WO2015159952A1 - 光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法 - Google Patents

光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法 Download PDF

Info

Publication number
WO2015159952A1
WO2015159952A1 PCT/JP2015/061724 JP2015061724W WO2015159952A1 WO 2015159952 A1 WO2015159952 A1 WO 2015159952A1 JP 2015061724 W JP2015061724 W JP 2015061724W WO 2015159952 A1 WO2015159952 A1 WO 2015159952A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
photoelectric conversion
conversion element
atom
Prior art date
Application number
PCT/JP2015/061724
Other languages
English (en)
French (fr)
Inventor
寛敬 佐藤
小林 克
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP15780713.2A priority Critical patent/EP3133658A4/en
Priority to CN201580020398.8A priority patent/CN106233484B/zh
Priority to JP2016513832A priority patent/JP6194103B2/ja
Publication of WO2015159952A1 publication Critical patent/WO2015159952A1/ja
Priority to US15/294,054 priority patent/US10403829B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a photoelectric conversion element, a solar cell using the photoelectric conversion element, and a method for manufacturing the photoelectric conversion element.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like. Solar cells are expected to be put into full-scale practical use as non-depleting solar energy. Among these, dye-sensitized solar cells using organic dyes or Ru bipyridyl complexes as sensitizers have been actively researched and developed, and the photoelectric conversion efficiency has reached about 11%.
  • Patent Document 1 includes a photosensitive layer having a perovskite represented by CH 3 NH 3 MX 3 (M represents Pb or Sn, and X represents a halogen atom) and an electrolyte layer made of an electrolytic solution.
  • Patent Document 2 describes a compound containing a monovalent organic cation such as a methylammonium cation or a guanidinium cation as an A / M / X metal halide for photoluminescence.
  • Non-Patent Document 1 describes a photovoltaic device using perovskite: APbI 3 having a mixture of formamidinium cation and methylammonium cation as cation A.
  • an object of the present invention is to provide a photoelectric conversion element that exhibits a stable variation in wet heat resistance and exhibits stable battery performance, and a solar cell using the photoelectric conversion element. It is another object of the present invention to provide a method for producing a photoelectric conversion element that exhibits stable battery performance.
  • the present inventors have made various studies on solar cells using a perovskite compound as a light absorber (hereinafter also referred to as perovskite-sensitized solar cells).
  • the structure and properties of the perovskite-type crystals are related to the wet heat of the perovskite-sensitized solar cells.
  • a photosensitive layer is provided using a perovskite compound containing two specific types of organic ammonium cations, the battery performance under high temperature and high humidity conditions will be degraded. It was found that the fluctuation range of the amount can be reduced and stable battery performance is exhibited.
  • the present invention has been completed based on these findings.
  • RA represents an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or a group that can be represented by the following formula (2).
  • R B represents NR 1 R 2 or (NR 1 R 2 R 3 ) + , and R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent.
  • L represents a linking group.
  • n2 represents an integer of 1 or more. However, (R B ) n2 -L is a group different from R A. n represents a number satisfying 0 ⁇ n ⁇ 1.00.
  • Xa represents NR ⁇ 1c> , an oxygen atom, or a sulfur atom.
  • R 1b and R 1c each independently represent a hydrogen atom or a substituent.
  • *** represents a bonding position with the N atom in the formula (IA).
  • ⁇ 2> The photoelectric conversion element according to ⁇ 1>, wherein the compound having the perovskite crystal structure is represented by the following formula (I).
  • A represents a cationic organic group.
  • M represents a metal atom.
  • X represents an anionic atom or atomic group.
  • a represents 1 or 2
  • ⁇ 3> The photoelectric conversion device according to ⁇ 1> or ⁇ 2>, wherein R 1 , R 2, and R 3 are all hydrogen atoms.
  • ⁇ 4> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 3>, wherein n represents a number satisfying 0.10 ⁇ n ⁇ 0.50.
  • ⁇ 5> n represents a number satisfying 0.15 ⁇ n ⁇ 0.30.
  • ⁇ 6> L according to any one of ⁇ 1> to ⁇ 5>, wherein L has at least one group selected from the group consisting of groups represented by the following formulas L-1 to L-9 Photoelectric conversion element.
  • * represents a connecting position with R B , NH 2 or a group represented by the above formula.
  • D 1 represents a nitrogen atom or CR 10 .
  • D 2 represents an oxygen atom, a sulfur atom or NR 11 .
  • E represents an oxygen atom, a sulfur atom or NR 12 .
  • Ring G represents an aryl ring or a heteroaryl ring.
  • Z 1 represents a hetero atom or NR 13 .
  • R 8 and R 9 each independently represent a substituent, and R 4 to R 7 and R 10 to R 13 each independently represent a hydrogen atom or a substituent.
  • m1, m2, m4 and m5 each independently represents an integer of 0 or more, and m3 and m6 each independently represents an integer of 2 or more.
  • L has at least one group selected from the group consisting of groups represented by the following formulas L-2, L-3, L-10, and L-11 ⁇ 1> to ⁇
  • * represents a connecting position with R B , NH 2 or a group represented by the above formula.
  • D 1 represents a nitrogen atom or CR 10
  • ring G represents an aryl ring or heteroaryl ring
  • Z 1 represents a hetero atom or NR 13 .
  • R 10 and R 13 each independently represents a hydrogen atom or a substituent.
  • m5 and m7 each independently represents an integer of 0 or more, and m8 and m9 each independently represents an integer of 3 or more.
  • ⁇ 8> The photoelectric conversion device according to any one of ⁇ 1> to ⁇ 7>, wherein R A is an alkyl group substituted with a halogen atom.
  • n2 is an integer of 2 or more.
  • ⁇ 10> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 9>, wherein the cation of the metal atom is at least one metal cation selected from the group consisting of lead and tin.
  • the anion is an anion of a halogen atom.
  • ⁇ 12> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 11>, which has a porous layer between the conductive support and the photosensitive layer.
  • ⁇ 13> The photoelectric conversion element according to any one of ⁇ 1> to ⁇ 12>, which has a hole transport layer between the first electrode and the second electrode.
  • ⁇ 14> A solar cell using the photoelectric conversion element according to any one of ⁇ 1> to ⁇ 13>.
  • a layer provided on a conductive support and on which a photosensitive layer is formed includes an organic cation represented by the following formula (IA), a cation of a metal atom, and an anion of an anionic atom or atomic group
  • IA organic cation represented by the following formula (IA)
  • a cation of a metal atom a cation of a metal atom
  • an anion of an anionic atom or atomic group The manufacturing method of the photoelectric conversion element made to contact the liquid containing the compound which has perovskite type crystal structure which has these.
  • RA represents an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or a group that can be represented by the following formula (2).
  • R B represents NR 1 R 2 or (NR 1 R 2 R 3 ) + , and R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent.
  • L represents a linking group.
  • n2 represents an integer of 1 or more. However, (R B ) n2 -L is a group different from R A. n represents a number satisfying 0 ⁇ n ⁇ 1.00.
  • Xa represents NR ⁇ 1c> , an oxygen atom, or a sulfur atom.
  • R 1b and R 1c each independently represent a hydrogen atom or a substituent.
  • *** represents a bonding position with the N atom in the formula (IA).
  • each formula may be expressed as a sexual formula in order to understand the chemical structure of the compound. Accordingly, in each formula, the partial structure is referred to as a (substituted) group, ion, atom, or the like. In this specification, these are represented by the above formula in addition to the (substituted) group, ion, atom, or the like. It may mean an element group or an element constituting a (substituted) group or ion.
  • the display of a compound is used to mean not only the compound itself but also its salt and its ion.
  • a compound that does not clearly indicate substitution or non-substitution means that it may have an arbitrary substituent within a range that exhibits a desired effect.
  • substituents and linking groups hereinafter referred to as substituents and the like).
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • FIG. 1 is a cross-sectional view schematically showing a preferred embodiment of the photoelectric conversion element of the present invention, including an enlarged view of a circular portion in a layer.
  • FIG. 2 is a cross-sectional view schematically showing a preferred embodiment having a thick photosensitive layer of the photoelectric conversion element of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing another preferred embodiment of the photoelectric conversion element of the present invention.
  • FIG. 4 is a sectional view schematically showing still another preferred embodiment of the photoelectric conversion element of the present invention.
  • FIG. 5 is a cross-sectional view schematically showing still another preferred embodiment of the photoelectric conversion element of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing still another preferred embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element of the present invention has a first electrode having a conductive support and a photosensitive layer provided on the conductive support, and a second electrode facing the first electrode.
  • This photosensitive layer is a compound having a perovskite crystal structure (also called a perovskite light absorber) having an organic cation represented by the above formula (IA), a cation of a metal atom, and an anion atom or an anion of an atomic group. ).
  • providing a photosensitive layer on a conductive support means an embodiment in which a photosensitive layer is provided (directly provided) in contact with the surface of the conductive support, and another layer is provided above the surface of the conductive support. It includes a mode in which a photosensitive layer is provided.
  • the other layer provided between the conductive support and the photosensitive layer does not deteriorate the battery performance of the solar cell.
  • a porous layer, a blocking layer, etc. are mentioned.
  • the photosensitive layer is provided in the form of a thin film on the surface of the porous layer (see FIG. 1). ), A mode (see FIGS. 2 and 6) provided on the surface of the porous layer (see FIG. 2 and FIG. 6), a mode provided on the surface of the blocking layer as a thin film, and a thick film on the surface of the blocking layer Aspect (see FIG.
  • the photosensitive layer may be provided in a linear or dispersed form, but is preferably provided in a film form.
  • the photoelectric conversion element of the present invention is not particularly limited in structure other than the structure defined in the present invention, and known structures relating to the photoelectric conversion element and the solar cell can be adopted.
  • Each layer constituting the photoelectric conversion element of the present invention is designed according to the purpose, and may be formed in a single layer or multiple layers, for example.
  • a porous layer can be provided between the conductive support and the photosensitive layer (see FIGS. 1, 2 and 6).
  • the same reference numerals mean the same components (members). 1, 2, and 6 emphasize the size of the fine particles forming the porous layer 12. These fine particles are preferably clogged (deposited or adhered) in the horizontal and vertical directions with respect to the conductive support 11 to form a porous structure.
  • the term “photoelectric conversion element 10” means the photoelectric conversion elements 10A to 10F unless otherwise specified.
  • the simple term “photosensitive layer 13” means the photosensitive layers 13A to 13C unless otherwise specified.
  • the hole transport layer 3 means the hole transport layers 3A and 3B unless otherwise specified.
  • a system 100A shown in FIG. 1 is a system applied to a battery for causing an operation circuit M (for example, an electric motor) to perform work by the external circuit 6 using the photoelectric conversion element 10A.
  • the photoelectric conversion element 10A includes a first electrode 1A, a second electrode 2, and a hole transport layer 3A.
  • the first electrode 1A is porous as schematically shown in a conductive support 11 composed of a support 11a and a transparent electrode 11b, a porous layer 12, and an enlarged cross-sectional area a that is an enlarged cross-sectional area a in FIG.
  • the surface of the material layer 12 has a photosensitive layer 13A provided with a perovskite light absorber. Further, the blocking layer 14 is provided on the transparent electrode 11 b, and the porous layer 12 is formed on the blocking layer 14. Thus, it is estimated that the photoelectric conversion element 10A having the porous layer 12 improves the charge separation and charge transfer efficiency because the surface area of the photosensitive layer 13A is increased.
  • the photoelectric conversion element 10B shown in FIG. 2 schematically shows a preferred embodiment in which the photosensitive layer 13A of the photoelectric conversion element 10A shown in FIG. In the photoelectric conversion element 10B, the hole transport layer 3B is thinly provided.
  • the photoelectric conversion element 10B differs from the photoelectric conversion element 10A shown in FIG. 1 in the film thicknesses of the photosensitive layer 13B and the hole transport layer 3B, but is configured in the same manner as the photoelectric conversion element 10A except for these points. ing.
  • a photoelectric conversion element 10C shown in FIG. 3 schematically shows another preferred embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10C is different from the photoelectric conversion element 10B illustrated in FIG. 2 in that the porous layer 12 is not provided, but is configured in the same manner as the photoelectric conversion element 10B except for this point. That is, in the photoelectric conversion element 10 ⁇ / b> C, the photosensitive layer 13 ⁇ / b> C is formed in a thick film shape on the surface of the blocking layer 14. In the photoelectric conversion element 10 ⁇ / b> C, the hole transport layer 3 ⁇ / b> B can be provided thick like the hole transport layer 3 ⁇ / b> A.
  • a photoelectric conversion element 10D shown in FIG. 4 schematically shows another preferred embodiment of the photoelectric conversion element of the present invention.
  • This photoelectric conversion element 10D is different from the photoelectric conversion element 10C shown in FIG. 3 in that an electron transport layer 15 is provided instead of the blocking layer 14, but is otherwise configured in the same manner as the photoelectric conversion element 10C.
  • the first electrode 1 ⁇ / b> D includes a conductive support 11 and an electron transport layer 15 and a photosensitive layer 13 ⁇ / b> C that are sequentially formed on the conductive support 11.
  • This photoelectric conversion element 10D is preferable in that each layer can be formed of an organic material. As a result, the productivity of the photoelectric conversion element is improved, and it is possible to make it thinner or flexible.
  • a photoelectric conversion element 10E shown in FIG. 5 schematically shows still another preferred embodiment of the photoelectric conversion element of the present invention.
  • a system 100E including the photoelectric conversion element 10E is a system applied to battery use as in the system 100A.
  • the photoelectric conversion element 10 ⁇ / b> E has a first electrode 1 ⁇ / b> E, a second electrode 2, and an electron transport layer 4 between the first electrode 1 ⁇ / b> E and the second electrode 2.
  • the first electrode 1 ⁇ / b> E includes a conductive support 11 and a hole transport layer 16 and a photosensitive layer 13 ⁇ / b> C, which are sequentially formed on the conductive support 11.
  • This photoelectric conversion element 10E is preferable in that each layer can be formed of an organic material, like the photoelectric conversion element 10D.
  • a photoelectric conversion element 10F shown in FIG. 6 schematically shows still another preferred embodiment of the photoelectric conversion element of the present invention.
  • the photoelectric conversion element 10F is different from the photoelectric conversion element 10B illustrated in FIG. 2 in that the hole transport layer 3B is not provided, but is configured in the same manner as the photoelectric conversion element 10B except for this point.
  • the system 100 to which the photoelectric conversion element 10 is applied functions as a solar cell as follows. That is, in the photoelectric conversion element 10, light that has passed through the conductive support 11 or passed through the second electrode 2 and entered the photosensitive layer 13 excites the light absorber. The excited light absorber has electrons with high energy and can emit these electrons. The light absorber that has released electrons with high energy becomes an oxidant.
  • the photoelectric conversion elements 10A to 10D and 10F electrons emitted from the light absorber move between the light absorbers and reach the conductive support 11. After the electrons that have reached the conductive support 11 work in the external circuit 6, they pass through the second electrode 2 (if there is a hole transport layer 3, further via the hole transport layer 3), and then the photosensitive layer Return to 13. The light absorber is reduced by the electrons returning to the photosensitive layer 13.
  • the photoelectric conversion element 10E the electrons emitted from the light absorber reach the second electrode 2 from the photosensitive layer 13C through the electron transport layer 4, and after working in the external circuit 6, the conductive support 11 Then, the process returns to the photosensitive layer 13. The light absorber is reduced by the electrons returning to the photosensitive layer 13.
  • the system 100 functions as a solar cell by repeating such a cycle of excitation and electron transfer of the light absorber.
  • the way in which electrons flow from the photosensitive layer 13 to the conductive support 11 differs depending on the presence and type of the porous layer 12 and the like.
  • the porous layer 12 can be formed with an insulator other than the conventional semiconductor.
  • the porous layer 12 is formed of a semiconductor, electron conduction in which electrons move inside or between the semiconductor particles of the porous layer 12 also occurs.
  • the porous layer 12 is formed of an insulator, electron conduction in the porous layer 12 does not occur.
  • a relatively high electromotive force can be obtained by using aluminum oxide (Al 2 O 3 ) particles as the insulator particles.
  • Al 2 O 3 aluminum oxide
  • the blocking layer 14 as the other layer is formed of a conductor or a semiconductor, electron conduction in the blocking layer 14 occurs. Electron conduction also occurs in the electron transport layer 15.
  • the photoelectric conversion element and the solar cell of the present invention are not limited to the above-described preferred embodiments, and the configuration of each embodiment can be appropriately combined between the respective embodiments without departing from the spirit of the present invention.
  • the photoelectric conversion element 10C or 10D may have a configuration in which the hole transport layer 3B is not provided as in the photoelectric conversion element 10F.
  • the material and each member which are used for a photoelectric conversion element or a solar cell can be prepared by a conventional method except the material and member prescribed
  • it can refer also about the material and each member which are used for a dye-sensitized solar cell.
  • the dye-sensitized solar cell include Japanese Patent Application Laid-Open No. 2001-291534, US Pat. No. 4,927,721, US Pat. No. 4,684,537, US Pat. No. 5,0843,65.
  • the first electrode 1 has a conductive support 11 and a photosensitive layer 13 and functions as a working electrode in the photoelectric conversion element 10. As shown in FIGS. 1 to 6, the first electrode 1 preferably has at least one of a porous layer 12, a blocking layer 14, an electron transport layer 15 and a hole transport layer 16. The first electrode 1 preferably has at least the blocking layer 14 in terms of prevention of short circuit, and more preferably has the porous layer 12 and the blocking layer 14 in terms of light absorption efficiency and prevention of short circuit. Moreover, it is preferable that the 1st electrode 1 has the electron transport layer 15 or the hole transport layer 16 formed with the organic material from the point of the improvement of productivity of a photoelectric conversion element, thickness reduction, or flexibility.
  • the conductive support 11 is not particularly limited as long as it has conductivity and can support the photosensitive layer 13 and the like.
  • the conductive support 11 includes a conductive material such as a metal, or a glass or plastic support 11a and a transparent electrode 11b as a conductive film formed on the surface of the support 11a. The structure which has is preferable.
  • a conductive support 11 in which a transparent metal electrode 11b is formed by coating a conductive metal oxide on the surface of a glass or plastic support 11a is more preferable.
  • the support 11a formed of plastic include a transparent polymer film described in paragraph No. 0153 of JP-A-2001-291534.
  • ceramic Japanese Patent Laid-Open No. 2005-135902
  • conductive resin Japanese Patent Laid-Open No. 2001-160425
  • tin oxide As the metal oxide, tin oxide (TO) is preferable, and fluorine-doped tin oxide such as indium-tin oxide (tin-doped indium oxide; ITO) and fluorine-doped tin oxide (FTO) is particularly preferable.
  • the coating amount of the metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the surface area of the support 11a. When the conductive support 11 is used, light is preferably incident from the support 11a side.
  • the conductive support 11 is substantially transparent.
  • substantially transparent means that the transmittance of light (wavelength 300 to 1200 nm) is 10% or more, preferably 50% or more, and particularly preferably 80% or more.
  • the thicknesses of the support 11a and the conductive support 11 are not particularly limited, and are set to appropriate thicknesses.
  • the thickness is preferably 0.01 ⁇ m to 10 mm, more preferably 0.1 ⁇ m to 5 mm, and particularly preferably 0.3 ⁇ m to 4 mm.
  • the film thickness of the transparent electrode 11b is not particularly limited, and is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and more preferably 0.05 to 20 ⁇ m. It is particularly preferred that
  • the conductive support 11 or the support 11a may have a light management function on the surface.
  • the surface of the conductive support 11 or the support 11a may have an antireflection film in which high refractive films and low refractive index oxide films are alternately stacked as described in JP-A-2003-123859.
  • the light guide function described in JP-A-2002-260746 may be provided.
  • a blocking layer 14 is provided.
  • a photoelectric conversion element and a solar cell for example, when the photosensitive layer 13 or the hole transport layer 3 and the transparent electrode 11b are electrically connected, a reverse current is generated.
  • the blocking layer 14 functions to prevent this reverse current.
  • the blocking layer 14 is also referred to as a short circuit prevention layer.
  • the blocking layer 14 can also function as a scaffold carrying the light absorber.
  • This blocking layer 14 may also be provided when the photoelectric conversion element has an electron transport layer.
  • the photoelectric conversion element 10D it may be provided between the conductive support 11 and the electron transport layer 15, and in the case of the photoelectric conversion element 10E, it is provided between the second electrode 2 and the electron transport layer 4. May be.
  • the material for forming the blocking layer 14 is not particularly limited as long as it is a material capable of fulfilling the above functions, but is a substance that transmits visible light and is an insulating substance for the conductive support 11 (transparent electrode 11b) and the like. It is preferable that Specifically, the “insulating substance with respect to the conductive support 11 (transparent electrode 11b)” specifically refers to a material whose conduction band energy level forms the conductive support 11 (metal oxide forming the transparent electrode 11b). A compound (n-type semiconductor compound) that is higher than the energy level of the conduction band of the material and lower than the energy level of the conduction band of the material constituting the porous layer 12 and the ground state of the light absorber.
  • Examples of the material for forming the blocking layer 14 include silicon oxide, magnesium oxide, aluminum oxide, calcium carbonate, cesium carbonate, polyvinyl alcohol, and polyurethane.
  • the material generally used for the photoelectric conversion material may be used, and examples thereof include titanium oxide, tin oxide, zinc oxide, niobium oxide, and tungsten oxide. Of these, titanium oxide, tin oxide, magnesium oxide, aluminum oxide and the like are preferable.
  • the thickness of the blocking layer 14 is preferably 0.001 to 10 ⁇ m, more preferably 0.005 to 1 ⁇ m, and particularly preferably 0.01 to 0.1 ⁇ m.
  • the film thickness of each layer can be measured by observing the cross section of the photoelectric conversion element 10 using a scanning electron microscope (SEM) or the like.
  • the porous layer 12 is preferably provided on the transparent electrode 11b.
  • the blocking layer 14 is preferably formed on the blocking layer 14.
  • the porous layer 12 is a layer that functions as a scaffold for carrying the photosensitive layer 13 on the surface.
  • the porous layer 12 is preferably a fine particle layer having pores, in which fine particles of the material forming the porous layer 12 are deposited or adhered.
  • the porous layer 12 may be a fine particle layer in which two or more kinds of fine particles are deposited.
  • the amount of light absorbent supported (adsorption amount) can be increased.
  • the surface area of the porous layer 12 it is preferable to increase the surface area of the individual fine particles constituting the porous layer 12.
  • the surface area of the fine particles is preferably 10 times or more, more than 100 times the projected area. It is more preferable.
  • the particle diameter of the fine particles forming the porous layer 12 is preferably 0.001 to 1 ⁇ m as the primary particle in the average particle diameter using the diameter when the projected area is converted into a circle.
  • the average particle diameter of the fine particles is preferably 0.01 to 100 ⁇ m as the average particle diameter of the dispersion.
  • the material for forming the porous layer 12 is not particularly limited with respect to conductivity, and may be an insulator (insulating material), a conductive material, or a semiconductor (semiconductive material).
  • Examples of the material for forming the porous layer 12 include metal chalcogenides (eg, oxides, sulfides, selenides, etc.), compounds having a perovskite crystal structure (excluding perovskite compounds used as a light absorber), silicon. These oxides (for example, silicon dioxide, zeolite) or carbon nanotubes (including carbon nanowires and carbon nanorods) can be used.
  • the metal chalcogenide is not particularly limited, but is preferably titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, aluminum or tantalum oxide, cadmium sulfide. , Cadmium selenide and the like.
  • Examples of the crystal structure of the metal chalcogenide include an anatase type, brookite type and rutile type, and anatase type and brookite type are preferable.
  • the compound having a perovskite crystal structure is not particularly limited, and examples thereof include transition metal oxides.
  • transition metal oxides For example, strontium titanate, calcium titanate, barium titanate, lead titanate, barium zirconate, barium stannate, lead zirconate, strontium zirconate, strontium tantalate, potassium niobate, bismuth ferrate, strontium barium titanate , Barium lanthanum titanate, calcium titanate, sodium titanate, bismuth titanate.
  • strontium titanate, calcium titanate and the like are preferable.
  • the carbon nanotube has a shape obtained by rounding a carbon film (graphene sheet) into a cylindrical shape.
  • Carbon nanotubes are single-walled carbon nanotubes (SWCNT) in which one graphene sheet is wound in a cylindrical shape, double-walled carbon nanotubes (DWCNT) in which two graphene sheets are wound in a concentric shape, and multiple graphene sheets are concentric
  • SWCNT single-walled carbon nanotubes
  • DWCNT double-walled carbon nanotubes
  • MWCNT multi-walled carbon nanotubes
  • any carbon nanotube is not particularly limited and can be used.
  • the material for forming the porous layer 12 is preferably titanium, tin, zinc, zirconium, aluminum or silicon oxide, or carbon nanotube, more preferably titanium oxide or aluminum oxide.
  • the porous layer 12 may be formed of at least one of the above-described metal chalcogenide, compound having a perovskite crystal structure, silicon oxide, and carbon nanotube, and may be formed of a plurality of types. .
  • the thickness of the porous layer 12 is not particularly limited, but is usually in the range of 0.05 to 100 ⁇ m, preferably in the range of 0.1 to 100 ⁇ m. When used as a solar cell, the thickness is preferably 0.1 to 50 ⁇ m, more preferably 0.2 to 30 ⁇ m, and still more preferably 0.3 to 30 ⁇ m.
  • the electron transport layer 15 is preferably provided on the surface of the transparent electrode 11b.
  • the electron transport layer 15 has a function of transporting electrons generated in the photosensitive layer 13 to the conductive support 11.
  • the electron transport layer 15 is formed of an electron transport material that can exhibit this function.
  • the electron transport material is not particularly limited, but an organic material (organic electron transport material) is preferable.
  • the organic electron transport material examples include fullerene compounds such as [6,6] -Phenyl-C61-Butylic Acid Methyl Ester (PC 61 BM), perylene compounds such as perylene tetracarboxydiimide (PTCDI), and other tetracyanoquinodimethanes. Examples thereof include a low molecular compound such as (TCNQ) or a high molecular compound.
  • the thickness of the electron transport layer 15 is not particularly limited, but is preferably 0.001 to 10 ⁇ m, and more preferably 0.01 to 1 ⁇ m.
  • the hole transport layer 16 is preferably provided on the surface of the transparent electrode 11b.
  • the hole transport layer 16 is the same as the hole transport layer 3 described later except that the position where it is formed is different.
  • the photosensitive layer 13 has a perovskite crystal structure having an organic cation represented by the above formula (IA), a cation of a metal atom, and an anion of an anionic atom or atomic group.
  • a porous layer 12 photoelectric conversion elements 10A, 10B and 10F
  • a blocking layer 14 photoelectric conversion element 10C
  • an electron transport layer 15 photoelectric conversion element 10D
  • It is provided on the surface of each layer of the hole transport layer 16 (photoelectric conversion element 10E) (including the inner surface of the recess when the surface on which the photosensitive layer 13 is provided is uneven).
  • the light absorber only needs to contain at least one of the specific perovskite compounds, and may contain two or more perovskite compounds.
  • the light absorber may contain a light absorber other than the perovskite compound in combination with the perovskite compound.
  • Examples of the light absorber other than the perovskite compound include metal complex dyes and organic dyes.
  • the ratio of the perovskite compound to other light absorbers is not particularly limited.
  • the photosensitive layer 13 may be a single layer or a laminate of two or more layers.
  • the photosensitive layer 13 may be a laminated structure in which layers made of different light absorbers are laminated, and an intermediate including a hole transport material between the photosensitive layer and the photosensitive layer.
  • a laminated structure having layers may also be used.
  • the form that the photosensitive layer 13 can take is as described above.
  • the photosensitive layer 13 is preferably provided on the surface of the porous layer 12 or the blocking layer 14 so that electrons excited on the conductive support 11 flow. At this time, the photosensitive layer 13 may be provided on the entire surface, or may be provided on a part of the surface. When the porous layer 12 is used, the photosensitive layer 13 is provided inside the pores of the porous layer 12. May be.
  • the film thickness of the photosensitive layer 13 is appropriately set according to the form that the photosensitive layer can take, and is not particularly limited.
  • the film thickness of the photosensitive layer 13 is, for example, preferably 0.001 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m, and particularly preferably 0.01 to 5 ⁇ m.
  • the total film thickness with the porous layer 12 is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, further preferably 0.1 ⁇ m or more, and 0.2 ⁇ m or more. Particularly preferred.
  • the total film thickness is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 30 ⁇ m or less, and particularly preferably 3 ⁇ m or less.
  • the total film thickness can be in a range where the above values are appropriately combined.
  • the total film thickness with the porous layer 12 is preferably 0.1 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, and particularly preferably 0.2 to 3 ⁇ m.
  • the film thickness of the photosensitive layer 13 is the interface with the porous layer 12 along the direction perpendicular to the surface of the porous layer 12. This is the distance from the interface with the hole transport layer 3 described later.
  • the total film thickness of the porous layer 12, the photosensitive layer 13, and the hole transport layer 3 is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and 0 .1 ⁇ m or more is more preferable, and 0.3 ⁇ m or more is particularly preferable.
  • the total film thickness is preferably 200 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 30 ⁇ m or less, and particularly preferably 5 ⁇ m or less.
  • the total film thickness can be in a range where the above values are appropriately combined.
  • the thickness of the photosensitive layer is larger than that of the photosensitive layer shown in FIG. 1, but the perovskite type light absorber represented by the formula (I) used in the present invention is different from other perovskite types. Like a compound, it can be a hole transport material.
  • the perovskite type light absorber may be used in an amount that covers at least a part of the surface of the porous layer 12 or the blocking layer 14 where light is incident, and is preferably an amount that covers the entire surface.
  • the content of the perovskite compound is usually 1 to 100% by mass.
  • the photosensitive layer 13 contains at least one perovskite compound having a cationic organic group, a metal atom, and an anionic atom or atomic group as a light absorber.
  • the cationic organic group, metal atom, and anionic atom or atomic group of the perovskite compound are respectively an organic cation (sometimes referred to as an organic cation A for convenience) and a metal cation (referred to as a cation M for convenience).
  • anion sometimes referred to as anion X for convenience).
  • the cationic organic group means an organic group having a property of becoming an organic cation in a perovskite crystal structure
  • the anionic atom or atomic group is an atom or atom having a property of becoming an anion in a perovskite crystal structure.
  • the perovskite compound used in the present invention is a compound having a perovskite crystal structure having an organic cation represented by the following formula (IA), a cation of a metal atom, and an anion of an anionic atom or atomic group.
  • RA represents an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, or a group that can be represented by the following formula (2).
  • R B represents NR 1 R 2 or (NR 1 R 2 R 3 ) + , and R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent.
  • L represents a linking group.
  • n2 represents an integer of 1 or more. However, (R B ) n2 -L is a group different from R A. n represents a number satisfying 0 ⁇ n ⁇ 1.00.
  • Xa represents NR ⁇ 1c> , an oxygen atom, or a sulfur atom.
  • R 1b and R 1c each independently represent a hydrogen atom or a substituent.
  • *** represents a bond with the nitrogen atom of formula (IA).
  • the reason why the variation in wet heat durability can be reduced is as follows. Although not sure yet, it is estimated as follows. That is, in the perovskite compound, when two different organic ammonium cations, ie, an organic ammonium cation having one amino group and an organic ammonium cation having two or more amino groups, are used, the organic ammonium cation having one amino group is used.
  • the perovskite crystal structure is stabilized by the amino group of the ammonium cation having two or more amino groups, and defects in the crystal lattice are less likely to occur.
  • the interface state with the layer adjacent to the photosensitive layer 13 becomes uniform, and the deterioration in performance caused by moisture or heat under high temperature and high humidity occurs on the interface or in the crystal. It is considered that the variation was reduced by always relaxing a certain part with a certain effect.
  • defective crystal parts are greatly affected by the deterioration of performance due to moisture and heat entering the interior due to being placed under high temperature and high humidity, and the fact that the number of defects is reduced by the present invention itself is considered to be the reason why variation can be reduced. It is done.
  • the excellent photoelectric conversion efficiency exhibited by the organic ammonium cation having one amino group is not lowered by the presence of an ammonium cation having two or more amino groups, and the battery performance of the perovskite sensitized solar cell is maintained. .
  • the light absorber used in the present invention two kinds of cations represented by the above formula (IA) are used in combination as the organic cation constituting the perovskite crystal structure. That is, one is [R A —NH 2 (H + )] and the other is ⁇ [(R B ) n2 —L—NH 2 ] (H + ) ⁇ .
  • the perovskite compound only needs to have the two organic cations as the entire light absorber.
  • the perovskite compound may be a perovskite compound having two organic cations, a perovskite compound having [R A —NH 2 (H + )], and ⁇ [(R B ) n2 -L—NH 2 ]. It may be a mixture with a perovskite compound having (H + ) ⁇ .
  • the organic cation represented by [R A —NH 2 (H + )] is an ammonium cation formed by combining R A and NH 2 in the above formula (IA).
  • An organic ammonium cation (R A —NH 3 + ) composed of a reactive organic group A is preferred.
  • the organic ammonium cation can take a resonance structure
  • the organic cation includes a cation having a resonance structure in addition to the organic ammonium cation.
  • the organic cation is bonded to the group that can be represented by the above formula (2) and NH 2.
  • an organic amidinium cation which is one of the resonance structures of the organic ammonium cation is also included.
  • Examples of the organic amidinium cation comprising an amidinium cationic organic group include a cation represented by the following formula (A am ).
  • a cation represented by the following formula (A am ) may be represented as “R 1b C ( ⁇ NH) —NH 3 ” for convenience.
  • the alkyl group as R A in formula (IA) may be an unsubstituted alkyl group having no substituent or a substituted alkyl group having a substituent.
  • the unsubstituted alkyl group is also a linear alkyl group and is not particularly limited, but is preferably an alkyl group having 1 to 18 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 3 carbon atoms. More preferred are groups. Examples of such an alkyl group include methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-decyl and the like.
  • the substituted alkyl group is not particularly limited as long as the above-described unsubstituted alkyl group has a substituent T described later, and may be linear or branched.
  • the unsubstituted alkyl group before the substituted alkyl group is substituted with the substituent T may be the above-mentioned unsubstituted alkyl group, preferably an alkyl group having 1 to 4 carbon atoms, more preferably 1 to carbon atoms. 3 alkyl group, and more preferably an alkyl group having 1 or 2 carbon atoms.
  • the cycloalkyl group is preferably a cycloalkyl group having 3 to 8 carbon atoms, and examples thereof include cyclopropyl, cyclopentyl, and cyclohexyl.
  • the alkenyl group may be linear or branched and is preferably an alkenyl group having 2 to 18 carbon atoms, more preferably an alkenyl group having 2 to 6 carbon atoms.
  • alkenyl group having 2 to 18 carbon atoms
  • alkenyl group having 2 to 6 carbon atoms For example, ethenyl, allyl, butenyl, hexenyl and the like can be mentioned.
  • Examples of the branched alkenyl group include 1-methyl-2-propenyl.
  • the alkynyl group is preferably an alkynyl group having 2 to 18 carbon atoms, more preferably an alkynyl group having 2 to 4 carbon atoms, and examples thereof include ethynyl, butynyl and hexynyl.
  • the aryl group is preferably an aryl group having 6 to 14 carbon atoms, more preferably an aryl group having 6 to 12 carbon atoms, and examples thereof include phenyl.
  • the heteroaryl group includes a group consisting only of an aromatic heterocycle and a group consisting of a condensed heterocycle obtained by condensing an aromatic heterocycle with another ring such as an aromatic ring, an aliphatic ring or a heterocycle.
  • a ring-constituting hetero atom constituting the aromatic hetero ring a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the number of ring members of the aromatic heterocycle is preferably a 3- to 8-membered ring, and more preferably a 5-membered ring or a 6-membered ring.
  • the condensed heterocycle including a 5-membered aromatic heterocycle and a 5-membered aromatic heterocycle include a pyrrole ring, an imidazole ring, a pyrazole ring, an oxazole ring, a thiazole ring, a triazole ring, a furan ring, and a thiophene ring. , Benzimidazole ring, benzoxazole ring, benzothiazole ring, indoline ring, and indazole ring.
  • Examples of the condensed heterocycle including a 6-membered aromatic heterocycle and a 6-membered aromatic heterocycle include, for example, pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, quinoline ring, and quinazoline ring. Is mentioned.
  • X a represents NR 1c , an oxygen atom or a sulfur atom, and NR 1c is preferable.
  • R 1c represents a hydrogen atom or a substituent, and is preferably a hydrogen atom, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group or a heteroaryl group, and more preferably a hydrogen atom.
  • R 1b represents a hydrogen atom or a substituent, and preferably a hydrogen atom.
  • R 1b examples include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, and an amino group.
  • An alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group and a heteroaryl group, which can be adopted as R 1b and R 1c have the same meanings as those of the above-mentioned groups of RA , and preferred ones are also the same.
  • Examples of the group that can be represented by the formula (2) include a (thio) acyl group, a (thio) carbamoyl group, an imidoyl group, and an amidino group.
  • the (thio) acyl group includes an acyl group and a thioacyl group.
  • the acyl group is preferably an acyl group having 1 to 7 carbon atoms, and examples thereof include formyl, acetyl, propionyl, hexanoyl and the like.
  • the thioacyl group is preferably a thioacyl group having 1 to 7 carbon atoms in total, and examples thereof include thioformyl, thioacetyl, thiopropionyl and the like.
  • the (thio) carbamoyl group includes a carbamoyl group and a thiocarbamoyl group.
  • the amidino group as a group that can be represented by the formula (2) has a structure in which R 1b of the imidoyl group is an amino group and R 1c is a hydrogen atom.
  • each group of RA may have is not particularly limited as long as it is a group other than an amino group and a substituted amino group. That is, R A which may have a substituent is different from “(R B ) n2 -L” of another cation described later.
  • the substituted amino group includes, for example, a mono- or di-alkylamino group (including a nitrogen-containing aliphatic heterocycle), a mono- or di-arylamino group, an acylamino group, a sulfonamide group, a carbamoyl group, a sulfamoyl group, and the like. Can be mentioned.
  • the following substituent T is mentioned as a substituent which each group of RA may have.
  • the substituent T is not particularly limited, and examples thereof include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, an alkoxy group, an alkylthio group, an acyl group, an alkoxycarbonyl group, an alkylcarbonyloxy group, An aryloxycarbonyl group, an aryloxy group, an arylcarbonyloxy group, a halogen atom, a cyano group, a hydroxy group, a mercapto group or a carboxy group can be mentioned.
  • R A is a methyl group
  • the substituent T does not include an imino ( ⁇ NH) group.
  • the substituent T is more preferably an alkyl group, a halogen atom, a cyano group, an aryl group, or a group obtained by combining these, and a halogen atom is particularly preferable.
  • an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group and an aryl group have the same meaning as the alkyl group, cycloalkyl group, alkenyl group, alkynyl group and aryl group of the above R A , and preferred ones Is the same.
  • the heteroaryl group has the same meaning as the heteroaryl group of R A , but a heteroaryl group that does not contain a nitrogen atom as a ring atom is preferable.
  • Each of the alkoxy group and the alkylthio group is preferably an alkyl group in which the alkyl portion is the same as the alkyl group of the above RA .
  • the acyl group, alkoxycarbonyl group, and alkylcarbonyloxy group each preferably have the same alkyl moiety as the alkyl group of RA above.
  • the aryloxycarbonyl group, aryloxy group, and arylcarbonyloxy group each preferably have the same aryl group or heteroaryl group as the aryl group of R A described above.
  • the halogen atom is preferably a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, more preferably a fluorine atom, a chlorine atom or a bromine atom, and particularly preferably a fluorine atom.
  • each substituent may be further substituted with a substituent.
  • the group is not particularly limited as long as it is a group obtained by combining at least two kinds of the above-described substituents. ), A cyanoalkyl group, and the like.
  • each substituent T may be the same as or different from each other. Moreover, when several substituent T adjoins (especially when adjoining), they may mutually connect and a ring may be formed.
  • a ring for example, an alicyclic ring, an aromatic ring, or a heterocyclic ring, may form a condensed ring in which these are condensed.
  • R A is preferably a substituted alkyl group, an unsubstituted alkyl group, an aryl group, a heteroaryl group, or a group that can be represented by the formula (2) among the above-mentioned groups in that variation in photoelectric conversion efficiency can be reduced.
  • a substituted alkyl group, an unsubstituted alkyl group, or a group that can be represented by formula (2) is more preferred, an alkyl group that is substituted with a halogen atom or a group that can be represented by formula (2) is more preferred, and a fluorine atom is substituted.
  • Particularly preferred are alkyl groups.
  • RA and NH 2 or NH 3 + become one of the organic cations.
  • the following r-1 to r-23 are shown as specific examples of R A below, but the present invention is not limited thereto.
  • “*” represents a bond with a nitrogen atom
  • “Me” represents a methyl group
  • “Et” represents an ethyl group.
  • R B represents an amino group or a substituted amino group or a cation thereof, and specifically represents NR 1 R 2 or (NR 1 R 2 R 3 ) + .
  • R 1 , R 2 and R 3 are each independently a hydrogen atom or a substituent.
  • R 1 , R 2 and R 3 are each preferably a hydrogen atom from the viewpoint that the perovskite crystal structure can be stabilized and variation in wet heat durability can be kept small.
  • R 1 , R 2 or R 3 is a substituent, the substituent is not particularly limited, and examples thereof include the above-described substituent T, and the preferable one is the same, and an alkyl group is particularly preferable.
  • the cation may have a counter anion Y B- .
  • the counter anion Y B- is not particularly limited, and various anions can be mentioned. Examples of the anion include halide ions (F ⁇ , I ⁇ , Br ⁇ , Cl ⁇ and the like), OH ⁇ , CF 3 SO 3 ⁇ , CH 3 COO ⁇ , SH ⁇ , SCN ⁇ , ClO 4 ⁇ and the like. Of these, halide ions are preferable, and I ⁇ is more preferable.
  • Y B- may be incorporated into the perovskite structure represented by the adjacent formula (I).
  • L is a linking group, and preferably has at least one group selected from the group consisting of groups represented by the following formulas L-1 to L-9.
  • the linking group L has at least one group selected from the group consisting of groups represented by the formulas L-1 to L-9 means that the linking group L has the following formulas L-1 to L-9 A group formed by combining at least two groups selected from the group consisting of groups represented by the following formulas L-1 to L-9 with a group represented by any one of L-9 Including the case of
  • R 4 and R 5 are each independently a hydrogen atom or a substituent, and each is preferably a hydrogen atom.
  • substituents include the above-described substituent T, preferably an alkyl group and a halogen atom.
  • the alkyl group is synonymous with the alkyl group of RA , and the preferred one is the same, but methyl is particularly preferred.
  • D 1 represents a nitrogen atom or CR 10 .
  • R 10 represents a hydrogen atom or a substituent, and preferably a hydrogen atom.
  • substituents include the above-described substituent T, preferably an alkyl group, an alkenyl group, an alkynyl group, an aryl group, a heteroaryl group, and a halogen atom, and more preferably an alkyl group.
  • the alkyl group has the same meaning as the alkyl group for RA , but is preferably an alkyl group having 1 to 30 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • R 6 and R 7 are each independently a hydrogen atom or a substituent. When R 6 and R 7 are substituents, they may be the same or different substituents.
  • the substituent for R 6 and R 7 is preferably as defined for the above substituent T, and among them, an alkyl group, a cyano group, and a halogen atom are preferable.
  • the above formula L-4 is represented as a trans isomer, but may be a cis isomer.
  • D 2 represents an oxygen atom, a sulfur atom or NR 11 .
  • R 11 has the same meaning as R 10 , and preferred ones are also the same.
  • E represents an oxygen atom, a sulfur atom or NR 12 .
  • R 12 has the same meaning as R 10 , and preferred ones are also the same.
  • R 8 represents a substituent, and has the same meaning as that of the substituent of R 10 , and preferred examples thereof are also the same.
  • m1 represents an integer of 0 or more, preferably an integer of 0 to 2, and more preferably 0.
  • m2 represents an integer of 0 or more, preferably an integer of 0 to 3, and more preferably 0 (5-membered ring) or 1 (6-membered ring).
  • m3 represents an integer of 2 or more, preferably an integer of 2 to 5, and more preferably 3 or 4.
  • the ring G represents an aryl ring composed of a carbon atom group necessary for constituting the ring, or a heteroaryl ring composed of the above carbon atom group and Z 1 .
  • Z 1 represents a hetero atom or NR 13 .
  • the hetero atom include a nitrogen atom, an oxygen atom, and a sulfur atom, and a nitrogen atom or a sulfur atom is preferable.
  • R 13 has the same meaning as R 10 , and preferred ones are also the same.
  • R 9 represents a substituent, has the same meaning as R 8 , and preferred ones are also the same.
  • m4 represents an integer of 0 or more, preferably an integer of 0 to 3, and more preferably 0.
  • n5 represents an integer of 0 or more, preferably an integer of 0 to 3, and more preferably 0 (aryl ring) or 1 (heteroaryl ring).
  • m6 represents an integer of 2 or more, preferably an integer of 2 to 5, and more preferably 3 or 4.
  • the group represented by the formula L-8 is preferably a group represented by the following formula L-10, and the group represented by the formula L-9 is a group represented by the following formula L-11. Is preferred.
  • * represents a connecting position with R B , NH 2 or a group represented by the above formula.
  • m7 represents an integer of 0 or more, and is synonymous with m2 in the formula L-8, and preferred examples thereof are also the same.
  • m8 represents an integer of 3 or more, preferably an integer of 3 to 5, and more preferably 3 or 4.
  • Z 1 has the same meaning as Z 1 of the formula L-9, it is preferable also the same.
  • m5 represents an integer of 0 or more, and is synonymous with m5 in Formula L-9, and preferred examples are also the same.
  • m9 represents an integer of 3 or more, preferably an integer of 3 to 5, and more preferably 3 or 4.
  • Ring G represented by formula L-9 and formula L-11 is not particularly limited, but is an aryl ring such as a benzene ring, pyrrole ring, thiophene ring, furan ring, imidazole ring, pyrazole ring, oxazole ring, Examples include a heteroaryl ring such as a thiazole ring, an oxadiazole ring, a thiadiazole ring, an isoxazole ring, an isothiazole ring, a triazole ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, and a triazine ring.
  • a pyridine ring or a triazine ring is preferable, and a thiophene ring is more preferable.
  • the linking group L is a group formed by combining at least two groups selected from the group consisting of the groups represented by the formulas L-1 to L-9
  • the type of group to be combined is particularly It is not limited, A plurality of the same kind of groups may be combined, or all different groups may be combined. In this case, at least two groups selected from the group consisting of the groups represented by the above formulas L-1 to L-9 may be linked to form a ring structure.
  • the number of groups to be combined is not particularly limited, and is preferably 2 to 50, for example, and more preferably 2 to 10.
  • the chain length of the combined linking group is preferably from 0 to 10, more preferably from 0 to 5.
  • the length of the chain of the linking group is the minimum number of atoms constituting a chain between atoms bonded to two amino groups. In the case of having 3 or more amino groups (when there are 3 or more linking positions *), the chain length of each combination of two amino groups is determined, and the largest of these is determined. For example, the minimum number of atoms between two amino groups of the following compound L-2-2 is 5 and the chain length of the linking group is 5.
  • the minimum number of atoms between two amino groups of compound L-8-4 is all 3, and the chain length of the linking group is 3.
  • the minimum number of atoms between the two amino groups of compound L-9-4 is 2, 3 and 4, and the chain length of the linking group is 4.
  • a group formed by combining at least two groups selected from the group consisting of groups represented by formula L-1 to formula L-9 is represented by any one of formulas Lp-1 to Lp-9 below. It is preferably a group.
  • R 4 and R 5 have the same meanings as R 4 and R 5 of the group represented by the formula L-1, respectively, and preferred ones are also the same.
  • p represents an integer of 2 or more, preferably an integer of 2 to 5, and more preferably 2.
  • L p1 represents a single bond or a group represented by the formula Lp-1, and at least one of the plurality of L p1 Is a group represented by the above formula Lp-1, and a plurality of L p1 may be the same or different.
  • D 1 has the same meaning as D 1 of the group represented by the formula L-2, and preferred ones are also the same.
  • R 6 and R 7 have the same meanings as R 6 and R 7 in the group represented by the formula L-4, respectively, and preferred examples thereof are also the same.
  • D 2 has the same meaning as D 2 of the group represented by the formula L-6, and preferred ones are also the same.
  • E has the same meaning as E in the group represented by the formula L-7, and the preferable ones are also the same, and two Es may be the same as or different from each other.
  • D 2 has the same meaning as D 2 of the group represented by Formula L-6, and preferred ones are also the same.
  • R 8 , m1, m2 and m3 are the same as R 8 , m1, m2 and m3 of the group represented by the formula L-8, respectively, and preferred ones are also the same.
  • the group formed by the combination is more preferably a group formed by the following combination.
  • a group represented by the above formula Lp-1 comprising a combination of a plurality of, preferably 2 to 5, more preferably two groups represented by the formula L-1 (having this group, [(R B ) As amine compounds represented by n2 -L-NH 2 ], for example, the following compounds L-1-1 to L-1-4),
  • a group consisting of a combination of one or more groups represented by formula L-3 and one or more groups represented by formula L-1 preferably one group represented by formula L-3 and 4 Examples of the group represented by the above formula Lp-3 consisting of a group represented
  • the linking group L has at least one selected from the group consisting of groups represented by formula L-1, formula L-2, formula L-3, formula L-8 and formula L-9. However, it is preferable in that the variation in wet heat durability can be suppressed small. More preferably, it has at least one selected from the group consisting of groups represented by formula L-1, formula L-2, formula L-3, formula L-10, and formula L-11.
  • the linking group L more preferably has at least one group selected from the group consisting of groups represented by formula L-2, formula L-3, formula L-10 and formula L-11. Particularly preferably, a group represented by the formula Lp-1, a group represented by the formula Lp-2, a group represented by the formula Lp-3, a group represented by the formula L-10, a group represented by the formula L-11 Group.
  • the linking group L preferably has a symmetric structure.
  • the symmetry structure may be any of line symmetry, point symmetry, rotational symmetry, and the like.
  • the plurality of L p1 are preferably the same.
  • n2 represents an integer of 1 or more, preferably an integer of 1 to 5, and more preferably 2 or 3.
  • n2 is within the above range, the stability of the perovskite crystal is improved, and variation in wet heat durability can be suppressed to a low level.
  • amine compound represented by [(R B ) n2 -L-NH 2 ] in the formula (IA) are shown below, but the present invention is not limited thereto.
  • Compound No. “NL” in “L-nL-mL” represents a number corresponding to Formula L-1 to Formula L-9 or Formula Lp-1 to Formula Lp-9, and “mL” represents the number of the exemplified compound in each formula.
  • the linking group L in the following compound is a residue obtained by removing all amino groups (excluding those corresponding to the above D 1 , D 2 and E) from the following compound.
  • n represents a number satisfying 0 ⁇ n ⁇ 1.00, preferably a number satisfying 0.05 ⁇ n ⁇ 0.90, more preferably 0.10 ⁇ n ⁇ It is a number that satisfies 0.50, and more preferably a number that satisfies 0.15 ⁇ n ⁇ 0.30.
  • the above n is determined by the composition ratio (molar ratio) of the synthetic raw material of the perovskite type light absorber.
  • the perovskite compound used in the present invention has a metal atom cation (metal cation) in its crystal structure.
  • the metal cation is not particularly limited as long as it is a metal atom cation capable of having a perovskite crystal structure.
  • metal atoms include calcium (Ca), strontium (Sr), cadmium (Cd), copper (Cu), nickel (Ni), manganese (Mn), iron (Fe), cobalt (Co), Metal atoms such as palladium (Pd), germanium (Ge), tin (Sn), lead (Pb), ytterbium (Yb), europium (Eu), indium (In), and the like can be given.
  • the metal cation is particularly preferably a Pb atom or a Sn atom cation.
  • the metal cation may be one type or two or more types. In the case of two or more kinds of metal cations, two kinds of cations of Pb atom and Sn atom are preferable.
  • the ratio of the metal cation at this time is not particularly limited.
  • the perovskite compound used in the present invention has an anion in its crystal structure.
  • the anion is preferably an anionic atom such as a halogen atom, or each anion of an anionic atomic group of NCS ⁇ , NCO ⁇ , CH 3 COO ⁇ or HCOO ⁇ .
  • a halogen atom anion is more preferable.
  • a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. are mentioned, for example.
  • the anion may be an anion of one kind of atom or atomic group, or may be an anion of two or more kinds of atoms or atomic groups.
  • an anion of iodine atom is preferable.
  • there are two or more anions those represented by the following formula (x) are preferred.
  • X A1 and X A2 each independently represent an anion different from each other, preferably an anions having different halogen atoms, one being an anion having an iodine atom, and the other being an anion having a chlorine atom or a bromine atom More preferably, it is an anion.
  • m is preferably 0.01 to 2.99, more preferably 0.1 to 1.4, and still more preferably 0.5 to 1.0.
  • the perovskite compound having each constituent ion described above may be a compound that can have a perovskite crystal structure including each constituent ion, and is preferably a perovskite compound represented by the following formula (I).
  • A represents a cationic organic group.
  • M represents a metal atom.
  • X represents an anionic atom or atomic group.
  • a represents 1 or 2
  • the cationic organic group represented by A forms an organic cation represented by the above formula (IA) in the perovskite crystal structure. Therefore, the cationic organic group has the same meaning as R A —NH 2 and [(R B ) n2 -L—NH 2 ] in the above formula (IA) described above for the organic cation, and preferable ones are also the same. is there.
  • R A , R B , n2 and L are as described above.
  • the metal atom represented by M is a metal atom that forms the metal cation in the perovskite crystal structure. Such a metal atom is synonymous with the metal atom demonstrated by the said metal cation, and a preferable thing is also the same.
  • the anionic atom or atomic group represented by X is an anionic atom or atomic group forming the anion in the perovskite crystal structure.
  • Such an anionic atom or atomic group is synonymous with the anionic atom or atomic group described in the above anion, and preferred ones are also the same.
  • the perovskite compound represented by formula (I) is a perovskite compound represented by the following formula (I-1) when a is 1, and when a is 2, the perovskite compound represented by formula (I-2) It is a perovskite compound represented.
  • A represents a cationic organic group and has the same meaning as A in the formula (I), and the preferred ones are also the same.
  • M represents a metal atom and is synonymous with M in the above formula (I), and preferred ones are also the same.
  • X represents an anionic atom or an atomic group, and is synonymous with X in the formula (I), and preferred ones are also the same.
  • the perovskite compound used in the present invention may be either a compound represented by formula (I-1) or a compound represented by formula (I-2), or a mixture thereof. Therefore, in the present invention, at least one perovskite compound only needs to be present as a light absorber, and it is not necessary to clearly distinguish which compound is strictly based on the composition formula, molecular formula, crystal structure, and the like. .
  • the method for producing the perovskite light absorber used in the present invention is not particularly limited, and can be synthesized according to a known method using R A —NH 2 and (R B ) n2 —L—NH 2 .
  • Known methods include, for example, the methods described in Patent Documents 1 and 2 and Non-Patent Document 1.
  • the method described in 6050-6051 is also included.
  • perovskite type represented by the formula (I) using MX 2 and R A —NH 3 X, (R B ) n2 -L—NH 3 X and MX 2 Light absorbers can be synthesized.
  • X represents an atom or atomic group to be an anion, and has the same meaning as X in the above formula (I).
  • R A has the same meaning as R A in the above formula (IA)
  • R B is L and n2 have the same meanings as R B, L and n2 in each of the aforementioned formula (IA).
  • the molar ratio of MX 2 to R A —NH 3 X and (R B ) n2 —L—NH 3 X is adjusted in accordance with n in formula (IA).
  • the hole transport layer 3 is provided between the first electrode 1 and the second electrode 2 as in the photoelectric conversion elements 10A to 10D.
  • the hole transport layer 3 is preferably provided between the photosensitive layer 13 of the first electrode 1 and the second electrode 2.
  • the hole transport layer 3 has a function of replenishing electrons to the oxidant of the light absorber, and is preferably a solid layer (solid hole transport layer).
  • the hole transport material forming the hole transport layer 3 may be a liquid material or a solid material, and is not particularly limited. Examples thereof include inorganic materials such as CuI and CuNCS, and organic hole transport materials described in paragraph numbers 0209 to 0212 of JP-A No. 2001-291534, for example.
  • the organic hole transport material is preferably a conductive polymer such as polythiophene, polyaniline, polypyrrole and polysilane, a spiro compound in which two rings share a tetrahedral structure such as C and Si, and triarylamine. And aromatic amine compounds such as triphenylene compounds, nitrogen-containing heterocyclic compounds, and liquid crystalline cyano compounds.
  • the hole transporting material is preferably an organic hole transporting material that can be applied by solution and becomes solid.
  • 2,2 ′, 7,7′-tetrakis- (N, N-di-p-methoxyphenyl) Amine) -9,9-spirobifluorene also referred to as spiro-OMeTAD
  • 4- (diethylamino) benzaldehyde diphenylhydrazone
  • PEDOT polyethylenedioxythiophene
  • the thickness of the hole transport layer 3 is not particularly limited, but is preferably 50 ⁇ m or less, more preferably 1 nm to 10 ⁇ m, further preferably 5 nm to 5 ⁇ m, and particularly preferably 10 nm to 1 ⁇ m.
  • the film thickness of the hole transport layer 3 corresponds to the average distance between the second electrode 2 and the surface of the photosensitive layer 13, and the cross section of the photoelectric conversion element is observed using a scanning electron microscope (SEM) or the like. Can be measured.
  • the photoelectric conversion element of this invention has the electron carrying layer 4 between the 1st electrode 1 and the 2nd electrode 2 like the photoelectric conversion element 10E.
  • the electron transport layer 4 is preferably in contact (laminated) with the photosensitive layer 3C.
  • the electron transport layer 4 is the same as the electron transport layer 15 except that the electron transport destination is the second electrode and the position where the electron transport layer 4 is formed is different.
  • the second electrode 2 functions as a positive electrode in the solar cell.
  • the 2nd electrode 2 will not be specifically limited if it has electroconductivity, Usually, it can be set as the same structure as the electroconductive support body 11. FIG. If the strength is sufficiently maintained, the support 11a is not necessarily required.
  • the structure of the second electrode 2 is preferably a structure having a high current collecting effect. In order for light to reach the photosensitive layer 13, at least one of the conductive support 11 and the second electrode 2 must be substantially transparent. In the solar cell of this invention, it is preferable that the electroconductive support body 11 is transparent and sunlight is entered from the support body 11a side. In this case, it is more preferable that the second electrode 2 has a property of reflecting light.
  • the second electrode 2 As a material for forming the second electrode 2, for example, platinum (Pt), gold (Au), nickel (Ni), copper (Cu), silver (Ag), indium (In), ruthenium (Ru), palladium (Pd ), Rhodium (Rh), iridium (Ir), osnium (Os), aluminum (Al), and other metals, the above-described conductive metal oxides, carbon materials, and conductive polymers.
  • the carbon material may be a conductive material formed by bonding carbon atoms to each other, and examples thereof include fullerene, carbon nanotube, graphite, and graphene.
  • the second electrode 2 is preferably a metal or conductive metal oxide thin film (including a thin film formed by vapor deposition), or a glass substrate or plastic substrate having this thin film.
  • a metal or conductive metal oxide thin film including a thin film formed by vapor deposition
  • a glass substrate or plastic substrate having this thin film.
  • glass substrate or plastic substrate glass having a thin film of gold or platinum or glass on which platinum is deposited is preferable.
  • the film thickness of the second electrode 2 is not particularly limited, but is preferably 0.01 to 100 ⁇ m, more preferably 0.01 to 10 ⁇ m, and particularly preferably 0.01 to 1 ⁇ m.
  • a spacer or a separator can be used instead of the blocking layer 14 or together with the blocking layer 14.
  • a hole blocking layer may be provided between the second electrode 2 and the hole transport layer 3.
  • the solar cell of this invention is comprised using the photoelectric conversion element of this invention.
  • a photoelectric conversion element 10 configured to cause the external circuit 6 to work can be used as a solar cell.
  • the external circuit 6 connected to the first electrode 1 (conductive support 11) and the second electrode 2 known ones can be used without particular limitation.
  • the present invention is disclosed in, for example, Patent Documents 1 and 2 and Non-Patent Document 1, J. Pat. Am. Chem. Soc. 2009, 131 (17), p. 6050-6051 and Science, 338, p. 643 (2012).
  • the photoelectric conversion element and the solar cell of the present invention include the photosensitive layer 13 formed of the perovskite compound represented by the formula (I), and the amount of decrease in battery performance under a high temperature and high humidity environment. Is small among solar cells and exhibits stable battery performance.
  • the photoelectric conversion element and solar cell of the present invention can be produced by known production methods such as Patent Documents 1 and 2 and Non-Patent Document 1, and J. Org. Am. Chem. Soc. 2009, 131 (17), p. 6050-6051, Science, 338, p. 643 (2012) and the like.
  • the method for producing a photoelectric conversion element and a solar cell of the present invention contains a perovskite type light absorber represented by the above formula (I) as a layer on which a photosensitive layer is formed. And a step of contacting with the liquid. If the manufacturing method of this invention has this process, another process will not be specifically limited.
  • At least one of the blocking layer 14, the porous layer 12, the electron transport layer 15, and the hole transport layer 16 is formed on the conductive support 11 as desired.
  • the blocking layer 14 can be formed by, for example, a method of applying a dispersion containing the insulating material or a precursor compound thereof on the surface of the conductive support 11 and baking it, or a spray pyrolysis method.
  • the material forming the porous layer 12 is preferably used as fine particles, and more preferably used as a dispersion containing fine particles.
  • the method for forming the porous layer 12 is not particularly limited, and examples thereof include a wet method, a dry method, and other methods (for example, a method described in Chemical Review, Vol. 110, page 6595 (2010)). It is done. In these methods, the dispersion (paste) is applied to the surface of the conductive support 11 or the surface of the blocking layer 14, and then fired at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours, for example, in air. preferable. Thereby, microparticles
  • the firing temperature other than the last firing is preferably performed at a temperature lower than the last firing temperature (the last firing temperature).
  • the firing temperature other than the last can be set within a range of 50 to 300 ° C.
  • the final firing temperature can be set to be higher than the firing temperature other than the last within the range of 100 to 600 ° C.
  • the firing temperature is preferably 60 to 500 ° C.
  • the coating amount of the porous material when forming the porous layer 12 is appropriately set according to the thickness of the porous layer 12 and the number of coatings, and is not particularly limited.
  • the coating amount of the porous material per 1 m 2 of the surface area of the conductive support 11 is preferably 0.5 to 500 g, and more preferably 5 to 100 g.
  • the electron transport layer 15 or the hole transport layer 16 When the electron transport layer 15 or the hole transport layer 16 is provided, it can be formed in the same manner as the hole transport layer 3 or the electron transport layer 4 described later.
  • the method for providing the photosensitive layer 13 includes a wet method and a dry method, and is not particularly limited.
  • a wet method is preferable, and for example, a method of contacting with a liquid containing a perovskite light absorber (the following forming liquid) is preferable.
  • a forming solution for forming a photosensitive layer is prepared.
  • This forming solution contains R A —NH 3 X (where R A and X are as described above) and (R B ) n2 -L—NH 3 X (where R B , L, n2 and X is as described above) and MX 2 (wherein M and X are as described above) are mixed at a predetermined molar ratio and then heated.
  • This forming liquid is usually a solution (also referred to as a light absorber solution), but may be a suspension.
  • the molar ratio of each component in the forming liquid is set according to n in the above formula (IA).
  • the heating conditions are not particularly limited, but the heating temperature is preferably 30 to 200 ° C, more preferably 70 to 150 ° C.
  • the heating time is preferably 0.5 to 100 hours, more preferably 1 to 3 hours.
  • the solvent or dispersion medium those described later can be used.
  • the prepared light absorber solution is a layer on which the photosensitive layer 13 is formed (in the photoelectric conversion element 10, any one of the porous layer 12, the blocking layer 14, the electron transport layer 15 and the hole transport layer 16). The surface of the layer).
  • the contact temperature is preferably 5 to 100 ° C.
  • the immersion time is preferably 5 seconds to 24 hours, more preferably 20 seconds to 1 hour.
  • coating a dipping method is included
  • any solution may be applied first, but preferably the MX 2 solution is applied first.
  • the molar ratio of R A —NH 3 X and (R B ) n2 -L—NH 3 X to MX 2 , coating conditions and drying conditions are the same as in the above method.
  • R A —NH 3 X, (R B ) n2 -L—NH 3 X or MX 2 is vapor-deposited instead of applying the R A solution, the R B solution, and the MX 2 solution. You can also.
  • the hole transport layer 3 or the electron transport layer 4 is preferably formed on the photosensitive layer 13 thus formed.
  • the hole transport layer 3 can be formed by applying a hole transport material solution containing a hole transport material to the photosensitive layer 13 and drying it.
  • the hole transport material solution has a coating solution concentration of 0.1 to 1.0 M in that it has excellent coating properties, and if it has the porous layer 12, it easily penetrates into the pores of the porous layer 12. (Mol / L) is preferred.
  • the electron transport layer 4 can be formed by applying an electron transport material solution containing an electron transport material to the photosensitive layer 13 and drying it.
  • the second electrode 2 is formed, and the photoelectric conversion element is manufactured.
  • the film thickness of each layer can be adjusted by appropriately changing the concentration of each dispersion or solution and the number of coatings. For example, when the thick photosensitive layers 13B and 13C are provided, the forming solution may be applied and dried a plurality of times.
  • Each of the above-mentioned dispersions and solutions may contain additives such as a dispersion aid and a surfactant as necessary.
  • Examples of the solvent or dispersion medium used in the solar cell manufacturing method include, but are not limited to, the solvents described in JP-A No. 2001-291534.
  • an organic solvent is preferable, and an alcohol solvent, an amide solvent, a nitrile solvent, a hydrocarbon solvent, a lactone solvent, a halogen solvent, and a mixed solvent of two or more of these are preferable.
  • the mixed solvent a mixed solvent of an alcohol solvent and a solvent selected from an amide solvent, a nitrile solvent, or a hydrocarbon solvent is preferable.
  • methanol, ethanol, isopropanol, ⁇ -butyrolactone, chlorobenzene, acetonitrile, N, N′-dimethylformamide (DMF), dimethylacetamide, or a mixed solvent thereof is preferable.
  • the application method of the solution or dispersant forming each layer is not particularly limited, and spin coating, extrusion die coating, blade coating, bar coating, screen printing, stencil printing, roll coating, curtain coating, spray coating, dip coating, inkjet
  • a known coating method such as a printing method or a dipping method can be used. Of these, spin coating, screen printing and the like are preferable.
  • the photoelectric conversion element of the present invention may be subjected to an efficiency stabilization treatment such as annealing, light soaking, and leaving in an oxygen atmosphere as necessary.
  • the photoelectric conversion element produced as described above can be used as a solar cell by connecting the external circuit 6 to the first electrode 1 and the second electrode 2.
  • Example 1 Manufacture of photoelectric conversion element and solar cell (sample No. 101)
  • the photoelectric conversion element 10A and the solar cell shown in FIG. 1 were manufactured by the following procedure. When the film thickness of the photosensitive layer 13 is large, it corresponds to the photoelectric conversion element 10B and the solar cell shown in FIG.
  • a conductive support 11 was prepared by forming a fluorine-doped SnO 2 conductive film (transparent electrode 11b, film thickness 300 nm) on a glass support 11a (thickness 2 mm). Using the 0.02M blocking layer solution, a blocking layer 14 (film thickness 50 nm) was formed on the SnO 2 conductive film at 450 ° C. by spray pyrolysis.
  • Ethyl cellulose, lauric acid and terpineol were added to an ethanol dispersion of titanium oxide (TiO 2 , anatase, average particle size 20 nm) to prepare a titanium oxide paste.
  • TiO 2 titanium oxide
  • the prepared titanium oxide paste was applied onto the blocking layer 14 by a screen printing method, and baked in air at 500 ° C. for 3 hours. Then, the fired body of the obtained titanium oxide was immersed in a 40 mM TiCl 4 aqueous solution, heated at 60 ° C. for 1 hour, and subsequently at 500 ° C. for 30 minutes, and the porous layer 12 (thickness 300 nm) made of TiO 2 was obtained. A film was formed.
  • N (CH 3 ) 2 CH 2 CH 2 NH 2 (Compound L-1-2) and 57% by mass of hydroiodic acid were added at a molar ratio of 1: 1 to ethanol in the flask and stirred at 0 ° C. for 2 hours. Then, it heated at 50 degreeC and stirred for 1 hour. Then concentrated to give a crude product of N (CH 3) 2 CH 2 CH 2 NH 3 I. The obtained crude product was recrystallized from acetonitrile, and the obtained crystal was collected by filtration and dried under reduced pressure at 50 ° C. for 5 hours to obtain purified N (CH 3 ) 2 CH 2 CH 2 NH 3 I.
  • the prepared light absorber solution was applied on the porous layer 12 formed on the conductive support 11 by spin coating (2000 rpm for 60 seconds), and then dried at 100 ° C. for 1 hour using a hot plate.
  • the photosensitive layer 13 (thickness 310 nm (including the thickness 300 nm of the porous layer 12)) was provided to produce the first electrode 1.
  • the photosensitive layer 13A contained a perovskite compound represented by the formula (I) having an organic cation represented by the formula (IA). Table 1 shows organic cations of formula (IA) and n, and M and X of formula (I) (hereinafter the same).
  • Gold was vapor-deposited on the hole transport layer 3A by a vapor deposition method to produce a second electrode 2 (film thickness 100 nm).
  • a photoelectric conversion element and a solar cell (sample No. 101) were manufactured.
  • Each film thickness was observed and measured by SEM according to the above method.
  • each of the obtained photoelectric conversion element and solar cell (sample Nos. 102 to 109, 112, 113, 115 to 138) has an organic cation represented by the formula (IA) in the photosensitive layer 13A. It contained a perovskite compound represented by (I).
  • N (CH 3 ) 2 CH 2 CH 2 NH 2 (compound L-1-2) and 57% by mass of hydrobromic acid were added at a molar ratio of 1: 1 to ethanol in the flask, and the mixture was stirred at 0 ° C. for 2 hours. After stirring, the mixture was heated to 50 ° C. and stirred for 1 hour. Then concentrated to give a crude product of N (CH 3) 2 CH 2 CH 2 NH 3 Br. The obtained crude product was recrystallized from acetonitrile, and the obtained crystals were collected by filtration and dried under reduced pressure at 50 ° C. for 5 hours to obtain purified N (CH 3 ) 2 CH 2 CH 2 NH 3 Br.
  • the molar ratio of purified CH 3 NH 3 Br and purified N (CH 3 ) 2 CH 2 CH 2 NH 3 Br and PbBr 2 is 0.5: 0.5: 1.0 (sample No. 110) or 0.1. 9: 0.1: 1.0 (Sample No. 111), after stirring and mixing in DMF at 60 ° C. for 12 hours, filtered through a polytetrafluoroethylene (PTFE) syringe filter to absorb 40% by mass of light An agent solution was prepared.
  • PTFE polytetrafluoroethylene
  • Ethylenediamine (precursor of compound L-1-4) and 57% by mass of hydroiodic acid were added to ethanol in the flask at a molar ratio of 1: 2, stirred at 0 ° C. for 2 hours, and then heated to 50 ° C. Stir for 1 hour. Then concentrated to give a crude product of NH 2 CH 2 CH 2 NH 2 ⁇ 2HI. The obtained crude product was recrystallized from acetonitrile, and the obtained crystal was collected by filtration and dried under reduced pressure at 50 ° C. for 5 hours to obtain purified NH 2 CH 2 CH 2 NH 2 .2HI.
  • purified CH 3 NH 3 I, purified NH 2 CH 2 CH 2 NH 2 .2HI, and PbI 2 were stirred and mixed at a molar ratio of 0.9: 0.1: 1 in DMF at 60 ° C. for 12 hours. It filtered with the fluoroethylene (PTFE) syringe filter, and prepared the 40 mass% light absorber solution.
  • PTFE fluoroethylene
  • PTFE polytetrafluoroethylene
  • Sample No. of solar cell The variation in wet heat durability of photoelectric conversion efficiency was evaluated as follows. Sample No. Ten specimens of each solar cell were produced in the same manner. Using each specimen, an initial battery characteristic test was performed by irradiating 1000 W / m 2 of pseudo-sunlight from a xenon lamp through an AM1.5 filter using a solar simulator “WXS-85H” (manufactured by WACOM). ,went. In this test, the current-voltage characteristics were measured using an IV tester to determine the initial photoelectric conversion efficiency ( ⁇ /%).
  • Rate of decrease (%): 100- (photoelectric conversion efficiency over time / initial photoelectric conversion efficiency) ⁇ 100
  • the decrease rate of each of the 10 samples calculated in this way was defined as “analyte decrease rate (Bn)” (n represents an integer of 1 to 10).
  • the average value of the specimen reduction rate (Bn) of 10 specimens was obtained and used as “average reduction rate (A)”.
  • the variation in wet heat durability is a pass level of this test when the evaluation is D or more, preferably C or more.
  • a +: 0 or more and ⁇ 0.12 or less A: ⁇ 0.12 exceeding ⁇ 0.14 or less B +: ⁇ 0.14 exceeding ⁇ 0.16 or less B: ⁇ 0.16 exceeding ⁇ 0.18 or less C +: ⁇ 0.18 and over ⁇ 0.20 or less C: ⁇ 0.20 over ⁇ 0.22 or less D: ⁇ 0.22 over ⁇ 0.24 or less E: Over ⁇ 0.24 over ⁇ 0.26 F: exceeds ⁇ 0.26
  • sample No. The photoelectric conversion efficiency of the solar cell 101 functioned sufficiently as a solar cell.
  • the solar of the present invention provided with a photosensitive layer 13 containing a perovskite type light absorber having a perovskite type crystal structure having an organic cation, a metal cation and an anion represented by the formula (IA)
  • All of the batteries were evaluated with respect to variation in wet heat durability of C or more, and it was found that the variation was small and stable battery performance was exhibited. It has also been found that when a photosensitive layer is formed using a light absorbent solution containing this perovskite light absorber, a photoelectric conversion element that exhibits stable battery performance even in a high temperature and high humidity environment can be produced.
  • the time-dependent photoelectric conversion efficiency ( ⁇ /%) of the solar cell of the present invention was a photoelectric conversion efficiency sufficient for normal operation as a solar cell.
  • n in the formula (IA) is in the range of 0.10 to 0.50, more preferably 0.15 to 0.30, the variation in wet heat durability can be further reduced.
  • R A in formula (IA) is an alkyl group substituted with a halogen atom, variation in wet heat durability could be sufficiently suppressed.
  • the linking group L of the formula (IA) has a group represented by the formula L-2, formula L-3, formula L-10 or formula L-11, the variation in wet heat durability is excellent. I also understood that.
  • Example 2 In this example, the photoelectric conversion element 10C shown in FIG. 3 was manufactured and its characteristics were evaluated.
  • the photoelectric conversion element and solar cell of Example 1 the same as the photoelectric conversion element and solar cell (Sample Nos. C101 to c104 and 115, 116) of Example 1 except that the porous layer 12 was not provided.
  • photoelectric conversion elements and solar cells (Sample Nos. C201 to c204 and 215, 216) were produced.
  • the variation in photoelectric conversion efficiency of the manufactured solar cell was evaluated in the same manner as in Example 1, the sample No. Both the solar cells 215 and 216 exhibited a stable battery performance with small variation in wet heat durability.
  • Sample No. None of the solar cells c201 to c204 was able to suppress variation in wet heat durability.
  • Example 3 In this example, a photoelectric conversion element (see the photoelectric conversion element 10F shown in FIG. 6) and a solar cell that are not provided with a hole transport layer were manufactured and their characteristics were evaluated.
  • the photoelectric conversion element and the solar cell of Example 1 (Sample Nos. C101 to c104 and 115, 116), except that the hole transport layer 3A was not provided
  • photoelectric conversion elements and solar cells (Sample Nos. C301 to c304 and 315, 316) were manufactured.
  • the variation in photoelectric conversion efficiency of the manufactured solar cell was evaluated in the same manner as in Example 1, the sample No. Both the solar cells 315 and 316 exhibited stable battery performance with small variations in wet heat durability.
  • Sample No. None of the solar cells c301 to c304 was able to suppress variation in wet heat durability.
  • First electrode 11 Conductive support 11a Support 11b Transparent electrode 12 Porous layer 13A to 13C Photosensitive layer 14 Blocking layer 2 Second electrode 3A, 3B, 16 Hole transport layer 4, 15 Electron transport layer 6 External Circuit (Lead) 10A to 10F Photoelectric conversion elements 100A to 100F System M using a solar cell Electric motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光吸収剤を含む感光層を導電性支持体上に有する第一電極と第二電極とを有する光電変換素子であって、光吸収剤が下記式(IA)で表される有機カチオンと、金属原子のカチオンと、アニオン性原子もしくは原子団のアニオンとを有するペロブスカイト型結晶構造を持つ化合物を含む光電変換素子および太陽電池、ならびに、上記化合物を含有する液に感光層が成膜される層を接触させる光電変換素子の製造方法。 式(IA):[R-NH(H)]1-n{[(Rn2-L-NH](H)} 式中、Rはアルキル基等の特定の基を表す。RはNRまたは(NRを表し、R~Rは水素原子または置換基を表す。Lは連結基を表す。n2は1以上の整数を表す。ただし(Rn2-LとRとは異なる基である。nは0<n<1.00の数を表す。

Description

光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法
 本発明は、光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法に関する。
 光電変換素子は、各種の光センサー、複写機、太陽電池等に用いられている。太陽電池は、非枯渇性の太陽エネルギーを利用するものとして、その本格的な実用化が期待されている。このなかでも、増感剤として有機色素またはRuビピリジル錯体等を用いた色素増感太陽電池は、研究開発が盛んに進められ、光電変換効率が11%程度に到達している。
 その一方で、近年、ペロブスカイト型結晶構造を有する化合物(ペロブスカイト化合物)として金属ハロゲン化物を用いた太陽電池が、比較的高い変換効率を達成できるとの研究成果が報告され、注目を集めている。
 例えば、特許文献1には、CHNHMX(MはPbまたはSnを表し、Xはハロゲン原子を表す。)で表されるペロブスカイトを有する感光層と電解液からなる電解質層とを備えた太陽電池が、記載されている。
 また、特許文献2には、フォトルミネセンス用のA/M/X金属ハロゲン化物として、メチルアンモニウムカチオン、グアニジウムカチオン等の1価の有機カチオンを含む化合物が記載されている。
 さらに、非特許文献1には、ホルムアミジニウムカチオンとメチルアンモニウムカチオンとの混合物をカチオンAとするペロブスカイト:APbIを用いた光起電装置が記載されている。
韓国特許第10-1172374号公報 国際公開第2013/126385号
Angew. Chem. Int. Ed. 2014,53,p.3151-3157
 上述のように、ペロブスカイト化合物を用いた太陽電池は、光電変換効率の向上に一定の成果が得られている。しかし、この太陽電池は、開発されて間もないため、電池性能についてはまだ十分な研究、検討がされていない。
 このような状況において、ペロブスカイト化合物を用いて成膜した感光層を備えた太陽電池の電池性能を評価、検討したところ、高温高湿度環境下での電池性能の低下量が太陽電池間で大きく変動し(湿熱耐久性がばらつき)、屋外等の高温高湿度環境下での使用を想定した場合に電池性能の安定性が十分ではないことが分かった。
 ここで、高温高湿度環境とは、太陽電池の使用環境を想定したものであり、特に限定されるものではないが、例えば、温度40~85℃、相対湿度50~85%の環境をいう。
 したがって、本発明は、湿熱耐久性のばらつきが小さく、安定した電池性能を発揮する光電変換素子およびこれを用いた太陽電池を提供することを課題とする。また、安定した電池性能を発揮する光電変換素子を製造する方法を提供することを課題とする。
 本発明者らは、光吸収剤としてペロブスカイト化合物を用いた太陽電池(以下、ペロブスカイト増感太陽電池ともいう)について種々検討したところ、ペロブスカイト型結晶の構造、性質等がペロブスカイト増感太陽電池の湿熱耐久性に影響していることを見出し、さらに検討を進めた結果、特定の2種の有機アンモニウムカチオンを含むペロブスカイト化合物を用いて感光層を設けると、高温高湿度環境下での電池性能の低下量の変動幅を低減でき、安定した電池性能を発揮することを見出した。本発明は、これらの知見に基づいて完成された。
 すなわち、上記の課題は以下の手段により解決された。
<1>光吸収剤を含む感光層を導電性支持体上に有する第一電極と、第一電極に対向する第二電極とを有する光電変換素子であって、上記光吸収剤が、下記式(IA)で表される有機カチオンと、金属原子のカチオンと、アニオン性原子もしくは原子団のアニオンとを有するペロブスカイト型結晶構造を持つ化合物を含む光電変換素子。
 式(IA):[R-NH(H)]1-n{[(Rn2-L-NH](H)}
 式中、Rはアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基または下記式(2)で表すことができる基を表す。Rは、NRまたは(NRを表し、R、RおよびRは各々独立に水素原子または置換基を表す。Lは連結基を表す。n2は1以上の整数を表す。ただし、(Rn2-LはRとは異なる基である。nは0<n<1.00を満たす数を表す。
Figure JPOXMLDOC01-appb-C000005
 式中、XはNR1c、酸素原子または硫黄原子を表す。R1bおよびR1cは各々独立に水素原子または置換基を表す。***は式(IA)のN原子との結合位置を表す。
<2>上記ペロブスカイト型結晶構造を持つ化合物が、下記式(I)で表される<1>に記載の光電変換素子。
   式(I):A
 式中、Aはカチオン性有機基を表す。Mは金属原子を表す。Xはアニオン性原子もしくは原子団を表す。aは1または2を表し、mは1を表し、a、mおよびxはa+2m=xを満たす。
<3>R、RおよびRが、いずれも、水素原子である<1>または<2>に記載の光電変換素子。
<4>nが、0.10≦n≦0.50を満たす数を表す<1>~<3>のいずれか1つに記載の光電変換素子。
<5>nが、0.15≦n≦0.30を満たす数を表す<1>~<4>のいずれか1つに記載の光電変換素子。
<6>Lが、下記式L-1~式L-9で表される基からなる群より選択される少なくとも1種の基を有する<1>~<5>のいずれか1つに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000006
 式中、*はR、NHまたは上記式で表される基との連結位置を表す。Dは窒素原子またはCR10を表す。Dは酸素原子、硫黄原子またはNR11を表す。Eは酸素原子、硫黄原子またはNR12を表す。環Gはアリール環またはヘテロアリール環を表す。Zはヘテロ原子またはNR13を表す。RおよびRは各々独立に置換基を表し、R~RおよびR10~R13は各々独立に水素原子または置換基を表す。m1、m2、m4およびm5は各々独立に0以上の整数を表し、m3およびm6は各々独立に2以上の整数を表す。
<7>Lが、下記式L-2、式L-3、式L-10および式L-11で表される基からなる群より選択される少なくとも1種の基を有する<1>~<6>のいずれか1つに記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000007
 式中、*はR、NHまたは上記式で表される基との連結位置を表す。Dは窒素原子またはCR10を表し、環Gはアリール環またはヘテロアリール環を表し、Zはヘテロ原子またはNR13を表す。R10およびR13は各々独立に水素原子または置換基を表す。m5およびm7は各々独立に0以上の整数を表し、m8およびm9は各々独立に3以上の整数を表す。
<8>Rが、ハロゲン原子が置換したアルキル基である<1>~<7>のいずれか1つに記載の光電変換素子。
<9>n2が、2以上の整数である<1>~<8>のいずれか1つに記載の光電変換素子。
<10>金属原子のカチオンが、鉛およびスズからなる群より選択される少なくとも1種の金属カチオンである<1>~<9>のいずれか1つに記載の光電変換素子。
<11>アニオンが、ハロゲン原子のアニオンである<1>~<10>のいずれか1つに記載の光電変換素子。
<12>導電性支持体と感光層との間に多孔質層を有する<1>~<11>のいずれか1つに記載の光電変換素子。
<13>第一電極と第二電極の間に正孔輸送層を有する<1>~<12>のいずれか1つに記載の光電変換素子。
<14>上記<1>~<13>のいずれかに記載の光電変換素子を用いた太陽電池。
<15>導電性支持体上に設けられ、かつ感光層が成膜される層を、下記式(IA)で表される有機カチオンと、金属原子のカチオンと、アニオン性原子もしくは原子団のアニオンとを有するペロブスカイト型結晶構造を持つ化合物を含有する液に、接触させる光電変換素子の製造方法。
 式(IA):[R-NH(H)]1-n{[(Rn2-L-NH](H)}
 式中、Rはアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基または下記式(2)で表すことができる基を表す。Rは、NRまたは(NRを表し、R、RおよびRは各々独立に水素原子または置換基を表す。Lは連結基を表す。n2は1以上の整数を表す。ただし、(Rn2-LはRとは異なる基である。nは0<n<1.00を満たす数を表す。
Figure JPOXMLDOC01-appb-C000008
 式中、XはNR1c、酸素原子または硫黄原子を表す。R1bおよびR1cは各々独立に水素原子または置換基を表す。***は式(IA)のN原子との結合位置を表す。
 本明細書において、各式の表記は、化合物の化学構造の理解のために、一部を示性式として表記することもある。これに伴い、各式において、部分構造を、(置換)基、イオンまたは原子等と称するが、本明細書において、これらは、(置換)基、イオンまたは原子等のほかに、上記式で表される(置換)基もしくはイオンを構成する元素団、または、元素を意味することがある。
 本明細書において、化合物(錯体、色素を含む)の表示については、化合物そのもののほか、その塩、そのイオンを含む意味に用いる。また、目的の効果を奏する範囲で、構造の一部を変化させたものを含む意味である。さらに、置換または無置換を明記していない化合物については、所望の効果を奏する範囲で、任意の置換基を有していてもよい意味である。このことは置換基および連結基等(以下、置換基等という)についても同様である。
 本明細書において、特定の符号で表示された置換基等が複数あるとき、または複数の置換基等を同時に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が近接するとき(特に、隣接するとき)には、特段の断りがない限り、それらが互いに連結して環を形成してもよい。また、環、例えば脂環、芳香族環、ヘテロ環はさらに縮環して縮合環を形成していてもよい。
 また、本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明により、製品間の湿熱耐久性のばらつきが小さく、安定した電池性能を発揮する光電変換素子およびこれを用いた太陽電池を提供することができる。
 また、上記のような安定した電池性能を発揮する光電変換素子を製造する方法を提供することができる。
 本発明の上記および他の特徴および利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は本発明の光電変換素子の好ましい態様について、層中の円部分の拡大図も含めて模式的に示した断面図である。 図2は本発明の光電変換素子の厚い感光層を有する好ましい態様について模式的に示す断面図である。 図3は本発明の光電変換素子の別の好ましい態様について模式的に示した断面図である。 図4は本発明の光電変換素子のまた別の好ましい態様について模式的に示した断面図である。 図5は本発明の光電変換素子のさらに別の好ましい態様について模式的に示した断面図である。 図6は本発明の光電変換素子のさらにまた別の好ましい態様について模式的に示した断面図である。
<<光電変換素子>>
 本発明の光電変換素子は、導電性支持体および導電性支持体上に設けられた感光層を有する第一電極と、第一電極に対向する第二電極とを有する。この感光層は、上記式(IA)で表される有機カチオンと、金属原子のカチオンと、アニオン性原子もしくは原子団のアニオンとを有するペロブスカイト型結晶構造を持つ化合物(ペロブスカイト型光吸収剤ともいう)を有してなる。
 本発明において、導電性支持体上に感光層を設けるとは、導電性支持体の表面に接して感光層を設ける(直接設ける)態様、および、導電性支持体の表面上方に他の層を介して感光層を設ける態様を含む意味である。
 導電性支持体の表面上方に他の層を介して感光層を有する態様において、導電性支持体と感光層との間に設けられる他の層としては、太陽電池の電池性能を低下させないものであれば特に限定されない。例えば、多孔質層、ブロッキング層等が挙げられる。
 本発明において、導電性支持体の表面上方に他の層を介して感光層を有する態様としては、例えば、感光層が、多孔質層の表面に薄い膜状等に設けられる態様(図1参照)、多孔質層の表面に厚い膜状に設けられる態様(図2および図6参照)、ブロッキング層の表面に薄い膜状に設けられる態様、および、ブロッキング層の表面に厚い膜状に設けられる態様(図3参照)、電子輸送層の表面に薄い膜状または厚い膜状(図4参照)に設けられる態様、および、正孔輸送層の表面に薄い膜状または厚い膜状(図5参照)に設けられる態様が挙げられる。感光層は、線状または分散状に設けられてもよいが、好ましくは膜状に設けられる。
 本発明の光電変換素子は、本発明で規定する構成以外の構成は特に限定されず、光電変換素子および太陽電池に関する公知の構成を採用できる。本発明の光電変換素子を構成する各層は、目的に応じて設計され、例えば、単層に形成されても、複層に形成されてもよい。例えば、多孔質層を導電性支持体と感光層との間に設けることもできる(図1、図2および図6参照)。
 以下、本発明の光電変換素子の好ましい態様について説明する。
 図1~図6において、同じ符号は同じ構成要素(部材)を意味する。
 なお、図1、図2および図6は、多孔質層12を形成する微粒子の大きさを強調して示してある。これらの微粒子は、好ましくは、導電性支持体11に対して水平方向および垂直方向に詰まり(堆積または密着して)、多孔質構造を形成している。
 本明細書において、単に光電変換素子10という場合は、特に断らない限り、光電変換素子10A~10Fを意味する。このことは、システム100、第一電極1についても同様である。また、単に感光層13という場合は、特に断らない限り、感光層13A~13Cを意味する。同様に、正孔輸送層3という場合は、特に断らない限り、正孔輸送層3Aおよび3Bを意味する。
 本発明の光電変換素子の好ましい態様として、例えば、図1に示す光電変換素子10Aが挙げられる。図1に示されるシステム100Aは、光電変換素子10Aを外部回路6で動作手段M(例えば電動モーター)に仕事をさせる電池用途に応用したシステムである。
 この光電変換素子10Aは、第一電極1Aと、第二電極2と、正孔輸送層3Aとを有している。
 第一電極1Aは、支持体11aおよび透明電極11bからなる導電性支持体11と、多孔質層12と、図1において断面領域aを拡大した拡大断面領域aに模式的に示されるように多孔質層12の表面に、ペロブスカイト型光吸収剤で設けられた感光層13Aとを有している。また透明電極11b上にブロッキング層14を有し、ブロッキング層14上に多孔質層12が形成される。このように多孔質層12を有する光電変換素子10Aは、感光層13Aの表面積が大きくなるため、電荷分離および電荷移動効率が向上すると推定される。
 図2に示す光電変換素子10Bは、図1に示す光電変換素子10Aの感光層13Aを厚く設けた好ましい態様を模式的に示したものである。この光電変換素子10Bにおいて、正孔輸送層3Bは薄く設けられている。光電変換素子10Bは、図1で示した光電変換素子10Aに対して感光層13Bおよび正孔輸送層3Bの膜厚の点で異なるが、これらの点以外は光電変換素子10Aと同様に構成されている。
 図3に示す光電変換素子10Cは、本発明の光電変換素子の別の好ましい態様を模式的に示したものである。光電変換素子10Cは、図2に示す光電変換素子10Bに対して多孔質層12を設けていない点で異なるが、この点以外は光電変換素子10Bと同様に構成されている。すなわち、光電変換素子10Cにおいて、感光層13Cはブロッキング層14の表面に厚い膜状に形成されている。光電変換素子10Cにおいて、正孔輸送層3Bは正孔輸送層3Aと同様に厚く設けることもできる。
 図4に示す光電変換素子10Dは、本発明の光電変換素子のまた別の好ましい態様を模式的に示したものである。この光電変換素子10Dは、図3に示す光電変換素子10Cに対してブロッキング層14に代えて電子輸送層15を設けた点で異なるが、この点以外は光電変換素子10Cと同様に構成されている。第一電極1Dは、導電性支持体11と、導電性支持体11上に順に形成された、電子輸送層15および感光層13Cとを有している。この光電変換素子10Dは、各層を有機材料で形成できる点で、好ましい。これにより、光電変換素子の生産性が向上し、しかも薄型化またはフレキシブル化が可能になる。
 図5に示す光電変換素子10Eは、本発明の光電変換素子のさらに別の好ましい態様を模式的に示したものである。この光電変換素子10Eを含むシステム100Eは、システム100Aと同様に電池用途に応用したシステムである。
 光電変換素子10Eは、第一電極1Eと、第二電極2と、第一電極1Eおよび第二電極2の間に電子輸送層4とを有している。第一電極1Eは、導電性支持体11と、導電性支持体11上に順に形成された、正孔輸送層16および感光層13Cとを有している。この光電変換素子10Eは、光電変換素子10Dと同様に、各層を有機材料で形成できる点で、好ましい。
 図6に示す光電変換素子10Fは、本発明の光電変換素子のさらにまた別の好ましい態様を模式的に示したものである。光電変換素子10Fは、図2に示す光電変換素子10Bに対して正孔輸送層3Bを設けていない点で異なるが、この点以外は光電変換素子10Bと同様に構成されている。
 本発明において、光電変換素子10を応用したシステム100は、以下のようにして、太陽電池として、機能する。
 すなわち、光電変換素子10において、導電性支持体11を透過して、または第二電極2を透過して感光層13に入射した光は光吸収剤を励起する。励起された光吸収剤はエネルギーの高い電子を有しており、この電子を放出できる。エネルギーの高い電子を放出した光吸収剤は酸化体となる。
 光電変換素子10A~10Dおよび10Fにおいては、光吸収剤から放出された電子は、光吸収剤間を移動して導電性支持体11に到達する。導電性支持体11に到達した電子が外部回路6で仕事をした後、第二電極2を経て(正孔輸送層3がある場合にはさらに正孔輸送層3を経由して)、感光層13に戻る。感光層13に戻った電子により光吸収剤が還元される。
 一方、光電変換素子10Eにおいては、光吸収剤から放出された電子は、感光層13Cから電子輸送層4を経て第二電極2に到達し、外部回路6で仕事をした後に導電性支持体11を経て、感光層13に戻る。感光層13に戻った電子により光吸収剤が還元される。
 光電変換素子10においては、このような、上記光吸収剤の励起および電子移動のサイクルを繰り返すことにより、システム100が太陽電池として機能する。
 光電変換素子10A~10Dおよび10Fにおいて、感光層13から導電性支持体11への電子の流れ方は、多孔質層12の有無およびその種類等により、異なる。本発明の光電変換素子10においては、光吸収剤間を電子が移動する電子伝導が起こる。したがって、多孔質層12を設ける場合、多孔質層12は従来の半導体以外に絶縁体で形成することができる。多孔質層12が半導体で形成される場合、多孔質層12の半導体微粒子内部や半導体微粒子間を電子が移動する電子伝導も起こる。一方、多孔質層12が絶縁体で形成される場合、多孔質層12での電子伝導は起こらない。多孔質層12が絶縁体で形成される場合、絶縁体微粒子に酸化アルミニウム(Al)の微粒子を用いると、比較的高い起電力(Voc)が得られる。
 上記他の層としてのブロッキング層14が導体または半導体により形成された場合もブロッキング層14での電子伝導が起こる。
 また、電子輸送層15でも電子伝導が起こる。
 本発明の光電変換素子および太陽電池は、上記の好ましい態様に限定されず、各態様の構成等は、本発明の趣旨を逸脱しない範囲で、各態様間で適宜組み合わせることができる。例えば、光電変換素子10Cまたは10Dにおいて、光電変換素子10Fのように、正孔輸送層3Bを設けない構成とすることもできる。
 本発明において、光電変換素子または太陽電池に用いられる材料および各部材は、本発明で規定する材料および部材を除いて、常法により調製することができる。例えば、ペロブスカイト増感太陽電池について、特許文献1、2および非特許文献1ならびにJ.Am.Chem.Soc.,2009,131(17),p.6050-6051およびScience,338,p.643(2012)を参照することができる。また、色素増感太陽電池に用いられる材料および各部材についても参考にすることができる。色素増感太陽電池としては、例えば、特開2001-291534号公報、米国特許第4,927,721号明細書、米国特許第4,684,537号明細書、米国特許第5,0843,65号明細書、米国特許第5,350,644号明細書、米国特許第5,463,057号明細書、米国特許第5,525,440号明細書、特開平7-249790号公報、特開2004-220974号公報、特開2008-135197号公報を参照することができる。
 以下、この太陽電池を構成する主たる部材とその機能について概略を説明する。
<第一電極1>
 第一電極1は、導電性支持体11と感光層13とを有し、光電変換素子10において作用電極として機能する。
 第一電極1は、図1~図6に示されるように、多孔質層12、ブロッキング層14、電子輸送層15および正孔輸送層16の少なくとも1つの層を有することが好ましい。
 第一電極1は、短絡防止の点で少なくともブロッキング層14を有することが好ましく、光吸収効率の点および短絡防止の点で多孔質層12およびブロッキング層14を有していることがさらに好ましい。
 また、第一電極1は、光電変換素子の生産性の向上、薄型化またはフレキシブル化の点で、有機材料で形成された、電子輸送層15または正孔輸送層16を有することが好ましい。
 - 導電性支持体11 -
 導電性支持体11は、導電性を有し、感光層13等を支持できるものであれば特に限定されない。導電性支持体11は、導電性を有する材料、例えば金属で形成された構成、または、ガラスもしくはプラスチックの支持体11aとこの支持体11aの表面に形成された導電膜としての透明電極11bとを有する構成が好ましい。
 なかでも、図1~図6に示されるように、ガラスまたはプラスチックの支持体11aの表面に導電性の金属酸化物を塗設して透明電極11bを成膜した導電性支持体11がさらに好ましい。プラスチックで形成された支持体11aとしては、例えば、特開2001-291534号公報の段落番号0153に記載の透明ポリマーフィルムが挙げられる。支持体11aを形成する材料としては、ガラスおよびプラスチックの他にも、セラミック(特開2005-135902号公報)、導電性樹脂(特開2001-160425号公報)を用いることができる。金属酸化物としては、スズ酸化物(TO)が好ましく、インジウム-スズ酸化物(スズドープ酸化インジウム;ITO)、フッ素をドープした酸化スズ(FTO)等のフッ素ドープスズ酸化物が特に好ましい。このときの金属酸化物の塗布量は、支持体11aの表面積1m当たり0.1~100gが好ましい。導電性支持体11を用いる場合、光は支持体11a側から入射させることが好ましい。
 導電性支持体11は、実質的に透明であることが好ましい。本発明において、「実質的に透明である」とは、光(波長300~1200nm)の透過率が10%以上であることを意味し、50%以上が好ましく、80%以上が特に好ましい。
 支持体11aおよび導電性支持体11の厚みは、特に限定されず、適宜の厚みに設定される。例えば、0.01μm~10mmであることが好ましく、0.1μm~5mmであることがさらに好ましく、0.3μm~4mmであることが特に好ましい。
 透明電極11bを設ける場合、透明電極11bの膜厚は、特に限定されず、例えば、0.01~30μmであることが好ましく、0.03~25μmであることがさらに好ましく、0.05~20μmであることが特に好ましい。
 導電性支持体11または支持体11aは、表面に光マネージメント機能を有してもよい。例えば、導電性支持体11または支持体11aの表面に、特開2003-123859号公報に記載の、高屈折膜および低屈折率の酸化物膜を交互に積層した反射防止膜を有してもよく、特開2002-260746号公報に記載のライトガイド機能を有してもよい。
 - ブロッキング層14 -
 本発明においては、光電変換素子10A~10Cおよび10Fのように、好ましくは、透明電極11bの表面に、すなわち、導電性支持体11と、多孔質層12、感光層13または正孔輸送層3等との間に、ブロッキング層14を有している。
 光電変換素子および太陽電池において、例えば感光層13または正孔輸送層3と、透明電極11b等とが電気的に接続すると逆電流を生じる。ブロッキング層14は、この逆電流を防止する機能を果たす。ブロッキング層14は短絡防止層ともいう。
 ブロッキング層14を、光吸収剤を担持する足場として機能させることもできる。
 このブロッキング層14は、光電変換素子が電子輸送層を有する場合にも設けられてもよい。例えば、光電変換素子10Dの場合、導電性支持体11と電子輸送層15との間に設けられてもよく、光電変換素子10Eの場合、第二電極2と電子輸送層4との間に設けられてもよい。
 ブロッキング層14を形成する材料は、上記機能を果たすことのできる材料であれば特に限定されないが、可視光を透過する物質であって、導電性支持体11(透明電極11b)等に対する絶縁性物質であることが好ましい。「導電性支持体11(透明電極11b)に対する絶縁性物質」とは、具体的には、伝導帯のエネルギー準位が、導電性支持体11を形成する材料(透明電極11bを形成する金属酸化物)の伝導帯のエネルギー準位以上であり、かつ、多孔質層12を構成する材料の伝導帯や光吸収剤の基底状態のエネルギー準位より低い化合物(n型半導体化合物)をいう。
 ブロッキング層14を形成する材料は、例えば、酸化ケイ素、酸化マグネシウム、酸化アルミニウム、炭酸カルシウム、炭酸セシウム、ポリビニルアルコール、ポリウレタン等が挙げられる。また、一般的に光電変換材料に用いられる材料でもよく、例えば、酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ、酸化タングステン等も挙げられる。なかでも、酸化チタン、酸化スズ、酸化マグネシウム、酸化アルミニウム等が好ましい。
 ブロッキング層14の膜厚は、0.001~10μmが好ましく、0.005~1μmがさらに好ましく、0.01~0.1μmが特に好ましい。
 本発明において、各層の膜厚は、走査型電子顕微鏡(SEM)等を用いて光電変換素子10の断面を観察することにより、測定できる。
 - 多孔質層12 -
 本発明においては、光電変換素子10A、10Bおよび10Fのように、好ましくは、透明電極11b上に多孔質層12を有している。ブロッキング層14を有している場合はブロッキング層14上に形成されることが好ましい。
 多孔質層12は、表面に感光層13を担持する足場として機能する層である。太陽電池において、光吸収効率を高めるためには、少なくとも太陽光等の光を受ける部分の表面積を大きくすることが好ましく、多孔質層12の全体としての表面積を大きくすることが好ましい。
 多孔質層12は、多孔質層12を形成する材料の微粒子が堆積または密着してなる、細孔を有する微粒子層であることが好ましい。多孔質層12は、2種以上の微粒子が堆積してなる微粒子層であってもよい。多孔質層12が細孔を有する微粒子層であると、光吸収剤の担持量(吸着量)を増量できる。
 多孔質層12の表面積を大きくするには、多孔質層12を構成する個々の微粒子の表面積を大きくすることが好ましい。本発明では、多孔質層12を形成する微粒子を導電性支持体11等に塗設した状態で、この微粒子の表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。多孔質層12を形成する微粒子の粒径は、投影面積を円に換算したときの直径を用いた平均粒径において、1次粒子として0.001~1μmが好ましい。微粒子の分散物を用いて多孔質層12を形成する場合、微粒子の上記平均粒径は、分散物の平均粒径として0.01~100μmが好ましい。
 多孔質層12を形成する材料は、導電性に関しては特に限定されず、絶縁体(絶縁性の材料)であっても、導電性の材料または半導体(半導電性の材料)であってもよい。
 多孔質層12を形成する材料としては、例えば、金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)、ペロブスカイト型結晶構造を有する化合物(光吸収剤として用いるペロブスカイト化合物を除く。)、ケイ素の酸化物(例えば、二酸化ケイ素、ゼオライト)、またはカーボンナノチューブ(カーボンナノワイヤおよびカーボンナノロッド等を含む)を用いることができる。
 金属のカルコゲニドとしては、特に限定されないが、好ましくは、チタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、アルミニウムまたはタンタルの各酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。金属のカルコゲニドの結晶構造として、アナターゼ型、ブルッカイト型またはルチル型が挙げられ、アナターゼ型、ブルッカイト型が好ましい。
 ペロブスカイト型結晶構造を有する化合物としては、特に限定されないが、遷移金属酸化物等が挙げられる。例えば、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸バリウム、チタン酸鉛、ジルコン酸バリウム、スズ酸バリウム、ジルコン酸鉛、ジルコン酸ストロンチウム、タンタル酸ストロンチウム、ニオブ酸カリウム、鉄酸ビスマス、チタン酸ストロンチウムバリウム、チタン酸バリウムランタン、チタン酸カルシウム、チタン酸ナトリウム、チタン酸ビスマスが挙げられる。なかでも、チタン酸ストロンチウム、チタン酸カルシウム等が好ましい。
 カーボンナノチューブは、炭素膜(グラフェンシート)を筒状に丸めた形状を有する。カーボンナノチューブは、1枚のグラフェンシートが円筒状に巻かれた単層カーボンナノチューブ(SWCNT)、2枚のグラフェンシートが同心円状に巻かれた2層カーボンナノチューブ(DWCNT)、複数のグラフェンシートが同心円状に巻かれた多層カーボンナノチューブ(MWCNT)に分類される。多孔質層12としては、いずれのカーボンナノチューブも特に限定されず、用いることができる。
 多孔質層12を形成する材料は、なかでも、チタン、スズ、亜鉛、ジルコニウム、アルミニウムもしくはケイ素の酸化物、またはカーボンナノチューブが好ましく、酸化チタンまたは酸化アルミニウムがさらに好ましい。
 多孔質層12は、上述の、金属のカルコゲニド、ペロブスカイト型結晶構造を有する化合物、ケイ素の酸化物およびカーボンナノチューブのうち少なくとも1種で形成されていればよく、複数種で形成されていてもよい。
 多孔質層12の膜厚は、特に限定されないが、通常0.05~100μmの範囲であり、好ましくは0.1~100μmの範囲である。太陽電池として用いる場合は、0.1~50μmが好ましく、0.2~30μmがより好ましく、0.3~30μmがさらに好ましい。
 - 電子輸送層15- 
 本発明においては、光電変換素子10Dのように、好ましくは、透明電極11bの表面に電子輸送層15を有している。
 電子輸送層15は、感光層13で発生した電子を導電性支持体11へと輸送する機能を有する。電子輸送層15は、この機能を発揮することができる電子輸送材料で形成される。電子輸送材料としては、特に限定されないが、有機材料(有機電子輸送材料)が好ましい。有機電子輸送材料としては、[6,6]-Phenyl-C61-Butyric Acid Methyl Ester(PC61BM)等のフラーレン化合物、ペリレンテトラカルボキシジイミド(PTCDI)等のペリレン化合物、その他、テトラシアノキノジメタン(TCNQ)等の低分子化合物、または、高分子化合物等が挙げられる。
 電子輸送層15の膜厚は、特に限定されないが、0.001~10μmが好ましく、0.01~1μmがより好ましい。
 - 正孔輸送層16- 
 本発明においては、光電変換素子10Eのように、好ましくは、透明電極11bの表面に正孔輸送層16を有している。
 正孔輸送層16は、形成される位置が異なること以外は、後述する正孔輸送層3と同じである。
 - 感光層(光吸収層)13 -
 感光層13は、図1~図6に示されるように、上記式(IA)で表される有機カチオンと、金属原子のカチオンと、アニオン性原子もしくは原子団のアニオンとを有するペロブスカイト型結晶構造を持つ化合物を光吸収剤として、好ましくは、多孔質層12(光電変換素子10A、10Bおよび10F)、ブロッキング層14(光電変換素子10C)、電子輸送層15(光電変換素子10D)、または、正孔輸送層16(光電変換素子10E)の各層の表面(感光層13が設けられる表面が凹凸の場合の凹部内表面を含む。)に、設けられる。
 本発明において、光吸収剤は、上記特定のペロブスカイト化合物を少なくとも1種含有していればよく、2種以上のペロブスカイト化合物を含有してもよい。また、光吸収剤は、ペロブスカイト化合物と併せて、ペロブスカイト化合物以外の光吸収剤を含んでいてもよい。ペロブスカイト化合物以外の光吸収剤としては、例えば金属錯体色素および有機色素が挙げられる。このとき、ペロブスカイト化合物と、それ以外の光吸収剤との割合は特に限定されない。
 感光層13は、単層であっても2層以上の積層であってもよい。感光層13が2層以上の積層構造である場合、互いに異なった光吸収剤からなる層を積層してなる積層構造でもよく、また、感光層と感光層の間に正孔輸送材料を含む中間層を有する積層構造でもよい。
 感光層13がとり得る形態は、上述した通りであり、感光層13は、好ましくは導電性支持体11に励起した電子が流れるように多孔質層12またはブロッキング層14の表面に設けられる。このとき、感光層13は、表面全体に設けられていてもよく、表面の一部に設けられていてもよく、多孔質層12を用いる場合には多孔質層12の孔内部に設けられていてもよい。
 感光層13の膜厚は、感光層がとり得る形態に応じて適宜に設定され、特に限定されない。感光層13の膜厚は、例えば、0.001~100μmが好ましく、0.01~10μmがさらに好ましく、0.01~5μmが特に好ましい。
 多孔質層12を有する場合、多孔質層12の膜厚との合計膜厚は、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上がさらに好ましく、0.2μm以上が特に好ましい。また、合計膜厚は、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、3μm以下が特に好ましい。合計膜厚は、上記値を適宜に組み合わせた範囲とすることができる。例えば、多孔質層12の膜厚との合計膜厚で、0.1~100μmが好ましく、0.1~50μmがさらに好ましく、0.2~3μmが特に好ましい。ここで、図1のように、感光層13が薄い膜状である場合に、感光層13の膜厚は、多孔質層12の表面に垂直な方向に沿う、多孔質層12との界面と後述する正孔輸送層3との界面との距離をいう。
 光電変換素子10において、多孔質層12と感光層13と正孔輸送層3との合計膜厚は、特に限定されないが、例えば、0.01μm以上が好ましく、0.05μm以上がより好ましく、0.1μm以上がさらに好ましく、0.3μm以上が特に好ましい。また、この合計膜厚は、200μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、5μm以下が特に好ましい。合計膜厚は、上記値を適宜に組み合わせた範囲とすることができる。
 なお、図2では、図1に示した感光層よりも感光層の厚みが増大したものであるが、本発明で使用する式(I)で表されるペロブスカイト型光吸収剤は、他のペロブスカイト化合物と同様に、正孔輸送材料となりうるものである。
 ペロブスカイト型光吸収剤の使用量は、少なくとも多孔質層12またはブロッキング層14の表面のうち光が入射する表面の少なくとも一部を覆う量であればよく、表面全体を覆う量が好ましい。
 感光層13中、ペロブスカイト化合物の含有量は、通常1~100質量%である。
 以下、本発明で用いる光吸収剤を説明する。
 感光層13は、光吸収剤として、カチオン性有機基と、金属原子と、アニオン性原子または原子団とを有するペロブスカイト化合物を少なくとも1種含有する。
 ペロブスカイト化合物のカチオン性有機基、金属原子およびアニオン性原子または原子団は、それぞれ、ペロブスカイト型結晶構造において、有機カチオン(便宜上、有機カチオンAということがある)、金属カチオン(便宜上、カチオンMということがある)およびアニオン(便宜上、アニオンXということがある)の各構成イオンとして存在する。
 本発明において、カチオン性有機基とは、ペロブスカイト型結晶構造において有機カチオンになる性質を有する有機基をいい、アニオン性原子または原子団とはペロブスカイト型結晶構造においてアニオンになる性質を有する原子または原子団をいう。
 本発明に用いるペロブスカイト化合物は、下記式(IA)で表される有機カチオンと、金属原子のカチオンと、アニオン性原子もしくは原子団のアニオンとを有するペロブスカイト型結晶構造を有する化合物である。
 式(IA):[R-NH(H)]1-n{[(Rn2-L-NH](H)}
 式中、Rはアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基または下記式(2)で表すことができる基を表す。Rは、NRまたは(NRを表し、R、RおよびRは各々独立に水素原子または置換基を表す。Lは連結基を表す。n2は1以上の整数を表す。ただし、(Rn2-LはRとは異なる基である。nは0<n<1.00を満たす数を表す。
Figure JPOXMLDOC01-appb-C000009
 式中、XはNR1c、酸素原子または硫黄原子を表す。R1bおよびR1cは各々独立に水素原子または置換基を表す。***は式(IA)の窒素原子との結合を表す。
 感光層13を形成するペロブスカイト化合物として、そのペロブスカイト型結晶構造を構成する有機カチオンが上記式(IA)で表される有機カチオンであるペロブスカイト化合物を用いると、湿熱耐久性のばらつきを低減できる理由は、まだ定かではないが、次のように推定される。すなわち、ペロブスカイト化合物において、アミノ基を1つ持つ有機アンモニウムカチオンと、アミノ基を2つ以上持つ有機アンモニウムカチオンとの互いに異なる2種の有機アンモニウムカチオンを用いると、アミノ基を1つ持つ有機アンモニウムカチオンの存在下、アミノ基を2つ以上持つアンモニウムカチオンのアミノ基によりペロブスカイト結晶構造が安定化し、結晶格子の欠陥も生じにくくなる。その結果、感光層13に隣接する層との界面状態が一様になり、その界面上または結晶中で、高温高湿度下での水分や熱による劣化が生じた際の性能低下を他の正常な部位が常に一定の効果で緩和することによりばらつきが低減されたと考えられる。また、欠陥のある結晶部位は高温高湿度下におかれることにより内部に侵入する水分や熱による性能低下の影響が大きく、本発明により欠陥が少なくなったこと自体がばらつきを低減できる理由と考えられる。
 また、アミノ基を1つ持つ有機アンモニウムカチオンにより発揮される優れた光電変換効率は、アミノ基を2つ以上持つアンモニウムカチオンの存在によっても低下せず、ペロブスカイト増感太陽電池の電池性能を維持する。
 本発明で用いる光吸収剤としては、上記のように、ペロブスカイト型結晶構造を構成する有機カチオンとして、上記式(IA)で表される2種類のカチオンを併用する。すなわち、1つは[R-NH(H)]であり、もう1つは{[(Rn2-L-NH](H)}である。
 本発明においては、ペロブスカイト化合物は、光吸収剤全体として、2つの上記有機カチオンを有していればよい。ペロブスカイト化合物は、2つの有機カチオンを有するペロブスカイト化合物であってもよく、また、[R-NH(H)]を有するペロブスカイト化合物と、{[(Rn2-L-NH](H)}を有するペロブスカイト化合物との混合物であってもよい。
 本発明において、2つの有機カチオンのうち、[R-NH(H)]で表される有機カチオンは、上記式(IA)中のRとNHとが結合してなるアンモニウムカチオン性有機基Aからなる有機アンモニウムカチオン(R-NH )が好ましい。この有機アンモニウムカチオンが共鳴構造を取り得る場合、有機カチオンは有機アンモニウムカチオンに加えて共鳴構造のカチオンを含む。例えば、上記式(2)で表すことができる基においてXがNH(R1cが水素原子)である場合、有機カチオンは、上記式(2)で表すことができる基とNHとが結合してなるアンモニウムカチオン性有機基の有機アンモニウムカチオンに加えて、この有機アンモニウムカチオンの共鳴構造の1つである有機アミジニウムカチオンをも包含する。アミジニウムカチオン性有機基からなる有機アミジニウムカチオンとしては、下記式(Aam)で表されるカチオンが挙げられる。本明細書において、下記式(Aam)で表されるカチオンを便宜上、「R1bC(=NH)-NH」と表記することがある。
Figure JPOXMLDOC01-appb-C000010
 式(IA)におけるRとしてのアルキル基は、置換基を有しない無置換アルキル基でも、置換基を有する置換アルキル基でもよい。
 無置換アルキル基は、直鎖状のアルキル基でもあり、特に限定されないが、炭素数が1~18のアルキル基が好ましく、1~6のアルキル基がより好ましく、炭素数が1~3のアルキル基がさらに好ましい。このようなアルキル基としては、例えば、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシルおよびn-デシル等が挙げられる。
 置換アルキル基は、上述の無置換アルキル基が後述する置換基Tを有するものであればよく、直鎖状であっても分岐状であってもよい。置換アルキル基が置換基Tで置換される前の無置換アルキル基は、上述の無置換アルキル基であればよく、好ましくは炭素数1~4のアルキル基であり、より好ましくは炭素数1~3のアルキル基であり、さらに好ましくは炭素数1または2のアルキル基である。
 シクロアルキル基は、炭素数が3~8のシクロアルキル基が好ましく、例えば、シクロプロピル、シクロペンチルまたはシクロヘキシル等が挙げられる。
 アルケニル基は、直鎖状でも分岐状でもよく、炭素数が2~18のアルケニル基が好ましく、炭素数が2~6のアルケニル基が好ましい。例えば、エテニル、アリル、ブテニル、ヘキセニル等が挙げられる。分岐状のアルケニル基としては、例えば、1-メチル-2-プロペニルが挙げられる。
 アルキニル基は、炭素数が2~18のアルキニル基が好ましく、炭素数が2~4のアルキニル基がより好ましく、例えば、エチニル、ブチニルまたはヘキシニル等が挙げられる。
 アリール基は、炭素数6~14のアリール基が好ましく、炭素数6~12のアリール基がより好ましく、例えば、フェニルが挙げられる。
 ヘテロアリール基は、芳香族ヘテロ環のみからなる基と、芳香族ヘテロ環に他の環、例えば、芳香環、脂肪族環やヘテロ環が縮合した縮合ヘテロ環からなる基とを包含する。
 芳香族ヘテロ環を構成する環構成ヘテロ原子としては、窒素原子、酸素原子、硫黄原子が好ましい。また、芳香族ヘテロ環の環員数としては、3~8員環が好ましく、5員環または6員環が好ましい。
 5員環の芳香族ヘテロ環および5員環の芳香族ヘテロ環を含む縮合ヘテロ環としては、例えば、ピロール環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、トリアゾール環、フラン環、チオフェン環、ベンゾイミダゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、インドリン環、インダゾール環の各環基が挙げられる。また、6員環の芳香族ヘテロ環および6員環の芳香族ヘテロ環を含む縮合ヘテロ環としては、例えば、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、キノリン環、キナゾリン環の各環基が挙げられる。
 式(2)で表すことができる基において、XはNR1c、酸素原子または硫黄原子を表し、NR1cが好ましい。ここで、R1cは、水素原子または置換基を表し、水素原子、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基またはヘテロアリール基が好ましく、水素原子がさらに好ましい。
 R1bは、水素原子または置換基を表し、水素原子が好ましい。R1bとして採り得る置換基は、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基またはアミノ基が挙げられる。
 R1bおよびR1cとしてそれぞれ採り得る、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基およびヘテロアリール基は、上記Rの各基と同義であり、好ましいものも同じである。
 式(2)で表すことができる基としては、例えば、(チオ)アシル基、(チオ)カルバモイル基、イミドイル基またはアミジノ基が挙げられる。
 (チオ)アシル基は、アシル基およびチオアシル基を包含する。アシル基は、総炭素数が1~7のアシル基が好ましく、例えば、ホルミル、アセチル、プロピオニル、ヘキサノイル等が挙げられる。チオアシル基は、総炭素数が1~7のチオアシル基が好ましく、例えば、チオホルミル、チオアセチル、チオプロピオニル等が挙げられる。
 (チオ)カルバモイル基は、カルバモイル基およびチオカルバモイル基を包含する。
 イミドイル基は、R1b-C(=NR1c)-で表される基であり、R1bおよびR1cはそれぞれ水素原子またはアルキル基が好ましく、アルキル基は上記Rのアルキル基と同義であるのがより好ましい。例えば、ホルムイミドイル(HC(=NH)-)、アセトイミドイル(CHC(=NH)-)、プロピオンイミドイル(CHCHC(=NH)-)等が挙げられる。なかでも、ホルムイミドイルが好ましい。
 式(2)で表すことができる基としてのアミジノ基は、上記イミドイル基のR1bがアミノ基でR1cが水素原子である構造を有する。
 Rの各基が有してもよい置換基としては、アミノ基および置換アミノ基以外の基であれば特に限定されない。すなわち、置換基を有していてもよいRは、後述するもう1つのカチオンの「(Rn2-L」とは異なる。ここで、置換アミノ基は、例えば、モノまたはジ-アルキルアミノ基(含窒素脂肪族ヘテロ環を含む)、モノまたはジ-アリールアミノ基、アシルアミノ基、スルホンアミド基、カルバモイル基、スルファモイル基等が挙げられる。
 Rの各基が有してもよい置換基として下記置換基Tが挙げられる。置換基Tは、特に限定されないが、例えば、アルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、アルコキシ基、アルキルチオ基、アシル基、アルコキシカルボニル基、アルキルカルボニルオキシ基、アリールオキシカルボニル基、アリールオキシ基、アリールカルボニルオキシ基、ハロゲン原子、シアノ基、ヒドロキシ基、メルカプト基またはカルボキシ基が挙げられる。Rがメチル基である場合、置換基Tにイミノ(=NH)基は含まれない。
 置換基Tは、アルキル基、ハロゲン原子、シアノ基、アリール基およびこれらを組み合わせた基がより好ましく、ハロゲン原子が特に好ましい。
 置換基Tのうち、アルキル基、シクロアルキル基、アルケニル基、アルキニル基およびアリール基は、上記Rの、アルキル基、シクロアルキル基、アルケニル基、アルキニル基およびアリール基と同義であり、好ましいものも同じである。ヘテロアリール基はRのヘテロアリール基と同義であるが、環構成原子に窒素原子を含まないヘテロアリール基がよい。
 アルコキシ基およびアルキルチオ基は、それぞれ、アルキル部分が上記Rのアルキル基と同じアルキル基が好ましい。
 アシル基、アルコキシカルボニル基およびアルキルカルボニルオキシ基は、それぞれ、アルキル部分が上記Rのアルキル基と同じアルキル部分を有するのが好ましい。
 アリールオキシカルボニル基、アリールオキシ基およびアリールカルボニルオキシ基は、それぞれ、上記Rのアリール基と同じアリール基またはヘテロアリール基を有するものが好ましい。
 ハロゲン原子は、フッ素原子、塩素原子、臭素原子およびヨウ素原子が好ましく、フッ素原子、塩素原子および臭素原子がより好ましく、フッ素原子が特に好ましい。
 本発明において、各置換基はさらに置換基で置換されていてもよい。この場合、上述の各置換基を少なくとも2種組み合わせた基であれば特に限定されず、例えば、アルキル基とアルキニル基とを組み合わせた基、アルキル基とハロゲン原子を組み合わせた基(ハロゲン化アルキル基)、シアノアルキル基等が挙げられる。
 Rが複数の置換基Tを有するとき、それぞれの置換基Tは互いに同一でも異なっていてもよい。また、複数の置換基Tが近接するとき(特に隣接するとき)は、それらが互いに連結して環を形成してもよい。また、環、例えば脂環、芳香環、ヘテロ環は、これらが縮環した縮合環を形成していてもよい。
 Rは、光電変換効率の変動を低減できる点で、上記各基のなかでも、置換アルキル基、無置換アルキル基、アリール基、ヘテロアリール基または式(2)で表すことができる基が好ましく、置換アルキル基、無置換アルキル基または式(2)で表すことができる基がより好ましく、ハロゲン原子が置換したアルキル基または式(2)で表すことができる基がさらに好ましく、フッ素原子が置換したアルキル基が特に好ましい。
 上記RとNHまたはNH とで上記有機カチオンのうちの1つのカチオンとなる。
 下記に、Rの具体例として下記r-1~r-23を示すが、これらによって本発明が限定されるものではない。なお、下記具体例において、「*」は窒素原子との結合部を示し、「Me」はメチル基を示し、「Et」はエチル基を示す。
Figure JPOXMLDOC01-appb-C000011
 ペロブスカイト型結晶を構成する有機カチオンのもう1つは、{[(Rn2-L-NH](H)}である。
 Rは、アミノ基もしくは置換アミノ基またはそのカチオンを表し、具体的には、NRまたは(NRを表す。ここで、R、RおよびRは各々独立に水素原子または置換基である。R、RおよびRは、ペロブスカイト結晶構造を安定化させて湿熱耐久性のばらつきを小さく抑えることができる点で、いずれも水素原子であることが好ましい。R、RまたはRが置換基である場合、置換基としては、特に限定されず、上記置換基Tが挙げられ、好ましいものも同じであり、特にアルキル基が好ましい。
 Rが(NRを表すとき、上記カチオンは、カウンターアニオンYB-を有していてもよい。カウンターアニオンYB-は、特に限定されず、各種のアニオンが挙げられる。アニオンとしては、ハロゲン化物イオン(F、I、Br、Cl等)、OH、CFSO 、CHCOO、SH、SCN、ClO 等が挙げられる。なかでも、ハロゲン化物イオンが好ましく、Iがより好ましい。YB-は隣接する式(I)で表されるペロブスカイト構造に組み込まれていてもよい。
 Lは、連結基であり、下記式L-1~式L-9で表される基からなる群より選択される少なくとも1種の基を有することが好ましい。ここで、連結基Lが式L-1~式L-9で表される基からなる群より選択される少なくとも1種の基を有するとは、連結基Lが、下記式L-1~式L-9のいずれか1つの式で表される基である場合と、下記式L-1~式L-9で表される基からなる群より選択される少なくとも2つの基を組み合わせてなる基である場合とを含む。
Figure JPOXMLDOC01-appb-C000012
 各式中、*はR、NHまたは上記式で表される基との連結位置を表す。
 式L-1で表される基において、RおよびRは各々独立に水素原子または置換基であり、いずれも水素原子が好ましい。置換基である場合、置換基としては上記置換基Tが挙げられ、好ましくは、アルキル基、ハロゲン原子である。アルキル基は、Rのアルキル基と同義であり、好ましいものも同じであるが、特に好ましくはメチルである。
 式L-2で表される基において、Dは窒素原子またはCR10を表す。R10は水素原子または置換基を表し、水素原子が好ましい。置換基としては上記置換基Tが挙げられ、好ましくは、アルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、ハロゲン原子であり、より好ましくはアルキル基である。アルキル基は、Rのアルキル基と同義であるが、好ましくは炭素数が1~30のアルキル基であり、さらに好ましくは炭素数が1~10のアルキル基である。
 式L-4で表される基において、RおよびRはそれぞれ独立に水素原子または置換基である。RおよびRが置換基である場合、これらは同一の置換基であっても異なる置換基であってもよい。RおよびRの置換基は上記置換基Tと同義であるのが好ましく、なかでも、アルキル基、シアノ基、ハロゲン原子が好ましい。
 なお、上記式L-4はトランス体として表されているが、シス体であってもよい。
 式L-6で表される基において、Dは酸素原子、硫黄原子またはNR11を表す。R11はR10と同義であり、好ましいものも同じである。
 式L-7で表される基において、Eは酸素原子、硫黄原子またはNR12を表す。R12はR10と同義であり、好ましいものも同じである。
 式L-8で表される基において、Rは置換基を表し、R10の置換基と同義であり、好ましいものも同じである。
 m1は0以上の整数を表し、0~2の整数が好ましく、0であることがより好ましい。
 m2は0以上の整数を表し、0~3の整数が好ましく、0(5員環)または1(6員環)であることがより好ましい。
 m3は2以上の整数を表し、2~5の整数が好ましく、3または4がより好ましい。
 式L-9で表される基において、環Gは、環を構成するのに必要な炭素原子群からなるアリール環、または、上記炭素原子群とZとからなるヘテロアリール環を表す。
 Zはヘテロ原子またはNR13を表す。ヘテロ原子としては、窒素原子、酸素原子または硫黄原子が挙げられ、窒素原子または硫黄原子が好ましい。R13はR10と同義であり、好ましいものも同じである。
 Rは置換基を表し、Rと同義であり、好ましいものも同じである。
 m4は0以上の整数を表し、0~3の整数が好ましく、0であることがより好ましい。
 m5は0以上の整数を表し、0~3の整数が好ましく、0(アリール環)または1(ヘテロアリール環)であることがより好ましい。
 m6は2以上の整数を表し、2~5の整数が好ましく、3または4がより好ましい。
 式L-8で表される基は下記式L-10で表される基であるのが好ましく、また式L-9で表される基は下記式L-11で表される基であるのが好ましい。
Figure JPOXMLDOC01-appb-C000013
 式L-10および式L-11において、*はR、NHまたは上記式で表される基との連結位置を表す。
 式L-10で表される基において、m7は0以上の整数を表し、式L-8のm2と同義であり、好ましいものも同じである。m8は3以上の整数を表し、3~5の整数が好ましく、3または4がより好ましい。
 式L-11で表される基において、Zは式L-9のZと同義であり、好ましいものも同じである。m5は0以上の整数を表し、式L-9のm5と同義であり、好ましいものも同じである。m9は3以上の整数を表し、3~5の整数が好ましく、3または4がより好ましい。
 式L-9および式L-11で表される環Gとしては、特に限定されないが、ベンゼン環等のアリール環、また、ピロール環、チオフェン環、フラン環、イミダゾール環、ピラゾール環、オキサゾール環、チアゾール環、オキサジアゾール環、チアジアゾール環、イソオキサゾール環、イソチアゾール環、トリアゾール環、ピリジン環、ピラジン環、ピリミジン環、ピリダジン環、トリアジン環等のヘテロアリール環が挙げられ、なかでもチオフェン環、ピリジン環またはトリアジン環が好ましく、チオフェン環がより好ましい。
 本発明において、連結基Lが、上記式L-1~式L-9で表される基からなる群より選択される少なくとも2つの基を組み合わせてなる基である場合、組み合わせる基の種類は特に限定されず、同種の基を複数組み合わせてもよく、すべて異なる基を組み合わせてもよい。この場合、上記式L-1~式L-9で表される基からなる群より選択される少なくとも2つの基が連結して環構造を形成してもよい。
 また、組み合わせる基の数は特に限定されず、例えば、2~50個であることが好ましく、2~10個であることがさらに好ましい。
 このとき、組み合わせてなる連結基の鎖の長さが0~10であるのが好ましく、0~5であるのがより好ましい。ここで、連結基の鎖の長さは、2つのアミノ基に結合する原子間の鎖を構成する最小原子数とする。アミノ基を3個以上有する場合(連結位置*が3以上ある場合)は2つのアミノ基の組み合わせそれぞれの鎖の長さを求め、これらのうち最も大きなものとする。例えば、下記化合物L-2-2の2つのアミノ基間の最小原子数はすべて5であり、連結基の鎖の長さは5である。また、化合物L-8-4の2つのアミノ基間の最小原子数はすべて3であり、連結基の鎖の長さは3である。一方、化合物L-9-4の2つのアミノ基間の最小原子数は2、3および4であり、連結基の鎖の長さは4となる。
 式L-1~式L-9で表される基からなる群より選択される少なくとも2つの基を組み合わせてなる基は、下記式Lp-1~Lp-9のいずれか1つの式で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 式Lp-1で表される基において、RおよびRはそれぞれ式L-1で表される基のRおよびRと同義であり、好ましいものも同じである。pは2以上の整数を表し、好ましくは2~5の整数を表し、より好ましくは2である。
 式Lp-2~Lp-9のいずれか1つの式で表される各基において、Lp1は単結合または上記式Lp-1で表される基を表し、複数のLp1のうち少なくとも1つは上記式Lp-1で表される基であり、複数のLp1は同一でも異なっていてよい。
 式Lp-2で表される基において、Dは、式L-2で表される基のDと同義であり、好ましいものも同じである。式Lp-4で表される基において、RおよびRはそれぞれ式L-4で表される基のRおよびRと同義であり、好ましいものも同じである。式Lp-6で表される基において、Dは式L-6で表される基のDと同義であり、好ましいものも同じである。式Lp-7で表される基において、Eは式L-7で表される基のEと同義であり、好ましいものも同じであり、2つのEは互いに同一でも異なってもよい。また、Dは式L-6で表される基のDと同義であり、好ましいものも同じである。式Lp-8で表される基において、R、m1、m2およびm3はそれぞれ式L-8で表される基のR、m1、m2およびm3と同義であり、好ましいものも同じである。式Lp-9で表される基において、環G、R、Z、m4、m5およびm6はそれぞれ式L-9で表される基の環G、R、Z、m4、m5およびm6と同義であり、好ましいものも同じである。
 上記組み合わせてなる基は、以下の組み合わせからなる基がさらに好ましい。
 複数個の、好ましくは2~5個、より好ましくは2個の式L-1で表される基同士の組み合わせからなる上記式Lp-1で表される基(この基を有する、[(Rn2-L-NH]で示されるアミン化合物として、例えば、下記化合物L-1-1~L-1-4)、
 1個以上の式L-2で表される基と1個以上の式L-1で表される基の組み合わせからなる基(好ましくは、1個の式L-2で表される基と3個の式Lp-1で表される基からなる上記式Lp-2で表される基、この基を有するアミン化合物として、例えば、下記化合物L-2-1および化合物L-2-2)、
 1個以上の式L-3で表される基と1個以上の式L-1で表される基の組み合わせからなる基(好ましくは、1個の式L-3で表される基と4個の式Lp-1で表される基からなる上記式Lp-3で表される基、この基を有するアミン化合物として、例えば、下記化合物L-3-1)、
 1個以上の式L-5で表される基と1個以上の式L-1で表される基の組み合わせからなる基(好ましくは、1個の式L-5で表される基と2個の式Lp-1で表される基からなる上記式Lp-5で表される基、この基を有するアミン化合物として、例えば、下記化合物L-5-1)、
 1個以上の式L-6で表される基と1個以上の式L-1で表される基の組み合わせからなる基(好ましくは、1個の式L-6で表される基と2個の式Lp-1で表される基からなる上記式Lp-6で表される基、この基を有するアミン化合物として、例えば、下記化合物L-6-1~化合物L-6-3)、
 1個以上の式L―6で表される基と1個以上の式L-7で表される基の組み合わせからなる基(好ましくは、1個の式L-6で表される基と2個の式L-7で表される基からなる上記式Lp-7で表される基、この基を有するアミン化合物として、例えば、下記化合物L-7-3)、
 1個以上の式L-9で表される基と1個以上の式L-1で表される基の組み合わせからなる基(例えば、1個の式L-9で表される基と2個の式L-1で表される基からなる上記式Lp-9で表される基、この基を有するアミン化合物として、例えば、下記化合物L-9-2)等が挙げられる。
 連結基Lは、少なくとも、式L-1、式L-2、式L-3、式L-8および式L-9で表される各基からなる群より選択される少なくとも1種を有するのが、湿熱耐久性のばらつきを小さく抑えることができる点で、好ましい。より好ましくは、式L-1、式L-2、式L-3、式L-10および式L-11で表される各基からなる群より選択される少なくとも1種を有する。連結基Lは、さらに好ましくは、式L-2、式L-3、式L-10および式L-11で表される基からなる群より選択される少なくとも1種の基を有する。特に好ましくは、式Lp-1で表される基、式Lp-2で表される基、式Lp-3で表される基、式L-10で表される基、式L-11で表される基である。
 また、連結基Lは、対称構造であることが好ましい。対称構造は、線対称、点対称、回転対称等のいずれでもよい。この場合、上記式Lp-2~Lp-9で表される各基において、複数のLp1は同じものであるのが好ましい。
 式(IA)において、n2は1以上の整数を表し、1~5の整数が好ましく、2または3がより好ましい。n2が上記範囲内にあると、ペロブスカイト結晶の安定性が向上し、湿熱耐久性のばらつきを小さく抑えることができる。
 以下に、式(IA)において[(Rn2-L-NH]で示されるアミン化合物の具体例を示すが、これらによって本発明が限定されるものではない。
 なお、下記具体例において、化合物No.「L-nL-mL」の「nL」は上記式L-1~式L-9または式Lp-1~式Lp-9に対応する数字を示し、「mL」は各式における例示化合物の番号を示す。
 下記化合物中の連結基Lは下記化合物からすべてのアミノ基(上記D、DおよびEに相当するものを除く)を除去した残基である。
Figure JPOXMLDOC01-appb-C000015
 上記式(IA)において、nは、0<n<1.00を満たす数を表し、好ましくは、0.05≦n≦0.90を満たす数であり、より好ましくは0.10≦n≦0.50を満たす数であり、さらに好ましくは0.15≦n≦0.30を満たす数である。nが上記範囲内にあると、湿熱耐久性のばらつきを小さく抑えることができ、安定した電池性能を発揮するものにできる。
 感光層13を形成するペロブスカイト型光吸収剤において、上記nは、ペロブスカイト型光吸収剤の合成原料の組成比(モル比)により決まる。
 本発明に用いるペロブスカイト化合物は、その結晶構造中に、金属原子のカチオン(金属カチオン)を有する。この金属カチオンは、ペロブスカイト型結晶構造を取りうる金属原子のカチオンであれば、特に限定されない。このような金属原子としては、例えば、カルシウム(Ca)、ストロンチウム(Sr)、カドミウム(Cd)、銅(Cu)、ニッケル(Ni)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、パラジウム(Pd)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、イッテルビウム(Yb)、ユウロピウム(Eu)、インジウム(In)等の金属原子が挙げられる。なかでも、金属カチオンはPb原子またはSn原子のカチオンが特に好ましい。金属カチオンは1種でもよく、2種以上でもよい。2種以上の金属カチオンである場合には、Pb原子およびSn原子の2種のカチオンが好ましい。このときの金属カチオンの割合は特に限定されない。
 本発明に用いるペロブスカイト化合物は、その結晶構造中に、アニオンを有する。アニオンとしては、好ましくはハロゲン原子等のアニオン性原子、または、NCS、NCO、CHCOOもしくはHCOOのアニオン性原子団の各アニオンが挙げられる。なかでも、ハロゲン原子のアニオンがさらに好ましい。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子およびヨウ素原子等が挙げられる。
 アニオンは、1種の原子または原子団のアニオンであってもよく、2種以上の原子または原子団のアニオンであってもよい。アニオンが1種である場合には、ヨウ素原子のアニオンが好ましい。アニオンが2種以上である場合には下記式(x)で表されるものが好ましい。
 式(x):XA1 (3-m)A2
 式(x)中、XA1およびXA2は各々独立に互いに異なったアニオンを表し、互いに異なるハロゲン原子のアニオンが好ましく、一方がヨウ素原子のアニオンであり、他方が塩素原子のアニオンまたは臭素原子のアニオンであるのがより好ましい。
 式(x)において、mは0.01~2.99が好ましく、0.1~1.4がより好ましく、0.5~1.0がさらに好ましい。
 上記の各構成イオンを有するペロブスカイト化合物は、上記各構成イオンを含むペロブスカイト型結晶構造を取りうる化合物であればよく、下記式(I)で表されるペロブスカイト化合物が好ましい。
式(I):A
 式中、Aはカチオン性有機基を表す。Mは金属原子を表す。Xはアニオン性原子または原子団を表す。
 aは1または2を表し、mは1を表し、a、mおよびxはa+2m=xを満たす。
 Aで表されるカチオン性有機基は、ペロブスカイト型結晶構造において、上記式(IA)で表される有機カチオンを形成する。したがって、カチオン性有機基は、上記有機カチオンで説明した、上記式(IA)における、R-NHおよび[(Rn2-L-NH]と同義であり、好ましいものも同じである。ここで、R、R、n2およびLは上記した通りである。Mで表される金属原子は、ペロブスカイト型結晶構造において、上記金属カチオンを形成する金属原子である。このような金属原子としては上記金属カチオンで説明した金属原子と同義であり、好ましいものも同じである。Xで表されるアニオン性原子または原子団は、ペロブスカイト型結晶構造において、上記アニオンを形成するアニオン性原子または原子団である。このようなアニオン性原子または原子団としては上記アニオンで説明したアニオン性原子または原子団と同義であり、好ましいものも同じである。
 式(I)で表されるペロブスカイト化合物は、aが1である場合、下記式(I-1)で表されるペロブスカイト化合物であり、aが2である場合、下記式(I-2)で表されるペロブスカイト化合物である。
式(I-1):AMX
式(I-2):AMX
 式(I-1)および式(I-2)において、Aはカチオン性有機基を表し、上記式(I)のAと同義であり、好ましいものも同じである。Mは、金属原子を表し、上記式(I)のMと同義であり、好ましいものも同じである。Xは、アニオン性原子または原子団を表し、上記式(I)のXと同義であり、好ましいものも同じである。
 本発明に用いるペロブスカイト化合物は、式(I-1)で表される化合物および式(I-2)で表される化合物のいずれでもよく、これらの混合物でもよい。したがって、本発明において、ペロブスカイト化合物は、光吸収剤として少なくとも1種が存在していればよく、組成式、分子式および結晶構造等により、厳密にいかなる化合物であるかを明確に区別する必要はない。
 本発明に用いられるペロブスカイト型光吸収剤の製造方法は、特に限定されず、R-NHおよび(Rn2-L-NHを用いて公知の方法に準じて合成できる。公知の方法として、例えば、特許文献1、2および非特許文献1に記載の方法が挙げられる。さらには、Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, and Tsutomu Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J.Am.Chem.Soc.,2009,131(17),p.6050-6051に記載の方法も挙げられる。
 特に限定されるものではないが、ペロブスカイト型光吸収剤の製造方法を具体的に説明すると、例えばJ.Am.Chem.Soc.,2009,131(17),p.6050-6051に記載された方法に準じて、MXとR-NHX、(Rn2-L-NHXおよびMXを用いて、式(I)で表されるペロブスカイト型光吸収剤を合成することができる。ここで、Xはアニオンとなる原子または原子団を表し、上述の式(I)におけるXと同義である。Rは上述の式(IA)におけるRと同義であり、R、Lおよびn2はそれぞれ上述の式(IA)におけるR、Lおよびn2と同義である。なお、この合成方法において、式(IA)のnに応じて、MXとR-NHXおよび(Rn2-L-NHXのモル比を調整する。
<正孔輸送層3>
 本発明の光電変換素子は、光電変換素子10A~10Dのように、第一電極1と第二電極2との間に正孔輸送層3を有することが好ましい態様の1つである。正孔輸送層3は、好ましくは第一電極1の感光層13と第二電極2の間に設けられる。
 正孔輸送層3は、光吸収剤の酸化体に電子を補充する機能を有し、好ましくは固体状の層(固体正孔輸送層)である。
 正孔輸送層3を形成する正孔輸送材料は、液体材料でも固体材料でもよく、特に限定されない。例えば、CuI、CuNCS等の無機材料、および、例えば特開2001-291534号公報の段落番号0209~段落番号0212に記載の有機正孔輸送材料等が挙げられる。有機正孔輸送材料としては、好ましくは、ポリチオフェン、ポリアニリン、ポリピロールおよびポリシラン等の導電性高分子、2個の環がC、Siなど四面体構造をとる中心原子を共有するスピロ化合物、トリアリールアミン等の芳香族アミン化合物、トリフェニレン化合物、含窒素複素環化合物または液晶性シアノ化合物が挙げられる。
 正孔輸送材料は、溶液塗布可能で固体状になる有機正孔輸送材料が好ましく、具体的には、2,2’,7,7’-テトラキス-(N,N-ジ-p-メトキシフェニルアミン)-9,9-スピロビフルオレン(spiro-OMeTADともいう)、ポリ(3-ヘキシルチオフェン-2,5-ジイル)、4-(ジエチルアミノ)ベンズアルデヒド ジフェニルヒドラゾン、ポリエチレンジオキシチオフェン(PEDOT)等が挙げられる。
 正孔輸送層3の膜厚は、特に限定されないが、50μm以下が好ましく、1nm~10μmがより好ましく、5nm~5μmがさらに好ましく、10nm~1μmが特に好ましい。なお、正孔輸送層3の膜厚は、第二電極2と感光層13の表面との平均距離に相当し、走査型電子顕微鏡(SEM)等を用いて光電変換素子の断面を観察することにより、測定できる。
<電子輸送層4>
 本発明の光電変換素子は、光電変換素子10Eのように、第一電極1と第二電極2との間に電子輸送層4を有することも好ましい態様の1つである。この態様において、電子輸送層4は、感光層3Cと接触(積層)していることが好ましい。
 電子輸送層4は、電子の輸送先が第二電極である点、および、形成される位置が異なること以外は、上記電子輸送層15と同じである。
<第二電極2>
 第二電極2は、太陽電池において正極として機能する。第二電極2は、導電性を有していれば特に限定されず、通常、導電性支持体11と同じ構成とすることができる。強度が十分に保たれる場合は、支持体11aは必ずしも必要ではない。
 第二電極2の構造としては、集電効果が高い構造が好ましい。感光層13に光が到達するためには、導電性支持体11と第二電極2との少なくとも一方は実質的に透明でなければならない。本発明の太陽電池においては、導電性支持体11が透明であって太陽光を支持体11a側から入射させるのが好ましい。この場合、第二電極2は光を反射する性質を有することがさらに好ましい。
 第二電極2を形成する材料として、例えば、白金(Pt)、金(Au)、ニッケル(Ni)、銅(Cu)、銀(Ag)、インジウム(In)、ルテニウム(Ru)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、オスニウム(Os)、アルミニウム(Al)等の金属、上述の導電性の金属酸化物、炭素材料および伝導性高分子等が挙げられる。炭素材料としては、炭素原子同士が結合してなる、導電性を有する材料であればよく、例えば、フラーレン、カーボンナノチューブ、グラファイト、グラフェン等が挙げられる。
 第二電極2としては、金属もしくは導電性の金属酸化物の薄膜(蒸着してなる薄膜を含む)、または、この薄膜を有するガラス基板もしくはプラスチック基板が好ましい。ガラス基板もしくはプラスチック基板としては、金もしくは白金の薄膜を有するガラス、または、白金を蒸着したガラスが好ましい。
 第二電極2の膜厚は、特に限定されず、0.01~100μmが好ましく、0.01~10μmがさらに好ましく、0.01~1μmが特に好ましい。
<その他の構成>
 本発明においては、第一電極1と第二電極2との接触を防ぐために、ブロッキング層14に代えて、または、ブロッキング層14と共に、スペーサーやセパレータを用いることもできる。
 また、第二電極2と正孔輸送層3の間に正孔ブロッキング層を設けてもよい。
<<太陽電池>>
 本発明の太陽電池は、本発明の光電変換素子を用いて構成される。例えば図1~図6に示されるように、外部回路6に対して仕事させるように構成した光電変換素子10を太陽電池として用いることができる。第一電極1(導電性支持体11)および第二電極2に接続される外部回路6は、公知のものを特に制限されることなく、用いることができる。
 本発明は、例えば、特許文献1、2および非特許文献1、J.Am.Chem.Soc.,2009,131(17),p.6050-6051およびScience,338,p.643(2012)に記載の各太陽電池に適用することができる。
 本発明の太陽電池は、構成物の劣化および蒸散等を防止するために、側面をポリマーや接着剤等で密封することが好ましい。
 上述したように、本発明の光電変換素子および太陽電池は、式(I)で表されるペロブスカイト化合物で形成された感光層13を備えており、高温高湿度環境下での電池性能の低下量が太陽電池間で小さく、安定した電池性能を発揮する。
<<光電変換素子および太陽電池の製造方法>>
 本発明の光電変換素子および太陽電池は、公知の製造方法、例えば特許文献1、2および非特許文献1、ならびに、J.Am.Chem.Soc.,2009,131(17),p.6050-6051、Science,338,p.643(2012)等に記載の各方法によって製造できる。
 以下に、本発明の光電変換素子および太陽電池の製造方法を簡単に説明する。
 本発明の光電変換素子および太陽電池の製造方法(以下、本発明の製造方法という)は、感光層が成膜される層を、上記式(I)で表されるペロブスカイト型光吸収剤を含有する液に接触させる工程を有する。本発明の製造方法は、この工程を有していれば、その他の工程等は特に限定されない。
 本発明の製造方法においては、まず、導電性支持体11に、所望により、ブロッキング層14、多孔質層12、電子輸送層15および正孔輸送層16の少なくとも一つを形成する。
 ブロッキング層14は、例えば、上記絶縁性物質またはその前駆体化合物等を含有する分散物を導電性支持体11の表面に塗布し、焼成する方法またはスプレー熱分解法等によって、形成できる。
 多孔質層12を形成する材料は、好ましくは微粒子として用いられ、さらに好ましくは微粒子を含有する分散物として用いられる。
 多孔質層12を形成する方法としては、特に限定されず、例えば、湿式法、乾式法、その他の方法(例えば、Chemical Review,第110巻,6595頁(2010年刊)に記載の方法)が挙げられる。これらの方法において、導電性支持体11の表面またはブロッキング層14の表面に分散物(ペースト)を塗布した後に、100~800℃の温度で10分~10時間、例えば空気中で焼成することが好ましい。これにより、微粒子同士を密着させることができる。
 焼成を複数回行う場合、最後の焼成以外の焼成の温度(最後以外の焼成温度)を、最後の焼成の温度(最後の焼成温度)よりも低い温度で行うのがよい。例えば、酸化チタンペーストを用いる場合、最後以外の焼成温度を50~300℃の範囲内に設定することができる。また、最後の焼成温度を、100~600℃の範囲内において、最後以外の焼成温度よりも高くなるように、設定することができる。支持体11aとしてガラス支持体を用いる場合、焼成温度は60~500℃が好ましい。
 多孔質層12を形成するときの、多孔質材料の塗布量は、多孔質層12の膜厚および塗布回数等に応じて適宜に設定され、特に限定されない。導電性支持体11の表面積1m当たりの、多孔質材料の塗布量は、例えば、0.5~500gが好ましく、さらには5~100gが好ましい。
 電子輸送層15または正孔輸送層16を設ける場合、それぞれ、後述する正孔輸送層3または電子輸送層4と同様にして、形成することができる。
 次いで、感光層13を設ける。
 感光層13を設ける方法は、湿式法および乾式法が挙げられ、特に限定されない。本発明においては、湿式法が好ましく、例えば、ペロブスカイト型光吸収剤を含有する液(下記形成液)に接触させる方法が好ましい。この方法においては、まず、感光層を形成するための形成液を調製する。この形成液は、R-NHX(式中、RおよびXは上述した通りである。)と(Rn2-L-NHX(式中、R、L、n2およびXは上述した通りである。)とMX(式中、MおよびXは上述した通りである。)とを所定のモル比で混合した後に加熱することにより、調製できる。この形成液は通常溶液(光吸収剤溶液ともいう)であるが、懸濁液でもよい。形成液中の各成分のモル比は上述式(IA)のn等に応じて設定される。加熱する条件は、特に限定されないが、加熱温度は30~200℃が好ましく、70~150℃がさらに好ましい。加熱時間は0.5~100時間が好ましく、1~3時間がさらに好ましくい。溶媒または分散媒は後述するものを用いることができる。
 次いで、調製した光吸収剤溶液を、その表面に感光層13が形成れる層(光電変換素子10においては、多孔質層12、ブロッキング層14、電子輸送層15または正孔輸送層16のいずれかの層)の表面に接触させる。具体的には、形成液を塗布または浸漬することが好ましい。接触させる温度は5~100℃であることが好ましく、浸漬時間は5秒~24時間であるのが好ましく、20秒~1時間がより好ましい。塗布した形成液を乾燥させる場合、乾燥は熱による乾燥が好ましく、通常は、20~300℃、好ましくは50~170℃に加熱することで乾燥させる。
 また、上記R-NHXを含有するR溶液と上記(Rn2-L-NHXを含有するR溶液と、上記MXを含有するMX溶液とを、別々に塗布(浸漬法を含む)し、必要により乾燥する方法が挙げられる。この方法では、いずれの溶液を先に塗布してもよいが、好ましくはMX溶液を先に塗布する。この方法におけるR-NHXと(Rn2-L-NHXとMXとのモル比、塗布条件および乾燥条件は、上記方法と同じである。この方法では、上記R溶液、上記R溶液および上記MX溶液の塗布に代えて、R-NHX、(Rn2-L-NHXまたはMXを、蒸着させることもできる。
 また、他の方法として、上記形成液の溶剤を除去した化合物または混合物を用いた、真空蒸着等の乾式法が挙げられる。例えば、上記R-NHX、上記(Rn2-L-NHXおよび上記MXを、同時または順次、蒸着させる方法も挙げられる。
 上記方法等により、式(I)で表されるペロブスカイト化合物が多孔質層12、ブロッキング層14、電子輸送層15または正孔輸送層16の表面に感光層として形成される。
 このようにして形成した感光層13上に、好ましくは、正孔輸送層3または電子輸送層4を形成する。
 正孔輸送層3は、正孔輸送材料を含有する正孔輸送材料溶液を感光層13に塗布し、乾燥して、形成することができる。正孔輸送材料溶液は、塗布性に優れる点、および多孔質層12を有する場合は多孔質層12の孔内部まで侵入しやすい点で、正孔輸送材料の濃度が0.1~1.0M(モル/L)であるのが好ましい。
 電子輸送層4は、電子輸送材料を含有する電子輸送材料溶液を感光層13に塗布し、乾燥して、形成することができる。
 正孔輸送層3等を成膜した後に第二電極2を形成して、光電変換素子が製造される。
 各層の膜厚は、各分散液または溶液の濃度、塗布回数を適宜に変更して、調製できる。例えば、膜厚が厚い感光層13Bおよび13Cを設ける場合には、形成液を複数回塗布、乾燥すればよい。
 上述の各分散液および溶液は、それぞれ、必要に応じて、分散助剤、界面活性剤等の添加剤を含有していてもよい。
 太陽電池の製造方法に使用する溶媒または分散媒としては、特開2001-291534号公報に記載の溶媒が挙げられるが、特にこれに限定されない。本発明においては、有機溶媒が好ましく、さらに、アルコール溶媒、アミド溶媒、ニトリル溶媒、炭化水素溶媒、ラクトン溶媒、ハロゲン溶媒、および、これらの2種以上の混合溶媒が好ましい。混合溶媒としては、アルコール溶媒と、アミド溶媒、ニトリル溶媒または炭化水素溶媒から選ばれる溶媒との混合溶媒が好ましい。具体的には、メタノール、エタノール、イソプロパノール、γ-ブチロラクトン、クロロベンゼン、アセトニトリル、N,N’-ジメチルホルムアミド(DMF)、ジメチルアセトアミド、または、これらの混合溶媒が好ましい。
 各層を形成する溶液または分散剤の塗布方法は、特に限定されず、スピンコート、エクストルージョンダイコート、ブレードコート、バーコート、スクリーン印刷、ステンシル印刷、ロールコート、カーテンコート、スプレーコート、ディップコート、インクジェット印刷法、浸漬法等、公知の塗布方法を用いることができる。なかでも、スピンコート、スクリーン印刷等が好ましい。
 本発明の光電変換素子は、必要に応じて、アニール、ライトソーキング、酸素雰囲気下での放置等の効率安定化処理を行ってもよい。
 上記のようにして作製した光電変換素子は、第一電極1および第二電極2に外部回路6を接続して、太陽電池として用いることができる。
 以下に実施例に基づき本発明についてさらに詳細に説明するが、本発明は下記実施例に限定されない。
実施例1
(光電変換素子および太陽電池(試料No.101)の製造)
 以下に示す手順により、図1に示される光電変換素子10Aおよび太陽電池を製造した。感光層13の膜厚が大きい場合は、図2に示される光電変換素子10Bおよび太陽電池に対応することになる。
 チタニウム ジイソプロポキシド ビス(アセチルアセトナート)の15質量%イソプロパノール溶液(アルドリッチ社製)を1-エタノールで希釈して、0.02Mブロッキング層用溶液を調製した。
 ガラス支持体11a(厚さ2mm)上にフッ素ドープされたSnO導電膜(透明電極11b、膜厚300nm)を成膜した導電性支持体11を準備した。
 上記の0.02Mブロッキング層用溶液を用いて、スプレー熱分解法により、450℃にて、SnO導電膜上にブロッキング層14(膜厚50nm)を成膜した。
 酸化チタン(TiO、アナターゼ、平均粒径20nm)のエタノール分散液に、エチルセルロース、ラウリン酸およびテルピネオールを加えて、酸化チタンペーストを調製した。
 ブロッキング層14の上に、調製した酸化チタンペーストをスクリーン印刷法で塗布し、空気中、500℃で3時間焼成した。その後、得られた酸化チタンの焼成体を、40mMのTiCl水溶液に浸し、60℃で1時間、続けて500℃で30分間加熱し、TiOからなる多孔質層12(膜厚300nm)を成膜した。
 メチルアミンの40%メタノール溶液(27.86mL)と57質量%のヨウ化水素酸(30mL)をフラスコ中、0℃で2時間攪拌した後、濃縮して、CHNHIの粗体を得た。得られたCHNHIの粗体をエタノールに溶解し、ジエチルエーテルで再結晶し、得られた結晶をろ取し、50℃で5時間減圧乾燥して、精製CHNHIを得た。
 フラスコ中のエタノールにN(CHCHCHNH(化合物L-1-2)と57質量%のヨウ化水素酸をモル比1:1で入れ、0℃で2時間攪拌した後、50℃に加温し1時間攪拌した。その後、濃縮して、N(CHCHCHNHIの粗体を得た。得られた粗体をアセトニトリルで再結晶し、得られた結晶をろ取し、50℃で5時間減圧乾燥して、精製N(CHCHCHNHIを得た。
 次いで、精製CHNHIと精製N(CHCHCHNHIとPbIとをモル比0.95:0.05:1.0(n=0.05)でDMF中、60℃で12時間攪拌混合した後、ポリテトラフルオロエチレン(PTFE)シリンジフィルターでろ過して、40質量%の光吸収剤溶液を調製した。
 導電性支持体11上に成膜した多孔質層12上に、調製した光吸収剤溶液を、スピンコート法(2000rpmで60秒)により塗布した後、ホットプレートにより100℃で1時間乾燥し、感光層13(膜厚310nm(多孔質層12の膜厚300nmを含む))を設けて、第一電極1を作製した。感光層13Aは、式(IA)で表される有機カチオンを有する、式(I)で表されるペロブスカイト化合物を含有していた。表1に、式(IA)の有機カチオンおよびn、ならびに、式(I)のMおよびXを示す(以下、同じ。)。
 正孔輸送材料としてのspiro-OMeTAD(180mg)をクロロベンゼン(1mL)に溶解させた。このクロロベンゼン溶液に、リチウム-ビス(トリフルオロメタンスルホニル)イミド(170mg)をアセトニトリル(1mL)に溶解させたアセトニトリル溶液37.5μLと、t-ブチルピリジン(TBP、17.5μL)とを加えて混合し、正孔輸送層用溶液を調製した。
 次いで、第一電極1の感光層13上に調製した正孔輸送層用溶液をスピンコート法により塗布、乾燥して、正孔輸送層3A(膜厚100nm)を成膜した。
 正孔輸送層3A上に蒸着法により金を蒸着し、第二電極2(膜厚100nm)を作製した。
 こうして、光電変換素子および太陽電池(試料No.101)を製造した。
 各膜厚は、上記方法に従って、SEMにより観察して、測定した。
(光電変換素子および太陽電池(試料No.102~109、112、113、115~138、c101およびc102)の製造)
 光電変換素子および太陽電池(試料No.101)の製造において、表1の「R-NH」欄に示すアミノ化合物を用い、また表1の「(Rn2-L-NH」欄に示すアミノ化合物を用い、さらに表1の「n」欄に示すモル比に変更して光吸収剤溶液をそれぞれ調製し、得られた光吸収剤溶液をそれぞれ用いたこと以外は、光電変換素子および太陽電池(試料No.101)の製造と同様にして、光電変換素子および太陽電池(試料No.102~109、112、113、115~138、c101およびc102)をそれぞれ製造した。
 得られた光電変換素子および太陽電池(試料No.102~109、112、113、115~138)は、いずれも、感光層13A中に、式(IA)で表される有機カチオンを有する、式(I)で表されるペロブスカイト化合物を含有していた。
(光電変換素子および太陽電池(試料No.110および111)の製造)
 光電変換素子および太陽電池(試料No.101)の製造において、下記のようにして調製した光吸収剤溶液を用いたこと以外は、光電変換素子および太陽電池(試料No.101)の製造と同様にして、光電変換素子および太陽電池(試料No.110および111)をそれぞれ製造した。
 得られた光電変換素子および太陽電池(試料No.110および111)は、いずれも、感光層13A中に、式(IA)で表される有機カチオンを有する、式(I)で表されるペロブスカイト化合物を含有していた。
 メチルアミンの40%メタノール溶液(27.86mL)と57質量%の臭化水素酸(30mL)をフラスコ中、0℃で2時間攪拌した後、濃縮して、CHNHBrの粗体を得た。得られた粗体をエタノールに溶解し、ジエチルエーテルで再結晶し、得られた結晶をろ取し、50℃で5時間減圧乾燥して、精製CHNHBrを得た。
 また、フラスコ中のエタノールにN(CHCHCHNH(化合物L-1-2)と57質量%の臭化水素酸をモル比1:1で入れ、0℃で2時間攪拌した後、50℃に加温し1時間攪拌した。その後、濃縮して、N(CHCHCHNHBrの粗体を得た。得られた粗体をアセトニトリルで再結晶し、得られた結晶をろ取し、50℃で5時間減圧乾燥して、精製N(CHCHCHNHBrを得た。
 次いで、精製CHNHBrと精製N(CHCHCHNHBrとPbBrとをモル比0.5:0.5:1.0(試料No.110)または0.9:0.1:1.0(試料No.111)で、DMF中、60℃で12時間攪拌混合した後、ポリテトラフルオロエチレン(PTFE)シリンジフィルターでろ過して、40質量%の光吸収剤溶液を調製した。
(光電変換素子および太陽電池(試料No.114)の製造)
 光電変換素子および太陽電池(試料No.101)の製造において、下記のようにして調製した光吸収剤溶液を用いたこと以外は、光電変換素子および太陽電池(試料No.101)の製造と同様にして、光電変換素子および太陽電池(試料No.114)を製造した。
 得られた光電変換素子および太陽電池(試料No.114)は、感光層13A中に、式(IA)で表される有機カチオンを有する、式(I)で表されるペロブスカイト化合物を含有していた。
 フラスコ中のエタノールにエチレンジアミン(化合物L-1-4の前駆体)と57質量%のヨウ化水素酸をモル比1:2で入れ、0℃で2時間攪拌した後、50℃に加温し1時間攪拌した。その後、濃縮して、NHCHCHNH・2HIの粗体を得た。得られた粗体をアセトニトリルで再結晶し、得られた結晶をろ取し、50℃で5時間減圧乾燥して、精製NHCHCHNH・2HIを得た。
 次いで、精製CHNHI、精製NHCHCHNH・2HIおよびPbIをモル比0.9:0.1:1でDMF、60℃で12時間攪拌混合した後、ポリテトラフルオロエチレン(PTFE)シリンジフィルターでろ過して、40質量%の光吸収剤溶液を調製した。
(光電変換素子および太陽電池(試料No.139)の製造)
 光電変換素子および太陽電池(試料No.101)の製造において、下記のようにして調製した光吸収剤溶液を用いたこと以外は、光電変換素子および太陽電池(試料No.101)の製造と同様にして、光電変換素子および太陽電池(試料No.139)を製造した。
 得られた光電変換素子および太陽電池(試料No.139)は、感光層13A中に、式(IA)で表される有機カチオンを有する、式(I)で表されるペロブスカイト化合物を含有していた。
 ホルムアミジン酢酸塩の40%メタノール溶液(27.86mL)と57質量%のヨウ化水素酸(30mL)をフラスコ中、0℃で2時間攪拌した後、濃縮して、HC(=NH)NHIの粗体を得た。得られた粗体をエタノールに溶解し、ジエチルエーテルで再結晶し、得られた結晶をろ取し、50℃で5時間減圧乾燥して、精製HC(=NH)NHIを得た。次いで、精製HC(=NH)NHIと精製N(CHCHCHNHIとPbIをモル比0.85:0.15:1.0でDMF中、60℃で12時間攪拌混合した後、ポリテトラフルオロエチレン(PTFE)シリンジフィルターでろ過して、40質量%の光吸収剤溶液を調製した。
(光電変換素子および太陽電池(試料No.c103)の製造)
 光電変換素子および太陽電池(試料No.101)の製造において、下記のようにして調製した光吸収剤溶液を用いたこと以外は、光電変換素子および太陽電池(試料No.101)の製造と同様にして、光電変換素子および太陽電池(試料No.c103)を製造した。
 エチルアミンの40%メタノール溶液(27.86mL)と57質量%のヨウ化水素酸(30mL)をフラスコ中、0℃で2時間攪拌した後、濃縮して、CHCHNHIの粗体を得た。得られた粗体をエタノールに溶解し、ジエチルエーテルで再結晶し、得られた結晶をろ取し、50℃で5時間減圧乾燥して、精製CHCHNHIを得た。次いで、光電変換素子および太陽電池(試料No.101)の製造と同様にして得た精製CHNHIと精製CHCHNHIとPbIとをモル比0.9:0.1:1(n=0)でDMF中、60℃で12時間攪拌混合した後、ポリテトラフルオロエチレン(PTFE)シリンジフィルターでろ過して、40質量%の光吸収剤溶液を調製した。
(光電変換素子および太陽電池(試料No.c104)の製造)
 光電変換素子および太陽電池(試料No.101)の製造において、下記のようにして調製した光吸収剤溶液を用いたこと以外は、光電変換素子および太陽電池(試料No.101)の製造と同様にして、光電変換素子および太陽電池(試料No.c104)を製造した。
 次いで、光電変換素子および太陽電池(試料No.101)の製造と同様にして得た精製CHNHIと精製HN=CHNHIとPbIとをモル比0.4:0.6:1(n=0)でDMF中、60℃で12時間攪拌混合した後、ポリテトラフルオロエチレン(PTFE)シリンジフィルターでろ過して、40質量%の光吸収剤溶液を調製した。
(光電変換効率のばらつき評価)
 太陽電池の試料No.ごとに光電変換効率の湿熱耐久性のばらつきを以下のようにして評価した。
 試料No.ごとの太陽電池を同様にして10検体製造した。各検体を用いて初期電池特性試験を、ソーラーシミュレーター「WXS-85H」(WACOM社製)を用いて、AM1.5フィルタを通したキセノンランプから1000W/mの疑似太陽光を照射することにより、行った。この試験において、I-Vテスターを用いて電流-電圧特性を測定し、初期光電変換効率(η/%)を求めた。
 次いで、10検体の太陽電池を、相対湿度60%、温度45℃の暗所環境下で80時間放置した後に、初期光電変換効率の測定と同様にして、経時光電変換効率(η/%)を求めた。
 このようにして、検体ごとに測定した初期光電変換効率および経時光電変換効率から、下記式に従って、光電変換効率の低下率を算出した。
  式:低下率(%):100-(経時光電変換効率/初期光電変換効率)×100
 このようにして算出した10検体それぞれの低下率を「検体低下率(Bn)」(nは1~10の整数を示す)とした。また、10検体の検体低下率(Bn)の平均値を求めて「平均低下率(A)」とした。
 平均低下率(A)および検体低下率(Bn)から10検体の太陽電池それぞれについて、下記式により、耐久性バラツキ値(C)を求めた。
  式:耐久性バラツキ値(C)=1-(検体低下率(Bn)/平均低下率(A))
 求めた10検体の耐久性バラツキ値(C)のうち、最大の値(Cmax)が含まれる範囲により、湿熱耐久性のばらつきの評価指標とした。湿熱耐久性のばらつきは、評価がD以上である場合が本試験の合格レベルであり、好ましくはC以上である。
 A+:0以上±0.12以下
 A :±0.12を超え±0.14以下
 B+:±0.14を超え±0.16以下
 B :±0.16を超え±0.18以下
 C+:±0.18を超え±0.20以下
 C :±0.20を超え±0.22以下
 D :±0.22を超え±0.24以下
 E :±0.24を超え±0.26以下
 F :±0.26を超える
 上記湿熱耐久性のばらつき評価において、試料No.101の太陽電池の光電変換効率は太陽電池として十分に機能するものであった。
Figure JPOXMLDOC01-appb-T000016
 表1に示されるように、式(IA)で表される有機カチオンと金属カチオンとアニオンとを有するペロブスカイト型結晶構造を持つペロブスカイト型光吸収剤を含有する感光層13を備えた本発明の太陽電池は、いずれも、湿熱耐久性のばらつきの評価がC以上であり、ばらつきが小さく、安定した電池性能を発揮することが分かった。
 また、このペロブスカイト型光吸収剤を含有する光吸収剤溶液を用いて感光層を成膜すると、高温高湿度環境でも安定した電池性能を発揮する光電変換素子を製造できることが分かった。
 さらに、本発明の太陽電池の経時光電変換効率(η/%)は、いずれも、太陽電池として正常に作動するのに十分な光電変換効率であった。
 ペロブスカイト型光吸収剤において、式(IA)のnが0.10~0.50、さらに0.15~0.30の範囲内にあると、湿熱耐久性のばらつきをさらに小さくできた。また、式(IA)のRが、ハロゲン原子が置換したアルキル基であると、湿熱耐久性のばらつきを十分に抑えることができた。さらに、式(IA)の連結基Lが、式L-2、式L-3、式L-10または式L-11で表される基を有していると、湿熱耐久性のばらつきが優れることも分かった。
 これに対して、式(IA)で示される2つのカチオンのうち一方のカチオンしか含有しないペロブスカイト型光吸収剤を用いると、湿熱耐久性のばらつきを抑えることができなかった。この点は、2つのカチオンのうちいずれかのカチオンを用いても同様であった(試料No.c101およびc102)。また、[R-NH]で示される化合物を2種類用いても湿熱耐久性のばらつきを抑えることができなかった(試料No.c103)。同様に、ホルムアミジニウムカチオン(ホルムアミジン)と(メチルアンモニウムカチオン(メチルアミン)との2種類のカチオンを含有するペロブスカイト型光吸収剤を用いても、湿熱耐久性のばらつきを抑えることはできなかった(試料No.c104)。
実施例2
 本例では、図3に示される光電変換素子10Cを製造して、その特性を評価した。
 実施例1の光電変換素子および太陽電池の製造において、多孔質層12を設けなかったこと以外は、実施例1の光電変換素子および太陽電池(試料No.c101~c104および115、116)と同様にして、光電変換素子および太陽電池(試料No.c201~c204および215、216)をそれぞれ製造した。
 製造した太陽電池の光電変換効率のばらつきを実施例1と同様にして評価したところ、試料No.215および216の太陽電池は、いずれも、湿熱耐久性のばらつきが小さく、安定した電池性能を発揮した。一方、試料No.c201~c204の太陽電池は、いずれも、湿熱耐久性のばらつきを抑えることはできなかった。
実施例3
 本例では、正孔輸送層を備えていない光電変換素子(図6に示す光電変換素子10F参照)および太陽電池を製造して、その特性を評価した。
 実施例1の光電変換素子および太陽電池の製造において、正孔輸送層3Aを設けなかったこと以外は、実施例1の光電変換素子および太陽電池(試料No.c101~c104および115、116)と同様にして、光電変換素子および太陽電池(試料No.c301~c304および315、316)を製造した。
 製造した太陽電池の光電変換効率のばらつきを実施例1と同様にして評価したところ、試料No.315および316の太陽電池は、いずれも、湿熱耐久性のばらつきが小さく、安定した電池性能を発揮した。一方、試料No.c301~c304の太陽電池は、いずれも、湿熱耐久性のばらつきを抑えることはできなかった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2014年4月18日に日本国で特許出願された特願2014-086642および、2015年3月20日に日本国で特許出願された特願2015-057611に基づく優先権を主張するものであり、これらはいずれもここに参照してその内容を本明細書の記載の一部として取り込む。
1A~1F 第一電極
 11 導電性支持体
  11a 支持体
  11b 透明電極
 12 多孔質層
 13A~13C 感光層
 14 ブロッキング層
2 第二電極
3A、3B、16 正孔輸送層
4、15 電子輸送層
6 外部回路(リード)
10A~10F 光電変換素子
100A~100F 太陽電池を利用したシステム
M 電動モーター

Claims (15)

  1.  光吸収剤を含む感光層を導電性支持体上に有する第一電極と、該第一電極に対向する第二電極とを有する光電変換素子であって、前記光吸収剤が、下記式(IA)で表される有機カチオンと、金属原子のカチオンと、アニオン性原子もしくは原子団のアニオンとを有するペロブスカイト型結晶構造を持つ化合物を含む光電変換素子。
     式(IA):[R-NH(H)]1-n{[(Rn2-L-NH](H)}
     式中、Rはアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基または下記式(2)で表すことができる基を表す。Rは、NRまたは(NRを表し、R、RおよびRは各々独立に水素原子または置換基を表す。Lは連結基を表す。n2は1以上の整数を表す。ただし、(Rn2-LはRとは異なる基である。nは0<n<1.00を満たす数を表す。
    Figure JPOXMLDOC01-appb-C000001
     式中、XはNR1c、酸素原子または硫黄原子を表す。R1bおよびR1cは各々独立に水素原子または置換基を表す。***は式(IA)のN原子との結合位置を表す。
  2.  前記ペロブスカイト型結晶構造を持つ化合物が、下記式(I)で表される請求項1に記載の光電変換素子。
       式(I):A
     式中、Aはカチオン性有機基を表す。Mは金属原子を表す。Xはアニオン性原子もしくは原子団を表す。aは1または2を表し、mは1を表し、a、mおよびxはa+2m=xを満たす。
  3.  前記R、RおよびRが、いずれも、水素原子である請求項1または2に記載の光電変換素子。
  4.  前記nが、0.10≦n≦0.50を満たす数を表す請求項1~3のいずれか1項に記載の光電変換素子。
  5.  前記nが、0.15≦n≦0.30を満たす数を表す請求項1~4のいずれか1項に記載の光電変換素子。
  6.  前記Lが、下記式L-1~式L-9で表される基からなる群より選択される少なくとも1種の基を有する請求項1~5のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
     式中、*はR、NHまたは上記式で表される基との連結位置を表す。Dは窒素原子またはCR10を表す。Dは酸素原子、硫黄原子またはNR11を表す。Eは酸素原子、硫黄原子またはNR12を表す。環Gはアリール環またはヘテロアリール環を表す。Zはヘテロ原子またはNR13を表す。RおよびRは各々独立に置換基を表し、R~RおよびR10~R13は各々独立に水素原子または置換基を表す。m1、m2、m4およびm5は各々独立に0以上の整数を表し、m3およびm6は各々独立に2以上の整数を表す。
  7.  前記Lが、下記式L-2、式L-3、式L-10および式L-11で表される基からなる群より選択される少なくとも1種の基を有する請求項1~6のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
     式中、*はR、NHまたは上記式で表される基との連結位置を表す。Dは窒素原子またはCR10を表し、環Gはアリール環またはヘテロアリール環を表し、Zはヘテロ原子またはNR13を表す。R10およびR13は各々独立に水素原子または置換基を表す。m5およびm7は各々独立に0以上の整数を表し、m8およびm9は各々独立に3以上の整数を表す。
  8.  前記Rが、ハロゲン原子が置換したアルキル基である請求項1~7のいずれか1項に記載の光電変換素子。
  9.  前記n2が、2以上の整数である請求項1~8のいずれか1項に記載の光電変換素子。
  10.  前記金属原子のカチオンが、鉛およびスズからなる群より選択される少なくとも1種の金属カチオンである請求項1~9のいずれか1項に記載の光電変換素子。
  11.  前記アニオンが、ハロゲン原子のアニオンである請求項1~10のいずれか1項に記載の光電変換素子。
  12.  前記導電性支持体と前記感光層との間に多孔質層を有する請求項1~11のいずれか1項に記載の光電変換素子。
  13.  前記第一電極と前記第二電極の間に正孔輸送層を有する請求項1~12のいずれか1項に記載の光電変換素子。
  14.  請求項1~13のいずれか1項に記載の光電変換素子を用いた太陽電池。
  15.  導電性支持体上に設けられ、かつ感光層が成膜される層を、下記式(IA)で表される有機カチオンと、金属原子のカチオンと、アニオン性原子もしくは原子団のアニオンとを有するペロブスカイト型結晶構造を持つ化合物を含有する液に、接触させる光電変換素子の製造方法。
     式(IA):[R-NH(H)]1-n{[(Rn2-L-NH](H)}
     式中、Rはアルキル基、シクロアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基または下記式(2)で表すことができる基を表す。Rは、NRまたは(NRを表し、R、RおよびRは各々独立に水素原子または置換基を表す。Lは連結基を表す。n2は1以上の整数を表す。ただし、(Rn2-LはRとは異なる基である。nは0<n<1.00を満たす数を表す。
    Figure JPOXMLDOC01-appb-C000004
     式中、XはNR1c、酸素原子または硫黄原子を表す。R1bおよびR1cは各々独立に水素原子または置換基を表す。***は式(IA)のN原子との結合位置を表す。
PCT/JP2015/061724 2014-04-18 2015-04-16 光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法 WO2015159952A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15780713.2A EP3133658A4 (en) 2014-04-18 2015-04-16 Photoelectric conversion element, solar cell using same and method for manufacturing photoelectric conversion element
CN201580020398.8A CN106233484B (zh) 2014-04-18 2015-04-16 光电转换元件、使用该光电转换元件的太阳能电池以及光电转换元件的制造方法
JP2016513832A JP6194103B2 (ja) 2014-04-18 2015-04-16 光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法
US15/294,054 US10403829B2 (en) 2014-04-18 2016-10-14 Photoelectric conversion element, solar cell using the same, and method for manufacturing photoelectric conversion element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-086642 2014-04-18
JP2014086642 2014-04-18
JP2015057611 2015-03-20
JP2015-057611 2015-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/294,054 Continuation US10403829B2 (en) 2014-04-18 2016-10-14 Photoelectric conversion element, solar cell using the same, and method for manufacturing photoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2015159952A1 true WO2015159952A1 (ja) 2015-10-22

Family

ID=54324153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061724 WO2015159952A1 (ja) 2014-04-18 2015-04-16 光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法

Country Status (5)

Country Link
US (1) US10403829B2 (ja)
EP (1) EP3133658A4 (ja)
JP (1) JP6194103B2 (ja)
CN (1) CN106233484B (ja)
WO (1) WO2015159952A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170072079A (ko) * 2015-12-16 2017-06-26 주식회사 엘지화학 태양전지의 광흡수체 제조 방법
WO2017169151A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 光電変換素子、太陽電池および組成物
JP2018012685A (ja) * 2016-07-12 2018-01-25 旭化成株式会社 組成物
JP2018027899A (ja) * 2016-08-16 2018-02-22 学校法人上智学院 層状ペロブスカイト構造を有する化合物
WO2018043384A1 (ja) * 2016-08-31 2018-03-08 富士フイルム株式会社 光電変換素子、及び太陽電池
RU2648465C1 (ru) * 2016-12-29 2018-03-26 Акционерное общество "ЕвроСибЭнерго" Жидкая композиция полигалогенидов переменного состава

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI709257B (zh) * 2017-07-27 2020-11-01 國立臺灣大學 可撓性鈣鈦礦(Perovskite)太陽能電池及其製作方法
CN108963086B (zh) * 2017-11-13 2020-12-04 广东聚华印刷显示技术有限公司 量子点发光二极管及其应用
GB201817167D0 (en) * 2018-10-22 2018-12-05 Univ Oxford Innovation Ltd Process for producing a layer with mixed solvent system
CN109627259B (zh) * 2018-11-30 2020-11-17 华中科技大学 一种新型钙钛矿功能材料及其在光电器件中的应用
US10727428B1 (en) * 2019-02-01 2020-07-28 Natioinal Technology & Engineering Solutions Of Sa Organic-semiconducting hybrid solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055568A (ja) * 1999-07-08 2001-02-27 Internatl Business Mach Corp <Ibm> 有機−無機ハイブリッド材料
JP2015119102A (ja) * 2013-12-19 2015-06-25 アイシン精機株式会社 ハイブリッド型太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871579A (en) * 1997-09-25 1999-02-16 International Business Machines Corporation Two-step dipping technique for the preparation of organic-inorganic perovskite thin films
KR101172374B1 (ko) 2011-02-14 2012-08-08 성균관대학교산학협력단 페로브스카이트계 염료를 이용한 염료감응 태양 전지 및 이의 제조방법
WO2013126385A1 (en) 2012-02-21 2013-08-29 Northwestern University Photoluminescent compounds
US10388897B2 (en) * 2012-05-18 2019-08-20 Oxford University Innovation Limited Optoelectronic device comprising porous scaffold material and perovskites
GB201208793D0 (en) * 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
WO2014168119A1 (ja) * 2013-04-12 2014-10-16 富士フイルム株式会社 光電変換素子、色素増感太陽電池およびこれに用いる金属錯体色素
CN103762344B (zh) 2014-01-21 2016-08-17 华中科技大学 一种两性分子改性的钙钛矿光电功能材料及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001055568A (ja) * 1999-07-08 2001-02-27 Internatl Business Mach Corp <Ibm> 有機−無機ハイブリッド材料
JP2015119102A (ja) * 2013-12-19 2015-06-25 アイシン精機株式会社 ハイブリッド型太陽電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUN GUAN ET AL.: "H3N( CH 2)7NH3]8( CH 3NH3)2Sn(IV) Sn (II) 12I46 - a mixed-valent hybrid compound with a uniquely templated defect-perovskite structure", CHEMICAL COMMUNICATIONS, vol. 2005, no. 1, 19 November 2004 (2004-11-19), pages 48 - 50, XP055231041 *
NORMAN PELLET ET AL.: "Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar- Light Harvesting", ANGEWANDTE CHEMIE , INTERNATIONAL EDITION, vol. 53, no. 12, 17 March 2014 (2014-03-17), pages 3151 - 3157, XP055162823 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170072079A (ko) * 2015-12-16 2017-06-26 주식회사 엘지화학 태양전지의 광흡수체 제조 방법
WO2017169151A1 (ja) * 2016-03-30 2017-10-05 富士フイルム株式会社 光電変換素子、太陽電池および組成物
JPWO2017169151A1 (ja) * 2016-03-30 2018-08-02 富士フイルム株式会社 光電変換素子、太陽電池および組成物
JP2018012685A (ja) * 2016-07-12 2018-01-25 旭化成株式会社 組成物
JP2018027899A (ja) * 2016-08-16 2018-02-22 学校法人上智学院 層状ペロブスカイト構造を有する化合物
WO2018043384A1 (ja) * 2016-08-31 2018-03-08 富士フイルム株式会社 光電変換素子、及び太陽電池
JPWO2018043384A1 (ja) * 2016-08-31 2019-03-14 富士フイルム株式会社 光電変換素子、及び太陽電池
RU2648465C1 (ru) * 2016-12-29 2018-03-26 Акционерное общество "ЕвроСибЭнерго" Жидкая композиция полигалогенидов переменного состава

Also Published As

Publication number Publication date
JP6194103B2 (ja) 2017-09-06
EP3133658A1 (en) 2017-02-22
US10403829B2 (en) 2019-09-03
EP3133658A4 (en) 2017-05-10
JPWO2015159952A1 (ja) 2017-04-13
US20170033299A1 (en) 2017-02-02
CN106233484A (zh) 2016-12-14
CN106233484B (zh) 2018-09-07

Similar Documents

Publication Publication Date Title
JP6286619B2 (ja) 光電変換素子、およびこれを用いた太陽電池
JP6194103B2 (ja) 光電変換素子、これを用いた太陽電池ならびに光電変換素子の製造方法
JP6047525B2 (ja) 光電変換素子および太陽電池
JP6419332B2 (ja) 光電変換素子、太陽電池、金属塩組成物および光電変換素子の製造方法
JP6523455B2 (ja) 光電変換素子、およびこれを用いた太陽電池
JP6383876B2 (ja) 光電変換素子および太陽電池
JP6374109B2 (ja) 光電変換素子、およびこれを用いた太陽電池
WO2016143506A1 (ja) 光電変換素子、太陽電池および光電変換素子の製造方法
WO2016080489A1 (ja) 光電変換素子、太陽電池および光電変換素子の製造方法
JPWO2017002645A6 (ja) 光電変換素子、およびこれを用いた太陽電池
JP6106131B2 (ja) 光電変換素子および太陽電池
JP6427390B2 (ja) ペロブスカイト膜形成液、ペロブスカイト膜、光電変換素子、太陽電池、ペロブスカイト膜の製造方法、光電変換素子の製造方法、および太陽電池の製造方法
JP6229991B2 (ja) 光電変換素子、太陽電池および組成物
JP6323826B2 (ja) 光電変換素子および太陽電池
JP6496822B2 (ja) 光電変換素子、太陽電池および組成物
JP6222641B2 (ja) 光電変換素子および太陽電池
JP6621374B2 (ja) 光電変換素子の製造方法
JP6385001B2 (ja) 光電変換素子用電極の製造方法、光電変換素子の製造方法、太陽電池の製造方法及び光吸収剤塗布膜の製造方法
JP6582126B2 (ja) 光電変換素子、太陽電池、光電変換素子の製造方法、表面処理剤、表面処理用組成物および表面処理液
WO2018043384A1 (ja) 光電変換素子、及び太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780713

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016513832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015780713

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015780713

Country of ref document: EP