WO2015181955A1 - エレベータの位置検出装置 - Google Patents

エレベータの位置検出装置 Download PDF

Info

Publication number
WO2015181955A1
WO2015181955A1 PCT/JP2014/064433 JP2014064433W WO2015181955A1 WO 2015181955 A1 WO2015181955 A1 WO 2015181955A1 JP 2014064433 W JP2014064433 W JP 2014064433W WO 2015181955 A1 WO2015181955 A1 WO 2015181955A1
Authority
WO
WIPO (PCT)
Prior art keywords
diagnostic
magnetic field
coil
output
sensor
Prior art date
Application number
PCT/JP2014/064433
Other languages
English (en)
French (fr)
Inventor
甚 井上
白附 晶英
敬太 望月
浩 田口
雅洋 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/064433 priority Critical patent/WO2015181955A1/ja
Priority to CN201480079153.8A priority patent/CN106414294B/zh
Priority to DE112014006714.8T priority patent/DE112014006714B4/de
Priority to US15/305,178 priority patent/US10065833B2/en
Priority to JP2016523060A priority patent/JP6192825B2/ja
Publication of WO2015181955A1 publication Critical patent/WO2015181955A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0006Monitoring devices or performance analysers
    • B66B5/0018Devices monitoring the operating condition of the elevator system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • B66B3/02Position or depth indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/2006Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the self-induction of one or more coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B9/00Kinds or types of lifts in, or associated with, buildings or other structures

Definitions

  • This invention relates to an elevator position detection device for detecting the position of a lifting body.
  • a car is provided with a plurality of position detection sensors that output different output patterns corresponding to each floor, and when the transition prediction data expected after the previous output pattern detection does not match the current output pattern, a failure is detected.
  • An elevator position detection device for determining has been proposed (see Patent Document 1).
  • the present invention has been made to solve the above-described problems, and provides an elevator position detection device that can reduce costs and facilitate the determination of the presence or absence of a failure. For the purpose.
  • the elevator position detection apparatus includes a detection object and a detection region, and includes a sensor that detects the presence or absence of the detection object in the detection region, and the lift and the lift that moves up and down.
  • a detected object is provided on one side of the road, and a sensor is provided on the other.
  • the sensor applies an alternating magnetic field to the detected object when the detected object is in the detection region.
  • a second induction magnetic field weaker than the first induction magnetic field is generated from the diagnostic coil by the alternating magnetic field from the excitation coil, and the alternating current from the excitation coil
  • a measurement coil that outputs a measurement signal by receiving the field, and whose output value of the measurement signal decreases according to the generated magnetic field among the eddy current magnetic field, the first induction magnetic field, and the second induction magnetic field; From the normal mode in which the induced magnetic field is generated from the diagnostic coil, the normal L output failure diagnostic mode in which the first induced magnetic field is generated from the diagnostic coil, and the constant H output failure in which the generation of the first and second induced magnetic fields is stopped Processing to switch the sensor operation mode to one of the diagnostic modes based on the diagnostic signal, and output detection signals with different output states depending on whether the output value of the measurement signal from the measurement coil is lower than the threshold value In the normal mode, when the detected object enters the detection area, the output value of the measurement signal becomes lower than the threshold value
  • the output value of the measurement signal is lower than the threshold value regardless of the presence or absence of the detected object in the detection region.
  • the constant H output failure diagnosis mode the detection in the detection region is performed.
  • the output value of the measurement signal is equal to or greater than the threshold value regardless of the presence or absence of the body.
  • the elevator position detection apparatus of the present invention it is possible to easily determine whether or not there is a sensor failure while the elevator is stopped without moving. Further, the cost can be reduced.
  • FIG. 6 is a graph showing a case where there is no identification plate in the detection region and a case where there is an identification plate in the detection region. It is a block diagram which shows the position detection apparatus of the elevator by Embodiment 2 of this invention.
  • FIG. 1 is a block diagram showing an elevator according to Embodiment 1 of the present invention.
  • a car (elevating body) 2 and a counterweight (not shown) are suspended by a suspension body (for example, a rope or a belt).
  • the suspended body 3 is wound around a drive sheave of a hoisting machine (drive device) (not shown).
  • the car 2 and the counterweight are moved vertically in the hoistway 1 by the driving force of the hoisting machine while being individually guided by a plurality of rails (not shown) installed in the hoistway 1.
  • the car 2 has a car doorway 4.
  • the car doorway 4 is opened and closed by the movement of a car door (not shown).
  • the hall 5 on each floor is provided with a hall entrance 6 that communicates with the hoistway 1.
  • the landing entrance 6 is opened and closed by the movement of a landing door (not shown).
  • a plurality of metal identification plates (detected bodies) 7 are provided at intervals with respect to the moving direction of the car 2.
  • the identification plate 7 is fixed to the lower part of the hall entrance 6 on each floor (position corresponding to each floor).
  • the car 2 is provided with an eddy current sensor 8.
  • the sensor 8 is provided in the lower part of the car 2.
  • the sensor 8 is provided with a detection region 9.
  • the sensor 8 detects the presence or absence of the identification plate 7 in the detection area 9.
  • the identification board 7 enters the detection area 9, and when the car 2 moves up and down from each floor, the identification board 7 comes off the detection area 9.
  • the identification plate 7 enters the detection region 9 when the sensor 8 faces the identification plate 7 in the horizontal direction.
  • Sensor 8 outputs detection signals with different output states depending on the presence or absence of identification plate 7 in detection area 9.
  • the output state of the detection signal of the sensor 8 becomes an H (high) output state (an output state with an identification plate), and the sensor 8 is in the detection region 9.
  • the output state of the detection signal of the sensor 8 becomes an L (low) output state (no identification plate output state).
  • a detection signal from the sensor 8 is sent to a control device (not shown).
  • the sensor 8 includes, for example, a failure in which the detection signal output state of the sensor 8 is always in the H output state regardless of the presence or absence of the identification plate 7 in the detection region 9 (always H output failure), or identification in the detection region 9 There is a possibility that a failure in which the output state of the detection signal of the sensor 8 is always in the L output state regardless of the presence or absence of the plate 7 (always L output failure) occurs.
  • the sensor 8 includes a function (failure diagnosis function) for diagnosing a constant H output failure and a constant L output failure.
  • the senor 8 has a normal mode for detecting the presence / absence of the identification plate 7 at a normal time, a normal L output failure diagnosis mode for always diagnosing an L output failure, and a normal H output failure diagnosis mode for always diagnosing an H output failure.
  • the operation mode can be switched between.
  • the position detection device has an identification plate 7 and a sensor 8.
  • FIG. 2 is a block diagram showing the identification plate 7 and the sensor 8 of FIG.
  • FIG. 2 shows the identification plate 7 and the sensor 8 when viewed from above along the moving direction of the car 2.
  • the sensor 8 includes an excitation coil 11, a diagnostic circuit 12, a measurement coil 13, and a processing unit (signal processing circuit) 14.
  • AC power is supplied from the AC power supply 15 to the exciting coil 11.
  • a reference signal corresponding to the AC power supplied to the exciting coil 11 is sent to the processing unit 14.
  • AC power is supplied to the excitation coil 11
  • an AC magnetic field that extends to the detection region 9 is generated from the excitation coil 11.
  • an alternating magnetic field from the excitation coil 11 is applied to the identification plate 7.
  • an eddy current corresponding to the alternating magnetic field is generated in the identification plate 7.
  • An eddy current magnetic field is generated from the identification plate 7 in accordance with the eddy current generated in the identification plate 7.
  • FIG. 3 is a circuit diagram showing an equivalent circuit of the identification plate 7 of FIG. Since the eddy current is generated in the identification plate 7, the equivalent circuit of the identification plate 7 is a closed circuit in which an equivalent coil 71 based on the diameter of the eddy current and the resistor 72 of the identification plate 7 are connected in series as shown in FIG. Represented as:
  • the diagnostic circuit 12 is connected in parallel to the diagnostic coil 121, the first diagnostic switch 122 connected in parallel to the diagnostic coil 121, and the diagnostic coil 121, and connected in series to each other.
  • a closed circuit having a second diagnostic switch 123 and a resistor 124.
  • the exciting coil 11, the measuring coil 13, and the diagnostic coil 121 are all arranged on the same side as viewed from the detection region 9.
  • the measuring coil 13 is disposed at a position closest to the detection region 9
  • the diagnostic coil 121 is disposed at a position farthest from the detection region 9
  • the exciting coil 11 is It is arranged at a position between the measurement coil 13 and the diagnostic coil 121.
  • the measuring coil 13 and the diagnostic coil 121 are arranged at a position where the AC magnetic field from the exciting coil 11 reaches.
  • the processing unit 14 controls the ON / OFF operation (opening / closing operation) of each of the first and second diagnostic switches 122 and 123, so that the normal unit, the normal L output failure diagnosis mode, and the normal H output failure diagnosis mode are used. To switch the operation mode of the sensor 8.
  • the control of the processing unit 14 closes the first diagnosis switch 122 (becomes ON state) and opens the second diagnosis switch 123 (becomes OFF state). Become).
  • a closed circuit in which both ends of the diagnostic coil 121 are short-circuited is formed in the diagnostic circuit 12.
  • a first induced current (short-circuit current) larger than the eddy current generated in the identification plate 7 is an AC magnetic field from the exciting coil 11.
  • the diagnostic coil 121 generates a first induced magnetic field stronger than the eddy current magnetic field when the first induced current flows through the diagnostic coil 121.
  • the first diagnostic switch 122 is opened (becomes OFF state) and the second diagnostic switch 123 is closed (becomes ON state) by the control of the processing unit 14.
  • a closed circuit in which the diagnostic coil 121 and the resistor 124 are connected in series is formed in the diagnostic circuit 12.
  • the second induced current that is always lower by the resistor 124 than the first induced current in the L output failure diagnostic mode is obtained.
  • the diagnostic coil 121 flows through the alternating magnetic field from the excitation coil 11.
  • the diagnostic coil 121 generates a second induced magnetic field that is weaker than the first induced magnetic field when the second induced current flows through the diagnostic coil 121.
  • the resistance value of the resistor 124 is adjusted so that the eddy current magnetic field from the identification plate 7 and the second induction magnetic field have the same strength. That is, when the operation mode of the sensor 8 is the normal mode, a plate having properties equivalent to the identification plate 7 is virtually arranged next to the excitation coil 11 by a closed circuit in which the diagnostic coil 121 and the resistor 124 are connected in series. It is in the state that was done.
  • the first and second diagnosis switches 122 and 123 are both opened (become turned off) by the control of the processing unit 14. As a result, no induced current flows through the diagnostic coil 121, and the generation of the first and second induced magnetic fields from the diagnostic coil 121 is stopped.
  • the eddy current magnetic field from the identification plate 7 and the first and second induction magnetic fields from the diagnostic coil 121 are magnetic fields generated by the alternating magnetic field from the excitation coil 11, the AC magnetic field from the excitation coil 11 is canceled out. It has become a magnetic field.
  • the measuring coil 13 receives the alternating magnetic field from the exciting coil 11 and outputs a measurement signal corresponding to the alternating magnetic field to the processing unit 14. At least a part of the alternating magnetic field received by the measuring coil 13 is canceled by the eddy current magnetic field when the identification plate 7 generates an eddy current magnetic field, and the first or second induction magnetic field is generated when the diagnostic coil 121 generates the first or second induced magnetic field. It is canceled out by the second induction magnetic field. Thereby, the output value of the measurement signal from the measurement coil 13 decreases according to the generated magnetic field among the eddy current magnetic field, the first induced magnetic field, and the second induced magnetic field.
  • FIG. 4 shows the state of the first diagnosis switch 122, the state of the second diagnosis switch 123 in each of the normal mode A, the constantly H output failure diagnosis mode B, and the always L output failure diagnosis mode C of the sensor 8 of FIG. It is a graph which shows separately the output value of the measurement signal from the measurement coil 13, when there is no identification plate 7 in the detection region 9 and when there is the identification plate 7 in the detection region 9.
  • the operation mode of the sensor 8 is the normal mode A (that is, when the first diagnostic switch 122 is open and the second diagnostic switch 123 is closed)
  • the identification plate 7 is in the detection region.
  • the operation mode of the sensor 8 is always the H output failure diagnosis mode B (that is, when both the first and second diagnosis switches 122 and 123 are open), no induction magnetic field is generated from the diagnosis coil 121. Therefore, even if a part of the AC magnetic field from the excitation coil 11 is canceled out by the eddy current magnetic field from the identification plate 7, the state in which the output value of the measurement signal from the measurement coil 13 is equal to or higher than the threshold value of the processing unit 14 is maintained. .
  • the operation mode of the sensor 8 is always the H output failure diagnosis mode B
  • the output value of the measurement signal from the measurement coil 13 becomes equal to or greater than the threshold value regardless of the presence or absence of the identification plate 7 in the detection region 9. That is, when the operation mode of the sensor 8 is always the H output failure diagnosis mode B, a state in which the identification plate 7 is not present is forcibly reproduced regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the operation mode of the sensor 8 is always the L output failure diagnostic mode C (that is, when the first diagnostic switch 122 is closed and the second diagnostic switch 123 is opened)
  • the AC magnetic field from the exciting coil 11 Since the strong first induction magnetic field that cancels all of the above is generated from the diagnostic coil 121, the output value of the measurement signal from the measurement coil 13 is lower than the threshold value regardless of the presence or absence of the identification plate 7 in the detection region 9. That is, when the operation mode of the sensor 8 is always the L output failure diagnosis mode C, the state where the identification plate 7 is present is forcibly reproduced regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the processing unit 14 sets the operation mode of the sensor 8 to the normal mode at the normal time when the input of the diagnostic signal from the control device is stopped.
  • the diagnosis signal from the control device includes information for switching to either the constantly L output failure diagnosis mode or the always H output failure diagnosis mode.
  • the processing unit 14 receives the diagnostic signal from the control device, the operation of the sensor 8 is changed from the normal mode to either the normal L output failure diagnostic mode or the normal H output failure diagnostic mode based on the information included in the diagnostic signal. Switch modes.
  • the processing unit 14 compares the output value of the measurement signal from the measurement coil 13 with the threshold set in the processing unit 14.
  • the processing unit 14 outputs detection signals having different output states to the control device according to whether or not the output value of the measurement signal from the measurement coil 13 is lower than the threshold value. That is, the processing unit 14 outputs the detection signal in the H output state to the control device when the output value of the measurement signal from the measurement coil 13 is lower than the threshold value, and the output value of the measurement signal from the measurement coil 13 is equal to or greater than the threshold value.
  • the detection signal of the L output state is output to the control device.
  • the processing unit 14 when the operation mode of the sensor 8 is the normal mode outputs a detection signal in the H output state to the control device when the identification plate 7 enters the detection region 9, and the identification plate 7 detects the detection region 9.
  • a detection signal in the L output state is output to the control device.
  • the processing unit 14 when the operation mode of the sensor 8 is always the H output failure diagnosis mode outputs a detection signal in the L output state to the control device regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the processing unit 14 when the operation mode of the sensor 8 is always in the L output failure diagnosis mode outputs a detection signal in the H output state to the control device regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the control device By outputting a diagnostic signal to the processing unit 14, the control device sets the operation mode of the sensor 8 to a diagnostic mode according to information included in the diagnostic signal, and stops outputting the diagnostic signal to the processing unit 14.
  • the operation mode of the sensor 8 is the normal mode.
  • the control device specifies the position of the car 2 when the identification plate 7 enters the detection area 9 based on the output state of the detection signal from the processing unit 14.
  • the operation of the elevator is controlled based on the specified position of the car 2.
  • the control device when the operation mode of the sensor 8 is either the constantly H output failure diagnosis mode or the always L output failure diagnosis mode, the control device outputs the detection signal output state from the processing unit 14 and the diagnosis signal.
  • the presence or absence of failure of the sensor 8 is determined by comparing with the output state corresponding to the diagnostic mode based on. That is, when the operation mode of the sensor 8 is the constantly H output failure diagnosis mode, the control device outputs the detection signal from the processing unit 14 in the L output state (that is, the output corresponding to the always H output failure diagnosis mode). If the output state of the detection signal from the processing unit 14 is different from the L output state, it is always determined that the H output failure has occurred. Is determined (H output failure determination).
  • the control device when the operation mode of the sensor 8 is the constantly L output failure diagnosis mode, the control device outputs the detection signal from the processing unit 14 in the H output state (that is, the output corresponding to the always L output failure diagnosis mode). If the output state of the detection signal from the processing unit 14 is different from the H output state, it is always determined that the L output failure has occurred. Is determined (L output failure determination).
  • the identification plate 7 corresponding to the floor where the car 2 stops enters the detection area 9 of the sensor 8.
  • an alternating magnetic field from the excitation coil 11 is applied to the identification plate 7, and an eddy current magnetic field is generated from the identification plate 7.
  • the identification plate 7 comes out of the detection region 9 and no eddy current magnetic field is generated from the identification plate 7.
  • the operation mode of the sensor 8 is the normal mode.
  • the service operation of the elevator is performed in a state where the operation mode of the sensor 8 is set to the normal mode.
  • the first diagnostic switch 122 is opened and the second diagnostic switch 123 is closed under the control of the processing unit 14.
  • a second induction magnetic field having the same strength as the eddy current magnetic field from the identification plate 7 is generated from the diagnostic coil 121.
  • the output value of the measurement signal from the measurement coil 13 becomes lower than the threshold value of the processing unit 14 due to the generation of the eddy current magnetic field from the identification plate 7, and the H output state A detection signal is output from the processing unit 14 to the control device.
  • the identification plate 7 moves out of the detection region 9 in the normal mode, the eddy current magnetic field from the identification plate 7 disappears, so that the output value of the measurement signal from the measurement coil 13 exceeds the threshold value, and the detection signal in the L output state Is output from the processing unit 14 to the control device.
  • control device when the detection signal from the processing unit 14 is received, it is determined whether the car 2 is on the floor based on the output state (H output state or L output state) of the detection signal.
  • the operation of the elevator is controlled by the control device based on the determination result based on the detection signal from the processing unit 14.
  • a diagnostic signal including information for switching to the constant L output failure diagnosis mode is output from the control device to the processing unit 14.
  • the operation mode of the sensor 8 is constantly switched from the normal mode to the L output failure diagnosis mode.
  • the first diagnosis switch 122 is closed and the second diagnosis switch 123 is opened under the control of the processing unit 14.
  • the operation mode of the sensor 8 is always in the L output failure diagnosis mode, a first induction magnetic field stronger than the second induction magnetic field is generated from the diagnosis coil 121.
  • the output value of the measurement signal from the measurement coil 13 becomes lower than the threshold value regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the control device After the diagnostic signal is output from the control device to the processing unit 14, when the detection signal from the processing unit 14 is input to the control device, the control device outputs the detection signal output state from the processing unit 14 and the diagnostic signal.
  • a diagnosis mode (always L output failure diagnosis mode) based on the included information is compared with the corresponding output state. Thereby, if the output state of the detection signal from the processing unit 14 coincides with the H output state corresponding to the constantly L output failure diagnosis mode, the L output normality determination that the L output failure does not always occur is performed by the control device. Is done.
  • the diagnostic signal for forcing the processing unit 14 to output the detection signal in the H output state is output from the control device to the processing unit 14, the actual output state of the detection signal from the processing unit 14 is When it is different from the H output state, the control device performs L output failure determination that the L output failure has always occurred in the sensor 8. In this way, a diagnosis of a constant L output failure of the sensor 8 is performed.
  • a diagnostic signal including information for switching to the constant H output failure diagnosis mode is output from the control device to the processing unit 14.
  • the operation mode of the sensor 8 is switched from the normal mode to the constant H output failure diagnosis mode.
  • the first and second diagnosis switches 122 and 123 are both opened by the control of the processing unit 14.
  • the operation mode of the sensor 8 is always in the H output failure diagnosis mode, the generation of the induction magnetic field from the diagnosis coil 121 is stopped, so that the measurement signal from the measurement coil 13 is output regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the output value is equal to or greater than the threshold value.
  • the control device After the diagnostic signal is output from the control device to the processing unit 14, when the detection signal from the processing unit 14 is input to the control device, the control device outputs the detection signal output state from the processing unit 14 and the diagnostic signal.
  • the output state corresponding to the diagnosis mode (always H output failure diagnosis mode) based on the included information is compared. Thereby, if the output state of the detection signal from the processing unit 14 is consistent with the L output state corresponding to the constantly H output failure diagnosis mode, the normal determination of the H output that the H output failure does not always occur is performed by the control device. Is done.
  • the diagnosis signal for forcing the processing unit 14 to output the detection signal in the L output state is output from the control device to the processing unit 14
  • the actual output state of the detection signal from the processing unit 14 is When it is different from the L output state, the control device performs the H output failure determination that the H output failure has always occurred in the sensor 8. In this way, the diagnosis of the constant H output failure of the sensor 8 is performed.
  • the output value of the measurement signal from the measurement coil 13 is set to be lower than the threshold value in the normal mode, regardless of the presence or absence of the identification plate 7 in the detection region 9 by closing the first diagnostic switch 122.
  • Always L output failure diagnosis mode to be lowered, and always H output to close the second diagnosis switch 123 and make the output value of the measurement signal from the measurement coil 13 equal to or greater than the threshold value regardless of the presence or absence of the identification plate 7 in the detection region 9
  • the operation mode of the sensor 8 can be switched between the failure diagnosis mode and the car 2 is stopped without being moved, each of the first and second diagnosis switches 122 and 123 is opened and closed.
  • the cost of the position detection device can be reduced.
  • FIG. FIG. 5 is a block diagram showing an elevator position detection apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 is a diagram corresponding to FIG. 2 in the first embodiment.
  • the diagnostic circuit 12 is a closed circuit having a diagnostic coil 121 and a first diagnostic switch 122 connected in parallel to the diagnostic coil 121.
  • the configurations of the diagnostic coil 121 and the first diagnostic switch 122 are the same as those in the first embodiment. Therefore, the diagnostic circuit 12 in the present embodiment is a circuit obtained by removing the second diagnostic switch 123 and the resistor 124 from the diagnostic circuit 12 in the first embodiment.
  • the processing unit 14 can switch the operation mode of the sensor 8 between the normal mode and the normal L output failure diagnosis mode by controlling the ON / OFF operation (opening / closing operation) of the first diagnosis switch 122.
  • the first diagnosis switch 122 is closed under the control of the processing unit 14. As a result, a closed circuit in which both ends of the diagnostic coil 121 are short-circuited is formed in the diagnostic circuit 12.
  • a first induced current (short-circuit current) larger than the eddy current generated in the identification plate 7 is an AC magnetic field from the exciting coil 11. Flows to the diagnostic coil 121.
  • the diagnostic coil 121 generates a first induced magnetic field stronger than the eddy current magnetic field when the first induced current flows through the diagnostic coil 121.
  • the entire AC magnetic field from the excitation coil 11 is canceled by the first induction magnetic field. Thereby, the output value of the measurement signal from the measurement coil 13 becomes lower than the threshold value regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the first diagnostic switch 122 is opened by the control of the processing unit 14. As a result, no induced current flows through the diagnostic coil 121, and the generation of the first induced magnetic field from the diagnostic coil 121 stops. Thereby, when the operation mode of the sensor 8 is the normal mode, when the identification plate 7 enters the detection region 9, the output value of the measurement signal from the measurement coil 13 becomes lower than the threshold value, and the identification plate 7 moves from the detection region 9. If it is removed, the output value of the measurement signal from the measurement coil 13 becomes equal to or greater than the threshold value.
  • the processing unit 14 sets the operation mode of the sensor 8 to the normal mode when the input of the diagnostic signal from the control device is stopped, and constantly changes from the normal mode to the L output failure diagnostic mode by receiving the diagnostic signal from the control device. Switch.
  • the processing unit 14 when the operation mode of the sensor 8 is the normal mode outputs a detection signal in the H output state to the control device when the identification plate 7 enters the detection region 9, and the identification plate 7 detects the detection region 9.
  • a detection signal in the L output state is output to the control device.
  • the processing unit 14 when the operation mode of the sensor 8 is always in the L output failure diagnosis mode outputs a detection signal in the H output state to the control device regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the control device When the control device outputs a diagnostic signal to the processing unit 14 and the operation mode of the sensor 8 is always in the L output failure diagnostic mode, the control device outputs the detection signal from the processing unit 14 and performs diagnosis based on the diagnostic signal. By comparing the output state (H output state) corresponding to the mode (always L output failure diagnosis mode), the presence or absence of the constantly L output failure of the sensor 8 is determined. In other words, when the operation mode of the sensor 8 is the constantly L output failure diagnosis mode, the control device does not always cause an L output failure when the output state of the detection signal from the processing unit 14 is the same as the H output state. L output normality is determined, and when the output state of the detection signal from the processing unit 14 is different from the H output state, the L output failure determination is made that the L output failure is always occurring. Other configurations are the same as those in the first embodiment.
  • the operation mode of the sensor 8 can be switched between the normal mode and the normal L output failure diagnostic mode in which the first diagnostic switch 122 is closed, so the car 2 is moved. It is possible to determine whether or not the sensor 8 always has an L output failure by simply closing the first diagnostic switch 122 while stopping the operation. Thereby, determination of the presence or absence of failure of the sensor 8 can be facilitated. In addition, since a plurality of identification plates 7 and a plurality of sensors 8 are not required to perform failure diagnosis, the cost of the position detection device can be reduced.
  • FIG. 6 is a block diagram showing an elevator position detection apparatus according to Embodiment 3 of the present invention.
  • FIG. 6 corresponds to FIG. 2 in the first embodiment.
  • the diagnostic circuit 12 is a closed circuit including a diagnostic coil 121, a second diagnostic switch 123 and a resistor 124 that are connected in parallel to the diagnostic coil 121 and connected in series to each other.
  • the configurations of the diagnostic coil 121, the second diagnostic switch 123, and the resistor 124 are the same as those in the first embodiment. Therefore, the diagnostic circuit 12 in the present embodiment is a circuit obtained by removing the first diagnostic switch 122 from the diagnostic circuit 12 in the first embodiment.
  • the processing unit 14 can switch the operation mode of the sensor 8 between the normal mode and the normal H output failure diagnosis mode by controlling the ON / OFF operation (opening / closing operation) of the second diagnosis switch 122.
  • the second diagnostic switch 123 When the operation mode of the sensor 8 is the normal mode, the second diagnostic switch 123 is closed under the control of the processing unit 14. As a result, a closed circuit in which the diagnostic coil 121 and the resistor 124 are connected in series is formed in the diagnostic circuit 12.
  • the second induced current which is lower than the short-circuit current by the resistor 124, is generated by the AC magnetic field from the exciting coil 11. Flowing into.
  • the diagnostic coil 121 generates a second induced magnetic field when the second induced current flows through the diagnostic coil 121.
  • the resistance value of the resistor 124 is adjusted so that the eddy current magnetic field from the identification plate 7 and the second induction magnetic field have the same strength.
  • the output value of the measurement signal from the measurement coil 13 becomes lower than the threshold value, and the identification plate 7 is in the detection region 9. If it deviates from this, the output value of the measurement signal from the measurement coil 13 becomes equal to or greater than the threshold value.
  • the second diagnosis switch 123 is opened by the control of the processing unit 14. As a result, no induced current flows through the diagnostic coil 121, and the generation of the induced magnetic field from the diagnostic coil 121 is stopped.
  • the output value of the measurement signal from the measurement coil 13 is equal to or greater than the threshold value regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the processing unit 14 sets the operation mode of the sensor 8 to the normal mode when the input of the diagnostic signal from the control device is stopped, and changes from the normal mode to the constantly H output failure diagnostic mode by receiving the diagnostic signal from the control device. Switch.
  • the processing unit 14 outputs a detection signal in the H output state to the control device when the identification plate 7 enters the detection region 9, and when the identification plate 7 is out of the detection region 9.
  • An L output state detection signal is output to the control device.
  • the processing unit 14 when the operation mode of the sensor 8 is always the H output failure diagnosis mode outputs a detection signal in the L output state to the control device regardless of the presence or absence of the identification plate 7 in the detection region 9.
  • the control device When the control device outputs a diagnostic signal to the processing unit 14 and the operation mode of the sensor 8 is always in the H output failure diagnostic mode, the control device outputs the detection signal from the processing unit 14 and performs diagnosis based on the diagnostic signal. By comparing the output state (L output state) corresponding to the mode (always H output failure diagnosis mode), the presence or absence of the constantly H output failure of the sensor 8 is determined. In other words, when the operation mode of the sensor 8 is the constantly H output failure diagnosis mode, the control device does not always cause an H output failure when the output state of the detection signal from the processing unit 14 is the same as the L output state. H output normality is determined, and when the output state of the detection signal from the processing unit 14 is different from the L output state, it is determined that the H output failure has always occurred. Other configurations are the same as those in the first embodiment.
  • the operation mode of the sensor 8 can be switched between a normal mode in which the second diagnostic switch 123 is opened and a normal H output failure diagnostic mode in which the second diagnostic switch 123 is closed. Therefore, it is possible to determine whether or not the sensor 8 is constantly in an H output failure by simply closing the second diagnostic switch 123 while stopping the car 2 without moving it. Thereby, determination of the presence or absence of failure of the sensor 8 can be facilitated. In addition, since a plurality of identification plates 7 and a plurality of sensors 8 are not required to perform failure diagnosis, the cost of the position detection device can be reduced.
  • FIG. FIG. 7 is a block diagram showing an elevator position detection apparatus according to Embodiment 4 of the present invention.
  • the detection region 9 is provided between the excitation coil 11 and the measurement coil 13.
  • the diagnostic coil 121 is disposed on the same side as the excitation coil 11 when viewed from the detection region 9.
  • the diagnostic coil 121 is disposed at a position farther from the detection region 9 than the excitation coil 11.
  • Other configurations are the same as those in the first embodiment.
  • the detection region 9 is provided between the excitation coil 11 and the measurement coil 13, the output fluctuation of the measurement signal from the measurement coil 13 due to the shaking of the car 2 can be reduced, and the identification plate 7 The occurrence of false detection can also be suppressed. Thereby, the accuracy of failure diagnosis of the sensor 8 can be improved.
  • FIG. FIG. 8 is a block diagram showing an elevator position detection apparatus according to Embodiment 5 of the present invention.
  • the configuration of the diagnostic circuit 12 is the same as the configuration of the diagnostic circuit 12 in the second embodiment. That is, in the present embodiment, the diagnostic circuit 12 is a closed circuit in which the first diagnostic switch 122 is connected in parallel to the diagnostic coil 121. Other configurations are the same as those of the fourth embodiment.
  • the diagnosis circuit 12 can be simplified and the diagnosis of the always-low output failure of the sensor 8 can be made. Accuracy can be improved.
  • FIG. FIG. 9 is a block diagram showing an elevator position detection apparatus according to Embodiment 6 of the present invention.
  • the configuration of the diagnostic circuit 12 is the same as the configuration of the diagnostic circuit 12 in the third embodiment. That is, in the present embodiment, the diagnostic circuit 12 is a closed circuit in which the second diagnostic switch 123 and the resistor 124 connected in series with each other are connected in parallel to the diagnostic coil 121. Other configurations are the same as those of the fourth embodiment.
  • the senor 8 can be simplified while simplifying the configuration of the diagnostic circuit 12. The accuracy of the diagnosis of the constant H output failure can be improved.
  • FIG. FIG. 10 is a block diagram showing an elevator position detection apparatus according to Embodiment 7 of the present invention.
  • the detection region 9 is provided between the excitation coil 11 and the measurement coil 13.
  • the diagnostic coil 121 is disposed on the same side as the measurement coil 13 when viewed from the detection region 9.
  • the diagnostic coil 121 is disposed at a position farther from the detection region 9 than the measurement coil 13.
  • Other configurations are the same as those in the first embodiment.
  • the diagnostic coil 121 is arranged on the same side as the measurement coil 13 when viewed from the detection region 9, the coupling constant between the measurement coil 13 and the diagnostic coil 121 can be increased. Inductance (number of turns) can be reduced. Thereby, the mounting cost of the diagnostic coil 121 can be reduced.
  • FIG. FIG. 11 is a block diagram showing an elevator position detection apparatus according to Embodiment 8 of the present invention.
  • the configuration of the diagnostic circuit 12 is the same as the configuration of the diagnostic circuit 12 in the second embodiment. That is, in the present embodiment, the diagnostic circuit 12 is a closed circuit in which the first diagnostic switch 122 is connected in parallel to the diagnostic coil 121. Other configurations are the same as those of the seventh embodiment.
  • the diagnosis circuit 12 can be simplified and the diagnosis of the always-low output failure of the sensor 8 can be made. Accuracy can be improved.
  • FIG. FIG. 12 is a block diagram showing an elevator position detection apparatus according to Embodiment 9 of the present invention.
  • the configuration of the diagnostic circuit 12 is the same as the configuration of the diagnostic circuit 12 in the third embodiment. That is, in the present embodiment, the diagnostic circuit 12 is a closed circuit in which the second diagnostic switch 123 and the resistor 124 connected in series with each other are connected in parallel to the diagnostic coil 121. Other configurations are the same as those of the seventh embodiment.
  • the senor 8 can be simplified while simplifying the configuration of the diagnostic circuit 12. The accuracy of the diagnosis of the constant H output failure can be improved.
  • FIG. 13 is a block diagram showing an elevator position detection apparatus according to Embodiment 10 of the present invention.
  • the sensor 8 outputs a diagnostic signal including information for switching to either the constantly H output failure diagnostic mode or the constantly L output failure diagnostic mode to the processing unit 14, and further includes a CPU 15 that receives a detection signal from the processing unit 14. Have.
  • the CPU 15 outputs the diagnostic signal to the processing unit 14 to set the operation mode of the sensor 8 to the diagnostic mode corresponding to the information included in the diagnostic signal, and stops outputting the diagnostic signal to the processing unit 14.
  • the operation mode of the sensor 8 is a normal mode.
  • the CPU 15 is based on the output state of the detection signal from the processing unit 14 and the diagnosis signal when the operation mode of the sensor 8 is either the always H output failure diagnosis mode or the always L output failure diagnosis mode. By comparing the output state corresponding to the diagnosis mode, the presence or absence of a failure of the sensor 8 is determined. That is, when the operation mode of the sensor 8 is the constantly H output failure diagnosis mode, the CPU 15 indicates that the H output failure is not always caused when the output state of the detection signal from the processing unit 14 is the same as the L output state. The H output normality determination is performed, and when the output state of the detection signal from the processing unit 14 is different from the L output state, the H output failure determination is made that the H output failure is always occurring.
  • the CPU 15 says that the L output failure is not always caused when the output state of the detection signal from the processing unit 14 is the same as the H output state.
  • the L output normality determination is performed, and when the output state of the detection signal from the processing unit 14 is different from the H output state, the L output failure determination is made that the L output failure has always occurred.
  • the CPU 15 When the failure diagnosis of the sensor 8 is performed, the CPU 15 outputs a normal determination signal to the control device when the normal determination is made and an error signal when the failure is determined.
  • the control device controls the operation of the elevator based on a signal from the CPU 15.
  • Other configurations are the same as those in the first embodiment.
  • the CPU 15 for determining whether or not the sensor 8 has failed is incorporated in the sensor 8, it is possible to determine whether or not the sensor 8 has failed in the sensor 8 (that is, the function of self-diagnosis regarding the failure).
  • the sensor 8 can be provided).
  • the CPU 15 is incorporated in the sensor 8 in the first embodiment, but the CPU 15 may be included in the sensor 8 in the second to ninth embodiments.
  • the identification plate 7 is provided in the hoistway 1 and the sensor 8 is provided in the car 2.
  • the identification plate 7 is provided in the hoistway 1 and the sensor 8 is provided in the car 2. It may be provided.
  • the sensor 8 is provided in the cage

Abstract

エレベータの位置検出装置では、第1の診断スイッチ(122)を閉じると励磁コイル(11)からの交流磁界によって第1の誘導磁界が診断コイル(121)から発生し、第2の診断スイッチ(123)を閉じると励磁コイル(11)からの交流磁界によって第1の誘導磁界よりも弱い第2の誘導磁界が診断コイル(121)から発生する。第1の誘導磁界が発生する常時L出力故障診断モードでは、検出領域での被検出体の有無にかかわらず測定信号の出力値が閾値よりも低くなる。第1及び第2の誘導磁界の発生がいずれも停止する常時H出力故障診断モードでは、検出領域での被検出体の有無にかかわらず測定信号の出力値が閾値以上になる。

Description

エレベータの位置検出装置
 この発明は、昇降体の位置を検出するためのエレベータの位置検出装置に関するものである。
 従来、各階に対応して互いに異なる出力パターンを出力する複数の位置検出センサをかごに設け、前回の出力パターン検出後に期待される遷移予測データと、今回の出力パターンとが一致しない場合に故障と判定するエレベータの位置検出装置が提案されている(特許文献1参照)。
特許第5380407号公報
 しかし、かごが各階間を移動しなければ位置検出センサの故障の有無を判定することができない。また、各位置検出センサの故障の有無の判定のために複数の位置検出センサが必要となる。従って、故障の判定に手間がかかってしまうとともに、コストが増大してしまう。
 この発明は、上記のような課題を解決するためになされたものであり、コストの低減化を図ることができるとともに、故障の有無の判定を容易にすることができるエレベータの位置検出装置を得ることを目的とする。
 この発明によるエレベータの位置検出装置は、被検出体、及び検出領域が設けられ、検出領域での被検出体の有無を検出するセンサを備え、昇降体、及び昇降体が上下方向へ移動する昇降路内のうち、一方には被検出体が設けられ、他方にはセンサが設けられており、センサは、被検出体が検出領域にあるときに被検出体に交流磁界を印加して被検出体に渦電流磁界を発生させる励磁コイルと、診断コイル、第1の診断スイッチ及び第2の診断スイッチを有し、第1の診断スイッチを閉じると励磁コイルからの交流磁界によって第1の誘導磁界が診断コイルから発生し、第2の診断コイルを閉じると励磁コイルからの交流磁界によって第1の誘導磁界よりも弱い第2の誘導磁界が診断コイルから発生する診断回路と、励磁コイルからの交流磁界を受けることにより測定信号を出力し、渦電流磁界、第1の誘導磁界及び第2の誘導磁界のうち、発生した磁界に応じて測定信号の出力値が低下する測定コイルと、第2の誘導磁界を診断コイルから発生させる通常モードから、第1の誘導磁界を診断コイルから発生させる常時L出力故障診断モード、及び第1及び第2の誘導磁界の発生をいずれも停止する常時H出力故障診断モードのいずれかにセンサの動作モードを診断信号に基づいて切り替え、測定コイルからの測定信号の出力値が閾値よりも低いか否かに応じて、出力状態が互いに異なる検出信号を出力する処理部とを備え、通常モードでは、検出領域に被検出体が入ると測定信号の出力値が閾値よりも低くなるとともに、検出領域から被検出体が外れると測定信号の出力値が閾値以上になり、常時L出力故障診断モードでは、検出領域での被検出体の有無にかかわらず測定信号の出力値が閾値よりも低くなり、常時H出力故障診断モードでは、検出領域での被検出体の有無にかかわらず測定信号の出力値が閾値以上になる。
 この発明によるエレベータの位置検出装置によれば、昇降体を移動させずに停止させたまま、センサの故障の有無の判定を容易にすることができる。また、コストの低減化を図ることもできる。
この発明の実施の形態1によるエレベータを示す構成図である。 図1の識別板及びセンサを示す構成図である。 図2の識別板の等価回路を示す回路図である。 図2のセンサの通常モード、常時H出力故障診断モード、常時L出力故障診断モードのそれぞれにおける第1の診断スイッチの状態、第2の診断スイッチの状態、測定コイルからの測定信号の出力値を、検出領域に識別板がない場合と、検出領域に識別板がある場合とに分けて示すグラフである。 この発明の実施の形態2によるエレベータの位置検出装置を示す構成図である。 この発明の実施の形態3によるエレベータの位置検出装置を示す構成図である。 この発明の実施の形態4によるエレベータの位置検出装置を示す構成図である。 この発明の実施の形態5によるエレベータの位置検出装置を示す構成図である。 この発明の実施の形態6によるエレベータの位置検出装置を示す構成図である。 この発明の実施の形態7によるエレベータの位置検出装置を示す構成図である。 この発明の実施の形態8によるエレベータの位置検出装置を示す構成図である。 この発明の実施の形態9によるエレベータの位置検出装置を示す構成図である。 この発明の実施の形態10によるエレベータの位置検出装置を示す構成図である。
 以下、この発明の好適な実施の形態について図面を参照して説明する。
 実施の形態1.
 図1は、この発明の実施の形態1によるエレベータを示す構成図である。昇降路1内には、かご(昇降体)2及び釣合おもり(図示せず)が吊体(例えばロープ又はベルト等)3によって吊り下げられている。吊体3は、図示しない巻上機(駆動装置)の駆動シーブに巻き掛けられている。かご2及び釣合おもりは、昇降路1内に設置された複数のレール(図示せず)に個別に案内されながら、巻上機の駆動力により昇降路1内を上下方向へ移動される。
 かご2には、かご出入口4が設けられている。かご出入口4は、図示しないかごドアの移動により開閉される。各階の乗場5には、昇降路1内に連通する乗場出入口6が設けられている。乗場出入口6は、図示しない乗場ドアの移動により開閉される。かご2がいずれかの階に停止してかご出入口4が乗場出入口6に対向しているときには、かごドアが乗場ドアと係合しながら移動されることにより、かご出入口4及び乗場出入口6が開閉される。
 昇降路1内には、複数の金属製の識別板(被検出体)7がかご2の移動方向について互いに間隔を置いて設けられている。この例では、各階の乗場出入口6の下部(各階に対応する位置)に識別板7がそれぞれ固定されている。
 かご2には、渦電流式のセンサ8が設けられている。この例では、センサ8がかご2の下部に設けられている。センサ8には、検出領域9が設けられている。センサ8は、検出領域9での識別板7の有無を検出する。かご2がいずれかの階に停止すると識別板7が検出領域9に入り、かご2が各階から上下方向へ移動すると識別板7が検出領域9から外れる。この例では、センサ8が水平方向について識別板7と対向することにより、識別板7が検出領域9に入る。
 センサ8は、検出領域9での識別板7の有無に応じて、出力状態が互いに異なる検出信号を出力する。この例では、センサ8が検出領域9に識別板7があることを検出するとセンサ8の検出信号の出力状態がH(high)出力状態(識別板有出力状態)となり、センサ8が検出領域9に識別板7がないことを検出するとセンサ8の検出信号の出力状態がL(low)出力状態(識別板無出力状態)となる。センサ8からの検出信号は、図示しない制御装置へ送られる。
 センサ8には、例えば、検出領域9での識別板7の有無にかかわらずセンサ8の検出信号の出力状態が常時H出力状態となる故障(常時H出力故障)、又は検出領域9での識別板7の有無にかかわらずセンサ8の検出信号の出力状態が常時L出力状態となる故障(常時L出力故障)が生じる可能性がある。本実施の形態では、常時H出力故障及び常時L出力故障のそれぞれの診断を行う機能(故障診断機能)がセンサ8に含まれている。即ち、センサ8は、通常時に識別板7の有無を検出する通常モードと、常時L出力故障の診断を行う常時L出力故障診断モードと、常時H出力故障の診断を行う常時H出力故障診断モードとの間で動作モードを切り替え可能になっている。なお、位置検出装置は、識別板7及びセンサ8を有している。
 図2は、図1の識別板7及びセンサ8を示す構成図である。図2では、かご2の移動方向に沿って上方から見たときの識別板7及びセンサ8を示している。センサ8は、励磁コイル11と、診断回路12と、測定コイル13と、処理部(信号処理回路)14とを有している。
 励磁コイル11には、交流電源15から交流電力が供給される。処理部14には、励磁コイル11に供給された交流電力に応じた参照信号が送られる。交流電力が励磁コイル11に供給されると、検出領域9に及ぶ交流磁界が励磁コイル11から発生する。これにより、識別板7が検出領域9にあるときには、励磁コイル11からの交流磁界が識別板7に印加される。励磁コイル11からの交流磁界が識別板7に印加されると、交流磁界に応じた渦電流が識別板7に発生する。識別板7からは、識別板7に発生した渦電流に応じて渦電流磁界が発生する。
 ここで、図3は、図2の識別板7の等価回路を示す回路図である。識別板7の等価回路は、識別板7に渦電流が発生することから、図3に示すように、渦電流の径に基づく等価コイル71と識別板7の抵抗72とを直列接続した閉回路として表される。
 診断回路12は、図2に示すように、診断コイル121と、診断コイル121に対して並列接続された第1の診断スイッチ122と、診断コイル121に対して並列接続され、互いに直列接続された第2の診断スイッチ123及び抵抗124とを有する閉回路である。
 励磁コイル11、測定コイル13及び診断コイル121は、いずれも検出領域9からみて同じ側に配置されている。また、励磁コイル11、測定コイル13及び診断コイル121のうち、測定コイル13が検出領域9に最も近い位置に配置され、診断コイル121が検出領域9から最も遠い位置に配置され、励磁コイル11が測定コイル13と診断コイル121との間の位置に配置されている。測定コイル13及び診断コイル121は、励磁コイル11からの交流磁界が及ぶ位置に配置されている。
 処理部14は、第1及び第2の診断スイッチ122,123のそれぞれのON/OFF動作(開閉動作)を制御することにより、通常モード、常時L出力故障診断モード及び常時H出力故障診断モード間でセンサ8の動作モードを切り替える。
 センサ8の動作モードが常時L出力故障診断モードであるときには、処理部14の制御により、第1の診断スイッチ122が閉じ(ON状態になり)、第2の診断スイッチ123が開く(OFF状態になる)。これにより、診断コイル121の両端部を短絡させた閉回路が診断回路12に形成される。診断コイル121の両端部を短絡させた閉回路が診断回路12に形成されると、識別板7に発生する渦電流よりも大きな第1の誘導電流(短絡電流)が励磁コイル11からの交流磁界によって診断コイル121に流れる。診断コイル121は、第1の誘導電流が診断コイル121に流れることにより渦電流磁界よりも強い第1の誘導磁界を発生する。
 センサ8の動作モードが通常モードであるときには、処理部14の制御により、第1の診断スイッチ122が開き(OFF状態になり)、第2の診断スイッチ123が閉じる(ON状態になる)。これにより、診断コイル121と抵抗124とを直列接続した閉回路が診断回路12に形成される。診断コイル121と抵抗124とを直列接続した閉回路が診断回路12に形成されると、常時L出力故障診断モード時の第1の誘導電流よりも抵抗124によって低くなった第2の誘導電流が励磁コイル11からの交流磁界によって診断コイル121に流れる。診断コイル121は、第2の誘導電流が診断コイル121に流れることにより第1の誘導磁界よりも弱い第2の誘導磁界を発生する。
 この例では、識別板7からの渦電流磁界と第2の誘導磁界とが同等の強さになるように抵抗124の抵抗値が調整されている。即ち、センサ8の動作モードが通常モードであるときには、診断コイル121と抵抗124とを直列接続した閉回路によって、識別板7と同等の性質を持つ板が励磁コイル11の隣に仮想的に配置された状態になっている。
 センサ8の動作モードが常時H出力故障診断モードであるときには、処理部14の制御により、第1及び第2の診断スイッチ122,123がいずれも開く(OFF状態になる)。これにより、診断コイル121に誘導電流は流れず、診断コイル121からの第1及び第2の誘導磁界の発生はいずれも停止する。
 識別板7からの渦電流磁界、診断コイル121からの第1及び第2の誘導磁界は、励磁コイル11からの交流磁界により誘導されて発生する磁界なので、励磁コイル11からの交流磁界を打ち消す性質を持つ磁界になっている。
 測定コイル13は、励磁コイル11からの交流磁界を受けることにより、交流磁界に応じた測定信号を処理部14へ出力する。また、測定コイル13が受ける交流磁界の少なくとも一部は、識別板7が渦電流磁界を発生すると渦電流磁界により打ち消され、診断コイル121が第1又は第2の誘導磁界を発生すると第1又は第2の誘導磁界により打ち消される。これにより、測定コイル13からの測定信号の出力値は、渦電流磁界、第1の誘導磁界及び第2の誘導磁界のうち、発生した磁界に応じて低下する。
 図4は、図2のセンサ8の通常モードA、常時H出力故障診断モードB、常時L出力故障診断モードCのそれぞれにおける第1の診断スイッチ122の状態、第2の診断スイッチ123の状態、測定コイル13からの測定信号の出力値を、検出領域9に識別板7がない場合と、検出領域9に識別板7がある場合とに分けて示すグラフである。図4に示すように、センサ8の動作モードが通常モードAであるとき(即ち、第1の診断スイッチ122が開き、第2の診断スイッチ123が閉じているとき)に識別板7が検出領域9に入ると、識別板7からの渦電流磁界と診断コイル121からの第2の誘導磁界とによって励磁コイル11からの交流磁界の一部が打ち消され、測定コイル13からの測定信号の出力値が、処理部14に設定された閾値よりも低くなる。一方、センサ8の動作モードが通常モードAであるときに識別板7が検出領域9から外れると、識別板7から渦電流磁界が発生しなくなるので、測定コイル13からの測定信号の出力値が上がり、測定コイル13からの測定信号の出力値が閾値以上になる。
 センサ8の動作モードが常時H出力故障診断モードBであるとき(即ち、第1及び第2の診断スイッチ122,123がいずれも開いているとき)には、診断コイル121から誘導磁界が発生しないので、励磁コイル11からの交流磁界の一部が識別板7からの渦電流磁界によって打ち消されても、測定コイル13からの測定信号の出力値が処理部14の閾値以上となる状態を維持する。これにより、センサ8の動作モードが常時H出力故障診断モードBであるときには、検出領域9での識別板7の有無にかかわらず、測定コイル13からの測定信号の出力値が閾値以上になる。即ち、センサ8の動作モードが常時H出力故障診断モードBであるときには、検出領域9での識別板7の有無にかかわらず識別板7がない状態が強制的に再現される。
 センサ8の動作モードが常時L出力故障診断モードCであるとき(即ち、第1の診断スイッチ122が閉じ、第2の診断スイッチ123が開いているとき)には、励磁コイル11からの交流磁界の全部を打ち消す強い第1の誘導磁界が診断コイル121から発生するので、検出領域9での識別板7の有無にかかわらず、測定コイル13からの測定信号の出力値が閾値よりも低くなる。即ち、センサ8の動作モードが常時L出力故障診断モードCであるときには、検出領域9での識別板7の有無にかかわらず識別板7がある状態が強制的に再現される。
 処理部14は、制御装置からの診断信号の入力が停止されている通常時にセンサ8の動作モードを通常モードとする。制御装置からの診断信号には、常時L出力故障診断モード及び常時H出力故障診断モードのいずれかに切り替えるための情報が含まれている。処理部14は、制御装置からの診断信号を受けると、診断信号に含まれる情報に基づいて、通常モードから、常時L出力故障診断モード及び常時H出力故障診断モードのいずれかにセンサ8の動作モードを切り替える。
 また、処理部14は、測定コイル13からの測定信号を受けると、測定コイル13からの測定信号の出力値と、処理部14に設定された閾値とを比較する。処理部14は、測定コイル13からの測定信号の出力値が閾値よりも低いか否かに応じて、出力状態が互いに異なる検出信号を制御装置へ出力する。即ち、処理部14は、測定コイル13からの測定信号の出力値が閾値よりも低いときにH出力状態の検出信号を制御装置へ出力し、測定コイル13からの測定信号の出力値が閾値以上であるときにL出力状態の検出信号を制御装置へ出力する。
 これにより、センサ8の動作モードが通常モードであるときの処理部14は、識別板7が検出領域9に入るとH出力状態の検出信号を制御装置へ出力し、識別板7が検出領域9から外れるとL出力状態の検出信号を制御装置へ出力する。また、センサ8の動作モードが常時H出力故障診断モードであるときの処理部14は、検出領域9での識別板7の有無にかかわらずL出力状態の検出信号を制御装置へ出力する。さらに、センサ8の動作モードが常時L出力故障診断モードであるときの処理部14は、検出領域9での識別板7の有無にかかわらずH出力状態の検出信号を制御装置へ出力する。
 制御装置は、診断信号を処理部14へ出力することにより、センサ8の動作モードを、診断信号に含まれる情報に応じた診断モードにし、処理部14への診断信号の出力を停止することにより、センサ8の動作モードを通常モードとする。制御装置は、センサ8の動作モードが通常モードであるときに、処理部14からの検出信号の出力状態に基づいて、検出領域9に識別板7が入ったときのかご2の位置を特定し、特定したかご2の位置に基づいてエレベータの運転を制御する。
 また、制御装置は、センサ8の動作モードが常時H出力故障診断モード及び常時L出力故障診断モードのいずれかになっているときに、処理部14からの検出信号の出力状態と、診断信号に基づく診断モードに対応する出力状態とを比較することにより、センサ8の故障の有無を判定する。即ち、制御装置は、センサ8の動作モードが常時H出力故障診断モードであるときに、処理部14からの検出信号の出力状態がL出力状態(即ち、常時H出力故障診断モードに対応する出力状態)と同じ場合に常時H出力故障が生じていないとの判定(H出力正常判定)をし、処理部14からの検出信号の出力状態がL出力状態と異なる場合に常時H出力故障が生じているとの判定(H出力故障判定)をする。また、制御装置は、センサ8の動作モードが常時L出力故障診断モードであるときに、処理部14からの検出信号の出力状態がH出力状態(即ち、常時L出力故障診断モードに対応する出力状態)と同じ場合に常時L出力故障が生じていないとの判定(L出力正常判定)をし、処理部14からの検出信号の出力状態がH出力状態と異なる場合に常時L出力故障が生じているとの判定(L出力故障判定)をする。
 次に、動作について説明する。制御装置の制御によりかご2が各階のいずれかに停止すると、かご2が停止した階に対応する識別板7がセンサ8の検出領域9に入る。識別板7が検出領域9に入ると、励磁コイル11からの交流磁界が識別板7に印加され、識別板7から渦電流磁界が発生する。一方、かご2が各階のいずれかから上下方向へ移動すると、識別板7が検出領域9から外れ、識別板7から渦電流磁界が発生しなくなる。
 制御装置から処理部14への診断信号の出力が停止されているときには、センサ8の動作モードが通常モードになっている。エレベータのサービス運転は、センサ8の動作モードを通常モードにした状態で行われる。
 センサ8の動作モードが通常モードになると、処理部14の制御により、第1の診断スイッチ122が開き、第2の診断スイッチ123が閉じる。これにより、識別板7からの渦電流磁界と同等の強さを持つ第2の誘導磁界が診断コイル121から発生する。
 通常モード時に識別板7が検出領域9に入ると、識別板7からの渦電流磁界の発生により測定コイル13からの測定信号の出力値が処理部14の閾値よりも低くなり、H出力状態の検出信号が処理部14から制御装置へ出力される。一方、通常モード時に識別板7が検出領域9から外れると、識別板7からの渦電流磁界がなくなることにより測定コイル13からの測定信号の出力値が閾値以上になり、L出力状態の検出信号が処理部14から制御装置へ出力される。
 制御装置では、処理部14からの検出信号を受けると、検出信号の出力状態(H出力状態又はL出力状態)に基づいてかご2が階にあるか否かが判定される。エレベータの運転は、処理部14からの検出信号に基づく判定結果に基づいて制御装置により制御される。
 常時L出力故障の診断を行うときには、常時L出力故障診断モードに切り替えるための情報を含む診断信号が制御装置から処理部14へ出力される。これにより、センサ8の動作モードが通常モードから常時L出力故障診断モードに切り替わる。
 常時L出力故障診断モード時には、処理部14の制御により、第1の診断スイッチ122が閉じ、第2の診断スイッチ123が開く。センサ8の動作モードが常時L出力故障診断モードになると、第2の誘導磁界よりも強い第1の誘導磁界が診断コイル121から発生する。これにより、検出領域9での識別板7の有無にかかわらず測定コイル13からの測定信号の出力値が閾値よりも低くなる。
 診断信号が制御装置から処理部14へ出力された後、処理部14からの検出信号が制御装置に入力されると、制御装置では、処理部14からの検出信号の出力状態と、診断信号に含まれる情報に基づく診断モード(常時L出力故障診断モード)対応する出力状態とが比較される。これにより、処理部14からの検出信号の出力状態が常時L出力故障診断モードに対応するH出力状態と一致していれば、常時L出力故障が生じていないとのL出力正常判定が制御装置により行われる。一方、処理部14にH出力状態の検出信号を強制的に出力させるための診断信号を制御装置から処理部14へ出力したにもかかわらず、処理部14からの検出信号の実際の出力状態がH出力状態と異なるときには、常時L出力故障がセンサ8に生じたとのL出力故障判定が制御装置により行われる。このようにして、センサ8の常時L出力故障の診断が行われる。
 常時H出力故障の診断を行うときには、常時H出力故障診断モードに切り替えるための情報を含む診断信号が制御装置から処理部14へ出力される。これにより、センサ8の動作モードが通常モードから常時H出力故障診断モードに切り替わる。
 常時H出力故障診断モード時には、処理部14の制御により、第1及び第2の診断スイッチ122,123がいずれも開く。センサ8の動作モードが常時H出力故障診断モードになると、診断コイル121から誘導磁界の発生が停止することにより、検出領域9での識別板7の有無にかかわらず測定コイル13からの測定信号の出力値が閾値以上になる。
 診断信号が制御装置から処理部14へ出力された後、処理部14からの検出信号が制御装置に入力されると、制御装置では、処理部14からの検出信号の出力状態と、診断信号に含まれる情報に基づく診断モード(常時H出力故障診断モード)に対応する出力状態とが比較される。これにより、処理部14からの検出信号の出力状態が常時H出力故障診断モードに対応するL出力状態と一致していれば、常時H出力故障が生じていないとのH出力正常判定が制御装置により行われる。一方、処理部14にL出力状態の検出信号を強制的に出力させるための診断信号を制御装置から処理部14へ出力したにもかかわらず、処理部14からの検出信号の実際の出力状態がL出力状態と異なるときには、常時H出力故障がセンサ8に生じたとのH出力故障判定が制御装置により行われる。このようにして、センサ8の常時H出力故障の診断が行われる。
 このようなエレベータの位置検出装置では、通常モードと、第1の診断スイッチ122を閉じて検出領域9での識別板7の有無にかかわらず測定コイル13からの測定信号の出力値を閾値よりも低くする常時L出力故障診断モードと、第2の診断スイッチ123を閉じて検出領域9での識別板7の有無にかかわらず測定コイル13からの測定信号の出力値を閾値以上にする常時H出力故障診断モードとの間でセンサ8の動作モードが切り替え可能になっているので、かご2を移動させずに停止させたまま、第1及び第2の診断スイッチ122,123のそれぞれを開閉するだけで、センサ8の常時L出力故障の有無及び常時H出力故障の有無のそれぞれの判定を行うことができる。これにより、センサ8の故障の有無の判定を容易にすることができる。また、故障診断を行うために複数の識別板7及び複数のセンサ8を必要としないので、位置検出装置のコストの低減化を図ることもできる。
 実施の形態2.
 図5は、この発明の実施の形態2によるエレベータの位置検出装置を示す構成図である。なお、図5は実施の形態1での図2に対応する図である。診断回路12は、診断コイル121と、診断コイル121に対して並列接続された第1の診断スイッチ122とを有する閉回路である。診断コイル121及び第1の診断スイッチ122の構成は実施の形態1と同様である。従って、本実施の形態での診断回路12は、実施の形態1での診断回路12から、第2の診断スイッチ123及び抵抗124を除いた回路になっている。
 処理部14は、第1の診断スイッチ122のON/OFF動作(開閉動作)を制御することにより、通常モード及び常時L出力故障診断モード間でセンサ8の動作モードを切り替え可能になっている。
 センサ8の動作モードが常時L出力故障診断モードであるときには、処理部14の制御により、第1の診断スイッチ122が閉じる。これにより、診断コイル121の両端部を短絡させた閉回路が診断回路12に形成される。診断コイル121の両端部を短絡させた閉回路が診断回路12に形成されると、識別板7に発生する渦電流よりも大きな第1の誘導電流(短絡電流)が励磁コイル11からの交流磁界によって診断コイル121に流れる。診断コイル121は、第1の誘導電流が診断コイル121に流れることにより渦電流磁界よりも強い第1の誘導磁界を発生する。第1の誘導磁界が診断コイル121から発生すると、励磁コイル11からの交流磁界の全部が第1の誘導磁界によって打ち消される。これにより、検出領域9での識別板7の有無にかかわらず、測定コイル13からの測定信号の出力値が閾値よりも低くなる。
 センサ8の動作モードが通常モードであるときには、処理部14の制御により、第1の診断スイッチ122が開く。これにより、診断コイル121に誘導電流は流れず、診断コイル121からの第1の誘導磁界の発生が停止する。これにより、センサ8の動作モードが通常モードであるときには、識別板7が検出領域9に入ると測定コイル13からの測定信号の出力値が閾値よりも低くなり、識別板7が検出領域9から外れると測定コイル13からの測定信号の出力値が閾値以上になる。
 処理部14は、制御装置からの診断信号の入力が停止されているときにセンサ8の動作モードを通常モードとし、制御装置からの診断信号を受けることにより通常モードから常時L出力故障診断モードに切り替える。これにより、センサ8の動作モードが通常モードであるときの処理部14は、識別板7が検出領域9に入るとH出力状態の検出信号を制御装置へ出力し、識別板7が検出領域9から外れるとL出力状態の検出信号を制御装置へ出力する。また、センサ8の動作モードが常時L出力故障診断モードであるときの処理部14は、検出領域9での識別板7の有無にかかわらずH出力状態の検出信号を制御装置へ出力する。
 制御装置は、診断信号を処理部14へ出力してセンサ8の動作モードが常時L出力故障診断モードになっているときに、処理部14からの検出信号の出力状態と、診断信号に基づく診断モード(常時L出力故障診断モード)に対応する出力状態(H出力状態)とを比較することにより、センサ8の常時L出力故障の有無を判定する。即ち、制御装置は、センサ8の動作モードが常時L出力故障診断モードであるときに、処理部14からの検出信号の出力状態がH出力状態と同じ場合に常時L出力故障が生じていないとのL出力正常判定をし、処理部14からの検出信号の出力状態がH出力状態と異なる場合に常時L出力故障が生じているとのL出力故障判定をする。他の構成は実施の形態1と同様である。
 このようなエレベータの位置検出装置では、通常モードと、第1の診断スイッチ122を閉じる常時L出力故障診断モードとの間でセンサ8の動作モードが切り替え可能になっているので、かご2を移動させずに停止させたまま、第1の診断スイッチ122を閉じるだけで、センサ8の常時L出力故障の有無の判定を行うことができる。これにより、センサ8の故障の有無の判定を容易にすることができる。また、故障診断を行うために複数の識別板7及び複数のセンサ8を必要としないので、位置検出装置のコストの低減化を図ることもできる。
 実施の形態3.
 図6は、この発明の実施の形態3によるエレベータの位置検出装置を示す構成図である。なお、図6は実施の形態1での図2に対応する図である。診断回路12は、診断コイル121と、診断コイル121に対して並列接続され、互いに直列接続された第2の診断スイッチ123及び抵抗124とを有する閉回路である。診断コイル121、第2の診断スイッチ123及び抵抗124の構成は実施の形態1と同様である。従って、本実施の形態での診断回路12は、実施の形態1での診断回路12から、第1の診断スイッチ122を除いた回路になっている。
 処理部14は、第2の診断スイッチ122のON/OFF動作(開閉動作)を制御することにより、通常モード及び常時H出力故障診断モード間でセンサ8の動作モードを切り替え可能になっている。
 センサ8の動作モードが通常モードであるときには、処理部14の制御により、第2の診断スイッチ123が閉じる。これにより、診断コイル121と抵抗124とを直列接続した閉回路が診断回路12に形成される。診断コイル121と抵抗124とを直列接続した閉回路が診断回路12に形成されると、抵抗124によって短絡電流よりも低くなった第2の誘導電流が励磁コイル11からの交流磁界によって診断コイル121に流れる。診断コイル121は、第2の誘導電流が診断コイル121に流れることにより第2の誘導磁界を発生する。この例では、識別板7からの渦電流磁界と第2の誘導磁界とが同等の強さになるように抵抗124の抵抗値が調整されている。
 第2の誘導磁界が診断コイル121から発生する通常モードでは、識別板7が検出領域9に入ると測定コイル13からの測定信号の出力値が閾値よりも低くなり、識別板7が検出領域9から外れると測定コイル13からの測定信号の出力値が閾値以上になる。
 センサ8の動作モードが常時H出力故障診断モードであるときには、処理部14の制御により、第2の診断スイッチ123が開く。これにより、診断コイル121に誘導電流が流れず、診断コイル121からの誘導磁界の発生が停止する。診断コイル121からの誘導磁界の発生が停止した常時H出力故障診断モードでは、検出領域9での識別板7の有無にかかわらず、測定コイル13からの測定信号の出力値が閾値以上になる。
 処理部14は、制御装置からの診断信号の入力が停止されているときにセンサ8の動作モードを通常モードとし、制御装置からの診断信号を受けることにより通常モードから常時H出力故障診断モードに切り替える。センサ8の動作モードが通常モードであるときの処理部14は、識別板7が検出領域9に入るとH出力状態の検出信号を制御装置へ出力し、識別板7が検出領域9から外れるとL出力状態の検出信号を制御装置へ出力する。また、センサ8の動作モードが常時H出力故障診断モードであるときの処理部14は、検出領域9での識別板7の有無にかかわらずL出力状態の検出信号を制御装置へ出力する。
 制御装置は、診断信号を処理部14へ出力してセンサ8の動作モードが常時H出力故障診断モードになっているときに、処理部14からの検出信号の出力状態と、診断信号に基づく診断モード(常時H出力故障診断モード)に対応する出力状態(L出力状態)とを比較することにより、センサ8の常時H出力故障の有無を判定する。即ち、制御装置は、センサ8の動作モードが常時H出力故障診断モードであるときに、処理部14からの検出信号の出力状態がL出力状態と同じ場合に常時H出力故障が生じていないとのH出力正常判定をし、処理部14からの検出信号の出力状態がL出力状態と異なる場合に常時H出力故障が生じているとのH出力故障判定をする。他の構成は実施の形態1と同様である。
 このようなエレベータの位置検出装置では、第2の診断スイッチ123を開く通常モードと、第2の診断スイッチ123を閉じる常時H出力故障診断モードとの間でセンサ8の動作モードが切り替え可能になっているので、かご2を移動させずに停止させたまま、第2の診断スイッチ123を閉じるだけで、センサ8の常時H出力故障の有無の判定を行うことができる。これにより、センサ8の故障の有無の判定を容易にすることができる。また、故障診断を行うために複数の識別板7及び複数のセンサ8を必要としないので、位置検出装置のコストの低減化を図ることもできる。
 実施の形態4.
 図7は、この発明の実施の形態4によるエレベータの位置検出装置を示す構成図である。本実施の形態では、かご2の移動方向に沿ってセンサ8を見たとき、検出領域9が励磁コイル11と測定コイル13との間に設けられている。また、本実施の形態では、かご2の移動方向に沿ってセンサ8を見たとき、診断コイル121が検出領域9からみて励磁コイル11と同じ側に配置されている。診断コイル121は、励磁コイル11よりも検出領域9から離れた位置に配置されている。他の構成は実施の形態1と同様である。
 このように、励磁コイル11と測定コイル13との間に検出領域9を設けているので、かご2の揺れによる測定コイル13からの測定信号の出力変動を小さくすることができるとともに、識別板7の誤検出の発生を抑制することもできる。これにより、センサ8の故障診断の精度を向上させることができる。
 実施の形態5.
 図8は、この発明の実施の形態5によるエレベータの位置検出装置を示す構成図である。本実施の形態では、診断回路12の構成が実施の形態2での診断回路12の構成と同様になっている。即ち、本実施の形態では、診断回路12が、診断コイル121に対して第1の診断スイッチ122を並列接続した閉回路になっている。他の構成は実施の形態4と同様である。
 このように、診断コイル121に対して第1の診断スイッチ122を並列接続した閉回路を診断回路12とすれば、診断回路12の構成を簡単にしながら、センサ8の常時L出力故障の診断についての精度を向上させることができる。
 実施の形態6.
 図9は、この発明の実施の形態6によるエレベータの位置検出装置を示す構成図である。本実施の形態では、診断回路12の構成が実施の形態3での診断回路12の構成と同様になっている。即ち、本実施の形態では、診断回路12が、互いに直列接続された第2の診断スイッチ123及び抵抗124を診断コイル121に対して並列接続した閉回路になっている。他の構成は実施の形態4と同様である。
 このように、互いに直列接続された第2の診断スイッチ123及び抵抗124を診断コイル121に対して並列接続した閉回路を診断回路12とすれば、診断回路12の構成を簡単にしながら、センサ8の常時H出力故障の診断についての精度を向上させることができる。
 実施の形態7.
 図10は、この発明の実施の形態7によるエレベータの位置検出装置を示す構成図である。本実施の形態では、かご2の移動方向に沿ってセンサ8を見たとき、検出領域9が励磁コイル11と測定コイル13との間に設けられている。また、本実施の形態では、かご2の移動方向に沿ってセンサ8を見たとき、診断コイル121が検出領域9からみて測定コイル13と同じ側に配置されている。診断コイル121は、測定コイル13よりも検出領域9から離れた位置に配置されている。他の構成は実施の形態1と同様である。
 このように、診断コイル121が検出領域9からみて測定コイル13と同じ側に配置されているので、測定コイル13と診断コイル121との間の結合定数を大きくすることができ、診断コイル121のインダクタンス(巻き数)を小さくすることができる。これにより、診断コイル121の実装コストの低減化を図ることができる。
 実施の形態8.
 図11は、この発明の実施の形態8によるエレベータの位置検出装置を示す構成図である。本実施の形態では、診断回路12の構成が実施の形態2での診断回路12の構成と同様になっている。即ち、本実施の形態では、診断回路12が、診断コイル121に対して第1の診断スイッチ122を並列接続した閉回路になっている。他の構成は実施の形態7と同様である。
 このように、診断コイル121に対して第1の診断スイッチ122を並列接続した閉回路を診断回路12とすれば、診断回路12の構成を簡単にしながら、センサ8の常時L出力故障の診断についての精度を向上させることができる。
 実施の形態9.
 図12は、この発明の実施の形態9によるエレベータの位置検出装置を示す構成図である。本実施の形態では、診断回路12の構成が実施の形態3での診断回路12の構成と同様になっている。即ち、本実施の形態では、診断回路12が、互いに直列接続された第2の診断スイッチ123及び抵抗124を診断コイル121に対して並列接続した閉回路になっている。他の構成は実施の形態7と同様である。
 このように、互いに直列接続された第2の診断スイッチ123及び抵抗124を診断コイル121に対して並列接続した閉回路を診断回路12とすれば、診断回路12の構成を簡単にしながら、センサ8の常時H出力故障の診断についての精度を向上させることができる。
 実施の形態10.
 図13は、この発明の実施の形態10によるエレベータの位置検出装置を示す構成図である。センサ8は、常時H出力故障診断モード及び常時L出力故障診断モードのいずれかに切り替えるための情報を含む診断信号を処理部14へ出力するとともに、処理部14からの検出信号を受けるCPU15をさらに有している。
 CPU15は、診断信号を処理部14へ出力することにより、センサ8の動作モードを、診断信号に含まれる情報に応じた診断モードにし、処理部14への診断信号の出力を停止することにより、センサ8の動作モードを通常モードとする。
 また、CPU15は、センサ8の動作モードが常時H出力故障診断モード及び常時L出力故障診断モードのいずれかになっているときに、処理部14からの検出信号の出力状態と、診断信号に基づく診断モードに対応する出力状態とを比較することにより、センサ8の故障の有無を判定する。即ち、CPU15は、センサ8の動作モードが常時H出力故障診断モードであるときに、処理部14からの検出信号の出力状態がL出力状態と同じ場合に常時H出力故障が生じていないとのH出力正常判定をし、処理部14からの検出信号の出力状態がL出力状態と異なる場合に常時H出力故障が生じているとのH出力故障判定をする。また、CPU15は、センサ8の動作モードが常時L出力故障診断モードであるときに、処理部14からの検出信号の出力状態がH出力状態と同じ場合に常時L出力故障が生じていないとのL出力正常判定をし、処理部14からの検出信号の出力状態がH出力状態と異なる場合に常時L出力故障が生じているとのL出力故障判定をする。
 CPU15は、センサ8の故障診断を行うと、正常判定をしたときには正常判定信号を、故障判定をしたときにはエラー信号をそれぞれ制御装置へ出力する。制御装置は、CPU15からの信号に基づいてエレベータの運転を制御する。他の構成は実施の形態1と同様である。
 このように、センサ8の故障の有無を判定するCPU15がセンサ8に組み込まれているので、センサ8の故障の有無をセンサ8内で判定することができる(即ち、故障に関する自己診断の機能をセンサ8に持たせることができる)。
 なお、上記の例では、実施の形態1でのセンサ8にCPU15が組み込まれているが、実施の形態2~9でのセンサ8にCPU15を含ませてもよい。
 また、各上記実施の形態では、識別板7が昇降路1内に設けられ、センサ8がかご2に設けられているが、昇降路1内に識別板7を設け、かご2にセンサ8を設けてもよい。
 また、各上記実施の形態では、センサ8がかご2に設けられているが、昇降体としての釣合おもりにセンサ8を設けてもよい。さらに、釣合おもりに識別板7を設け、昇降路1内にセンサ8を設けてもよい。

Claims (6)

  1.  被検出体、及び
     検出領域が設けられ、上記検出領域での上記被検出体の有無を検出するセンサ
     を備え、
     昇降体、及び上記昇降体が上下方向へ移動する昇降路内のうち、一方には上記被検出体が設けられ、他方には上記センサが設けられており、
     上記センサは、
     上記被検出体が上記検出領域にあるときに上記被検出体に交流磁界を印加して上記被検出体に渦電流磁界を発生させる励磁コイルと、
     診断コイル、第1の診断スイッチ及び第2の診断スイッチを有し、上記第1の診断スイッチを閉じると上記励磁コイルからの交流磁界によって第1の誘導磁界が上記診断コイルから発生し、上記第2の診断コイルを閉じると上記励磁コイルからの交流磁界によって上記第1の誘導磁界よりも弱い第2の誘導磁界が上記診断コイルから発生する診断回路と、
     上記励磁コイルからの交流磁界を受けることにより測定信号を出力し、上記渦電流磁界、上記第1の誘導磁界及び上記第2の誘導磁界のうち、発生した磁界に応じて測定信号の出力値が低下する測定コイルと、
     上記第2の誘導磁界を上記診断コイルから発生させる通常モードから、上記第1の誘導磁界を上記診断コイルから発生させる常時L出力故障診断モード、及び上記第1及び第2の誘導磁界の発生をいずれも停止する常時H出力故障診断モードのいずれかに上記センサの動作モードを診断信号に基づいて切り替え、上記測定コイルからの測定信号の出力値が閾値よりも低いか否かに応じて、出力状態が互いに異なる検出信号を出力する処理部と
     を備え、
     上記通常モードでは、上記検出領域に上記被検出体が入ると上記測定信号の出力値が上記閾値よりも低くなるとともに、上記検出領域から上記被検出体が外れると上記測定信号の出力値が上記閾値以上になり、
     上記常時L出力故障診断モードでは、上記検出領域での上記被検出体の有無にかかわらず上記測定信号の出力値が上記閾値よりも低くなり、
     上記常時H出力故障診断モードでは、上記検出領域での上記被検出体の有無にかかわらず上記測定信号の出力値が上記閾値以上になるエレベータの位置検出装置。
  2.  被検出体、及び
     検出領域が設けられ、上記検出領域での上記被検出体の有無を検出するセンサ
     を備え、
     昇降体、及び上記昇降体が上下方向へ移動する昇降路内のうち、一方には上記被検出体が設けられ、他方には上記センサが設けられており、
     上記センサは、
     上記被検出体が上記検出領域にあるときに上記被検出体に交流磁界を印加して上記被検出体に渦電流磁界を発生させる励磁コイルと、
     診断コイル及び第1の診断スイッチを有し、上記第1の診断スイッチを閉じると上記励磁コイルからの交流磁界によって第1の誘導磁界が上記診断コイルから発生する診断回路と、
     上記励磁コイルからの交流磁界を受けることにより測定信号を出力し、上記渦電流磁界及び上記第1の誘導磁界のうち、発生した磁界に応じて測定信号の出力値が低下する測定コイルと、
     上記第1の誘導磁界の発生を停止する通常モードから、上記第1の誘導磁界を上記診断コイルから発生させる常時L出力故障診断モードに上記センサの動作モードを診断信号の受信により切り替え、上記測定コイルからの測定信号の出力値が閾値よりも低いか否かに応じて、出力状態が互いに異なる検出信号を出力する処理部と
     を備え、
     上記通常モードでは、上記検出領域に上記被検出体が入ると上記測定信号の出力値が上記閾値よりも低くなるとともに、上記検出領域から上記被検出体が外れると上記測定信号の出力値が上記閾値以上になり、
     上記常時L出力故障診断モードでは、上記検出領域での上記被検出体の有無にかかわらず上記測定信号の出力値が上記閾値よりも低くなるエレベータの位置検出装置。
  3.  被検出体、及び
     検出領域が設けられ、上記検出領域での上記被検出体の有無を検出するセンサ
     を備え、
     昇降体、及び上記昇降体が上下方向へ移動する昇降路内のうち、一方には上記被検出体が設けられ、他方には上記センサが設けられており、
     上記センサは、
     上記被検出体が上記検出領域にあるときに上記被検出体に交流磁界を印加して上記被検出体に渦電流磁界を発生させる励磁コイルと、
     診断コイル及び第2の診断スイッチを有し、上記第2の診断スイッチを閉じると上記励磁コイルからの交流磁界によって第2の誘導磁界が上記診断コイルから発生する診断回路と、
     上記励磁コイルからの交流磁界を受けることにより測定信号を出力し、上記渦電流磁界及び上記第2の誘導磁界のうち、発生した磁界に応じて測定信号の出力値が低下する測定コイルと、
     上記第2の誘導磁界を上記診断コイルから発生させる通常モードから、上記第2の誘導磁界の発生を停止する常時H出力故障診断モードに上記センサの動作モードを診断信号の受信により切り替え、上記測定コイルからの測定信号の出力値が閾値よりも低いか否かに応じて、出力状態が互いに異なる検出信号を出力する処理部と
     を備え、
     上記通常モードでは、上記検出領域に上記被検出体が入ると上記測定信号の出力値が上記閾値よりも低くなるとともに、上記検出領域から上記被検出体が外れると上記測定信号の出力値が上記閾値以上になり、
     上記常時H出力故障診断モードでは、上記検出領域での上記被検出体の有無にかかわらず上記測定信号の出力値が上記閾値以上になるエレベータの位置検出装置。
  4.  上記検出領域は、上記昇降体の移動方向に沿って上記センサを見たとき、上記測定コイルと上記励磁コイルとの間に設けられている請求項1~請求項3のいずれか一項に記載のエレベータの位置検出装置。
  5.  上記診断コイルは、上記昇降体の移動方向に沿って上記センサを見たとき、上記検出領域からみて上記測定コイルと同じ側に配置されている請求項4に記載のエレベータの位置検出装置。
  6.  上記センサは、
     上記診断信号を上記処理部へ出力するとともに、上記処理部からの検出信号の出力状態と上記診断信号に基づく診断モードに対応する出力状態とを比較することにより、上記センサの故障の有無を判定するCPU
     をさらに有している請求項1~請求項5のいずれか一項に記載のエレベータの位置検出装置。
PCT/JP2014/064433 2014-05-30 2014-05-30 エレベータの位置検出装置 WO2015181955A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/064433 WO2015181955A1 (ja) 2014-05-30 2014-05-30 エレベータの位置検出装置
CN201480079153.8A CN106414294B (zh) 2014-05-30 2014-05-30 电梯的位置检测装置
DE112014006714.8T DE112014006714B4 (de) 2014-05-30 2014-05-30 Aufzugspositions-erfassungsvorrichtung
US15/305,178 US10065833B2 (en) 2014-05-30 2014-05-30 Elevator position detection apparatus
JP2016523060A JP6192825B2 (ja) 2014-05-30 2014-05-30 エレベータの位置検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/064433 WO2015181955A1 (ja) 2014-05-30 2014-05-30 エレベータの位置検出装置

Publications (1)

Publication Number Publication Date
WO2015181955A1 true WO2015181955A1 (ja) 2015-12-03

Family

ID=54698330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064433 WO2015181955A1 (ja) 2014-05-30 2014-05-30 エレベータの位置検出装置

Country Status (5)

Country Link
US (1) US10065833B2 (ja)
JP (1) JP6192825B2 (ja)
CN (1) CN106414294B (ja)
DE (1) DE112014006714B4 (ja)
WO (1) WO2015181955A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158736A1 (ja) * 2016-03-15 2017-09-21 三菱電機株式会社 かご位置検出装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6192825B2 (ja) * 2014-05-30 2017-09-06 三菱電機株式会社 エレベータの位置検出装置
EP3367068A1 (en) * 2017-02-27 2018-08-29 KONE Corporation Method for levitation control of a linear motor, method for determining a position of a linear motor, inductive sensing device, and elevator system
DE112017007517T5 (de) * 2017-05-10 2020-01-23 Mitsubishi Electric Corporation Aufzugskabinenpositionsdetektionssensor
CN107416624A (zh) * 2017-05-25 2017-12-01 厦门微智电子科技有限公司 利用检测电感方式检测门锁通断的电梯应急松闸电源装置
AU2018275606B2 (en) 2017-06-02 2021-05-20 Inventio Ag Floor position detection device of a lift installation and method for generating a floor signal
CN108439100B (zh) * 2018-02-02 2019-12-20 深圳市海浦蒙特科技有限公司 电梯平层处理方法和系统
DE102020214492A1 (de) * 2020-11-18 2022-05-19 Robert Bosch Gesellschaft mit beschränkter Haftung Sensorsystem zur Bestimmung mindestens einer Rotationseigenschaft eines rotierenden Elements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175140A (ja) * 1987-12-29 1989-07-11 Makome Kenkyusho:Kk 近接スイッチの診断回路
JP3306620B2 (ja) * 1997-12-19 2002-07-24 株式会社マコメ研究所 位置検出センサおよび移動距離検出システム
JP2009263108A (ja) * 2008-04-28 2009-11-12 Hitachi Ltd エレベータの位置検出装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4375057A (en) * 1980-12-10 1983-02-22 Otis Elevator Company Position sensor
US5274203A (en) * 1989-06-30 1993-12-28 Otis Elevator Company "Smart" position transducer system for elevators
US5373123A (en) * 1992-12-21 1994-12-13 Otis Elevator Company Electromagnetic gaging of elevator rails and other structures
FI111937B (fi) * 1993-12-28 2003-10-15 Kone Corp Menetelmä hissikorin paikan määrittämiseksi
FR2841084B1 (fr) 2002-06-13 2004-12-17 Systemig Sa Dispositif de telereleve d'etats, et applications
JP4177076B2 (ja) * 2002-10-24 2008-11-05 三菱電機株式会社 エレベータのかご位置検出装置
CA2540431C (en) * 2004-05-31 2009-12-22 Mitsubishi Denki Kabushiki Kaisha Elevator apparatus
JP4774427B2 (ja) 2008-06-30 2011-09-14 株式会社日立製作所 エレベータの位置検出装置、並びにエレベータ
FI120449B (fi) * 2008-08-12 2009-10-30 Kone Corp Järjestely ja menetelmä hissikorin paikan määrittämiseksi
JP5380407B2 (ja) * 2010-09-21 2014-01-08 株式会社日立製作所 安全エレベータ
DE102011078956A1 (de) * 2011-07-11 2013-01-17 Dr. Johannes Heidenhain Gmbh Teilungsträger für eine Positionsmesseinrichtung und Verfahren zur Herstellung des Teilungsträgers
US9354033B2 (en) * 2011-11-18 2016-05-31 Fluke Corporation Smart electromagnetic sensor array
FI123145B (fi) * 2012-01-23 2012-11-30 Kone Corp Menetelmä ja järjestely kuljetusjärjestelmän toimintakunnon valvomiseksi
JP5805222B2 (ja) * 2012-02-08 2015-11-04 三菱電機株式会社 かご位置検出装置
JP6192825B2 (ja) * 2014-05-30 2017-09-06 三菱電機株式会社 エレベータの位置検出装置
ES2703398T3 (es) * 2015-09-01 2019-03-08 Otis Elevator Co Comunicación inalámbrica de ascensor y sistema de transferencia de potencia
DE102015225695A1 (de) * 2015-12-17 2017-06-22 Robert Bosch Gmbh Vorrichtung und Verfahren zur Ermittlung einer Relativauslenkung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01175140A (ja) * 1987-12-29 1989-07-11 Makome Kenkyusho:Kk 近接スイッチの診断回路
JP3306620B2 (ja) * 1997-12-19 2002-07-24 株式会社マコメ研究所 位置検出センサおよび移動距離検出システム
JP2009263108A (ja) * 2008-04-28 2009-11-12 Hitachi Ltd エレベータの位置検出装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017158736A1 (ja) * 2016-03-15 2017-09-21 三菱電機株式会社 かご位置検出装置
JPWO2017158736A1 (ja) * 2016-03-15 2018-05-31 三菱電機株式会社 かご位置検出装置
KR20180095009A (ko) * 2016-03-15 2018-08-24 미쓰비시덴키 가부시키가이샤 엘리베이터 칸 위치 검출 장치
KR102014039B1 (ko) 2016-03-15 2019-08-23 미쓰비시덴키 가부시키가이샤 엘리베이터 칸 위치 검출 장치

Also Published As

Publication number Publication date
CN106414294A (zh) 2017-02-15
US10065833B2 (en) 2018-09-04
DE112014006714T5 (de) 2017-02-16
DE112014006714B4 (de) 2019-12-24
JP6192825B2 (ja) 2017-09-06
JPWO2015181955A1 (ja) 2017-04-20
US20170043976A1 (en) 2017-02-16
CN106414294B (zh) 2018-11-20

Similar Documents

Publication Publication Date Title
JP6192825B2 (ja) エレベータの位置検出装置
JP6008995B2 (ja) エレベータ装置
JP6351854B2 (ja) エレベータ装置
KR102361312B1 (ko) 엘리베이터 안전 시스템 및 엘리베이터 시스템 모니터링 방법
WO2008047406A1 (en) Position detection device for elevator
CN105923477B (zh) 电梯
CN112384462B (zh) 电梯诊断系统
CN109071150A (zh) 电梯系统
JP5345210B2 (ja) エレベータの異常検出装置
WO2015159392A1 (ja) エレベータの位置検出装置
JP6218969B2 (ja) エレベータの位置検出装置
JP6494867B2 (ja) エレベータの脱レール検出装置
JP6699565B2 (ja) エレベータの位置検出装置
WO2009081476A1 (ja) エレベータの位置検出装置
JP4761879B2 (ja) エレベータ
JPWO2018002992A1 (ja) エレベータシステム
JP5460712B2 (ja) エレベーター装置
JP5794067B2 (ja) エレベータのブレーキ制御装置
WO2023147839A1 (en) Solution for controlling elevator safety

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14893125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016523060

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15305178

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006714

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14893125

Country of ref document: EP

Kind code of ref document: A1