WO2015162959A1 - 立体撮像用光学系、立体撮像装置、及び内視鏡 - Google Patents
立体撮像用光学系、立体撮像装置、及び内視鏡 Download PDFInfo
- Publication number
- WO2015162959A1 WO2015162959A1 PCT/JP2015/052263 JP2015052263W WO2015162959A1 WO 2015162959 A1 WO2015162959 A1 WO 2015162959A1 JP 2015052263 W JP2015052263 W JP 2015052263W WO 2015162959 A1 WO2015162959 A1 WO 2015162959A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- optical system
- stereoscopic imaging
- central axis
- front group
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2415—Stereoscopic endoscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00064—Constructional details of the endoscope body
- A61B1/00071—Insertion part of the endoscope body
- A61B1/0008—Insertion part of the endoscope body characterised by distal tip features
- A61B1/00096—Optical elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00163—Optical arrangements
- A61B1/00193—Optical arrangements adapted for stereoscopic vision
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/04—Prisms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
- H04N13/207—Image signal generators using stereoscopic image cameras using a single 2D image sensor
- H04N13/218—Image signal generators using stereoscopic image cameras using a single 2D image sensor using spatial multiplexing
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
- G02B23/2407—Optical details
- G02B23/2423—Optical details of the distal end
- G02B23/243—Objectives for endoscopes
Definitions
- the present invention relates to a stereoscopic imaging optical system, a stereoscopic imaging apparatus, and an endoscope.
- Patent Documents 1 to 4 Conventionally, a method has been disclosed in which two images with different parallax are imaged on a substantially identical plane for stereoscopic viewing (see Patent Documents 1 to 4).
- JP-A-8-122665 Japanese Patent No. 42488771 Japanese Patent No. 4093503 JP 2001-147382 A
- Patent Documents 1 to 3 are configured by an optical system in which the object side has two optical axes and the image side has one optical axis. Moreover, the technique described in Patent Document 4 is configured with two optical axes from an object to an image. Neither of these technologies can cope with the recent high resolution.
- the present invention has been made in view of the above-described circumstances, and is an optical system for stereoscopic imaging, a stereoscopic imaging apparatus, and an endoscope capable of obtaining a small and high-resolution stereoscopic image with a wide viewing angle of view.
- the purpose is to provide.
- An optical system for stereoscopic imaging A front group having a first front group centered on a first front group center axis and a second front group centered on a second front group center axis parallel to the first front group center axis; A rear group centered on a single rear group central axis parallel to the first front group central axis and the second front group central axis; In order from the object side to the image plane side, The rear group is A rear group on the object side, 2 rear groups on the image side, A first opening centered on a first opening center deflected with respect to the rear group central axis between the first rear group and the second rear group; A second opening that is orthogonal to the plane that includes the first front group central axis and the second front group central axis and that is symmetrical with respect to the plane that includes the rear group central axis.
- the second central principal ray of the second light beam that has passed through the second front group is separated from the rear group central axis of each of the rear group, the second aperture center, the second deflection group, and the rear group.
- the image plane is reached after passing through the position.
- the first opening and the first deflection group are disposed adjacent to each other;
- the second opening and the second deflection group are disposed adjacent to each other.
- the first deflection group and the second deflection group are from optical elements that increase in thickness in the rear group central axis direction as they are separated from the rear group central axis. Become.
- the optical element has a wedge prism shape.
- the first front group and the second front group are composed of concave lenses having the same shape and arranged in parallel.
- the concave lenses arranged in parallel are integrally formed.
- the stereoscopic imaging optical system according to an embodiment of the present invention satisfies the following conditional expression (1).
- fl is the total length of the optical system
- d is the maximum outer diameter of the optical system, It is.
- the distance between the first front group central axis and the second front group central axis is 1.2 mm or less.
- a stereoscopic imaging apparatus is The stereoscopic imaging optical system; An image sensor; It is characterized by providing.
- a stereoscopic imaging apparatus includes a lenticular lens disposed on the object side of the imaging element.
- An endoscope according to an embodiment of the present invention includes the stereoscopic imaging device.
- the optical system for stereoscopic imaging, the stereoscopic imaging apparatus, and the endoscope according to the embodiment of the present invention it is possible to obtain a stereoscopic image that is small and has a high resolution and a wide viewing angle.
- FIG. 3 is a cross-sectional view of a surface including a first front group central axis and a second front group central axis of the stereoscopic imaging optical system of Example 1.
- FIG. 3 is a cross-sectional view of a surface including a rear group central axis that is orthogonal to a plane including a first front group central axis and a second front group central axis of the stereoscopic imaging optical system according to Example 1;
- 2 is a lateral aberration diagram of the stereoscopic imaging optical system of Example 1.
- FIG. 2 is a lateral aberration diagram of the stereoscopic imaging optical system of Example 1.
- FIG. 6 is a cross-sectional view of a surface including a first front group central axis and a second front group central axis of a stereoscopic imaging optical system according to Example 2.
- FIG. 6 is a cross-sectional view of a surface including a rear group center axis that is orthogonal to a surface including a first front group center axis and a second front group center axis of the stereoscopic imaging optical system of Example 2.
- 6 is a lateral aberration diagram of the stereoscopic imaging optical system of Example 2.
- FIG. 6 is a lateral aberration diagram of the stereoscopic imaging optical system of Example 2.
- FIG. 6 is a cross-sectional view of a surface including a first front group central axis and a second front group central axis of a stereoscopic imaging optical system according to Example 3.
- FIG. 10 is a cross-sectional view of a surface including a rear group center axis that is orthogonal to a surface including a first front group center axis and a second front group center axis of the stereoscopic imaging optical system of Example 3.
- 6 is a lateral aberration diagram of the stereoscopic imaging optical system of Example 3.
- FIG. 6 is a lateral aberration diagram of the stereoscopic imaging optical system of Example 3.
- the stereoscopic imaging optical system 1 of the present embodiment will be described.
- FIG. 1 is a cross-sectional view taken along the central axis C of a stereoscopic imaging optical system 1 according to an embodiment of the present invention.
- the stereoscopic imaging optical system 1 of the present embodiment is centered on a first front group center axis Cf1 centered on a first front group center axis Cf1 and a second front group center axis Cf2 parallel to the first front group center axis Cf1.
- a front group Gf having a second front group Gf2, a rear group Gb centered on a first rear group center axis Cb parallel to the first front group center axis Cf1 and the second front group center axis Cf2, Are arranged in order from the object side to the image plane I side, and the rear group Gb has a rear group center between the rear group 1 Gb1 of the object side, the rear group 2 Gb2 of the image side, and the rear group 1 Gb1 and the rear group 2 Gb2.
- the first opening S1 centering on the first opening center CS1 deflected with respect to the axis Cb and the plane including the first front group center axis Cf1 and the second front group center axis Cf2 are orthogonal to each other, and the rear group center axis Cb is A second opening S2 centered on a second opening center CS2 that is arranged symmetrically with respect to the first opening center CS1, and a rear surface
- the first deflection group Gv1 disposed between the group Gb1 and the rear second group Gb2, and a plane perpendicular to the plane including the first front group center axis Cf1 and the second front group center axis Cf2 and including the rear group center axis Cb
- the first deflection group Gv1 has a second deflection group Gv2 arranged in plane symmetry, and the first central principal ray Lc1 of the first light beam L1 that has passed through the first front group Gf1 is Passes a position separated from the rear group
- the second central principal ray Lc2 of the second light flux L2 passes through positions separated from the rear first group Gb1, the second aperture center CS2, the second deflection group Gv2, and the rear group central axis Cb of the rear second group Gb2. To the image plane I.
- the first opening center CS1 may be included on the extension line of the first front group center axis Cf1
- the second opening center CS2 may be included on the extension line of the second front group center axis Cf2.
- the stereoscopic imaging optical system 1 of the present embodiment forms the first front group central axis Cf1 and the second front group by forming the rear first group Gb1 and the rear second group Gb2 rotationally symmetrically about a single rear group central axis Cb. It becomes possible to make the group center axis Cf2 approach.
- the first central principal ray Lc1 of the first light beam L1 that has passed through the first front group Gf1 is the rear group center of the rear first group Gb1, the first aperture center CS1, the first deflection group Gv1, and the rear second group Gb2.
- the second central principal ray Lc2 of the second light beam L2 that passes through the position separated from the axis Cb and reaches the image plane I and passes through the second front group Gf2 is the rear first group Gb1, the second aperture center CS2, and the like. Since the second deflection group Gv2 and the rear second group Gb2 pass through a position separated from the rear group central axis Cb and reach the image plane I, the aberration generated when the rear first group Gb1 passes through the rear second group Gb2 It becomes possible to correct with.
- the first opening S1 and the first deflection group Gv1 are disposed adjacent to each other, and the second opening S2 and the second deflection group Gv2 are disposed adjacent to each other. .
- the effective diameter of the first deflection group Gv1 and the second deflection group Gv2 are set. It can be made smaller.
- the distance between the first opening S1 and the second opening S2 arranged in parallel can be shortened, and a small rear group Gb can be formed together with the rear first group Gb1 and the rear second group Gb2. It becomes.
- FIG. 2 is a diagram showing an example in which the deflection group Gv of the stereoscopic imaging optical system 1 according to the embodiment of the present invention is a wedge prism.
- FIG. 3 is a diagram showing another example in which the deflection group Gv of the stereoscopic imaging optical system 1 according to the embodiment of the present invention is a wedge prism.
- the first deflection group Gv1 and the second deflection group Gv2 are optical elements Lv1 and Lv2 that increase in thickness in the direction of the rear group center axis Cb as they are separated from the rear group center axis Cb. Become.
- the first light beam L1 and the second light beam L2 can be configured to pass around the rear group central axis Cb of the rear second group Gb2, and the aberration correction capability of the rear second group Gb2 can be improved.
- the optical elements Lv1 and Lv2 may be formed separately as the first optical element Lv1 and the second optical element Lv2.
- the optical elements Lv1 and Lv2 are wedge prism shapes.
- both surfaces can be formed as a flat surface and can be easily processed.
- the first front group Gf1 and the second front group Gf2 are composed of concave lenses having the same shape and arranged in parallel.
- the first front group Gf1 and the second front group Gf2 have a lens in which the object side surface is formed as a flat surface or a convex surface on the object side, and the image side surface is formed as a strong concave surface. It is possible to reduce the occurrence of various image distortions.
- the concave lenses arranged in parallel are integrally formed.
- the optical axis interval can be narrowed, and the three-dimensional imaging optical system 1 can be further reduced in size.
- the stereoscopic imaging optical system 1 satisfies the following conditional expression (1).
- fl is the total length of the optical system
- d is the maximum outer diameter of the optical system, It is.
- conditional expression (1) If the lower limit of conditional expression (1) is surpassed, the maximum outer diameter of the stereoscopic imaging optical system 1 becomes large, resulting in an increase in size. If the upper limit of conditional expression (1) is exceeded, the total length becomes long and the size becomes large.
- the distance between the first front group center axis Cf1 and the second front group center axis Cf2 is 1.2 mm or less.
- the shortest distance that humans can stereoscopically observe is about 30 cm. If the distance is shorter than this, it is difficult to adjust the eyeball, and the focus cannot be achieved. Assuming that the eye width is 6 cm, the convergence angle is 6 °. When viewing at a convergence angle of 6 ° or more, it feels like a miniature model due to its constancy of size, or it feels strange as if it were a giant.
- the optical axis interval and object point distance of both eyes are determined by the convergence angle.
- the optical axis interval is 2 mm
- the optical axis interval is 1.2 mm. That is, in order to enlarge and observe an object point distance as close as 6 mm, it is necessary to have an optical axis interval of 1.2 mm at a convergence angle of 6 ° or less.
- Examples 1 to 3 of the stereoscopic imaging optical system 1 according to this embodiment will be described below.
- the numerical data of Examples 1 to 3 will be described later.
- FIG. 4 is a cross-sectional view of a plane including the first front group center axis Cf1 and the second front group center axis Cf2 of the stereoscopic imaging optical system 1 according to the first embodiment.
- FIG. 5 is a cross-sectional view of the surface including the rear group center axis Cb orthogonal to the surface including the first front group center axis Cf1 and the second front group center axis Cf2 of the stereoscopic imaging optical system 1 according to the first embodiment.
- . 6 is a lateral aberration diagram of the stereoscopic imaging optical system 1 according to Example 1.
- FIG. FIG. 7 is a lateral aberration diagram of the stereoscopic imaging optical system 1 according to Example 1.
- the angle shown in the center indicates (vertical angle of view), and indicates lateral aberration in the Y direction (meridional direction) and X direction (sagittal direction) at that angle of view.
- a negative angle of view means a clockwise angle facing the positive direction of the X axis. The same applies to the lateral aberration diagrams of Examples 1 to 3.
- the stereoscopic imaging optical system 1 includes, in order from the object side to the image side, the first front group Gf1 having the first front group center axis Cf1 and the first front group center axis.
- a front group Gf having a second front group Gf2 having a second front group center axis Cf2 arranged in parallel with Cf1 and a rear group Gb having a single rear group center axis Cb are provided.
- the first front group Gf1 includes a plano-concave negative lens Lf1 11 having a plane facing the object side.
- the second front lens group Gf2 has a plano-concave negative lens Lf2 11 that is planar to the object side.
- the first front group Gf1 and the second front group Gf2 are preferably formed integrally with the same shape.
- Rear group Gb includes a cemented lens SUB1 1 of the biconcave negative lens Lb1 11 and a biconvex positive lens Lb1 12, and, as a group Gb1 after having biconvex positive lens Lb1 21, a negative meniscus lens having a convex surface directed toward the object side Lb2 11 a cemented lens SUB2 1 of the biconvex positive lens Lb2 12, and a second group Gb2 after having a biconvex positive lens Lb2 21 cemented lens SUB2 2 of the biconcave negative lens Lb2 22, after one group Gb1 and after 2
- the first opening S1 centered on the first opening center CS1 deflected with respect to the rear group center axis Cb between the groups Gb2 and the plane including the first front group center axis Cf1 and the second front group center axis Cf2
- the second opening S2 centered on the second opening center CS2 disposed
- the first opening S1 and the first deflection group Gv1 are disposed adjacent to each other, and the second opening S2 and the second deflection group Gv2 are disposed adjacent to each other.
- the first opening S1 is disposed on the object side of the first deflection group Gv1
- the second opening S2 is disposed on the object side of the second deflection group Gv2.
- the first deflection group Gv1 and the second deflection group Gv2 of Example 1 are formed of wedge prism-shaped optical elements whose thickness increases in the direction of the rear group central axis Cb as the distance from the rear group central axis Cb increases. Further, the wedge prism-shaped optical elements forming the first deflection group Gv1 and the second deflection group Gv2 of the first embodiment are integrally formed.
- the optical element according to the first exemplary embodiment is formed of a plane that is orthogonal to the rear group central axis Cb on the object side and a plane that is inclined with respect to the rear group central axis Cb on the image side.
- a filter F and a cover glass CG are disposed in front of the image plane I.
- the first light beam L1 incident from the first object surface, not shown in the first front group Gf1 of the front group Gf is emitted from the first front group Gf1 through a plano-concave negative lens Lf1 11, enters the rear group Gb .
- the first light beam L1 incident on the rear first group Gb1 of the rear group Gb passes through the cemented lens SUb1 1 and the biconvex positive lens Lb1 21 , exits the rear first group Gb1, and passes through the first opening S1.
- the first light beam L1 that has passed through the first opening S1 passes through the first deflection group Gv1 and enters the rear second group Gb2.
- the first light beam L1 incident on the rear second group Gb2 passes through the cemented lens SUb2 1 and the cemented lens SUb2 2 and exits the rear second group Gb2, and reaches the image plane I through the filter F and the cover glass CG. To do.
- the second light flux L2 which is incident from the second object surface (not shown) to the second front lens group Gf2 of the front group Gf is emitted from the second front lens group Gf2 through a plano-concave negative lens Lf2 11, enters the rear group Gb .
- the second light beam L2 incident on the rear first group Gb1 of the rear group Gb passes through the cemented lens SUb1 1 and the biconvex positive lens Lb1 21 , exits the rear first group Gb1, and passes through the second opening S2.
- the second light beam L2 having passed through the second opening S2 passes through the second deflection group Gv2 and enters the rear second group Gb2.
- the second light beam L2 incident on the rear second group Gb2 passes through the cemented lens SUb2 1 and the cemented lens SUb2 2 and exits the rear second group Gb2, and reaches the image plane I through the filter F and the cover glass CG. To do.
- FIG. 8 is a cross-sectional view of a surface including the first front group central axis Cf1 and the second front group central axis Cf2 of the stereoscopic imaging optical system 1 according to the second embodiment.
- FIG. 9 is a cross-sectional view of the surface including the rear group center axis Cb orthogonal to the surface including the first front group center axis Cf1 and the second front group center axis Cf2 of the stereoscopic imaging optical system 1 according to the second embodiment.
- . 10 is a lateral aberration diagram of the stereoscopic imaging optical system 1 according to Example 2.
- FIG. FIG. 11 is a lateral aberration diagram of the stereoscopic imaging optical system 1 according to Example 2.
- FIG. 10 is a lateral aberration diagram of the stereoscopic imaging optical system 1 according to Example 2.
- the stereoscopic imaging optical system 1 includes, in order from the object side to the image side, a first front group Gf1 having a first front group center axis Cf1, and a first front group center axis.
- a front group Gf having a second front group Gf2 having a second front group center axis Cf2 arranged in parallel with Cf1 and a rear group Gb having a single rear group center axis Cb are provided.
- the first front group Gf1 includes a plano-concave negative lens Lf1 11 having a plane facing the object side.
- the second front lens group Gf2 has a plano-concave negative lens Lf2 11 that is planar to the object side.
- the first front group Gf1 and the second front group Gf2 are preferably formed integrally with the same shape.
- Rear group Gb includes a cemented lens SUB1 1 of the biconcave negative lens Lb1 11 and a biconvex positive lens Lb1 12, and, as a group Gb1 after having biconvex positive lens Lb1 21, a negative meniscus lens having a convex surface directed toward the object side Lb2 11 a cemented lens SUB2 1 of the biconvex positive lens Lb2 12, and a second group Gb2 after having cemented lens SUB2 2 of the biconvex positive lens Lb2 21 and the image plane I negative meniscus lens having a convex surface directed toward the side Lb2 22
- the first deflection group Gv1 disposed between the rear first group Gb1 and the rear second group Gb2, and the rear group central axis Cb perpendicular to the plane including the first front group central axis Cf1 and the second front group central axis Cf2.
- the second deflection group Gv2 arranged in plane symmetry with the first deflection group Gv1, and the rear group central axis Cb deflected between the rear first group Gb1 and the rear second group Gb2.
- a first opening S1 centered on one opening center CS1;
- a second opening center CS2 that is orthogonal to the plane that includes the front group center axis Cf1 and the second front group center axis Cf2 and that is symmetrical to the first opening center CS1 with respect to the plane that includes the rear group center axis Cb.
- the first opening S1 and the first deflection group Gv1 are disposed adjacent to each other, and the second opening S2 and the second deflection group Gv2 are disposed adjacent to each other.
- the first opening S1 is disposed on the image plane side of the first deflection group Gv1
- the second opening S2 is disposed on the image plane side of the second deflection group Gv2.
- the first deflection group Gv1 and the second deflection group Gv2 of Example 2 are formed of wedge prism-shaped optical elements whose thickness increases in the direction of the rear group center axis Cb as the distance from the rear group center axis Cb increases. Further, the wedge prism-shaped optical elements forming the first deflection group Gv1 and the second deflection group Gv2 of Embodiment 2 are integrally formed.
- the optical element of Example 2 is formed of a plane that is orthogonal to the rear group center axis Cb on the object side and a plane that is inclined with respect to the rear group center axis Cb on the image side.
- a filter F and a cover glass CG are disposed in front of the image plane I.
- the first light beam L1 incident from the first object surface, not shown in the first front group Gf1 of the front group Gf is emitted from the first front group Gf1 through a plano-concave negative lens Lf1 11, enters the rear group Gb .
- the first light beam L1 incident on the rear first group Gb1 of the rear group Gb passes through the cemented lens SUb1 1 and the biconvex positive lens Lb1 21 , exits the rear first group Gb1, and passes through the first deflection group Gv1.
- the first light beam L1 that has passed through the first deflection group Gv1 passes through the first opening S1 and enters the rear second group Gb2.
- the first light beam L1 incident on the rear second group Gb2 passes through the cemented lens SUb2 1 and the cemented lens SUb2 2 and exits the rear second group Gb2, and reaches the image plane I through the filter F and the cover glass CG. To do.
- the second light flux L2 which is incident from the second object surface (not shown) to the second front lens group Gf2 of the front group Gf is emitted from the second front lens group Gf2 through a plano-concave negative lens Lf2 11, enters the rear group Gb .
- the second light beam L2 incident on the rear first group Gb1 after the rear group Gb passes through the cemented lens SUb1 1 and the biconvex positive lens Lb1 21 to exit the rear first group Gb1 and passes through the second deflection group Gv2.
- the second light beam L2 that has passed through the second deflection group Gv2 passes through the second opening S2, and enters the rear second group Gb2.
- the second light beam L2 incident on the rear second group Gb2 passes through the cemented lens SUb2 1 and the cemented lens SUb2 2 and exits the rear second group Gb2, and reaches the image plane I through the filter F and the cover glass CG. To do.
- FIG. 12 is a cross-sectional view of a plane including the first front group central axis Cf1 and the second front group central axis Cf2 of the stereoscopic imaging optical system 1 according to the third embodiment.
- FIG. 13 is a cross-sectional view of the surface including the rear group center axis Cb orthogonal to the surface including the first front group center axis Cf1 and the second front group center axis Cf2 of the stereoscopic imaging optical system 1 according to the third embodiment.
- . 14 is a lateral aberration diagram of the stereoscopic imaging optical system 1 according to Example 3.
- FIG. FIG. 15 is a lateral aberration diagram of the stereoscopic imaging optical system 1 according to Example 3.
- the stereoscopic imaging optical system 1 includes a first front group Gf1 having a first front group center axis Cf1 and a first front group center axis in order from the object side to the image side.
- a front group Gf having a second front group Gf2 having a second front group center axis Cf2 arranged in parallel with Cf1 and a rear group Gb having a single rear group center axis Cb are provided.
- the first front group Gf1 includes a plano-concave negative lens Lf1 11 having a plane facing the object side.
- the second front lens group Gf2 has a plano-concave negative lens Lf2 11 that is planar to the object side.
- the first front group Gf1 and the second front group Gf2 are preferably formed integrally with the same shape.
- the rear group Gb includes a negative meniscus lens Lb1 11 having a convex surface directed toward the image plane I, a cemented lens SUb1 1 of a biconcave negative lens Lb1 12 and a biconvex positive lens Lb1 13 , and a negative meniscus having a convex surface directed toward the object side.
- the first opening center CS1 is perpendicular to the plane including the first opening S1 as the center and the first front group center axis Cf1 and the second front group center axis Cf2 and includes the rear group center axis Cb.
- Second opening arranged in plane symmetry A second opening S2 centered on the center CS2, a first deflection group Gv1 disposed between the rear first group Gb1 and the rear second group Gb2, a first front group center axis Cf1 and a second front group center axis Cf2
- the first deflection group Gv1 and the second deflection group Gv2 are arranged symmetrically with respect to the plane that is orthogonal to the plane that includes the rear group central axis Cb.
- the first opening S1 and the first deflection group Gv1 are disposed adjacent to each other, and the second opening S2 and the second deflection group Gv2 are disposed adjacent to each other.
- the first opening S1 is disposed on the object side of the first deflection group Gv1
- the second opening S2 is disposed on the object side of the second deflection group Gv2.
- the first deflection group Gv1 and the second deflection group Gv2 of Example 3 are formed of wedge prism-shaped optical elements whose thickness in the rear group center axis Cb direction increases as the distance from the rear group center axis Cb increases. Further, the wedge prism-shaped optical elements forming the first deflection group Gv1 and the second deflection group Gv2 of the third embodiment are integrally formed.
- the optical element of Example 3 is formed by a plane in which both the object side and the image plane side are inclined with respect to the rear group central axis Cb.
- a filter F and a cover glass CG are disposed in front of the image plane I.
- the first light beam L1 incident from the first object surface, not shown in the first front group Gf1 of the front group Gf is emitted from the first front group Gf1 through a plano-concave negative lens Lf1 11, enters the rear group Gb .
- the first light beam L1 incident on a group Gb1 after the rear group Gb includes a cemented lens SUB1 1, and the first group Gb1 emitted after passing through the cemented lens SUB1 2, passing through the first opening S1.
- the first light beam L1 that has passed through the first opening S1 passes through the first deflection group Gv1 and enters the rear second group Gb2.
- the first light beam L1 incident on the rear second group Gb2 passes through the cemented lens SUb2 1 and the positive meniscus lens Lb2 21 and exits the rear second group Gb2, passes through the filter F and the cover glass CG, and enters the image plane I. To reach.
- the second light flux L2 which is incident from the second object surface (not shown) to the second front lens group Gf2 of the front group Gf is emitted from the second front lens group Gf2 through a plano-concave negative lens Lf2 11, enters the rear group Gb .
- the second light beam L2 incident on the rear first group Gb1 of the rear group Gb passes through the cemented lens SUb1 1 and the cemented lens SUb1 2 and exits the rear first group Gb1 and passes through the second opening S2.
- the second light beam L2 having passed through the second opening S2 passes through the second deflection group Gv2 and enters the rear second group Gb2.
- the second light beam L2 incident on the rear second group Gb2 passes through the cemented lens SUb2 1 and the positive meniscus lens Lb2 21 and exits the rear second group Gb2, passes through the filter F and the cover glass CG, and enters the image plane I. To reach.
- the following shows the configuration parameters of the first to third embodiments.
- the coordinate system is defined for each surface.
- the direction from the origin O of the coordinate system in which the surface is defined toward the image plane at each central axis is defined as the positive Z-axis direction.
- the direction from the second front group center axis Cf2 to the first front group center axis Cf1 on the same plane is defined as the X-axis positive direction.
- the positive Y-axis direction is defined by a right-handed coordinate system.
- optical action surfaces constituting the three-dimensional imaging optical system 1 of each embodiment when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given.
- the radius, the refractive index of the medium, and the Abbe number are given according to conventional methods.
- the amount of eccentricity from the origin O of the coordinate system in which the surface is defined (X-axis direction, Y-axis direction, and Z-axis direction are X, Y, Z, respectively) and the coordinate system defined by the origin O
- the tilt angles ( ⁇ , ⁇ , ⁇ (°), respectively) of the coordinate system defining each surface centered on the X axis, the Y axis, and the Z axis are given.
- positive ⁇ and ⁇ mean counterclockwise rotation with respect to the positive direction of each axis
- positive ⁇ means clockwise rotation with respect to the positive direction of the Z axis.
- the ⁇ , ⁇ , and ⁇ rotations of the central axis of the surface are performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it around the Y axis of the new rotated coordinate system by ⁇ and then rotate it around the Z axis of another rotated new coordinate system by ⁇ . It is.
- Refractive index and Abbe number are shown for d-line (wavelength 587.56 nm).
- the unit of length is mm.
- the eccentricity of each surface is expressed by the amount of eccentricity from the reference surface. “ ⁇ ” described in the radius of curvature indicates infinite.
- the aspheric data used in this embodiment shows data related to an aspheric lens surface in the surface data.
- the aspherical shape is expressed by the following formula (a), where z is an optical axis with the light traveling direction being positive, and y is a direction orthogonal to the optical axis.
- z (y 2 / r) / [1+ ⁇ 1 ⁇ (1 + K) ⁇ (y / r) 2 ⁇ 1/2 ] + A4y 4 + A6y 6 + A8y 8 + A10y 10 ... (a)
- r is a paraxial radius of curvature
- K is a conical coefficient
- A4, A6, and A8 are fourth-order, sixth-order, and eighth-order aspheric coefficients, respectively.
- the symbol “e” indicates that the subsequent numerical value is a power exponent with 10 as the base. For example, “1.0e-5” means “1.0 ⁇ 10 ⁇ 5 ”.
- Example 1 Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ⁇ 5.000 1 ⁇ 0.400 1.8830 40.7 2 Aspherical surface [1] 0.400 3 ⁇ (virtual surface) 0.000 Eccentricity (1) 4 -12.178 0.500 1.8830 40.7 5 1.935 1.200 1.7847 25.7 6 -2.622 0.050 7 5.891 0.700 1.8830 40.7 8 -5.975 0.301 9 Diaphragm surface 0.050 Eccentricity (2) 10 ⁇ 0.400 Eccentricity (2) 1.6477 33.8 11 ⁇ 0.150 Eccentricity (3) 12 14.172 0.400 1.9229 18.9 13 1.800 1.500 1.6516 58.5 14 -2.747 0.207 15 1.987 1.300 1.8830 40.7 16 -2.004 0.400 1.9229 18.9 17 57.910 0.129 18 ⁇ 0.400 1.5163 64.1 19 ⁇ 0.400 1.5163 64.1 20 ⁇ 0.000 Image plane ⁇ Aspherical [1] Curvature radius 0.536 k -7
- Example 1 Example 2
- Example 3 Element d 2.13 2.41 2.45
- Conditional expression (1) Lb / f 4.17 4.15 4.46
- FIG. 16 is a diagram schematically illustrating an example in which the stereoscopic imaging optical system 1 according to the present embodiment is used as the stereoscopic imaging apparatus 10.
- the stereoscopic imaging apparatus 10 of the present embodiment includes a stereoscopic imaging optical system 1 and an imaging element 11.
- the imaging element 11 is disposed on the image plane I of the stereoscopic imaging optical system 1.
- the light beam that has passed through the stereoscopic imaging optical system 1 forms an image on the imaging element 1. Therefore, it is possible to accurately perform stereoscopic imaging.
- the stereoscopic imaging apparatus 10 of the present embodiment may include a lenticular lens 12 on the object side of the imaging element 11. By providing the lenticular lens 12, stereoscopic imaging can be performed more accurately.
- FIG. 17 is a diagram illustrating an example in which the stereoscopic imaging optical system 1 of the present embodiment is used as the stereoscopic imaging optical system 1 at the distal end of the endoscope.
- FIG. 17 is a diagram for illustrating an example in which the stereoscopic imaging optical system 1 according to the present embodiment is used as the stereoscopic imaging optical system 1 at the distal end of the endoscope 110.
- FIG. 17A is an example in which the stereoscopic imaging optical system 1 according to the present embodiment is attached to the distal end of the rigid endoscope 110 and 360 ° omnidirectional images are captured and observed stereoscopically.
- FIG. 17B shows a schematic configuration of the tip.
- the optical system 1 according to the present embodiment is similarly attached to the distal end of the flexible electronic endoscope 113, and the captured image is subjected to image processing on the display device 114 to correct distortion and stereoscopically. This is an example of displaying.
- the stereoscopic imaging optical system 1 of the present embodiment for the endoscope 113, it is possible to capture and observe images in all directions in a stereoscopic manner, and from various angles different from the conventional one.
- the site can be imaged and observed three-dimensionally.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Optics & Photonics (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Astronomy & Astrophysics (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Lenses (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Endoscopes (AREA)
Abstract
小型で高解像な観察画角の広い立体像を得ることが可能な立体撮像用光学系、立体撮像装置、及び内視鏡を提供する。 立体撮像用光学系(1)は、物体側から順に、互いに平行かつ離間した前群中心軸(Cf1、Cf2)を中心とする第1及び第2前群(Gf1、Gf2)を有する前群(Gf)と、単一の後群中心軸(Cb)を中心とする後群(Gb)とを備え、前記後群(Gb)は、物体側の後1群(Gb1)と、像側の後2群(Gb2)と、後1群(Gb1)と後2群(Gb2)の間に配置され、前記各前群中心軸(Cf1、Cf2)を含む面に直交し、前記後群中心軸(Cb)を含む面に対して、互いに面対称に配置され、前記後群中心軸(Cb)に対して偏向した第1及び第2開口中心(CS1、CS2)を中心とする第1及び第2開口(S1、S2)及び第1及び第2偏向群(Gv1、Gv2)と、を有する。
Description
本発明は、立体撮像用光学系、立体撮像装置、及び内視鏡に関する。
従来、立体視用に視差の異なる2つの画像を略同一の平面上に結像させて撮像する方法が開示されている(特許文献1乃至4参照)。
特許文献1乃至3に記載された技術は、物体側が2光軸で、像側が1光軸の光学系で構成されている。また、特許文献4に記載された技術は、物体から像まで2光軸で構成されている。これらの技術は、どちらも近年の高解像化に対応することができていないものである。
本発明は、上述した事情に鑑みてなされたものであって、小型で高解像な観察画角の広い立体像を得ることが可能な立体撮像用光学系、立体撮像装置、及び内視鏡を提供することを目的としている。
本発明の一実施形態である立体撮像用光学系は、
第1前群中心軸を中心とする第1前群及び前記第1前群中心軸に平行な第2前群中心軸を中心とする第2前群を有する前群と、
前記第1前群中心軸及び前記第2前群中心軸に対して平行な単一の後群中心軸を中心とする後群と、
を物体側から像面側へ順に備え、
前記後群は、
物体側の後1群と、
像側の後2群と、
前記後1群と前記後2群の間で前記後群中心軸に対して偏向した第1開口中心を中心とする第1開口と、
前記第1前群中心軸及び前記第2前群中心軸を含む面に直交し、前記後群中心軸を含む面に対して、前記第1開口中心とは面対称に配置される第2開口中心を中心とする第2開口と、
前記後1群と前記後2群の間に配置される第1偏向群と、
前記第1前群中心軸及び前記第2前群中心軸を含む面に直交し、前記後群中心軸を含む面に対して、前記第1偏向群とは面対称に配置される第2偏向群と、
を有し、
前記第1前群を通過した第1光束の第1中心主光線は、各前記後1群、前記第1開口中心及び前記第1偏向群、及び前記後2群の前記後群中心軸から離間した位置を通過して前記像面に到達し、
前記第2前群を通過した第2光束の第2中心主光線は、各前記後1群、前記第2開口中心及び前記第2偏向群、及び前記後2群の前記後群中心軸から離間した位置を通過して前記像面に到達する
ことを特徴とする。
第1前群中心軸を中心とする第1前群及び前記第1前群中心軸に平行な第2前群中心軸を中心とする第2前群を有する前群と、
前記第1前群中心軸及び前記第2前群中心軸に対して平行な単一の後群中心軸を中心とする後群と、
を物体側から像面側へ順に備え、
前記後群は、
物体側の後1群と、
像側の後2群と、
前記後1群と前記後2群の間で前記後群中心軸に対して偏向した第1開口中心を中心とする第1開口と、
前記第1前群中心軸及び前記第2前群中心軸を含む面に直交し、前記後群中心軸を含む面に対して、前記第1開口中心とは面対称に配置される第2開口中心を中心とする第2開口と、
前記後1群と前記後2群の間に配置される第1偏向群と、
前記第1前群中心軸及び前記第2前群中心軸を含む面に直交し、前記後群中心軸を含む面に対して、前記第1偏向群とは面対称に配置される第2偏向群と、
を有し、
前記第1前群を通過した第1光束の第1中心主光線は、各前記後1群、前記第1開口中心及び前記第1偏向群、及び前記後2群の前記後群中心軸から離間した位置を通過して前記像面に到達し、
前記第2前群を通過した第2光束の第2中心主光線は、各前記後1群、前記第2開口中心及び前記第2偏向群、及び前記後2群の前記後群中心軸から離間した位置を通過して前記像面に到達する
ことを特徴とする。
本発明の一実施形態である立体撮像用光学系では、
前記第1開口と前記第1偏向群は、隣接して配置され、
前記第2開口と前記第2偏向群は、隣接して配置される。
前記第1開口と前記第1偏向群は、隣接して配置され、
前記第2開口と前記第2偏向群は、隣接して配置される。
本発明の一実施形態である立体撮像用光学系では、前記第1偏向群及び前記第2偏向群は、前記後群中心軸から離間するにつれて前記後群中心軸方向の厚みが増す光学素子からなる。
本発明の一実施形態である立体撮像用光学系では、前記光学素子は、楔プリズム形状である。
本発明の一実施形態である立体撮像用光学系では、前記第1前群及び前記第2前群は、並列配置した同一形状の凹レンズからなる。
本発明の一実施形態である立体撮像用光学系では、並列配置した前記凹レンズは、一体に形成される。
本発明の一実施形態である立体撮像用光学系は、以下の条件式(1)を満足する。
3 < fl/d <5 (1)
ただし、
flは、光学系の全長、
dは、光学系の最大外径、
である。
3 < fl/d <5 (1)
ただし、
flは、光学系の全長、
dは、光学系の最大外径、
である。
本発明の一実施形態である立体撮像用光学系では、前記第1前群中心軸と前記第2前群中心軸の間隔は、1.2mm以下である。
本発明の一実施形態である立体撮像装置は、
前記立体撮像用光学系と、
撮像素子と、
を備えることを特徴とする。
前記立体撮像用光学系と、
撮像素子と、
を備えることを特徴とする。
本発明の一実施形態である立体撮像装置は、前記撮像素子の物体側に配置されるレンチキュラーレンズを備える。
本発明の一実施形態である内視鏡は、前記立体撮像装置を備えることを特徴とする。
本発明の一実施形態である立体撮像用光学系、立体撮像装置、及び内視鏡によれば、小型で高解像な観察画角の広い立体像を得ることが可能となる。
本実施形態の立体撮像用光学系1について説明する。
図1は、本発明に係る一実施形態の立体撮像用光学系1の中心軸Cに沿ってとった断面図である。
本実施形態の立体撮像用光学系1は、第1前群中心軸Cf1を中心とする第1前群Gf1及び第1前群中心軸Cf1に平行な第2前群中心軸Cf2を中心とする第2前群Gf2を有する前群Gfと、第1前群中心軸Cf1及び前記第2前群中心軸Cf2に対して平行な単一の後群中心軸Cbを中心とする後群Gbと、を物体側から像面I側へ順に備え、後群Gbは、物体側の後1群Gb1と、像側の後2群Gb2と、後1群Gb1と後2群Gb2の間で後群中心軸Cbに対して偏向した第1開口中心CS1を中心とする第1開口S1と、第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面に対して、第1開口中心CS1とは面対称に配置される第2開口中心CS2を中心とする第2開口S2と、後1群Gb1と後2群Gb2の間に配置される第1偏向群Gv1と、第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面に対して、第1偏向群Gv1とは面対称に配置される第2偏向群Gv2と、を有し、第1前群Gf1を通過した第1光束L1の第1中心主光線Lc1は、各後1群Gb1、第1開口中心CS1及び第1偏向群Gv1、及び後2群Gb2の後群中心軸Cbから離間した位置を通過して像面Iに到達し、第2前群Gf2を通過した第2光束L2の第2中心主光線Lc2は、各後1群Gb1、第2開口中心CS2及び第2偏向群Gv2、及び後2群Gb2の後群中心軸Cbから離間した位置を通過して像面Iに到達する。
なお、第1開口中心CS1は、第1前群中心軸Cf1の延長線上に含まれてもよく、第2開口中心CS2は、第2前群中心軸Cf2の延長線上に含まれてもよい。
本実施形態の立体撮像用光学系1は、後1群Gb1及び後2群Gb2を単一の後群中心軸Cbに回転対称に形成することにより、第1前群中心軸Cf1と第2前群中心軸Cf2を接近させることが可能となる。そして、第1前群Gf1を通過した第1光束L1の第1中心主光線Lc1は、各後1群Gb1、第1開口中心CS1及び第1偏向群Gv1、及び後2群Gb2の後群中心軸Cbから離間した位置を通過して像面Iに到達し、第2前群Gf2を通過した第2光束L2の第2中心主光線Lc2は、各後1群Gb1、第2開口中心CS2及び第2偏向群Gv2、及び後2群Gb2の後群中心軸Cbから離間した位置を通過して像面Iに到達するので、後1群Gb1を通過する際に発生する収差を後2群Gb2で補正することが可能となる。
また、本実施形態の立体撮像用光学系1では、第1開口S1と第1偏向群Gv1は、隣接して配置され、第2開口S2と第2偏向群Gv2は、隣接して配置される。
第1開口S1及び第2開口S2の付近は、それぞれ第1光束L1及び第2光束L2が集まり、有効径が最も細くなる部分なので、第1偏向群Gv1及び第2偏向群Gv2の有効径を小さくすることが可能となる。また、並列して配置される第1開口S1及び第2開口S2の間の距離も短くすることが可能となり、後1群Gb1及び後2群Gb2と共に小型の後群Gbを形成することが可能となる。
図2は、本発明に係る一実施形態の立体撮像用光学系1の偏向群Gvを楔プリズムとした一例を示す図である。図3は、本発明に係る一実施形態の立体撮像用光学系1の偏向群Gvを楔プリズムとした他の例を示す図である。
本実施形態の立体撮像用光学系1では、第1偏向群Gv1及び第2偏向群Gv2は、後群中心軸Cbから離間するにつれて後群中心軸Cb方向の厚みが増す光学素子Lv1,Lv2からなる。
後2群Gb2の後群中心軸Cbの周辺を第1光束L1及び第2光束L2が通過するように構成することができ、後2群Gb2による収差補正能力を向上させることが可能となる。なお、光学素子Lv1,Lv2は、第1光学素子Lv1及び第2光学素子Lv2として別体に形成されてもよい。
また、本実施形態の立体撮像用光学系1では、光学素子Lv1,Lv2は、楔プリズム形状である。
光学素子Lv1,Lv2と楔プリズム形状とすることで、両面を平面で形成することができ、容易に加工することが可能となる。
また、本実施形態の立体撮像用光学系1では、第1前群Gf1及び第2前群Gf2は、並列配置した同一形状の凹レンズからなる。
したがって、第1光束L1及び第2光束L2が通過するそれぞれの光路で異なる像歪みが発生することを抑えることが可能となる。さらに、第1前群Gf1及び第2前群Gf2は、物体側の面が平面又は物体側に凸面で形成され、像面側の面を強い凹面で形成されるレンズを有することで、回転非対称な像歪みの発生を低減させることが可能となる。
また、本実施形態の立体撮像用光学系1では、並列配置した凹レンズは、一体に形成される。
前群Gfが一体に形成されることで、光軸間隔を狭めることができ、立体撮像用光学系1をさらに小型に形成することが可能となる。
また、本実施形態である立体撮像用光学系1は、以下の条件式(1)を満足する。
3 < fl/d <5 (1)
ただし、
flは、光学系の全長、
dは、光学系の最大外径、
である。
3 < fl/d <5 (1)
ただし、
flは、光学系の全長、
dは、光学系の最大外径、
である。
条件式(1)の下限を下回ると、立体撮像用光学系1の最大外径が大きくなり、大型化してしまう。条件式(1)の上限を上回ると、全長が長くなり、大型化してしまう。
また、本実施形態の立体撮像用光学系1では、第1前群中心軸Cf1と第2前群中心軸Cf2の間隔は、1.2mm以下である。
通常、人間が立体観察可能な最短距離は約30cmである。これより短い距離では、眼球の調節が困難となり、焦点が合わなくなる。眼幅を6cmと仮定すると、輻輳角は、6°である。輻輳角が6°以上で立体視する場合、大きさの恒常性からミニチュアの模型を見ているように感じたり、自分が巨人になったような違和感を持つ。
本実施形態のように物体に近寄って拡大観察する用途において、両眼の光軸間隔と物点距離は輻輳角で決まる。例えば、物点距離が10mmでは光軸間隔は2mm必要で、物点距離が6mmでは光軸間隔は1.2mm必要である。すなわち、物点距離が6mmまで近づいて拡大観察するためには、輻輳角6°以下となる光軸間隔1.2mmが必要となる。
以下に、本実施形態にかかる立体撮像用光学系1の実施例1~3を説明する。なお、実施例1~3の数値データは、後述する。
図4は、実施例1の立体撮像用光学系1の第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面の断面図である。図5は、実施例1の立体撮像用光学系1の第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面の断面図である。図6は、実施例1の立体撮像用光学系1の横収差図である。図7は、実施例1の立体撮像用光学系1の横収差図である。
横収差図において、中央に示された角度は、(垂直方向の画角)を示し、その画角におけるY方向(メリジオナル方向)とX方向(サジタル方向)の横収差を示す。なお、マイナスの画角は、X軸正方向を向いて右回りの角度を意味する。以下、実施例1~3の横収差図に関して同様である。
実施例1の立体撮像用光学系1は、図4に示すように、物体側から像側へ順に、第1前群中心軸Cf1を有する第1前群Gf1、及び、第1前群中心軸Cf1と並列に配置された第2前群中心軸Cf2を有する第2前群Gf2を有する前群Gfと、単一の後群中心軸Cbを有する後群Gbと、を備える。
第1前群Gf1及び第2前群Gf2を並列に配置することにより、立体観察が可能となる。
第1前群Gf1は、物体側に平面を向けた平凹負レンズLf111を有する。第2前群Gf2は、物体側に平面を向けた平凹負レンズLf211を有する。第1前群Gf1と第2前群Gf2は、同一形状で一体に形成されることが好ましい。
後群Gbは、両凹負レンズLb111と両凸正レンズLb112の接合レンズSUb11、及び、両凸正レンズLb121を有する後1群Gb1と、物体側に凸面を向けた負メニスカスレンズLb211と両凸正レンズLb212の接合レンズSUb21、及び、両凸正レンズLb221と両凹負レンズLb222の接合レンズSUb22を有する後2群Gb2と、後1群Gb1と後2群Gb2の間で後群中心軸Cbに対して偏向した第1開口中心CS1を中心とする第1開口S1と、第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面に対して、第1開口中心CS1とは面対称に配置される第2開口中心CS2を中心とする第2開口S2と、後1群Gb1と後2群Gb2の間に配置される第1偏向群Gv1と、第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面に対して、第1偏向群Gv1とは面対称に配置される第2偏向群Gv2と、を有する。
第1開口S1と第1偏向群Gv1は、隣接して配置され、第2開口S2と第2偏向群Gv2は、隣接して配置される。実施例1では、第1偏向群Gv1の物体側に第1開口S1が配置され、第2偏向群Gv2の物体側に第2開口S2が配置される。
実施例1の第1偏向群Gv1及び第2偏向群Gv2は、後群中心軸Cbから離間するにつれて後群中心軸Cb方向の厚みが増す楔プリズム形状の光学素子からなる。また、実施例1の第1偏向群Gv1及び第2偏向群Gv2を形成する楔プリズム形状の光学素子は一体に形成される。実施例1の光学素子は、物体側が後群中心軸Cbに直交する平面及び像面側が後群中心軸Cbに対して傾斜した平面で形成される。
また、像面Iの手前には、フィルタFとカバーガラスCGを配置する。
図示しない第1物体面から前群Gfの第1前群Gf1に入射した第1光束L1は、平凹負レンズLf111を通過して第1前群Gf1を射出し、後群Gbに入射する。後群Gbの後1群Gb1に入射した第1光束L1は、接合レンズSUb11、及び、両凸正レンズLb121を通過して後1群Gb1を射出し、第1開口S1を通過する。第1開口S1を通過した第1光束L1は、第1偏向群Gv1を通過して、後2群Gb2に入射する。後2群Gb2に入射した第1光束L1は、接合レンズSUb21、及び、接合レンズSUb22を通過して後2群Gb2を射出し、フィルタF及びカバーガラスCGを経て、像面Iに到達する。
図示しない第2物体面から前群Gfの第2前群Gf2に入射した第2光束L2は、平凹負レンズLf211を通過して第2前群Gf2を射出し、後群Gbに入射する。後群Gbの後1群Gb1に入射した第2光束L2は、接合レンズSUb11、及び、両凸正レンズLb121を通過して後1群Gb1を射出し、第2開口S2を通過する。第2開口S2を通過した第2光束L2は、第2偏向群Gv2を通過して、後2群Gb2に入射する。後2群Gb2に入射した第2光束L2は、接合レンズSUb21、及び、接合レンズSUb22を通過して後2群Gb2を射出し、フィルタF及びカバーガラスCGを経て、像面Iに到達する。
図8は、実施例2の立体撮像用光学系1の第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面の断面図である。図9は、実施例2の立体撮像用光学系1の第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面の断面図である。図10は、実施例2の立体撮像用光学系1の横収差図である。図11は、実施例2の立体撮像用光学系1の横収差図である。
実施例2の立体撮像用光学系1は、図8に示すように、物体側から像側へ順に、第1前群中心軸Cf1を有する第1前群Gf1、及び、第1前群中心軸Cf1と並列に配置された第2前群中心軸Cf2を有する第2前群Gf2を有する前群Gfと、単一の後群中心軸Cbを有する後群Gbと、を備える。
第1前群Gf1及び第2前群Gf2を並列に配置することにより、立体観察が可能となる。
第1前群Gf1は、物体側に平面を向けた平凹負レンズLf111を有する。第2前群Gf2は、物体側に平面を向けた平凹負レンズLf211を有する。第1前群Gf1と第2前群Gf2は、同一形状で一体に形成されることが好ましい。
後群Gbは、両凹負レンズLb111と両凸正レンズLb112の接合レンズSUb11、及び、両凸正レンズLb121を有する後1群Gb1と、物体側に凸面を向けた負メニスカスレンズLb211と両凸正レンズLb212の接合レンズSUb21、及び、両凸正レンズLb221と像面I側に凸面を向けた負メニスカスレンズLb222の接合レンズSUb22を有する後2群Gb2と、後1群Gb1と後2群Gb2の間に配置される第1偏向群Gv1と、第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面に対して、第1偏向群Gv1とは面対称に配置される第2偏向群Gv2と、後1群Gb1と後2群Gb2の間で後群中心軸Cbに対して偏向した第1開口中心CS1を中心とする第1開口S1と、第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面に対して、第1開口中心CS1とは面対称に配置される第2開口中心CS2を中心とする第2開口S2と、を有する。
第1開口S1と第1偏向群Gv1は、隣接して配置され、第2開口S2と第2偏向群Gv2は、隣接して配置される。実施例2では、第1偏向群Gv1の像面側に第1開口S1が配置され、第2偏向群Gv2の像面側に第2開口S2が配置される。
実施例2の第1偏向群Gv1及び第2偏向群Gv2は、後群中心軸Cbから離間するにつれて後群中心軸Cb方向の厚みが増す楔プリズム形状の光学素子からなる。また、実施例2の第1偏向群Gv1及び第2偏向群Gv2を形成する楔プリズム形状の光学素子は一体に形成される。実施例2の光学素子は、物体側が後群中心軸Cbに直交する平面及び像面側が後群中心軸Cbに対して傾斜した平面で形成される。
また、像面Iの手前には、フィルタFとカバーガラスCGを配置する。
図示しない第1物体面から前群Gfの第1前群Gf1に入射した第1光束L1は、平凹負レンズLf111を通過して第1前群Gf1を射出し、後群Gbに入射する。後群Gbの後1群Gb1に入射した第1光束L1は、接合レンズSUb11、及び、両凸正レンズLb121を通過して後1群Gb1を射出し、第1偏向群Gv1を通過する。第1偏向群Gv1を通過した第1光束L1は、第1開口S1を通過して、後2群Gb2に入射する。後2群Gb2に入射した第1光束L1は、接合レンズSUb21、及び、接合レンズSUb22を通過して後2群Gb2を射出し、フィルタF及びカバーガラスCGを経て、像面Iに到達する。
図示しない第2物体面から前群Gfの第2前群Gf2に入射した第2光束L2は、平凹負レンズLf211を通過して第2前群Gf2を射出し、後群Gbに入射する。後群Gbの後1群Gb1に入射した第2光束L2は、接合レンズSUb11、及び、両凸正レンズLb121を通過して後1群Gb1を射出し、第2偏向群Gv2を通過する。第2偏向群Gv2を通過した第2光束L2は、第2開口S2を通過して、後2群Gb2に入射する。後2群Gb2に入射した第2光束L2は、接合レンズSUb21、及び、接合レンズSUb22を通過して後2群Gb2を射出し、フィルタF及びカバーガラスCGを経て、像面Iに到達する。
図12は、実施例3の立体撮像用光学系1の第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面の断面図である。図13は、実施例3の立体撮像用光学系1の第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面の断面図である。図14は、実施例3の立体撮像用光学系1の横収差図である。図15は、実施例3の立体撮像用光学系1の横収差図である。
実施例3の立体撮像用光学系1は、図12に示すように、物体側から像側へ順に、第1前群中心軸Cf1を有する第1前群Gf1、及び、第1前群中心軸Cf1と並列に配置された第2前群中心軸Cf2を有する第2前群Gf2を有する前群Gfと、単一の後群中心軸Cbを有する後群Gbと、を備える。
第1前群Gf1及び第2前群Gf2を並列に配置することにより、立体観察が可能となる。
第1前群Gf1は、物体側に平面を向けた平凹負レンズLf111を有する。第2前群Gf2は、物体側に平面を向けた平凹負レンズLf211を有する。第1前群Gf1と第2前群Gf2は、同一形状で一体に形成されることが好ましい。
後群Gbは、像面I側に凸面を向けた負メニスカスレンズLb111と両凹負レンズLb112と両凸正レンズLb113の接合レンズSUb11、及び、物体側に凸面を向けた負メニスカスレンズLb121と両凸正レンズLb122の接合レンズSUb12を有する後1群Gb1と、両凸正レンズLb211と像面I側に凸面を向けた負メニスカスレンズLb212の接合レンズSUb21、及び、物体側に凸面を向けた正メニスカスレンズLb221を有する後2群Gb2と、後1群Gb1と後2群Gb2の間で後群中心軸Cbに対して偏向した第1開口中心CS1を中心とする第1開口S1と、第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面に対して、第1開口中心CS1とは面対称に配置される第2開口中心CS2を中心とする第2開口S2と、後1群Gb1と後2群Gb2の間に配置される第1偏向群Gv1と、第1前群中心軸Cf1及び第2前群中心軸Cf2を含む面に直交し、後群中心軸Cbを含む面に対して、第1偏向群Gv1とは面対称に配置される第2偏向群Gv2と、を有する。
第1開口S1と第1偏向群Gv1は、隣接して配置され、第2開口S2と第2偏向群Gv2は、隣接して配置される。実施例3では、第1偏向群Gv1の物体側に第1開口S1が配置され、第2偏向群Gv2の物体側に第2開口S2が配置される。
実施例3の第1偏向群Gv1及び第2偏向群Gv2は、後群中心軸Cbから離間するにつれて後群中心軸Cb方向の厚みが増す楔プリズム形状の光学素子からなる。また、実施例3の第1偏向群Gv1及び第2偏向群Gv2を形成する楔プリズム形状の光学素子は一体に形成される。実施例3の光学素子は、物体側及び像面側の両面が後群中心軸Cbに対して傾斜した平面で形成される。
また、像面Iの手前には、フィルタFとカバーガラスCGを配置する。
図示しない第1物体面から前群Gfの第1前群Gf1に入射した第1光束L1は、平凹負レンズLf111を通過して第1前群Gf1を射出し、後群Gbに入射する。後群Gbの後1群Gb1に入射した第1光束L1は、接合レンズSUb11、及び、接合レンズSUb12を通過して後1群Gb1を射出し、第1開口S1を通過する。第1開口S1を通過した第1光束L1は、第1偏向群Gv1を通過して、後2群Gb2に入射する。後2群Gb2に入射した第1光束L1は、接合レンズSUb21、及び、正メニスカスレンズLb221を通過して後2群Gb2を射出し、フィルタF及びカバーガラスCGを経て、像面Iに到達する。
図示しない第2物体面から前群Gfの第2前群Gf2に入射した第2光束L2は、平凹負レンズLf211を通過して第2前群Gf2を射出し、後群Gbに入射する。後群Gbの後1群Gb1に入射した第2光束L2は、接合レンズSUb11、及び、接合レンズSUb12を通過して後1群Gb1を射出し、第2開口S2を通過する。第2開口S2を通過した第2光束L2は、第2偏向群Gv2を通過して、後2群Gb2に入射する。後2群Gb2に入射した第2光束L2は、接合レンズSUb21、及び、正メニスカスレンズLb221を通過して後2群Gb2を射出し、フィルタF及びカバーガラスCGを経て、像面Iに到達する。
以下に、上記実施例1~実施例3の構成パラメータを示す。
座標系は、面ごとに定義される。その面が定義される座標系の原点Oから各中心軸で像面に向かう方向をZ軸正方向とする。また、同じ面上で第2前群中心軸Cf2から第1前群中心軸Cf1へ向かう方向をX軸正方向とする。さらに、Y軸正方向は、右手系の座標系で定義する。
各実施例の立体撮像用光学系1を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。
偏心面については、その面が定義される座標系の原点Oからの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、原点Oに定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。
屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、基準面からの偏心量で表わす。曲率半径に記載する“∞”は、無限大であることを示している。
本実施例で用いられる非球面データには、面データ中、非球面形状としたレンズ面に関するデータが示されている。非球面形状は、zを光の進行方向を正とした光軸とし、yを光軸と直交する方向にとると以下の式(a)にて表される。
z=(y2/r)/[1+{1-(1+K)・(y/r)2}1/2]
+A4y4+A6y6+A8y8+A10y10… (a)
z=(y2/r)/[1+{1-(1+K)・(y/r)2}1/2]
+A4y4+A6y6+A8y8+A10y10… (a)
ただし、rは近軸曲率半径、Kは円錐係数、A4、A6、A8はそれぞれ4次、6次、8次の非球面係数である。なお、記号“e”は、それに続く数値が10を底にもつ、べき指数であることを示している。例えば「1.0e-5」は「1.0×10-5」であることを意味している。
実施例1
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ 5.000
1 ∞ 0.400 1.8830 40.7
2 非球面[1] 0.400
3 ∞(仮想面) 0.000 偏心(1)
4 -12.178 0.500 1.8830 40.7
5 1.935 1.200 1.7847 25.7
6 -2.622 0.050
7 5.891 0.700 1.8830 40.7
8 -5.975 0.301
9 絞り面 0.050 偏心(2)
10 ∞ 0.400 偏心(2) 1.6477 33.8
11 ∞ 0.150 偏心(3)
12 14.172 0.400 1.9229 18.9
13 1.800 1.500 1.6516 58.5
14 -2.747 0.207
15 1.987 1.300 1.8830 40.7
16 -2.004 0.400 1.9229 18.9
17 57.910 0.129
18 ∞ 0.400 1.5163 64.1
19 ∞ 0.400 1.5163 64.1
20 ∞ 0.000
像 面 ∞
非球面[1]
曲率半径 0.536
k -7.2906e-001
偏心[1]
X 0.500 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[2]
X -0.450 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[3]
X -0.450 Y 0.000 Z 0.000
α 0.000 β -19.101 γ 0.000
仕様
基線長(入射瞳間隔) 1.0mm
画角(対角) 130°
絞り径 φ0.55mm
像の大きさ φ1.41mm(1.00×1.00)
焦点距離 0.472mm
有効Fno 3.030
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ 5.000
1 ∞ 0.400 1.8830 40.7
2 非球面[1] 0.400
3 ∞(仮想面) 0.000 偏心(1)
4 -12.178 0.500 1.8830 40.7
5 1.935 1.200 1.7847 25.7
6 -2.622 0.050
7 5.891 0.700 1.8830 40.7
8 -5.975 0.301
9 絞り面 0.050 偏心(2)
10 ∞ 0.400 偏心(2) 1.6477 33.8
11 ∞ 0.150 偏心(3)
12 14.172 0.400 1.9229 18.9
13 1.800 1.500 1.6516 58.5
14 -2.747 0.207
15 1.987 1.300 1.8830 40.7
16 -2.004 0.400 1.9229 18.9
17 57.910 0.129
18 ∞ 0.400 1.5163 64.1
19 ∞ 0.400 1.5163 64.1
20 ∞ 0.000
像 面 ∞
非球面[1]
曲率半径 0.536
k -7.2906e-001
偏心[1]
X 0.500 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[2]
X -0.450 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[3]
X -0.450 Y 0.000 Z 0.000
α 0.000 β -19.101 γ 0.000
仕様
基線長(入射瞳間隔) 1.0mm
画角(対角) 130°
絞り径 φ0.55mm
像の大きさ φ1.41mm(1.00×1.00)
焦点距離 0.472mm
有効Fno 3.030
実施例2
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ 5.000
1 ∞ 0.500 1.8830 40.7
2 非球面[1] 0.350
3 ∞(仮想面) 0.000 偏心(1)
4 -7.102 0.400 1.8830 40.7
5 2.200 1.500 1.7618 26.5
6 -2.430 0.578
7 6.072 0.800 1.4875 70.2
8 -3.094 0.050
9 ∞ 0.500 偏心(2) 1.8830 40.7
10 ∞ 0.200 偏心(3)
11 絞り面 0.100 偏心(2)
12 5.538 0.500 1.9229 18.9
13 1.900 1.400 1.7440 44.8
14 -5.283 0.197
15 2.752 1.600 1.7847 25.7
16 -2.200 0.400 1.9229 18.9
17 -6.900 0.125
18 ∞ 0.400 偏心(4) 1.5163 64.1
19 ∞ 0.400 偏心(4) 1.5163 64.1
20 ∞ 0.000 偏心(4)
像 面 ∞ 偏心(4)
非球面[1]
曲率半径 0.413
k -9.9488e-001
偏心[1]
X 0.500 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[2]
X -0.550 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[3]
X -0.550 Y 0.000 Z 0.000
α 0.000 β -22.841 γ 0.000
偏心[4]
X -0.400 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
仕様
基線長(入射瞳間隔) 1.0mm
画角(対角) 130°
絞り径 φ0.60mm
像の大きさ φ1.41mm(1.00×1.00)
焦点距離 0.394mm
有効Fno 3.339
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ 5.000
1 ∞ 0.500 1.8830 40.7
2 非球面[1] 0.350
3 ∞(仮想面) 0.000 偏心(1)
4 -7.102 0.400 1.8830 40.7
5 2.200 1.500 1.7618 26.5
6 -2.430 0.578
7 6.072 0.800 1.4875 70.2
8 -3.094 0.050
9 ∞ 0.500 偏心(2) 1.8830 40.7
10 ∞ 0.200 偏心(3)
11 絞り面 0.100 偏心(2)
12 5.538 0.500 1.9229 18.9
13 1.900 1.400 1.7440 44.8
14 -5.283 0.197
15 2.752 1.600 1.7847 25.7
16 -2.200 0.400 1.9229 18.9
17 -6.900 0.125
18 ∞ 0.400 偏心(4) 1.5163 64.1
19 ∞ 0.400 偏心(4) 1.5163 64.1
20 ∞ 0.000 偏心(4)
像 面 ∞ 偏心(4)
非球面[1]
曲率半径 0.413
k -9.9488e-001
偏心[1]
X 0.500 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[2]
X -0.550 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[3]
X -0.550 Y 0.000 Z 0.000
α 0.000 β -22.841 γ 0.000
偏心[4]
X -0.400 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
仕様
基線長(入射瞳間隔) 1.0mm
画角(対角) 130°
絞り径 φ0.60mm
像の大きさ φ1.41mm(1.00×1.00)
焦点距離 0.394mm
有効Fno 3.339
実施例3
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ 5.400
1 ∞ 0.400 1.8830 40.7
2 非球面[1] 0.325
3 ∞(仮想面) 0.000 偏心(1)
4 -9.943 1.000 1.9229 18.9
5 -1.908 0.400 1.8830 40.7
6 2.100 1.400 1.5927 35.3
7 -3.604 0.050
8 3.582 0.500 1.8830 40.7
9 2.109 1.600 1.6516 58.5
10 -2.974 0.000
11 絞り面 0.100 偏心(2)
12 ∞ 0.400 偏心(3) 1.6516 58.5
13 ∞ 0.200 偏心(4)
14 2.947 1.500 1.5831 59.4
15 -2.000 0.500 1.9229 18.9
16 -9.018 0.617
17 2.347 1.000 1.8830 40.7
18 31.144 0.133
19 ∞ 0.400 偏心(5) 1.5163 64.1
20 ∞ 0.400 偏心(5) 1.5163 64.1
21 ∞ 0.000 偏心(5)
像 面 ∞ 偏心(5)
非球面[1]
曲率半径 0.575
k -6.6917e-001
偏心[1]
X 0.550 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[2]
X -0.550 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[3]
X -0.550 Y 0.000 Z 0.000
α 0.000 β 11.188 γ 0.000
偏心[4]
X -0.550 Y 0.000 Z 0.000
α 0.000 β -16.902 γ 0.000
偏心[5]
X -0.400 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
仕様
基線長(入射瞳間隔) 1.1mm
画角(対角) 130°
絞り径 φ0.80mm
像の大きさ φ1.41mm(1.00×1.00)
焦点距離 0.468mm
有効Fno 3.020
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ 5.400
1 ∞ 0.400 1.8830 40.7
2 非球面[1] 0.325
3 ∞(仮想面) 0.000 偏心(1)
4 -9.943 1.000 1.9229 18.9
5 -1.908 0.400 1.8830 40.7
6 2.100 1.400 1.5927 35.3
7 -3.604 0.050
8 3.582 0.500 1.8830 40.7
9 2.109 1.600 1.6516 58.5
10 -2.974 0.000
11 絞り面 0.100 偏心(2)
12 ∞ 0.400 偏心(3) 1.6516 58.5
13 ∞ 0.200 偏心(4)
14 2.947 1.500 1.5831 59.4
15 -2.000 0.500 1.9229 18.9
16 -9.018 0.617
17 2.347 1.000 1.8830 40.7
18 31.144 0.133
19 ∞ 0.400 偏心(5) 1.5163 64.1
20 ∞ 0.400 偏心(5) 1.5163 64.1
21 ∞ 0.000 偏心(5)
像 面 ∞ 偏心(5)
非球面[1]
曲率半径 0.575
k -6.6917e-001
偏心[1]
X 0.550 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[2]
X -0.550 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
偏心[3]
X -0.550 Y 0.000 Z 0.000
α 0.000 β 11.188 γ 0.000
偏心[4]
X -0.550 Y 0.000 Z 0.000
α 0.000 β -16.902 γ 0.000
偏心[5]
X -0.400 Y 0.000 Z 0.000
α 0.000 β 0.000 γ 0.000
仕様
基線長(入射瞳間隔) 1.1mm
画角(対角) 130°
絞り径 φ0.80mm
像の大きさ φ1.41mm(1.00×1.00)
焦点距離 0.468mm
有効Fno 3.020
上記実施例1~3について、要素及び条件式(1)の値を下記に示しておく。
実施例1 実施例2 実施例3
要素d 2.13 2.41 2.45
要素Lb 8.89 10.00 10.93
条件式(1)Lb/f 4.17 4.15 4.46
要素d 2.13 2.41 2.45
要素Lb 8.89 10.00 10.93
条件式(1)Lb/f 4.17 4.15 4.46
以下に、本実施形態の立体撮像用光学系1の適用例を説明する。
図16は、本実施形態の立体撮像用光学系1を立体撮像装置10として用いた例を模式的に示す図である。
本実施形態の立体撮像装置10は、立体撮像用光学系1と、撮像素子11と、を備える。撮像素子11は、立体撮像用光学系1の像面Iに配置される。そして、立体撮像用光学系1を通過した光束は、撮像素子1で結像する。したがって、的確に立体撮像することが可能となる。
また、本実施形態の立体撮像装置10は、撮像素子11の物体側にレンチキュラーレンズ12を備えてもよい。レンチキュラーレンズ12を備えることで、さらに的確に立体撮像することが可能となる。
図17は、本実施形態の立体撮像用光学系1を内視鏡先端の立体撮像用光学系1として用いた例を示す図である。
図17に示すように、内視鏡110の先端の立体撮像用光学系1として本実施形態にかかる立体撮像用光学系1を用いた例を示すための図である。図17(a)は、硬性内視鏡110の先端に本実施形態にかかる立体撮像用光学系1を取り付けて360°全方位の画像を立体的に撮像観察する例である。図17(b)にその先端の概略の構成を示す。
図18は、軟性電子内視鏡113の先端に本実施形態にかかる光学系1を同様に取り付けて、撮影された画像を、表示装置114に画像処理を施して歪みを補正して立体的に表示するようにした例である。
図18に示すように、内視鏡113に、本実施形態の立体撮像用光学系1を用いることにより、全方位の画像を立体的に撮像観察することができ、従来と異なる角度から様々な部位を立体的に撮像観察することができる。
以上、本発明の種々の実施形態について説明したが、本発明はこれらの実施形態のみに限られるものではなく、それぞれの実施形態の構成を適宜組み合わせて構成した実施形態も本発明の範疇となるものである。
1…立体撮像用光学系
Gf…前群
Gf1…第1前群
Cf1…第1前群中心軸
Gf2…第2前群
Cf2…第2前群中心軸
Gb…後群
Cb…後群中心軸
Gb1…後1群
Gb2…後2群
Gv1…第1偏向群
Gv2…第2偏向群
S1…第1開口
CS1…第1開口中心
S2…第2開口
CS2…第2開口中心
I…像面
Gf…前群
Gf1…第1前群
Cf1…第1前群中心軸
Gf2…第2前群
Cf2…第2前群中心軸
Gb…後群
Cb…後群中心軸
Gb1…後1群
Gb2…後2群
Gv1…第1偏向群
Gv2…第2偏向群
S1…第1開口
CS1…第1開口中心
S2…第2開口
CS2…第2開口中心
I…像面
Claims (11)
- 第1前群中心軸を中心とする第1前群及び前記第1前群中心軸に平行な第2前群中心軸を中心とする第2前群を有する前群と、
前記第1前群中心軸及び前記第2前群中心軸に対して平行な単一の後群中心軸を中心とする後群と、
を物体側から像面側へ順に備え、
前記後群は、
物体側の後1群と、
像側の後2群と、
前記後1群と前記後2群の間で前記後群中心軸に対して偏向した第1開口中心を中心とする第1開口と、
前記第1前群中心軸及び前記第2前群中心軸を含む面に直交し、前記後群中心軸を含む面に対して、前記第1開口中心とは面対称に配置される第2開口中心を中心とする第2開口と、
前記後1群と前記後2群の間に配置される第1偏向群と、
前記第1前群中心軸及び前記第2前群中心軸を含む面に直交し、前記後群中心軸を含む面に対して、前記第1偏向群とは面対称に配置される第2偏向群と、
を有し、
前記第1前群を通過した第1光束の第1中心主光線は、各前記後1群、前記第1開口中心及び前記第1偏向群、及び前記後2群の前記後群中心軸から離間した位置を通過して前記像面に到達し、
前記第2前群を通過した第2光束の第2中心主光線は、各前記後1群、前記第2開口中心及び前記第2偏向群、及び前記後2群の前記後群中心軸から離間した位置を通過して前記像面に到達する
ことを特徴とする立体撮像用光学系。 - 前記第1開口と前記第1偏向群は、隣接して配置され、
前記第2開口と前記第2偏向群は、隣接して配置される
請求項1に記載の立体撮像用光学系。 - 前記第1偏向群及び前記第2偏向群は、前記後群中心軸から離間するにつれて前記後群中心軸方向の厚みが増す光学素子からなる
請求項1又は2に記載の立体撮像用光学系。 - 前記光学素子は、楔プリズム形状である
請求項3に記載の立体撮像用光学系。 - 前記第1前群及び前記第2前群は、並列配置した同一形状の凹レンズからなる
請求項1乃至4のいずれか1つに記載の立体撮像用光学系。 - 並列配置した前記凹レンズは、一体に形成される
請求項5に記載の立体撮像用光学系。 - 以下の条件式(1)を満足する
請求項1乃至6のいずれか1つに記載の立体撮像用光学系。
3 < fl/d <5 (1)
ただし、
flは、光学系の全長、
dは、光学系の最大外径、
である。 - 前記第1前群中心軸と前記第2前群中心軸の間隔は、1.2mm以下である
請求項1乃至7のいずれか1つに記載の立体撮像用光学系。 - 請求項1乃至請求項8のいずれか1つに記載の立体撮像用光学系と、
撮像素子と、
を備える
ことを特徴とする立体撮像装置。 - 前記撮像素子の物体側に配置されるレンチキュラーレンズを備える
請求項9に記載の立体撮像装置。 - 請求項9又は10に記載の立体撮像装置を備える
ことを特徴とする内視鏡。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112015001381.4T DE112015001381B4 (de) | 2014-04-24 | 2015-01-28 | Stereoskopisches optisches Abbildungssystem, stereoskopisches Abbildungsgerät und Endoskop |
CN201580020494.2A CN106233182B (zh) | 2014-04-24 | 2015-01-28 | 立体摄像用光学系统、立体摄像装置以及内窥镜 |
US15/250,344 US20160370571A1 (en) | 2014-04-24 | 2016-08-29 | Stereoscopic imaging optical system, stereoscopic imaging device, and endoscope |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014089763A JP6280803B2 (ja) | 2014-04-24 | 2014-04-24 | 立体撮像用光学系、立体撮像装置、及び内視鏡 |
JP2014-089763 | 2014-04-24 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/250,344 Continuation US20160370571A1 (en) | 2014-04-24 | 2016-08-29 | Stereoscopic imaging optical system, stereoscopic imaging device, and endoscope |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015162959A1 true WO2015162959A1 (ja) | 2015-10-29 |
Family
ID=54332133
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/052263 WO2015162959A1 (ja) | 2014-04-24 | 2015-01-28 | 立体撮像用光学系、立体撮像装置、及び内視鏡 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160370571A1 (ja) |
JP (1) | JP6280803B2 (ja) |
CN (1) | CN106233182B (ja) |
DE (1) | DE112015001381B4 (ja) |
WO (1) | WO2015162959A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6280749B2 (ja) * | 2013-01-23 | 2018-02-14 | オリンパス株式会社 | 光学系、立体撮像装置、及び内視鏡 |
WO2018143218A1 (ja) * | 2017-02-02 | 2018-08-09 | オリンパス株式会社 | 内視鏡 |
JP6713019B2 (ja) | 2018-06-05 | 2020-06-24 | 富士フイルム株式会社 | 撮像レンズ及び撮像装置 |
CN108803001A (zh) * | 2018-06-14 | 2018-11-13 | 珠海康弘发展有限公司 | 一种兼容二维内窥镜的三维内窥镜系统以及内窥镜成像系统 |
CN117471655A (zh) * | 2018-12-06 | 2024-01-30 | 浙江舜宇光学有限公司 | 光学成像系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122665A (ja) * | 1994-10-27 | 1996-05-17 | Olympus Optical Co Ltd | 立体視内視鏡 |
JPH116967A (ja) * | 1997-06-13 | 1999-01-12 | Fuji Photo Optical Co Ltd | 立体視内視鏡 |
JP2001147382A (ja) * | 1999-11-19 | 2001-05-29 | Olympus Optical Co Ltd | 内視鏡用対物光学系 |
JP2003005096A (ja) * | 2001-06-27 | 2003-01-08 | Olympus Optical Co Ltd | 内視鏡装置 |
JP2010128354A (ja) * | 2008-11-28 | 2010-06-10 | Olympus Medical Systems Corp | ステレオ光学系、並びにそれを用いたステレオ計測用光学装置、ステレオ計測装置及びステレオ観察装置 |
JP2013218239A (ja) * | 2012-04-12 | 2013-10-24 | Olympus Medical Systems Corp | 立体撮像光学系及びそれを備えた内視鏡 |
JP2014021293A (ja) * | 2012-07-19 | 2014-02-03 | Olympus Medical Systems Corp | 偏向光学系及びそれを備えた内視鏡 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07122692B2 (ja) * | 1988-09-29 | 1995-12-25 | 富士写真光機株式会社 | 内視鏡用対物レンズ |
US5459605A (en) * | 1992-12-17 | 1995-10-17 | Paul S. Kempf | 3-D endoscope apparatus |
US5976071A (en) * | 1994-11-29 | 1999-11-02 | Asahi Kogaku Kogyo Kabushiki Kaisha | Stereoscopic endoscope |
US6104426A (en) * | 1996-03-23 | 2000-08-15 | Street; Graham S. B. | Stereo-endoscope |
DE10027166B4 (de) * | 1999-05-31 | 2007-03-08 | Pentax Corp. | Stereoskopmikroskop |
US6682478B2 (en) * | 2001-02-08 | 2004-01-27 | Olympus Optical Co., Ltd. | Endoscope apparatus with an insertion part having a small outer diameter which includes and object optical system |
US7170677B1 (en) * | 2002-01-25 | 2007-01-30 | Everest Vit | Stereo-measurement borescope with 3-D viewing |
KR100817881B1 (ko) * | 2006-03-06 | 2008-03-31 | 진 호 정 | 입체 영상 촬영 렌즈계 |
ES2296537B1 (es) * | 2006-10-05 | 2009-07-24 | Gema Active Business Solutions, S.L. | Sistema para el inventario y localizacion de objetos. |
IL188169A (en) * | 2006-12-18 | 2011-06-30 | Visionsense Ltd | High resolution endoscope |
US8107170B2 (en) * | 2008-11-19 | 2012-01-31 | Olympus Corporation | Objective optical system |
JP5253126B2 (ja) * | 2008-12-12 | 2013-07-31 | 日東光学株式会社 | レンズシステムおよび表示装置 |
US20140296866A1 (en) * | 2009-06-18 | 2014-10-02 | Endochoice, Inc. | Multiple Viewing Elements Endoscope Having Two Front Service Channels |
WO2011049195A1 (ja) * | 2009-10-23 | 2011-04-28 | オリンパスメディカルシステムズ株式会社 | 立体撮影用対物光学系および内視鏡 |
WO2012017684A1 (ja) * | 2010-08-06 | 2012-02-09 | パナソニック株式会社 | レンズユニット |
WO2012114278A2 (en) * | 2011-02-22 | 2012-08-30 | Sendyne Corp. | High precision algorithmically assisted voltage divider with fault detection |
US9883788B2 (en) * | 2011-09-13 | 2018-02-06 | Visionsense Ltd. | Proximal high definition endoscope |
EP2806301A4 (en) * | 2012-01-18 | 2015-08-19 | Olympus Medical Systems Corp | OPTICAL ARRANGEMENT FOR A STEREOSCOPIC ENDOSCOPE |
EP2958482B1 (en) * | 2013-02-19 | 2020-06-24 | Steris Instrument Management Services, Inc. | Endoscope with pupil expander |
US9565421B2 (en) * | 2014-11-25 | 2017-02-07 | Harold O. Hosea | Device for creating and enhancing three-dimensional image effects |
IL236418A (en) * | 2014-12-23 | 2016-07-31 | Visionsense Ltd | Stereo endoscope with tiltable, rotatable view |
-
2014
- 2014-04-24 JP JP2014089763A patent/JP6280803B2/ja active Active
-
2015
- 2015-01-28 CN CN201580020494.2A patent/CN106233182B/zh not_active Expired - Fee Related
- 2015-01-28 DE DE112015001381.4T patent/DE112015001381B4/de not_active Expired - Fee Related
- 2015-01-28 WO PCT/JP2015/052263 patent/WO2015162959A1/ja active Application Filing
-
2016
- 2016-08-29 US US15/250,344 patent/US20160370571A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08122665A (ja) * | 1994-10-27 | 1996-05-17 | Olympus Optical Co Ltd | 立体視内視鏡 |
JPH116967A (ja) * | 1997-06-13 | 1999-01-12 | Fuji Photo Optical Co Ltd | 立体視内視鏡 |
JP2001147382A (ja) * | 1999-11-19 | 2001-05-29 | Olympus Optical Co Ltd | 内視鏡用対物光学系 |
JP2003005096A (ja) * | 2001-06-27 | 2003-01-08 | Olympus Optical Co Ltd | 内視鏡装置 |
JP2010128354A (ja) * | 2008-11-28 | 2010-06-10 | Olympus Medical Systems Corp | ステレオ光学系、並びにそれを用いたステレオ計測用光学装置、ステレオ計測装置及びステレオ観察装置 |
JP2013218239A (ja) * | 2012-04-12 | 2013-10-24 | Olympus Medical Systems Corp | 立体撮像光学系及びそれを備えた内視鏡 |
JP2014021293A (ja) * | 2012-07-19 | 2014-02-03 | Olympus Medical Systems Corp | 偏向光学系及びそれを備えた内視鏡 |
Also Published As
Publication number | Publication date |
---|---|
DE112015001381T5 (de) | 2016-12-01 |
CN106233182A (zh) | 2016-12-14 |
US20160370571A1 (en) | 2016-12-22 |
DE112015001381B4 (de) | 2019-03-14 |
CN106233182B (zh) | 2018-11-13 |
JP2015210291A (ja) | 2015-11-24 |
JP6280803B2 (ja) | 2018-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6280749B2 (ja) | 光学系、立体撮像装置、及び内視鏡 | |
JP6261566B2 (ja) | 立体撮像光学系、立体撮像装置及び内視鏡 | |
JP6205369B2 (ja) | 対物レンズ及びそれを備えた観察装置 | |
JP5893468B2 (ja) | 撮像レンズおよび撮像装置 | |
JP2016001209A (ja) | 接眼レンズおよび撮像装置 | |
JP6280803B2 (ja) | 立体撮像用光学系、立体撮像装置、及び内視鏡 | |
JP2014174390A (ja) | 結像光学系、立体撮像装置、及び内視鏡 | |
JP2017026801A (ja) | 撮像レンズおよび撮像装置 | |
JP2017142363A (ja) | 広角レンズ | |
JP6827173B2 (ja) | レンズ系および該レンズ系を含むカメラシステム | |
JP5587017B2 (ja) | ファインダー用接眼レンズ | |
WO2019093377A1 (ja) | 撮像レンズ系及び撮像装置 | |
JP6426063B2 (ja) | 撮像レンズおよび撮像装置 | |
JP6150717B2 (ja) | 立体撮像光学系、立体撮像装置及び内視鏡 | |
US20090310230A1 (en) | Transmitting optical element and optical system using the same | |
WO2017033234A1 (ja) | 撮像装置 | |
JP2018004724A (ja) | 撮像レンズおよび撮像装置 | |
JP6000823B2 (ja) | 光学素子、光学系、立体撮像装置、及び内視鏡 | |
JP5197578B2 (ja) | 光学装置 | |
JP6873741B2 (ja) | 撮像装置 | |
JP2015034925A (ja) | 接眼レンズ系および画像観察装置 | |
JP2017044733A (ja) | 撮像レンズおよび撮像装置 | |
JP2017044732A (ja) | 撮像レンズおよび撮像装置 | |
JP2016053631A (ja) | 光学素子、光学系及びそれを用いた内視鏡 | |
JP2014228619A (ja) | 結像光学系、撮像装置、及び内視鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15783676 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015001381 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15783676 Country of ref document: EP Kind code of ref document: A1 |