WO2021214873A1 - 撮像光学系、内視鏡及び撮像装置 - Google Patents

撮像光学系、内視鏡及び撮像装置 Download PDF

Info

Publication number
WO2021214873A1
WO2021214873A1 PCT/JP2020/017213 JP2020017213W WO2021214873A1 WO 2021214873 A1 WO2021214873 A1 WO 2021214873A1 JP 2020017213 W JP2020017213 W JP 2020017213W WO 2021214873 A1 WO2021214873 A1 WO 2021214873A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
diaphragm
straight line
lens
image
Prior art date
Application number
PCT/JP2020/017213
Other languages
English (en)
French (fr)
Inventor
江口陽亮
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/017213 priority Critical patent/WO2021214873A1/ja
Publication of WO2021214873A1 publication Critical patent/WO2021214873A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an imaging optical system, an endoscope, and an imaging device.
  • the objective optical system of the endoscopic optical system has a brightness diaphragm and a flare diaphragm.
  • the perigee is magnified (close observation)
  • the object is close to the objective optical system and the object distance is shortened. Therefore, the distribution of illumination light from a plurality of illumination optical systems directly affects the distribution of illumination light in the field of view.
  • the light distribution of the illumination light is improved and made uniform by arranging a diaphragm that kicks the light beam only during magnified observation.
  • Patent Document 1 discloses a configuration in which an endoscope has a diaphragm for reducing flare.
  • the illuminance distribution of the image plane at the apogee (after the most focused distance) by the endoscope is concentric.
  • the illumination light from the illumination lens of the endoscope can be treated as a point light source.
  • the reason why the illuminance distribution is concentric is that the light distribution of the light from the point light source is concentric.
  • Medical endoscopes observe the inside of the body, so the subject is often close to the tangential direction. In this case, the amount of light from the illumination lens is saturated, causing halation. If halation occurs, it becomes impossible to observe the unevenness and color tone of the surface inside the body.
  • the distribution of the illumination light from the illumination lens is in the vertical direction (vertical direction, short side direction) of the imaging surface as compared with the horizontal direction (horizontal direction, long side direction) of the rectangular imaging surface for the endoscope user.
  • the amount of light increases. Therefore, halation is likely to occur in the vertical direction. Therefore, it is necessary to improve the susceptibility to halation in the vertical direction.
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide an imaging optical system, an imaging device, and an endoscope having good light distribution characteristics and reduced halation.
  • the image pickup optical system includes an image pickup element having a rectangular shape of a light receiving surface and an image pickup element having a rectangular shape of a light receiving surface, in order from the object side to the image side.
  • An objective optical system having a first diaphragm that blocks or attenuates a part of the dependent rays, a brightness diaphragm, and a second diaphragm that blocks or attenuates a part of the dependent rays, and has a first diaphragm.
  • the edge of the opening and the edge of the opening of the second diaphragm have a shape in which the maximum length in the first direction is longer than the maximum length in the second direction, and the first direction is the long side direction on the light receiving surface.
  • the second direction is the short side direction on the light receiving surface.
  • the endoscope according to at least some embodiments of the present invention has an imaging optical system, and the imaging optical system is the above-mentioned imaging optical system.
  • the image pickup apparatus according to at least some embodiments of the present invention has the above-mentioned image pickup optical system.
  • At least some embodiments of the present invention have the effect of being able to provide an imaging optical system, an imaging device, and an endoscope having good light distribution characteristics and reduced halation.
  • it has a rectangular diaphragm that kicks the dependent rays of the vertical angle of view according to the aspect ratio of the diaphragm, enhances the light distribution performance in the normal observation state and the magnified observation state (close observation state), and performs halation in the magnified observation state. Can be reduced.
  • FIG. 1B is a diagram showing a configuration in which the image sensor is viewed from the object side.
  • C is a diagram showing a configuration (front configuration) in which the first diaphragm is viewed from the object side.
  • D is a diagram showing a configuration in which the second diaphragm is viewed from the object side. It is a lens sectional view of the imaging optical system which concerns on 1st Embodiment.
  • A) is an optical path diagram of the imaging optical system according to the first embodiment.
  • (B) is a figure which shows the structure of the 1st diaphragm.
  • (C) is a figure which shows the structure of the 2nd diaphragm. It is a figure which shows the illuminance in the image plane. It is a figure which shows the illuminance in the image plane. It is a figure which shows the amount of emitted light at the position of an image height.
  • (A), (b), and (c) show the first diaphragm or the second diaphragm front configuration, respectively. It is a figure which shows the schematic structure of the endoscope system which has an endoscope. The front configuration of the tip layout of the endoscope is shown. The front configuration of the second diaphragm is shown. It is a lens sectional view of the imaging optical system which concerns on Example 1.
  • FIG. (A) shows the front surface configuration of the first diaphragm in Examples 1, 2 and 3.
  • (B) shows the front surface configuration of the second diaphragm in Examples 1, 2 and 3.
  • (C) shows the front view of the first diaphragm in Example 4.
  • (D) is the front configuration of the second diaphragm in the fourth embodiment.
  • (A) shows the front view of the first diaphragm in Example 5.
  • (B) shows the front view of the second diaphragm in Example 5.
  • (C) and (d) show the front configuration of the first diaphragm in Example 6.
  • (E) shows the front surface configuration of the second diaphragm in the sixth embodiment.
  • (A), (b), (c), (d), (e), (f), (g), (h), and (i) are modified examples of the first diaphragm or the second diaphragm, respectively. Is shown.
  • This is a configuration example of the tip layout of the endoscope.
  • This is another configuration example of the tip layout of the endoscope. It is a lens sectional view of an illumination optical system. It is a lens sectional view of the imaging optical system which does not have a focusing function.
  • FIG. 1A is a diagram showing a lens cross-sectional configuration of the imaging optical system 10 according to the first embodiment.
  • the image pickup optical system 10 includes an image pickup element IS having a rectangular shape of a light receiving surface (ISA in FIG. 1B) and a first diaphragm that blocks or attenuates a part of dependent light rays in order from the object side to the image side. It has an objective optical system OBL having FrS, a brightness diaphragm S, and a second diaphragm ReS that blocks or attenuates a part of dependent rays.
  • the edge 31 of the opening 30 of the first diaphragm FrS and the edge 41 of the opening 40 of the second diaphragm ReS are the maximum lengths in the first direction H (Dh in FIG. 1C, FIG. 1D).
  • Dh) has a shape longer than the maximum length of the second direction V (Dv in FIG. 1 (c), Dv in FIG. 1 (d)).
  • the first direction H is the long side direction on the light receiving surface ISa
  • the second direction V is the short side direction on the light receiving surface ISa.
  • the objective optical system OBL is an objective optical system for an endoscope.
  • the objective optical system OBL has one or more rectangular (rectangular) first diaphragms FrS in the optical system on the object side with respect to the position of the brightness diaphragm S.
  • the objective optical system OBL has one or more second diaphragms ReS having a rectangular shape (rectangular shape) in the optical system on the image side with respect to the position of the brightness diaphragm S.
  • the first diaphragm FrS and the second diaphragm ReS effectively block or attenuate the upper dependent ray and the lower dependent ray with respect to the main ray from the off-axis object point, respectively.
  • the upper side means the upper direction of the paper surface of FIG. 1 (a)
  • the lower side means the lower direction of the paper surface of FIG. 1 (a).
  • the first diaphragm FrS is arranged in the optical system on the object side of the brightness diaphragm S.
  • the second diaphragm ReS is arranged in the optical system on the image side of the brightness diaphragm S. Therefore, it is possible to block or attenuate the light rays at different positions for each image height.
  • the first diaphragm FrS and the second diaphragm ReS block or attenuate the upper dependent rays and the lower dependent rays, which are the light rays required to form an image, respectively.
  • the flare aperture blocks or attenuates unnecessary light rays that cause flare (hereinafter, appropriately referred to as "kicking").
  • the first diaphragm FrS and the second diaphragm ReS of the present disclosure block or attenuate a part of the normal light rays required for imaging. Therefore, good and uniform light distribution characteristics on the image plane I can be realized, and halation can be reduced.
  • the first aperture FrS and the second aperture ReS are not limited to one aperture each.
  • the first diaphragm FrS and the second diaphragm ReS may each have two or more diaphragms.
  • the objective optical system OBL has a front group FG, a brightness diaphragm S, and a rear group RG in this order from the object side to the image side.
  • the front group FG has a first aperture FrS and
  • the rear group RG has a positive first bonding lens CL1, a positive second bonding lens CL2, and a second diaphragm ReS in order from the object side to the image side, and has the following conditional expression (1). ) And (2) are satisfied.
  • 1 ⁇ f2d / f3t ⁇ 5 (1) 1.2 ⁇ L / Ls ⁇ 2 (2) here, f2d is the focal length of the first junction lens CL1.
  • L is the total length of the optical system of the objective optical system OBL.
  • Ls is the length from the tip surface of the objective optical system OBL on the most object side to the diaphragm that kicks the most light beam of the second diaphragm ReS.
  • Conditional expression (1) defines an appropriate ratio between f2d and f3t.
  • the conditional expression (1) is a conditional expression for appropriately setting the arrangement of the refractive power (power) in the rear group RG.
  • the refractive power of the first junction lens CL1 (three-element junction lens) in the rear group becomes small. Therefore, the dependent ray from the off-axis object point cannot be parallel to the optical axis AX. If the dependent ray cannot be parallel to the optical axis AX, the second aperture ReS cannot effectively kick the dependent ray from the off-axis object point.
  • the dependent ray is close to parallel to the axis AX and far from the image plane I.
  • Conditional expression (2) defines an appropriate ratio of L and Ls.
  • the second diaphragm ReS gets too close to the brightness diaphragm S. Therefore, it is not possible to kick a ray at a position where the ray height is different for each image height.
  • the total length L of the objective optical system OBL will be further described.
  • a conventional endoscope system in order to increase the depth of field, a configuration is disclosed in which a self-portrait is divided into two and imaged, and the two acquired images are combined by image processing (for example, international). See Publication No. 2017/073292).
  • image processing for example, international
  • two optical paths having different optical path lengths are imaged on one image sensor, and image synthesis is performed.
  • the total length L of the optical system of the objective optical system OBL is defined by the optical path having the longer optical path length.
  • the present disclosure can be applied to an endoscope system in which a self-portrait is divided into two and the acquired two images are combined by image processing in order to expand the depth of field.
  • Hv1 is the maximum height from the optical axis AX of the objective optical system OBL to the edge 31 of the opening 30 of the first diaphragm FrS in the first direction H.
  • Hv2 is the maximum height from the optical axis AX of the objective optical system OBL to the first direction H from the optical axis AX of the second diaphragm ReS to the edge 41 of the opening 40 of the second diaphragm ReS.
  • H1 is the height of the lower dependent ray of the vertical image high ray at the position of the first diaphragm FrS.
  • H2 is the height of the upper dependent ray of the vertical image high ray at the position of the second diaphragm ReS.
  • FIG. 3A shows H1 and H2.
  • FIG. 3B shows Hv1.
  • FIG. 3 (c) shows Hv2.
  • Conditional expression (3) defines an appropriate ratio between Hv1 and H1.
  • the dependent ray can be effectively kicked by the first diaphragm FrS.
  • the objective optical system OBL of the endoscope is a retrofocus type that usually has a large negative refractive power on the lens L1 on the most object side, and is a wide-angle optical system. Therefore, the diameter of the luminous flux is small in the front group FG.
  • the main ray may be kicked in consideration of the variation in the dimensions and the arrangement position of the first aperture FrS.
  • the diameter of the luminous flux is large because it is the refractive power for forming an image.
  • the second aperture ReS cannot sufficiently kick the dependent light beam from the off-axis object point. Therefore, good and uniform light distribution characteristics on the image plane I cannot be obtained.
  • the second aperture ReS kicks the main ray from the off-axis object point.
  • Ov is the first direction H in which the illuminance of the image plane is 50% of the illuminance at the center position of the image plane I from the lens surface on the most object side of the objective optical system OBL to the position where the focus is most.
  • Image height, Oh is the second direction V in which the illuminance of the image plane is 50% of the illuminance of the center position of the image plane I from the lens surface on the most object side of the objective optical system OBL to the position where the focus is most.
  • the illuminance at the center position of the image plane means the illuminance including the illuminance of the illumination light from the illumination optical system.
  • FIG. 4 is a diagram showing Ov and Oh.
  • the illuminance decreases as the density increases to white, gray, and black.
  • Conditional expression (5) defines an appropriate ratio of Ov and Oh described above.
  • the illuminance distribution on the image plane I can be made into an elliptical shape with a horizontally long paper surface.
  • the illuminance distribution on the image plane I in the field of view can be made uniform according to the shape of the field of view.
  • Iv is the illuminance on the image plane I when the longitudinally dependent rays are kicked by the first diaphragm FrS and the second diaphragm ReS.
  • Ih is the illuminance on the image plane I when the laterally dependent rays are kicked by the first diaphragm FrS and the second diaphragm ReS. Is.
  • Conditional expression (6) defines an appropriate ratio of Iv and Ih described above.
  • FIG. 5 is a diagram showing Iv and Ih. In FIG. 5, the illuminance decreases as the density increases to white, gray, and black.
  • the vertical image height (image height in the second direction V) is smaller than the horizontal image height (image height in the first direction H) within the display range.
  • halation is likely to occur.
  • Halation can be suppressed by setting the brightness distribution of the horizontal image height and the vertical image height to satisfy the conditional expression (6).
  • the light distribution of the illumination light can be improved and made uniform during magnified observation.
  • Lv is the amount of emitted light at the position of the image height in the second direction V from the lens surface on the most object side of the objective optical system OBL to the most focused position.
  • Lh is the amount of emitted light at the position of the image height in the first direction H from the lens surface on the most object side of the objective optical system OBL to the most focused position. Is.
  • Conditional expression (7) defines an appropriate ratio of Lv and Lh described above.
  • FIG. 6 is a diagram showing Lv and Lh. In FIG. 6, the amount of emitted light decreases as the density increases to white, gray, and black.
  • the light distribution of the illumination optical system (see 21 and 22 in FIG. 9) can be appropriately set.
  • Conditional expression (8) defines an appropriate ratio of S1v and S2v described above.
  • FIG. 7A shows the maximum length of the first aperture FrS in the second direction V.
  • FIG. 7B shows the maximum length of the second aperture ReS in the second direction V.
  • Dv is parallel to the second direction V, and is parallel to the length between the edges 31 of the opening 30 of the first diaphragm FrS on a straight line passing through the optical axis AX of the objective optical system OBL, or the second direction V.
  • Dh is parallel to the first direction H and is parallel to the maximum length of the opening 30 of the first diaphragm FrS or the second direction H on a straight line passing through the optical axis AX of the objective optical system OBL.
  • the endoscopic optical system has two or more rectangular diaphragms before and after the brightness diaphragm S in the objective optical system OBL, so that the upper dependent rays and the lower dependent rays with respect to the main ray can be effectively kicked.
  • the first aperture FrS is placed in the front group FG.
  • the second aperture ReS is placed in the rear group RG.
  • each diaphragm has a linear edge (see LN10 and LN20 in FIG. 7C), not only the maximum image height but also the light rays for each image height can be effectively kicked.
  • Conditional expression (9) defines an appropriate ratio of Dv and Dh described above. That is, as shown in FIG. 1B, the aspect ratio at the opening 30 of the first aperture FrS and the aspect ratio at the opening 40 of the second aperture ReS are defined.
  • the display area of the image sensor IS of the endoscope is usually in the shape of a horizontally long paper surface (ISA in FIG. 1 (b)). Therefore, it is necessary to effectively kick the light beam according to the aspect ratio of the image sensor IS.
  • the vertical (first direction H) opening becomes too narrow with respect to the display area of the image sensor IS. Therefore, even the main ray from the off-axis object point is kicked.
  • the length between the edges 31 of the opening 30 of the first diaphragm FrS on a straight line parallel to the second direction V and passing through the optical axis AX of the objective optical system OBL. (Dv in FIG. 1C) is parallel to the second direction V, and is the length between the edges 41 of the opening 40 of the second diaphragm ReS on a straight line passing through the optical axis AX of the objective optical system OBL. It is desirable that it is longer than Dv) in FIG. 1 (d).
  • the first lens on the most object side has a large refractive power. Therefore, the height of the light rays refracted by the first lens becomes high. With such a configuration, the first diaphragm FrS can efficiently kick the subordinate ray without kicking the main ray.
  • the front group FG has a first lens group G1 including a first aperture FrG and a positive second lens group G2 in order from the object side to the image side. .. Focusing is preferably performed by moving the second lens group G2 along the optical axis AX.
  • the first bonding lens CL1 is a bonding lens in which a positive lens, a negative lens, and a positive lens are bonded.
  • the second bonded lens CL2 is preferably a bonded lens in which a positive lens and a negative lens are bonded.
  • chromatic aberration of magnification can be corrected appropriately, and the optical path length can be made shorter than that of a two-lens junction lens and a single lens.
  • the endoscope according to the present embodiment has an imaging optical system, and the imaging optical system is the above-mentioned imaging optical system.
  • FIG. 8 is a diagram showing a schematic configuration of an endoscope system having an endoscope.
  • the endoscope system is composed of an endoscope 4 and an in vitro device 7.
  • the endoscope 4 has an insertion unit 3, an operation unit 2, a connection cord unit 5, and a connector unit 6.
  • the in vitro device 7 includes a power supply device, a video processor (not shown) that processes the video signal from the endoscope 4, and a display unit 8 that monitors and displays the video signal from the video processor.
  • the insertion portion 3 is made of an elongated member having flexibility that can be inserted into the body cavity of the patient, and the tip portion is a rigid tip rigid portion 1.
  • the user (not shown) can perform various operations by using an angle knob or the like provided on the operation unit 2.
  • connection cord unit 5 extends from the operation unit 2.
  • the connection cord portion 5 is connected to the in vitro device 7 via the connector 6.
  • connection cord unit 5 communicates the power supply voltage signal from the power supply device and the video processor, the drive signal from the image sensor, and the like to the image pickup system (not shown) built in the tip rigid portion 1, and also from the image pickup system. Communicate the video signal to the video processor.
  • the video processor in the in vitro device 7 can be connected to peripheral devices such as a video printer and a recording device (not shown). The video processor can perform predetermined signal processing on the video signal from the imaging system and display the endoscopic image on the display screen (monitor) of the display unit 8.
  • the endoscope 4 of the present embodiment is not limited to the configuration in which the insertion portion 3 has flexibility.
  • a rigid endoscope in which the insertion portion 3 does not bend may be used.
  • FIG. 9 shows the configuration of the tip layout 100 when the endoscope 4 of FIG. 8 is viewed from the direction of arrow A.
  • FIG. 10 shows the front configuration of the second diaphragm ReS.
  • the endoscope 4 further includes a first illumination optical system 21 and a second illumination optical system 22. At least a part of the front end surface of the first illumination optical system 21 is arranged in different regions on one side AA of the specific region CC and the second direction V on the front end surface of the endoscope.
  • At least a part of the tip surface of the second illumination optical system 22 is arranged in different regions in the specific region CC and the other side BB in the second direction V.
  • the specific region CC is a region between a first straight line LN1 parallel to the first direction H and another second straight line LN2 parallel to the first direction H.
  • the first straight line LN1 passes through the optical axis AX of the objective optical system OBL and passes through the first intersection CP1 between the straight line LNh parallel to the second direction V and the edge OBL1 of the objective optical system OBL.
  • the second straight line LN2 passes through the optical axis AX of the objective optical system OBL and passes through the second intersection CP2 between the straight line LNh parallel to the second direction V and the edge OBL1 of the objective optical system OBL.
  • a is a straight line LN1a passing through the optical axis AX of the objective optical system OBL and the optical axis AX21 of the first illumination optical system 21 in the tip layout 100 (tip surface) of the endoscope 4 and in the second direction V. It is an angle formed by a parallel straight line LNv.
  • b is in the straight line LN2a passing through the optical axis AX of the objective optical system OBL and the optical axis AX22 of the second illumination optical system 22 and in the second direction V in the tip layout 100 (tip surface) of the endoscope 4. It is an angle formed by a parallel straight line LNv.
  • c is a straight line LN3a passing through a second point P2 on the edge 41 of the aperture 40 of the diaphragm ReS that kicks the most light rays after the brightness diaphragm S and the optical axis AX of the objective optical system OBL.
  • d is a straight line LN4a passing through the first point P1 on the edge of the aperture 40 of the diaphragm ReS that kicks the most light rays after the brightness diaphragm S and the optical axis AX of the objective optical system OBL. It is an angle formed by a fourth straight line LN4 parallel to the second direction V.
  • the first point P1 is a second direction H than the third straight line LN3 parallel to the first direction H and passing through the optical axis AX of the objective optical system OBL among the intersections of the two lines forming the edge 41. It exists on one side AA.
  • the first point P1 exists at a position parallel to the second direction H and different from that on the fourth straight line LN4 passing through the optical axis AX of the objective optical system OBL.
  • the first point P1 is the point where the length of the perpendicular line LN4b drawn on the third straight line LN3 is the longest.
  • the second point P2 exists on the opposite side BB with respect to the second direction V with respect to the third straight line LN3 passing through the optical axis AX of the first direction Hno objective optical system OBL.
  • the second point P2 exists at a position different from that on the fourth straight line LN4.
  • the second point P2 is the point where the length LN3b of the perpendicular line drawn on the third straight line LN3 is the largest.
  • Conditional expression (10) defines an appropriate ratio of a and c.
  • Conditional expression (11) defines an appropriate ratio of b to d.
  • the illuminance distribution on the image plane I in the visual field can be made uniform according to the visual field shape.
  • non-uniformity of illuminance distribution due to a plurality of illumination optical systems does not occur.
  • the brightness in the screen cannot be made uniform due to the uneven distribution of the illumination light of the illumination optical system in the magnified observation state.
  • the image pickup apparatus of this embodiment has the above-mentioned image pickup optical system (see 60 in FIG. 1 (a)).
  • Example 1 The imaging optical system according to the first embodiment will be described.
  • FIG. 11 is a cross-sectional view of the lens of the imaging optical system 11 according to this embodiment.
  • the image pickup optical system 11 includes the above-mentioned objective optical system OBL, a brightness diaphragm S, and an image pickup element IS.
  • the objective optical system OBL has a front group FG, a brightness diaphragm S, and a rear group RG in this order from the object side to the image side.
  • the front group FG has a first aperture FrS.
  • the rear group RG has a positive first bonding lens CL1, a positive second bonding lens CL2, and a second diaphragm ReS in order from the object side to the image side.
  • the front group FG has a first lens group G1 including a first aperture FrS and a positive second lens group G2 in order from the object side to the image side. Focusing is performed by moving the second lens group G2 along the optical axis AX. Further, the image sensor IS has a rectangular shape on the light receiving surface.
  • the front group FG has a positive or negative refractive power
  • the rear group RG has a positive refractive power.
  • the front group FG has a negative refractive power
  • the rear group RG has a positive refractive power.
  • the first lens group G1 has a flat concave negative lens L1 with the plane facing the object side, a first diaphragm (front diaphragm) FrS, a parallel flat plate F1, a biconcave negative lens L2, and a flat surface on the image side. It has a directed plano-convex positive lens L3. Both concave negative lenses L2 and plano-convex positive lenses L3 are joined.
  • the second lens group G2 has a positive meniscus lens L4 with a convex surface facing the object side.
  • the positive second group G2 moves to the image side (image plane I) along the optical axis AX when focusing from the normal observation state to the magnified observation state.
  • the third lens group G3 includes a biconvex positive lens L5, a plano-concave negative lens L6 with a flat surface facing the image side, a plano-convex positive lens L7 with a flat surface facing the object side, a biconvex positive lens L8, and an image. It has a negative meniscus lens L9 with a convex surface directed to the side, and parallel flat plates F2, F3, F4, F5, and F6.
  • a brightness diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • a second diaphragm (rear diaphragm) ReS is arranged on the image side of the parallel flat plate F3.
  • the biconvex positive lens L5, the negative plano-concave lens L6, and the plano-convex positive lens L7 are joined to form a bonded lens CL1.
  • the biconvex positive lens L8 and the negative meniscus lens 9 are joined to form a bonded lens CL2.
  • the parallel flat plates F2 and F3 are joined.
  • the parallel flat plates F4, F5 and F6 are joined.
  • the parallel flat plate in the present disclosure includes an optical element in which a prism element that deflects an optical path is developed in a straight line.
  • a parallel flat plate cover glass CG is attached to the front surface of the image sensor IS.
  • the parallel flat plate F1 is a filter for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • Example 2 Example 3, Example 4, Example 5
  • the lens cross-sectional configurations of the imaging optical systems 12, 13, 14, and 15 according to the second, third, fourth, and fifth embodiments are the same as those of the first embodiment. Therefore, the duplicate description will be omitted.
  • Example 6 The imaging optical system 16 according to the sixth embodiment will be described.
  • FIG. 12 is a cross-sectional view of the lens of the imaging optical system 16 according to this embodiment.
  • the image pickup optical system 16 includes the above-mentioned objective optical system OBL, a brightness diaphragm S, and an image pickup element IS.
  • the objective optical system OBL has a front group FG, a brightness diaphragm S, and a rear group RG in this order from the object side to the image side.
  • the front group FG has two first apertures, FrS1 and FrS2.
  • the rear group RG has a positive first bonding lens CL1, a positive second bonding lens CL2, and a second diaphragm ReS in order from the object side to the image side.
  • the front group FG has a first lens group G1 including the first diaphragms FrS1 and FrS2 and a positive second lens group G2 in order from the object side to the image side. Focusing is performed by moving the second lens group G2 along the optical axis AX. Further, the image sensor IS has a rectangular shape on the light receiving surface.
  • the first lens group G1 includes a plano-concave negative lens L1 with the plane facing the object side, a first diaphragm FrS1 (front diaphragm 1), a parallel flat plate F1, a first diaphragm FrS2 (front diaphragm 2), and the like. It has a biconcave negative lens L2 and a plano-convex positive lens L3 with a plane facing the image side. Both concave negative lenses L2 and plano-convex positive lenses L3 are joined.
  • the two first diaphragms FrS1 and FrS2 are arranged on the object side surface and the image side surface of the parallel flat plate F1.
  • the second lens group G2 has a positive meniscus lens L4 with a convex surface facing the object side.
  • the positive second lens group G2 moves to the image side (image plane I) along the optical axis AX when focusing from the normal observation state to the magnified observation state.
  • the third lens group G3 includes a biconvex positive lens L5, a plano-concave negative lens L6 with a flat surface facing the image side, a plano-convex positive lens L7 with a flat surface facing the object side, a biconvex positive lens L8, and an image. It has a negative meniscus lens 9 with a convex surface directed to the side, parallel flat plates F2, F3, F4, F5, and F6.
  • a brightness diaphragm S is arranged between the second lens group G2 and the third lens group G3.
  • the second diaphragm ReS is arranged on the image side of the parallel flat plate F3.
  • the biconvex positive lens L5, the plano-concave negative lens L6, and the plano-convex positive lens L7 are joined to form the joined lens CL1.
  • the biconvex positive lens L8 and the negative meniscus lens L9 are joined to form a bonded lens CL2.
  • a parallel flat plate cover glass CG is attached to the front surface of the image sensor IS.
  • the parallel flat plate F1 is a filter for cutting a specific wavelength, for example, 1060 nm of a YAG laser, 810 nm of a semiconductor laser, or an infrared region.
  • Example 6 Unit mm Object distance 14.3 Surface data Surface number r d ne ⁇ d 1 ⁇ 0.35 1.88815 40.76 2 1.218 0.627 3 (Front aperture 1) ⁇ 0.03 4 ⁇ 0.493 5 ⁇ 0.4 1.49557 75.01 6 (Front aperture 2) ⁇ 0.03 7 ⁇ 0.3 8 -8.112 0.35 1.88815 40.76 9 1.381 1.6 1.85504 23.78 10 ⁇ Variable 11 1.425 0.7 1.48915 70.23 12 1.485 Variable 13 (Brightness aperture) ⁇ 0.02 14 ⁇ 0.04 15 2.665 0.75 1.64129 55.38 16 -1.122 0.3 1.88815 40.76 17 ⁇ 0.47 1.70442 30.13 18 -2.366 0.03 19 4.622 0.71 1.48915 70.23 20 -2.366 0.34 1.97189 17.47 21 -4.16 0.144 22 ⁇ 0.1 2.31649 18.72 23 ⁇ 0.2 1.51825 64.14 24 ⁇ 0.02
  • FIG. 13A shows the front configuration (configuration viewed from the object side) of the first diaphragm FrS in Examples 1, 2 and 3.
  • FIG. 13B shows the front configuration (configuration viewed from the object side) of the second diaphragm ReS in Examples 1, 2 and 3.
  • FIG. 13C shows the front configuration (configuration viewed from the object side) of the first diaphragm FrS in the fourth embodiment.
  • FIG. 13D shows the front configuration (configuration viewed from the object side) of the second diaphragm ReS in the fourth embodiment.
  • FIG. 14A shows the front configuration (configuration viewed from the object side) of the first diaphragm FrS in the fifth embodiment.
  • FIG. 14B shows the front configuration (configuration viewed from the object side) of the second diaphragm ReS in the fifth embodiment.
  • FIG. 14C shows the front configuration (configuration viewed from the object side) of the first diaphragm FrS1 in the sixth embodiment.
  • FIG. 14D shows the front configuration (configuration viewed from the object side) of the first diaphragm FrS2 in the sixth embodiment.
  • FIG. 14E shows the front configuration (configuration viewed from the object side) of the second diaphragm ReS in the sixth embodiment.
  • the numerical examples of the first diaphragm and the second diaphragm of each embodiment are shown below.
  • Example 1 1.34 1.92 0.78 1.5
  • Example 2 1.46 1.85 0.75 1.5
  • Example 3 1.34 1.85 0.7 1.2
  • Example 4 1.4 1.38 1.8 0.84 0.78 1.5
  • Example 5 1.5588 1.44 1.8 0.714 0.65 1.7 S1v (FrS1) S1v (FrS2) S1ha (FrS1) S1ha (FrS2) S2v S2ha
  • Example 6 1.34 1.26 1.92 1.7 0.78 1.3
  • a modified example of the second aperture ReS is shown.
  • the edge of the opening of the first diaphragm FrS, FrS1, FrS2 or the second diaphragm ReS may have various shapes.
  • the first diaphragm FrS or the second diaphragm ReS can reduce the unevenness of the illuminance on the image plane by kicking the originally necessary dependent rays.
  • FIG. 16 shows a configuration example of the tip layout 101 when the endoscope 4 of FIG. 8 is viewed from the direction of arrow A.
  • Three illumination optical systems 24, 25, and 25 are arranged with respect to the objective optical system OBL.
  • the illumination optical system 26 is arranged in the above-mentioned specific region CC (shown with diagonal lines in FIG. 16).
  • the front end surface of the illumination optical system 24 (first illumination optical system) has at least a part of the specific region CC on the front end surface (tip layout 101) of the endoscope 4 in the second direction. It is arranged in different regions on one side AA. At least a part of the tip surface of the illumination optical system 25 (second illumination optical system) is arranged in the region BB on the other side of the second direction V with the specific region CC.
  • the nozzle 50 ejects a liquid for removing dirt adhering to the surface of the objective optical system OBL. Further, the forceps channel 51 is an opening for inserting and removing the treatment tool.
  • FIG. 17 shows another configuration example of the tip layout 102 when the endoscope 4 is viewed from the direction of arrow A.
  • Three illumination optical systems 27, 28, and 29 are arranged with respect to the objective optical system OBL.
  • the illumination optical system 29 is arranged in the above-mentioned specific region CC (shown with diagonal lines in FIG. 17).
  • At least a part of the tip surface of the illumination optical system 27 is in front of the specific region CC in the tip surface (tip layout 102) of the endoscope 4. They are arranged in different regions on one side AA of direction V in two directions. At least a part of the tip surface of the illumination optical system 28 (second illumination optical system) is arranged in a region BB on the other side of the second direction V from the specific region CC.
  • the nozzle 50 ejects a liquid for removing dirt adhering to the surface of the objective optical system OBL.
  • the forceps channel 51 is an opening for inserting and removing the treatment tool.
  • FIG. 18 is a cross-sectional view of the lens of the illumination optical system. It has a plano-convex positive lens L1 with a plane facing the object side, a biconvex positive lens L2, a plano-convex regular lens L3 with a plane facing the light source side, and a light guide LG in this order from the object side to the light source side. ..
  • the numerical data of the above illumination optical system is shown below.
  • the symbols are r is the radius of curvature of each lens surface, d is the distance between each lens surface, ne is the refractive index of the e-line of each lens, and ⁇ d is the Abbe number of each lens.
  • the effective diameter of the lens L1 surface on the most object side is ⁇
  • the diameter of the light guide LG is ⁇ LG.
  • Illumination optical system Incident light intensity (light source light distribution) Angle strength 0 1.000 5 0.973 10 0.937 15 0.853 20 0.674 25 0.458 30 0.266 35 0.132 40 0.047 45 0.012 50 0.004 55 0.002 60 0.001 65 0.000 70 0.000 75 0.000 80 0.000
  • Example 1 Example 2
  • Example 3 Conditional expression 1 f2d 7.2742 7.6323 7.2742 f3t 3.2895 3.2262 3.2895 f2d / f3t 2.211339109 2.365724382 2.211339109
  • Conditional expression 2 L 14.17795 14.29594 14.17795 Ls 9.604 9.95164 9.604 L / Ls 1.476254686 1.436541113 1.476254686
  • Conditional expression 5 Ov 0.742 0.715 0.71 Oh 0.83 0.82 0.83 Ov / Oh 0.89397
  • FIG. 19 shows a cross-sectional view of the lens of the imaging optical system 10 that does not have a focusing function.
  • the image pickup optical system 10 having no focus function has an objective optical system OBL and an image pickup element IS.
  • the objective optical system OBL has a front group FG having a negative refractive power, a brightness diaphragm S, and a rear group RG having a positive refractive power in this order from the object side to the image side. All lens groups are stationary.
  • the configurations of the first diaphragm FrS and the second diaphragm ReS are the same as those of the above-described embodiments and examples.
  • the above-mentioned imaging optical system, imaging device, and endoscope may satisfy a plurality of configurations at the same time. It is preferable to do so in order to obtain a good imaging optical system, an imaging device and an endoscope. Moreover, the combination of preferable configurations is arbitrary. Further, for each conditional expression, only the upper limit value or the lower limit value of the numerical range of the more limited conditional expression may be limited.
  • the present invention is suitable for an imaging optical system, an imaging device, and an endoscope having good light distribution characteristics and reduced halation.
  • the image pickup optical system in which the second direction is the direction of the short side of the light receiving surface.
  • the objective optical system has a front group, a brightness diaphragm, and a rear group in this order from the object side to the image side.
  • the front group has one or more of the first apertures.
  • the rear group has a positive first junction lens, a positive second junction lens, and one or more of the second diaphragms in this order from the object side to the image side.
  • Hv1 is the maximum height from the optical axis of the objective optical system to the edge of the opening of the first diaphragm in the first direction.
  • Hv2 is the maximum height from the optical axis of the objective optical system to the edge of the opening of the second diaphragm in the first direction.
  • H1 is the height of the lower dependent ray of the vertical image high ray at the position of the first diaphragm.
  • H2 is the height of the upper dependent ray of the vertical image high ray at the position of the second diaphragm. Is.
  • Appendix 4 The imaging optical system according to Appendix 1, which satisfies the following conditional expression (5).
  • Ov is the illuminance of the image plane in the first direction, which is 50% of the illuminance of the center position of the image plane from the lens surface on the most object side of the objective optical system to the most focused position.
  • Image height, Oh is the second direction in which the illuminance of the image plane is 50% of the illuminance of the center position of the image plane from the lens surface on the most object side of the objective optical system to the position where the focus is most.
  • (Appendix 5) Has an imaging optical system,
  • the imaging optical system is an endoscope which is the imaging optical system according to Appendix 1.
  • (Appendix 6) The endoscope according to Appendix 5, which has the imaging optical system according to Appendix 2.
  • Appendix 7) The endoscope according to Appendix 5 having the imaging optical system according to Appendix 3.
  • (Appendix 8) The endoscope according to Appendix 5 having the imaging optical system according to Appendix 4.
  • An image pickup apparatus having the image pickup optical system according to any one of Supplementary Items 1 to 4.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)

Abstract

良好な配光特性を有し、ハレーションを低減した撮像光学系、内視鏡及び撮像装置を提供すること。 撮像光学系10は、受光面ISaの形状が長方形である撮像素子ISと、物体側から像側へ順に、従属光線の一部を遮断または減衰する第1の絞りFrS、明るさ絞りS、従属光線の一部を遮断または減衰する第2の絞りReS、を有する対物光学系OBLと、を有し、第1の絞りFrSの開口30の縁31と、第2の絞りReSの開口40の縁41とは、第1の方向Hの最大長が第2の方向Vの最大長よりも長い形状であり、第1の方向Hは受光面ISaにおける長辺方向であり、第2の方向Vは受光面ISaにおける短辺方向である。

Description

撮像光学系、内視鏡及び撮像装置
 本発明は、撮像光学系、内視鏡及び撮像装置に関するものである。
 通常内視鏡光学系の対物光学系には、明るさ絞りとフレア絞りとを有する。近点を拡大観察(近接観察)する時、物体は対物光学系に近接し、物体距離は短くなる。このため、複数の照明光学系からの照明光の配光が視野内の配光分布に直接影響する。その際、拡大観察時のみ光線を蹴る絞りを配置することで、照明光の配光を改善して均一化する構成が知られている。
 例えば、特許文献1には、内視鏡において、フレアを低減するための絞りを有する構成が開示されている。
国際公開第2017/073292号
 通常、内視鏡による遠点(最もピントが合う距離以降)における像面の照度分布は、同心円状である。遠点では内視鏡の照明レンズからの照明光を点光源として扱うことができる。照度分布が同心円状になる理由は、点光源からの光の配光分布は、同心円になるためである。
 医療用の内視鏡では体内を観察するため、接線方向に近い被写体となる場合が多い。この場合、照明レンズの光量が飽和して、ハレーションを起こしてしまう。ハレーションを起こしてしまうと、体内の表面の凹凸や色調の観察ができなくなる。
 照明レンズからの照明光の配光は、内視鏡の使用者にとって長方形の撮像面の左右方向(横方向、長辺方向)に比べ、撮像面の上下方向(縦方向、短辺方向)で光量が多くなる。このため、ハレーションは、上下方向で起きやすい。そこで、上下方向のハレーションの起きやすさを改善する必要がある。
 本発明は、このような課題に鑑みてなされたものであって、良好な配光特性を有し、ハレーションを低減した撮像光学系、撮像装置及び内視鏡を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る撮像光学系は、受光面の形状が長方形である撮像素子と、物体側から像側へ順に、従属光線の一部を遮断または減衰する第1の絞り、明るさ絞り、従属光線の一部を遮断または減衰する第2の絞り、を有する対物光学系と、を有し、第1の絞りの開口の縁と、第2の絞りの開口の縁とは、第1の方向の最大長が第2の方向の最大長よりも長い形状を有し、第1の方向は受光面における長辺方向であり、第2の方向は受光面における短辺方向で、ある。
 また、本発明の少なくとも幾つかの実施形態に係る内視鏡は、撮像光学系を有し、撮像光学系は、上述の撮像光学系である。
 また、本発明の少なくとも幾つかの実施形態に係る撮像装置は、上述の撮像光学系を有する。
 本発明の少なくとも幾つかの実施形態は、良好な配光特性を有し、ハレーションを低減した撮像光学系、撮像装置及び内視鏡を提供できるという効果を奏する。特に、絞りの縦横比に合わせて縦画角の従属光線を蹴る矩形絞りを有し、通常観察状態及び拡大観察状態(近接観察状態)において配光性能を高め、かつ拡大観察状態でのハレーションを低減できる。
(a)は第1実施形態に係る撮像光学系のレンズ断面図である。図1(b)は、撮像素子を物体側から見た構成を示す図である。(c)は、第1の絞りを物体側から見た構成(正面構成)を示す図である。(d)は、第2の絞りを物体側から見た構成を示す図である。 第1実施形態に係る撮像光学系のレンズ断面図である。 (a)は、第1実施形態に係る撮像光学系の光路図である。(b)は、第1の絞りの構成を示す図である。(c)は、第2の絞りの構成を示す図である。 像面における照度を示す図である。 像面における照度を示す図である。 像高の位置における出射光量示す図である。 (a)、(b)、(c)は、それぞれ第1の絞り又は第2の絞り正面構成を示す。 内視鏡を有する内視鏡システムの概略構成を示す図である。 内視鏡の先端レイアウトの正面構成を示す。 第2の絞りの正面構成を示す。 実施例1に係る撮像光学系のレンズ断面図である。 実施例6に係る撮像光学系のレンズ断面図である。 (a)は、実施例1、2、3における第1の絞りの正面構成を示す。(b)は、実施例1、2、3における第2の絞りの正面構成を示す。(c)は、実施例4における第1の絞りの正面構成を示す。(d)は、実施例4における第2の絞りの正面構成である。 (a)は、実施例5における第1の絞りの正面構成を示す。(b)は、実施例5における第2の絞りの正面構成を示す。(c)、(d)は、実施例6における第1の絞りの正面構成を示す。(e)は、実施例6における第2の絞りの正面構成を示す。 (a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)は、それぞれ第1の絞り又は第2の絞りの変形例を示す。 内視鏡の先端レイアウトの構成例である。 内視鏡の先端レイアウトの他の構成例である。 照明光学系のレンズ断面図である。 フォーカシング機能を有していない撮像光学系のレンズ断面図である。
(実施形態)
 以下に、実施形態に係る対物光学系について図面を参照して説明する。なお、以下の実施形態によりこの発明が限定されるものではない。
(第1実施形態)
 図1(a)は、第1実施形態に係る撮像光学系10のレンズ断面構成を示す図である。
 撮像光学系10は、受光面(図1(b)のISa)の形状が長方形である撮像素子ISと、物体側から像側へ順に、従属光線の一部を遮断または減衰する第1の絞りFrS、明るさ絞りS、従属光線の一部を遮断または減衰する第2の絞りReS、を有する対物光学系OBLと、を有する。
 第1の絞りFrSの開口30の縁31と、第2の絞りReSの開口40の縁41とは、第1の方向Hの最大長(図1(c)のDh、図1(d)のDh)が第2の方向Vの最大長(図1(c)のDv、図1(d)のDv)よりも長い形状を有する。第1の方向Hは受光面ISaにおける長辺方向であり、第2の方向Vは受光面ISaにおける短辺方向である。
 以下、本実施形態において、このような構成をとった理由と作用を説明する。対物光学系OBLは内視鏡用の対物光学系である。本実施形態では、対物光学系OBLは、明るさ絞りSの位置に対して物体側の光学系に、長方形形状(矩形)の第1の絞りFrSを1つ以上有する。対物光学系OBLは、明るさ絞りSの位置に対して像側の光学系に、長方形形状(矩形)の第2の絞りReSを1つ以上有する。
 これにより、第1の絞りFrSと第2の絞りReSとは、それぞれ軸外物点からの主光線に対する上側従属光線、下側従属光線を有効に遮断又は減衰する。上側とは、図1(a)の紙面上方向、下側とは、図1(a)の紙面下方向をいう。
 このように、第1の絞りFrSを明るさ絞りSよりも物体側の光学系に配置する。第2の絞りReSを明るさ絞りSよりも像側の光学系に配置する。従って、像高ごとに光線高の異なる位置の光線を遮断又は減衰できる。
 第1の絞りFrSと、第2の絞りReSは、それぞれ像を形成するために必要な光線である上側従属光線、下側従属光線を遮断又は減衰する。一般に、フレア絞りは、フレアの原因となる不要な光線を遮断又は減衰する(以下、適宜「蹴る」という)。このように、本開示の第1の絞りFrSと、第2の絞りReSは、結像に必要な正規の光線の一部を遮断又は減衰する。このため、像面Iにおける良好で均一な配光特性を実現し、ハレーションを低減できるという効果を奏する。
 また、第1の絞りFrSと第2の絞りReSは、それぞれ1つの絞りに限定されない。第1の絞りFrSと第2の絞りReSは、それぞれ2つ以上の複数の絞りを有していても良い。
 また、図1(a)に示すように、本実施形態の好ましい態様によれば、
 対物光学系OBLは、物体側から像側へ順に、前群FGと、明るさ絞りSと、後群RGと、を有し、
 前群FGは、第1の絞りFrSを有し、
 後群RGは、物体側から像側へ順に、正の第1の接合レンズCL1と、正の第2の接合レンズCL2と、第2の絞りReSと、を有し、以下の条件式(1)、(2)を満足する。
 1<f2d/f3t<5   (1)
 1.2<L/Ls<2   (2)
 ここで、
 f2dは、第1の接合レンズCL1の焦点距離、
 f3tは、第2の接合レンズCL2の焦点距離、
 Lは、図2の全長Lに示すように、対物光学系OBLの光学系の全長、
 Lsは、図2の長さLsに示すように、対物光学系OBLの最も物体側の先端面から、第2の絞りReSの最も光線を蹴る絞りまでの長さ
である。
 条件式(1)は、f2dとf3tとの適切な比を規定している。条件式(1)は、後群RGにおける屈折力(パワー)の配置を適切に設定するための条件式である。
 条件式(1)の上限値を上回ると、倍率色収差を補正しきれない。
 条件式(1)の下限値を下回ると、後群の第1の接合レンズCL1(3枚接合レンズ)の屈折力が小さくなる。このため、軸外物点からの従属光線を光軸AXと平行にできない。従属光線を光軸AXと平行にできない場合、第2の絞りReSは、軸外物点からの従属光線を効果的に蹴ることができない。
 よって、軸外物点からの従属光線を効果的に蹴るためには、従属光線が軸AXと平行に近く、かつ像面Iより遠い方が好ましい。
 条件式(2)は、LとLsとの適切な比を規定している。
 条件式(2)の上限値を上回ると、第2の絞りReSが、明るさ絞りSに近づきすぎる。このため、像高ごとに光線高の異なる位置の光線を蹴ることができない。
 条件式(2)の下限値を下回ると、第2の絞りReSの位置が像面Iに近づきすぎてしまう、このため、第2の絞りReSの内径と、外径のバラつきにより光線を蹴る量が適切に設定できない。
 対物光学系OBLの全長Lに関して、さらに説明する。従来の内視鏡システムとして、被写界深度を拡大するため、自画像を2つに分割して結像させ、取得した2つの画像を画像処理で合成する構成が開示されている(例えば、国際公開第2017/073292号参照)。この内視鏡システムでは、一つの撮像素子に2つの光路長が異なる(長い光路と、短い光路)光学像を結像させ、画像合成を行う。このような内視鏡システムにおいては、対物光学系OBLの光学系の全長Lは、光路長は長い方の光路で規定する。
 このように、本開示は、被写界深度を拡大するため、自画像を2つに分割させ、取得した2つの画像を画像処理で合成する内視鏡システムに適用できる。
 また、本実施形態の好ましい態様によれば、以下の条件式(3)、(4)を満足することが望ましい。
 0.75<|Hv1/H1|<1   (3)
 0.5<|Hv2/H2|<0.75   (4)
 ここで、
 Hv1は、対物光学系OBLの光軸AXから、第1の絞りFrSの開口30の縁31までの第1の方向Hまでの最大高さ、
 Hv2は、対物光学系OBLの光軸AXから、第2の絞りReSの開口40の縁41までの第1の方向Hまでの最大高さ、
 H1は、第1の絞りFrSの位置における縦像高光線の下側従属光線の高さ、
 H2は、第2の絞りReSの位置における縦像高光線の上側従属光線の高さ、である。
 図3(a)は、H1、H2を示す。図3(b)は、Hv1を示す。図3(c)は、Hv2を示す。
 条件式(3)は、Hv1とH1との適切な比を規定する。条件式(3)を満足すると、第1の絞りFrSにより、従属光線を有効に蹴ることができる。
 内視鏡の対物光学系OBLは、通常最も物体側のレンズL1に大きな負の屈折力を有するレトロフォーカスタイプであり、広角な光学系である。このため、前群FGでは光束の径が小さい。
 条件式(3)の上限値を上回ると、第1の絞りFrSは、従属光線を蹴れない。
 条件式(3)の下限値を下回ると、第1の絞りFrSの寸法、配置位置のバラつきを考慮すると、主光線を蹴るおそれがある。
 レトロフォーカスタイプでは、後群RGでは、結像させるための屈折力となるため、光束の径が大きい。
 条件式(4)の上限値を上回ると、第2の絞りReSが、軸外物点からの従属光線を十分に蹴ることができない。このため、像面Iにおける良好で均一な配光特性を得られない。
 条件式(4)の下限値を下回ると、第2の絞りReSが、軸外物点からの主光線を蹴ってしまう。
 また、本実施形態の好ましい態様によれば、以下の条件式(5)を満足することが望ましい。
 0.7<Ov/Oh<0.95   (5)
 ここで、
 Ovは、対物光学系OBLの最も物体側のレンズ面から最もピントが合う位置までにおける、像面Iの中心位置の照度に比較して、像面の照度が50%になる第1の方向Hの像高幅、
 Ohは、対物光学系OBLの最も物体側のレンズ面から最もピントが合う位置までにおける、像面Iの中心位置の照度に比較して、像面の照度が50%になる第2の方向Vの像高幅、
である。
 像面の中心位置の照度とは、照明光学系からの照明光の照度を含んだ照度をいう。
 図4は、Ov、Ohを示す図である。図4において、白色、灰色、黒色と濃度が濃くなるに従って、照度が小さくなる。
 条件式(5)は、上述のOvとOhとの適切な比を規定する。
 条件式(5)を満足することで、第1の方向H及び第2の方向Vにおける照明光を含んだ像面Iにおける照度分布を示す。
 条件式(5)を満足することで、像面Iにおける照度分布を、紙面横長の楕円形状にできる。これにより、視野内の像面Iにおける照度分布を視野形状に合わせて均一にできる。
 また、本実施形態の好ましい態様によれば、条件式(6)を満足することが望ましい。
 0.5<Iv/Ih<0.8   (6)
 ここで、
 Ivは、第1の絞りFrSと第2の絞りReSとにより、縦従属光線を蹴ったときの、像面Iにおける照度、
 Ihは、第1の絞りFrSと第2の絞りReSとにより、横従属光線を蹴ったときの、像面Iにおける照度、
である。
 条件式(6)は、上述のIvとIhの適切な比を規定する。図5は、Iv、Ihを示す図である。図5において、白色、灰色、黒色と濃度が濃くなるに従って、照度が小さくなる。
 対物光学系OBL内の従属光線を蹴ることで、対物光学系OBLに関して、紙面上下方向に配置された照明光学系(図9の21、22を参照)の配光を効率的に蹴ることができる。
 内視鏡では管腔内を観察する。このため、表示範囲内で横像高(第1の方向Hの像高)に対して縦像高(第2の方向Vの像高)が小さい。これにより、ハレーションを起こしやすい。それを横像高、縦像高の輝度分布を条件式(6)を満足する設定にするとハレーションを抑制できる。特に、拡大観察時に、照明光の配光を改善して均一化できる。
 また、本実施形態の好ましい態様によれば、以下の条件式(7)を満足することが望ましい。
 2<Lv/Lh<10   (7)
 ここで、
 Lvは、対物光学系OBLの最も物体側のレンズ面から最もピントが合う位置までにおける、第2の方向Vの像高の位置における出射光量、
 Lhは、対物光学系OBLの最も物体側のレンズ面から最もピントが合う位置までにおける、第1の方向Hの像高の位置における出射光量、
である。
 条件式(7)は、上述のLvとLhの適切な比を規定する。図6は、Lv、Lhを示す図である。図6において、白色、灰色、黒色と濃度が濃くなるに従って、出射光量が小さくなる。
 条件式(7)を満足することで、照明光学系(図9の21、22を参照)の配光を適切に設定できる。
 条件式(7)の上限値を上回ると、横像高位置の光量が低くなり過ぎてしまい、周辺が暗くなってしまう。
 条件式(7)の下限値を下回ると、第1の絞りFrS、第2の絞りReSで光線を制御しきれない。このため、縦像高位置の光量が高くなり過ぎてしまう。
 また、本実施形態の好ましい態様によれば、以下の条件式(8)を満足することが望ましい。
 1<S1v/S2v<4   (8)
 ここで、
 S1vは、第1の絞りFrSの第2の方向Vの最大長さ、
 S2vは、第2の絞りReSの第2の方向Vの最大長さ、
である。
 条件式(8)は、上述のS1vとS2vの適切な比を規定している。図7(a)は、第1の絞りFrSの第2の方向Vの最大長さを示す。図7(b)は、第2の絞りReSの第2の方向Vの最大長さを示す。
 条件式(8)を満足することで、第1の絞りFrSと第2の絞りReSとの適切な開口径の比率を得られる。このため、上側従属光線及び下側従属光線を2つ以上の絞りにより効果的に遮光できる。これにより、像面Iにおいて、適切な周辺光量を確保出来る。
 また、本実施形態の好ましい態様によれば、条件式(9)を満足することが望ましい。
 0.35<Dv/Dh<0.85   (9)
 ここで、図1(c)、図1(d)に、それぞれ示すように、
 Dvは、第2の方向Vに平行であり、対物光学系OBLの光軸AXを通る直線上における第1の絞りFrSの開口30の縁31間の長さ、又は第2の方向Vに平行であり、対物光学系の光軸AXを通る直線上における第2の絞りReSの開口40の縁41間の長さ、
 Dhは、第1の方向Hに平行であり、対物光学系OBLの光軸AXを通る直線上における第1の絞りFrSの開口30の最大長さ、又は第2の方向Hに平行であり、対物光学系OBLの光軸AXを通る直線上における第2の絞りReSの開口40の最大長さ、
である。
 内視鏡光学系は、対物光学系OBL内において、明るさ絞りSの前後に矩形絞りを2つ以上有することで、主光線に対する上側従属光線、下側従属光線を有効に蹴ることができる。第1の絞りFrSを前群FGに配置する。第2の絞りReSを後群RGに配置する。これにより、像高ごとに光線高の異なる位置の光線を蹴ることができる。このため、配光分布を均一化し、配光性能を改善できる。
 また、撮像素子ISは矩形であるため、第1の絞りFrSの開口30の縁31を直線状にすることが望ましい。第2の絞りReSの開口40の縁41を直線状にすることが望ましい。各絞りが、それぞれ直線状(図7(c)のLN10、LN20参照)の縁を有することで最大像高だけでなく、像高ごとの光線を有効に蹴ることができる。
 条件式(9)は、上述のDvとDhの適切な比を規定する。つまり、図1(b)に示すように、第1の絞りFrSの開口30における縦横比及び第2の絞りReSの開口40における縦横比を規定する。
 内視鏡の撮像素子ISの表示エリアは通常、紙面横長の形状である(図1(b)のISa)。このため、撮像素子ISの縦横比に応じた光線を有効に蹴る必要がある。
 条件式(9)の上限値を上回ると、撮像素子ISの表示エリアに対して縦(第2の方向V)の開口が広くなりすぎてしまい、光線を有効に蹴ることができない。
 条件式(9)の下限値を下回ると、撮像素子ISの表示エリアに対して縦(第1の方向H)の開口が狭くなりすぎてしまう。このため、軸外物点からの主光線まで蹴られてしまう。
 また、本実施形態の好ましい態様によれば、第2の方向Vに平行であり、対物光学系OBLの光軸AXを通る直線上における第1の絞りFrSの開口30の縁31間の長さ(図1(c)のDv)は、第2の方向Vに平行であり、対物光学系OBLの光軸AXを通る直線上における第2の絞りReSの開口40の縁41間の長さ(図1(d)のDv)よりも長いことが望ましい。
 内視鏡の対物光学系では広角化のため、最も物体側の第1レンズは大きな屈折力を有する。このため、第1レンズで屈折した光線の光線高が高くなる。このような構成にすることで、第1の絞りFrSは、主光線を蹴ることなく効率的に従属光線を蹴ることができる。
 また、本実施形態の好ましい態様によれば、前群FGは、物体側から像側へ順に、第1の絞りFrGを含む第1レンズ群G1と、正の第2レンズ群G2と、を有する。第2レンズ群G2を光軸AXに沿って移動させることによって、フォーカシングを行うことが好ましい。
 第1の絞りFrSを前群FGに配置する。これにより、像高ごとに光線高の異なる位置の光線を蹴ることができる。このため、配光分布を均一化し、配光性能を改善できる。また、第2レンズ群G2を移動させることで、通常観察状態(遠点)、通常観察状態(近点)、拡大観察状態(遠点)、拡大観察状態(近点)を行うことができる。
 また、本実施形態の好ましい態様によれば、第1の接合レンズCL1は、正レンズと負レンズと正レンズとを接合した接合レンズであり、
 第2の接合レンズCL2は、正レンズと負レンズとを接合した接合レンズであることが好ましい。
 これにより、倍率色収差を適正に補正でき、2枚接合レンズと単レンズよりも光路長を短くできる。
(第2実施形態)
 また、本実施形態に係る内視鏡は、撮像光学系を有し、撮像光学系は、上述の撮像光学系である。
 図8は、内視鏡を有する内視鏡システムの概略構成を示す図である。内視鏡システムは、内視鏡4と生体外装置7とから構成されている。内視鏡4は、挿入部3、操作部2、接続コード部5及びコネクタ部6を有する。また、生体外装置7は、電源装置と、内視鏡4からの映像信号を処理するビデオプロセッサ(不図示)と、ビデオプロセッサからの映像信号をモニター表示する表示ユニット8とを有する。
 挿入部3は、細長で患者の体腔内へ挿入可能な可撓性を有する部材で構成されており、先端部は硬性の先端硬性部1となっている。使用者(不図示)は、操作部2に設けられているアングルノブ等により、諸操作を行うことができる。
 また、操作部2からは、接続コード部5が延設されている。接続コード部5は、コネクタ6を介して生体外装置7に接続されている。
 また、接続コード部5は、電源装置やビデオプロセッサからの電源電圧信号及び撮像素子からの駆動信号等を先端硬性部1に内蔵される撮像系(不図示)に通信すると共に、撮像系からの映像信号をビデオプロセッサに通信する。なお、生体外装置7内のビデオプロセッサは、図示しないビデオプリンタ、記録装置等の周辺機器に接続可能である。ビデオプロセッサは、撮像系からの映像信号に対して所定の信号処理を施して、表示ユニット8の表示画面(モニター)上に内視鏡画像を表示できる。
 また、本実施形態の内視鏡4は、挿入部3が可撓性を有する構成に限られない。例えば、挿入部3が曲がらない硬性内視鏡でも良い。
 図9、は、図8の内視鏡4を矢印A方向から見た先端レイアウト100の構成を示す。図10は、第2の絞りReSの正面構成を示す。
 本実施形態の好ましい態様によれば、内視鏡4は、第1の照明光学系21と、第2の照明光学系22と、をさらに有する。第1の照明光学系21の先端面は、少なくとも一部が内視鏡の先端面における特定領域CCと第2の方向Vの一方側AAに異なる領域に配置されている。
 第2の照明光学系22の先端面は、少なくとも一部が特定領域CCと第2の方向Vの他方側BBに異なる領域に配置されている。
 特定領域CCは、第1の方向Hに平行な第1の直線LN1と、第1の方向Hに平行な他の第2の直線LN2との間の領域である。
 第1の直線LN1は、対物光学系OBLの光軸AXを通り第2の方向Vに平行な直線LNhと、対物光学系OBLの縁OBL1との第1の交点CP1を通る。
 第2の直線LN2は、対物光学系OBLの光軸AXを通り第2の方向Vに平行な直線LNhと、対物光学系OBLの縁OBL1との第2の交点CP2を通る。
 そして、以下の条件式(10)(11)を満足することが望ましい。
 0≦|a/c|<1.1   (10)
 0≦|b/d|<1.1   (11)
 ここで、
 aは、内視鏡4の先端レイアウト100(先端面)において、対物光学系OBLの光軸AXと第1の照明光学系21の光軸AX21とを通る直線LN1aと、第2の方向Vに平行な直線LNvとのなす角度である。
 bは、内視鏡4の先端レイアウト100(先端面)において、対物光学系OBLの光軸AXと第2の照明光学系22の光軸AX22とを通る直線LN2aと、第2の方向Vに平行な直線LNvとのなす角度である。
 cは、図10に示すように、明るさ絞りS以降の最も光線を蹴る絞りReSの開口40の縁41上の第2の点P2と対物光学系OBLの光軸AXとを通る直線LN3aと、第2の方向Vに平行な第4の直線LN4とのなす角度である。
 dは、図10に示すように、明るさ絞りS以降の最も光線を蹴る絞りReSの開口40の縁上の第1の点P1と対物光学系OBLの光軸AXとを通る直線LN4aと、第2の方向Vに平行な第4の直線LN4とのなす角度である。
 第1の点P1は、縁41を形成する2つの線の交点のうち、第1の方向Hに平行で対物光学系OBLの光軸AXを通る第3の直線LN3よりも第2の方向Hの一方側AAに存在する。
 第1の点P1は、第2の方向Hに平行で対物光学系OBLの光軸AXを通る第4の直線LN4上とは異なる位置に存在する。
 第1の点P1は、第3の直線LN3に下した垂線LN4bの長さが最も大きい点である。
 第2の点P2は、第1の方向Hno対物光学系OBLの光軸AXを通る第3の直線LN3よりも第2の方向Vに対して他方側BBに存在する。
 第2の点P2は、第4の直線LN4上とは異なる位置に存在する。第2の点P2は、第3の直線LN3に下した垂線の長さLN3bが最も大きい点である。
 条件式(10)は、aとcとの適切な比を規定している。条件式(11)は、bとdとの適切な比を規定している。
 内視鏡による拡大観察状態での診断では、モニタ画面に病変部を映し、診断することが多い。そのため、拡大観察状態では、モニタ画面の上下方向(縦方向V)の配光を均一にすることで、術者は容易に診断できる。
 条件式(10)、(11)を満足することで、視野内の像面Iにおける照度分布を視野形状に合わせて均一にできる。内視鏡において、通常観察状態では、複数の照明光学系による照度分布の不均一は発生しない。
 しかしながら、内視鏡観察において、拡大観察状態では、照明光学系の照明光の分布のむらにより画面内の明るさを均一にできない。
 条件式(10)、(11)を満足することで、複数の照明光学系からの従属光線を蹴ることができる。このため、撮像面の上下方向(縦方向、短辺方向)における光量のハレーションを低減できる。
(第3実施形態)
 また、本実施形態の撮像装置は、上述の撮像光学系を有する(図1(a)の60参照)。
 また、条件式(1)、(2)、(5)、(9)、(10)、(11)は、それぞれ下限値、上限値を以下のように設定するとより好ましい。これにより、一層の効果を奏する。
 2<f2d/f3t<3    (1)’
 1.3<L/Ls<1.7   (2)’
 0.8<Ov/Oh<0.95   (5)’
 0.35<Dv/Dh<0.65   (9)’
 0≦|a/c|<0.7   (10)’
 0≦|b/d|<1    (11)’
(実施例1)
 実施例1に係る撮像光学系について説明する。
 図11は、本実施例に係る撮像光学系11のレンズ断面図である。撮像光学系11は、上述の対物光学系OBLと、明るさ絞りSと、撮像素子ISとを有する。
 対物光学系OBLは、物体側から像側へ順に、前群FG、明るさ絞りS、後群RGを有する。前群FGは、第1の絞りFrSを有する。後群RGは、物体側から像側へ順に、正の第1の接合レンズCL1と、正の第2の接合レンズCL2と、第2の絞りReSと、を有する。
 前群FGは、物体側から像側へ順に、第1の絞りFrSを含む第1レンズ群G1と、正の第2レンズ群G2とを有する。第2レンズ群G2を光軸AXに沿って移動させることによって、フォーカシングを行う。また、撮像素子ISは、受光面の形状が長方形である。
 本実施例のように、フォーカシングする光学系では、前群FGは、正又は負の屈折力を有し、後群RGは、正の屈折力を有する。また、フォーカシング機能を有さない光学系では、前群FGは、負の屈折力を有し、後群RGは、正の屈折力を有する。
 第1レンズ群G1は、平面を物体側に向けた平凹の負レンズL1と、第1の絞り(前絞り)FrSと、平行平板F1と、両凹負レンズL2と、像側に平面を向けた平凸正レンズL3と、を有する。両凹負レンズL2と平凸正レンズL3とは接合されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。正の第2群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 第3レンズ群G3は、両凸正レンズL5と、像側に平面を向けた平凹負レンズL6と、物体側に平面を向けた平凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズL9と、平行平板F2、F3、F4、F5、F6と、を有する。第2レンズ群G2と第3レンズ群G3との間に、明るさ絞りSが配置されている。
 平行平板F3の像側に第2の絞り(後ろ絞り)ReSが配置されている。
 両凸正レンズL5と負平凹レンズL6と平凸正レンズL7とは接合され、接合レンズCL1を構成する。両凸正レンズL8と負メニスカスレンズ9とは接合され、接合レンズCL2を構成する。平行平板F2とF3とは接合されている。平行平板F4とF5とF6とは接合されている。
 なお、本開示における平行平板は、フィルターに加えて、光路を偏向するプリズム素子を一直線状に展開した光学素子を含むものである。
 撮像素子ISの前面には、平行平板のカバーガラスCGが貼り付けられている。
 平行平板F1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
(実施例2、実施例3、実施例4、実施例5)
 実施例2、実施例3、実施例4、実施例5に係る撮像光学系12、13、14,15のレンズ断面構成は、実施例1と同じである。このため、重複する説明は省略する。
(実施例6)
 実施例6に係る撮像光学系16について説明する。
 図12は、本実施例に係る撮像光学系16のレンズ断面図である。撮像光学系16は、上述の対物光学系OBLと、明るさ絞りSと、撮像素子ISとを有する。
 対物光学系OBLは、物体側から像側へ順に、前群FG、明るさ絞りS、後群RGを有する。前群FGは、2つの第1の絞りFrS1、FrS2を有する。後群RGは、物体側から像側へ順に、正の第1の接合レンズCL1と、正の第2の接合レンズCL2と、第2の絞りReSと、を有する。
 前群FGは、物体側から像側へ順に、第1の絞りFrS1、FrS2を含む第1レンズ群G1と、正の第2レンズ群G2とを有する。第2レンズ群G2を光軸AXに沿って移動させることによって、フォーカシングを行う。また、撮像素子ISは、受光面の形状が長方形である。
 第1レンズ群G1は、平面を物体側に向けた平凹負レンズL1と、第1の絞りFrS1(前絞り1)と、平行平板F1と、第1の絞りFrS2(前絞り2)と、両凹負レンズL2と、像側に平面を向けた平凸正レンズL3と、を有する。両凹負レンズL2と平凸正レンズL3とは接合されている。
 2つの第1の絞りFrS1、FrS2は、平行平板F1の物体側面と、像側面とに配置されている。
 第2レンズ群G2は、物体側に凸面を向けた正メニスカスレンズL4を有する。正の第2レンズ群G2は、通常観察状態から拡大観察状態へフォーカシングするに際して、光軸AXに沿って像側(像面I)に移動する。
 第3レンズ群G3は、両凸正レンズL5と、像側に平面を向けた平凹負レンズL6と、物体側に平面を向けた平凸正レンズL7と、両凸正レンズL8と、像側に凸面を向けた負メニスカスレンズ9と、平行平板F2と、F3と、F4と、F5と、F6と、を有する。第2レンズ群G2と第3レンズ群G3との間に、明るさ絞りSが配置されている。
 平行平板F3の像側に第2の絞りReSが配置されている。
 両凸正レンズL5と平凹負レンズL6と平凸正レンズL7は接合され、接合レンズCL1を構成する。と両凸正レンズL8と負メニスカスレンズL9とは接合され、接合レンズCL2を構成する。
 撮像素子ISの前面には、平行平板のカバーガラスCGが貼り付けられている。
 平行平板F1は、特定の波長、例えばYAGレーザーの1060nm、半導体レーザーの810nm、あるいは赤外域をカットするためのフィルターである。
 以下に、上記各実施例の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νdは各レンズのアッベ数、Fnoは有効Fナンバーである。
       実施例1、3、4 
       単位  mm
       物体距離       14.3 

面データ
面番号              r         d           ne         νd
       1            ∞       0.35       1.88815     40.76
       2           1.218     0.627
       3(前絞り)    ∞       0.03 
       4            ∞       0.493
       5            ∞       0.4        1.49557     75.01
       6            ∞       0.33 
       7          -8.112     0.35       1.88815     40.76
       8           1.381     1.6        1.85504     23.78
       9            ∞       可変
      10           1.425     0.7        1.48915     70.23
      11           1.485     可変
      12(明るさ絞り)∞       0.06 
      13            ∞       0.04
      14           2.665     0.75       1.64129     55.38
      15          -1.122     0.3        1.88815     40.76
      16            ∞       0.47       1.70442     30.13
      17          -2.366     0.03 
      18           4.622     0.71       1.48915     70.23
      19          -2.366     0.34       1.97189     17.47
      20          -4.16      0.144
      21            ∞       0.1        2.31649     18.72
      22            ∞       0.2        1.51825     64.14
      23            ∞       0.02 
      24(後ろ絞り)∞       0.4558 
      25            ∞       1.413      1.64129     55.38
      26            ∞       0.01       1.52225     64
      27            ∞       1.3171     1.64129     55.38
      28            ∞       0.7981     1.64129     55.38
      29            ∞       0.01       1.52225     64
      30            ∞       0.35       1.507       63.26
      31            ∞       可変
      32            ∞       0

ズームデータ
通常観察状態
                     遠点          近点
    焦点距離        0.69962       0.69962 
    FNO.        3.893         3.917 
    d9              0.63          0.63
    d11             1.19          1.19
    d31             0             0.0345

拡大観察状態
                     遠点          近点
    焦点距離        0.69963       0.69963
    FNO.        3.906         3.929
    d9              1.15          1.15
    d11             0.67          0.67
    d32             0             0.0345

最大像高に対する縦横の像高比
    横       0.919
    縦       0.736
       実施例2、5 
       単位  mm
       物体距離       15 

面データ
面番号              r         d           ne         νd
       1            ∞       0.35       1.88815     40.76
       2           1.218     0.62 
       3(前絞り)    ∞       0.02 
       4            ∞       0.62 
       5            ∞       0.4        1.49557     75.01
       6            ∞       0.3
       7          -7.379     0.35       1.88815     40.76
       8           1.381     1.6        1.85504     23.78
       9            ∞       0.33 
      10           1.444     0.7        1.48915     70.23
      11           1.485     可変
      12(明るさ絞り)      ∞       0.02 
      13            ∞       0.04 
      14           2.621     0.76       1.64129     55.38
      15          -1.122     0.3        1.88815     40.76
      16            ∞       0.49       1.70442     30.13
      17          -2.339     0.03 
      18           4.663     0.72       1.48915     70.23
      19          -2.439     0.34       1.97189     17.47
      20          -4.376     0.3716 
      21            ∞       0.1        2.22188     21.93
      22            ∞       0.2        1.51825     64.14
      23(後ろ絞り)  ∞       0.02 
      24            ∞       0.22 
      25            ∞       1.413      1.64129     55.38
      26            ∞       0.0141     1.52225     64
      27            ∞       1.3171     1.64129     55.38
      28            ∞       0.7981     1.64129     55.38
      29            ∞       0.012      1.52225     64
      30            ∞       0.35       1.507       63.26
      31            ∞       可変
      32(像面)      ∞     0

ズームデータ
通常観察状態
                     遠点          近点
    焦点距離        0.67832       0.67832 
    FNO.        3.929         3.953 
    d9              0.63           0.63 
    d11             1.19          1.19
    d31             0             0.0345

拡大観察状態
                     遠点          近点
    焦点距離        0.68082       0.68082
    FNO.        3.941         3.965
    d9              1.115         1.115
    d11             0.705         0.705
    d31             0             0.0345

最大像高に対する縦横の像高比
    横       0.919
    縦       0.736
       実施例6 
       単位  mm
       物体距離       14.3 

面データ
面番号              r         d           ne         νd
       1            ∞       0.35       1.88815     40.76
       2           1.218     0.627
       3(前絞り1)   ∞       0.03 
       4            ∞       0.493
       5            ∞       0.4        1.49557     75.01
       6(前絞り2)   ∞       0.03 
       7            ∞       0.3
       8          -8.112     0.35       1.88815     40.76
       9           1.381     1.6        1.85504     23.78
      10            ∞       可変
      11           1.425     0.7        1.48915     70.23
      12           1.485     可変
      13(明るさ絞り)∞       0.02 
      14            ∞       0.04
      15           2.665     0.75       1.64129     55.38
      16          -1.122     0.3        1.88815     40.76
      17            ∞       0.47       1.70442     30.13
      18          -2.366     0.03 
      19           4.622     0.71       1.48915     70.23
      20          -2.366     0.34       1.97189     17.47
      21          -4.16      0.144
      22            ∞       0.1        2.31649     18.72
      23            ∞       0.2        1.51825     64.14
      24            ∞       0.02 
      25            ∞       0.4558 
      26            ∞       1.413      1.64129     55.38
      27            ∞       0.01       1.52225     64
      28            ∞       1.3171     1.64129     55.38
      29            ∞       0.7981     1.64129     55.38
      30            ∞       0.01       1.52225     64
      31            ∞       0.35       1.507       63.26
      32            ∞       可変
      33            ∞       0

ズームデータ
通常観察状態
                     遠点          近点
    焦点距離        0.69962       0.69962 
    FNO.        3.893         3.917 
    d10             0.63           0.63 
    d12             0.96          0.96
    d33             0             0.0345

拡大観察状態
                     遠点          近点
    焦点距離        0.69963       0.69963
    FNO.        3.906         3.929
    d10             1.15          1.15
    d12             0.44          0.44
    d33             0             0.0345

最大像高に対する縦横の像高比
    横       0.919
    縦       0.736
 次に、実施例1、2、3、4、5における第1の絞りFrS、第2の絞りReSと、実施例6における第1の絞りFrS1、FrS1、第2の絞りReSについて説明する。
 図13(a)は、実施例1、2、3における第1の絞りFrSの正面構成(物体側から見た構成)を示す。
 図13(b)は、実施例1、2、3における第2の絞りReSの正面構成(物体側から見た構成)を示す。
 図13(c)は、実施例4における第1の絞りFrSの正面構成(物体側から見た構成)を示す。
 図13(d)は、実施例4における第2の絞りReSの正面構成(物体側から見た構成)を示す。
 図14(a)は、実施例5における第1の絞りFrSの正面構成(物体側から見た構成)を示す。
 図14(b)は、実施例5における第2の絞りReSの正面構成(物体側から見た構成)を示す。
 図14(c)は、実施例6における第1の絞りFrS1の正面構成(物体側から見た構成)を示す。
 図14(d)は、実施例6における第1の絞りFrS2の正面構成(物体側から見た構成)を示す。
 図14(e)は、実施例6における第2の絞りReSの正面構成(物体側から見た構成)を示す。
 以下に各実施例の第1の絞り、第2の絞りの数値例を示す。

単位:mm
      S1v      S1ha    S2v     S2ha
 実施例1  1.34     1.92    0.78    1.5
  実施例2  1.46     1.85    0.75    1.5
  実施例3  1.34     1.85    0.7     1.2

            S1v      S1va     S1ha     S2v     S2va     S2ha
  実施例4  1.4      1.38     1.8      0.84    0.78    1.5
  実施例5  1.5588   1.44     1.8      0.714   0.65    1.7

           S1v(FrS1) S1v(FrS2) S1ha(FrS1) S1ha(FrS2) S2v    S2ha
  実施例6  1.34      1.26      1.92       1.7       0.78   1.3
 図15(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)は、それぞれ第1の絞りFrS、FrS1、FrS2又は第2の絞りReSの変形例を示す。このように、第1の絞りFrS、FrS1、FrS2又は第2の絞りReSの開口の縁は、種々の形状でも良い。第1の絞りFrS又は第2の絞りReSは、本来は必要な従属光線を蹴ることで、像面における照度の不均一を低減できる。
 (先端レイアウトの実施例)
 図16は、図8の内視鏡4を矢印A方向から見た先端レイアウト101の構成例を示す。対物光学系OBLに対して、3つの照明光学系24、25、25が配置されている。照明光学系26は、上述した特定領域CC(図16において斜線を付して示す)に配置されている。
 このように、本例では、照明光学系24(第1の照明光学系)の先端面は、少なくとも一部が内視鏡4の先端面(先端レイアウト101)における特定領域CCは第2の方向の一方側AAに異なる領域に配置されている。照明光学系25(第2の照明光学系)の先端面は、少なくとも一部が特定領域CCは第2の方向Vの他方側BBの領域に配置されている。
 ノズル50は、対物光学系OBLの表面に付着した汚れを除去するための液体を射出する。また、鉗子チャンネル51は、処置具を挿脱するための開口である。
 (先端レイアウトの他の実施例)
 図17、は、内視鏡4を矢印A方向から見た先端レイアウト102の他の構成例を示す。対物光学系OBLに対して、3つの照明光学系27、28、29が配置されている。照明光学系29は、上述した特定領域CC(図17において斜線を付して示す)に配置されている。
 このように、本実施例では、照明光学系27(第1の照明光学系)の先端面は、少なくとも一部が内視鏡4の先端面(先端レイアウト102)における特定領域CCとは前第2の方向Vの一方側AAに異なる領域に配置されている。照明光学系28(第2の照明光学系)の先端面は、少なくとも一部が特定領域CCとは第2の方向Vの他方側BBに領域に配置されている。
 ノズル50は、対物光学系OBLの表面に付着した汚れを除去するための液体を射出する。まや、鉗子チャンネル51は、処置具を挿脱するための開口である。
(照明光学系)
 次に、実施例1、2、3、4、5、6における照明光学系について説明する。図18は、照明光学系のレンズ断面図である。物体側から光源側へ順に、物体側へ平面を向けた平凸正レンズL1と、両凸正レンズL2と、光源側に平面を向けた平凸正レンズL3と、ライトガイドLGと、を有する。
 以下に、上記照明光学系の数値データを示す。記号は、rは各レンズ面の曲率半径、dは各レンズ面間の間隔、neは各レンズのe線の屈折率、νdは各レンズのアッベ数である。最も物体側のレンズL1面の有効径をφ、ライトガイドLGの直径をφLGとする。
数値実施例
単位    mm

実施例1、3、4、6

照明光学系24、25
面番号      r        d        ne       νd
     1      ∞      1.11    1.88815    40.76
     2    -1.009    0.04
     3     1.203    0.65    1.88815    40.76
     4      ∞      0 
     5     1.262    2.75    1.81264    25.42
     6      ∞      0 
     φ     1.3
     φLG   1.11 

照明光学系26
面番号      r        d        ne       νd
     1      ∞      1.35    1.88815    40.76
     2    -1.009    0.06
     3     2.582    0.59    1.88815    40.76
     4    -2.582    0.06
     5     1.906    2.9     1.73429    28.46
     6      ∞      0 
     φ    1.6
     φLG  1.4
実施例2、5

照明光学系27、28、29
面番号      r        d        ne       νd
     1      ∞      1.35    1.88815    40.76
     2    -1.009    0.06
     3     2.582    0.59    1.88815    40.76
     4    -2.582    0.06
     5     1.906    2.9     1.73429    28.46
     6      ∞      0 
     φ    1.6
     φLG  1.4
照明光学系入射光強度(光源配光) 
    角度     強度
      0     1.000 
      5     0.973 
     10     0.937 
     15     0.853 
     20     0.674 
     25     0.458 
     30     0.266 
     35     0.132 
     40     0.047 
     45     0.012 
     50     0.004 
     55     0.002 
     60     0.001 
     65     0.000 
     70     0.000 
     75     0.000 
     80     0.000 
 以下に条件式対応値を示す。

                    実施例1        実施例2        実施例3 
条件式1  f2d        7.2742         7.6323         7.2742 
       f3t        3.2895         3.2262         3.2895
         f2d/f3t    2.211339109    2.365724382    2.211339109 
条件式2  L         14.17795       14.29594       14.17795
        Ls         9.604          9.95164        9.604 
         L/Ls       1.476254686    1.436541113    1.476254686 
条件式3  Hv1        0.67           0.73           0.65
         H1         0.72429        0.73976        0.72429 
         |Hv1/H1|   0.925043836    0.986806532    0.897430587 
条件式4  Hv2        0.39           0.375          0.35
         H2         0.6011         0.60417        0.6011
         |Hv2/H2|   0.648810514    0.620686231    0.582265846 
条件式5  Ov         0.742          0.715          0.71
         Oh         0.83           0.82           0.83
         Ov/Oh      0.893975904    0.87195122     0.855421687 
条件式6  Iv         0.000042179    0.00001731     0.000037186 
         Ih         0.000078971    0.000023734    0.000072132 
         Iv/Ih      0.534107457    0.729333446    0.515527089 
条件式7  Lv         0.2103         0.3606         0.2103
         Lh         0.06639        0.05169        0.06639 
         Lv/Lh      3.16764573     6.976204295    3.16764573
条件式8  S1v        1.34           1.46           1 
         S2v        0.78           0.75           0.7 
         S1v/S2v    1.717948718    1.946666667    1.428571429
条件式9  Dv         0.78           0.75           0.7 
         Dh         1.5            1.5            1.25
         Dv/Dh      0.52           0.5            0.56
条件式10 a          0             32.8            0
         c         58.67          60             55.94
         |a/c|      0              0.546666667    0 
条件式11 b         14.7           57.88          14.7
         d         58.67          60             45.6 
         |b/d|      0.250553946   0.964666667     0.322368421
 
                    実施例4        実施例5        実施例6 
条件式1  f2d        7.2742         7.6323         7.2742 
         f3t        3.2895         3.2262         3.2895
         f2d/f3t    2.211339109    2.365724382    2.211339109 
条件式2  L         14.17795       14.29594       14.17795
         Ls         9.604          9.95164        9.604 
         L/Ls       1.476254686    1.436541113    1.476254686 
条件式3  Hv1        0.67           0.72           0.61
         H1         0.72429        0.73976        0.65284 
         |Hv1/H1|   0.925043836    0.973288634    0.934379021 
条件式4  Hv2        0.39           0.325          0.39
         H2         0.6011         0.60417        0.6011
         |Hv2/H2|   0.648810514    0.537928067    0.648810514 
条件式5  Ov         0.742          0.67           0.742 
         Oh         0.83           0.82           0.83
         Ov/Oh      0.893975904    0.817073171    0.893975904 
条件式6  Iv         0.000050286    0.000013306    0.000042179
        Ih         0.000078971    0.000023125    0.000078971
         Iv/Ih      0.636765395    0.575394595    0.534107457 
条件式7  Lv         0.2103         0.3606         0.305 
         Lh         0.06639        0.05169        0.6011
         Lv/Lh      3.16764573     6.976204295    0.507403094 
条件式8  S1v        1.34           1.44           1.22
         S2v        0.78           0.65           0.78
         S1v/S2v    1.717948718    2.215384615    1.564102564 
条件式9  Dv         0.78           0.65           0.78
         Dh         1.3            1.7            1.5 
         Dv/Dh      0.6            0.382352941    0.52
条件式10 a          0             32.8            0
         c         58             65             58.67
         |a/c|      0              0.504615385    0 
条件式11 b         14.7           57.88          14.7
         d         58             65             58.67
         |b/d|      0.253448276    0.890461538    0.250553946 
 なお、図19は、フォーカシング機能を有していない撮像光学系10のレンズ断面図を示す。フォーカス機能を有していない撮像光学系10は、対物光学系OBLと、撮像素子ISとを有する。
 対物光学系OBLは、物体側から像側へ順に、負屈折力の前群FGと、明るさ絞りSと、正屈折力の後群RGとを有する。すべてのレンズ群は、静止している。第1の絞りFrS、第2の絞りReSの構成は、上述した各実施形態、実施例と同じである。
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。
 なお、上述の撮像光学系、撮像装置及び内視鏡は、複数の構成を同時に満足してもよい。このようにすることが、良好な撮像光学系、撮像装置及び内視鏡を得る上で好ましい。また、好ましい構成の組み合わせは任意である。また、各条件式について、より限定した条件式の数値範囲の上限値あるいは下限値のみを限定しても構わない。
 以上のように、本発明は、良好な配光特性を有し、ハレーションを低減した撮像光学系、撮像装置及び内視鏡に適している。
(付記)
 なお、これらの実施例から以下の構成の発明が導かれる。
(付記項1)
 受光面の形状が長方形である撮像素子と、
 物体側から像側へ順に、従属光線の一部を遮断または減衰する第1の絞り、明るさ絞り、従属光線の一部を遮断または減衰する第2の絞り、を有する対物光学系と、を有し、
 前記第1の絞りの開口の縁と第2の絞りの開口の縁は、第1の方向の最大長が第2の方向の最大長よりも長い形状であり、
 前記第1の方向は前記受光面における長辺方向であり、
 前記第2の方向は前記受光面における短辺方向である、撮像光学系。
(付記項2)
 前記対物光学系は、物体側から像側へ順に、前群と、前記明るさ絞りと、後群と、を有し、
 前記前群は、1つ以上の前記第1の絞りを有し、
 前記後群は、物体側から像側へ順に、正の第1の接合レンズと、正の第2の接合レンズと、1つ以上の前記第2の絞りと、を有し、
 条件式(1)、(2)を満足する請求項1に記載の撮像光学系。
 1<f2d/f3t<5   (1)
 1.2<L/Ls<2   (2)
 ここで、
 f2dは、前記第1の接合レンズの焦点距離、
 f3tは、前記第2の接合レンズの焦点距離、
 Lは、前記対物光学系の光学系の全長、
 Lsは、前記対物光学系の最も物体側の先端面から、前記第2の絞りのうち最も従属光線を遮断または減衰する絞りまでの長さ、
である。
(付記項3)
 以下の条件式(3)、(4)を満足する請求項1に記載の撮像光学系。
 0.75<|Hv1/H1|<1   (3)
 0.5<|Hv2/H2|<0.75   (4)
 ここで、
 Hv1は、前記対物光学系の光軸から、前記第1の絞りの前記開口の縁までの前記第1の方向までの最大高さ、
 Hv2は、前記対物光学系の光軸から、前記第2の絞りの前記開口の縁までの前記第1の方向までの最大高さ、
 H1は、前記第1の絞りの位置における縦像高光線の下側従属光線の高さ、
 H2は、前記第2の絞りの位置における縦像高光線の上側従属光線の高さ、
である。
(付記項4)
 以下の条件式(5)を満足する付記項1に記載の撮像光学系。
 0.7<Ov/Oh<0.95   (5)
 ここで、
 Ovは、前記対物光学系の最も物体側のレンズ面から最もピントが合う位置までにおける、像面の中心位置の照度に比較して前記像面の照度が50%になる前記第1の方向の像高幅、
 Ohは、前記対物光学系の最も物体側のレンズ面から最もピントが合う位置までにおける、前記像面の中心位置の照度に比較して前記像面の照度が50%になる前記第2の方向の像高幅、
である。
(付記項5)
 撮像光学系を有し、
 撮像光学系は、付記項1に記載の前記撮像光学系である内視鏡。
(付記項6)
 付記項2に記載の撮像光学系を有する付記項5に記載の内視鏡。
(付記項7)
 付記項3に記載の撮像光学系有する付記項5に記載の内視鏡。
(付記項8)
 付記項4に記載の撮像光学系有する付記項5に記載の内視鏡。
(付記項9)
 付記項1から4の何れか1項に記載の撮像光学系を有する撮像装置。
 FrS 第1の絞り
 ReS 第2の絞り
 G1 第1レンズ群
 G2 第2レンズ群
 G3 第3レンズ群
 S 明るさ絞り
 L1-L9 レンズ
 F1 平行平板(フィルター)
 F2、F3、F4、F5、F6 平行平板
 CG カバーガラス
 AX 光軸
 I 像面(撮像面)

Claims (17)

  1.  受光面の形状が長方形である撮像素子と、
     物体側から像側へ順に、従属光線の一部を遮断または減衰する第1の絞り、明るさ絞り、従属光線の一部を遮断または減衰する第2の絞り、を有する対物光学系と、を有し、
     前記第1の絞りの開口の縁と第2の絞りの開口の縁は、第1の方向の最大長が第2の方向の最大長よりも長い形状であり、
     前記第1の方向は前記受光面における長辺方向であり、
     前記第2の方向は前記受光面における短辺方向である、撮像光学系。
  2.  前記対物光学系は、物体側から像側へ順に、前群と、前記明るさ絞りと、後群と、を有し、
     前記前群は、1つ以上の前記第1の絞りを有し、
     前記後群は、物体側から像側へ順に、正の第1の接合レンズと、正の第2の接合レンズと、1つ以上の前記第2の絞りと、を有し、
     条件式(1)、(2)を満足する請求項1に記載の撮像光学系。
     1<f2d/f3t<5   (1)
     1.2<L/Ls<2   (2)
     ここで、
     f2dは、前記第1の接合レンズの焦点距離、
     f3tは、前記第2の接合レンズの焦点距離、
     Lは、前記対物光学系の光学系の全長、
     Lsは、前記対物光学系の最も物体側の先端面から、前記第2の絞りのうち最も従属光線を遮断または減衰する絞りまでの長さ、
    である。
  3.  以下の条件式(3)、(4)を満足する請求項1に記載の撮像光学系。
     0.75<|Hv1/H1|<1   (3)
     0.5<|Hv2/H2|<0.75   (4)
     ここで、
     Hv1は、前記対物光学系の光軸から、前記第1の絞りの前記開口の縁までの前記第1の方向までの最大高さ、
     Hv2は、前記対物光学系の光軸から、前記第2の絞りの前記開口の縁までの前記第1の方向までの最大高さ、
     H1は、前記第1の絞りの位置における縦像高光線の下側従属光線の高さ、
     H2は、前記第2の絞りの位置における縦像高光線の上側従属光線の高さ、
    である。
  4.  以下の条件式(5)を満足する請求項1に記載の撮像光学系。
     0.7<Ov/Oh<0.95   (5)
     ここで、
     Ovは、前記対物光学系の最も物体側のレンズ面から最もピントが合う位置までにおける、像面の中心位置の照度に比較して前記像面の照度が50%になる前記第1の方向の像高幅、
     Ohは、前記対物光学系の最も物体側のレンズ面から最もピントが合う位置までにおける、前記像面の中心位置の照度に比較して前記像面の照度が50%になる前記第2の方向の像高幅、
    である。
  5.  条件式(6)を満足する請求項1に記載の撮像光学系。
     0.5<Iv/Ih<0.8   (6)
     ここで、
     Ivは、前記第1の絞りと前記第2の絞りとにより、縦従属光線を蹴ったときの、像面における照度、
     Ihは、前記第1の絞りと前記第2の絞りとにより、横従属光線を蹴ったときの、像面における照度、
    である。
  6.  以下の条件式(7)を満足する請求項1に記載の撮像光学系。
     2<Lv/Lh<10   (7)
     ここで、
     Lvは、前記対物光学系の最も物体側のレンズ面から最もピントが合う位置までにおける、前記第2の方向の像高の位置における出射光量、
     Lhは、前記対物光学系の最も物体側のレンズ面から最もピントが合う位置までにおける、前記第1の方向の像高の位置における出射光量、
    である。
  7.  以下の条件式(9)を満足する請求項1に記載の撮像光学系。
     1<S1v/S2v<4   (8)
     ここで、
     S1vは、前記第1の絞りの前記第2の方向の最大長さ、
     S2vは、前記第2の絞りの前記第2の方向の最大長さ、
    である。
  8.  条件式(9)を満足する請求項1に記載の撮像光学系。
     0.35<Dv/Dh<0.85   (9)
     ここで、
     Dvは、前記第2の方向に平行であり、前記対物光学系の光軸を通る直線上における前記第1の絞りの開口の縁間の長さ、又は前記第2の方向に平行であり、前記撮像光学系の光軸を通る直線上における前記第2の絞りの開口の縁間の長さ、
     Dhは、前記第1の方向に平行であり、前記対物光学系の光軸を通る直線上における前記第2の絞りの開口の最大長さ、又は前記第2の方向に平行であり、前記撮像光学系の光軸を通る直線上における前記第2の絞りの開口の最大長さ、
    である。
  9.  前記第2の方向に平行であり、前記撮像光学系の光軸を通る直線上における前記第1の絞りの開口の縁間の長さは、前記第2の方向に平行であり、前記撮像光学系の光軸を通る直線上における第2の絞りの開口の縁間の長さよりも長い請求項1に記載の撮像光学系。
  10.  前記前群は、物体側から像側へ順に、前記第1の絞りを含む第1レンズ群と、正の第2レンズ群と、を有し、
     前記第2レンズ群を光軸に沿って移動させることによって、フォーカシングを行う請求項2に記載の撮像光学系。
  11.  前記第1の接合レンズは、正レンズと負レンズと正レンズとを接合した接合レンズであり、
     前記第2の接合レンズは、正レンズと負レンズとを接合した接合レンズである請求項2に記載の撮像光学系。
  12.  撮像光学系を有し、
     前記撮像光学系は、請求項1に記載の前記撮像光学系である内視鏡。
  13.  第1の照明光学系と、第2の照明光学系と、をさらに有し、
     前記第1の照明光学系の先端面は、少なくとも一部が前記内視鏡の先端面における特定領域とは前記第2の方向の一方側に異なる領域に配置され、
     前記第2の照明光学系の先端面は、少なくとも一部が前記特定領域とは前記第2の方向の他方側に異なる領域に配置され、
     前記特定領域は、前記第1の方向に平行な第1の直線と、前記第1の方向に平行な第2の直線との間の領域であり、
     前記第1の直線は、前記対物光学系の光軸を通り前記第2の方向に平行な直線と、前記対物光学系の縁との第1の交点を通り、
     前記第2の直線は、前記対物光学系の光軸を通り前記第2の方向に平行な直線と、前記対物光学系の縁との第2の交点を通り、
     以下の条件式(12)(13)を満足する請求項12に記載の内視鏡。
     0≦|a/c|<1.1   (10)
     0≦|b/d|<1.1   (11)
     ここで、
     aは、前記内視鏡の先端面において、前記対物光学系の光軸と前記第1の照明光学系の光軸とを通る直線と、前記第2の方向に平行な直線とのなす角度、
     bは、前記内視鏡の先端面において、前記対物光学系の光軸と前記第2の照明光学系の光軸とを通る直線と、前記第2の方向に平行な直線とのなす角度、
     cは、前記第2の絞りの開口の縁上の第1の点と前記対物光学系の光軸とを通る直線と、前記第2の方向に平行な直線とのなす角度、
     dは、前記第2の絞りの開口の縁上の第2の点と前記対物光学系の光軸とを通る直線と、前記第2の方向に平行な直線とのなす角度、
     前記第1の点は、前記縁を形成する2つの線の交点のうち、前記第1の方向に平行で前記対物光学系の光軸を通る第3の直線よりも前記第2の方向の前記一方側に存在し、
     前記第1の点は、前記第2の方向に平行で前記対物光学系の光軸を通る第4の直線上とは異なる位置に存在し、
     前記第1の点は、前記第3の直線に下した垂線の長さが最も大きい点であり、
     前記第2の点は、前記第3の直線よりも前記第2の方向の前記他方側に存在し、
     前記第2の点は、前記第4の直線上とは異なる位置に存在し、
     前記第2の点は、前記第3の直線に下した垂線の長さが最も大きい点、
    である。
  14.  請求項2に記載の前記撮像光学系を有する請求項12に記載の内視鏡。
  15.  請求項3に記載の前記撮像光学系有する請求項12に記載の内視鏡。
  16.  請求項4に記載の前記撮像光学系有する請求項12に記載の内視鏡。
  17.  請求項1から4の何れか1項に記載の撮像光学系を有する撮像装置。
PCT/JP2020/017213 2020-04-21 2020-04-21 撮像光学系、内視鏡及び撮像装置 WO2021214873A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017213 WO2021214873A1 (ja) 2020-04-21 2020-04-21 撮像光学系、内視鏡及び撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/017213 WO2021214873A1 (ja) 2020-04-21 2020-04-21 撮像光学系、内視鏡及び撮像装置

Publications (1)

Publication Number Publication Date
WO2021214873A1 true WO2021214873A1 (ja) 2021-10-28

Family

ID=78270442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017213 WO2021214873A1 (ja) 2020-04-21 2020-04-21 撮像光学系、内視鏡及び撮像装置

Country Status (1)

Country Link
WO (1) WO2021214873A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073292A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 内視鏡撮像ユニット
WO2019012794A1 (ja) * 2017-07-12 2019-01-17 オリンパス株式会社 撮像ユニット
WO2019220730A1 (ja) * 2018-05-14 2019-11-21 オリンパス株式会社 内視鏡光学系

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017073292A1 (ja) * 2015-10-29 2017-05-04 オリンパス株式会社 内視鏡撮像ユニット
WO2019012794A1 (ja) * 2017-07-12 2019-01-17 オリンパス株式会社 撮像ユニット
WO2019220730A1 (ja) * 2018-05-14 2019-11-21 オリンパス株式会社 内視鏡光学系

Similar Documents

Publication Publication Date Title
JP5324321B2 (ja) 内視鏡用対物レンズおよび内視鏡
US10898061B2 (en) Endoscope magnification optical system, endoscope, and endoscope system
US7907352B2 (en) Endoscope objective lens and endoscope
JP4919419B2 (ja) 内視鏡用対物レンズおよび内視鏡
JP6109461B1 (ja) 内視鏡用対物光学系
US20120007972A1 (en) Objective lens and endoscope apparatus
JP2008257108A (ja) 内視鏡用対物レンズおよび内視鏡
JPH0910170A (ja) 内視鏡対物光学系
US20150103418A1 (en) Objective Optical System
JPWO2012169369A1 (ja) 光学ユニットおよび内視鏡
CN107430260B (zh) 斜视物镜光学系统和具备该斜视物镜光学系统的斜视用内窥镜
JP2019056722A (ja) 斜視内視鏡及び撮像システム
JP2015022161A (ja) 内視鏡用対物レンズおよび内視鏡
JP2018180422A (ja) 撮像装置
US11278186B2 (en) Endoscope system and optical adaptor for endoscope
JP2009109576A (ja) 内視鏡用対物レンズおよび内視鏡
WO2018047335A1 (ja) 立体視内視鏡
JP5000577B2 (ja) カメラヘッド光学系
JP6873741B2 (ja) 撮像装置
JP2008083316A (ja) 内視鏡対物光学系
WO2021214873A1 (ja) 撮像光学系、内視鏡及び撮像装置
US20200333580A1 (en) Image pickup optical system, endoscope, and image pickup apparatus
US10111579B2 (en) Endoscope having an illumination system shifted with respect to an imaging system to reduce generation of heat at a front-end portion of the endoscope
JP7061226B2 (ja) 広角光学系及びそれを備えた撮像装置
WO2020225924A1 (ja) 広角光学系、撮像装置、及び撮像システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP