示される本発明に係 るネガ型感光性ポリイミド前駆体組成物カゝら得られるポリイミドは、従来のポリイミド (比 較例 M1〜M3)と比較して、明らかに熱膨張係数が低減されている。また、実施例 M 1〜M9と比較例 M1〜M3とにおける感度および残膜率および現像後外観を比較 すると、感度および残膜率および現像外観ともに実施例 M1〜M9は、比較例 Ml〜 M3に比較して劣化しておらず、本発明に係るネガ型感光性ポリイミド前駆体力 得 られるポリイミドは、現像性や感度も優れて 、ることが分かる。
[表 13]
Figure imgf000104_0001
(合成例 N1)
攪拌装置および冷却管を備えた 300mlの三口セパラブルフラスコに 100mlの NM Pと 22. 32g (60mmol)の 2, 6— (4, 4, 一ジアミノジフエ二ノレ)一ベンゾ [1, 2— d: 5 , 4— d' ]ビスチアゾールを入れて懸濁液とし、このフラスコ内を窒素で静かに 30分間 パージする。反応系を氷冷(5°C以下)し、 12. 04g (55. 205mmol)の PMDAおよ び 0. 95g (9. 6mmol)の無水マレイン酸を反応系に添カ卩し、室温にて約 68時間攪 拌して、ポリイミド前駆体組成物 N1を得た。
(合成例 N2)
合成例 N1と同様の方法によって、 100mlの NMP、 14. 46g (60mmol)の 5 アミ ノー 2— (p ァミノフエ-ル)一ベンゾチアゾール、 0. 95g (9. 6mmol)の無水マレイ ン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反応させて、 ポリイミド前駆体 N2を得た。
(合成例 N3)
合成例 N1と同様の方法によって、 100mlの NMP、 14. 46g (60mmol)の 5 アミ ノー 2— (p ァミノフエ-ル)一ベンゾチアゾール、 0. 95g (9. 6mmol)の無水マレイ ン酸および 16. 25g (55. 205mmol)の 3, 3,, 4, 4, ビフエ-ルテトラカルボン酸 二無水物を室温にて 45時間で反応させて、ポリイミド前駆体 N3を得た。
(合成例 N4)
窒素導入管を備えたフラスコ 1に、 1モルの PMDA、 2. 1モルのヒドロキシェチルメ タクリレートおよび 2Lの NMPをカ卩えて攪拌し、続けて 2. 1モルの TEAを 30分間滴 下した。この状態で 3時間放置した後に 1モルの 2, 6—(4, 4'ージアミノジフエ-ル) —ベンゾ [1, 2-d: 5, 4— d,]ビスチアゾールを加えた。次に 2. 1モルのジフエ-ル (2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5回に分けて添 加し、その状態で 5時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モ ルの無水マレイン酸と 2. 1モルのヒドロキシェチルメタタリレートおよび 1Lの NMPを 加えて攪拌し、続けて 2. 1モルの TEAを 30分間滴下した。この状態で 3時間放置し た後、フラスコ 1にフラスコ 2の溶液を入れて混合し、 30分間攪拌した。次に 2. 1モル のジフエ-ル(2, 3 ジヒドロ チォキソ 3 ベンゾォキサゾール)ホスホナートを 5 回に分けて添加し、その状態で 5時間縮合した。得られたスラリー状の混合物を大量 のメタノール中に投入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間 乾燥して、ポリイミド前駆体 N4を合成した。
(合成例 N5)
2, 6— (4, 4,一ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d,]ビスチアゾール の代わりに 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾチアゾールを用いたことの他 は合成例 N4と同様の操作によってポリイミド前駆体 N5を合成した。
[0136] (合成例 N6)
NMPの代わりに 3, 3' , 4, 4,ービフエ-ルテトラカルボン酸二無水物を用いたこと と、 2, 6—(4, 4'ージアミノジフエ-ル)一べンゾ [1, 2-d: 5, 4— d' ]ビスチアゾー ルの代わりに 5—アミノー 2— (p—ァミノフエ-ル)一ベンゾチアゾールを用いたことの 他は合成例 N4と同様の操作によってポリイミド前駆体 N6を合成した。
(合成例 N7)
合成例 N1と同様の方法によって、 100mlの NMP、 20. 64g (60mmol)の 2, 6— (4, 4,—ジアミノジフエ-ル)—ベンゾ [1, 2— d: 5, 4— d,]ビスイミダゾール、 0. 95 g (9. 6mmol)の無水マレイン酸および 12. 04g (55. 205mmol)の PMDAを室温 にて 45時間で反応させて、ポリイミド前駆体 N7を合成した。
(合成例 N8)
合成例 N1と同様の方法によって、 100mlの NMP、 13. 56g (60mmol)の 5—アミ ノー 2— (p—ァミノフエ-ル)一ベンズイミダゾール、 0. 95g (9. 6mmol)の無水マレ イン酸および 12. 04g (55. 205mmol)の PMDAを室温にて 45時間で反応させて 、ポリイミド前駆体 N8を合成した。
(合成例 N9)
合成例 N1と同様の方法によって、 100mlの NMP、 13. 56g (60mmol)の 5—アミ ノー 2— (p—ァミノフエ-ル)一ベンズイミダゾール、 0. 95g (9. 6mmol)の無水マレ イン酸および 16. 25g (55. 205mmol)の 3, 3,, 4, 4,—ビフエ-ルテトラカルボン 酸二無水物を室温にて 45時間で反応させて、ポリイミド前駆体 N9を合成した。 (合成例 N10)
2, 6— (4, 4,一ジァミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d,]ビスチアゾール の代わりに 2, 6— (4, 4,一ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d,]ビスィ ミダゾールを用いたことの他は合成例 N4と同様の操作によってポリイミド前駆体 N10 を合成した。
[0137] (合成例 Ni l) 2, 6- (4, 4,一ジアミノジフエ-ル)一ベンゾ [1, 2— d: 5, 4— d,]ビスチアゾール の代わりに 5 アミノー 2— (p ァミノフエ-ル)一ベンズイミダゾールを用いたことの 他は合成例 N4と同様の操作によってポリイミド前駆体 Ni lを合成した。
(合成例 N12)
NMPの代わりに 3, 3' , 4, 4,ービフエ-ルテトラカルボン酸二無水物を用いたこと と、 2, 6—(4, 4'ージアミノジフエ-ル)一べンゾ [1, 2-d: 5, 4— d' ]ビスチアゾー ルの代わりに 5 アミノー 2— (p ァミノフエ-ル)一ベンズイミダゾールを用いたこと の他は合成例 N4と同様の操作によってポリイミド前駆体 N12を合成した。
(合成例 N13)
合成例 N1と同様の方法によって、 100mlの NMP、 12. 01g (60mmol)の 4, 4, —ジアミノジフエ-ルエーテル、 0. 95g (9. 6mmol)の無水マレイン酸および 12. 04 g (55. 205mmol)の PMDAを室温にて 45時間で反応させて、ポリイミド前駆体 N1 3を合成した。
(合成例 N 14)
合成例 N1と同様の方法によって、 100mlの NMP、 19. 90g (60mmol)の 4, 4, —ジアミノジフエ-ルスルフォン、 1. 58g (9. 6mmol)の無水マレイン酸および 12. 0 4g (55. 205mmol)の PMDAを室温にて 45時間で反応させて、ポリイミド前駆体 N 14を合成した。
(実施例 N1)
100質量部のポリイミド前駆体 N1に対して、 N—フエ-ルジェタノールァミン 5質量 部、 1 フエ-ルプロパンジオン— 2—(o エトキシカルボ-ル)ォキシム 1質量部、 7 ージェチルアミノー 3—べンゾイルクマリン 0. 5質量部を添カ卩して、メタクリル酸ジェチ ルアミノエチルをポリイミド前駆体 N1の構造単位 1モルに対して 2モルの割合で添カロ した。さらにワニスの粘度が 50ボイズ程度になるように NMPで希釈し、感光性ワニス を得た。この感光性ワニスをスピンコーターでシリコンウェハ上に回転塗布して、ホット プレートを用いて 100°Cで 5分間乾燥を行い、 10 mの塗膜を得た。この塗膜に対し てマスク(1〜50 μ mの残しパターンおよび抜きパターン)を介して、超高圧水銀灯を 用いて紫外線を照射した。その後、ホットプレート上で 80°C、 2分間のプリベータ処理 を行った後に、現像を行った。現像は NMP (70部)とメタノール(30部)の混合溶媒 を用いて行った。次に、シリコンウェハをイソプロパノールでリンスして、乾燥した。そ の結果、露光量 450mjZcm2の照射で良好なパターンが形成され、残膜率は 90% であった。また、現像後の外観は良好であった。さらに、 200°Cにて 30分間、次いで 、 400°Cにて 60分間の熱処理を行った。前記熱処理後の膜をシリコンウエノ、から剥 がし、 TMA (熱機械分析)法により 25〜200°Cの範囲で昇温速度 10°CZ分で測定 したところ、 5ppm/°Cであった。
(実施例 N2〜N3、 N7〜N9)
ポリイミド前駆体 N1の代わりに、ポリイミド前駆体 N2〜N3、 N7〜N9を用いたこと 以外は、実施例 N1と同様に操作して感光性ワニスを調製し、実施例 N1と同様にし て評価した。
(実施例 N4)
100質量部のポリイミド前駆体 N4に対して、 N—フエ-ルジェタノールァミン 2質量 部、 1 フエ-ルプロパンジオン— 2—(o エトキシカルボ-ル)ォキシム 4質量部、 7 ージェチルアミノー 3—べンゾイルクマリン 0. 5質量部、テトラエチレングリコールジメ タクリレート 10質量部、 γ—グリシドキシプロピルメチルジメトキシシラン 2質量部、 Ν -トロソジフエ-ルァミン 0. 1質量部を添カ卩した。さらにワニス粘度が 50ボイズ程度 になるように ΝΜΡで希釈し、感光'性ワニスを得た。この感光'性ワニスをスピンコータ 一でシリコンウェハ上に回転塗布し、ホットプレートを用いて 100°Cで 5分間乾燥を行 い、 10 mの塗膜を得た。この塗膜をマスク(1〜50 mの残しパターンおよび抜き パターン)を通して、超高圧水銀灯を用いて紫外線を照射した。その後、ホットプレー ト上で 80°C、 2分間のプリベータ処理を行った後に、現像を行った。現像は NMP (7 0部)とメタノール(30部)の混合溶媒を用いて行った。次に、シリコンウェハをイソプロ ノ ノールでリンスし、乾燥した。その結果、露光量 450mjZcm2の照射で良好なパタ ーンが形成され、残膜率は 90%であった。また、現像後の外観も良好であった。さら に、窒素雰囲気下で、 200°Cにて 30分間、次いで、 400°Cにて 60分間の熱処理を 行った。前記熱処理後の膜を測定したところ、熱膨張係数は 5ppmZ°Cであった。 (実施例 N5〜N6、 N10〜N12) ポリイミド前駆体 N4の代わりに、ポリイミド前駆体 N5〜N6、 N10〜N12を用いたこ と以外は、実施例 N4と同様に操作して感光性ワニスを調製し、実施例 N4と同様にし て評価した。
(比較例 N1〜N2)
ポリイミド前駆体 N1の代わりに、ポリイミド前駆体 N13〜N14を用いたこと以外は、 実施例 N1と同様に操作して感光性ワニスを調製し、実施例 N1と同様にして評価し た。
各実施例、比較例についての評価結果を表 14にまとめる。
表 14から明らかなように、本発明のネガ型感光性ポリイミド前駆体組成物力も得ら れるポリイミドは熱膨張係数力 、さぐ現像性や感度も優れている。
[表 14]
Figure imgf000109_0001
(合成例 P1)
攪拌装置および冷却管を備えた 300mlの三口セパラブルフラスコに 100mlの NM Pと 13. 86g (60mmol)の 5—アミノー 2— (4—アミノシクロへキシル)一ベンゾォキサ ゾールを入れて懸濁液とし、このフラスコ内を窒素で静かに 30分間パージした。反応 系を氷冷(5。C以下)し、 12. 04g (55. 205mmol)の PMDAおよび 0. 95g (9. 6m mol)の無水マレイン酸を反応系に添加し、室温にて約 68時間攪拌して、ポリイミド前 駆体組成物 PIを得た。
(合成例 P2)
合成例 P1と同様の方法によって、 100mlの NMP、 14. 82g (60mmol)の 5 アミ ノー 2— (4 アミノシクロへキシル)一ベンゾチアゾール、 0. 95g (9. 6mmol)の無 水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させ て、ポリイミド前駆体 P2を得た。
(合成例 P3)
合成例 P1と同様の方法によって、 100mlの NMP、 13. 80g (60mmol)の 5 アミ ノー 2— (4 アミノシクロへキシル)一ベンズイミダゾール、 0. 95g (9. 6mmol)の無 水マレイン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させ て、ポリイミド前駆体 P3を得た。
(合成例 P4)
合成例 P1と同様の方法によって、 100mlの NMP、 13. 86g (60mmol)の 5 アミ ノー 2— (4 アミノシクロへキシル)一ベンゾォキサゾール、 0. 95g (9. 6mmol)の無 水マレイン酸および 12. 37g (55. 205mmol)の 1, 2, 3, 4ーシクロへキサンテトラ カルボン酸二無水物を 45時間室温で反応させて、ポリイミド前駆体 P4を得た。 (合成例 P5)
合成例 P1と同様の方法によって、 100mlの NMP、 13. 86g (60mmol)の 5 アミ ノー 2— (4 アミノシクロへキシル)一ベンゾォキサゾール、 0. 95g (9. 6mmol)の無 水マレイン酸および 10. 60g (55. 205mmol)の 1, 2, 3, 4 シクロブタンテトラカル ボン酸二無水物を 45時間室温で反応させて、ポリイミド前駆体 P5を得た。
(合成例 P6)
窒素導入管を備えたフラスコ 1に、 1モルの NMP、 2. 1モルのヒドロキシェチルメタ タリレートおよび 2Lの NMPを加えて攪拌し、続けて 2. 1モルの TEAを 30分間滴下 した。この状態で 3時間放置した後に 1モルの 5 アミノー 2—(4 アミノシクロへキシ ル)一べンゾォキサゾールをカ卩えた。次に 2. 1モルのジフエ-ル(2, 3 ジヒドローチ ォキソ 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添加し、その状態で 5 時間縮合した。また、別の窒素導入管を備えたフラスコ 2に、 2モルの無水マレイン酸 と 2. 1モルのヒドロキシェチルメタタリレートおよび 1Lの NMPをカ卩えて攪拌し、続け て 2. 1モルの TEAを 30分間滴下した。この状態で 3時間放置した後、フラスコ 1にフ ラスコ 2の溶液を入れて混合し、 30分間攪拌した。次〖こ 2. 1モルのジフエ-ル(2, 3 -ジヒドロ チォキソ 3—ベンゾォキサゾール)ホスホナートを 5回に分けて添カロし、 その状態で 5時間縮合した。得られたスラリー状の混合物を大量のメタノール中に投 入して洗浄し、得られた固形榭脂を真空乾燥機によって 12時間乾燥して、ポリイミド 前駆体 P6を合成した。
(合成例 P7)
5—アミノー 2— (4—アミノシクロへキシル)一ベンゾォキサゾーノレの代わりに 5—ァ ミノー 2—(4 アミノシクロへキシル)一べンゾチアゾールを用いたことの他は合成例 P6と同様の操作によってポリイミド前駆体 P7を合成した。
(合成例 P8)
5—アミノー 2— (4—アミノシクロへキシル)一ベンゾォキサゾーノレの代わりに 5—ァ ミノー 2—(4 アミノシクロへキシル)一べンズイミダゾールを用いたことの他は合成例 P6と同様の操作によってポリイミド前駆体 P8を合成した。
(合成例 P9)
NMPの代わりに 1, 2, 3, 4ーシクロへキサンテトラカルボン酸無水物を用いたこと の他は合成例 P6と同様の操作によってポリイミド前駆体 P9を合成した。
(合成例 P10)
NMPの代わりに 1, 2, 3, 4ーシクロブタンテトラカルボン酸無水物を用いたことの 他は合成例 P6と同様の操作によってポリイミド前駆体 P10を合成した。
(合成例 P11)
合成例 P1と同様の方法によって、 100mlの NMP、 13. 52g (60mmol)の 5 アミ ノー 2— (p ァミノフエ-ル)一ベンゾォキサゾール、 0. 95g (9. 6mmol)の無水マレ イン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリ イミド前駆体 11を合成した。
(合成例 P12)
合成例 P1と同様の方法によって、 100mlの NMP、 14. 46g (60mmol)の 5 アミ ノー 2— (p ァミノフエ-ル)一ベンゾチアゾール、 0. 95g (9. 6mmol)の無水マレイ ン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリイ ミド前駆体 P12を合成した。
(合成例 P13)
合成例 P1と同様の方法によって、 100mlの NMP、 13. 56g (60mmol)の 5 アミ ノー 2— (p ァミノフエ-ル)一ベンズイミダゾール、 0. 95g (9. 6mmol)の無水マレ イン酸および 12. 04g (55. 205mmol)の PMDAを 45時間室温で反応させて、ポリ イミド前駆体 P 13を合成した。
(合成例 P14)
合成例 P1と同様の方法によって、 100mlの NMP、 12. 01g (60mmol)の 4, 4, 一 ジアミノジフエ-ルエーテル、 0. 95g (9. 6mmol)の無水マレイン酸および 10. 60g (55. 205mmol)の 1, 2, 3, 4ーシクロブタンテトラカルボン酸二無水物を 45時間室 温で反応させて、ポリイミド前駆体 P14を合成した。
(合成例 P15)
合成例 P1と同様の方法によって、 100mlの NMP、 19. 90g (60mmol)の 4, 4, 一 ジアミノジフエ-ルスルホン、 1. 58g (9. 6mmol)の無水マレイン酸および 10. 60g ( 55. 205mmol)の 1, 2, 3, 4ーシクロブタンテトラカルボン酸二無水物を 45時間室 温で反応させて、ポリイミド前駆体 P15を合成した。
(実施例 P1)
100質量部のポリイミド前駆体 P1に対して、 N—フエ-ルジェタノールァミン 5質量 部、 1 フエ-ルプロパンジオン— 2—(o エトキシカルボ-ル)ォキシム 1質量部、 7 ージェチルアミノー 3—べンゾイルクマリン 0. 5質量部を添カ卩して、メタクリル酸ジェチ ルアミノエチルをポリイミド前駆体 P1の構造単位 1モルに対して 2モルの割合で添カロ した。さらにワニスの粘度が 50ボイズ程度になるように NMPで希釈し、感光性ワニス を得た。この感光性ワニスをスピンコーターでシリコンウェハ上に回転塗布して、ホット プレートを用いて 100°Cで 5分間乾燥を行い、 10 mの塗膜を得た。この塗膜に対し てマスク(1〜50 mの残しパターンおよび抜きパターン)を通して、超高圧水銀灯に フィルターを取り付け、 i線のみで照射した。その後、ホットプレート上で 80°C、 2分間 のプリベータ処理を行った後に、現像を行った。現像は NMP (70部)とメタノール(3 0部)の混合溶媒を用いて行った。次に、シリコンウェハをイソプロパノールでリンスし て、乾燥した。その結果、露光量 400mjZcm2の照射で良好なパターンが形成され 、残膜率は 90%であった。また、現像後の外観は良好であった。さらに、 200°Cにて 30分間、次いで、 400°Cにて 60分間の熱処理を行った。前記熱処理後の膜をシリコ ンウエノ、から剥がし、 TMA (熱機械分析)法により 25〜200°Cの範囲で昇温速度 10 °CZ分で測定したところ、 7ppmZ°Cであった。
(実施例 P2〜P5)
ポリイミド前駆体 PIの代わりに、ポリイミド前駆体 P2〜P5を用いたこと以外は、実施 例 P1と同様に操作して感光性ワニスを調製し、実施例 P1と同様にして評価した。 (実施例 P6)
100質量部のポリイミド前駆体 P6に対して、 N—フエ-ルジェタノールァミン 2質量 部、 1 フエ-ルプロパンジオン— 2—(o エトキシカルボ-ル)ォキシム 4質量部、 7 ージェチルアミノー 3—べンゾイルクマリン 0. 5質量部、テトラエチレングリコールジメ タクリレート 10質量部、 γ—グリシドキシプロピルメチルジメトキシシラン 2質量部、 Ν -トロソジフエ-ルァミン 0. 1質量部を添カ卩した。さらにワニス粘度が 50ボイズ程度 になるように ΝΜΡで希釈し、感光'性ワニスを得た。この感光'性ワニスをスピンコータ 一でシリコンウェハ上に回転塗布し、ホットプレートを用いて 100°Cで 5分間乾燥を行 い、 10 mの塗膜を得た。この塗膜をマスク(1〜50 mの残しパターンおよび抜き パターン)を通して、超高圧水銀灯にフィルターを取り付け、 i線のみで照射した。そ の後、ホットプレート上で 80°C、 2分間のプリベータ処理を行った後に、現像を行った 。現像は NMP (70部)とメタノール(30部)の混合溶媒を用いて行った。次に、シリコ ンウェハをイソプロパノールでリンスし、乾燥した。その結果、露光量 400mjZcm2の 照射で良好なパターンが形成され、残膜率は 92%であった。また、現像後の外観も 良好であった。さらに、窒素雰囲気下で、 200°Cにて 30分間、次いで、 400°Cにて 6 0分間の熱処理を行った。前記熱処理後の膜の熱膨張係数は 8ppmZ°Cであった。 (実施例 P7〜P10)
ポリイミド前駆体 P6の代わりに、ポリイミド前駆体 P7〜P10を用いたこと以外は、実 施例 P6と同様に操作して感光性ワニスを調製し、実施例 P6と同様にして評価した。 (比較例 P1〜P5)
ポリイミド前駆体 PIの代わりに、ポリイミド前駆体 PI 1〜P15を用いたこと以外は、 実施例 P1と同様に操作して感光性ワニスを調製し、実施例 P1と同様にして評価した 各実施例、比較例につ 、ての評価結果を表 15にまとめる。
表 15から明らかなように、本発明のネガ型感光性ポリイミド前駆体組成物力も得ら れるポリイミドは熱膨張係数力 、さぐ現像性や感度も優れている。
[0144] [表 15]
Figure imgf000114_0001
産業上の利用可能性
[0145] 本発明の感光性ポリイミド前駆体組成物は、半導体デバイスなどの製造での電気、 電子絶縁材料として、詳しくは、 ICや LSIなどの半導体素子の表面保護膜、層間絶 縁膜などに用いられる。特に、微細パターンの加工が必要とされるものなどに有効に 利用できる。

Claims

請求の範囲 一般式( 1)で示されるポリイミド前駆体と、
(一般式(1)中、 R1はフエノール性水酸基を有していてもよい 4価芳香族環又は脂肪 族環を有する 4価の有機基を示し、 R2は水酸基、フエノール性水酸基を有する有機 基、酸の作用で分解し水酸基に変換し得る一価の有機基、光脱離性基又はその他 の 1価の有機基を示し、 R3は一般式(2)〜(5)で示される芳香族ベンゾァゾール残 基を表す。 )
[化 2]
Figure imgf000115_0002
R6 ^ ~ R5- (4)
Figure imgf000115_0003
(一般式 (2)〜(5)中、 Xは酸素原子、硫黄原子、又は NR8 (式中 R°は水素原子、ァ ルキル基又はフエ-ル基を示す)を示し、 R R6は、それぞれ独立して、フエノール 性水酸基又は酸の作用で分解し水酸基に変換し得る一価の有機基を有していても よい単環又は複数の環力 構成される芳香族環基又は複素環基を表し、 R5、 R7はそ れぞれ独立して、フエノール性水酸基又は酸の作用で分解し水酸基に変換し得る一 価の有機基を有して!/、てもよ 、単環又は複数の環から構成される芳香族環基、複素 環基又は脂肪族環基を示す。 ) 必要に応じて感光剤を含有することを特徴とする感光性ポリイミド前駆体組成物。
[2] 感光剤が、感光性溶解阻害剤であることを特徴とする請求項 1に記載のポジ型感 光性ポリイミド前駆体組成物。
[3] 感光剤が、コール酸、デォキシコール酸、および/又はリトコール酸を o— -トロアリ ールメチルエステルイ匕して構成される酸誘導体であることを特徴とする請求項 1に記 載のポジ型感光性ポリイミド前駆体組成物。
[4] 感光剤が、コール酸、デォキシコール酸、および/又はリトコール酸を p— -トロアリ ールメチルエステルイ匕して構成される酸誘導体であり、更に増感剤を含有することを 特徴とする請求項 1に記載のポジ型感光性榭脂組成物。
[5] 感光剤が、コール酸、デォキシコール酸、および/又はリトコール酸のカルボキシ ル基の水素原子をフエナシル構造を有する基およびべンゾィニル構造を有する基か ら選択される光脱離性基により置換して構成される酸誘導体カゝら選ばれる少なくとも 一種であることを特徴とする請求項 1に記載のポジ型感光性ポリイミド前駆体組成物
[6] ポリイミド前駆体が有するカルボキシル基とフエノール性水酸基との合計量が、一般 式(1)で示されるポリイミド前駆体繰り返し単位 1モルあたり 0. 3〜3モルである請求 項 3〜7いずれかに記載のポジ型感光性ポリイミド前駆体組成物。
[7] R2および R4、 R6、 R5、 R7の置換基の少なくとも一部が酸の作用で分解し水酸 基に変換し得る一価の有機基であり、光酸発生剤とを含有することを特徴とする請求 項 1に記載のポジ型感光性ポリイミド前駆体組成物。
[8] ポリイミド前駆体全体に含まれる酸の作用で分解し水酸基に変換し得る一価の有 機基の合計量が、繰り返し単位 1モルあたり 0. 5〜3モルである、請求項 7に記載の ポジ型感光性ポリイミド前駆体組成物。
[9] 感光剤が、光酸発生剤と、酸触媒反応により分解する酸分解性基を有する酸分解 性ィ匕合物とを含有し、該酸分解性化合物は、酸分解性基が分解していないときには 該ポリイミド前駆体をアルカリに対して不溶ィ匕しており、該酸分解性基が酸触媒により 分解すると、該酸分解性ィヒ合物が該ポリイミド前駆体をアルカリに対して溶解促進し 、該ポリイミド前駆体のアルカリ水溶液に対する溶解度が増加することを特徴とする請 求項 1に記載のポジ型感光性ポリイミド前駆体組成物。
[10] 感光剤が、コール酸、デォキシコール酸、および Z又はリトコール酸のカルボキシ ル基の水素原子を酸不安定性基により置換することにより構成された酸誘導体であり 、更に光酸発生剤を含有し、該酸不安定性基は該光酸発生剤が発生する酸によつ て分解するが、該弱酸性基の酸性によっては分解しないことを特徴とする請求項 1に 記載のポジ型感光性ポリイミド前駆体組成物。
[11] R2の少なくとも一部が光脱離性基であることを特徴とする請求項 1に記載のポジ型 感光性ポリイミド前駆体組成物。
[12] 光脱離基が、 p— -トロアリールメチル構造を有する基、 o— -トロアリールメチル構 造を有する基、フエナシル構造を有する基およびべンゾィニル構造を有する基から 選択される基である請求項 11に記載のポジ型感光性ポリイミド前駆体組成物。
[13] R2の 20%以上が光脱離性基である請求項 11又は 12のいずれかに記載のポジ型 感光性ポリイミド前駆体組成物。
[14] ポリイミド前駆体が側鎖に光架橋性基を有し、更に光開始剤を含有することを特徴 とする請求項 1に記載のネガ型感光性ポリイミド前駆体組成物。
[15] R2のうちの 20〜: L00モル%が光架橋性基である請求項 14に記載のネガ型感光性 ポリイミド前駆体組成物。
[16] 更に増感剤を含有する請求項 14又は 15いずれかに記載のネガ型感光性ポリイミ ド前駆体組成物。
[17] 前記ポリイミド前駆体の少なくとも一方の末端は、芳香族ジァミン又は二酸無水物と 結合する結合性基を有する連鎖延長剤によって該結合性基を介して封鎖されており 、該連鎖延長剤は、芳香族ジァミンと二酸無水物とからポリイミド前駆体を形成するた めの条件とは異なる条件下で該ポリイミド前駆体同士を該連鎖延長剤を介して連結 する連結性基をさらに有して 、る、請求項 1〜 16の 、ずれかに記載のポジ型感光性 ポリイミド前駆体組成物。
PCT/JP2005/009770 2004-05-31 2005-05-27 感光性ポリイミド前駆体組成物 WO2005116770A1 (ja)

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP2004-161977 2004-05-31
JP2004-162022 2004-05-31
JP2004162022A JP4165456B2 (ja) 2004-05-31 2004-05-31 ポジ型感光性ポリイミド前駆体組成物
JP2004-161177 2004-05-31
JP2004161177A JP4165454B2 (ja) 2004-05-31 2004-05-31 ポジ型感光性ポリイミド前駆体組成物
JP2004161977A JP4165455B2 (ja) 2004-05-31 2004-05-31 ポジ型感光性ポリイミド前駆体組成物
JP2004170414A JP4165458B2 (ja) 2004-06-08 2004-06-08 ポジ型感光性ポリイミド前駆体組成物
JP2004-170416 2004-06-08
JP2004-170414 2004-06-08
JP2004170416A JP4165459B2 (ja) 2004-06-08 2004-06-08 ポジ型感光性ポリイミド前駆体組成物
JP2004-236920 2004-08-17
JP2004236920A JP4165473B2 (ja) 2004-08-17 2004-08-17 ネガ型感光性ポリイミド前駆体組成物
JP2004-270232 2004-09-16
JP2004270232A JP4165484B2 (ja) 2004-09-16 2004-09-16 ポジ型感光性ポリイミド前駆体組成物
JP2005068996A JP2006251475A (ja) 2005-03-11 2005-03-11 ポジ型感光性ポリイミド前駆体組成物
JP2005068997A JP2006251476A (ja) 2005-03-11 2005-03-11 ポジ型感光性ポリイミド前駆体組成物
JP2005-068998 2005-03-11
JP2005-068995 2005-03-11
JP2005-068996 2005-03-11
JP2005068999A JP2006251478A (ja) 2005-03-11 2005-03-11 ポジ型感光性ポリイミド前駆体組成物
JP2005068998A JP2006251477A (ja) 2005-03-11 2005-03-11 ポジ型感光性ポリイミド前駆体組成物
JP2005-068999 2005-03-11
JP2005068995A JP2006251474A (ja) 2005-03-11 2005-03-11 ポジ型感光性ポリイミド前駆体組成物
JP2005-068997 2005-03-11

Publications (1)

Publication Number Publication Date
WO2005116770A1 true WO2005116770A1 (ja) 2005-12-08

Family

ID=35451034

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009770 WO2005116770A1 (ja) 2004-05-31 2005-05-27 感光性ポリイミド前駆体組成物

Country Status (1)

Country Link
WO (1) WO2005116770A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203698A (ja) * 2007-02-22 2008-09-04 Asahi Kasei Electronics Co Ltd ポジ型感光性樹脂組成物
CN104371102A (zh) * 2014-12-11 2015-02-25 河北科技大学 一种负性光敏聚酰亚胺及其制备方法
WO2015190594A1 (ja) * 2014-06-13 2015-12-17 シャープ株式会社 感光性樹脂組成物、波長変換基板および発光デバイス
CN110330501A (zh) * 2019-06-25 2019-10-15 湖北固润科技股份有限公司 长波长香豆素肟酯类化合物及其制备和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656992A (ja) * 1992-08-05 1994-03-01 Unitika Ltd ポリイミドフィルム
JPH09321038A (ja) * 1996-05-31 1997-12-12 Sumitomo Bakelite Co Ltd 半導体装置
JPH10508059A (ja) * 1994-10-31 1998-08-04 ザ ダウ ケミカル カンパニー ポリアミド酸及びポリアミド酸をポリイミドベンゾオキサゾールフィルムに加工する方法
JP2000230049A (ja) * 1999-02-15 2000-08-22 Toshiba Chem Corp 感光性樹脂組成物およびその製造方法
JP2001264980A (ja) * 2000-03-17 2001-09-28 Toshiba Chem Corp 感光性樹脂組成物およびその製造方法
JP2001337453A (ja) * 2000-05-26 2001-12-07 Hitachi Chemical Dupont Microsystems Ltd 感光性重合体組成物、パターンの製造法及び電子部品
JP2005132904A (ja) * 2003-10-29 2005-05-26 Toyobo Co Ltd ポリイミドベンゾオキサゾール前駆体の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656992A (ja) * 1992-08-05 1994-03-01 Unitika Ltd ポリイミドフィルム
JPH10508059A (ja) * 1994-10-31 1998-08-04 ザ ダウ ケミカル カンパニー ポリアミド酸及びポリアミド酸をポリイミドベンゾオキサゾールフィルムに加工する方法
JPH09321038A (ja) * 1996-05-31 1997-12-12 Sumitomo Bakelite Co Ltd 半導体装置
JP2000230049A (ja) * 1999-02-15 2000-08-22 Toshiba Chem Corp 感光性樹脂組成物およびその製造方法
JP2001264980A (ja) * 2000-03-17 2001-09-28 Toshiba Chem Corp 感光性樹脂組成物およびその製造方法
JP2001337453A (ja) * 2000-05-26 2001-12-07 Hitachi Chemical Dupont Microsystems Ltd 感光性重合体組成物、パターンの製造法及び電子部品
JP2005132904A (ja) * 2003-10-29 2005-05-26 Toyobo Co Ltd ポリイミドベンゾオキサゾール前駆体の製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203698A (ja) * 2007-02-22 2008-09-04 Asahi Kasei Electronics Co Ltd ポジ型感光性樹脂組成物
WO2015190594A1 (ja) * 2014-06-13 2015-12-17 シャープ株式会社 感光性樹脂組成物、波長変換基板および発光デバイス
US10018912B2 (en) 2014-06-13 2018-07-10 Sharp Kabushiki Kaisha Photosensitive resin composition, wavelength conversion substrate and light emitting device
CN104371102A (zh) * 2014-12-11 2015-02-25 河北科技大学 一种负性光敏聚酰亚胺及其制备方法
CN110330501A (zh) * 2019-06-25 2019-10-15 湖北固润科技股份有限公司 长波长香豆素肟酯类化合物及其制备和应用
CN110330501B (zh) * 2019-06-25 2021-05-07 湖北固润科技股份有限公司 长波长香豆素肟酯类化合物及其制备和应用

Similar Documents

Publication Publication Date Title
JP7333383B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7277572B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7289353B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、ポリイミド、又は、ポリイミド前駆体
JP7277573B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP7281533B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP2023027046A (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、ポリマー前駆体
JP2001066781A (ja) アセタール又はその環状誘導体の側鎖を有するポリアミド及びそれから調製された耐熱性ホトレジスト組成物
JP2001181249A (ja) アミドフェノール化合物
WO2005116770A1 (ja) 感光性ポリイミド前駆体組成物
JP7265627B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、ポリイミド、ポリベンゾオキサゾール、ポリイミド前駆体、又は、ポリベンゾオキサゾール前駆体
TW526386B (en) Photosensitive resin composition, print wiring substrate, substrate for embarking semiconductor chip and semiconductor device, and processes for producing print wiring substrate, substrate for embarking semiconductor chip and semiconductor device
JP4672135B2 (ja) アルコキシシラン化合物及び感光性樹脂組成物
JP7334248B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
JP4798851B2 (ja) アルコキシシラン化合物及びその組成物
JP7196121B2 (ja) パターン形成方法、感光性樹脂組成物、積層体の製造方法、及び、電子デバイスの製造方法
JP7134224B2 (ja) 感光性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス
JP2002311574A (ja) 感光性樹脂組成物
JP2001056559A (ja) 炭酸エステル側鎖を含むポリアミド重合体と耐熱性ホトレジスト組成物
JP5439640B2 (ja) アルカリ現像可能なネガ型感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP2005062405A (ja) アルカリ可溶性感光性樹脂組成物及び樹脂層の形成方法
JP7194278B2 (ja) 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス
TW201942675A (zh) 感光性樹脂組成物、硬化膜、積層體及它們的製造方法、半導體器件及用於該等之熱鹼產生劑
JP2002341527A (ja) ポジ型感光性樹脂組成物
JP2005321648A (ja) ネガ型感光性ポリイミド前駆体組成物
JP2005326579A (ja) ネガ型感光性ポリイミド前駆体組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase