WO2015186369A1 - X線回折装置 - Google Patents

X線回折装置 Download PDF

Info

Publication number
WO2015186369A1
WO2015186369A1 PCT/JP2015/050717 JP2015050717W WO2015186369A1 WO 2015186369 A1 WO2015186369 A1 WO 2015186369A1 JP 2015050717 W JP2015050717 W JP 2015050717W WO 2015186369 A1 WO2015186369 A1 WO 2015186369A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
condensed
monochromator
sample
diffracted
Prior art date
Application number
PCT/JP2015/050717
Other languages
English (en)
French (fr)
Inventor
剛 刑部
小澤 哲也
表 和彦
リーサイ ジャン
ボリス ヴァーマン
Original Assignee
株式会社リガク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リガク filed Critical 株式会社リガク
Priority to KR1020167035839A priority Critical patent/KR102179112B1/ko
Priority to US15/312,881 priority patent/US10436723B2/en
Priority to EP15802969.4A priority patent/EP3147654B1/en
Priority to CN201580019383.XA priority patent/CN106461579B/zh
Publication of WO2015186369A1 publication Critical patent/WO2015186369A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4272Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having plural diffractive elements positioned sequentially along the optical path
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • G21K1/062Devices having a multilayer structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/302Accessories, mechanical or electrical features comparative arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/315Accessories, mechanical or electrical features monochromators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/30Accessories, mechanical or electrical features
    • G01N2223/32Accessories, mechanical or electrical features adjustments of elements during operation
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/067Construction details

Definitions

  • the present invention relates to an X-ray diffractometer that detects X-rays diffracted from a sample when the sample is irradiated with X-rays, and is particularly a condensed X-ray that converges X-rays diffracted from the sample at one point.
  • the present invention relates to an X-ray diffraction apparatus constituting an X-ray optical system.
  • FIG. 10 is a schematic diagram showing a configuration example of an X-ray optical system in a conventional X-ray diffraction apparatus. As shown in the figure, the X-ray generated by the X-ray source 10 is irradiated on the surface of the sample S arranged on the sample stage, and the X-ray diffracted from the sample S is detected by the X-ray detector 20. ing.
  • the setting of the X-ray irradiation angle with respect to the surface of the sample S and the movement of the X-ray detector 20 in the direction of capturing the X-ray diffracted from the sample S are driven by a goniometer or the like. Executed.
  • the X-ray optical system shown in the figure is called a Bragg-Brentano optical system, and the sample is irradiated with the divergent X-ray 1 that radiates from the X-ray source 10 and converges at one point from the sample S. 2 is diffracted.
  • the X-ray detector 20 is disposed at the condensing point 2a of the condensed X-ray 2 diffracted from the sample S (or its close rear position).
  • a light receiving slit 30 is disposed in front of the X-ray detection surface 21 of the X-ray detector 20.
  • the light receiving slit 30 is an optical component for adjusting the resolution of the X-ray detector 20 by adjusting the cross-sectional area of the X-ray guided to the X-ray detector 20.
  • FIG. 11 is a schematic diagram showing a configuration example of an X-ray optical system in which an optical component called a monochromator 40 is arranged on the optical path of the condensed X-ray 2 diffracted from the sample in the conventional X-ray diffractometer described above. It is.
  • the condensed X-ray 2 diffracted from the sample S includes a continuous X-ray having a wavelength distribution and a plurality of characteristic X-rays.
  • the monochromator 40 is an optical component having a function of taking out only X-rays with a specific wavelength (for example, ⁇ 1 ray or ⁇ 2 ray) from the condensed X-ray 2 and making it monochromatic. By disposing the monochromator 40 on the optical path of the condensed X-ray 2 diffracted from the sample S, it is possible to remove only noise components and detect only diffracted X-rays having a specific wavelength necessary for sample analysis. The detection accuracy (detection accuracy of the diffraction angle) of the X-ray detector 20 is improved.
  • the monochromator 40 is disposed behind the light receiving slit 30, and the diffracted X-ray converged at the condensing point 2a and further diverged is incident on the monochromator 40.
  • the monochromatic diffracted X-ray is reflected.
  • the diffracted X-ray reflected from the surface of the monochromator 40 becomes a condensed X-ray again and converges to the second condensing point 2c.
  • the X-ray detection surface 21 of the X-ray detector 20 is arranged at the second condensing point 2c (or its close rear position).
  • Patent Document 1 As a conventional X-ray diffractometer equipped with this type of X-ray optical system, for example, there is one disclosed in Patent Document 1.
  • the monochromator 40 is disposed further behind the condensing point 2a of the condensed X-ray 2 diffracted from the sample S, and the X-ray reflected from the monochromator 40 is received by the X-ray detector 20.
  • the optical path length of the diffracted X-ray until reaching the X-ray detector 20 further extends from the condensing point 2a, so that the diffraction X-ray intensity is attenuated. was there.
  • the present invention has been made in view of the above-described circumstances, and the condensed X-ray is diffracted by the monochromator without greatly increasing the optical path length until the condensed X-ray diffracted by the sample reaches the X-ray detector.
  • An object is to provide an X-ray diffractometer that can be monochromatic.
  • the X-ray diffractometer of the present invention is An X-ray source for irradiating the sample with X-rays; A reflection type monochromator that enters the condensed X-rays diffracted from the sample and reflects only the condensed X-rays of a specific wavelength based on the Bragg condition; An X-ray detector that detects condensed X-rays monochromatized by a monochromator; Means for adjusting the measurement resolution of the X-ray detector, A monochromator is disposed on the X-ray optical path between the focused point when the focused X-ray from the sample is converged as it is.
  • the monochromator By disposing the monochromator in front of the condensing point where the condensed X-ray from the sample converges, rather than disposing the monochromator behind the condensing point where the condensed X-ray from the sample converges, The optical path length of the condensed X-ray from the sample to the X-ray detector via the monochromator is shortened.
  • an X-ray detection surface is arranged at a condensing point of condensed X-rays reflected from the monochromator (or a position in the vicinity thereof).
  • the monochromator is composed of a multilayer mirror in which the internal lattice spacing is continuously changed from one end to the other end.
  • the multilayer mirror includes a lattice plane distance d 1 in the depth direction at a portion where the condensed X-ray is incident at an incident angle ⁇ 1 and a depth direction at a portion where the condensed X-ray is incident at the incident angle ⁇ 2.
  • is the wavelength of X-rays to be diffracted
  • n is an integer.
  • the multilayer mirror having such a configuration By applying the multilayer mirror having such a configuration to the monochromator, only the X-rays having a specific wavelength are reflected and extracted with respect to the entire width of the condensed X-rays incident on the surface of the monochromator at different angles. It becomes possible.
  • the monochromator described above can make the incident surface of the condensed X-rays a flat surface. This facilitates the production of the monochromator.
  • the present invention is not limited to this, and the incident surface of the condensed X-ray can be a curved surface as necessary.
  • the monochromator is disposed close to a condensing point when the condensed X-rays diffracted from the sample are converged as they are within a range not interfering with the X-ray detector.
  • the condensing point of the condensed X-ray reflected from the monochromator is brought close to the condensing point when the condensed X-ray diffracted from the sample is converged as it is. Can do.
  • the means for adjusting the measurement resolution of the X-ray detector can be constituted by, for example, a light receiving slit, and this light receiving slit is disposed in front of the X-ray detection surface of the X-ray detector.
  • X-ray detector a two-dimensional X-ray detector that can detect X-rays incident on the X-ray detection surface in two dimensions can be applied.
  • the two-dimensional X-ray detector can detect X-rays incident on the X-ray detection surface in two dimensions, and can detect X-rays incident on the X-ray detection surface in one dimension. It is preferable that a two-dimensional X-ray detection function and a zero-dimensional X-ray detection function capable of detecting X-rays incident on the X-ray detection surface in a zero-dimensional manner can be switched between these X-ray detection functions. .
  • one-dimensional two-dimensional X-ray detector can execute two-dimensional, one-dimensional, and zero-dimensional X-ray detection, and the degree of freedom in measurement is increased. It can be expanded.
  • detecting X-rays in zero dimensions means detecting only the intensity of X-rays
  • detecting X-rays in one dimension means detecting X-ray intensity and one-dimensional position information
  • detecting X-rays in two dimensions means detecting X-ray intensity and two-dimensional position information.
  • the X-ray diffractometer of the present invention can be configured such that the monochromator can be removed from the optical path of the condensed X-ray diffracted from the sample.
  • the X-ray detection surface of the X-ray detector can detect the condensed X-ray diffracted from the sample in the X-ray optical system obtained by removing the monochromator from the optical path of the condensed X-ray, and collect the monochromator.
  • the X-ray optical system disposed on the optical path of the light X-ray the X-ray optical system diffracted from the sample and reflected by the monochromator can be configured to have an area that can be detected.
  • Such a configuration can be easily realized by arranging the monochromator close to the condensing point when the condensed X-rays diffracted from the sample are converged as they are within a range not interfering with the X-ray detector.
  • the monochromator By arranging the monochromator in this way, the condensing point of the condensed X-rays reflected by the monochromator is brought close to the condensing point of the condensed X-rays diffracted from the sample when the monochromator is removed. Because it can.
  • the light receiving slit has a position where the condensed X-ray diffracted from the sample passes through the X-ray optical system in which the monochromator is removed from the optical path of the condensed X-ray, and the monochromator is disposed on the optical path of the condensed X-ray.
  • the position can be changed between the position where the condensed X-ray diffracted from the sample and reflected by the monochromator passes.
  • the X-ray optical system in which the monochromator is removed from the optical path of the condensed X-ray without moving the X-ray detector, and the X-ray optical system in which the monochromator is disposed on the optical path of the condensed X-ray Both of these can be realized.
  • the X-ray detector can also be configured as follows.
  • the X-ray detector collects the monochromator, the position for detecting the condensed X-rays diffracted from the sample and passing through the light receiving slit in the X-ray optical system in which the monochromator is removed from the optical path of the condensed X-rays.
  • the position can be changed between the position where the condensed X-ray diffracted from the sample and reflected by the monochromator and passed through the light receiving slit is detected. Good.
  • the X-ray diffractometer of the present invention can also be configured as follows.
  • the monochromator is configured to be removed from the optical path of the condensed X-ray diffracted from the sample.
  • a two-dimensional X-ray detector that can detect X-rays incident on the X-ray detection surface in two dimensions is applied.
  • the X-ray detection surface of the X-ray detector can detect the condensed X-ray diffracted from the sample in the X-ray optical system in which the monochromator is removed from the optical path of the condensed X-ray, and the monochromator can collect the X-ray.
  • the X-ray optical system arranged on the optical path of the line, the X-ray optical system is configured to have an area capable of detecting also the collected X-rays diffracted from the sample and reflected by the monochromator.
  • the monochromator is disposed in the vicinity of the condensing point when the condensed X-ray diffracted from the sample is converged as it is within a range not interfering with the X-ray detector. Easy to implement.
  • the X-ray detector includes a first X-ray detection region for detecting the condensed X-ray diffracted from the sample in the X-ray optical system in which the monochromator is removed from the optical path of the condensed X-ray, and the monochromator.
  • the X-ray detection region between the X-ray optical system disposed on the optical path of the focused X-ray and the second X-ray detection region for detecting the focused X-ray diffracted from the sample and reflected by the monochromator Is configured to have a changeable function.
  • the function of freely changing the X-ray detection area in the X-ray detector constitutes a means for adjusting the measurement resolution of the X-ray detector. Therefore, the light receiving slit described above is not necessary.
  • the X-ray detector (two-dimensional X-ray detector) has a two-dimensional X-ray detection function capable of detecting X-rays incident on the X-ray detection surface in two dimensions, and X incident on the X-ray detection surface.
  • a one-dimensional X-ray detection function capable of detecting a line in one dimension and a zero-dimensional X-ray detection function capable of detecting an X-ray incident on the X-ray detection surface in zero dimension can be switched between these X-ray detection functions. It is preferable to have a configuration.
  • one-dimensional two-dimensional X-ray detector can execute two-dimensional, one-dimensional, and zero-dimensional X-ray detection, and the degree of freedom in measurement is increased. It can be expanded.
  • the condensed X-ray can be monochromatic by the monochromator without greatly increasing the optical path length until the condensed X-ray diffracted by the sample reaches the X-ray detector.
  • An X-ray diffractometer can be provided.
  • FIG. 1 is a schematic diagram showing a configuration example of an X-ray diffraction apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the monochromator used in the first embodiment of the present invention.
  • 3A and 3B are diagrams showing the relationship between the attachment / detachment of the monochromator and the position change of the condensing point where the condensed X-ray converges.
  • FIG. 4 is a schematic diagram showing the movement of the light receiving position of the condensed X-ray on the X-ray detection surface of the X-ray detector and the position change of the light receiving slit.
  • 5A, 5B, and 5C are schematic views for explaining the principle of the multifunctional two-dimensional X-ray detector.
  • FIG. 6A and 6B are schematic diagrams for explaining the arrangement relationship between the light receiving slits and the X-ray detection surface of the X-ray detector with respect to the condensing point of the condensed X-ray to be detected.
  • FIG. 7 is a schematic diagram showing a main part of an X-ray diffraction apparatus according to the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram showing the main part of an X-ray diffraction apparatus according to the third embodiment of the present invention.
  • FIG. 9A and FIG. 9B are schematic views showing application examples when the present invention is applied to a transmission X-ray optical system.
  • FIG. 10 is a schematic diagram showing a configuration example of an X-ray optical system in a conventional X-ray diffractometer without a monochromator.
  • FIG. 11 is a schematic diagram showing a configuration example of an X-ray optical system in a conventional X-ray diffraction apparatus in which a monochromator is arranged.
  • FIG. 12 is a schematic diagram for explaining a mechanism for retracting the monochromator from the optical path of the condensed X-ray 2.
  • FIG. 13 is a schematic diagram showing an application example in which a monochromator is arranged on the optical path of divergent X-rays emitted radially from an X-ray source and irradiated on a sample.
  • FIG. 1 is a schematic diagram illustrating a configuration example of an X-ray diffraction apparatus according to the present embodiment.
  • the X-ray diffraction apparatus shown in FIG. 1 includes an X-ray source 10, a divergence slit 51, a scattering slit 52, a monochromator 60, a light receiving slit 30, and an X-ray detector 20.
  • the surface of the sample S arranged on the sample stage is irradiated with the line 1, and the condensed X-ray 2 diffracted from the sample S is monochromatized by the monochromator 60 and is incident on the X-ray detector 20.
  • divergent X-rays 1 that radiate out are emitted from the X-ray source 10.
  • the divergence X-ray 1 radiated from the X-ray source 10 is spread by the divergence slit 51 (divergence angle) and is irradiated on the surface of the sample S.
  • X-rays are diffracted from the sample S based on Bragg's law.
  • the diffracted X-ray from the sample S is the condensed X-ray 2 that converges to one point.
  • the X-ray diffractometer according to this embodiment shown in FIG. 1 is obtained by adding a reflective monochromator 60 to the conventional Bragg-Brentano type X-ray diffractometer shown in FIG.
  • the reflective monochromator 60 has a function of reflecting only X-rays having a specific wavelength based on Bragg conditions.
  • the monochromator 60 is disposed between the sample S and the focused point 2a (see FIG. 10) when the focused X-ray 2 from the sample S is converged as it is.
  • the condensed X-ray 2 diffracted from the sample S is reflected by the monochromator 60 to be monochromatic.
  • the condensed X-ray 2 incident on the monochromator 60 reflects only the condensed X-ray 2 having a specific wavelength (for example, the ⁇ 1 line or the ⁇ ⁇ 2 line) based on the Bragg condition.
  • the condensed X-ray 3 that has been monochromatic by the monochromator 60 is incident on the X-ray detection surface 21 of the X-ray detector 20 and is detected by the X-ray detector 20.
  • the light receiving slit 30 is disposed in front of the X-ray detection surface 21 of the X-ray detector 20.
  • the light receiving slit 30 is an optical component for adjusting the resolution of the X-ray detector 20 by adjusting the cross-sectional area of the X-ray guided to the X-ray detector 20 as described above.
  • the setting of the X-ray irradiation angle with respect to the surface of the sample S and the movement of the X-ray detector 20 in the direction of capturing the X-rays diffracted from the sample S are performed by a goniometer or the like. It is executed by driving.
  • optical components for the X-ray diffractometer other than the configuration example shown in FIG. 1 can be mounted as necessary.
  • FIG. 2 is a schematic diagram showing the configuration of the monochromator 60 used in the present embodiment.
  • the incident surface (surface) of the condensed X-ray 2 is formed as a flat surface.
  • a large number of lattice planes that diffract X-rays having a specific wavelength are formed in layers inside by an artificial multilayer film. The intervals between these lattice planes are adjusted so as to continuously change from one end (left end in FIG. 2) to the other end (right end in FIG. 2) of the monochromator 60.
  • the reflection type monochromator 60 having the above-described configuration reflects only the X-rays having a specific wavelength from the incident condensed X-ray 2 from the surface at the same angle as the incident angle, and converges the condensed X-ray 3 to one point. It has a function that can.
  • a monochromator having this type of function is known and disclosed in, for example, US Pat.
  • the monochromator 60 is detachable from the optical path of the condensed X-ray 2, and the monochromator 60 is arranged on the optical path of the condensed X-ray 2, as shown in FIG.
  • the X-ray optical system as shown in FIG. 10 can be formed by removing the monochromator 60 from the optical path of the condensed X-ray 2.
  • the X-ray optical system of FIG. 1 in which the monochromator 60 is arranged on the optical path of the condensed X-ray 2 removes noise components by the monochromator 60 and only diffracted X-rays having a specific wavelength necessary for the analysis of the sample S are X-rayed.
  • the detection accuracy (detection accuracy of a diffraction angle) of the X-ray detector 20 improves.
  • the monochromator 60 is arranged on the optical path of the condensed X-ray 2, the intensity of the diffracted X-rays incident on the X-ray detector 20 is reduced, so that the X-ray intensity is more important than the diffraction angle.
  • the X-ray optical system shown in FIG. 10 in which the monochromator 60 is removed from the optical path of the condensed X-ray 2 may be preferable.
  • the monochromator 60 is detachable, and it is possible to select which of the improvement in detection accuracy and the increase in X-ray intensity is prioritized according to the measurement purpose.
  • the monochromator 60 in relation to the configuration in which the monochromator 60 is detachable, in the X-ray diffractometer of this embodiment, the monochromator 60, the X-ray detector 20, and the light receiving slit 30 are configured as follows.
  • the monochromator 60 is disposed in the vicinity of the condensing point (see FIG. 10) when the condensed X-ray 2 diffracted from the sample S is converged as it is within a range not interfering with the X-ray detector 20.
  • FIG. 10 is a state where the monochromator 60 is removed (that is, the X-ray optical system in FIG. 10), the condensed X-ray 2 diffracted from the sample S converges on the first condensing point 2a shown in FIG. 3A.
  • the condensed X-ray 2 diffracted from the sample S is on the surface of the monochromator 60.
  • Incident light is reflected from the monochromator 60 and condensed X-rays 3 that are monochromatized into X-rays having a specific wavelength are reflected.
  • the condensed X-ray 3 reflected from the monochromator 60 converges on the second condensing point 3a shown in FIG. 3A.
  • the X-ray diffractometer of this embodiment pays attention to the relationship between the arrangement position of the monochromator 60 and the position change of the condensing point 3a, and the condensed X-ray 2 diffracted from the sample S by the monochromator 60. Are arranged close to the first condensing point 2a when converged as they are.
  • the distance between the first condensing point 2a and the second condensing point 3a can be shortened.
  • the monochromator 60 by arranging the monochromator 60 close to the first condensing point 2a, the incident area of the condensed X-ray 2 on the monochromator 60 is reduced, so that the monochromator 60 can be downsized. (See FIG. 3A).
  • the X-ray detector 20 uses a two-dimensional X-ray detector that can detect X-rays incident on the X-ray detection surface 21 in two dimensions. Then, the collected X-ray 2 diffracted from the sample S in the X-ray optical system (X-ray optical system in FIG. 10) from which the monochromator 60 is removed by the X-ray detection surface 21 of one X-ray detector 20. In addition, the X-ray optical system (X-ray optical system in FIG. 1) in which the monochromator 60 is arranged can detect the condensed X-ray 3 reflected by the monochromator 60. As described above, the X-ray optical system shown in FIG. 10 and the X-ray optical system shown in FIG. 1 can be used while the single X-ray detector 20 is fixed. Becomes easy.
  • FIG. 4 is a schematic diagram showing the movement of the light receiving position of the condensed X-ray on the X-ray detection surface of the X-ray detector and the position change of the light receiving slit.
  • the X-ray detection surface 21 of the X-ray detector 20 is disposed at the condensing point 2a or 3a (or its close rear position) of the condensed X-ray 2 or 3. Details of this arrangement relationship will be described later.
  • the condensed X-ray 2 diffracted from the sample S is detected by X-ray detection.
  • the light enters the first light receiving position 21 a on the X-ray detection surface 21 of the detector 20.
  • the X-ray optical system X-ray optical system in FIG. 1 in which the monochromator 60 is arranged on the optical path of the condensed X-ray 2
  • the condensed X-ray 3 reflected from the monochromator 60 is the X-ray.
  • the light enters the second light receiving position 21 b on the X-ray detection surface 21 of the detector 20.
  • the light receiving slit 30 is changed in the position of the light receiving slit 30 arranged in front of the X-ray detection surface 21 of the X-ray detector 20 in accordance with the attachment / detachment of the monochromator 60. That is, in the case of an X-ray optical system (X-ray optical system in FIG. 10) in which the monochromator 60 is removed from the optical path of the condensed X-ray 2, the light receiving slit 30 is disposed in front of the first light receiving position 21a. The condensed X-ray 2 diffracted from the sample S is passed.
  • the monochromator 60 is an X-ray optical system (X-ray optical system in FIG. 1) arranged on the optical path of the condensed X-ray 2, a light receiving slit 30 is arranged in front of the second light receiving position 21b. Then, the condensed X-ray 3 reflected from the monochromator 60 is passed.
  • the position of the light receiving slit 30 may be changed manually or automatically.
  • a structure in which the light receiving slit 30 driving mechanism is incorporated and the light receiving slit 30 is moved by the driving force from the driving mechanism may be used.
  • the X-ray detector 20 can detect X-rays incident on the X-ray detection surface 21 in two dimensions, and can detect X-rays incident on the X-ray detection surface 21 in one dimension.
  • Multi-functional two-dimensional X having a configuration in which a dimensional X-ray detection function and a 0-dimensional X-ray detection function capable of detecting X-rays incident on the X-ray detection surface 21 in a zero dimension can be switched.
  • a line detector is preferably used.
  • detecting X-rays in the zero dimension means detecting only the intensity of the X-rays
  • detecting X-rays in one dimension means detecting the intensity of the X-rays and one-dimensional position information.
  • detecting X-rays in two dimensions means detecting X-ray intensity and two-dimensional position information.
  • the two-dimensional X-ray detector 20 forms a single rectangular X-ray detection surface 21 by a plurality of detection elements 22 arranged in a two-dimensional manner.
  • the respective detection elements 22 are arranged in a lattice form in two directions (lateral direction and vertical direction in the figure) that are perpendicular to each other.
  • Each detection element 22 detects the intensity of X-rays incident thereon. Specifically, when X-rays are incident on a certain detection element 22, the detection element 22 generates a detection signal (electric signal or the like) proportional to the intensity of the incident X-rays. For this reason, when X-rays are detected by the two-dimensional X-ray detector 20, detection signals corresponding to the number of detection elements 22 forming the X-ray detection surface 21 can be obtained.
  • each detection element 22 constituting the X-ray detection surface 21 by changing the usage range of each detection element 22 constituting the X-ray detection surface 21, one of the two-dimensional X-ray detection function, the one-dimensional X-ray detection function, and the zero-dimensional X-ray detection function is selected.
  • the X-ray detection method can be switched. That is, as shown in FIG. 5A, two-dimensional X-ray detection that can detect X-rays incident on the X-ray detection surface 21 in two dimensions by using the detection elements 22 arranged on the entire X-ray detection surface 21. The function as a vessel can be demonstrated. Further, as shown in FIG.
  • the incident light enters the X-ray detection surface 21.
  • the function as a one-dimensional X-ray detector which can detect the X-ray to perform in one dimension can be exhibited.
  • FIG. 5C if only one or a plurality of solid detection elements 22b among the detection elements 22 arranged on the X-ray detection surface 21 are used, X-rays incident on the X-ray detection surface 21 are used.
  • the function as a zero-dimensional X-ray detector that can detect the zero-dimensional can be exhibited.
  • two-dimensional X-ray detection, one-dimensional X-ray detection in the X-ray optical system (X-ray optical system in FIG. 10) from which the monochromator 60 is removed Zero-dimensional X-ray detection, two-dimensional X-ray detection, one-dimensional X-ray detection in an X-ray optical system (X-ray optical system in FIG. 1) in which the monochromator 60 is disposed on the optical path of the condensed X-ray 2 X-ray diffraction measurement can be performed by arbitrarily selecting zero-dimensional X-ray detection, and the degree of freedom of measurement can be greatly expanded.
  • the monochromator 60 is removed from the optical path of the condensed X-ray 2, and the condensed X-ray 2 having a large X-ray intensity is supplied to the X-ray detector 20. An incident method is adopted.
  • the 0-dimensional X-ray detection a method in which the monochromator 60 is arranged on the optical path of the condensed X-ray 2 and the condensed X-ray 2 is detected with high detection accuracy is adopted.
  • X-ray detection is performed at the condensing point 2a (or 3a) of the condensed X-ray 2 (or 3) to be detected. It is preferable to arrange the X-ray detection surface 21 of the vessel 20.
  • a light receiving slit 30 is arranged at the condensing point 2a (or 3a) of the condensing X-ray 2 (or 3) to be detected. It is preferable that the X-ray detection surface 21 of the detector 20 is disposed at the close rear position.
  • FIG. 7 is a schematic diagram showing a main part of an X-ray diffraction apparatus according to the second embodiment.
  • the overall structure of the X-ray diffraction apparatus according to this embodiment is the same as that of the apparatus of the first embodiment described above.
  • the X-ray detector 20 is configured to move integrally with the light receiving slit 30. That is, the detection region facing the light receiving slit 30 on the light receiving slit 30 and the X-ray detection surface 21 of the X-ray detector 20 is moved to one of the following positions.
  • the monochromator 60 is disposed on the optical path of the condensed X-ray 2 diffracted from the sample S.
  • the monochromator 60 is disposed on the optical path of the condensed X-ray 3 that is diffracted from the sample S and reflected by the monochromator 60.
  • the X-ray detector 20 is moved, so that the monochromator 60 converges the condensed X-ray 2 diffracted from the sample S as it is compared to the first embodiment.
  • the necessity to arrange in the vicinity of the condensing point 2a (see FIG. 10) at the time is low.
  • the monochromator 60 again converges the condensed X-ray 2 diffracted from the sample S as it is, and the focal point 2a (FIG. 10).
  • a configuration in which it is arranged close to the reference) is preferable.
  • the detection unit moving device (9) disclosed in Patent Document 3 can be applied.
  • the X-ray detector 20 is configured to move integrally with the light receiving slit 30, but the present invention is not limited to this, and the X-ray detector 20 and the light receiving slit 30 include It can also be set as the structure which moves separately.
  • FIG. 8 is a schematic diagram showing a main part of an X-ray diffraction apparatus according to the third embodiment.
  • the overall structure of the X-ray diffraction apparatus according to this embodiment is the same as that of the apparatus of the first embodiment described above.
  • a two-dimensional X-ray detector 20 having a function capable of changing the X-ray detection area is used.
  • the function of changing the X-ray detection area in the two-dimensional X-ray detector 20 constitutes a means for adjusting the measurement resolution of the X-ray detector 20. Therefore, in the X-ray diffraction apparatus of the present embodiment, the light receiving slit 30 is removed.
  • the X-ray detection surface 21 of the two-dimensional X-ray detector 20 forms a single rectangular X-ray detection surface 21 by a plurality of detection elements 22 arranged in a two-dimensional manner.
  • Each of the detection elements 22 is arranged in a lattice form in two directions (horizontal direction and vertical direction in the figure) perpendicular to each other, and detects the intensity of X-rays incident on each.
  • an arbitrary X-ray detection region on the X-ray detection surface 21 is selected by selecting the detection element 22 used for X-ray detection from the plurality of detection elements 22 forming the X-ray detection surface 21. It is the structure which forms.
  • the X-ray detector 20, for the X-ray optical system from which the monochromator 60 is removed collects X-rays diffracted from the sample S.
  • the first X-ray detection region is formed using only the detection element 22c in the region where 2 is incident.
  • the X-ray optical system (X-ray optical system in FIG. 1) in which the monochromator 60 is disposed is in a region where the condensed X-ray 3 diffracted from the sample S and reflected by the monochromator 60 is incident.
  • a second X-ray detection region is formed using only the detection element 22d. Detection elements 22 other than these detection regions are not used.
  • the detection element 22c or 22d that forms the first X-ray detection region or the second X-ray detection region also has the role of the light receiving slit 30, and the light receiving slit 30 is omitted. It becomes possible.
  • the configuration that allows the X-ray detection region of the two-dimensional X-ray detector 20 to be changed is, for example, using the configuration of the “virtual mask” disclosed in Japanese Patent Application No. 2013-243506 previously filed by the present applicant. Can do.
  • the basic X-ray optical system is not limited to the configuration shown in FIGS. 10 and 1.
  • the sample S is irradiated with the condensed X-ray 2 and the sample S
  • the present invention can also be applied to a transmissive X-ray optical system that transmits X-rays diffracted inside and converges to one point.
  • the two-dimensional X-ray detector is used.
  • a dedicated one-dimensional X-ray detector or zero-dimensional X-ray detector can be used as necessary.
  • the monochromator 60 is configured to be detachable from the optical path of the condensed X-ray 2.
  • the monochromator 60 is moved on the apparatus without being removed from the apparatus, and the condensed X-ray 2 is moved. It is good also as a structure which can evacuate from on the optical path.
  • a mechanism for rotating the monochromator 60 is provided, and the monochromator is arranged on the optical path of the condensed X-ray 2 by the rotating operation, or from the optical path of the condensed X-ray 2. Evacuate.
  • a monochromator 60 is arranged on the optical path of divergent X-rays emitted radially from an X-ray source and applied to the sample, and the divergent X-rays incident on the sample are applied.
  • the X-ray diffractometer can also be configured so that the monochromator 60 is monochromatic.
  • the monochromator 60 is disposed close to the X-ray source 10.
  • the reflection type monochromator used in the above-described embodiment of the present invention can be applied to the monochromator 60.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 試料Sから回折してきた集光X線2を、ブラッグの条件に基づき特定波長のX線のみをモノクロメータ60で反射させ、さらに受光スリット30を通過させて、X線検出器20により検出する。モノクロメータ60は着脱自在とし、試料Sからの集光X線2をそのまま収束させたときの集光点2aと当該試料Sとの間に配置する。このとき、モノクロメータ60は、上記集光点2aにできるだけ接近させる。また、モノクロメータ60は、内部の格子面間隔が一端から他端にかけて連続的に変化した多層膜ミラーで構成する。

Description

X線回折装置
 この発明は、試料にX線を照射したとき、試料から回折してくるX線を検出するX線回折装置に関し、特に試料から回折してくるX線が一点に収束する集光X線であるX線光学系を構成するX線回折装置に関する。
 試料の結晶性や結晶構造などを分析する装置の一つとしてX線回折装置が知られている。
 図10は、従来のX線回折装置におけるX線光学系の構成例を示す模式図である。
 同図に示すように、X線源10で発生したX線を試料台に配置した試料Sの表面に照射し、試料Sから回折してきたX線をX線検出器20で検出する構成となっている。図には示されていないが、試料Sの表面に対するX線照射角度の設定と、試料Sから回折してくるX線を捉える方向へのX線検出器20の移動は、ゴニオメータなどの駆動によって実行される。
 同図に示したX線光学系は、Bragg-Brentano光学系と呼ばれ、X線源10から放射状に拡がる発散X線1が試料に照射され、試料Sからは一点に収束する集光X線2が回折してくる。
 X線検出器20は、試料Sから回折してきた集光X線2の集光点2a(又はその近接後方位置)に配置される。
 X線検出器20におけるX線検出面21の手前には、受光スリット30が配設してある。受光スリット30は、X線検出器20へ導くX線の断面積を調整して、X線検出器20の分解能を調節するための光学部品である。
 図11は、上述した従来のX線回折装置において、試料から回折してくる集光X線2の光路上にモノクロメータ40と呼ばれる光学部品を配置したX線光学系の構成例を示す模式図である。
 試料Sから回折してきた集光X線2には、波長分布のある連続X線と複数の特性X線が含まれている。モノクロメータ40は、この集光X線2から特定の波長のX線(例えば、Κα1線やΚα2線)のみを取り出して単色化する機能をもつ光学部品である。このモノクロメータ40を試料Sから回折してくる集光X線2の光路上に配置することで、ノイズ成分を取り除いて試料分析に必要な特定波長の回折X線のみを検出することができるため、X線検出器20の検出精度(回折角度の検出精度)が向上する。
 図11に示すように、従来のX線回折装置では、受光スリット30の後方にモノクロメータ40を配置し、集光点2aで収束してさらに発散した回折X線をモノクロメータ40に入射し、単色化した回折X線を反射させる構成となっている。モノクロメータ40の表面から反射してきた回折X線は再び集光X線となって第2の集光点2cに収束する。この第2の集光点2c(又はその近接後方位置)にX線検出器20のX線検出面21を配置してある。
 この種のX線光学系を備えた従来のX線回折装置としては、例えば、特許文献1に開示されたものがある。
特開平4-178547号(特許第2866471号)公報 米国特許第5757882号の第2図 特開2007-10486号公報
 上述したように試料Sから回折してきた集光X線2の集光点2aよりもさらに後方にモノクロメータ40を配置し、このモノクロメータ40から反射してきたX線をX線検出器20に受光させる従来のX線光学系にあっては、X線検出器20に到達するまでの回折X線の光路長が集光点2aからさらに延びてしまうため、回折X線強度の減衰が生じるという課題があった。
 本発明は上述した事情に鑑みてなされたもので、試料で回折してきた集光X線がX線検出器に到達するまでの光路長を大きく延ばすことなく、モノクロメータによって当該集光X線を単色化できるX線回折装置の提供を目的とする。
 本発明のX線回折装置は、
 X線を試料に照射するX線源と、
 試料から回折してきた集光X線を入射し、ブラッグの条件に基づき特定波長の集光X線のみを反射させる反射型のモノクロメータと、
モノクロメータで単色化された集光X線を検出するX線検出器と、
 X線検出器の測定分解能を調節する手段と、を備え、
 試料からの集光X線をそのまま収束させたときの集光点と当該試料との間のX線光路上に、モノクロメータを配置したことを特徴とする。
 試料からの集光X線が収束する集光点よりも前方にモノクロメータを配置することで、試料からの集光X線が収束する集光点よりも後方にモノクロメータを配置するよりも、試料からモノクロメータを介してX線検出器に至る集光X線の光路長は短くなる。なお、X線検出器は、モノクロメータから反射してきた集光X線の集光点(又はその近接後方位置)にX線検出面が配置される。
 ここで、モノクロメータは、内部の格子面間隔が一端から他端にかけて連続的に変化した多層膜ミラーで構成することが好ましい。
 さらに、この多層膜ミラーは、集光X線が入射角θで入射する部位における深さ方向の格子面間隔dと、集光X線が入射角θで入射する部位における深さ方向の格子面間隔dとが、ブラッグの条件に基づき次式の関係が成立するように、内部の格子面間隔を調整した構成であることが好ましい。
     2d×sinθ=2d×sinθ=nλ
 なお、上式において、λは回折するX線の波長、nは整数である。
 このような構成の多層膜ミラーをモノクロメータに適用することで、モノクロメータの表面に違った角度で入射してくる集光X線の全幅に対し、特定波長のX線のみを反射させて取り出すことが可能となる。
 上述したモノクロメータは、集光X線の入射面を平坦面とすることができる。これによりモノクロメータの製作が容易となる。ただし、これに限定されず必要に応じて集光X線の入射面を湾曲面とすることもできる。
 また、モノクロメータは、X線検出器に干渉しない範囲で、試料から回折してきた集光X線をそのまま収束させたときの集光点に近接して配置することが好ましい。
 このような位置にモノクロメータを配置することで、モノクロメータから反射した集光X線の集光点を、試料から回折してきた集光X線をそのまま収束させたときの集光点に近付けることができる。
 X線検出器の測定分解能を調節する手段は、例えば受光スリットで構成することができ、この受光スリットをX線検出器におけるX線検出面の手前に配置する。
 また、X線検出器としては、X線検出面に入射するX線を2次元で検出できる2次元X線検出器を適用することができる。
 さらに、この2次元X線検出器は、X線検出面に入射するX線を2次元で検出できる2次元X線検出機能と、X線検出面に入射するX線を1次元で検出できる1次元X線検出機能と、X線検出面に入射するX線を0次元で検出できる0次元X線検出機能とを備え、これら各X線検出機能を切り替え可能な構成のものとすることが好ましい。
 このような機能を有する2次元X線検出器を用いることにより、一台の2次元X線検出器で2次元、1次元、0次元のX線検出を実行することができ、測定自由度を広げることが可能となる。
 ここで、X線を0次元で検出するとは、X線の強度だけを検出することをいい、X線を1次元で検出するとは、X線の強度と1次元位置情報を検出することをいい、さらにX線を2次元で検出するとは、X線の強度と2次元位置情報を検出することをいう。
 本発明のX線回折装置は、モノクロメータを試料から回折してきた集光X線の光路上から取り除くことができる構成とすることもできる。
 ここで、X線検出器のX線検出面は、モノクロメータを集光X線の光路上から取り除いたX線光学系において試料から回折してきた集光X線を検出できるとともに、モノクロメータを集光X線の光路上に配置したX線光学系において試料から回折し且つモノクロメータで反射してきた集光X線についても検出できる面積を有した構成とすることができる。
 かかる構成は、モノクロメータを、X線検出器に干渉しない範囲で、試料から回折してきた集光X線をそのまま収束させたときの集光点に近接して配置することで実現容易となる。このようにモノクロメータを配置することで、モノクロメータで反射した後の集光X線の集光点を、モノクロメータを取り外したときの試料から回折してきた集光X線の集光点に近付けることができるからである。
 受光スリットは、モノクロメータを集光X線の光路上から取り除いたX線光学系において試料から回折してきた集光X線を通過させる位置と、モノクロメータを集光X線の光路上に配置したX線光学系において試料から回折し且つモノクロメータで反射してきた集光X線を通過させる位置との間で、位置変更自在な構成とする。
 この構成によって、X線検出器を移動させることなく、モノクロメータを集光X線の光路上から取り除いたX線光学系と、モノクロメータを集光X線の光路上に配置したX線光学系の双方を実現することが可能となる。
 モノクロメータを試料から回折してきた集光X線の光路上から取り除くことができるようにした構成において、X線検出器は次のように構成することもできる。すなわち、X線検出器は、モノクロメータを集光X線の光路上から取り除いたX線光学系において試料から回折し受光スリットを通過してきた集光X線を検出する位置と、モノクロメータを集光X線の光路上に配置したX線光学系において試料から回折し且つモノクロメータで反射し受光スリットを通過してきた集光X線を検出する位置との間で、位置変更自在の構成としてもよい。
 また、本発明のX線回折装置は、次のように構成することもできる。
 モノクロメータは、試料から回折してきた集光X線の光路上から取り除くことができる構成とする。
 X線検出器は、X線検出面に入射するX線を2次元で検出できる2次元X線検出器を適用する。
 当該X線検出器のX線検出面は、モノクロメータを集光X線の光路上から取り除いたX線光学系において試料から回折してきた集光X線を検出できるとともに、モノクロメータを集光X線の光路上に配置したX線光学系において試料から回折し且つモノクロメータで反射してきた集光X線についても検出できる面積を有した構成とする。
 かかる構成は、既述したとおり、モノクロメータを、X線検出器に干渉しない範囲で、試料から回折してきた集光X線をそのまま収束させたときの集光点に近接して配置することで実現容易となる。
 さらに、X線検出器は、モノクロメータを集光X線の光路上から取り除いたX線光学系において試料から回折してきた集光X線を検出する第1のX線検出領域と、モノクロメータを集光X線の光路上に配置したX線光学系において試料から回折し且つモノクロメータで反射してきた集光X線を検出する第2のX線検出領域との間で、当該X線検出領域を変更自在な機能を有した構成とする。
 ここで、X線検出器におけるX線検出領域を変更自在な機能が、X線検出器の測定分解能を調節する手段を構成している。したがって、既述した受光スリットが不要となる。
 この構成においても、X線検出器(2次元X線検出器)は、X線検出面に入射するX線を2次元で検出できる2次元X線検出機能と、X線検出面に入射するX線を1次元で検出できる1次元X線検出機能と、X線検出面に入射するX線を0次元で検出できる0次元X線検出機能とを備え、これら各X線検出機能を切り替え可能な構成のものとすることが好ましい。このような機能を有する2次元X線検出器を用いることにより、一台の2次元X線検出器で2次元、1次元、0次元のX線検出を実行することができ、測定自由度を広げることが可能となる。
 以上説明したとおり、本発明によれば、試料で回折してきた集光X線がX線検出器に到達するまでの光路長を大きく延ばすことなく、モノクロメータによって当該集光X線を単色化できるX線回折装置を提供することができる。
図1は、本発明の第1の実施形態に係るX線回折装置の構成例を示す模式図である。 図2は、本発明の第1の実施形態で用いたモノクロメータの構成を示す模式図である。 図3A,図3Bは、モノクロメータの着脱と、集光X線が収束する集光点の位置変化との関係を示す図である。 図4は、X線検出器のX線検出面上での集光X線の受光位置の移動と、受光スリットの位置変更を示す模式図である。 図5A,図5B,図5Cは、多機能2次元X線検出器の原理を説明するための模式図である。 図6A,図6Bは、検出対象となる集光X線の集光点に対するX線検出器のX線検出面と、受光スリットの配置関係を説明するための模式図である。 図7は、本発明の第2の実施形態に係るX線回折装置の要部を示す模式図である。 図8は、本発明の第3の実施形態に係るX線回折装置の要部を示す模式図である。 図9A,図9Bは、本発明を透過式のX線光学系に適用した場合の応用例を示す模式図である。 図10は、モノクロメータを配置しない従来のX線回折装置におけるX線光学系の構成例を示す模式図である。 図11は、モノクロメータを配置した従来のX線回折装置におけるX線光学系の構成例を示す模式図である。 図12は、モノクロメータを集光X線2の光路上から退避させる機構を説明するための模式図である。 図13は、モノクロメータをX線源から放射状に出射され試料に照射される発散X線の光路上に配置した応用例を示す模式図である。
 S:試料
 10:X線源、
 20:X線検出器、21:X線検出面、22:検出素子
 30:受光スリット、
 40,60:モノクロメータ、
 51:発散スリット、52:散乱スリット
 以下、この発明の実施の形態について、図面を参照して詳細に説明する。
〔第1の実施形態〕
 まず、図1~図6Bおよび図10を参照して、本発明の第1の実施形態に係るX線回折装置について説明する。
 図1は、本実施形態に係るX線回折装置の構成例を示す模式図である。
 同図に示すX線回折装置は、X線源10、発散スリット51、散乱スリット52、モノクロメータ60、受光スリット30、X線検出器20を備えており、X線源10で発生した発散X線1を試料台に配置した試料Sの表面に照射し、試料Sから回折してきた集光X線2を、モノクロメータ60で単色化してX線検出器20に入射させる構成となっている。
 ここで、X線源10からは放射状に拡がる発散X線1が放射される。X線源10から放射された発散X線1は、発散スリット51で広がり(発散角)が制限され、試料Sの表面に照射される。試料Sからはブラッグの法則に基づきX線が回折してくる。試料Sからの回折X線は、一点に収束する集光X線2である。
 図1に示す本実施形態のX線回折装置は、図10に示した従来のBragg-Brentano型X線回折装置に反射型のモノクロメータ60を付加したものである。反射型のモノクロメータ60は、ブラッグの条件に基づき特定波長のX線のみを反射させる機能を有している。
 モノクロメータ60は、試料Sからの集光X線2をそのまま収束させたときの集光点2a(図10参照)と当該試料Sとの間に配置してある。
 試料Sから回折してきた集光X線2は、モノクロメータ60で反射して単色化される。すなわち、モノクロメータ60に入射した集光X線2は、ブラッグの条件に基づき特定波長の集光X線2(例えば、Κα1線やΚα2線)のみがモノクロメータ60から反射してくる。このようにモノクロメータ60で単色化された集光X線3が、X線検出器20のX線検出面21に入射して、X線検出器20で検出される。
 本実施形態では、X線検出器20におけるX線検出面21の手前に受光スリット30が配置してある。受光スリット30は、既述したとおり、X線検出器20へ導くX線の断面積を調整して、X線検出器20の分解能を調節するための光学部品である。
 なお、図1には示されていないが、試料Sの表面に対するX線照射角度の設定と、試料Sから回折してくるX線を捉える方向へのX線検出器20の移動は、ゴニオメータなどの駆動によって実行される。また、図1に示した構成例以外のX線回折装置用の光学部品についても、必要に応じて装着できることは勿論である。
 図2は、本実施形態で用いたモノクロメータ60の構成を示す模式図である。
 本実施形態で用いたモノクロメータ60は、集光X線2の入射面(表面)が平坦面に形成されている。そして、内部は人工の多層膜によって、特定波長のX線を回折する多数の格子面が層状に形成されている。これら各格子面の間隔は、モノクロメータ60の一端(図2の左端)から他端(図2の右端)にかけて連続的に変化するように調整されている。
 ここで、図2に示すように、モノクロメータ60の一端部(図2の左端部)の表面には、試料Sからの集光X線2が入射角θで入射するものとする。そして、この一端部における深さ方向の格子面間隔をdとする。一方、モノクロメータ60の他端部(図2の右端部)の表面には、試料Sからの集光X線2が入射角θで入射するものとする。そして、この他端部における深さ方向の格子面間隔をdとする。
 モノクロメータ60の内部に層状に形成された各格子面の間隔は、ブラッグの条件に基づき次式の関係が成立するように連続的に変化している。
     2d×sinθ=2d×sinθ=nλ
 なお、λは回折するX線の波長、nは整数である。
 これにより、特定波長λのX線が、一端部(図2の左端部)の表面からはθの角度で反射し、また他端部(図2の右端部)の表面からはθの角度で反射してくる。すなわち、上述した構成の反射型のモノクロメータ60は、入射した集光X線2から特定波長のX線のみを入射角と同じ角度で表面から反射させ、集光X線3として一点に収束させることができる機能を有している。
 なお、この種の機能を有したモノクロメータは公知であり、例えば、特許文献2の米国特許に開示されている。
 本実施形態に係るX線回折装置は、モノクロメータ60が集光X線2の光路上から着脱自在となっており、モノクロメータ60を集光X線2の光路上に配置することで図1に示すようなX線光学系を形成し、一方、モノクロメータ60を集光X線2の光路上から取り外すことで図10に示すようなX線光学系を形成することができる。
 モノクロメータ60を集光X線2の光路上に配置した図1のX線光学系は、モノクロメータ60によりノイズ成分を取り除いて試料Sの分析に必要な特定波長の回折X線のみをX線検出器20に入射させることができるため、X線検出器20の検出精度(回折角度の検出精度)が向上する。
 一方、モノクロメータ60を集光X線2の光路上に配置すると、X線検出器20に入射する回折X線の強度が低下するため、回折角度よりもX線強度が重要となる測定などにあっては、むしろモノクロメータ60を集光X線2の光路上から取り外した図10に示すX線光学系の方が好ましいこともある。
 本実施形態では、モノクロメータ60を着脱自在とし、測定目的に応じて検出精度の向上とX線強度の増大のいずれを優先させるか選択できるようになっている。
 さて、モノクロメータ60を着脱自在とする構成に関連して、本実施形態のX線回折装置では、モノクロメータ60、X線検出器20、受光スリット30を次のように構成してある。
 まず、モノクロメータ60は、X線検出器20に干渉しない範囲で、試料Sから回折してきた集光X線2をそのまま収束させたときの集光点(図10参照)に近接して配置してある。
 図3A,図3Bは、モノクロメータの着脱と、集光X線が収束する集光点の位置変化との関係を示す図である。
 モノクロメータ60を取り外した状態(すなわち、図10のX線光学系)では、試料Sから回折してきた集光X線2は、図3Aに示す第1の集光点2aに収束する。一方、モノクロメータ60を集光X線2の光路上に配置した状態(すなわち、図1のX線光学系)では、試料Sから回折してきた集光X線2は、モノクロメータ60の表面に入射し、モノクロメータ60からは特定波長のX線に単色化された集光X線3が反射してくる。そして、このモノクロメータ60から反射してきた集光X線3は、図3Aに示す第2の集光点3aに収束する。
 図3Aに示す光学系では、モノクロメータ60は第1の集光点2aに近接して配置してあるため、モノクロメータ60から反射してきた集光X線3の第2の集光点3aは、第1の集光点2aに接近しており、各集光点2a,3aの距離Lは短い。
 一方、図3Bに示すように、モノクロメータ60を第1の集光点2aから離していくと、モノクロメータ60から反射してきた集光X線3の第2の集光点3aは、第1の集光点2aから離れていき、各集光点2a,3aの距離Lが長くなる。
 本実施形態のX線回折装置は、このようなモノクロメータ60の配置位置と、集光点3aの位置変化の関係に着目し、モノクロメータ60を、試料Sから回折してきた集光X線2をそのまま収束させたときの第1の集光点2aに近接して配置してある。
 これにより、第1の集光点2aと第2の集光点3aの距離を短くすることができる。その結果、後述するようにX線検出器20を固定したままで、図10のX線光学系と図1のX線光学系のいずれにも対応できる構成が実現可能となる。また、モノクロメータ60を第1の集光点2aに近接して配置することで、集光X線2のモノクロメータ60への入射面積が小さくなるため、モノクロメータ60を小形化することもできる(図3A参照)。
 X線検出器20は、X線検出面21に入射するX線を2次元で検出できる2次元X線検出器を用いている。そして、一台のX線検出器20のX線検出面21により、モノクロメータ60を取り外したX線光学系(図10のX線光学系)において、試料Sから回折してきた集光X線2を検出するとともに、モノクロメータ60を配置したX線光学系(図1のX線光学系)において、モノクロメータ60で反射してきた集光X線3を検出できる構成としてある。
 このように、一台のX線検出器20を固定したままで、図10のX線光学系と図1のX線光学系のいずれにも対応できる構成としたことで、各光学系の切り替えが容易となる。
 図4は、X線検出器のX線検出面上での集光X線の受光位置の移動と、受光スリットの位置変更を示す模式図である。
 X線検出器20のX線検出面21は、集光X線2又は3の集光点2a又は3a(又はその近接後方位置)に配置される。なお、この配置関係の詳細は後述する。
 図4において、モノクロメータ60を集光X線2の光路上から取り外したX線光学系(図10のX線光学系)では、試料Sから回折してきた集光X線2が、X線検出器20のX線検出面21上の第1の受光位置21aに入射する。一方、モノクロメータ60を集光X線2の光路上に配置したX線光学系(図1のX線光学系)のときは、モノクロメータ60から反射してきた集光X線3が、X線検出器20のX線検出面21上の第2の受光位置21bに入射する。
 したがって、X線検出器20のX線検出面21の手前に配置される受光スリット30の位置を、モノクロメータ60の着脱に対応して変更する必要がある。すなわち、モノクロメータ60を集光X線2の光路上から取り外したX線光学系(図10のX線光学系)のときは、第1の受光位置21aの手前に受光スリット30を配置して、試料Sから回折してきた集光X線2を通過させる。一方、モノクロメータ60を集光X線2の光路上に配置したX線光学系(図1のX線光学系)のときは、第2の受光位置21bの手前に受光スリット30を配置して、モノクロメータ60から反射してきた集光X線3を通過させる。
 受光スリット30の位置変更は手動又は自動のいずれで行ってもよい。受光スリット30を自動で位置変更するには、受光スリット30駆動機構を組み込み、この駆動機構からの駆動力によって受光スリット30を移動させる構成とすればよい。
 また、X線検出器20は、X線検出面21に入射するX線を2次元で検出できる2次元X線検出機能と、X線検出面21に入射するX線を1次元で検出できる1次元X線検出機能と、X線検出面21に入射するX線を0次元で検出できる0次元X線検出機能とを備え、これら各X線検出機能を切り替え可能な構成の多機能2次元X線検出器を用いることが好ましい。
 既述したとおり、X線を0次元で検出するとは、X線の強度だけを検出することをいい、X線を1次元で検出するとは、X線の強度と1次元位置情報を検出することをいい、さらにX線を2次元で検出するとは、X線の強度と2次元位置情報を検出することをいう。
 図5A,図5B,図5Cは、この種の多機能2次元X線検出器の原理を説明するための模式図である。
 2次元X線検出器20は、図5Aに示すように、2次元状に配列された複数の検出素子22によって一つの矩形のX線検出面21を形成している。各々の検出素子22は、互いに直角をなす二方向(図の横方向と縦方向)に格子状に並んでいる。各々の検出素子22は、それぞれに入射したX線の強度を検出する。具体的には、ある一つの検出素子22にX線が入射すると、この検出素子22は、入射したX線の強度に比例した検出信号(電気信号等)を生成する。このため、2次元X線検出器20でX線を検出する場合は、X線検出面21を形成する検出素子22の個数分の検出信号を得ることができる。
 そして、X線検出面21を構成する各検出素子22の使用範囲を変更することで、2次元X線検出機能、1次元X線検出機能、0次元X線検出機能のいずれかを選択して、X線検出方式を切り替えることが可能となる。
 すなわち、図5Aに示すように、X線検出面21の全体に配列された各検出素子22を使用すれば、X線検出面21に入射するX線を2次元で検出できる2次元X線検出器としての機能を発揮することができる。また、図5Bに示すように、X線検出面21に配列された各検出素子22のうち、複数個の直線上に配列された検出素子22aだけを使用すれば、X線検出面21に入射するX線を1次元で検出できる1次元X線検出器としての機能を発揮することができる。さらに、図5Cに示すように、X線検出面21に配列された各検出素子22のうち一個又は複数個の固まった検出素子22bだけを使用すれば、X線検出面21に入射するX線を0次元で検出できる0次元X線検出器としての機能を発揮することができる。
 このような多機能2次元X線検出器を用いることで、モノクロメータ60を取り外したX線光学系(図10のX線光学系)での、2次元X線検出、1次元X線検出、0次元X線検出と、モノクロメータ60を集光X線2の光路上に配置したX線光学系(図1のX線光学系)での、2次元X線検出、1次元X線検出、0次元X線検出とを、任意に選択してX線回折測定を行うことができ、測定の自由度を格段に広げることができる。
 なお、一般には、2次元X線検出又は1次元X線検出では、モノクロメータ60を集光X線2の光路上から取り外し、大きなX線強度の集光X線2をX線検出器20に入射する方式が採用される。一方、0次元X線検出では、モノクロメータ60を集光X線2の光路上に配置して、高い検出精度で集光X線2を検出する方式が採用される。
 また、2次元X線検出又は1次元X線検出のときは、図6Aに示すように、検出対象となる集光X線2(又は3)の集光点2a(又は3a)にX線検出器20のX線検出面21を配置することが好ましい。一方、0次元X線検出のときは、図6Bに示すように、検出対象となる集光X線2(又は3)の集光点2a(又は3a)に受光スリット30を配置し、X線検出器20のX線検出面21はその近接後方位置に配置することが好ましい。
〔第2の実施形態〕
 次に、図7を参照して、本発明の第2の実施形態に係るX線回折装置について説明する。
 図7は、第2の実施形態に係るX線回折装置の要部を示す模式図である。
 本実施形態に係るX線回折装置の全体構造は、先に説明した第1の実施形態の装置と同じである。
 本実施形態では、X線検出器20が受光スリット30と一体に移動するように構成してある。
 すなわち、受光スリット30と、X線検出器20のX線検出面21においてこの受光スリット30と対向する検出領域を、次のいずれかの位置に移動させる。まず、モノクロメータ60を取り外したX線光学系(図10のX線光学系)のときは、試料Sから回折してきた集光X線2の光路上に配置する。一方、モノクロメータ60を配置したX線光学系(図1のX線光学系)のときは、試料Sから回折し且つモノクロメータ60で反射してきた集光X線3の光路上に配置する。
 本実施形態に係るX線回折装置では、X線検出器20を移動させるため、先の第1の実施形態に比べ、モノクロメータ60を、試料Sから回折してきた集光X線2をそのまま収束させたときの集光点2a(図10参照)に近接して配置する必要性は低い。しかし、X線検出器20の移動量を最小限に抑えるためには、やはりモノクロメータ60を、試料Sから回折してきた集光X線2をそのまま収束させたときの集光点2a(図10参照)に近接して配置する構成が好ましい。
 X線検出器20と受光スリット30を一体に移動させる機構には、例えば、特許文献3に開示された検出ユニット移動装置(9)を適用することができる。
 なお、本実施形態では、X線検出器20が受光スリット30と一体に移動するように構成したが、本発明はこれに限定されるものではなく、X線検出器20と受光スリット30とが別々に移動する構成とすることもできる。
〔第3の実施形態〕
 次に、図8を参照して、本発明の第3の実施形態に係るX線回折装置について説明する。
 図8は、第3の実施形態に係るX線回折装置の要部を示す模式図である。
 本実施形態に係るX線回折装置の全体構造は、先に説明した第1の実施形態の装置と同じである。
 本実施形態では、X線検出領域を変更自在な機能を有する2次元X線検出器20を用いている。この2次元X線検出器20におけるX線検出領域を変更自在な機能は、X線検出器20の測定分解能を調節する手段を構成する。よって、本実施形態のX線回折装置では、受光スリット30が取り除かれている。
 図5Aに示したとおり、2次元X線検出器20のX線検出面21は、2次元状に配列された複数の検出素子22によって一つの矩形のX線検出面21を形成している。各々の検出素子22は、互いに直角をなす二方向(図の横方向と縦方向)に格子状に並んでおり、それぞれに入射したX線の強度を検出する。
 本実施形態では、X線検出面21を形成する複数の検出素子22のうちから、X線の検出に使用する検出素子22を選択することで、X線検出面21に任意のX線検出領域を形成する構成となっている。
 すなわち、図8に示すように、X線検出器20は、モノクロメータ60を取り外したX線光学系(図10のX線光学系)に対しては、試料Sから回折してきた集光X線2が入射する領域にある検出素子22cだけを使って第1のX線検出領域を形成する。また、モノクロメータ60を配置したX線光学系(図1のX線光学系)に対しては、試料Sから回折し且つモノクロメータ60で反射してきた集光X線3が入射する領域にある検出素子22dだけを使って第2のX線検出領域を形成する。これらの検出領域以外の検出素子22は使用しない。
 このように構成することで、第1のX線検出領域又は第2のX線検出領域を形成する検出素子22c又は22dが、受光スリット30の役割を併せもつこととなり、受光スリット30を省略することが可能となる。
 2次元X線検出器20のX線検出領域を変更自在とする構成は、例えば、本出願人が先に提出済みの特願2013-243506号に開示した「仮想マスク」の構成を利用することができる。
 なお、本発明は上述した実施形態に限定されるものではなく、種々の変形実施又は応用実施が可能であることは勿論である。
 例えば、基本となるX線光学系は図10および図1に示した構成に限定されず、例えば、図9A,図9Bに示すように、試料Sに集光X線2を照射し、試料Sの内部で回折したX線を透過して一点に収束させる透過式のX線光学系についても、上記各実施形態と同様に本発明を適用することができる。
 また、上述した実施形態では2次元X線検出器を使用したが、必要に応じて専用の1次元X線検出器又は0次元X線検出器を用いることもできる。
 さらに、上述した実施形態では、モノクロメータ60を集光X線2の光路上から着脱自在な構成としたが、モノクロメータ60を装置から取り外すことなく、装置上で移動させて集光X線2の光路上から退避できる構成としてもよい。
 例えば、図12に示すように、モノクロメータ60を回動させる機構を設け、回動動作によってモノクロメータを集光X線2の光路上に配置したり、当該集光X線2の光路上から退避させる。
 また、本発明の応用として、図13に示すように、モノクロメータ60をX線源から放射状に出射され試料に照射される発散X線の光路上に配置して、試料に入射する発散X線をモノクロメータ60で単色化するように、X線回折装置を構成することもできる。モノクロメータ60は、X線源10に近接して配置する。この構成においても、モノクロメータ60は、上述した本発明の実施形態で用いた反射型のモノクロメータを適用することができる。

Claims (12)

  1.  X線を試料に照射するX線源と、
     試料から回折してきた集光X線を入射し、ブラッグの条件に基づき特定波長の集光X線のみを反射させる反射型のモノクロメータと、
    前記モノクロメータで単色化された集光X線を検出するX線検出器と、
     前記X線検出器の測定分解能を調節する手段と、を備え、
     前記試料からの集光X線をそのまま収束させたときの集光点と当該試料との間のX線光路上に、前記モノクロメータを配置したことを特徴とするX線回折装置。
  2.  前記モノクロメータは、内部の格子面間隔が一端から他端にかけて連続的に変化した多層膜ミラーであることを特徴とした請求項1のX線回折装置。
  3. 前記モノクロメータは、集光X線の入射面が平坦面であることを特徴とした請求項2記載のX線回折装置。
  4.  前記多層膜ミラーは、集光X線が入射角θで入射する部位における深さ方向の格子面間隔dと、集光X線が入射角θで入射する部位における深さ方向の格子面間隔dとが、ブラッグの条件に基づき次式の関係が成立するように、内部の格子面間隔を調整してある事を特徴とする請求項2のX線回折装置。
         2d×sinθ=2d×sinθ2 =nλ
     ただし、λは回折するX線の波長、nは整数である。
  5.  前記モノクロメータは、前記X線検出器に干渉しない範囲で、前記試料から回折してきた集光X線をそのまま収束させたときの集光点に近接して配置することを特徴とする請求項1のX線回折装置。
  6.  前記X線検出器の測定分解能を調節する手段は、前記X線検出器におけるX線検出面の手前に配置された受光スリットであることを特徴とする請求項5のX線回折装置。
  7.  前記X線検出器は、前記X線検出面に入射するX線を2次元で検出できる2次元X線検出器であることを特徴とする請求項6のX線回折装置。
  8.  前記モノクロメータは、前記試料から回折してきた集光X線の光路上から取り除くことができ、
     前記X線検出器のX線検出面は、前記モノクロメータを前記集光X線の光路上から取り除いたX線光学系において前記試料から回折してきた集光X線を検出できるとともに、前記モノクロメータを前記集光X線の光路上に配置したX線光学系において前記試料から回折し且つ前記モノクロメータで反射してきた集光X線についても検出できる面積を有しており、
     前記受光スリットは、前記モノクロメータを前記集光X線の光路上から取り除いたX線光学系において前記試料から回折してきた集光X線を通過させる位置と、前記モノクロメータを前記集光X線の光路上に配置したX線光学系において前記試料から回折し且つ前記モノクロメータで反射してきた集光X線を通過させる位置との間で、位置変更自在の構成としてあることを特徴とする請求項6のX線回折装置。
  9.  前記モノクロメータは、前記試料から回折してきた集光X線の光路上から取り除くことができ、
     前記受光スリットは、前記モノクロメータを前記集光X線の光路上から取り除いたX線光学系において前記試料から回折してきた集光X線を通過させる位置と、前記モノクロメータを前記集光X線の光路上に配置したX線光学系において前記試料から回折し且つ前記モノクロメータで反射してきた集光X線を通過させる位置との間で、位置変更自在の構成としてあり、
     前記X線検出器は、前記モノクロメータを前記集光X線の光路上から取り除いたX線光学系において前記試料から回折し前記受光スリットを通過してきた集光X線を検出する位置と、前記モノクロメータを前記集光X線の光路上に配置したX線光学系において前記試料から回折し且つ前記モノクロメータで反射し前記受光スリットを通過してきた集光X線を検出する位置との間で、位置変更自在の構成としてあることを特徴とする請求項6のX線回折装置。
  10.  前記モノクロメータは、前記試料から回折してきた集光X線の光路上から取り除くことができ、
     前記X線検出器は、前記X線検出面に入射するX線を2次元で検出できる2次元X線検出器であり、
     当該X線検出器のX線検出面は、前記モノクロメータを前記集光X線の光路上から取り除いたX線光学系において前記試料から回折してきた集光X線を検出できるとともに、前記モノクロメータを前記集光X線の光路上に配置したX線光学系において前記試料から回折し且つ前記モノクロメータで反射してきた集光X線についても検出できる面積を有しており、
     さらに当該X線検出器は、前記モノクロメータを前記集光X線の光路上から取り除いたX線光学系において前記試料から回折してきた集光X線を検出する第1のX線検出領域と、前記モノクロメータを前記集光X線の光路上に配置したX線光学系において前記試料から回折し且つ前記モノクロメータで反射してきた集光X線を検出する第2のX線検出領域との間で、当該X線検出領域を変更自在な機能を有しており、
     前記X線検出器における前記X線検出領域を変更自在な機能が、前記X線検出器の測定分解能を調節する手段を構成していることを特徴とする請求項5のX線回折装置。
  11.  前記2次元X線検出器は、X線検出面に入射するX線を2次元で検出できる2次元X線検出機能と、X線検出面に入射するX線を1次元で検出できる1次元X線検出機能と、X線検出面に入射するX線を0次元で検出できる0次元X線検出機能とを備え、これら各X線検出機能を切り替え可能な構成であることを特徴とする請求項7のX線回折装置。
  12.  前記2次元X線検出器は、X線検出面に入射するX線を2次元で検出できる2次元X線検出機能と、X線検出面に入射するX線を1次元で検出できる1次元X線検出機能と、X線検出面に入射するX線を0次元で検出できる0次元X線検出機能とを備え、これら各X線検出機能を切り替え可能な構成であることを特徴とする請求項10のX線回折装置。
PCT/JP2015/050717 2014-06-05 2015-01-14 X線回折装置 WO2015186369A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167035839A KR102179112B1 (ko) 2014-06-05 2015-01-14 X선 회절장치
US15/312,881 US10436723B2 (en) 2014-06-05 2015-01-14 X-ray diffractometer with multilayer reflection-type monochromator
EP15802969.4A EP3147654B1 (en) 2014-06-05 2015-01-14 X-ray diffractometer
CN201580019383.XA CN106461579B (zh) 2014-06-05 2015-01-14 X射线衍射装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-116488 2014-06-05
JP2014116488A JP6202684B2 (ja) 2014-06-05 2014-06-05 X線回折装置

Publications (1)

Publication Number Publication Date
WO2015186369A1 true WO2015186369A1 (ja) 2015-12-10

Family

ID=54766452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050717 WO2015186369A1 (ja) 2014-06-05 2015-01-14 X線回折装置

Country Status (6)

Country Link
US (1) US10436723B2 (ja)
EP (1) EP3147654B1 (ja)
JP (1) JP6202684B2 (ja)
KR (1) KR102179112B1 (ja)
CN (1) CN106461579B (ja)
WO (1) WO2015186369A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10161887B2 (en) * 2015-01-20 2018-12-25 United Technologies Corporation Systems and methods for materials analysis
JP6383018B2 (ja) * 2017-01-19 2018-08-29 本田技研工業株式会社 X線回折測定方法及び装置
JP2018169276A (ja) * 2017-03-29 2018-11-01 株式会社島津製作所 X線分析装置
JP6815933B2 (ja) * 2017-05-31 2021-01-20 株式会社神戸製鋼所 応力測定方法
JP6943812B2 (ja) * 2018-06-12 2021-10-06 Ckd株式会社 検査装置、ptp包装機及びptpシートの製造方法
JP6871629B2 (ja) * 2018-06-29 2021-05-12 株式会社リガク X線分析装置及びその光軸調整方法
CN112469985A (zh) * 2018-07-26 2021-03-09 株式会社岛津制作所 光散射检测装置
EP3603516A1 (de) * 2018-08-02 2020-02-05 Siemens Healthcare GmbH Röntgenvorrichtung und verfahren zum betrieb der röntgenvorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178547A (ja) * 1990-11-14 1992-06-25 Rigaku Corp 単色x線回折装置
JPH09218170A (ja) * 1996-02-14 1997-08-19 Rigaku Corp X線回折測定方法
JP2716949B2 (ja) * 1995-05-08 1998-02-18 株式会社東芝 X線診断装置
JP2000502188A (ja) * 1995-12-18 2000-02-22 オスミック,インコーポレイテッド 操向可能のx線光学系
JP2007010455A (ja) * 2005-06-30 2007-01-18 Rigaku Corp X線回折装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11502025A (ja) * 1995-10-03 1999-02-16 フィリップス エレクトロニクス エヌ ベー 同時x線回折及びx線蛍光測定のための装置
US6041099A (en) * 1998-02-19 2000-03-21 Osmic, Inc. Single corner kirkpatrick-baez beam conditioning optic assembly
DE19833524B4 (de) 1998-07-25 2004-09-23 Bruker Axs Gmbh Röntgen-Analysegerät mit Gradienten-Vielfachschicht-Spiegel
JP3548556B2 (ja) * 2001-12-28 2004-07-28 株式会社リガク X線回折装置
EP1468428B1 (fr) * 2002-06-19 2006-09-27 Xenocs Ensemble optique et procede associe
JP3697246B2 (ja) * 2003-03-26 2005-09-21 株式会社リガク X線回折装置
US7190762B2 (en) 2004-10-29 2007-03-13 Broker Axs, Inc Scanning line detector for two-dimensional x-ray diffractometer
JP4476883B2 (ja) 2005-06-30 2010-06-09 株式会社リガク X線ビーム処理装置、x線受光システム、及びx線分析装置
EP1947448B1 (en) * 2007-01-19 2013-07-03 Panalytical B.V. X-ray diffraction equipment for X-ray scattering
JP5081556B2 (ja) 2007-09-28 2012-11-28 株式会社リガク デバイシェラー光学系を備えたx線回折測定装置とそのためのx線回折測定方法
DE102008050851B4 (de) * 2008-10-08 2010-11-11 Incoatec Gmbh Röntgenanalyseinstrument mit verfahrbarem Aperturfenster
US8249220B2 (en) * 2009-10-14 2012-08-21 Rigaku Innovative Technologies, Inc. Multiconfiguration X-ray optical system
JP5838114B2 (ja) * 2012-04-02 2015-12-24 株式会社リガク X線トポグラフィ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04178547A (ja) * 1990-11-14 1992-06-25 Rigaku Corp 単色x線回折装置
JP2716949B2 (ja) * 1995-05-08 1998-02-18 株式会社東芝 X線診断装置
JP2000502188A (ja) * 1995-12-18 2000-02-22 オスミック,インコーポレイテッド 操向可能のx線光学系
JPH09218170A (ja) * 1996-02-14 1997-08-19 Rigaku Corp X線回折測定方法
JP2007010455A (ja) * 2005-06-30 2007-01-18 Rigaku Corp X線回折装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3147654A4 *

Also Published As

Publication number Publication date
CN106461579B (zh) 2019-05-07
EP3147654A4 (en) 2017-12-20
JP6202684B2 (ja) 2017-09-27
KR102179112B1 (ko) 2020-11-16
CN106461579A (zh) 2017-02-22
KR20170016374A (ko) 2017-02-13
EP3147654B1 (en) 2023-05-17
US10436723B2 (en) 2019-10-08
EP3147654A1 (en) 2017-03-29
JP2015230238A (ja) 2015-12-21
US20170191950A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP6202684B2 (ja) X線回折装置
JP5838114B2 (ja) X線トポグラフィ装置
JP4278108B2 (ja) 超小角x線散乱測定装置
JP6656519B2 (ja) X線回折装置
JP6039093B2 (ja) 結晶学的結晶粒方位マッピング機能を有する実験室x線マイクロトモグラフィシステム
JP5990734B2 (ja) 蛍光x線分析装置
WO2009104560A1 (ja) X線撮像装置、及び、これに用いるx線源
JP2013213720A5 (ja)
US10964439B2 (en) Soller slit, X-ray diffraction apparatus, and method
EP2042860A3 (en) X-ray diffraction apparatus and x-ray diffraction method
RU2556712C2 (ru) Устройство рентгеновского формирования изобретений
CN106062542B (zh) 射束生成单元以及小角度x射线散射装置
JP2012032164A5 (ja)
JP5081556B2 (ja) デバイシェラー光学系を備えたx線回折測定装置とそのためのx線回折測定方法
JP4694296B2 (ja) 蛍光x線三次元分析装置
WO2014041675A1 (ja) X線撮像装置及びx線撮像方法
JP2004333131A (ja) 全反射蛍光xafs測定装置
US20110182404A1 (en) Collimator with an adjustable focal length
JP5492173B2 (ja) 回折x線検出方法およびx線回折装置
JP5646147B2 (ja) 二次元分布を測定する方法及び装置
JP2003083915A (ja) X線回折装置
JP2866471B2 (ja) 単色x線回折装置
WO2019171920A1 (ja) 放射線位相撮像装置
JP2003149184A (ja) Ccdカメラによる分析装置
JP2019086408A (ja) X線計測用機器およびそれに用いるスリット板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15802969

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15312881

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015802969

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015802969

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167035839

Country of ref document: KR

Kind code of ref document: A