WO2015170622A1 - 有機ヘテロ高分子及びその製造方法 - Google Patents

有機ヘテロ高分子及びその製造方法 Download PDF

Info

Publication number
WO2015170622A1
WO2015170622A1 PCT/JP2015/062587 JP2015062587W WO2015170622A1 WO 2015170622 A1 WO2015170622 A1 WO 2015170622A1 JP 2015062587 W JP2015062587 W JP 2015062587W WO 2015170622 A1 WO2015170622 A1 WO 2015170622A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
elements
following formula
formula
Prior art date
Application number
PCT/JP2015/062587
Other languages
English (en)
French (fr)
Inventor
育義 冨田
吉将 松村
一郎 高瀬
和寿 福井
Original Assignee
株式会社ダイセル
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル, 国立大学法人東京工業大学 filed Critical 株式会社ダイセル
Priority to JP2016517873A priority Critical patent/JP6653887B2/ja
Priority to US15/303,676 priority patent/US20170044310A1/en
Priority to KR1020167034244A priority patent/KR20170005457A/ko
Priority to DE112015002166.3T priority patent/DE112015002166T5/de
Priority to CN201580024066.7A priority patent/CN106459385A/zh
Publication of WO2015170622A1 publication Critical patent/WO2015170622A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/10Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
    • C09B69/109Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds containing other specific dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/152Side-groups comprising metal complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3227Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing only one kind of heteroatoms other than N, O, S, Si, Se, Te
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an organic heteropolymer containing different types of heteroheterocycles useful as an organic semiconductor or a sensitizer (sensitizing dye) of an electronic device such as a semiconductor element or a photoelectric conversion element, and a method for producing the same.
  • organometallic compounds typified by metal phthalocyanine form a unique electronic state or a very stable molecular structure due to the bond between the organic molecule and the metal. Due to these characteristics, it has been used as an organic pigment for a long time.
  • organometallic compounds are widely used in the field of electronics such as photosensitive materials for electrophotographic printers and recording media such as CD-Rs because of their responsiveness to external energy such as heat, light and electric fields.
  • its function as an organic semiconductor has attracted attention, and its use for organic transistors and organic thin-film solar cells has been studied. Since an electronic device using an organic semiconductor can be manufactured by printing, it is expected that it can be mass-produced at a lower cost than an inorganic device.
  • Patent Document 1 describes, for example, 4-substituted amidophthalonitrile (4-acetamidophthalonitrile, 4-pyridylamidophthalonitrile, etc.) and 4- It is possible to produce a metal trisalkyl-4-substituted amide-phthalocyanine by reacting an alkylphthalonitrile (such as 4-t-butylphthalonitrile) in the presence of a metal salt (a metal salt such as Ni, Zn, or Cu). It is also described that the phthalocyanine compound is hydrolyzed to produce a soluble substituted phthalocyanine having an amino group.
  • a phthalocyanine derivative has a functional group having a large steric hindrance such as a t-butyl group introduced into phthalocyanine, can prevent stacking between phthalocyanines, and is soluble in a solvent.
  • Non-Patent Document 1 includes 5- [4- (2-methacryloyloxyethoxycarbonyl) phenyl] -10,15,20-tri Phenylporfinato Platinum (II) is copolymerized with isobutyl methacrylate and 2,2,2-trifluoroethyl methacrylate to prepare a polymer in which a porphyrin structure is introduced in the side chain, and this polymer is converted into an oxygen-permeable polymer. It is described that it is used for a pressure-sensitive element composed of a light-emitting molecule embedded therein.
  • Patent Document 2 discloses a conjugate having an aromatic ring in the main chain and one kind of 5-membered heterocycle containing one kind of heteroatom selected from Group 14 to 16 elements. Based polymers are described.
  • Patent Document 3 discloses a conjugate having an aromatic ring in the main chain and one kind of 5-membered heterocycle containing one kind of heteroatom selected from Group 16 elements. Based polymers are described.
  • conjugated polymers have high conductivity (carrier transfer) despite their large molecular weight, and are useful as organic semiconductors.
  • the light absorption wavelength range and light absorption characteristics are limited, it can be used for applications such as organic solar cells.
  • it has a high absorbance in a wide wavelength range and has excellent photoelectric conversion efficiency. Development of polymers is required.
  • the emission wavelength range of the conjugated polymer is limited, use as an electronic device is limited.
  • JP 2011-162575 A (Claims, Examples) JP 2013-155229 A (Claims, Examples) JP 2013-185209 A (Claims, Examples)
  • an object of the present invention is to provide a novel organic heteropolymer having a high absorbance in a wide wavelength range, excellent photoelectric conversion efficiency, and useful for forming an electronic device such as a solar cell, and a method for producing the same. There is.
  • Another object of the present invention is to provide a novel organic heteropolymer having a wide emission wavelength range and useful as a sensitizer (sensitizing dye) for an electronic device such as a photoelectric conversion element, and a method for producing the same.
  • Still another object of the present invention is to provide a novel organic heteropolymer having high conductivity (carrier mobility) and useful for forming a polymer organic semiconductor, and a method for producing the same.
  • the present inventors have found that when a precursor polymer having a titanacyclopentadiene skeleton in the main chain is reacted with two types of halides containing different heteroatoms, the main chain Can efficiently synthesize new organic heteropolymers with different types of heteroatoms introduced into the 5-membered heterocycle, and the new organic heteropolymers have high absorbance in a wide wavelength range, photoelectric conversion rate and conductivity
  • the present invention was completed by discovering that the organic heteropolymer is excellent in light emission characteristics and has a wide light emission wavelength region and is excellent in light emission characteristics.
  • the organic heteropolymer of the present invention has a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2), and forms a copolymer heteropolymer. Yes.
  • M 1 and M 2 represent heteroatoms selected from groups different from each other among Group 8 element, Group 9 element, Group 10 element, Group 14 element, Group 15 element and Group 16 element of the periodic table;
  • the valence v of M 1 and M 2 is 2 to 6, and R 1a and R 1b are the same or different and each represents a halogen atom, an alkyl group, a cycloalkyl group, an aryl group or a heteroaryl group, and R 2a and R 2 2b is the same or different and is a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, or a monovalent or divalent heteroatom selected from Group 16 and Group 11 elements of the periodic table, or a ligand Shows the metal atom complexed with
  • the structural unit of the organic heteropolymer can also be represented by the following formula (3) and the following formula (4).
  • M 1a represents a hetero atom selected from Group 15 elements of the periodic table
  • M 2a and R 2c represent hetero atoms selected from Group 16 elements of the periodic table
  • R 1c represents an alkyl group, aryl group or heteroaryl
  • p1 represents an integer of 1 to 3, and the rings Ar and R 3 are the same as above.
  • the ring Ar may be a ring represented by the following formula (5).
  • R 3a and R 3b are the same or different and are linear or branched C 4-12 alkyl group, linear or branched C 4-12 alkoxy group, linear or branched C Represents a 4-12 alkylthio group.
  • the present invention also includes a method for producing the organic heteropolymer. That is, the organic heteropolymer includes a polymer having a structural unit represented by the following formula (8), a halide represented by the following formula (9), and a halide represented by the following formula (10). You may make it react.
  • R 4 represents an alkyl group
  • X represents a halogen atom
  • s1 and s2 is an integer of 1-6
  • the valence of M 1 v 1 and M valence v 2 of 2 is a 2 to 6-valent
  • v 1 m1 + n1 + s1
  • v 2 m2 + n2 + s2
  • the organic heteropolymer is obtained by reacting the polymer represented by the formula (8), the halide represented by the following formula (9A), and the halide represented by the following formula (10A). ,
  • M 1b represents a hetero atom selected from Group 15 elements of the periodic table
  • M 2b represents a hetero atom selected from Group 8 elements, Group 9, Elements, Group 14, Elements and Group 16 elements of the Periodic Table.
  • M 1b , M 2b , R 1a , R 1b , R 2b , R 3 , rings Ar, m2, n2, and p are the same as above.
  • the organic heteropolymer may be produced by reacting a compound represented by the following formula (11) or a single element represented by the following formula (12).
  • this invention also includes the composition containing the said organic heteropolymer and the organic solvent, and this composition is useful in order to form an organic semiconductor.
  • the present invention also includes an organic semiconductor formed of the organic heteropolymer and an electronic device including the organic heteropolymer. Furthermore, this invention also includes the electronic device containing the said organic semiconductor.
  • the electronic device may be, for example, one type selected from a photoelectric conversion element, a switching element, and a rectifying element.
  • -M 1 -R 2a is R 2a is a single bond to a heteroatom M 1
  • -M 1 R 2a shows a state bonded R 2a double hetero atom M 1.
  • -M 2 -R 2b is R 2b is a single bond to a heteroatom M 2
  • -M 2 R 2b shows a state bonded R 2b is a double hetero atom M 2.
  • the organic heteropolymer of the present invention forms a conjugated system in which the aromatic ring and a 5-membered heterocycle containing different heteroatoms are conjugatedly bonded to each other in the main chain, and has conductivity (carrier mobility). High and has semiconductor characteristics.
  • the organic heteropolymer of the present invention contains different types of heteroheterocycles in the molecule and exhibits high absorbance in a wide wavelength range, so that the photoelectric conversion efficiency can be improved.
  • Such organic heteropolymers are useful for forming organic semiconductors and can be used as electronic devices such as solar cells.
  • the organic heteropolymer is also useful as a sensitizing dye (sensitizer) for electronic devices such as photoelectric conversion elements.
  • the organic heteropolymer of the present invention has a wide emission wavelength range and excellent emission characteristics. Therefore, it is also useful as an optoelectronic device material.
  • FIG. 1 is a graph showing ultraviolet-visible absorption spectra of Examples and Comparative Examples.
  • FIG. 2 is a graph showing emission spectra of Examples and Comparative Examples.
  • FIG. 3 is a graph showing the current density-potential characteristics of the dye-sensitized solar cell formed from the polymer obtained in Example 1.
  • the organic heteropolymer of the present invention is a copolymer having structural units represented by the above formulas (1) and (2).
  • This copolymer may be a random copolymer, an alternating copolymer, or a block copolymer, and a random copolymer is particularly preferable.
  • M 1 and M 2 are periodic group 8 elements (eg, Fe, Ru, Os), group 9 elements (eg, Co, Rh, Ir), and group 10 elements (eg, , Ni, Pd, Pt), group 14 elements (eg, Si, Ge, Sn, Pb), group 15 elements (eg, N, P, As, Sb, Bi) and group 16 elements (eg, S, Se, He represents a heteroatom selected from different groups among Te).
  • group 8 elements eg, Fe, Ru, Os
  • group 9 elements eg, Co, Rh, Ir
  • group 10 elements eg, Ni, Pd, Pt
  • group 14 elements eg, Si, Ge, Sn, Pb
  • group 15 elements eg, N, P, As, Sb, Bi
  • group 16 elements eg, S, Se, He represents a heteroatom selected from different groups among Te.
  • the Group 8 element of the periodic table for example, Fe, Ru, etc., particularly Ru is preferable, and the Group 9 element, for example, Co, Rh, etc., particularly Rh is preferable, Group 10 In the element, for example, Ni, Pd, etc., particularly Ni is preferable.
  • the group 14 for example, Si, Ge, Sn, etc., in particular, Sn is preferable.
  • the group 15 for example, P, As, Sb, Bi, etc.
  • P is preferable, and among group 16 elements, for example, S, Se, Te and the like are particularly preferable.
  • M 1 and M 2 may be any heteroatom selected from different groups, for example, M 1 is at least one heteroatom selected from Group 8 to Group 10 elements of the periodic table, and M 2 is a periodic table It may be at least one heteroatom selected from Group 14 to Group 16 elements. M 1 is at least one heteroatom selected from Group 15 elements of the periodic table, and M 2 is at least one heteroatom selected from Group 8 to Group 10 elements and Group 14 to 16 elements of the Periodic Table. There may be.
  • a periodic table group 8 to group 10 element when a periodic table group 8 to group 10 element is included as a heteroatom, it has a high absorbance due to a peculiar charge transfer transition (for example, MLCT transition), and absorption in a long wavelength range, or high conductivity (carrier transfer). In addition, it has excellent photoelectric conversion efficiency.
  • the valence v of these heteroatoms is usually 2 to 6, preferably 2 to 5, depending on the type of hetero element.
  • Periodic table group 8 elements eg, Ru, Fe
  • group 9 elements eg, Co, Rh
  • group 10 elements eg, Ni, Pd
  • Group 14 element for example, Sn
  • Periodic table group 15 element for example, P
  • Periodic table group 16 element for example, S, Se, Te
  • Examples of the halogen atom represented by R 1a , R 1b , R 2a and R 2b include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, and usually a chlorine atom and a bromine atom.
  • Examples of the alkyl group represented by R 1a , R 1b , R 2a and R 2b include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, an s-butyl group, and a t-butyl group. And a linear or branched C 1-6 alkyl group.
  • Preferred alkyl groups are linear or branched C 1-4 alkyl groups (eg, C 1-2 alkyl groups).
  • Examples of the cycloalkyl group represented by R 1a , R 1b , R 2a and R 2b include C 3-10 cyclohexane such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and cyclooctyl group.
  • An alkyl group etc. can be illustrated.
  • Preferred cycloalkyl groups are C 5-8 cycloalkyl groups.
  • Examples of the aryl group represented by R 1a , R 1b , R 2a, and R 2b include C 6 optionally substituted by a C 1-4 alkyl group such as a phenyl group, a tolyl group, a xylyl group, or a naphthyl group. Examples thereof include a -12 aryl group.
  • Preferred aryl groups are C 6-10 aryl groups such as phenyl groups.
  • R 2a and R 2b are monovalent or divalent heteroatoms (heterometallic atoms), for example, Group 16 elements of the periodic table (eg, O, S, Se, Te), Group 11 elements of the periodic table (eg, Cu, It may be a heteroatom (heterometallic atom) selected from Ag, Au).
  • Group 16 elements of the periodic table eg, O, S, Se, Te
  • Group 11 elements of the periodic table eg, Cu, It may be a heteroatom (heterometallic atom) selected from Ag, Au).
  • periodic table group 16 elements eg, O, S, Se, Te, etc., particularly S, Se
  • periodic table group 11 elements eg, Ag, Au, etc., especially Au
  • heteroatoms heterometallic atoms
  • the Group 16 element of the periodic table is bonded to the heteroatoms M 1 and M 2 by forming a double bond
  • the Group 11 element of the periodic table is the element (hetero atom) M. 1 and M 2 form a single bond.
  • heteroatoms (heterometallic atoms) are complexes (halogen atoms such as chlorine and bromine, oxygen atoms, OH (hydroxo), H 2 O (aquo), CO, CN, methoxy.
  • alkoxy group such as acetyl group, acetyl group, methoxycarbonyl (acetato) group, acetylacetonato group, cyclopentadienyl group, complex with ligands such as pyridine, phosphine) and halide (chlorine) , Halides such as bromine).
  • R 1a and R 1b are often a linear or branched C 1-4 alkyl group such as a methyl group (eg, a C 1-2 alkyl group), or a C 6-10 aryl group such as a phenyl group.
  • R 2a and R 2b are each a linear or branched C 1-4 alkyl group such as a methyl group (eg, a C 1-2 alkyl group), a C 6-10 aryl group such as a phenyl group, a heteroatom M It is often a heteroatom that is double-bonded to 1 and M 2 (eg, S, Se, Te, O, especially S).
  • R 1a , R 1b , R 2a and R 2b may be the same or different.
  • Examples of the aromatic ring represented by the ring Ar include arene rings such as benzene ring and naphthalene ring, thiophene ring, pyrrole ring, imidazole ring, furan ring, pyridine ring, pyrazine ring and other heteroarene rings, fluorene ring, biphenyl
  • examples include a ring, a bisarene ring such as a binaphthyl ring, and a bisheteroarene ring such as a bipyridine ring.
  • a representative aromatic ring Ar includes a C 6-12 arene ring such as a benzene ring and a naphthalene ring (particularly a C 6-10 arene ring), a 5-membered or 6-membered heteroarene ring such as a thiophene ring and a pyridine ring, Bisarene rings such as a fluorene ring, a biphenyl ring, and a binaphthyl ring.
  • the aromatic ring Ar is often a benzene ring, naphthalene ring, fluorene ring (particularly a benzene ring) or the like.
  • R 3 is useful for imparting solvent solubility.
  • the alkyl group represented by R 3 include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, t-butyl group, pentyl group, neopentyl group, hexyl group, Examples thereof include linear or branched alkyl groups such as heptyl group, octyl group, 2-ethylhexyl group, nonyl group, decanyl group, undecanyl group and dodecanyl group.
  • the alkyl group is usually a linear or branched C 4-16 alkyl group, preferably a linear or branched C 6-12 alkyl group, more preferably a linear or branched C 6-10. It is an alkyl group.
  • the alkoxy group represented by R 3 is a linear or branched alkoxy group corresponding to the alkyl group, for example, a linear or branched chain such as a hexyloxy group, an octyloxy group, or a 2-ethylhexyloxy group.
  • a C 4-16 alkoxy group preferably a linear or branched C 6-12 alkoxy group, more preferably a linear or branched C 6-10 alkoxy group.
  • the alkylthio group represented by R 3 is a linear or branched alkylthio group corresponding to the alkyl group, for example, a linear or branched C 4 such as a hexylthio group, an octylthio group, or a 2-ethylhexylthio group.
  • a -16 alkylthio group preferably a linear or branched C 6-12 alkylthio group, more preferably a linear or branched C 6-10 alkylthio group.
  • R 3 is often an alkoxy group. Note that p represents 0 or an integer of 1 to 3, and is usually an integer of 1 to 3 (for example, 2).
  • the substitution position of R 3 with respect to ring Ar is not particularly limited, and can be selected according to the kind of ring Ar and the position of the bond, the number of substitution p of R 3.
  • R 3 may be any of the 2-, 3-, 4-, 5-, and 6-positions, and R 3 may be located at a plurality of positions such as the 2,3-, 2,5-, and 2,6-positions. May be substituted. In the thiophene ring, it may be in the 3-position or 3,4-position.
  • the fluorene ring may be in the 9,9-position
  • the 1,1′-binaphthyl ring may be in the 2,2′-position
  • the 1,2′-binaphthyl ring may be in the 2,1′-position. There may be.
  • Preferred units containing a ring Ar are a substituted benzene ring, a substituted fluorene ring, particularly a disubstituted benzene ring (1,4-phenylene group) represented by the following formula (5).
  • R 3a and R 3b are the same or different and are linear or branched C 4-12 alkyl group, linear or branched C 4-12 alkoxy group, linear or branched C Represents a 4-12 alkylthio group.
  • R 3a and R 3b are preferable alkyl groups, alkoxy groups, and alkylthio groups exemplified in the paragraph of the substituent R 3 .
  • R 3a and R 3b usually have an alkyl chain having about 6 to 12 (for example, 6 to 10) carbon atoms.
  • the substitution position of R 3a and R 3b may be any of 2,3-position, 2,5-position, and 2,6-position, and is usually 2,5-position in many cases.
  • the ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (2) can be appropriately selected according to the type of the structural unit.
  • the former / the latter (molar ratio) 99. / 1-1 to 1/99 (eg, 90/10 to 10/90), preferably 80/20 to 20/80 (eg, 70/30 to 30/70), more preferably 60/40 to 40/60 It may be a degree.
  • a typical organic heteropolymer of the present invention includes a copolymer having a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4).
  • M 1a represents a hetero atom selected from Group 15 elements of the periodic table
  • M 2a and R 2c represent hetero atoms selected from Group 16 elements of the periodic table
  • R 1c represents an alkyl group, aryl group or heteroaryl
  • p1 represents an integer of 1 to 3, and the rings Ar and R 3 are the same as above.
  • the proportion of the structural units represented by the formulas (3) and (4) is the same as the proportion of the structural units represented by the formulas (1) and (2).
  • the heteroatom M 1a can be selected from Group 15 elements of the periodic table (eg, P, As, Sb, Bi), particularly P is preferred, and the heteroatoms M 2a and R 2c are Group 16 elements of the periodic table (eg, S, Se, Te), and S is particularly preferred.
  • Group 15 elements of the periodic table eg, P, As, Sb, Bi
  • the heteroatoms M 2a and R 2c are Group 16 elements of the periodic table (eg, S, Se, Te), and S is particularly preferred.
  • R 1c examples include the same alkyl groups, aryl groups, and heteroaryl groups as R 1a and R 1b, and aryl groups (eg, phenyl groups) are particularly preferable.
  • P1 is an integer of 1 to 3, preferably an integer of 1 to 2 (particularly 2).
  • the organic heteropolymer of the present invention is characterized by high conductivity (carrier mobility) despite its relatively large molecular weight.
  • the molecular weight of the organic heteropolymer is not particularly limited.
  • the number average molecular weight Mn is 1 ⁇ 10 3 to 1 ⁇ 10 5 , preferably 2 ⁇ 10 in terms of polystyrene. It may be about 3 to 5 ⁇ 10 4 , more preferably about 3 ⁇ 10 3 to 2.5 ⁇ 10 4 .
  • the molecular weight distribution (weight average molecular weight Mw / number average molecular weight Mn) may be 5 or less, for example, 1.5 to 4.5, preferably 2.0 to 4.0, more preferably 2.5. It may be about 3.5.
  • organic heteropolymers are often linear, they may have a branched structure if necessary.
  • the organic heteropolymer of the present invention forms in the main chain a conjugated system in which an aromatic ring and a 5-membered heterocycle containing different heteroatoms are conjugatedly bonded.
  • Such an organic heteropolymer contains different types of heteroheterocycles in the molecule and can increase the absorbance in a wide wavelength range, so that the photoelectric conversion efficiency can be improved.
  • the organic heteropolymer has a wide emission wavelength range and excellent emission characteristics.
  • an aromatic ring (arene ring) having a side chain such as an alkyl group can be introduced, the solubility can be increased and the solvent is soluble. Therefore, a film can be easily formed by application (coating). Furthermore, it has high stability and is stable against water and temperature (such as room temperature).
  • a structure film can be obtained in which electron transfer between molecules is easy because of stacking between main chains. Further, even if there is an alkyl chain in the polymer, stacking is not hindered because the alkyl chain is arranged in parallel with the stacking direction (vertical direction). For this reason, the obtained film functions effectively as an organic semiconductor.
  • the organic heteropolymer of the present invention can be synthesized using a polymer having a titanacyclopentadiene skeleton composed of a structural unit represented by the following formula (8). That is, this polymer is useful as a precursor of the organic heteropolymer.
  • the polymer represented by the following formula (8) can be obtained by reacting a diethynylarene compound represented by the following formula (6) with a low-valent titanium complex represented by the following formula (7). .
  • R 4 represents an alkyl group, and R 3 , ring Ar, and p are the same as above.
  • alkyl group represented by R 4 examples include linear or branched C, such as methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, s-butyl group, and t-butyl group.
  • a 1-6 alkyl group can be exemplified, and in particular, it is often a branched alkyl group such as an isopropyl group.
  • Diethynyl dialkoxybenzenes such as: 2,5-diethynyl-3-dodecanylthiophene, etc., diethynylalkylthiophenes; 2,7-diethynyl-9,9-dioctylfluorene, etc., diethynyldialkylfluorenes; 6,6′- Diethynyldialkylbinaphthyl such as diethynyl-2,2′-dioctyloxy-1,1′-binaphthyl and the like, diethynyldioctyloxybinaphthyl such as 6,6′-diethynyl-2,2′-dioctyl-1,1′-binaphthyl and the like Etc. can be exemplified.
  • the low-valent titanium complex represented by the formula (7) includes tetraalkoxytitanium (tetraisopropoxytitanium (Ti (OPr i ) 4 ) and the like) and alkylmagnesium halide (isopropylmagnesium chloride ( i PrMgCl) and the like). It can produce
  • the reaction can be usually carried out in an inert solvent (diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, etc.) under stirring in an inert atmosphere [nitrogen, rare gas (especially argon), etc.].
  • the reaction temperature may be about ⁇ 100 ° C. to ⁇ 20 ° C. (eg, ⁇ 80 ° C. to ⁇ 40 ° C.), and the reaction time is, for example, 1 to 48 hours, usually 2 to 36 hours, preferably 3 to It may be about 24 hours.
  • the organic heteropolymer of the present invention comprises a polymer having a structural unit represented by the formula (8), a halide represented by the following formula (9), and a halide represented by the following formula (10). You may make it react.
  • X represents a halogen atom
  • valence v 2 valence v 1 and M 2 of M 1 is a bivalent to hexavalent
  • s1 and s2 1 6 represents an integer
  • v 1 m1 + n1 + s1
  • v 2 m2 + n2 + s2
  • examples of the halogen atom represented by X include a chlorine atom, a bromine atom, and an iodine atom, which are often a chlorine atom and a bromine atom.
  • S1 and s2 represent the number of halogen atoms X and may be an integer of 1 to 6.
  • ⁇ M 1 R 2a
  • ⁇ M 2 R 2b
  • v 1 m 1 + 2 ⁇ n 1 + s 1
  • v 2 m 2 + 2 ⁇ n 2 + s 2 .
  • Examples of the halide represented by the formula (9) or (10) include a halide represented by the following formula.
  • examples of the halide in which the hetero atom M 1 or M 2 is a group 8 element of the periodic table include, for example, iron dichloride (FeCl 2 ), iron trichloride (FeCl 3 ), three Halides such as ruthenium chloride (RuCl 3 ) and ruthenium tetrachloride (RuCl 4 ); alkyldichlororuthenium, aryldichlororuthenium [hereinafter these components are sometimes referred to as alkyl (or aryl) dichlororuthenium.
  • Alkyl (or aryl) metal halides such as dialkyldichlororuthenium, diaryldichlororuthenium [hereinafter these components may be referred to as dialkyl (or diaryl) dichlororuthenium. ] Dialkyl (or diaryl) metal halides etc. are mentioned.
  • examples of the halide in which the hetero atom M 1 or M 2 is a Group 9 element of the periodic table include cobalt dichloride (CoCl 2 ) and rhodium trichloride (RhCl 3 ).
  • examples of the halide in which the hetero atom M 1 or M 2 is a group 10 element of the periodic table include nickel dichloride (NiCl 2 ) and palladium dichloride (PdCl 2 ).
  • examples of the halide in which the hetero atom M 1 or M 2 is a group 14 element of the periodic table include tin dichloride (SnCl 2 ) and tin tetrachloride (SnCl 4 ).
  • examples of the halide in which the hetero atom M 1 or M 2 is a group 15 element of the periodic table include halides such as antimony trichloride (SbCl 3 ); alkyl (or aryl) Alkyl (or aryl) metal halides such as dichlorophosphine and alkyl (or aryl) dichloroantimony; Dialkyl (or diaryl) metal halides such as dialkyl (or diaryl) dichlorophosphine; Halides such as phosphoryl chloride and the like.
  • halides such as antimony trichloride (SbCl 3 ); alkyl (or aryl) Alkyl (or aryl) metal halides such as dichlorophosphine and alkyl (or aryl) dichloroantimony; Dialkyl (or diaryl) metal halides such as dialkyl (or diaryl) dichlorophosphine; Halides such as phosphoryl chloride and the like.
  • the ratio between the halide represented by the formula (9) and the halide represented by the formula (10) is the constitutional unit represented by the formula (1) and the formula (2).
  • the ratio can be appropriately selected according to the ratio with the unit.
  • the former / the latter (molar ratio) 99/1 to 1/99 (for example, 90/10 to 10/90), preferably 80/20 to 20/80.
  • 70/30 to 30/70 more preferably about 60/40 to 40/60.
  • the total amount of the halides represented by the formulas (9) and (10) is 0.8 to 2 mol (for example, relative to 1 mol of the titanium atom Ti of the polymer represented by the formula (10)). It may be about 1 to 1.5 mol).
  • the reaction is performed by reacting one of the halides represented by the formulas (9) and (10) with the polymer represented by the formula (8), and then reacting the other halide with the other halide. You may make it react and you may make it react simultaneously.
  • the reaction can be usually carried out in an inert solvent (diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, etc.) under stirring in an inert atmosphere [nitrogen, rare gas (especially argon), etc.].
  • the reaction may be performed at a temperature of about ⁇ 80 ° C. to 30 ° C. (eg, ⁇ 60 ° C. to room temperature).
  • the reaction time is, for example, 1 to 48 hours, usually 2 to 36 hours, preferably 3 to 24 hours. It may be about hours.
  • a predetermined organic heteropolymer may be obtained by a conventional separation and purification method such as concentration, decantation, reprecipitation, chromatography and the like.
  • the organic heteropolymer of the present invention includes a polymer having a structural unit represented by the above formula (8), a halide represented by the following formula (9A), and a halide represented by the following formula (10A):
  • a polymer having a structural unit represented by the following formula (1A) and a structural unit represented by the following formula (2A) can be reacted to produce the organic heteropolymer of the present invention having a structural unit represented by the following formula (1B) and a structural unit represented by the following formula (2A).
  • R 2a1 represents a metal atom complexed with a ligand
  • L represents a leaving group
  • R 2a2 represents a single element selected from Group 16 elements of the periodic table
  • R 1a , R 1b , R 2b , R 3 , R 4 , ring Ar, X, r 2, s 2, m 2, n 2 and p are the same as above.
  • halide represented by the formula (9A) examples include halides whose heteroatoms are the group 15 elements of the periodic table [for example, alkyl (or aryl) dichlorophosphine, etc.].
  • Examples of the halide represented by the formula (10A) include halides in which the exemplified hetero atom is a group 8 element of the periodic table (for example, halides such as iron trichloride and ruthenium trichloride), periodic table 9 Group element halides (for example, halides such as cobalt dichloride and rhodium trichloride), Group 10 element halides (for example, halides such as nickel dichloride), Periodic table 14 group elements A halide (eg, a dialkyl (or diaryl) metal halide such as dialkyl (or diaryl) dichlorotin) or a halide that is a group 16 element of the periodic table (eg, a halide such as thionyl chloride, dialkyl (or diaryl) Dialkyl (or diaryl) metal halides such as dichloroselenium And the like.
  • the organic heteropolymer having the structural unit represented by the formula (1A) and the structural unit represented by the formula (2A) may be synthesized by the same method as in the reaction step 1.
  • examples of R 2a1 include a metal atom (for example, a metal atom selected from Group 11 elements of the periodic table, particularly gold, etc.) that forms the exemplified complex, and is represented by L.
  • examples of the leaving group include a ligand (for example, tetrahydrothiophene) coordinated to the metal atom R 2a1 .
  • examples of the compound represented by the formula (11) include a tetrahydrothiophene chloride complex.
  • examples of the element simple substance R 2a2 include sulfur, selenium, and tellurium.
  • the ratio of the compound represented by the formula (11) or the simple substance represented by the formula (12) in the formula (1A) is 1 to 2 mol per 1 mol of the hetero atom M 1b (for example, 1.1 to 1.5 moles).
  • the reaction may be performed in an inert solvent (diethyl ether, tetrahydrofuran, cyclopentyl methyl ether, etc.) under stirring in an inert atmosphere [nitrogen, rare gas (especially argon), etc.].
  • the reaction temperature may be generally about 0 to 50 ° C. (eg, 10 to 30 ° C., particularly room temperature).
  • the reaction time and purification method may be performed under the same conditions as in reaction step 1.
  • an organic heteropolymer having a 5-membered heterocycle containing heterogeneous hetero elements (M 1 and M 2 ) can be efficiently and easily synthesized with a small number of steps.
  • the obtained heteropolymer is useful as an organic semiconductor.
  • the main chain of the organic heteropolymer forms a conjugated system ( ⁇ -conjugated system) with an aromatic ring and a 5-membered heterocyclic ring containing different heteroatoms, and has extremely high electron mobility and semiconductor characteristics.
  • ⁇ -conjugated system conjugated system
  • an aromatic ring and a 5-membered heterocyclic ring containing different heteroatoms
  • the present invention also includes a composition (coating composition) containing an organic heteropolymer and an organic solvent, and this composition is a thin film of an organic semiconductor by a simple method such as organic semiconductor, particularly coating (coating). It is useful to form.
  • organic solvent examples include hydrocarbons (for example, aliphatic hydrocarbons such as hexane, alicyclic hydrocarbons such as cyclohexane, aromatic hydrocarbons such as toluene and xylene), halogenated hydrocarbons ( Chloroform, dichloromethane, trichloroethane, etc.), ethers (chain ethers such as diethyl ether and diisopropyl ether, cyclic ethers such as dioxane, tetrahydrofuran), ketones (acetone, methyl ethyl ketone, etc.), esters (methyl acetate, ethyl acetate, acetic acid) Butyl), amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.), nitriles (eg, acetonitrile, propionitrile, etc.), sulfoxides (eg, hydro
  • the amount of the solvent used can be selected from a range that does not impair the coating property and film forming property.
  • the concentration of the organic heteropolymer in the composition is 0.01 to 30% by weight, preferably 0.05 to 20%. It may be about% by weight (for example, 0.1 to 10% by weight).
  • the organic semiconductor may be manufactured through a step of applying the composition to a base material or a substrate (glass plate, silicon wafer, heat-resistant plastic film, etc.) and a step of drying the coating film to remove the solvent.
  • a coating method for example, a conventional coating method, such as an air knife coating method, a roll coating method, a gravure coating method, a blade coating method, a dip coating method, a spray method, a spin coating method, a screen printing method, an ink jet printing method, etc. Can be illustrated.
  • the thickness of the organic semiconductor is appropriately selected depending on the application, and may be, for example, 1 to 5000 nm, preferably 30 to 1000 nm, and more preferably about 50 to 500 nm.
  • the organic semiconductor may be an n-type semiconductor, a p-type semiconductor, or an intrinsic semiconductor.
  • the organic heteropolymer and the organic semiconductor of the present invention have photoelectric conversion ability, and can increase the mobility of electrons and holes generated by light absorption, for example, and can improve the photoelectric conversion efficiency. Therefore, using organic heteropolymers and organic semiconductor characteristics, various electronic devices ⁇ for example, photoelectric conversion devices or photoelectric conversion elements (solar cell elements, organic electroluminescence (EL) elements, etc.), rectifier elements (diodes), It can be used for switching elements or transistors [top gate type, bottom gate type (top contact type, bottom contact type, etc.), etc.].
  • Typical devices using the organic semiconductor of the present invention include organic solar cells, organic EL, organic thin film transistors and the like.
  • An organic solar cell has a structure in which a surface electrode is laminated on a pn junction type semiconductor.
  • a solar cell can be formed by laminating an organic semiconductor film on a p-type silicon semiconductor and laminating a transparent electrode (such as an ITO electrode) on the organic semiconductor film.
  • distributed the electron transport material and the hole transport material to the organic heteropolymer (luminescent polymer) as needed is formed on a transparent electrode (ITO electrode etc.), The structure which laminated
  • the organic thin film transistor is composed of a gate electrode layer, a gate insulating layer, a source / drain electrode layer, and an organic semiconductor layer.
  • the organic thin film transistor can be classified into a top gate type and a bottom gate type (top contact type and bottom contact type) depending on the laminated structure of these layers.
  • a top gate type and a bottom gate type top contact type and bottom contact type depending on the laminated structure of these layers.
  • an organic semiconductor film is formed on a gate electrode (such as a p-type silicon wafer on which an oxide film is formed), and a source / drain electrode (gold electrode) is formed on the organic semiconductor film, whereby a top contact type electric field is formed.
  • a gate electrode such as a p-type silicon wafer on which an oxide film is formed
  • a source / drain electrode gold electrode
  • the organic heteropolymer of the present invention is useful as a sensitizer (or sensitizing dye) and / or a charge transport agent for photoexciting a semiconductor in addition to the above-described use as an organic semiconductor, It can also be used as a sensitizer for the electronic devices (for example, photoelectric conversion elements such as solar cell elements and organic EL elements).
  • This organic heteropolymer can usually act as a sensitizer in a form adsorbed (or attached) to a semiconductor (or semiconductor surface) in a form such as physical adsorption or chemical adsorption (or chemical bond). .
  • the semiconductor may be an organic semiconductor or the like, but may preferably be an inorganic semiconductor.
  • the inorganic semiconductor include a metal simple substance (for example, palladium, platinum, etc.), a metal compound, and the like.
  • the metal compound include Group 4 to 15 metal oxides of the periodic table (for example, titanium oxide, niobium oxide, tantalum oxide, chromium oxide, manganese oxide, iron oxide, cobalt oxide, iridium oxide, nickel oxide, copper oxide, Zinc oxide, gallium oxide, indium oxide, tin oxide, bismuth oxide, etc.), metal sulfide (eg, CdS, copper sulfide (CuS, Cu 2 S), etc.), metal nitride (eg, thallium nitride, etc.), metal selenium Examples thereof include compounds (for example, CdSe, ZnSe, etc.), metal halides (for example, CuBr, etc.), composites containing a plurality of these metal
  • These semiconductors may be p-type semiconductors, preferably n-type semiconductors.
  • n-type semiconductors for example, titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), copper -Aluminum oxide (CuAlO 2 ), a doped body of these metal oxides, and the like, and titanium oxide (TiO 2 ) is particularly preferable.
  • titanium oxide include TiO 2 , Ti 2 O 5 , Ti 2 O 3 , hydrous titanium oxide (metatitanic acid, orthotitanic acid, etc.), but TiO 2 (titanium dioxide) is generally used.
  • the titanium oxide may be amorphous or may be in a crystalline form (rutile type, anatase type, etc.).
  • the shape of the semiconductor may be in the form of particles, fibers, plates, etc., and preferably in the form of particles.
  • the semiconductor may be nanoparticles (for example, a sintered body of nanoparticles). That is, the average particle size of the semiconductor (for example, the particle size before sintering) can be selected from the range of about 1 to 1000 nm (for example, 2 to 700 nm), for example, 3 to 500 nm, preferably 5 to 300 nm, More preferably, it may be about 7 to 100 nm (for example, 8 to 70 nm), particularly about 50 nm or less (for example, 1 to 30 nm).
  • the proportion of the organic heteropolymer adsorbed or adhered to the semiconductor (or semiconductor particles) is, for example, 0.001 to 1 part by weight, preferably 0.005 to 0.5 part by weight, based on 1 part by weight of the semiconductor. Preferably, it may be about 0.01 to 0.1 parts by weight.
  • the organic heteropolymer (sensitizer and / or charge transport agent) of the present invention is combined with a semiconductor, the photoelectric conversion efficiency can be improved, so that it is particularly useful for forming a dye-sensitized solar cell or the like.
  • a laminate in which a layer containing an organic heteropolymer and a semiconductor is laminated as an electrode on a substrate can be formed and used for a dye-sensitized solar cell.
  • the dye-sensitized solar cell is comprised by the counter electrode arrange
  • the counter electrode forms a positive electrode (a negative electrode on the stacked body side), and when the semiconductor is a p-type semiconductor, the counter electrode forms a negative electrode (a positive electrode on the stacked body side).
  • the substrate may usually be a conductive substrate.
  • the conductive substrate may be composed of only a conductor (or a conductor layer), but a substrate in which a conductor layer (or a conductive layer or a conductive film) is formed on a base substrate is usually used.
  • the base substrate examples include an inorganic substrate (for example, glass) and an organic substrate (for example, a plastic substrate).
  • an inorganic substrate for example, glass
  • an organic substrate for example, a plastic substrate.
  • a transparent substrate transparent inorganic substrate
  • Examples of the conductor include a conductive metal oxide [eg, tin oxide, indium oxide, zinc oxide, tin-doped metal oxide (such as tin-doped indium oxide), fluorine-doped metal oxide (such as fluorine-doped tin oxide), and the like. ] Etc. are mentioned. These conductors may be used alone or in combination of two or more. A preferred conductor is a transparent conductor.
  • a composition (paste or the like) containing the organic heteropolymer and a semiconductor is applied (or coated) on a substrate and dried.
  • the semiconductor is coated on a substrate, heat treated (or sintered) at a high temperature (about 400 to 500 ° C.), and then adsorbed with an organic heteropolymer on the semiconductor layer. Good.
  • the composition for example, paste
  • the composition usually contains a solvent.
  • the solvent the organic solvents exemplified above can be used.
  • the organic heteropolymer may be adsorbed or adhered to the semiconductor layer by a method of immersing the substrate on which the semiconductor layer is laminated in a solution containing the organic heteropolymer.
  • the solvent in the solution may be the organic solvent exemplified above.
  • the above-described coating methods for example, spin coating method, screen printing method, etc.
  • the above-described coating methods for example, spin coating method, screen printing method, etc.
  • the thickness of the semiconductor layer (photoelectric conversion layer) containing an organic heteropolymer laminated on the substrate is, for example, 0.1 to 100 ⁇ m, preferably 0.5 to 50 ⁇ m, more preferably 1 to 30 ⁇ m (for example, 5 About 20 ⁇ m).
  • the counter electrode is composed of the conductive substrate described above and a catalyst layer (for example, conductive metal (gold, platinum, etc.), carbon, etc.) formed on the conductive substrate.
  • a catalyst layer for example, conductive metal (gold, platinum, etc.), carbon, etc.
  • the electrolyte layer may be formed of an electrolyte solution containing an electrolyte and a solvent or a solid layer (or gel) containing an electrolyte.
  • the electrolyte include general-purpose electrolytes such as combinations of halogen and halide salts (for example, combinations of iodine and iodide salts).
  • counter ions constituting the halide salt include metal ions (alkali metal ions, alkaline earth metal ions, etc.), quaternary ammonium ions (imidazolium salts, etc.), and the like.
  • the electrolytes can be used alone or in combination of two or more.
  • solvent general-purpose solvents such as organic solvents such as the alcohols, nitriles, ethers, sulfoxides and amides exemplified above, water, and the like can be used.
  • organic solvents such as the alcohols, nitriles, ethers, sulfoxides and amides exemplified above, water, and the like
  • the solvents may be used alone or in combination of two or more.
  • cyclopentyl methyl ether, tetrahydrofuran (THF) and diethyl ether were used after being dried with sodium and distilled under a nitrogen atmosphere or a stream of air.
  • Tetraisopropoxy titanium (Ti (OPr i ) 4 ) was purified by distillation under reduced pressure.
  • UV-visible absorption spectrum and emission spectrum The ultraviolet-visible absorption spectrum was measured by “UV-3100PC” manufactured by Shimadzu Corporation as a polymer solution having a predetermined concentration (20 mg / 5 ml) by dissolving the polymer in chloroform.
  • the emission spectrum was also measured using “RF-5300PC” manufactured by Shimadzu Corporation using the same polymer solution.
  • the maximum absorption wavelength of the polymer was the excitation light wavelength.
  • R represents a 2-ethylhexyl group
  • x and y represent the proportion (molar ratio) contained in each structural unit
  • x: y 0.44: 0.56.
  • the 1 H-NMR and 31 P-NMR spectra of this polymer are shown below.
  • Comparative Example 1 A polymer represented by the following formula was obtained in the same manner as in Example 6 of JP2013-155229A.
  • R represents a 2-ethylhexyl group.
  • R represents a 2-ethylhexyl group.
  • the polymer of Example 1 shows higher absorbance in a wider wavelength range than Comparative Example 3 which is a polymer of Comparative Examples 1 and 2 and a mixture thereof. Further, as is clear from FIG. 2, the polymer of the present invention has a broad emission region and excellent emission characteristics as compared with Comparative Example 3 which is a polymer of Comparative Examples 1 and 2 and a mixture thereof.
  • Example 2 A titanium oxide paste ("Ti-Nanoxide T / SP" manufactured by SOLARONIX) is formed on an FTO glass cleaned by acetone (model number FTB manufactured by Astelatech Corp.) on a 4 mm square with a thickness of 10 ⁇ m by screen printing. Then, after drying at 100 ° C. using a hot plate, firing was performed at 500 ° C. for 1 hour to obtain a titanium oxide electrode.
  • Ti-Nanoxide T / SP manufactured by SOLARONIX
  • Example 1 The polymer obtained in Example 1 was dissolved in THF to prepare a 0.1 wt% solution.
  • the titanium oxide electrode was immersed in this solution and allowed to stand at room temperature for 24 hours to adsorb the polymer obtained in Example 1 onto the titanium oxide surface. After adsorption, the titanium oxide electrode was taken out of the solution, washed with THF, and dried to obtain a polymer-adsorbed titanium oxide electrode.
  • a platinum thin film (thickness 0.003 ⁇ m) was formed by sputtering on a glass substrate with ITO (manufactured by Geomatic Co., Ltd., 10 ⁇ / sq), and the ITO layer side (platinum thin film side)
  • the polymer adsorbed titanium oxide electrode is sandwiched between the FTO layer side (polymer adsorbing side) via a spacer (Mitsui / DuPont Polychemical's “High Milan”) and sealed with a gap (or sealing material) formed between both substrates.
  • a dye-sensitized solar cell was fabricated by filling an electrolyte in the stopped space).
  • the electrolyte includes 0.5 mol / L 1,2-dimethyl-3-propylimidazolium iodide, 0.1 mol / L lithium iodide, and 0.05 mol / L iodine in acetonitrile. The solution was used.
  • the obtained dye-sensitized solar cell was evaluated under the conditions of spectral distribution AM 1.5, 100 mW / cm 2 and 25 ° C. using a solar simulator (“XES-301S + EL-100” manufactured by Mitsunaga Electric Co., Ltd.). .
  • the obtained current density-potential characteristics are shown in FIG.
  • a dye-sensitized solar cell can be formed by using the polymer obtained in Example 1 as a sensitizing dye.
  • the organic heteropolymer of the present invention is a ⁇ -electron conjugated polymer, and is useful for forming an organic semiconductor (polymer organic semiconductor) having low resistance and high conductivity.
  • Organic semiconductors are various devices such as rectifiers (diodes), switching elements or transistors [junction transistors (bipolar transistors), field effect transistors (unipolar transistors), etc.], photoelectric conversion elements (solar cell elements, organic EL elements). Etc.).
  • a sensitizer (or sensitizing dye) of the electronic device for example, a photoelectric conversion element such as a solar cell element or an organic EL element. It can also be used as

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Photovoltaic Devices (AREA)
  • Electroluminescent Light Sources (AREA)
  • Thin Film Transistor (AREA)

Abstract

 本発明の有機ヘテロ高分子は、有機半導体を形成するのに有用であり、かつ下記式(1)で表される構成単位と下記式(2)で表される構成単位とを有する共重合ヘテロ高分子体である。 (式中、M及びMは周期表8族元素、9族元素、10族元素、14族元素、15族元素及び16族元素のうち、互いに異なる族から選択されたヘテロ原子を示し、M及びMの原子価vは2~6価であり、R1a及びR1bは同一又は異なってハロゲン原子、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基を示し、R2a及びR2bは同一又は異なってハロゲン原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、又は周期表16族元素及び11族元素から選択された一価又は二価のヘテロ原子、又は配位子と錯体を形成した金属原子を示し、m1、m2、n1及びn2はそれぞれ0又は1を示し、環Arは芳香族性環を示し、Rは直鎖状又は分岐鎖状アルキル基、直鎖状又は分岐鎖状アルコキシ基、直鎖状又は分岐鎖状アルキルチオ基を示し、pは0又は1~3の整数を示す。)

Description

有機ヘテロ高分子及びその製造方法
 本発明は、半導体素子、光電変換素子などの電子デバイスの有機半導体又は増感剤(増感色素)などとして有用な異種のヘテロ複素環を含有する有機ヘテロ高分子及びその製造方法に関する。
 金属フタロシアニンに代表される有機金属化合物は、その有機分子-金属間の結合により、特異な電子状態や非常に安定な分子構造を形成するものが多い。これらの特徴により、古くから有機顔料などとして用いられてきた。
 近年では、熱・光や電場など外部エネルギーに対する応答性から、有機金属化合物は、電子写真方式のプリンターの感光材、CD-Rなどの記録媒体などのエレクトロニクス分野への利用が広まっている。特に、最近では、有機半導体としての機能が注目され、有機トランジスタや有機薄膜太陽電池への利用が検討されている。有機半導体を用いた電子デバイスは、印刷により作製できるため、無機系デバイスに比べて、より安価に大量生産できると期待されている。
 しかし、従来の有機金属化合物は溶剤に不溶又は難溶であるものが多く、その成膜は主に真空蒸着法で行っているため、作製した電子デバイスは高価である。
 このような課題を改善するため、特開2011-162575号公報(特許文献1)には、例えば、4-置換アミドフタロニトリル(4-アセトアミドフタロニトリル、4-ピリジルアミドフタロニトリルなど)と4-アルキルフタロニトリル(4-t-ブチルフタロニトリルなど)とを金属塩(Ni、Zn、Cuなどの金属塩)の存在下で反応させ、金属トリスアルキル-4-置換アミド-フタロシアニンを製造することが記載され、このフタロシアニン化合物を加水分解してアミノ基を有する可溶性の置換フタロシアニンを製造することも記載されている。このようなフタロシアニン誘導体は、フタロシアニンにt-ブチル基などの立体障害の大きな官能基が導入され、フタロシアニン間のスタッキングを防止でき、溶媒に可溶である。
 しかし、スタッキングを阻害する官能基を導入すると、分子間の電子移動が困難となるため、有機半導体としての機能は低下する。
 また、ポルフィリン構造を導入した高分子も知られている。J. Polym. Sci. Part A ; Polym. Chem, 43 (2005) 2997(非特許文献1)には、5-[4-(2-メタクリロイルオキシエトキシカルボニル)フェニル]-10,15,20-トリフェニルポルフィナト 白金(II)をイソブチルメタクリレート及び2,2,2-トリフルオロエチルメタクリレートと共重合し、側鎖にポルフィリン構造を導入した高分子を調製し、この高分子を、酸素透過性高分子中に埋設した発光分子からなる感圧素子に用いることが記載されている。
 しかし、このような高分子は、側鎖間距離を十分に離した構造により側鎖同士のスタッキング形成を防ぐため、やはり有機半導体としての機能は十分でなく、より高い電子移動度を必要とする。そのため、有機トランジスタや有機太陽電池用途には適していない。
 特開2013-155229号公報(特許文献2)には、主鎖に芳香族性環と14~16族元素から選択された1種のヘテロ原子を含む1種の5員複素環とを有する共役系高分子が記載されている。
 また、特開2013-185009号公報(特許文献3)には、主鎖に芳香族性環と16族元素から選択された1種のヘテロ原子を含む1種の5員複素環とを有する共役系高分子が記載されている。
 これらの共役系高分子は分子量が大きいにも拘わらず導電性(キャリア移動)が高く、有機半導体として有用である。しかし、光の吸収波長域及び吸光特性が限定されるため、有機太陽電池などの用途として利用するには、さらに、広範な波長域で高い吸光度を有し、光電変換効率に優れた有機共役系高分子の開発が求められる。また、前記共役系高分子の発光波長域が限定されるため、電子デバイスとしての利用が制限される。
特開2011-162575号公報(特許請求の範囲、実施例) 特開2013-155229号公報(特許請求の範囲、実施例) 特開2013-185009号公報(特許請求の範囲、実施例)
J. Polym. Sci. Part A; Polym. Chem, 43 (2005) 2997(ABSTRACT)
 従って、本発明の目的は、広範な波長域で高い吸光度を有し、光電変換効率に優れ、太陽電池などの電子デバイスを形成するのに有用な新規有機ヘテロ高分子及びその製造方法を提供することにある。
 本発明の他の目的は、発光波長域が広く、光電変換素子などの電子デバイスの増感剤(増感色素)などとして有用な新規有機ヘテロ高分子及びその製造方法を提供することにある。
 本発明のさらに他の目的は、導電性(キャリア移動度)が高く、高分子有機半導体を形成するのに有用な新規有機ヘテロ高分子及びその製造方法を提供することにある。
 本発明者らは、前記課題を達成するため鋭意検討した結果、主鎖にチタナシクロペンタジエン骨格を有する前駆体高分子と互いに異なるヘテロ原子を含む2種類のハロゲン化物とを反応させると、主鎖の5員複素環に異なる種類のヘテロ原子が導入された新規有機ヘテロ高分子を効率よく合成できること、この新規有機ヘテロ高分子が広範な波長域で高い吸光度を有し、光電変換率及び導電性に優れ、有機半導体を形成するのに有用であること、さらには前記有機ヘテロ高分子が広範な発光波長域を有し、発光特性に優れていることを見出し、本発明を完成した。
 すなわち、本発明の有機ヘテロ高分子は下記式(1)で表される構成単位と下記式(2)で表される構成単位とを有しており、共重合ヘテロ高分子体を形成している。
Figure JPOXMLDOC01-appb-C000013
(式中、M及びMは周期表8族元素、9族元素、10族元素、14族元素、15族元素及び16族元素のうち、互いに異なる族から選択されたヘテロ原子を示し、M及びMの原子価vは2~6価であり、R1a及びR1bは同一又は異なってハロゲン原子、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基を示し、R2a及びR2bは同一又は異なってハロゲン原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、又は周期表16族元素及び11族元素から選択された一価又は二価のヘテロ原子、若しくは配位子と錯体を形成した金属原子を示し、
Figure JPOXMLDOC01-appb-C000014
は単結合又は二重結合を示し、m1、m2、n1及びn2はそれぞれ0又は1を示し、環Arは芳香族性環を示し、Rは直鎖状又は分岐鎖状アルキル基、直鎖状又は分岐鎖状アルコキシ基、直鎖状又は分岐鎖状アルキルチオ基を示し、pは0又は1~3の整数を示す。)
 前記有機へテロ高分子は、ランダム共重合体であってもよく、前記式(1)で表される構成単位と前記式(2)で表される構成単位との割合は前者/後者(モル比)=99/1~1/99程度であってもよい。
 前記有機ヘテロ高分子の構成単位は、下記式(3)及び下記式(4)で表すこともできる。
Figure JPOXMLDOC01-appb-C000015
(式中、M1aは周期表15族元素から選択されたヘテロ原子、M2a及びR2cは周期表16族元素から選択されたヘテロ原子を示し、R1cはアルキル基、アリール基又はヘテロアリール基を示し、p1は1~3の整数を示し、環Ar、Rは前記に同じ。)
 また、環Arは下記式(5)で表される環であってもよい。
Figure JPOXMLDOC01-appb-C000016
(式中、R3a及びR3bは同一又は異なって直鎖状又は分岐鎖状C4-12アルキル基又は直鎖状又は分岐鎖状C4-12アルコキシ基、直鎖状又は分岐鎖状C4-12アルキルチオ基を示す。)
 本発明は、前記有機ヘテロ高分子を製造する方法も包含する。すなわち、前記有機ヘテロ高分子は下記式(8)で表される構成単位を有する高分子と、下記式(9)で表されるハロゲン化物と下記式(10)で表されるハロゲン化物とを反応させて製造してもよい。
Figure JPOXMLDOC01-appb-C000017
(式中、Rはアルキル基を示し、Xはハロゲン原子を示し、r1及びr2は1~3の整数、s1及びs2は1~6の整数を示し、Mの価数v及びMの価数vは2~6価であり、v=m1+n1+s1、v=m2+n2+s2、但し、
Figure JPOXMLDOC01-appb-C000018
は単結合又は二重結合を示し、二重結合であるときv=m1+2×n1+s1、v=m2+2×n2+s2である。M、M、R1a、R1b、R2a、R2b、R、環Ar、m1、m2、n1、n2、pは前記に同じ。)
 また、前記有機ヘテロ高分子は、前記式(8)で表される高分子と、下記式(9A)で表されるハロゲン化物と下記式(10A)で表されるハロゲン化物とを反応させて、
Figure JPOXMLDOC01-appb-C000019
(式中、M1bは周期表15族元素から選択されたヘテロ原子を示し、M2bは周期表8族元素、9族元素、10族元素、14族元素及び16族元素から選択されたヘテロ原子を示し、M2bの価数v2bは2~6価を示し、v2b=m2+n2+s2、但し、
Figure JPOXMLDOC01-appb-C000020
は単結合又は二重結合を示し、二重結合であるとき、v2b=m2+2×n2+s2である。R1a、R1b、R2b、r2、s2、m2、n2、Xは前記に同じ。)
 下記式(1A)で表される構成単位と下記式(2A)で表される構成単位とを有する有機ヘテロ高分子を生成し、
Figure JPOXMLDOC01-appb-C000021
(式中、
Figure JPOXMLDOC01-appb-C000022
は単結合又は二重結合を示し、M1b、M2b、R1a、R1b、R2b、R、環Ar、m2、n2、pは前記に同じ。)
 この有機ヘテロ高分子と、下記式(11)で表される化合物又は下記式(12)で表される元素単体とを反応させて製造してもよい。
Figure JPOXMLDOC01-appb-C000023
(式中、R2a1は配位子と錯体を形成した金属原子を示し、Lは脱離基を示し、R2a2は周期表16族元素から選択された元素単体を示す。)
 前記有機ヘテロ高分子は有機溶媒に可溶である。そのため、本発明は、前記有機ヘテロ高分子と、有機溶媒とを含む組成物も包含し、この組成物は有機半導体を形成するために有用である。
 また、本発明は、前記有機ヘテロ高分子で形成された有機半導体及び前記有機ヘテロ高分子を含む電子デバイスも包含する。さらに、本発明は、前記有機半導体を含む電子デバイスも包含する。なお、前記電子デバイスは、例えば、光電変換素子、スイッチング素子及び整流素子から選択された一種であってもよい。
 本明細書において、-M-R2aはヘテロ原子MにR2aが単結合し、-M=R2aはヘテロ原子MにR2aが二重結合している状態を示す。また、-M-R2bはヘテロ原子MにR2bが単結合し、-M=R2bはヘテロ原子MにR2bが二重結合している状態を示す。
 本発明の有機へテロ高分子は、芳香族性環と、互いに異なるヘテロ原子を含む5員複素環とが共役結合した共役系を主鎖に形成しており、導電性(キャリア移動度)が高く、半導体特性を有する。特に、本発明の有機ヘテロ高分子は分子内に異種のヘテロ複素環を含有し、広範な波長域で高い吸光度を示すため、光電変換効率を向上できる。このような有機ヘテロ高分子は有機半導体を形成するのに有用であり、太陽電池などの電子デバイスとして利用できる。また、前記有機ヘテロ高分子は、光電変換素子などの電子デバイスの増感色素(増感剤)などとしても有用である。さらに、本発明の有機ヘテロ高分子は、発光波長域が広く、発光特性に優れている。そのため、光電子デバイス材料としても有用である。
図1は、実施例及び比較例の紫外-可視吸収スペクトルを示すグラフである。 図2は、実施例及び比較例の発光スペクトルを示すグラフである。 図3は、実施例1で得られたポリマーで形成された色素増感太陽電池の電流密度-電位特性を示すグラフである。
 [有機ヘテロ高分子]
 本発明の有機へテロ高分子は前記式(1)及び(2)で表される構成単位を有する共重合体である。この共重合体はランダム共重合体、交互共重合体、ブロック共重合体のいずれであってもよく、特にランダム共重合体が好ましい。
 前記式(1)及び(2)において、M及びMは周期表8族元素(例えば、Fe、Ru、Os)、9族元素(例えば、Co、Rh、Ir)、10族元素(例えば、Ni、Pd、Pt)、14族元素(例えば、Si、Ge、Sn、Pb)、15族元素(例えば、N、P、As、Sb、Bi)及び16族元素(例えば、S、Se、Te)のうち、互いに異なる族から選択されたヘテロ原子を示す。これらのヘテロ元素M及びMのうち、周期表8族元素では、例えば、Fe、Ruなど、特にRuが好ましく、9族元素では、例えば、Co、Rhなど、特にRhが好ましく、10族元素では、例えば、Ni、Pdなど、特にNiが好ましく、14族元素では、例えば、Si、Ge、Snなど、特にSnが好ましく、15族元素では、例えば、P、As、Sb、Biなど、特にPが好ましく、16族元素では、例えば、S、Se、Teなど、特にSが好ましい。
 M及びMは、それぞれ異なる族から選択されたヘテロ原子であればよく、例えば、Mは周期表8族~10族元素から選択された少なくとも1種のヘテロ原子、Mは周期表14族~16族元素から選択された少なくとも1種のヘテロ原子であってもよい。また、Mは周期表15族元素から選択された少なくとも1種のヘテロ原子、Mは周期表8族~10族元素、14族~16族元素から選択された少なくとも1種のヘテロ原子であってもよい。なお、ヘテロ原子として周期表8族~10族元素を含むと、特異な電荷移動遷移(例えば、MLCT遷移)により、吸光度が高く、長波長域の吸収を有するためか、高い導電性(キャリア移動度)に加えて、優れた光電変換効率を有する。
 また、これらのヘテロ原子の原子価vは、通常、ヘテロ元素の種類に応じて、2~6価、好ましくは2~5価である。周期表8族元素(例えば、Ru、Fe)は2~4価、9族元素(例えば、Co、Rh)は2又は3価、10族元素(例えば、Ni、Pd)は2~4価、14族元素(例えば、Sn)は4価、周期表15族元素(例えば、P)は3~5価、周期表16族元素(例えば、S、Se、Te)は2~5価である場合が多い。
 R1a、R1b、R2a及びR2bで表されるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示でき、通常、塩素原子、臭素原子である。
 R1a、R1b、R2a及びR2bで表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基などの直鎖状又は分岐鎖状C1-6アルキル基などが例示できる。好ましいアルキル基は、直鎖状又は分岐鎖状C1-4アルキル基(例えば、C1-2アルキル基)である。
 R1a、R1b、R2a及びR2bで表されるシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基などのC3-10シクロアルキル基などが例示できる。好ましいシクロアルキル基は、C5-8シクロアルキル基である。
 R1a、R1b、R2a及びR2bで表されるアリール基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基などのC1-4アルキル基が置換していてもよいC6-12アリール基などが例示できる。好ましいアリール基は、フェニル基などのC6-10アリール基である。
 R1a、R1b、R2a及びR2bで表されるヘテロアリール基としては、例えば、硫黄原子、窒素原子及び酸素原子から選択された少なくとも1つのヘテロ原子を含む5員複素環基(チエニル基、ピロリル基、イミダゾリル基、フリル基など)、硫黄原子、窒素原子及び酸素原子から選択された少なくとも1つのヘテロ原子を含む6員複素環基(ピリジル基、ピラジル基など)などが例示できる。
 R2a及びR2bは、一価又は二価のヘテロ原子(ヘテロ金属原子)、例えば、周期表16族元素(例えば、O、S、Se、Te)、周期表11族元素(例えば、Cu、Ag、Au)から選択されたヘテロ原子(ヘテロ金属原子)であってもよい。R2a及びR2bで表されるヘテロ原子(ヘテロ金属原子)のうち、周期表16族元素(例えば、O、S、Se、Teなど、特にS、Se)、周期表11族元素(例えば、Ag、Auなど、特にAu)が好ましい。これらのヘテロ原子(ヘテロ金属原子)のうち、周期表16族元素は、ヘテロ原子M及びMと二重結合を形成して結合し、周期表11族元素は、元素(ヘテロ原子)M及びMと単結合を形成して結合している。また、ヘテロ原子(ヘテロ金属原子)(例えば、周期表11族元素)は、錯体(塩素、臭素などのハロゲン原子、酸素原子、OH(ヒドロキソ)、H2O(アコ)、CO、CN、メトキシ基などのアルコキシ基、アセチル基、メトキシカルボニル(アセタト)基、アセチルアセトナト基、シクロペンタジエニル基、ピリジン、ホスフィンなどの配位子との錯体)を形成してもよく、ハロゲン化物(塩素、臭素などのハロゲン化物)を形成してもよい。
 R1a及びR1bは、メチル基などの直鎖状又は分岐鎖状C1-4アルキル基(例えば、C1-2アルキル基)、フェニル基などのC6-10アリール基である場合が多く、R2a及びR2bは、メチル基などの直鎖状又は分岐鎖状C1-4アルキル基(例えば、C1-2アルキル基)、フェニル基などのC6-10アリール基、ヘテロ原子M及びMと二重結合したヘテロ原子(例えば、S、Se、Te、O、特にS)である場合が多い。
 なお、R1a、R1b、R2a及びR2bは同一であっても、異なっていてもよい。
 m1、m2、n1及びn2はそれぞれ0又は1を示し、ヘテロ原子M及びMの価数に応じて、m1=n1(又はm2=n2)=0であってもよく、m1+n1(又はm2+n2)=1又は2であってもよい。
 環Arで表される芳香族性環としては、ベンゼン環、ナフタレン環などのアレーン環、チオフェン環、ピロール環、イミダゾール環、フラン環、ピリジン環、ピラジン環などのヘテロアレーン環、フルオレン環、ビフェニル環、ビナフチル環などのビスアレーン環、ビピリジン環などのビスヘテロアレーン環などが例示できる。代表的な芳香族性環Arは、ベンゼン環、ナフタレン環などのC6-12アレーン環(特に、C6-10アレーン環)、チオフェン環、ピリジン環などの5員又は6員ヘテロアレーン環、フルオレン環、ビフェニル環、ビナフチル環などのビスアレーン環である。芳香族性環Arは、ベンゼン環、ナフタレン環、フルオレン環(特に、ベンゼン環)などである場合が多い。
 Rは溶媒可溶性を付与するのに有用である。Rで表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、2-エチルヘキシル基、ノニル基、デカニル基、ウンデカニル基、ドデカニル基などの直鎖状又は分岐鎖状アルキル基などが例示できる。アルキル基は、通常、直鎖状又は分岐鎖状C4-16アルキル基、好ましくは直鎖状又は分岐鎖状C6-12アルキル基、さらに好ましくは直鎖状又は分岐鎖状C6-10アルキル基である。
 Rで表されるアルコキシ基は、前記アルキル基に対応する直鎖状又は分岐鎖状アルコキシ基、例えば、ヘキシルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基などの直鎖状又は分岐鎖状C4-16アルコキシ基、好ましくは直鎖状又は分岐鎖状C6-12アルコキシ基、さらに好ましくは直鎖状又は分岐鎖状C6-10アルコキシ基である。
 Rで表されるアルキルチオ基は、前記アルキル基に対応する直鎖状又は分岐鎖状アルキルチオ基、例えば、ヘキシルチオ基、オクチルチオ基、2-エチルヘキシルチオ基などの直鎖状又は分岐鎖状C4-16アルキルチオ基、好ましくは直鎖状又は分岐鎖状C6-12アルキルチオ基、さらに好ましくは直鎖状又は分岐鎖状C6-10アルキルチオ基である。
 Rはアルコキシ基である場合が多い。なお、pは0又は1~3の整数を示し、通常、1~3の整数(例えば、2)である。
 環Arに対するRの置換位置は、特に制限されず、環Arの種類及び結合手の位置、Rの置換数pに応じて選択でき、例えば、環Arがベンゼン環であるとき、Rの置換位置は、2-,3-,4-,5-,6-位のいずれであってもよく、2,3-、2,5-、2,6-位などの複数位置にRが置換していてもよい。チオフェン環では、3-位、3,4-位であってもよい。また、フルオレン環では9,9-位、1,1’-ビナフチル環では、2,2’-位などであってもよく、1,2’-ビナフチル環では、2,1’-位などであってもよい。
 好ましい環Arを含む単位は置換ベンゼン環、置換フルオレン環、特に下記式(5)で表される二置換ベンゼン環(1,4-フェニレン基)である。
Figure JPOXMLDOC01-appb-C000024
(式中、R3a及びR3bは同一又は異なって直鎖状又は分岐鎖状C4-12アルキル基、直鎖状又は分岐鎖状C4-12アルコキシ基、直鎖状又は分岐鎖状C4-12アルキルチオ基を示す。)
 好ましいR3a及びR3bは、前記置換基Rの項で例示の好ましいアルキル基、アルコキシ基、アルキルチオ基である。R3a及びR3bは、通常、炭素数6~12(例えば、6~10)程度のアルキル鎖を有している。R3a及びR3bの置換位置は、2,3-位、2,5-位、2,6-位のいずれであってもよく、通常、2,5-位である場合が多い。
 前記式(1)で表される構成単位と前記式(2)で表される構成単位との割合は、構成単位の種類に応じて適宜選択でき、例えば、前者/後者(モル比)=99/1~1/99(例えば、90/10~10/90)、好ましくは、80/20~20/80(例えば、70/30~30/70)、さらに好ましくは60/40~40/60程度であってもよい。
 本発明の代表的な有機ヘテロ高分子として、下記式(3)で表される構成単位と下記式(4)で表される構成単位とを有する共重合体が挙げられる。
Figure JPOXMLDOC01-appb-C000025
(式中、M1aは周期表15族元素から選択されたヘテロ原子、M2a及びR2cは周期表16族元素から選択されたヘテロ原子を示し、R1cはアルキル基、アリール基又はヘテロアリール基を示し、p1は1~3の整数を示し、環Ar、Rは前記に同じ。)
 前記式(3)及び(4)で表される構成単位の割合は前記式(1)及び(2)で表される構成単位の割合と同様である。
 ヘテロ原子M1aは周期表15族元素(例えば、P、As、Sb、Bi)から選択でき、特にPが好ましく、ヘテロ原子M2a及びR2cは周期表16族元素(例えば、S、Se、Te)から選択でき、特にSが好ましい。
 R1cとしては、前記R1a及びR1bと同様のアルキル基、アリール基又はヘテロアリール基が例示でき、特にアリール基(例えば、フェニル基など)が好ましい。
 また、p1は1~3の整数、好ましくは1~2(特に2)の整数である。
 本発明の有機ヘテロ高分子は比較的分子量が大きいにも拘わらず導電性(キャリア移動度)が高いという特色がある。有機ヘテロ高分子の分子量は特に制限されないが、例えば、ゲルパーミエーションクロマトグラフィ(GPC)により測定したとき、ポリスチレン換算で、数平均分子量Mnは1×10~1×10、好ましくは2×10~5×10、さらに好ましくは3×10~2.5×10程度であってもよい。また、分子量分布(重量平均分子量Mw/数平均分子量Mn)は5以下であってもよく、例えば、1.5~4.5、好ましくは2.0~4.0、さらに好ましくは2.5~3.5程度であってもよい。
 なお、有機ヘテロ高分子は直鎖状である場合が多いものの、必要であれば分岐構造を有していてもよい。
 本発明の有機へテロ高分子は、芳香族性環と互いに異なるヘテロ原子を含む5員複素環とが共役結合した共役系を主鎖に形成している。このような有機ヘテロ高分子は、分子内に異種のヘテロ複素環を含有し、広範な波長域で吸光度を大きくできるため、光電変換効率を向上できる。さらに、前記有機へテロ高分子は、発光波長域が広く、発光特性にも優れている。
 また、主鎖骨格にヘテロ原子を含む5員複素環を形成しているため、自己凝集性を弱めると共に、芳香族性環と5員複素環とが共役系を形成しているため、主鎖全体に有機-ヘテロ原子結合による特異な電子状態が維持される。そのため、優れた半導体特性を有している。
 また、アルキル基などの側鎖を有する芳香族性環(アレーン環)を導入できるため、溶解性を高めることもでき、溶媒可溶性を併せ持っている。そのため、塗布(コーティング)により容易に成膜できる。さらに、安定性も高く、水や温度(室温など)に対して安定である。
 なお、成膜後、主鎖間でスタッキングするためか、分子間の電子移動も容易な構造膜が得られる。また、高分子中にアルキル鎖があったとしても、スタッキング方向(縦方向)に対してアルキル鎖が並行に並ぶためか、スタッキングを阻害することがない。そのためか、得られた膜は有機半導体として有効に機能する。
 [有機ヘテロ高分子の製造方法]
 本発明の有機ヘテロ高分子は、下記式(8)で表される構成単位からなるチタナシクロペンタジエン骨格を有する高分子を用いて合成できる。すなわち、この高分子は前記有機ヘテロ高分子の前駆体として有用である。下記式(8)で表される高分子は、下記式(6)で表されるジエチニルアレーン化合物と下記式(7)で表される低原子価チタン錯体とを反応させて得ることができる。
Figure JPOXMLDOC01-appb-C000026
(式中、Rはアルキル基を示し、R、環Ar、pは前記に同じ。)
 Rで表されるアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、s-ブチル基、t-ブチル基などの直鎖状又は分岐鎖状C1-6アルキル基が例示でき、特に、分岐アルキル基、例えば、イソプロピル基などである場合が多い。
 前記式(6)で表されるジエチニルアレーン化合物としては、例えば、1,4-ジエチニル-2,5-ジオクチルオキシベンゼン、1,4-ジエチニル-2,5-ジ(2-エチルヘキシルオキシ)ベンゼンなどのジエチニルジアルコキシベンゼン;2,5-ジエチニル-3-ドデカニルチオフェンなどのジエチニルアルキルチオフェン;2,7-ジエチニル-9,9-ジオクチルフルオレンなどのジエチニルジアルキルフルオレン;6,6’-ジエチニル-2,2’-ジオクチルオキシ-1,1’-ビナフチルなどのジエチニルジオクチルオキシビナフチル、6,6’-ジエチニル-2,2’-ジオクチル-1,1’-ビナフチルなどのジエチニルジアルキルビナフチルなどが例示できる。
 また、前記式(7)で表される低原子価チタン錯体はテトラアルコキシチタン(テトライソプロポキシチタン(Ti(OPr)など)とアルキルマグネシウムハライド(イソプロピルマグネシウムクロリド(PrMgCl)など)とを反応させることにより生成できる。そのため、前記式(8)で表される高分子は式(6)で表されるジエチニルアレーン化合物とテトラアルコキシチタンとアルキルマグネシウムハライドとを反応させることにより生成させてもよい。なお、アルキルマグネシウムハライドの使用量は、テトラアルコキシチタン1モルに対して、1.5~2.5モル程度である。反応は、通常、不活性溶媒(ジエチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテルなど)中、不活性雰囲気[窒素、希ガス(特にアルゴン)など]下、攪拌しながら行うことができる。反応温度は-100℃~-20℃(例えば、-80℃~-40℃)程度であってもよく、反応時間は、例えば、1~48時間、通常、2~36時間、好ましくは3~24時間程度であってもよい。
 (反応工程1)
 本発明の有機ヘテロ高分子は、前記式(8)で表される構成単位を有する高分子と下記式(9)で表されるハロゲン化物と下記式(10)で表されるハロゲン化物とを反応させて製造してもよい。
Figure JPOXMLDOC01-appb-C000027
(式中、Xはハロゲン原子を示し、Mの価数v及びMの価数vは2~6価であり、r1及びr2は1~3の整数、s1及びs2は1~6の整数を示し、v=m1+n1+s1、v=m2+n2+s2、但し
Figure JPOXMLDOC01-appb-C000028
は単結合又は二重結合を示し、二重結合であるときv=m1+2×n1+s1、v=m2+2×n2+s2である。M、M、R1a、R1b、R2a、R2b、R、R、環Ar、m1、m2、n1、n2、pは前記に同じ。)
 前記式(9)又は(10)において、Xで表されるハロゲン原子としては塩素原子、臭素原子、ヨウ素原子が挙げられ、塩素原子、臭素原子である場合が多い。
 前記式(9)及び(10)において、ヘテロ原子M及びMとしては、前記式(1)及び(2)に対応する元素が挙げられる。Mの価数v及びMの価数vはヘテロ原子の種類に応じて、2~6価、好ましくは2~5価であってもよい。r1及びr2はヘテロ原子M及びMの数を示し、1~3の整数であってもよく、例えば、m1=n1=0又はm2=n2=0のハロゲン化物では、1又は2の場合が多く、m1+n1又はm2+n2=1又は2のハロゲン化物では、1の場合が多い。また、s1及びs2はハロゲン原子Xの数を示し、1~6の整数であってもよい。なお、価数v及びvと各係数との関係はv=m1+n1+s1、v=m2+n2+s2を示す。但し、M又はMとR2a又はR2bとの結合状態が-M=R2a、-M=R2bであるとき、v=m1+2×n1+s1、v=m2+2×n2+s2である。
 前記式(9)又は(10)で表されるハロゲン化物としては、下記式で表されるハロゲン化物が例示できる。
Figure JPOXMLDOC01-appb-C000029
(式中、Mは前記M又はMのいずれかを示し、Rは前記R1a又はR1bのいずれかを示し、Rは前記R2a又はR2bのいずれかを示し、rは1~3の整数、sは1~6の整数を示し、Xは前記に同じ。)
 前記式(9)又は(10)において、ヘテロ原子M又はMが周期表8族元素であるハロゲン化物としては、例えば、二塩化鉄(FeCl)、三塩化鉄(FeCl)、三塩化ルテニウム(RuCl)、四塩化ルテニウム(RuCl)などのハロゲン化物;アルキルジクロロルテニウム、アリールジクロロルテニウム[以下、これらの成分をアルキル(又はアリール)ジクロロルテニウムと記載する場合がある。]などのアルキル(又はアリール)金属ハロゲン化物;ジアルキルジクロロルテニウム、ジアリールジクロロルテニウム[以下、これらの成分をジアルキル(又はジアリール)ジクロロルテニウムと記載する場合がある。]などのジアルキル(又はジアリール)金属ハロゲン化物などが挙げられる。
 前記式(9)又は(10)において、ヘテロ原子M又はMが周期表9族元素であるハロゲン化物としては、例えば、二塩化コバルト(CoCl)、三塩化ロジウム(RhCl)などのハロゲン化物;アルキル(又はアリール)ジクロロロジウムなどのアルキル(又はアリール)金属ハロゲン化物などが挙げられる。
 前記式(9)又は(10)において、ヘテロ原子M又はMが周期表10族元素であるハロゲン化物としては、例えば、二塩化ニッケル(NiCl)、二塩化パラジウム(PdCl)などのハロゲン化物;ジアルキル(又はジアリール)ジクロロパラジウムなどのジアルキル(又はジアリール)金属ハロゲン化物などが挙げられる。
 前記式(9)又は(10)において、ヘテロ原子M又はMが周期表14族元素であるハロゲン化物としては、例えば、二塩化スズ(SnCl)、四塩化スズ(SnCl)などのハロゲン化物;ジアルキル(又はジアリール)ジクロロシラン、ジアルキル(又はジアリール)ジクロロスズなどのジアルキル(又はジアリール)金属ハロゲン化物などが挙げられる。
 前記式(9)又は(10)において、ヘテロ原子M又はMが周期表15族元素であるハロゲン化物としては、例えば、三塩化アンチモン(SbCl)などのハロゲン化物;アルキル(又はアリール)ジクロロホスフィン、アルキル(又はアリール)ジクロロアンチモンなどのアルキル(又はアリール)金属ハロゲン化物;ジアルキル(又はジアリール)ジクロロホスフィンなどのジアルキル(又はジアリール)金属ハロゲン化物;塩化ホスホリルなどのハロゲン化物などが挙げられる。
 前記式(9)又は(10)において、ヘテロ原子M又はMが周期表16族元素であるハロゲン化物としては、二塩化二硫黄(SCl)、二塩化二セレン(SeCl)、二塩化テルル(TeCl)、四塩化セレン(SeCl)、四塩化テルル(TeCl)などのハロゲン化物;アルキル(又はアリール)ジクロロテルルなどのアルキル(又はアリール)金属ハロゲン化物;ジアルキル(又はジアリール)ジクロロセレンなどのジアルキル(又はジアリール)金属ハロゲン化物;塩化チオニルなどのハロゲン化物などが挙げられる。
 これらのハロゲン化物のうち、互いに異なる族のヘテロ原子(M及びM)を含むハロゲン化物と、前記式(8)で表される高分子とを反応させると、同一の又は異なる置換基が結合した異種のヘテロ原子(M及びM)を有する本発明の有機ヘテロ高分子を得ることができる。
 本発明の代表的な有機ヘテロ高分子、例えば、前記式(1)及び(2)において、m1=n1=1、MとR2aとの結合状態が-M=R2a、m2=n2=0である構成単位を有する有機ヘテロ高分子は、前記式(8)で表される高分子と、前記周期表15族元素のハロゲン化物[例えば、アルキル(又はアリール)ジクロロホスフィンなど]と前記周期表16族元素のハロゲン化物[例えば、二塩化二硫黄(SCl)、二塩化二セレン(SeCl)など]とを反応させて得ることができる。
 前記式(9)で表されるハロゲン化物と前記式(10)で表されるハロゲン化物との割合は、前記式(1)で表される構成単位と前記式(2)で表される構成単位との割合に応じて適宜選択でき、例えば、前者/後者(モル比)=99/1~1/99(例えば、90/10~10/90)、好ましくは、80/20~20/80(例えば、70/30~30/70)、さらに好ましくは60/40~40/60程度であってもよい。
 反応において、前記式(9)及び(10)で表されるハロゲン化物の総量は、前記式(10)で表される高分子のチタン原子Ti1モルに対して0.8~2モル(例えば、1~1.5モル)程度であってもよい。
 反応は、前記式(9)及び(10)で表されるハロゲン化物のうち、一方のハロゲン化物と前記式(8)で表される高分子とを反応させた後、他方のハロゲン化物とを反応させてもよく、同時に反応させてもよい。
 反応は、通常、不活性溶媒(ジエチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテルなど)中、不活性雰囲気[窒素、希ガス(特にアルゴン)など]下、攪拌しながら行うことができる。反応は、-80℃~30℃(例えば、-60℃~室温)程度の温度で行ってもよく、反応時間は、例えば、1~48時間、通常、2~36時間、好ましくは3~24時間程度であってもよい。反応終了後、慣用の分離精製方法、例えば、濃縮、デカント、再沈殿、クロマトグラフィなどにより所定の有機ヘテロ高分子を得てもよい。
 (反応工程2)
 本発明の有機ヘテロ高分子は、前記式(8)で表される構成単位を有する高分子と、下記式(9A)で表されるハロゲン化物と下記式(10A)で表されるハロゲン化物とを反応させ、下記式(1A)で表される構成単位と下記式(2A)で表される構成単位とを有する高分子を生成させ、この高分子と下記式(11)で表される化合物とを反応させると、下記式(1B)で表される構成単位と下記式(2A)で表される構成単位とを有する本発明の有機ヘテロ高分子を製造できる。また、下記式(1A)で表される構成単位と下記式(2A)で表される構成単位とを有する高分子と下記式(12)で表される元素単体とを反応させると、下記式(1C)で表される構成単位と下記式(2A)で表される構成単位とを有する本発明の有機ヘテロ高分子を製造できる。
Figure JPOXMLDOC01-appb-C000030
(式中、M1bは周期表15族元素から選択されたヘテロ原子を示し、M2bは周期表8族元素、14族元素及び16族元素から選択されたヘテロ原子を示し、M2bの価数v2bは2~6価を示し、v2b=m2+n2+s2、但し、
Figure JPOXMLDOC01-appb-C000031
は単結合又は二重結合を示し、二重結合であるとき、v2b=m2+2×n2+s2である。R2a1は配位子と錯体を形成した金属原子を示し、Lは脱離基を示し、R2a2は周期表16族元素から選択された元素単体を示し、R1a、R1b、R2b、R、R、環Ar、X、r2、s2、m2、n2、pは前記に同じ。)
 ヘテロ原子M1bは前記周期表15族元素(例えば、P)が挙げられ、ヘテロ原子M2bは前記周期表8族元素(例えば、Fe、Ru)、前記周期表9族元素(例えば、Co、Rh)、前記周期表10族元素(例えば、Ni、Pd)、前記周期表14族元素(例えば、Si、Ge、Sn)、前記周期表16族元素(例えば、S、Se、Te)などが挙げられる。ヘテロ原子M2bの価数v2bは2~6価、好ましくは2~5価を示し、v2b=m2+n2+s2である。但し、M2bとR2bとの結合状態が-M2b=R2bであるとき、v2b=m2+2×n2+s2である。
 前記式(9A)で表されるハロゲン化物としては、前記例示のヘテロ原子が周期表15族元素であるハロゲン化物[例えば、アルキル(又はアリール)ジクロロホスフィンなど]などが例示できる。
 前記式(10A)で表されるハロゲン化物としては、前記例示のヘテロ原子が、周期表8族元素であるハロゲン化物(例えば、三塩化鉄、三塩化ルテニウムなどのハロゲン化物など)、周期表9族元素であるハロゲン化物(例えば、二塩化コバルト、三塩化ロジウムなどのハロゲン化物など)、周期表10族元素であるハロゲン化物(例えば、二塩化ニッケルなどのハロゲン化物など)、周期表14族元素であるハロゲン化物(例えば、ジアルキル(又はジアリール)ジクロロスズなどのジアルキル(又はジアリール)金属ハロゲン化物など)又は周期表16族元素であるハロゲン化物(例えば、塩化チオニルなどのハロゲン化物、ジアルキル(又はジアリール)ジクロロセレンなどのジアルキル(又はジアリール)金属ハロゲン化物など)などが挙げられる。
 前記式(1A)で表される構成単位と前記式(2A)で表される構成単位とを有する有機ヘテロ高分子は、反応工程1と同様の方法により合成してもよい。
 前記式(11)において、R2a1としては、前記例示の錯体を形成した金属原子(例えば、周期表11族元素から選択された金属原子、特に金など)などが挙げられ、Lで表される脱離基としては、この金属原子R2a1に配位した配位子(例えば、テトラヒドロチオフェンなど)などが挙げられる。前記式(11)で表される化合物としては、例えば、塩化テトラヒドロチオフェン錯体などが例示できる。
 前記式(12)において、元素単体R2a2としては、例えば、硫黄、セレン、テルルなどが例示できる。
 反応において、前記式(11)で表される化合物又は前記式(12)で表される単体の割合は前記式(1A)において、ヘテロ原子M1b1モルに対して、1~2モル(例えば、1.1~1.5モル)程度であってもよい。
 反応は、不活性溶媒(ジエチルエーテル、テトラヒドロフラン、シクロペンチルメチルエーテルなど)中、不活性雰囲気[窒素、希ガス(特にアルゴン)など]下、攪拌しながら行ってもよい。反応温度は、通常、0~50℃(例えば、10~30℃、特に室温)程度の温度であってもよい。また、反応時間、精製方法は反応工程1と同様の条件で行ってもよい。
 本発明の製造方法では、少ない工程数で異種のヘテロ元素(M及びM)を含む5員複素環を有する有機ヘテロ高分子を効率よく容易に合成できる。得られたヘテロ高分子は有機半導体として有用である。
 [有機ヘテロ高分子の用途]
 有機ヘテロ高分子の主鎖は、芳香族性環と互いに異なるヘテロ原子を含む5員複素環とで共役系(π-共役系)を形成しており、極めて電子移動度が高く、半導体特性を有している。また、理由は定かでは無いが、単一の構成単位からなる高分子に比べ特異な光学特性を有することが多い。しかも、側鎖に長鎖アルキル鎖を導入した有機へテロ高分子は、有機溶媒に対する溶解性が高く、高い導電性(高い半導体特性)を示すという特色がある。そのため、本発明は有機へテロ高分子と有機溶媒とを含む組成物(コーティング組成物)も包含し、この組成物は、有機半導体、特にコーティング(塗布)などの簡便な方法により有機半導体の薄膜を形成するのに有用である。
 有機溶媒としては、例えば、炭化水素類(例えば、ヘキサンなどの脂肪族炭化水素類、シクロヘキサンなどの脂環族炭化水素類、トルエン、キシレンなどの芳香族炭化水素類)、ハロゲン化炭化水素類(クロロホルム、ジクロロメタン、トリクロロエタンなど)、エーテル類(ジエチルエーテル、ジイソプロピルエーテルなどの鎖状エーテル、ジオキサン、テトラヒドロフランなどの環状エーテル)、ケトン類(アセトン、メチルエチルケトンなど)、エステル類(酢酸メチル、酢酸エチル、酢酸ブチルなど)、アミド類(例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなど)、ニトリル類(例えば、アセトニトリル、プロピオニトリルなど)、スルホキシド類(例えば、ジメチルスルホキシドなど)、ピロリドン類(例えば、2-ピロリドン、3-ピロリドン、N-メチル-2-ピロリドンなど)などが例示できる。これらの有機溶媒は、単独で又は混合溶媒として使用できる。
 溶媒の使用量は、塗布性及び成膜性を損なわない範囲から選択でき、例えば、組成物中の有機へテロ高分子の濃度は、0.01~30重量%、好ましくは0.05~20重量%(例えば、0.1~10重量%)程度であってもよい。
 本発明の組成物は、慣用の方法、例えば、有機へテロ高分子と有機溶媒とを混合して有機へテロ高分子を溶解し、必要によりろ過して調製してもよい。
 有機半導体は、基材又は基板(ガラス板、シリコンウエハー、耐熱プラスチックフィルムなど)に前記組成物を塗布する工程と、塗膜を乾燥して溶媒を除去する工程とを経て製造してもよい。なお、塗布方法としては、慣用の塗布方法、例えば、エアーナイフコート法、ロールコート法、グラビアコート法、ブレードコート法、ディップコート法、スプレー法、スピンコート法、スクリーン印刷法、インクジェット印刷法などが例示できる。
 有機半導体の厚みは、用途に応じて適宜選択され、例えば、1~5000nm、好ましくは30~1000nm、さらに好ましくは50~500nm程度であってもよい。
 なお、有機半導体はn型半導体、p型半導体であってもよく、真性半導体であってもよい。
 また、本発明の有機ヘテロ高分子及び有機半導体は、光電変換能を有し、例えば、光吸収により発生した電子及びホールの移動度を高め、光電変換効率を向上できる。そのため、有機ヘテロ高分子及び有機半導体特性を利用して、種々の電子デバイス{例えば、光電変換デバイス又は光電変換素子(太陽電池素子、有機エレクトロルミネッセンス(EL)素子など)、整流素子(ダイオード)、スイッチング素子又はトランジスタ[トップゲート型、ボトムゲート型(トップコンタクト型、ボトムコンタクト型)など]など}などに利用できる。本発明の有機半導体を利用した代表的なデバイスとして、有機太陽電池、有機EL、有機薄膜トランジスタなどが挙げられる。
 有機太陽電池は、pn接合型半導体に表面電極が積層された構造を有している。例えば、p型シリコン半導体に有機半導体膜を積層して、この有機半導体膜に透明電極(ITO電極など)を積層することにより、太陽電池を形成できる。
 また、有機ELとしては、有機ヘテロ高分子(発光性高分子)に必要に応じて電子輸送性材料、ホール輸送性材料を分散させた発光層を透明電極(ITO電極など)上に形成し、この発光層に電極(金属電極など)を積層した構造が例示できる。
 さらに、有機薄膜トランジスタは、ゲート電極層と、ゲート絶縁層と、ソース/ドレイン電極層と、有機半導体層とで構成されている。これらの層の積層構造によって、有機薄膜トランジスタは、トップゲート型、ボトムゲート型(トップコンタクト型、ボトムコンタクト型)に分類できる。例えば、ゲート電極(酸化膜が形成されたp型シリコンウエハーなど)に有機半導体膜を形成して、この有機半導体膜上にソース・ドレイン電極(金電極)を形成することにより、トップコンタクト型電界効果トランジスタを製造できる。
 さらに、本発明の有機ヘテロ高分子は、上記に示した有機半導体としての用途に加え、半導体を光励起するための増感剤(又は増感色素)及び/又は電荷輸送剤としても有用であり、前記電子デバイス(例えば、太陽電池素子、有機EL素子などの光電変換素子など)の増感剤などとしても利用できる。この有機ヘテロ高分子は、通常、半導体(又は半導体表面)に、物理吸着、化学吸着(又は化学結合)などの態様で吸着(又は付着)した形態で、増感剤などとして作用させることができる。
 半導体は、有機半導体などであってもよいが、好ましくは無機半導体であってもよい。無機半導体としては、例えば、金属単体(例えば、パラジウム、白金など)、金属化合物などが挙げられる。金属化合物としては、例えば、周期表第4~15族金属酸化物(例えば、酸化チタン、酸化ニオブ、酸化タンタル、酸化クロム、酸化マンガン、酸化鉄、酸化コバルト、酸化イリジウム、酸化ニッケル、酸化銅、酸化亜鉛、酸化ガリウム、酸化インジウム、酸化スズ、酸化ビスマスなど)、金属硫化物(例えば、CdS、硫化銅(CuS、CuS)など)、金属窒化物(例えば、窒化タリウムなど)、金属セレン化物(例えば、CdSe、ZnSeなど)、金属ハロゲン化物(例えば、CuBrなど)、これらの金属を複数含む複合体(例えば、CuAlO、CuGaSなど)などが例示できる。これらの半導体は、単独で又は二種以上組み合わせてもよい。
 これらの半導体は、p型半導体であってもよく、好ましくはn型半導体であってもよい。代表的なn型半導体としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、酸化スズ(SnO)、酸化インジウム(In)、酸化ガリウム(Ga)、銅-アルミニウム酸化物(CuAlO)、これらの金属酸化物のドープ体などが挙げられ、特に酸化チタン(TiO)が好ましい。なお、酸化チタンとしては、TiO、Ti、Ti、含水酸化チタン(メタチタン酸、オルトチタン酸など)なども挙げられるが、通常、TiO(二酸化チタン)が汎用される。また、酸化チタンは、無定形であってもよく、結晶形(ルチル型、アナターゼ型など)であってもよい。
 半導体の形状は、粒子状、繊維状、板状などであってもよく、好ましくは粒子状であってもよい。また、半導体はナノ粒子(例えば、ナノ粒子の焼結体)であってもよい。すなわち、半導体の平均粒径(例えば、焼結前の粒径)は、例えば、1~1000nm(例えば、2~700nm)程度の範囲から選択でき、例えば、3~500nm、好ましくは5~300nm、さらに好ましくは7~100nm(例えば、8~70nm)、特に50nm以下(例えば、1~30nm)程度であってもよい。
 半導体(又は半導体粒子)に吸着又は付着した有機ヘテロ高分子の割合は、半導体1重量部に対して、例えば、0.001~1重量部、好ましくは0.005~0.5重量部、さらに好ましくは0.01~0.1重量部程度であってもよい。
 また、本発明の有機ヘテロ高分子(増感剤及び/又は電荷輸送剤)を半導体と組み合わせると、光電変換効率を向上できるため、特に、色素増感太陽電池などを形成するのに有用である。例えば、基板上に、有機ヘテロ高分子と半導体とを含む層を電極として積層した積層体を形成し、色素増感太陽電池に利用できる。なお、色素増感太陽電池は、この電極に対向して配置される対極と、これらの電極間に介在し、封止処理された電解質層とで構成されている。また、半導体がn型半導体であるとき、対極は正極(積層体側は負極)を形成し、半導体がp型半導体であるとき、対極は負極(積層体側は正極)を形成する。
 前記基板は、通常、導電性基板であってもよい。導電性基板は、導電体(又は導電体層)のみで構成してもよいが、通常、ベース基板上に導電体層(又は導電層又は導電膜)が形成された基板などが挙げられる。
 ベース基板としては、無機基板(例えば、ガラスなど)、有機基板(例えば、プラスチック基板など)などが例示でき、通常、透明基板(透明無機基板)を用いる場合が多い。
 導電体としては、例えば、導電性金属酸化物[例えば、酸化スズ、酸化インジウム、酸化亜鉛、錫ドープ金属酸化物(錫ドープ酸化インジウムなど)、フッ素ドープ金属酸化物(フッ素ドープ酸化スズなど)など]などの導電体が挙げられる。これらの導電体は、単独で又は二種以上組み合わせてもよい。なお、好ましい導電体は、透明導電体である。
 前記積層体は、(i)有機ヘテロ高分子が、成膜可能なため、この有機ヘテロ高分子及び半導体を含む組成物(ペーストなど)を、基板上に塗布(又はコーティング)し、乾燥させて形成してもよく、(ii)基板上に前記半導体を塗布し、高温(400~500℃程度)で熱処理(又は焼結)後、半導体層に有機ヘテロ高分子を吸着させて形成してもよい。
 方法(i)において、前記組成物(例えば、ペースト)は、通常、溶媒を含んでいる。溶媒としては、前記例示の有機溶媒を使用できる。
 方法(ii)において、半導体層が積層した基板を、有機ヘテロ高分子を含む溶液に浸漬する方法などにより、半導体層に有機ヘテロ高分子を吸着又は付着させてもよい。なお、溶液中の溶媒としては、前記例示の有機溶媒であってもよい。
 方法(i)及び(ii)において、塗布(又はコーティング)方法としては、前記例示の塗布方法(例えば、スピンコート法、スクリーン印刷法など)を使用できる。
 また、基板に積層された有機ヘテロ高分子を含む半導体層(光電変換層)の厚みは、例えば、0.1~100μm、好ましくは0.5~50μm、さらに好ましくは1~30μm(例えば、5~20μm)程度であってもよい。
 対極は、上記に示した導電性基板と、この導電性基板上に形成された触媒層(例えば、導電性金属(金、白金など)、カーボンなど)とで構成される。
 電解質層は、電解質と溶媒とを含む電解液又は電解質を含む固体層(又はゲル)で形成してもよい。電解質としては、汎用の電解質、例えば、ハロゲンとハロゲン化物塩との組み合わせ(例えば、ヨウ素とヨウ化物塩との組み合わせなど)などが挙げられる。なお、ハロゲン化物塩を構成するカウンターイオンとしては、金属イオン(アルカリ金属イオン、アルカリ土類金属イオンなど)、第4級アンモニウムイオン(イミダゾリウム塩など)などが挙げられる。電解質は単独で又は二種以上組み合わせて使用できる。また、溶媒としては、汎用の溶媒、例えば、前記例示のアルコール類、ニトリル類、エーテル類、スルホキシド類、アミド類などの有機溶媒、水などを使用できる。溶媒は単独で又は二種以上組み合わせてもよい。
 このように、本発明の有機ヘテロ高分子を増感剤及び/又は電荷輸送剤として利用した光電変換素子では、高い短絡電流及び開放電圧を得ることができる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例において、シクロペンチルメチルエーテル、テトラヒドロフラン(THF)及びジエチルエーテルはナトリウムで乾燥後、窒素雰囲気又は気流下で蒸留して用いた。テトライソプロポキシチタン(Ti(OPr)は減圧蒸留により精製した。
 また、得られたポリマーの特性は、以下の方法で測定した。
 [H-NMRスペクトル及び31P-NMRスペクトル]
 H-NMRスペクトル及び31P-NMRスペクトルは、内標準としてテトラメチルシラン(TMS)を用い、溶媒としてCDClを用いて、300MHz NMR(日本電子(株)製「JNM-ECP300」)装置によって測定した。
 [分子量]
 高分子の分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィ(GPC)(溶媒:テトラヒドロフラン(THF)、ポリスチレン換算)により測定した。
 [紫外-可視吸収スペクトル及び発光スペクトル]
 紫外-可視吸収スペクトルは、高分子をクロロホルムに溶解させ、所定濃度(20mg/5ml)の高分子溶液として(株)島津製作所製「UV-3100PC」によって測定した。発光スペクトルも同様の高分子溶液を用い、(株)島津製作所製「RF-5300PC」によって測定した。なお、高分子の最大吸収波長を励起光波長とした。
 実施例1
Figure JPOXMLDOC01-appb-C000032
(式中、Rは2-エチルヘキシル基を示し、x及びyは各構成単位の含有する割合(モル比)を示し、x:y=0.44:0.56である。)
 アルゴン雰囲気下、1,4-ジエチニル-2,5-ビス(2-エチルヘキシルオキシ)ベンゼン(0.191g、0.500mmol)及びテトライソプロポキシチタン(Ti(OPr)(0.198g、0.700mmol)をシクロペンチルメチルエーテル(20ml)に溶解し、この溶液を-78℃で攪拌しつつ、さらにイソプロピルマグネシウムクロリド(PrMgCl)のジエチルエーテル溶液(1.0N、1.25ml、1.25mmol)を加えた。その後、-50℃まで徐々に昇温し12時間攪拌し、この温度でジクロロフェニルホスフィン(0.053g、0.300mmol)と二塩化二硫黄(0.041g、0.300mmol)をそれぞれ段階的に加え、室温までゆっくりと昇温し、さらに12時間攪拌した。得られた反応溶液に、水を加えクロロホルムで抽出した後、ヘキサンで再沈殿を行い、上記式で表される赤色のポリマーを収率76%(0.176g、0.38mmol)で得た。得られたポリマーの数平均分子量Mnは11000、分子量分布Mw/Mnは3.4であった。また、このポリマーのH-NMR及び31P-NMRスペクトルを下記に示す。なお、H-NMRスペクトルの結果から硫化されたホスホール骨格を有する構成単位とチオフェン骨格を有する構成単位の割合x:y=0.44:0.56を求めた。
 H-NMR(300MHz、CDCl、ppm):0.88-0.95(12H、-C ):1.31-1.76(18H、-OCH(C CH)C CH):3.21-4.08(br、4H、-O-C -):6.24-8.31(aromatic、4H+5H×x)
 31P-NMR(122MHz、CDCl、ppm):54.0。
 比較例1
 特開2013-155229号公報の実施例6と同様の方法にて下記式で表されるポリマーを得た。
Figure JPOXMLDOC01-appb-C000033
(式中、Rは2-エチルヘキシル基を示す。)
 比較例2
 特開2013-185009号公報の実施例1の四塩化テルルに代えて、二塩化二硫黄(SCl)を用いる以外は、この公報の実施例1と同様の方法にて下記式で表されるポリマーを得た。
Figure JPOXMLDOC01-appb-C000034
(式中、Rは2-エチルヘキシル基を示す。)
 比較例3
 比較例1のポリマーと比較例2のポリマーとの割合が、前者:後者(モル比)=1:1である混合物を調製し、比較例3とした。
 (紫外-可視吸収スペクトル及び発光スペクトルの測定)
 実施例1、比較例1、比較例2及び比較例3のポリマーの紫外-可視吸収スペクトルの測定結果を図1に示す。
 また、前記ポリマーの発光スペクトルの測定結果を図2に示す。なお、実施例1のポリマーにおいてはショルダーピーク543nm及び最大吸収波長456nmを励起光波長としたスペクトルを示した。
 図1から明らかなように、実施例1のポリマーは比較例1、2のポリマー及びこれらの混合物である比較例3と比べ、広範な波長域で高い吸光度を示す。また、図2から明らかなように、本発明の高分子は、比較例1、2のポリマー及びこれらの混合物である比較例3と比べ、発光域が広く、発光特性に優れている。
 実施例2
 アセトンで洗浄したFTOガラス(アステラテック(株)製、型番FTB)に、酸化チタンペースト(SOLARONIX社製「Ti-Nanoxide T/SP」)をスクリーン印刷法により厚み10μmの4mm角の正方形に成膜し、ホットプレートを用いて100℃で乾燥させた後、500℃で1時間焼成して酸化チタン電極を得た。
 実施例1で得られたポリマーをTHFに溶解し0.1重量%溶液を調製した。この溶液に上記の酸化チタン電極を浸漬し、室温下で24時間静置して酸化チタン表面に実施例1で得られたポリマーを吸着させた。吸着後、溶液から酸化チタン電極を取り出しTHFで洗浄して、乾燥し、ポリマー吸着酸化チタン電極を得た。このポリマー吸着酸化チタン電極の対極として、ITO付ガラス基板(ジオマテック(株)製、10Ω/sq)にスパッタリング法により白金薄膜(厚み0.003μm)を形成させ、ITO層側(白金薄膜側)と前記ポリマー吸着酸化チタン電極のFTO層側(ポリマー吸着側)とをスペーサ(三井・デュポンポリケミカル社製「ハイミラン」)を介して挟み、両基板間に形成された空隙(又は封止材で封止された空間)内に電解液を充填し、色素増感太陽電池を作製した。なお、電解液には、0.5mol/Lの1,2-ジメチル-3-プロピルイミダゾリウムヨージドと、0.1mol/Lのヨウ化リチウムと、0.05mol/Lのヨウ素とを含むアセトニトリル溶液を用いた。
 得られた色素増感太陽電池をソーラーシミュレーター((株)三永電機製作所製「XES-301S+EL-100」)を用い、分光分布AM 1.5、100mW/cm、25℃の条件で評価した。得られた電流密度-電位特性を図3に示す。
 図3に示されるように、実施例1で得られたポリマーを増感色素として用いることにより、色素増感太陽電池を形成できる。
 本発明の有機へテロ高分子は、π-電子共役系高分子であり、低抵抗で導電性の高い有機半導体(高分子型有機半導体)を形成するのに有用である。有機半導体は様々なデバイス、例えば、整流素子(ダイオード)、スイッチング素子又はトランジスタ[接合型トランジスタ(バイポーラトランジスタ)、電界効果型トランジスタ(ユニポーラトランジスタ)など]、光電変換素子(太陽電池素子、有機EL素子など)などに利用できる。また、本発明の有機ヘテロ高分子は、半導体を光励起させる作用も有するため、前記電子デバイス(例えば、太陽電池素子、有機EL素子などの光電変換素子など)の増感剤(又は増感色素)として利用することもできる。

Claims (11)

  1.  下記式(1)で表される構成単位と下記式(2)で表される構成単位とを有する有機ヘテロ高分子。
    Figure JPOXMLDOC01-appb-C000001
    (式中、M及びMは周期表8族元素、9族元素、10族元素、14族元素、15族元素及び16族元素のうち、互いに異なる族から選択されたヘテロ原子を示し、M及びMの原子価vは2~6価であり、R1a及びR1bは同一又は異なってハロゲン原子、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基を示し、R2a及びR2bは同一又は異なってハロゲン原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、又は周期表16族元素及び11族元素から選択された一価又は二価のヘテロ原子、又は配位子と錯体を形成した金属原子を示し、
    Figure JPOXMLDOC01-appb-C000002
    は単結合又は二重結合を示し、m1、m2、n1及びn2はそれぞれ0又は1を示し、環Arは芳香族性環を示し、Rは直鎖状又は分岐鎖状アルキル基、直鎖状又は分岐鎖状アルコキシ基、直鎖状又は分岐鎖状アルキルチオ基を示し、pは0又は1~3の整数を示す。)
  2.  式(1)で表される構成単位と式(2)で表される構成単位とを有するランダム共重合体であって、式(1)で表される構成単位と式(2)で表される構成単位との割合が前者/後者(モル比)=99/1~1/99である請求項1に記載の有機へテロ高分子。
  3.  下記式(3)で表される構成単位と下記式(4)で表される構成単位
    Figure JPOXMLDOC01-appb-C000003
    (式中、M1aは周期表15族元素、M2a及びR2cは周期表16族元素を示し、R1cはアルキル基、アリール基又はヘテロアリール基を示し、p1は1~3の整数を示し、環Ar、Rは請求項1に同じ。)
    とを有する請求項1又は2に記載の有機へテロ高分子。
  4.  環Arが下記式(5)
    Figure JPOXMLDOC01-appb-C000004
    (式中、R3a及びR3bは同一又は異なって直鎖状又は分岐鎖状C4-12アルキル基又は直鎖状又は分岐鎖状C4-12アルコキシ基、直鎖状又は分岐鎖状C4-12アルキルチオ基を示す。)
    で表される請求項1~3のいずれかに記載の有機ヘテロ高分子。
  5.  下記式(8)
    Figure JPOXMLDOC01-appb-C000005
    (式中、Rはアルキル基、R、環Ar、pは請求項1に同じ。)
    で表される構成単位を有する高分子と、
    下記式(9)で表されるハロゲン化物と下記式(10)で表されるハロゲン化物
    Figure JPOXMLDOC01-appb-C000006
    (式中、Xはハロゲン原子を示し、Mの価数v及びMの価数vは2~6価であり、r1及びr2は1~3の整数、s1及びs2は1~6の整数を示し、v=m1+n1+s1、v=m2+n2+s2、但し
    Figure JPOXMLDOC01-appb-C000007
    は単結合又は二重結合を示し、二重結合であるときv=m1+2×n1+s1、v=m2+2×n2+s2である。M、M、R1a、R1b、R2a、R2b、m1、m2、n1、n2は請求項1に同じ。)
    とを反応させて請求項1~4のいずれかに記載の有機ヘテロ高分子を製造する方法。
  6.  請求項5に記載の式(8)で表される構成単位を有する高分子と、下記式(9A)で表されるハロゲン化物と下記式(10A)で表されるハロゲン化物
    Figure JPOXMLDOC01-appb-C000008
    (式中、M1bは周期表15族元素から選択されたヘテロ原子を示し、M2bは周期表8族元素、9族元素、10族元素、14族元素及び16族元素から選択されたヘテロ原子を示し、M2bの価数v2bは2~6価を示し、v2b=m2+n2+s2、但し、
    Figure JPOXMLDOC01-appb-C000009
    は単結合又は二重結合を示し、二重結合であるとき、v2b=m2+2×n2+s2である。R1a、R1b、R2b、r2、s2、m2、n2、Xは請求項5に同じ。)
    とを反応させ、下記式(1A)で表される構成単位と下記式(2A)で表される構成単位
    Figure JPOXMLDOC01-appb-C000010
    (式中、
    Figure JPOXMLDOC01-appb-C000011
    は単結合又は二重結合を示し、M1b、M2bは前記に同じであり、R1a、R1b、R2b、R、環Ar、m2、n2、pは請求項1に同じ。)
    とを有する有機ヘテロ高分子を生成し、この有機ヘテロ高分子と、下記式(11)で表される化合物又は下記式(12)で表される元素単体
    Figure JPOXMLDOC01-appb-C000012
    (式中、R2a1は配位子と錯体を形成した金属原子を示し、Lは脱離基を示し、R2a2は周期表16族元素から選択された元素単体を示す。)
    とを反応させて、請求項1~4のいずれかに記載の有機ヘテロ高分子を製造する方法。
  7.  有機半導体を形成するための組成物であって、請求項1~4のいずれかに記載の有機高分子と有機溶媒とを含む組成物。
  8.  請求項1~4のいずれかに記載の有機ヘテロ高分子で形成された有機半導体。
  9.  請求項1~4のいずれかに記載の有機ヘテロ高分子を含む電子デバイス。
  10.  請求項8に記載の有機半導体を含む電子デバイス。
  11.  光電変換素子、スイッチング素子、又は整流素子である請求項9又は10に記載の電子デバイス。
PCT/JP2015/062587 2014-05-08 2015-04-24 有機ヘテロ高分子及びその製造方法 WO2015170622A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2016517873A JP6653887B2 (ja) 2014-05-08 2015-04-24 有機ヘテロ高分子及びその製造方法
US15/303,676 US20170044310A1 (en) 2014-05-08 2015-04-24 Organic heteropolymer and method for manufacturing same
KR1020167034244A KR20170005457A (ko) 2014-05-08 2015-04-24 유기 헤테로 고분자 및 그의 제조 방법
DE112015002166.3T DE112015002166T5 (de) 2014-05-08 2015-04-24 Organisches Heteropolymer und Verfahren zum Herstellen desselben
CN201580024066.7A CN106459385A (zh) 2014-05-08 2015-04-24 有机杂高分子及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014097147 2014-05-08
JP2014-097147 2014-05-08
JP2014211941 2014-10-16
JP2014-211941 2014-10-16

Publications (1)

Publication Number Publication Date
WO2015170622A1 true WO2015170622A1 (ja) 2015-11-12

Family

ID=54392475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062587 WO2015170622A1 (ja) 2014-05-08 2015-04-24 有機ヘテロ高分子及びその製造方法

Country Status (7)

Country Link
US (1) US20170044310A1 (ja)
JP (1) JP6653887B2 (ja)
KR (1) KR20170005457A (ja)
CN (1) CN106459385A (ja)
DE (1) DE112015002166T5 (ja)
TW (1) TW201602158A (ja)
WO (1) WO2015170622A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155229A (ja) * 2012-01-27 2013-08-15 Daicel Corp 有機半導体用有機ヘテロ高分子及びそれを用いた半導体デバイス
JP2013185009A (ja) * 2012-03-06 2013-09-19 Tokyo Institute Of Technology 有機半導体用有機ヘテロ高分子及びそれを用いた半導体デバイス

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2527618A1 (fr) * 1982-05-25 1983-12-02 Thomson Csf Polymeres contenant des heterocycles et des noyaux aromatiques et materiaux organiques conducteurs formes a partir de ces polymeres
US4560534A (en) * 1983-11-02 1985-12-24 Miles Laboratories, Inc. Polymer catalyst transducers
US4711742A (en) * 1985-05-31 1987-12-08 Allied Corporation Solution processible forms of neutral and electrically conductive poly(substituted heterocycles)
JPH05255576A (ja) * 1992-03-12 1993-10-05 Nippon Chibagaigii Kk 面状発熱体及びその製造法
JP5629473B2 (ja) 2010-02-04 2014-11-19 国立大学法人埼玉大学 アミノ基を有する可溶性一置換フタロシアニンの製造方法
JP2014172969A (ja) * 2013-03-07 2014-09-22 Tokyo Institute Of Technology 有機ヘテロ高分子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155229A (ja) * 2012-01-27 2013-08-15 Daicel Corp 有機半導体用有機ヘテロ高分子及びそれを用いた半導体デバイス
JP2013185009A (ja) * 2012-03-06 2013-09-19 Tokyo Institute Of Technology 有機半導体用有機ヘテロ高分子及びそれを用いた半導体デバイス

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HIROKI NISHIYAMA: "Design and Synthesis of Functional n-Conjugated Polymers Containing Selenophene Units in the Main Chain by Reaction of Organometallic Polymers Having Titanacyclopentadiene Units", POLYMER PREPRINTS, vol. 58, no. 1, 2009, Japan, pages 358 *
HIROKI NISHIYAMA: "Shusa ni Titanacyclopentadiene Kokkaku o Yusuru Yuki Kinzoku Polymer no Kobunshi Hanno ni yoru 16-zoku Genso o Yusuru n Kyoyaku Polymer no Gosei", POLYMER PREPRINTS, vol. 61, no. 2, 2012, Japan, pages 2343 - 2344 *
IKUYOSHI TOMITA: "Shusa ni Titanacyclopentadiene Kokkaku o Yusuru Yuki Kinzoku Polymer no Kobunshi Hanno ni yoru Chalcogen Genso o Hybrid-ka shita Kinosei n Kyoyaku Polymer no Gosei", POLYMER PREPRINTS, vol. 59, no. 2, 2010, pages 4226 - 4227 *
IKUYOSHI TOMITA: "Shusa ni Titanacyclopentadiene Kokkaku o Yusuru Yuki Kinzoku Polymer no Kobunshi Hanno ni yoru Iou, Selenium, Tellurium nado no Genso Block o Motsu n Kyoyaku Polymer no Gosei", POLYMER PREPRINTS, vol. 61, no. 2, 2012, Japan, pages 2676 - 2677 *
JONG-CHAN LEE ET AL.: "Synthesis of Organometallic Polymers Containing Cobaltacyclopentadiene Moieties in the Main Chain.", SYNTHESIS OF ORGANOCOBALT POLYMERS FROM VARIOUS DIYNES, MACROMOLECULES, vol. 30, no. 18, 1997, pages 5205 - 5212, XP000698622, ISSN: 0024-9297 *
MASAHIRO UEDA: "Shusa ni Titanacyclopentadiene Kokkaku o Yusuru Polymer no Kobunshi Hanno ni yoru Phosphole Kokkaku o Motsu n Kyoyaku Kobunshi no Gosei", POLYMER PREPRINTS, vol. 52, no. 7, 2003, Japan, pages 1255 *

Also Published As

Publication number Publication date
TW201602158A (zh) 2016-01-16
JP6653887B2 (ja) 2020-02-26
US20170044310A1 (en) 2017-02-16
CN106459385A (zh) 2017-02-22
KR20170005457A (ko) 2017-01-13
DE112015002166T5 (de) 2017-02-09
JPWO2015170622A1 (ja) 2017-04-20

Similar Documents

Publication Publication Date Title
US10665800B2 (en) Inverted solar cell and process for producing the same
EP1777227B1 (en) Novel hole transporting material and solid electrolyte to be applied in a photovoltaic device
JP5504154B2 (ja) ピリジン系金属錯体、それを用いた光電極およびそれを備えた色素増感太陽電池
JP4855146B2 (ja) 色素増感太陽電池及び色素増感太陽電池の製造方法
JP2012508227A (ja) 色素増感された光起電性素子の増感剤用の新規な固定配位子
US10038150B2 (en) Metal complexes for use as dopants and other uses
JP5863479B2 (ja) 有機半導体用有機ヘテロ高分子及びそれを用いた半導体デバイス
JP2017506621A (ja) 固体太陽電池用の正孔輸送性及び吸光性材料
JPWO2012017868A1 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP2012084250A (ja) 光電変換素子及び太陽電池
Ishii et al. Sensitive photodetection with photomultiplication effect in an interfacial Eu2+/3+ complex on a mesoporous TiO2 film
JP6101625B2 (ja) 光電変換素子用色素、それを用いた光電変換膜、電極及び太陽電池
JP6653887B2 (ja) 有機ヘテロ高分子及びその製造方法
JP2013237641A (ja) 金属錯体、色素増感型太陽電池、色素増感型太陽電池モジュール、金属錯体の製造方法及び配位子
Tang et al. A Potential Hybrid Hole-Transport Material Incorporating a Redox-Active Tetrathiafulvalene Derivative with CuSCN
JP6616907B2 (ja) 光電変換素子、色素増感太陽電池、金属錯体色素、色素溶液及び酸化物半導体電極
JP6126937B2 (ja) 有機ヘテロ高分子及びそれを用いた半導体デバイス
JP6005682B2 (ja) 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
JPWO2018047498A1 (ja) 光電変換素子、色素増感太陽電池及びジピロメテン錯体化合物
JP6066190B2 (ja) フェロセン構造を有する有機ヘテロ高分子
JP2015214624A (ja) 有機ヘテロ高分子
JP2015140319A (ja) ピラジンカルボン酸化合物、その製造方法及び色素増感型太陽電池
JP6112717B2 (ja) ジチエノゲルモール骨格を有する有機ヘテロ高分子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15788803

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016517873

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15303676

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002166

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167034244

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15788803

Country of ref document: EP

Kind code of ref document: A1