WO2018143218A1 - 内視鏡 - Google Patents

内視鏡 Download PDF

Info

Publication number
WO2018143218A1
WO2018143218A1 PCT/JP2018/003032 JP2018003032W WO2018143218A1 WO 2018143218 A1 WO2018143218 A1 WO 2018143218A1 JP 2018003032 W JP2018003032 W JP 2018003032W WO 2018143218 A1 WO2018143218 A1 WO 2018143218A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
illumination
optical system
endoscope
imaging optical
Prior art date
Application number
PCT/JP2018/003032
Other languages
English (en)
French (fr)
Inventor
菅武志
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2018143218A1 publication Critical patent/WO2018143218A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an endoscope.
  • a stereoscopic observation system uses a method of imaging two stereoscopic images with different parallaxes formed on an imaging surface of an imaging device on substantially the same plane (see, for example, Patent Documents 1 and 2). And in the structure of a prior art, in order to obtain two images with different parallax, at least a part of the optical system has two different optical systems.
  • flare may occur in the region between the two optical systems. Such flare is undesirable because it degrades the quality of the observed image.
  • One of the causes of flare is the layout of the illumination lens, that is, the light distribution characteristic.
  • Patent Document 1 the positional relationship between the illumination lens and the imaging optical system is not considered at all. For this reason, flare occurs.
  • Patent Document 2 discloses a configuration including a common lens, a left-eye imaging lens, and a right-eye imaging lens as a lens configuration of the imaging optical system.
  • the common lens is disposed on the tip side (object side).
  • the left-eye imaging lens and the right-eye imaging lens are arranged in parallel, and parallax is generated by this arrangement (see FIGS. 2 and 3).
  • Two illumination lenses are arranged in the parallax direction (see FIG. 3).
  • Patent Document 2 does not mention at all the description regarding the layout of the illumination lens, for example, the effect of such a layout and the purpose of adopting such a layout.
  • the present invention has been made in view of the above, and by appropriately setting the layout of the illumination lens and the imaging optical system, it is possible to reduce flare generated in the boundary region between the two concave portions of the imaging optical system.
  • An object is to provide an endoscope.
  • an endoscope is disposed at an insertion portion, a distal end portion located at the distal end of the insertion portion, and the distal end portion.
  • An imaging optical system an image is formed by the imaging optical system, three-dimensional information is acquired based on the image, and the imaging optical system has a lens formed by one optical member closest to the object side.
  • the lens has two concave surface portions, and at least one illumination lens is disposed in the vicinity of a line connecting the centers of the two concave surface portions.
  • the present invention has an effect that it is possible to provide an endoscope that can reduce flare generated in a boundary region between two concave surfaces of the imaging optical system by appropriately setting the layout of the illumination lens and the imaging optical system.
  • FIG. 1 It is a figure which shows the structure of the front-end
  • (A) is a figure which shows a mode that a flare generate
  • (B) is a figure which shows a mode that the flare generate
  • (C) is a figure which shows a mode that a flare does not generate
  • (A), (b) is a figure explaining the reflected light from the object with respect to an imaging optical system, and the magnitude of flare, respectively. It is a figure which shows the structure of the front-end
  • FIG. 8 is a diagram illustrating a schematic configuration of an electronic endoscope system 9 including the endoscope 4 according to the embodiment.
  • the electronic endoscope system 9 includes an endoscope 4 and an in vitro device 7.
  • the endoscope 4 includes an insertion unit 3, an operation unit 2, a connection cord unit 5, and a connector unit 6.
  • the extracorporeal device 7 includes a power supply device, a video processor (not shown) that processes a video signal from the endoscope 4, and a display unit 8 that displays the video signal from the video processor on a monitor.
  • the insertion portion 3 is an elongated member that is flexible and can be inserted into a patient's body cavity.
  • the distal end rigid portion 1 is located at the distal end of the insertion portion 3.
  • the distal end hard portion 1 is a distal end portion made of a hard member.
  • a user (not shown) can perform various operations using an angle knob or the like provided in the operation unit 2.
  • connection cord portion 5 is extended from the operation portion 2.
  • the connection cord portion 5 is connected to the in vitro device 7 via the connector portion 6.
  • the connection cord unit 5 communicates a power supply voltage signal from a power supply device or a video processor, a drive signal from an image sensor, and the like to an imaging system (not shown) built in the distal end rigid unit 1 and from the imaging system.
  • the video signal is communicated to the video processor.
  • the video processor in the in-vitro device 7 can be connected to peripheral devices (not shown) such as a video printer and a recording device.
  • the video processor can perform predetermined signal processing on the video signal from the imaging system and display an endoscopic image on the display screen (monitor) of the display unit 8.
  • the endoscope 4 of the present embodiment is not limited to the configuration in which the insertion portion 3 has flexibility.
  • a rigid endoscope in which the insertion portion 3 is not bent may be used.
  • FIG. 1 shows a configuration 100 in which the distal end portion (the distal rigid portion 1) of the endoscope 4 (FIG. 8) according to the first embodiment is viewed from the object side.
  • the endoscope 4 of the present embodiment has an imaging optical system 10.
  • An optical image of the object is formed by the imaging optical system 10. Based on this optical image, three-dimensional information is acquired.
  • the acquired stereoscopic information is used, for example, for stereoscopic observation of the object, calculation of the size of the object, and calculation of the distance from the tip to the object. If the distance from the tip of each point on the object surface can be calculated, the height and depth on the object surface can be calculated.
  • the endoscope 4 of the present embodiment includes an insertion portion 3, a distal end portion located at the distal end of the insertion portion 3, and an imaging optical system 10 disposed at the distal end portion.
  • the lens L1 formed of one optical member is provided on the object side, and the lens L1 includes two concave surface portions L11 and L12, and a line LN1 connecting the centers C1 and C2 of the two concave surface portions L11 and L12. In the vicinity, at least one illumination lens 11, 12 is arranged.
  • it is only necessary that at least one illumination lens is disposed at the distal end portion.
  • the insertion portion 3 is formed with a channel 15 for inserting a treatment tool or the like.
  • the centers of the illumination lenses 11 and 12 are located within an angle of ⁇ 45 degrees from the line LN1.
  • the origin of the angle is the midpoint C3 of the line LN1 connecting the centers C1 and C2 of the two concave portions L11 and L12.
  • the centers C1 and C2 of the two concave surface portions L11 and L12 are positioned within ⁇ 45 degrees from the angle ⁇ a and ⁇ b from the line LN1. That is, as indicated by the alternate long and short dash line, it is preferable that the illumination lenses 11 and 12 are disposed in the region between the line LN2 and the line LN3, respectively. Thereby, flare can be reduced. This point will be described later with reference to FIGS.
  • the positive / negative of the angle may be, for example, positive in the upward direction (counterclockwise) from the line LN1 and negative in the downward direction (clockwise) from the line LN1 with reference to the line LN1.
  • the method of taking the positive and negative angles is not limited to this, and may be arbitrarily determined.
  • the two illumination lenses 11 and 12 are provided, and the two illumination lenses are arranged on the opposite sides with the imaging optical system 10 as the center.
  • the illumination lens 11 may be disposed on one side and the illumination lens 12 may be disposed on the other side across a predetermined straight line.
  • the predetermined straight line is a straight line passing through the center of the imaging optical system 10. The distance from one point on the predetermined straight line to the center C1 of the concave surface portion L11 is equal to the distance from this point to the center C2 of the concave surface portion L12.
  • tip part has the illumination lenses 11 and 12, and the center of the illumination lens 12 with the largest illumination light quantity is made into two concave-surface parts L11, It is desirable to locate in the vicinity of the line LNa connecting the centers of L12.
  • the illumination light quantity of the illumination lens 11 is made smaller than the illumination light quantity of the illumination lens 12 by making the diameter of the illumination lens 11 smaller than the diameter of the illumination lens 12. Thereby, flare reduction is performed.
  • the three illumination lenses 11, 12, and 13 have two illumination lenses 11, 12, and 13.
  • the angle from the line LN1 is arranged within ⁇ 45 degrees, and the two illumination lenses 11 and 12 are arranged on opposite sides with the imaging optical system 10 as the center.
  • the distance R3 between the other illumination lens 13 different from the two illumination lenses 11 and 12 and the imaging optical system 10 may be longer than the distances R1 and R2 between the two illumination lenses 11 and 12 and the imaging optical system 10. desirable.
  • the angle ⁇ 3 (angle formed by the line LN1 and the line LNc) of the other illumination lens 13 is ⁇ 45 degrees or more, and the distance R3 is longer than the distances R1 and R2 of the illumination lenses 11 and 12. . Thereby, flare can be reduced.
  • FIG. 2 shows a lens cross-sectional configuration of the imaging optical system 10 of the endoscope 4 according to the present embodiment.
  • This embodiment is an imaging optical system used for imaging an endoscope for stereoscopic observation, and the most object side lens L1 is a lens L1 of one optical member having two concave surface portions L11 and L12. An intermediate region between the two concave portions L11 and L12 is formed in a sharp shape.
  • the stereoscopic observation optical system generates two optical images having parallax with each other.
  • the first optical system LNS1 forms an image for the right eye
  • the second optical system LNS2 is for the left eye. Form an image.
  • the lens L1 is the most object side lens and is formed of one optical member having two concave portions L11 and L12.
  • the lenses L2, L3, L4, L5, and L6 are lenses for imaging.
  • a filter F1 which is a parallel plate, is disposed on the image side of the lens L2.
  • An aperture stop S is disposed on the image side of the filter F1.
  • a cover glass CG which is a parallel plate, is bonded to the imaging surface of an imaging element (not shown).
  • the numerical data of the imaging optical system 10 is shown below. Symbols r are the radii of curvature of the lens surfaces, d is the spacing between the lens surfaces, nd is the refractive index of the d-line of each lens, and ⁇ d is the Abbe number of each lens. S is an aperture stop.
  • 3A, 3B, and 3C show a cross-sectional configuration of the lens L1 closest to the object side. Each figure shows a state in which an object is illuminated with an illumination lens, and light reflected from the illuminated object is incident on the lens L1. As described above, in the lens L1 closest to the object side, a sharp intermediate region is formed between the concave surface portion L11 and the concave surface portion L12.
  • 4A and 4B are diagrams for explaining the object OBJ close to the imaging optical system 10 and the occurrence of flare, respectively.
  • FIG. 3A shows a case where a bright spot is located at the first position on the object plane.
  • the first position is the position of the bright spot Lx shown in FIG.
  • the light RAY1 from the bright luminescent spot is incident on the intermediate region.
  • the light RAY1 is totally reflected by the concave surface portion L12, totally reflected by the concave surface portion L11, and further reflected by a plane.
  • the light RAY1 reflected by the plane passes through the concave portion L11 and reaches the image plane. As a result, flare occurs.
  • FIG. 3B shows a case where a bright spot is located at the second position on the object plane.
  • the second position is the position of the bright spot Ly shown in FIG.
  • the light RAY2 from the bright luminescent spot is totally reflected by the concave portion L12 and further reflected by a plane. Since the light RAY2 reflected by the plane does not pass through the concave portion L11, it does not reach the image plane. Therefore, flare does not occur.
  • FIG. 3C shows a case where a bright spot is located at the third position on the object plane.
  • the third position is a position opposite to the bright spot Ly shown in FIG. 4A with the axis of the tip rigid portion 1 interposed therebetween.
  • the light RAY3 from the bright luminescent spot is refracted through the concave surface portion L12 and travels and becomes a normal imaging light beam. That is, the light RAY3 is not totally reflected by the concave surface portion L12. Therefore, flare does not occur.
  • 4A and 4B are diagrams for explaining the object OBJ close to the imaging optical system 10 and the occurrence of flare, respectively.
  • FIG. 4A shows the case of close-up observation.
  • the end surface of the distal end rigid portion 1 of the endoscope is directed toward the object OBJ so as to face the planar object OBJ.
  • FIG. 4B shows a configuration in which the distal end rigid portion 1 is viewed from the object side.
  • the two concave portions L11 and L12 of the imaging optical system 10 are arranged side by side in the y direction.
  • the solid line indicates the case where the illumination lens is arranged on the y-axis.
  • a broken line indicates a case where the illumination lens is arranged on the x-axis.
  • Two concave surface portions L11 and L12 are arranged at the center of the distal end hard portion 1. Therefore, the illumination lens is disposed at a position away from the center of the distal end hard portion 1.
  • the bright spot Lx is a bright bright spot generated on the x axis.
  • the bright spot Ly is a bright bright spot generated on the y-axis. Both the bright spot Lx and the bright spot Ly are located at the same distance from the center of the distal end hard portion 1.
  • the distance between the object OBJ and the illumination lens is narrow.
  • the distance between the object OBJ and the illumination lens is about 3 mm to 7 mm. Therefore, the object surface near the illumination lens is illuminated brightly. As a result, bright bright spots are generated on the object plane near the illumination lens.
  • the brightness of the bright spot Lx and the brightness of the bright spot Ly are both equal.
  • the intensity of the flare generated by the bright spot Lx is higher than the intensity of the flare generated by the bright spot Ly.
  • the distance between the object OBJ and the illumination lens is narrowed.
  • the object OBJ is illuminated with brighter illumination light. Therefore, the brightness of the bright spot Lx and the brightness of the bright spot Ly are also increased.
  • the illumination lens is preferably arranged in the y direction, that is, the direction connecting the centers of the two concave portions L11 and L12.
  • FIG. 5 is a diagram illustrating a configuration 200 of the distal end portion of the endoscope according to the first embodiment.
  • the illumination lenses 11 and 12 are arranged in the vicinity of the line LN1 connecting the centers of the two concave portions L11 and L12.
  • the origin of the angle is a midpoint C3 of a line LN1 connecting the centers C1 and C2 of the two concave portions L11 and L12.
  • R1 is the distance between the illumination lens 11 and the midpoint C3 of the concave portions L11 and L12
  • R2 is the distance between the illumination lens 12 and the midpoint C3 of the concave portions L11 and L12
  • C1 is the center of the concave portion L11.
  • C2 is the center of the concave surface portion L12
  • 15 is a channel through which a treatment instrument or the like is inserted.
  • FIG. 6 is a diagram illustrating a configuration 300 of the distal end portion of the endoscope according to the second embodiment.
  • the diameter of the illumination lens 12 is made larger than the diameter of the illumination lens 11 from the viewpoint of reducing the tip diameter of the endoscope. Thereby, the illumination light quantity of the illumination lens 12 is enlarged.
  • R1 is the distance between the illumination lens 12 and the midpoint C3 of the concave surface portions L11 and L12
  • R2 is the distance between the illumination lens 11 and the midpoint C3 of the concave surface portions L11 and L12
  • 15 is a treatment tool or the like. It is a channel to do.
  • ⁇ 1 is an angle formed by the line LNa connecting the midpoint C3 and the illumination lens 12 and the line LN1
  • ⁇ 2 is an angle formed by the line LNb connecting the midpoint C3 and the illumination lens 11 and the line LN1. .
  • the angle ⁇ 2 of the illumination lens 11 is ⁇ 45 degrees or more.
  • the illumination light quantity is made smaller than that of the illumination lens 12 by making the diameter of the illumination lens 11 smaller than that of the illumination lens 12. Thereby, flare reduction is performed.
  • FIG. 7 is a diagram illustrating a configuration 400 of the distal end portion of the endoscope according to the third embodiment.
  • the present embodiment has a configuration in which three illumination lenses 11, 12, and 13 are arranged in order to uniformly illuminate an object (subject) when approaching in a wide-angle visual field of 170 degrees.
  • flare is effectively reduced by making the angles ⁇ 1 and ⁇ 2 of the illumination lenses 11 and 12 within 45 degrees.
  • the angle ⁇ 3 of the illumination lens 13 is ⁇ 45 degrees or more, but flare is reduced by making the distance R3 of the illumination lens 13 longer than the distances R1 and R2 of the illumination lenses 11 and 12. That is, the bright spot position of the object OBJ generated by the illumination lens 13 is moved away from the center of the imaging lens. Thereby, the light quantity which reaches
  • R1 is the distance between the illumination lens 11 and the midpoint C3 of the concave surface portions L11 and L12
  • R2 is the distance between the illumination lens 12 and the midpoint C3 of the concave surface portions L11 and L12
  • R3 is the concave surface of the illumination lens 13 and the concave surface.
  • a distance 15 from the midpoint C3 of the parts L11 and L12, 15 is a channel through which a treatment instrument or the like is inserted.
  • ⁇ 1 is an angle formed by a line LNa connecting the middle point C3 and the illumination lens 11
  • a line LN1 is an angle formed by a line LNb connecting the middle point C3 and the illumination lens 12
  • a line LN1 and ⁇ 3 is ,
  • the endoscope described above may satisfy a plurality of configurations at the same time. This is preferable for obtaining a good endoscope. Moreover, the combination of a preferable structure is arbitrary.
  • the present invention is useful for an endoscope that can reduce flare generated in a boundary region between two concave portions of an imaging optical system by appropriately setting the layout of the illumination lens and the imaging optical system. is there.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Astronomy & Astrophysics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Endoscopes (AREA)
  • Lenses (AREA)

Abstract

照明レンズと撮像光学系とのレイアウトを適切に設定することで、撮像光学系の2つの凹面部の境界領域で発生するフレアを低減できる内視鏡を提供すること。 内視鏡4は、挿入部3と、挿入部3の先端に位置する先端部と、先端部に配置された撮像光学系10と、を有し、撮像光学系10によって像が形成され、像に基づいて、立体情報が取得され、撮像光学系10は、最も物体側に、1つの光学部材で形成されたレンズL1を有し、レンズL1は、2つの凹面部L11、L12を有し、2つの凹面部L11、L12の中心C1、C2を結ぶ線LN1の近傍に、少なくとも一つの照明レンズ11、12が配置されている。

Description

内視鏡
 本発明は、内視鏡に関するものである。
 従来、立体観察システムが知られている。立体観察システムは、立体視用に視差の異なる2つの画像を略同一の平面上の撮像素子の撮像面に結像させて撮像する方法を用いている(例えば、特許文献1、2参照)。そして、従来技術の構成では、視差の異なる2つの画像を得るために、光学系の少なくとも一部に2つの異なる光学系を有している。
特開2003-5096号公報 特許第4016459号公報
 従来技術の構成では、2つの光学系の間の領域においてフレアが発生することがある。このようなフレアは、観察画像の質を劣化させるため好ましくない。フレアの発生要因の一つとして、照明レンズのレイアウト、即ち配光特性がある。
 特許文献1では、照明レンズと撮像光学系との位置関係は、全く考慮されていない。このため、フレアが発生してしまう。
 特許文献2には、撮像光学系のレンズ構成として、共通のレンズと、左眼用撮像レンズと、右眼用撮像レンズと、を備えた構成が開示されている。共通のレンズは、先端側(物体側)に配置されている。左眼用撮像レンズと右眼用撮像レンズは並列に配置され、この配置により視差が生じる(図2、図3参照)。また、2つの照明レンズが、視差方向に配置されている(図3参照)。しかしながら、特許文献2には、照明レンズのレイアウトに関する記載、例えば、このようなレイアウトによる作用効果や、このようなレイアウトを採用した目的については全く触れられていない。
 本発明は、上記に鑑みてなされたものであって、照明レンズと撮像光学系とのレイアウトを適切に設定することで、撮像光学系の2つの凹面部の境界領域で発生するフレアを低減できる内視鏡を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る内視鏡は、挿入部と、挿入部の先端に位置する先端部と、先端部に配置された撮像光学系と、を有し、撮像光学系によって像が形成され、像に基づいて、立体情報が取得され、撮像光学系は、最も物体側に、1つの光学部材で形成されたレンズを有し、レンズは、2つの凹面部を有し、2つの凹面部の中心を結ぶ線の近傍に、少なくとも一つの照明レンズが配置されていることを特徴とする。
 本発明は、照明レンズと撮像光学系とのレイアウトを適切に設定することで、撮像光学系の2つの凹面部の境界領域で発生するフレアを低減できる内視鏡を提供できるという効果を奏する。
第1実施形態に係る内視鏡の先端部の構成を示す図である。 第1実施形態に係る内視鏡の撮像光学系のレンズ断面構成を示す図である。 (a)は、撮像光学系の最も物体側のレンズでフレアが発生する様子を示す図である。(b)は、撮像光学系の最も物体側のレンズで発生したフレアが問題にならない様子を示す図である。(c)は、撮像光学系の最も物体側のレンズでフレアが発生しない様子を示す図である。 (a)、(b)は、撮像光学系に対する物体からの反射光と、フレアの大小をそれぞれ説明する図である。 第1実施例に係る内視鏡の先端部の構成を示す図である。 第2実施例に係る内視鏡の先端部の構成を示す図である。 第3実施例に係る内視鏡の先端部の構成を示す図である。 本実施形態に係る内視鏡を含む内視鏡システムの外観構成を示す図である。
 以下に、実施形態に係る撮像装置を図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。
(第1実施形態)
 第1実施形態に係る内視鏡4の全体構成について説明する。図8は、実施形態に係る内視鏡4を有する電子内視鏡システム9の概略構成を示す図である。電子内視鏡システム9は、内視鏡4と生体外装置7とから構成されている。内視鏡4は、挿入部3と、操作部2と、接続コード部5及びコネクタ部6と、を有する。また、生体外装置7は、電源装置と、内視鏡4からの映像信号を処理するビデオプロセッサ(不図示)と、ビデオプロセッサからの映像信号をモニターに表示する表示ユニット8と、を有する。
 挿入部3は、細長で患者の体腔内へ挿入可能な可撓性を有する部材で構成されている。挿入部3の先端には、先端硬性部1が位置している。先端硬性部1は、硬性の部材で構成された先端部である。使用者(不図示)は、操作部2に設けられているアングルノブ等により、諸操作を行うことができる。
 また、操作部2からは、接続コード部5が延設されている。接続コード部5は、コネクタ部6を介して生体外装置7に接続されている。
 また、接続コード部5は、電源装置やビデオプロセッサからの電源電圧信号及び撮像素子からの駆動信号等を先端硬性部1に内蔵される撮像系(不図示)に通信すると共に、撮像系からの映像信号をビデオプロセッサに通信する。なお、生体外装置7内のビデオプロセッサは、図示しないビデオプリンタ、記録装置等の周辺機器に接続可能である。ビデオプロセッサは、撮像系からの映像信号に対して所定の信号処理を施して、表示ユニット8の表示画面(モニター)上に内視鏡画像を表示できる。
 また、本実施形態の内視鏡4は、挿入部3が可撓性を有する構成に限られない。例えば、挿入部3が曲がらない硬性内視鏡でも良い。
 図1は、第1実施形態に係る内視鏡4(図8)の先端部(先端硬性部1)を物体側から見た構成100を示している。
 本実施形態の内視鏡4は、撮像光学系10を有する。撮像光学系10によって、物体の光学像が形成される。この光学像に基づいて、立体情報が取得される。取得された立体情報は、例えば、物体の立体観察、物体の大きさの算出、及び先端部から物体までの距離の算出に用いられる。物体表面の各点について、先端部からの距離が算出できると、物体面における高さや深さを算出することができる。
 本実施形態の内視鏡4は、挿入部3と、挿入部3の先端に位置する先端部と、先端部に配置された撮像光学系10と、を有し、撮像光学系10は、最も物体側に、1つの光学部材で形成されたレンズL1を有し、レンズL1は、2つの凹面部L11、L12を有し、2つの凹面部L11、L12の中心C1、C2を結ぶ線LN1の近傍に、少なくとも一つの照明レンズ11、12が配置されていることを特徴とする。このように、本実施形態の内視鏡4では、少なくとも一つの照明レンズが、先端部に配置されていれば良い。
 また、挿入部3には、処置具等を挿通するためのチャンネル15が形成されている。
 また、本実施形態の好ましい態様によれば、図1に示すように、照明レンズ11、12の中心は、線LN1からの角度が±45度以内に位置していることが望ましい。但し、角度の原点は、2つの凹面部L11、L12のそれぞれの中心C1、C2を結ぶ線LN1の中点C3とする。
 具体的には、図1に示すように、2つの凹面部L11、L12のそれぞれの中心C1、C2は、線LN1からの角度αa、αbが±45度以内に位置していることが望ましい。即ち、一点鎖線で示すように、線LN2と線LN3との間の領域に、それぞれ照明レンズ11、12が配置されていることが好ましい。これにより、フレアを低減できる。この点については、図3、図4を用いて後述する。
 ここで、角度の正負は、例えば、線LN1を基準として、線LN1から上側方向(反時計周り)を正、線LN1から下側方向(時計周り)を負としても良い。角度の正負の取り方は、これに限られず任意に決めて良い。
 また、本実施形態の好ましい態様によれば、2つの照明レンズ11、12を有し、2つの照明レンズは、撮像光学系10を中心にして、互いに反対側に配置されていることが望ましい。
 これにより、特に線LN1方向において、被写体をより均一に照明できる。照明レンズのレイアウトとしては、例えば、所定の直線を挟んで、一方の側に照明レンズ11を配置し、他方の側に照明レンズ12を配置すれば良い。所定の直線は、撮像光学系10の中心を通る直線である。所定の直線上の一点から凹面部L11の中心C1までの距離と、この点から凹面部L12の中心C2までの距離は等しい。
 また、本実施形態の好ましい態様によれば、図6に示すように、先端部は、照明レンズ11、12を有し、最も照明光量が大きい照明レンズ12の中心を、2つの凹面部L11、L12の中心を結ぶ線LNaの近傍に位置させることが望ましい。
 本実施形態の内視鏡4では、照明レンズ11の直径を、照明レンズ12の直径よりも小さくすることで、照明レンズ11の照明光量を、照明レンズ12の照明光量よりも小さくしている。これにより、フレア低減を行っている。
 また、本実施形態の好ましい態様によれば、図7に示すように、3つの照明レンズ11、12、13を有し、3つの照明レンズ11、12、13のうち2つの照明レンズ11、12の中心は、線LN1からの角度が±45度以内に配置されており、かつ、2つの照明レンズ11、12は、撮像光学系10を中心にして、互いに反対側に配置されており、2つの照明レンズ11、12とは異なる他の1つの照明レンズ13と撮像光学系10との距離R3は、2つの照明レンズ11、12と撮像光学系10との距離R1、R2よりも長いことが望ましい。
 これにより、他の照明レンズ13の角度α3(線LN1と線LNcとのなす角度)は-45度以上であり、かつ照明レンズ11、12の距離R1、R2よりも距離R3を長くしている。これにより、フレアを低減できる。
 次に、内視鏡4が有する撮像光学系10について説明する。図2は、本実施形態に係る内視鏡4の撮像光学系10のレンズ断面構成を示している。
 本実施形態は、立体観察用の内視鏡の撮像に使用する撮像光学系であり、最も物体側のレンズL1は2つの凹面部L11、L12を有する1つの光学部材のレンズL1であり、2つの凹面部L11、L12の中間領域は尖った形状に形成されている。
 立体観察用の光学系は、互いに視差を有する2つの光学像を生成する、例えば、第1の光学系LNS1は右眼用の画像を結像し、第2の光学系LNS2は左眼用の画像を結像する。
 レンズL1は、最も物体側のレンズであり、2つの凹面部L11、L12を有する1つの光学部材で形成されている。レンズL2、L3、L4、L5、L6は、撮像のためのレンズである。レンズL2の像側には、平行平板であるフィルターF1が配置されている。フィルターF1の像側には、明るさ絞りSが配置されている。不図示の撮像素子の撮像面には、平行平板であるカバーガラスCGが接合されている。
 以下に、上記撮像光学系10の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、ndは各レンズのd線の屈折率、νdは各レンズのアッベ数である。また、Sは明るさ絞りである。
撮像光学系10の数値実施例
単位  mm
 
面データ
  面番号            r         d          nd       νd
    1               ∞       0.2500    1.88815    40.76    
    2              0.5920    0.5400        
    3             -2.6449    0.8360    1.85504    23.78    
    4             -2.8388    0.1900         
    5               ∞       0.4000    1.49557    75.00    
    6               ∞       0.0807         
    7(S)            ∞       0.1338         
    8              3.6829    0.6446    1.83932    37.16    
    9             -2.2104    0.3395        
    10             1.5521    0.7800    1.69979    55.53    
    11            -0.8302    0.3523    1.93429    18.90    
    12           -35.2793    0.3040       
    13             1.5026    0.5000    1.51825    64.14    
    14              ∞       0.3500    1.50700    63.26    
撮像面              ∞ 
 
 全系焦点距離f1         0.41769 
 視差  1.1mm
 次に、フレアの発生に関して説明する。図3(a)、(b)、(c)は、最も物体側のレンズL1の断面構成を示している。各図は、照明レンズで物体を照明し、照明された物体から反射した光がレンズL1に入射する状態を示している。上述のように、最も物体側のレンズL1では、凹面部L11と凹面部L12との間に、尖った形状の中間領域が形成されている。
 図4(a)、(b)は、撮像光学系10に対して近接した物体OBJと、フレアの発生をそれぞれ説明する図である。
 図3(a)は、物体面上の第1の位置に、輝点が位置している場合を示している。第1の位置は、図4(a)に示す輝点Lxの位置である。この場合、照明された物体から反射した光のうち、明るい輝点からの光RAY1は、中間領域に入射する。光RAY1は、凹面部L12で全反射し、凹面部L11で全反射し、さらに平面で反射する。平面で反射した光RAY1は、凹面部L11を通過して、像面に到達する。これにより、フレアが発生してしまう。
 図3(b)は、物体面上の第2の位置に、輝点が位置している場合を示している。第2の位置は、図4(a)に示す輝点Lyの位置である。この場合、照明された物体から反射した光のうち、明るい輝点からの光RAY2は、凹面部L12で全反射し、さらに平面で反射する。平面で反射した光RAY2は、凹面部L11を通過しないので、像面に到達しない。そのため、フレアは発生しない。
 図3(c)は、物体面上の第3の位置に、輝点が位置している場合を示している。第3の位置は、先端硬性部1の軸を挟んで、図4(a)に示す輝点Lyと反対の位置である。この場合、物体から反射した光のうち、明るい輝点からの光RAY3は、凹面部L12を屈折して進行するため通常の結像光線となる。すなわち、光RAY3は、凹面部L12で全反射されない。そのため、フレアは発生しない。
 次に、照明レンズ11、12と、撮像光学系10の最も物体側のレンズL1と、のレイアウトに起因するフレアについて説明する。
 図4(a)、(b)は、撮像光学系10に対して近接した物体OBJと、フレアの発生をそれぞれ説明する図である。
 図4(a)は、近接観察の場合を示している。平面形状の物体OBJに対向するように、内視鏡の先端硬性部1の端面が物体OBJに向けられている。図4(b)は、先端硬性部1を物体側から見た構成を示している。撮像光学系10の2つの凹面部L11、L12は、y方向に並んで配置されている。
 実線は、照明レンズがy軸上に配置されている場合を示している。破線は、照明レンズがx軸上に配置されている場合を示している。先端硬性部1の中心には、2つの凹面部L11、L12が配置されている。よって、照明レンズは、先端硬性部1の中心から離れた位置に配置されている。
 輝点Lxと輝点Lyを用いて説明する。輝点Lxは、x軸上に発生した明るい輝点である。輝点Lyは、y軸上に発生した明るい輝点である。輝点Lxと輝点Lyは、共に、先端硬性部1の中心から等しい距離に位置している。
 例えば、消化器内視鏡での近接観察では、物体OBJと照明レンズとの間隔は狭い。例えば、物体OBJと照明レンズとの間隔は、3mm~7mm程度である。そのため、照明レンズ近傍の物体面が明るく照明される。それにより、照明レンズ近傍の物体面に明るい輝点が発生する。
 物体OBJが均一に照明されている場合、輝点Lxの明るさと輝点Lyの明るさは、共に等しい。しかしながら、輝点Lxによって生じるフレアの強度は、輝点Lyによって生じるフレアの強度よりも高い。
 図4(a)に示すように、近接観察では、物体OBJと照明レンズとの間隔が狭くなる。この場合、物体OBJは、より明るい照明光で照明される。そのため、輝点Lxの明るさと輝点Lyの明るさも、より明るくなる。
 上述のように、輝点Lxによって生じるフレアの明るさは、輝点Lyによって生じるフレアの明るさよりも明るい。よって、フレアの強度を小さくするためには、照明レンズは、y方向、すなわち、2つの凹面部L11、L12の中心を結ぶ方向に配置することが好ましい。
(第1実施例)
 第1実施例に係る内視鏡の正面から見た構成200について説明する。図5は、第1実施例に係る内視鏡の先端部の構成200を示す図である。
 本実施例は、2つの凹面部L11、L12の中心を結ぶ線LN1の近傍に、照明レンズ11、12が配置されている。
 また、角度の原点は、2つの凹面部L11、L12の中心C1、C2を結ぶ線LN1の中点C3とする。また、R1は、照明レンズ11と凹面部L11、L12の中点C3との距離、R2は、照明レンズ12と凹面部L11、L12の中点C3との距離、C1は、凹面部L11の中心、C2は、凹面部L12の中心、15は、処置具等を挿通するチャンネルである。
 以下に本実施例の諸元値を示す。
                                              
    照明レンズ11の位置      距離R1          3.5mm
                              角度α1          0度
    照明レンズ12の位置      距離R2          3.5mm
                              角度α2          0度
    レンズ直径                撮像レンズL1    3mm
                              照明レンズ11    2mm
                              照明レンズ12    2mm
    視野角                    -              140度
    観察距離                  -           7~100mm
 (第2実施例)
 第2実施例に係る内視鏡の正面から見た構成300について説明する。図6は、第2実施例に係る内視鏡の先端部の構成300を示す図である。
 本実施例は、内視鏡の先端径を小型化する観点で、照明レンズ12の径を照明レンズ11の径よりも大きくしている。これにより、照明レンズ12の照明光量を大きくしている。
 また、R1は、照明レンズ12と凹面部L11、L12の中点C3との距離、R2は、照明レンズ11と凹面部L11、L12の中点C3との距離、15は、処置具等を挿通するチャンネルである。α1は、中点C3と照明レンズ12を結ぶ線LNaと、線LN1と、のなす角度、α2は、中点C3と照明レンズ11を結ぶ線LNbと、線LN1と、のなす角度、である。
 そして、照明レンズ12の角度α1を45度以内にすることで、効果的にフレアを低減できる。
 照明レンズ11の角度α2は-45度以上である。本実施例では、照明レンズ11の直径を照明レンズ12よりも小さくすることで、照明レンズ12よりも照明光量を小さくしている。これにより、フレア低減を行っている。
 以下に本実施例の諸元値を示す。
 
    照明レンズ12の位置      距離R1          4mm
                              角度α1         40度
    照明レンズ11の位置      距離R2          4mm
                              角度α2        -60度
    レンズ直径                撮像レンズL1    3mm
                              照明レンズ12    2.5mm
                              照明レンズ11    1.5mm
    視野角                     -             140度
    観察距離                   -          7~100mm
 
 (第3実施例)
 第3実施例に係る内視鏡の正面から見た構成400について説明する。図7は、第3実施例に係る内視鏡の先端部の構成400を示す図である。
 本実施例では、170度の広角視野において、近接時に物体(被写体)を均一に照明することを目的に、3つの照明レンズ11、12、13を配置した構成を有している。
 そして、照明レンズ11、12の角度α1、α2を45度以内にすることで、効果的にフレアを低減している。また、照明レンズ13の角度α3は-45度以上であるが、照明レンズ13の距離R3を照明レンズ11、12の距離R1、R2よりも長くすることで、フレアを低減している。即ち、照明レンズ13で発生する物体OBJの輝点位置を撮像レンズ中心から遠ざけている。これにより、撮像レンズに到達する光量を下げることができ、フレアが低減される。
 また、R1は、照明レンズ11と凹面部L11、L12の中点C3との距離、R2は、照明レンズ12と凹面部L11、L12の中点C3との距離、R3は、照明レンズ13と凹面部L11、L12の中点C3との距離、15は、処置具等を挿通するチャンネルである。α1は、中点C3と照明レンズ11を結ぶ線LNaと、線LN1と、のなす角度、α2は、中点C3と照明レンズ12を結ぶ線LNbと、線LN1と、のなす角度、α3は、中点C3と照明レンズ13を結ぶ線LNcと、線LN1と、のなす角度、である。
 以下に本実施例の諸元値を示す。
  
    照明レンズ11の位置      距離R1          3.5mm
                              角度α1         10度
    照明レンズ12の位置      距離R2          3.5mm
                              角度α2         10度
    照明レンズ13の位置      距離R3          4mm
                              角度α3        -60度
    レンズ直径                撮像レンズL1    3mm
                              照明レンズ11    1.5mm
                              照明レンズ12    1.5mm
                              照明レンズ13    1.5mm
    視野角                     -             170度
    観察距離                   -          3~100mm
 なお、上述の内視鏡は、複数の構成を同時に満足してもよい。このようにすることが、良好な内視鏡を得る上で好ましい。また、好ましい構成の組み合わせは任意である。
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
 以上のように、本発明は、照明レンズと撮像光学系とのレイアウトを適切に設定することで、撮像光学系の2つの凹面部の境界領域で発生するフレアを低減できる内視鏡に有用である。
 1 先端硬性部
 2 操作部
 3 挿入部
 4 内視鏡
 5 接続コード部
 6 コネクタ部
 7 生体外装置
 8 表示ユニット
 9 電子内視鏡システム
 10 撮像光学系
 11、12、13 照明レンズ
 15 チャンネル
 100、200、300、400 正面から見た構成
 L11、L12 凹面部
 C1、C2 中心
 C3 中点
 R1、R2、R3 距離
 αa、αb、α1、α2、α3 角度
 LN1、LN2、LN3、LNa、LNb、LNc 線
 RAY1、RAY2、RAY3 光線
 Lx、Ly 輝点
 OBJ 物体
 LNS1 第1の光学系
 LNS2 第2の光学系
 AX1、AX2 光軸
 I 像面(撮像面)
 L1~L6 レンズ
 F1 フィルター
 CG カバーガラス
 S 明るさ絞り

Claims (5)

  1.  挿入部と、
     前記挿入部の先端に位置する先端部と、
     前記先端部に配置された撮像光学系と、を有し、
     前記撮像光学系によって像が形成され、
     前記像に基づいて、立体情報が取得され、
     前記撮像光学系は、最も物体側に、1つの光学部材で形成されたレンズを有し、
     前記レンズは、2つの凹面部を有し、
     前記2つの凹面部の中心を結ぶ線の近傍に、少なくとも一つの照明レンズが配置されていることを特徴とする内視鏡。
  2.  前記照明レンズの中心は、前記線からの角度が±45度以内に位置していることを特徴とする請求項1に記載の内視鏡。
     但し、前記角度の原点は、前記2つの凹面部のそれぞれの中心を結ぶ線の中点とする。
  3.  2つの前記照明レンズを有し、2つの前記照明レンズは、前記撮像光学系を中心にして、互いに反対側に配置されていることを特徴とする請求項2に記載の内視鏡。
  4.  3つの前記照明レンズを有し、
     3つの前記照明レンズのうち2つの前記照明レンズの中心は、前記線からの角度が±45度以内に配置されており、かつ、2つの前記照明レンズは、前記撮像光学系を中心にして、互いに反対側に配置されており、
     前記2つの照明レンズとは異なる他の1つの前記照明レンズと前記撮像光学系との距離は、前記2つの照明レンズと前記撮像光学系との距離よりも長いことを特徴とする請求項1に記載の内視鏡。
  5.  前記照明レンズを複数有し、最も照明光量が大きい前記照明レンズの中心を、前記2つの凹面部の中心を結ぶ線の近傍に位置させたことを特徴とする請求項1に記載の内視鏡。
PCT/JP2018/003032 2017-02-02 2018-01-30 内視鏡 WO2018143218A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017017436 2017-02-02
JP2017-017436 2017-02-02

Publications (1)

Publication Number Publication Date
WO2018143218A1 true WO2018143218A1 (ja) 2018-08-09

Family

ID=63039850

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/003032 WO2018143218A1 (ja) 2017-02-02 2018-01-30 内視鏡
PCT/JP2018/003511 WO2018143381A1 (ja) 2017-02-02 2018-02-02 内視鏡

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003511 WO2018143381A1 (ja) 2017-02-02 2018-02-02 内視鏡

Country Status (2)

Country Link
JP (2) JP6417498B1 (ja)
WO (2) WO2018143218A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809652B2 (ja) 2019-01-07 2021-01-06 日本製鉄株式会社 鋼板及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148418A (ja) * 1984-12-24 1986-07-07 Olympus Optical Co Ltd 内視鏡
JP2001218728A (ja) * 1999-12-03 2001-08-14 Asahi Optical Co Ltd 電子内視鏡
JP2007296111A (ja) * 2006-04-28 2007-11-15 Olympus Corp 内視鏡、内視鏡装置、内視鏡の組み立て方法、内視鏡装置の組み立て方法
US20080151041A1 (en) * 2006-12-21 2008-06-26 Intuitive Surgical, Inc. Stereoscopic endoscope
JP2015210291A (ja) * 2014-04-24 2015-11-24 オリンパス株式会社 立体撮像用光学系、立体撮像装置、及び内視鏡

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06208061A (ja) * 1993-01-08 1994-07-26 Olympus Optical Co Ltd 立体視内視鏡
JP2930495B2 (ja) * 1993-03-15 1999-08-03 オリンパス光学工業株式会社 立体視内視鏡装置
JP2000139820A (ja) * 1998-11-17 2000-05-23 Olympus Optical Co Ltd 内視鏡
JP4716595B2 (ja) * 2001-04-04 2011-07-06 オリンパス株式会社 内視鏡装置及び内視鏡用光学アダプタの組立て方法
JP4358494B2 (ja) * 2002-10-02 2009-11-04 オリンパス株式会社 内視鏡システム
JP4338538B2 (ja) * 2004-02-04 2009-10-07 Hoya株式会社 プリズム固定方法及び立体視硬性鏡
JP4391956B2 (ja) * 2005-03-15 2009-12-24 オリンパスメディカルシステムズ株式会社 内視鏡用挿入部及び内視鏡
JP2007068770A (ja) * 2005-09-07 2007-03-22 Pentax Corp 立体照明内視鏡システム
JP2013254124A (ja) * 2012-06-08 2013-12-19 Olympus Medical Systems Corp 立体撮像光学系及びそれを備えた内視鏡
WO2014147856A1 (ja) * 2013-03-22 2014-09-25 オリンパス株式会社 立体撮像光学系、立体撮像装置及び内視鏡
JP5942063B1 (ja) * 2014-08-22 2016-06-29 オリンパス株式会社 内視鏡装置
JP6407045B2 (ja) * 2015-01-26 2018-10-17 富士フイルム株式会社 内視鏡装置
WO2016139833A1 (ja) * 2015-03-05 2016-09-09 オリンパス株式会社 内視鏡
JP6504701B2 (ja) * 2015-05-14 2019-04-24 オリンパス株式会社 内視鏡

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61148418A (ja) * 1984-12-24 1986-07-07 Olympus Optical Co Ltd 内視鏡
JP2001218728A (ja) * 1999-12-03 2001-08-14 Asahi Optical Co Ltd 電子内視鏡
JP2007296111A (ja) * 2006-04-28 2007-11-15 Olympus Corp 内視鏡、内視鏡装置、内視鏡の組み立て方法、内視鏡装置の組み立て方法
US20080151041A1 (en) * 2006-12-21 2008-06-26 Intuitive Surgical, Inc. Stereoscopic endoscope
JP2015210291A (ja) * 2014-04-24 2015-11-24 オリンパス株式会社 立体撮像用光学系、立体撮像装置、及び内視鏡

Also Published As

Publication number Publication date
JP6560799B2 (ja) 2019-08-14
WO2018143381A1 (ja) 2018-08-09
JP6417498B1 (ja) 2018-11-07
JP2019000672A (ja) 2019-01-10
JPWO2018143381A1 (ja) 2019-02-07

Similar Documents

Publication Publication Date Title
CN105917263B (zh) 光学系统、立体摄像装置和内窥镜
JP4248771B2 (ja) 内視鏡装置
US20160195706A1 (en) Illumination optical system for endoscope
JPH11503844A (ja) ステレオビデオ内視鏡の対物レンズ系
US10105034B2 (en) Endoscope apparatus
US20200268236A1 (en) Endoscope system
WO2018211595A1 (ja) 立体視用光学系及びそれを備えた撮像装置
US10983330B2 (en) 3D video endoscope
JP6560799B2 (ja) 内視鏡
JPH0743619A (ja) ステレオ内視鏡
JP3257641B2 (ja) 立体視内視鏡装置
US11119306B2 (en) Image pickup optical system, endoscope, and image pickup apparatus
WO2021131921A1 (ja) 硬性鏡装置
US10111579B2 (en) Endoscope having an illumination system shifted with respect to an imaging system to reduce generation of heat at a front-end portion of the endoscope
CN113616142A (zh) 一种4k鼻窦镜
JP6501995B1 (ja) 撮像光学系及び内視鏡
US11933961B2 (en) Stereoscopic vision endoscope objective optical system and endoscope using the same
JPH07204158A (ja) 内視鏡
JP2013094259A (ja) 内視鏡
JP2001025035A (ja) 立体視装置及びその組み立て・分解並びに使用方法
JP2013254124A (ja) 立体撮像光学系及びそれを備えた内視鏡
WO2013035522A1 (ja) 内視鏡装置
CN116547581A (zh) 物镜光学系统、摄像装置以及内窥镜
KR20150010281A (ko) 초소형 내시경용 카메라 모듈 설계 및 제작 방법
TW201921034A (zh) 內視鏡系統

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18747503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18747503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP