WO2015158464A1 - Verbundglas mit dünner innenscheibe - Google Patents

Verbundglas mit dünner innenscheibe Download PDF

Info

Publication number
WO2015158464A1
WO2015158464A1 PCT/EP2015/054810 EP2015054810W WO2015158464A1 WO 2015158464 A1 WO2015158464 A1 WO 2015158464A1 EP 2015054810 W EP2015054810 W EP 2015054810W WO 2015158464 A1 WO2015158464 A1 WO 2015158464A1
Authority
WO
WIPO (PCT)
Prior art keywords
pane
laminated glass
weight
inner pane
vehicle
Prior art date
Application number
PCT/EP2015/054810
Other languages
English (en)
French (fr)
Inventor
Sandra SIENERTH
Stephan Kremers
Dorothea KETTNER
Stefan UEBELACKER
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EA201692058A priority Critical patent/EA201692058A1/ru
Priority to MX2016013450A priority patent/MX2016013450A/es
Priority to CA2944082A priority patent/CA2944082A1/en
Priority to BR112016022689A priority patent/BR112016022689A2/pt
Priority to EP15709461.6A priority patent/EP3131753A1/de
Priority to KR1020167028631A priority patent/KR20160135280A/ko
Priority to JP2016562849A priority patent/JP2017518246A/ja
Priority to US15/301,856 priority patent/US20170113520A1/en
Priority to CN201580019621.7A priority patent/CN106458743A/zh
Publication of WO2015158464A1 publication Critical patent/WO2015158464A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/007Sunglare reduction by coatings, interposed foils in laminar windows, or permanent screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10082Properties of the bulk of a glass sheet
    • B32B17/10119Properties of the bulk of a glass sheet having a composition deviating from the basic composition of soda-lime glass, e.g. borosilicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10128Treatment of at least one glass sheet
    • B32B17/10137Chemical strengthening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/1077Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars

Definitions

  • the invention relates to a laminated glass with a thin inner pane, a process for their preparation and their use.
  • Laminated glasses are well known as glazing in the vehicle sector. They usually consist of two glass sheets with a thickness of 2 mm to 3 mm, which are interconnected by means of a thermoplastic intermediate layer. Such laminated glasses are used in particular as windshields and roof windows, but increasingly also as side windows and rear windows.
  • US 2013/0295357 A1 discloses a laminated glass for vehicles with a thin inner pane.
  • the laminated glass consists of an outer pane with a thickness of 1, 5 mm to 3.0 mm, for example, 1, 6 mm, and a chemically toughened inner pane having a thickness of 0.5 mm to 1, 5 mm, for example, 0.7 mm , Laminated glasses with thinner inner panes are apparently not regarded as sufficiently stable in order to ensure the safety requirements in the vehicle sector.
  • the invention has for its object to provide a laminated glass with further reduced thickness and thus further reduced weight, which nevertheless has a sufficient stability and breaking strength in order to be used in the vehicle sector.
  • the object of the present invention is achieved by a laminated glass according to claim 1. Preferred embodiments will become apparent from the dependent claims.
  • the laminated glass according to the invention is preferably a laminated glass for vehicles (vehicle laminated glass).
  • the laminated glass is intended to separate the interior from the external environment in an opening, in particular a window opening of a vehicle.
  • the laminated glass (or composite pane) according to the invention comprises at least one inner pane, an outer pane and a thermoplastic intermediate layer which connects the inner pane with the outer pane.
  • the inner pane and the outer pane are preferably made of glass.
  • inner pane With inner pane, the interior (vehicle interior) facing the disc of the composite pane is referred to in the context of the invention.
  • outer pane With outer pane, the outer environment facing disc is called.
  • the outer pane preferably has a thickness of 1, 0 mm to 1, 8 mm.
  • the inner pane preferably has a thickness of 0.1 mm to 0.4 mm.
  • inner pane With inner pane, the interior (vehicle interior) facing the disc of the composite pane is referred to in the context of the invention. With outer pane, the outer environment facing disc is called.
  • a laminated glass having the inventive thicknesses for the outer pane and the inner pane has a surprisingly high stability and breaking strength, in particular scratch resistance and chip resistance.
  • the inner pane can therefore have a significantly smaller thickness than previously generally assumed.
  • the stability and breaking strength of the laminated glass is achieved by the inventive selection of the thickness of the outer pane and the pronounced asymmetry of the outer and the inner pane in terms of thickness.
  • the laminated glass according to the invention fulfills the high safety requirements in the vehicle sector. These requirements are typically checked by standardized fracture, impact and scratch tests, such as the ECE R43 ball drop test.
  • the thickness of the inner pane is preferably at most 25% of the thickness of the outer pane, particularly preferably at most 20%. Such a pronounced asymmetry is particularly advantageous in terms of the strength of the disc.
  • the laminated glass according to the invention is particularly preferably a windshield of a motor vehicle.
  • the inner pane is a pre-bent pane, ie a pane which has been subjected to a thermal bending process prior to lamination to the laminated glass.
  • the inner pane can in principle also be a non-pre-bent pane, which, due to its small thickness during lamination, adapts to the shape of the outer pane.
  • the thicker outer pane is pre-bent according to the invention.
  • the outer pane and the inner pane are preferably bent in a congruent manner, that is to say they have the same pre-bend.
  • the inner pane may have, for example, a thickness of 0.1 mm, 0.2 mm, 0.3 mm or 0.4 mm.
  • the outer pane may, for example, a thickness of 1, 0 mm, 1, 1 mm, 1, 2 mm, 1, 3 mm, 1, 4 mm, 1, 5 mm, 1, 6 mm, 1, 7 mm or 1, 8 mm have.
  • the inner pane has a thickness of 0.2 mm to 0.4 mm, preferably from 0.2 mm to 0.3 mm, particularly preferably about 0.3 mm. This results in particularly good results in terms of a lower weight of the laminated glass with high stability and breaking strength.
  • the outer pane has a thickness of 1, 4 mm to 1, 8 mm, preferably from 1, 5 mm to 1, 7 mm, more preferably about 1, 6 mm. This is particularly advantageous on the one hand with regard to a low weight of the composite pane, the thickness on the other hand being large enough to ensure sufficient thickness asymmetry between outer pane and inner pane, which in turn causes a high stability.
  • the outer pane is a non-prestressed pane.
  • the outer pane can be subjected to loads such as falling rocks be. If a stone hits a glass pane, especially a small, pointed stone, it can penetrate its surface. In the case of a prestressed disc, the stone can thus penetrate into the tensile stress zone in the interior of the disc, which leads to a shattering of the disc.
  • a non-preloaded outer disc has a wider compressive stress zone and lower tensile stress in the interior, making it less susceptible to the impact of a pointed body.
  • a non-prestressed outer pane is therefore altogether very advantageous with regard to the safety of the vehicle occupants.
  • the outer pane contains soda-lime glass or borosilicate glass, in particular soda-lime glass. Lime-soda-glass is available at low cost and has proven itself for applications in the vehicle sector.
  • the inner pane is a chemically tempered disc. Due to the bias, the inner pane can be provided with a special resistance to breakage and scratch resistance.
  • the chemical tempering is better suited than the thermal tempering. Since thermal tempering is based on a temperature difference between a surface zone and a core zone, thermal tempering requires a minimum thickness of the glass sheet. Sufficient stresses can typically be achieved with commercially available thermal biasing devices at glass thicknesses above about 2.5 mm. With lower glass thicknesses, it is generally not possible to achieve the generally required values for the prestressing (compare, for example, ECE Regulation 43).
  • chemical tempering ion exchange changes the chemical composition of the glass at the surface, with ion exchange limited to a surface zone by diffusion. Chemical tempering is therefore particularly suitable for thin slices.
  • chemical annealing chemical hardening or chemical hardening are also commonly used.
  • the stability of the first disk can be improved by appropriate values and local distributions of the stresses produced by the incorporation of ions during chemical toughening.
  • the chemically prestressed inner pane preferably has a surface compressive stress of greater than 100 MPa, preferably greater than 250 MPa and particularly preferably greater than 350 MPa.
  • the compressive stress depth of the disc is in particular at least one tenth of its thickness, preferably at least one sixth of its thickness, for example about one fifth of the thickness of the inner pane. This is advantageous in terms of the breaking strength of the disc on the one hand and a little time-consuming tempering process on the other. With compressive stress depth is referred to in the sense of the invention, the depth measured from the surface of the disc, to which the disc compressive stresses is greater than 0 MPa.
  • the compressive stress depth of the inner pane is preferably greater than 30 ⁇ m, particularly preferably greater than 50 ⁇ m, very particularly preferably between 100 ⁇ m and 150 ⁇ m.
  • the inner pane may in principle have any chemical composition known to the person skilled in the art.
  • the inner pane can contain, for example, soda-lime glass or borosilicate glass or consist of these glasses.
  • the inner pane should be suitable for being chemically tempered, and in particular have a suitable proportion of alkali elements, preferably sodium.
  • the inner pane can be, for example, from 40% by weight to 90% by weight of silicon oxide (SiO 2 ), from 0.5% by weight to 10% by weight of aluminum oxide (Al 2 O 3 ), from 1% by weight to 20% by weight.
  • Sodium oxide (Na 2 O) from 0.1% by weight to 15% by weight of potassium oxide (K 2 O), from 0% by weight to 10% by weight of magnesium oxide (MgO), from 0% by weight to 10% by weight.
  • the inner pane may also contain other ingredients and impurities.
  • compositions of the inner pane are particularly suitable for being subjected to chemical tempering. This manifests itself in a high speed of the diffusion process, which leads to an advantageously short time expenditure for the tempering process, and large pretension depths (compressive stress depths), which leads to stable and break-resistant glasses. These compositions are preferred for the purposes of the invention.
  • the inner pane contains a aluminosilicate glass in a preferred embodiment.
  • the inner pane preferably contains from 50% by weight to 85% by weight of silicon oxide (SiO 2 ), of 3 % By weight to 10% by weight of aluminum oxide (Al 2 O 3 ), from 8% by weight to 18% by weight of sodium oxide (Na 2 O), of from 5% by weight to 15% by weight of potassium oxide (K 2 O), from 4% by weight to 14% by weight of magnesium oxide (MgO), from 0% by weight to 10% by weight of calcium oxide (CaO) and from 0% by weight to 15% by weight of boron oxide (B 2 O 3 ).
  • the inner pane may also contain other ingredients and impurities.
  • the inner pane particularly preferably contains at least from 55% by weight to 72% by weight (very particularly preferably from 57% by weight to 65% by weight) of silicon oxide (SiO 2 ), from 5% by weight to 10% by weight (very particularly preferably from 7% to 9% by weight) of alumina (Al 2 O 3 ), from 10% to 15% by weight (most preferably from 12% to 14% by weight) of sodium oxide (Na 2 O) ), from 7 wt% to 12 wt% (most preferably from 8.5 wt% to 10.5 wt%) of potassium oxide (K 2 O) and from 6 wt% to 1 wt% ( most preferably from 7.5% to 9.5% by weight) of magnesium oxide (MgO).
  • SiO 2 silicon oxide
  • Al 2 O 3 alumina
  • Na 2 O sodium oxide
  • K 2 O potassium oxide
  • MgO magnesium oxide
  • Such preferred glass compositions have, in addition to the possibility of chemical tempering, another surprising advantage.
  • Such discs are suitable to be bent congruent together with discs of conventional soda-lime glass (also called normal glass).
  • soda-lime glass also called normal glass
  • similar thermal properties are responsible, so that the two types of glass are bendable in the same temperature range, namely from about 450 ° C to 700 ° C.
  • congruent curved disks are particularly suitable for being connected to a laminated glass.
  • An inner pane with the preferred chemical compositions is thus particularly suitable for use in a laminated glass with an outer pane of a different composition, in particular of soda-lime glass.
  • the inner pane can also be a non-prestressed pane. Especially with very thin glass panes, the voltage levels that can be achieved by chemical tempering and thus the stabilizing effect are decreasing. If the inner pane is not prestressed, then in a preferred embodiment it contains borosilicate glass. It has been shown that a particularly pronounced stability and breaking strength can be achieved.
  • the thermoplastic intermediate layer contains at least one thermoplastic film and is formed in an advantageous embodiment by a single thermoplastic film. This is advantageous in terms of a simple structure and a low total thickness of the laminated glass.
  • the thermoplastic intermediate layer or the thermoplastic film preferably contains at least polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyurethane (PU) or blends or copolymers or derivatives thereof which have proven useful in laminated glasses.
  • the thickness of the thermoplastic intermediate layer is preferably from 0.2 mm to 1, 0 mm. For example, thermoplastic film of the standard thickness of 0.76 mm can be used.
  • the laminated glass has no further slices or polymer layers, ie it consists only of the outer pane, the inner pane and the thermoplastic intermediate layer.
  • the outer pane, the inner pane and the thermoplastic intermediate layer can be clear and colorless, but also tinted or colored.
  • the total transmission through the laminated glass in a preferred embodiment is greater than 70%, especially when the laminated glass is a windshield.
  • the term total transmission refers to the procedure defined by ECE-R 43, Annex 3, ⁇ 9.1 for testing the light transmission of vehicle windows.
  • the laminated glass is preferably bent in one or more directions of the space, as is conventional for automotive windows, with typical radii of curvature ranging from about 10 cm to about 40 m.
  • the laminated glass can also be flat, for example, if it is intended as a disc for buses, trains or tractors.
  • the laminated glass according to the invention may have a functional coating, for example an IR-reflecting or absorbing coating, a UV-reflecting or absorbing coating, a coloring coating, a low-emissivity coating, a heatable coating, an antenna-function coating, a splinter-bonding coating or a coating for shielding electromagnetic radiation.
  • the functional coating is preferably arranged on the outer pane.
  • the thicker outer pane which is preferably made of normal glass, can be technically easier and less costly coat, for example, by physical vapor deposition (such as sputtering) as the very thin inner pane. In particular, it is very difficult to combine a coating and a chemical pretension technically.
  • a coating applied before tempering disturbs the ion diffusion process in the chemical Toughening. Coating after chemical tempering changes the stress distribution in the disk due to the typical high temperatures.
  • the functional coating is preferably arranged on the surface of the outer pane facing the thermoplastic intermediate layer, where it is protected against corrosion and damage.
  • the laminated glass can also be provided with an additional function in that, in addition to or as an alternative to the functional coating, the intermediate layer has functional inclusions, for example inclusions with IR-absorbing, UV-absorbing, coloring or acoustic properties.
  • the inclusions are, for example, organic or inorganic ions, compounds, aggregates, molecules, crystals, pigments or dyes.
  • the invention is further solved by a method for producing a laminated glass according to the invention, wherein
  • the laminated glass is to be bent, then at least the outer pane is subjected to a bending process before the lamination.
  • the inner pane is not pre-bent. Due to its very small thickness, the inner pane has a foil-like flexibility and can thus be adapted to the pre-bent outer pane, without having to be pre-bent. The production of the laminated glass is thus simplified.
  • the inner pane is also subjected to a bending process. This is particularly advantageous for strong bends in several directions of space (so-called three-dimensional bends).
  • the outer pane and the inner pane can be bent individually.
  • the outer pane and the inner pane are congruently bent together (ie at the same time and by the same tool), because thereby the shape of the panes for later lamination are optimally matched to each other.
  • Typical temperatures for glass bending processes are for example 500 ° C to 700 ° C.
  • the inner pane is provided with a chemical bias.
  • the inner pane is slowly cooled after bending. Too rapid cooling produces thermal stresses in the disc which can lead to changes in shape during later chemical annealing.
  • the cooling rate is preferably until cooling to a temperature of 400 ° C, preferably from 0.05 ° C / sec to 0.5 ° C / sec, more preferably from 0.1 ° C / sec to 0.3 ° C / sec , By such a slow cooling, thermal stresses in the glass can be avoided, which in particular lead to optical defects and to a negative impact on the subsequent chemical bias. It can then be further cooled, even with higher cooling rates, because below 400 ° C the risk of generating thermal stresses is low.
  • the chemical toughening is preferably carried out at a temperature of 300 ° C to 600 ° C, more preferably from 400 ° C to 500 ° C.
  • the inner pane is treated with a molten salt, for example, immersed in the molten salt.
  • a molten salt for example, immersed in the molten salt.
  • the molten salt is preferably the melt of a potassium salt, more preferably potassium nitrate (KN0 3 ) or potassium sulfate (KS0 4 ), most preferably potassium nitrate (KN0 3 ).
  • the ion exchange is determined by the diffusion of the alkali ions.
  • the desired values for the surface compressive stresses and compressive stress depths can therefore be adjusted in particular by the temperature and the duration of the tempering process. Usual times for the duration are from 2 hours to 48 hours.
  • the disc After treatment with the molten salt, the disc is cooled to room temperature. Subsequently, the disc is cleaned, preferably with sulfuric acid (H 2 S0 4 ).
  • the thermoplastic intermediate layer is preferably provided as a film.
  • the laminated glass is produced by lamination by conventional methods known per se to the person skilled in the art, for example autoclave methods, vacuum bag methods, vacuum ring methods, calendering methods, vacuum laminators or combinations thereof.
  • the connection between outer pane and inner pane is usually carried out under the action of heat, vacuum and / or pressure.
  • the invention further comprises the use of a composite pane according to the invention in a vehicle, preferably a motor vehicle, particularly preferably a passenger car, in particular as a windshield, side window, rear window or roof pane.
  • a vehicle preferably a motor vehicle, particularly preferably a passenger car, in particular as a windshield, side window, rear window or roof pane.
  • FIG. 2 shows a flow chart of an embodiment of the method according to the invention.
  • the laminated glass is provided as a windshield of a motor vehicle.
  • the laminated glass is, as usual for motor vehicle windshields, three-dimensionally curved. This means that the disc has a curvature in several directions of the space, in particular in the horizontal and vertical directions. For the sake of simplicity, however, the laminated glass in the figure is shown schematically flat.
  • a projectile with a diamond tip was dropped from an increasing height onto the laminated glass according to the invention (example) to simulate the impact of a sharp stone. The height was measured at which the laminated glass broke. When hitting the outer pane 2 1400 mm glass breakage was observed at a height.
  • the laminated glass according to the invention with the very small glass thicknesses surprisingly had a higher stone chip resistance than the conventional comparative example (glass breakage at a height of 1100 mm).
  • the tests were performed on a 30cm x 30cm sample.
  • a steel ball weighing 227 g was dropped onto the outer pane 2 from a height of 8.5 m.
  • This test simulates the impact of a stone on the outside of the laminated glass.
  • the test was considered passed if the ball was stopped by the laminated glass and this was not penetrated and if the amount of splinters on the side facing away from the impact falls below a certain (thickness-dependent) amount.
  • the comparative example with a proven for windshield glass combination passed the test as expected. But even the laminated glass according to the invention after example with the small glass thicknesses passed the test surprisingly. From the inner pane 1 even fewer splinters broke up on impact of the ball, which is to be considered advantageous for the safety of the vehicle occupants.
  • the laminated glass according to the invention has a very low weight due to the very low glass thicknesses.
  • the laminated glass is nevertheless characterized by a high resistance to breakage and stone chip resistance.
  • the laminated glass meets in particular the high safety requirements for laminated glass in the vehicle area, so that it can be used for example as a windshield.
  • the inner pane for example, consist of non-biased borosilicate glass.
  • FIG. 2 shows a flow chart of an exemplary embodiment of the method according to the invention for producing a laminated glass according to the invention.
  • An inner pane 1 and an outer pane 2 are provided in a flat initial state.
  • the inner pane 1 and the outer pane 2 are subjected to a bending process together and congruently bent into their final three-dimensional shape.
  • the inner pane 1 is chemically prestressed after bending.
  • the inner pane 1 is slowly cooled after bending in order to avoid thermal stresses.
  • a suitable cooling rate is for example 0.1 ° C / sec.
  • the inner pane 1 is then for a period of a few hours, for example 4 hours, at a temperature of 460 ° C with a melt Potassium nitrate treated while chemically biased.
  • the treatment effects a diffusion-driven exchange of sodium ions with larger potassium ions across the surfaces of the glass. As a result, surface compressive stresses are generated.
  • the inner pane 1 is then cooled and then washed with sulfuric acid to remove residues of potassium nitrate.
  • thermoplastic intermediate layer 3 between the inner pane 1 and outer pane 2 is arranged.
  • the stack of inner pane 1, intermediate layer 3 and outer pane 2 is connected in a conventional manner by lamination, for example by a vacuum bag method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)
  • Glass Compositions (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Fahrzeug-Verbundglas zur Abtrennung eines Fahrzeuginnenraums von einer äußeren Umgebung, mindestens umfassend: eine Innenscheibe (1) aus Glas mit einer Dicke von 0,1 mm bis 0,4 mm, eine Außenscheibe (2) aus Glas mit einer Dicke von 1,0 mm bis 1,8 mm und eine thermoplastische Zwischenschicht (3), welche die Innenscheibe (1) mit der Außenscheibe (2) verbindet.

Description

Verbundglas mit dünner Innenscheibe
Die Erfindung betrifft ein Verbundglas mit einer dünnen Innenscheibe, ein Verfahren zu deren Herstellung und deren Verwendung.
Verbundgläser sind als Verglasungen im Fahrzeugbereich hinlänglich bekannt. Sie bestehen üblicherweise aus zwei Glasscheiben mit einer Dicke von 2 mm bis 3 mm, welche mittels einer thermoplastischen Zwischenschicht miteinander verbunden sind. Solche Verbundgläser werden insbesondere als Windschutzscheiben und Dachscheiben, zunehmend aber auch als Seitenscheiben und Heckscheiben eingesetzt.
Aktuell ist die Fahrzeugindustrie bemüht, das Gewicht der Fahrzeuge zu reduzieren, was mit einem reduzierten Treibstoffverbrauch einhergeht. Einen bedeutenden Beitrag hierzu kann eine Reduzierung des Gewichts der Verglasungen leisten, was insbesondere durch verringerte Scheibendicken zu erreichen ist. Solche dünnen Scheiben weisen insbesondere Dicken kleiner als 2 mm auf. Trotz der verringerten Scheibendicken müssen jedoch die Anforderungen an Stabilität und Bruchfestigkeit der Scheiben gewährleistet sein.
Es war bisher eine gängige Meinung, dass zur Gewährleistung einer hinreichenden Stabilität und Bruchfestigkeit beide Scheiben des Verbundglases eine gewisse Mindestdicke nicht unterschreiten dürfen. Die US 2013/0295357 A1 beispielsweise offenbart ein Verbundglas für Fahrzeuge mit einer dünnen Innenscheibe. Das Verbundglas besteht aus einer Außenscheibe mit einer Dicke von 1 ,5 mm bis 3,0 mm, beispielsweise 1 ,6 mm, und einer chemisch vorgespannten Innenscheibe mit einer Dicke von 0,5 mm bis 1 ,5 mm, beispielsweise 0,7 mm. Verbundgläser mit dünneren Innenscheiben werden offenbar als nicht hinreichend stabil angesehen, um die Sicherheitsanforderungen im Fahrzeugbereich zu gewährleisten.
Der Erfindung liegt die Aufgabe zugrunde, ein Verbundglas mit weiter verringerter Dicke und damit weiter verringertem Gewicht bereitzustellen, die dennoch eine hinreichende Stabilität und Bruchfestigkeit aufweist, um im Fahrzeugbereich eingesetzt werden zu können.
Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch ein Verbundglas gemäß Anspruch 1 gelöst. Bevorzugte Ausführungen gehen aus den Unteransprüchen hervor. Das erfindungsgemäße Verbundglas ist bevorzugt ein Verbundglas für Fahrzeuge (Fahrzeug-Verbundglas). Das Verbundglas ist dafür vorgesehen, in einer Öffnung, insbesondere einer Fensteröffnung eines Fahrzeugs, den Innenraum gegenüber der äußeren Umgebung abzutrennen.
Das erfindungsgemäße Verbundglas (oder Verbundscheibe) umfasst mindestens eine Innenscheibe, eine Außenscheibe und eine thermoplastische Zwischenschicht, welche die Innenscheibe mit der Außenscheibe verbindet. Die Innenscheibe und die Außenscheibe bestehen bevorzugt aus Glas.
Mit Innenscheibe wird im Sinne der Erfindung die dem Innenraum (Fahrzeuginnenraum) zugewandte Scheibe der Verbundscheibe bezeichnet. Mit Außenscheibe wird die der äußeren Umgebung zugewandte Scheibe bezeichnet. Die Außenscheibe weist bevorzugt eine Dicke von 1 ,0 mm bis 1 ,8 mm auf. Die Innenscheibe weist bevorzugt eine Dicke von 0,1 mm bis 0,4 mm auf.
Mit Innenscheibe wird im Sinne der Erfindung die dem Innenraum (Fahrzeuginnenraum) zugewandte Scheibe der Verbundscheibe bezeichnet. Mit Außenscheibe wird die der äußeren Umgebung zugewandte Scheibe bezeichnet.
Es hat sich gezeigt, dass ein Verbundglas mit den erfindungsgemäßen Dicken für die Außenscheibe und die Innenscheibe eine überraschend hohe Stabilität und Bruchfestigkeit, insbesondere Kratzfestigkeit und Steinschlagfestigkeit aufweist. Die Innenscheibe kann also eine deutlich geringere Dicke aufweisen als bislang allgemein angenommen. Die Stabilität und Bruchfestigkeit des Verbundglases wird durch die erfindungsgemäße Auswahl der Dicke der Außenscheibe und die ausgeprägte Asymmetrie der Außen und der Innenscheibe im Hinblick auf die Dicke bewirkt. Überraschend erfüllt das erfindungsgemäße Verbundglas die hohen Sicherheitsanforderungen im Fahrzeugbereich. Diese Anforderungen werden typischerweise durch standardisierte Bruch-, Schlag und Kratztests überprüft, wie beispielsweise den Kugelfalltest gemäß ECE R43.
Die Dicke der Innenscheibe beträgt bevorzugt höchstens 25% der Dicke der Außenscheibe, besonders bevorzugt höchstens 20%. Eine solch ausgeprägte Asymmetrie ist besonders vorteilhaft im Hinblick auf die Festigkeit der Scheibe. Das erfindungsgemäße Verbundglas ist besonders bevorzugt eine Windschutzscheibe eines Kraftfahrzeugs.
In einer bevorzugten Ausgestaltung ist die Innenscheibe eine vorgebogene Scheibe, also eine Scheibe, die vor der Lamination zum Verbundglas einem thermischen Biegeprozess unterzogen wurde. Zwar kann die Innenscheibe prinzipiell auch eine nicht-vorgebogene Scheibe sein, die sich aufgrund ihrer geringen Dicke beim Laminieren an die Form der Außenscheibe anpasst. Jedoch ist vorteilhaft, insbesondere bei sogenannten dreidimensionalen Biegungen in mehreren Richtungen des Raums, eine vorgebogene Innenscheibe zu verwenden, weil die gewünschte Form dann mit geringen optischen Verzerrungen erreicht werden kann. Da der Biegeprozess eine charakteristische Signatur in der Glasstruktur hinterlässt, kann der Fachmann eine vorgebogene und eine nicht- vorgebogene durch Sichtprüfung voneinander unterscheiden. Die dickere Außenscheibe ist erfindungsgemäß vorgebogen. Die Außenscheibe und die Innenscheibe sind bevorzugt kongruent vorgebogen, das heißt sie weisen die gleiche Vorbiegung auf.
Die Innenscheibe kann beispielsweise eine Dicke von 0,1 mm, 0,2 mm, 0,3 mm oder 0,4 mm aufweisen. Die Außenscheibe kann beispielsweise eine Dicke von 1 ,0 mm, 1 ,1 mm, 1 ,2 mm, 1 ,3 mm, 1 ,4 mm, 1 ,5 mm, 1 ,6 mm, 1 ,7 mm oder 1 ,8 mm aufweisen.
In einer besonders vorteilhaften Ausgestaltung weist die Innenscheibe eine Dicke von 0,2 mm bis 0,4 mm auf, bevorzugt von 0,2 mm bis 0,3 mm, besonders bevorzugt von ungefähr 0,3 mm. Damit werden besonders gute Ergebnisse erzielt im Hinblick auf ein geringeres Gewicht des Verbundglases bei hoher Stabilität und Bruchfestigkeit.
In einer besonders vorteilhaften Ausgestaltung weist die Außenscheibe eine Dicke von 1 ,4 mm bis 1 ,8 mm, bevorzugt von 1 ,5 mm bis 1 ,7 mm auf, besonders bevorzugt etwa 1 ,6 mm. Das ist besonders vorteilhaft einerseits im Hinblick auf ein geringes Gewicht der Verbundscheibe, wobei die Dicke andererseits groß genug ist, um eine ausreichende Dickenasymmetrie zwischen Außenscheibe und Innenscheibe zu gewährleisten, die wiederum eine hohe Stabilität bewirkt.
In einer vorteilhaften Ausgestaltung der Erfindung ist die Außenscheibe eine nichtvorgespannte Scheibe. Die Außenscheibe kann Belastungen wie Steinschlag ausgesetzt sein. Trifft ein Stein, insbesondere ein kleiner, spitzer Stein auf eine Glasscheibe, so kann er deren Oberfläche durchdringen. Im Falle einer vorgespannten Scheibe kann der Stein so in die Zugspannungszone im Scheibeninneren eindringen, was zu einem Zerspringen der Scheibe führt. Eine nicht-vorgespannte Außenscheibe weißt eine breiter Druckspannungszone und geringere Zugspannung im Inneren auf und ist dadurch weniger anfällig gegenüber dem Einschlag eines spitzen Körpers. Eine nicht-vorgespannte Außenscheibe ist daher insgesamt sehr vorteilhaft im Hinblick auf die Sicherheit der Fahrzeuginsassen. In einer bevorzugten Ausgestaltung der Erfindung enthält die Außenscheibe Kalk-Natron- Glas oder Borsilikatglas, insbesondere Kalk-Natron-Glas. Kalk-Natron-Glas ist kostengünstig verfügbar und hat sich für Anwendungen im Fahrzeugbereich bewährt.
In einer vorteilhaften Ausgestaltung der Erfindung ist die Innenscheibe eine chemisch vorgespannte Scheibe. Durch die Vorspannung kann die Innenscheibe mit einer besonderen Bruchstabilität und Kratzfestigkeit versehen werden. Für eine sehr dünne Glasscheibe, wie sie erfindungsgemäß als Innenscheibe vorgesehen ist, ist das chemische Vorspannen dabei besser geeignet als das thermische Vorspannen. Da thermisches Vorspannen auf einer Temperaturdifferenz zwischen einer Oberflächenzone und einer Kernzone beruht, setzt thermisches Vorspannen eine Mindestdicke der Glasscheibe voraus. Hinreichende Spannungen können typischerweise mit handelsüblichen thermischen Vorspannvorrichtungen bei Glasdicken ab etwa 2,5 mm erreicht werden. Bei geringeren Glasdicken können in der Regel nicht die allgemein geforderten Werte für die Vorspannung erreicht werden (vgl. beispielsweise die ECE-Regelung 43). Beim chemischen Vorspannen wird durch lonenaustausch die chemische Zusammensetzung des Glases im Bereich der Oberfläche verändert, wobei der lonenaustausch durch Diffusion auf eine Oberflächenzone beschränkt ist. Chemisches Vorspannen ist daher besonders für dünne Scheiben geeignet. Für das chemische Vorspannen sind auch die Bezeichnungen chemisches Tempern, chemisches Härten oder chemisches Verfestigen gebräuchlich.
Die Stabilität der ersten Scheibe kann durch geeignete Werte und lokale Verteilungen der Spannungen, welche durch die Einlagerung von Ionen beim chemischen Vorspannen erzeugt werden, verbessert werden. Die chemisch vorgespannte Innenscheibe weist bevorzugt eine Oberflächendruckspannung von größer als 100 MPa, bevorzugt größer als 250 MPa und besonders bevorzugt größer 350 MPa auf. Die Druckspannungstiefe der Scheibe beträgt insbesondere mindestens ein Zehntel ihrer Dicke, bevorzugt mindestens ein Sechstel ihrer Dicke, beispielsweise etwa ein Fünftel der Dicke der Innenscheibe. Das ist vorteilhaft im Hinblick auf die Bruchfestigkeit der Scheibe einerseits und einen wenig zeitintensiven Vorspannprozess andererseits. Mit Druckspannungstiefe wird im Sinne der Erfindung die Tiefe gemessen von der Oberfläche der Scheibe bezeichnet, bis zu der die Scheibe Druckspannungen mit einem Betrag größer 0 MPa steht. Weist die Innenscheibe beispielsweise eine Dicke von 0,3 mm auf, so beträgt die Druckspannungstiefe der Innenscheibe bevorzugt größer als 30 μηι, besonders bevorzugt größer als 50 μηι, ganz besonders bevorzugt zwischen 100 μηι und 150 μηι. Die Innenscheibe kann grundsätzlich jede dem Fachmann bekannte chemische Zusammensetzung aufweisen. Die Innenscheibe kann beispielweise Kalk-Natron-Glas oder Borsilikatglas enthalten oder aus diesen Gläsern bestehen. Bevorzugt sollte sich die Innenscheibe dazu eignen, chemisch vorgespannt zu werden, und insbesondere einen dazu geeigneten Anteil an Alkalielementen, bevorzugt Natrium aufweisen. Die Innenscheibe kann beispielsweise von 40 Gew-% bis 90 Gew-% Siliziumoxid (Si02), von 0,5 Gew-% bis 10 Gew-% Aluminiumoxid (Al203), von 1 Gew-% bis 20 Gew-% Natriumoxid (Na20), von 0,1 Gew-% bis 15 Gew-% Kaliumoxid (K20), von 0 Gew-% bis 10 Gew-% Magnesiumoxid (MgO), von 0 Gew-% bis 10 Gew-% Kalziumoxid (CaO) und von 0 Gew-% bis 15 Gew-% Boroxid (B203) enthalten. Die Innenscheibe kann außerdem weitere Bestandteile und Verunreinigungen enthalten.
Es hat sich jedoch überraschend gezeigt, dass bestimmte chemische Zusammensetzungen der Innenscheibe besonders dazu geeignet sind, einem chemischen Vorspannen unterzogen zu werden. Dies äußert sich in einer hohen Geschwindigkeit des Diffusionsprozesses, was zu einem vorteilhaft geringen Zeitaufwand für den Vorspannprozess führt, und großen Vorspanntiefen (Druckspannungstiefen), was zu stabilen und bruchfesten Gläsern führt. Diese Zusammensetzungen sind im Sinne der Erfindung bevorzugt. Die Innenscheibe enthält in einer bevorzugten Ausgestaltung ein Aluminosilikatglas. Die Innenscheibe enthält bevorzugt von 50 Gew-% bis 85 Gew-% Siliziumoxid (Si02), von 3 Gew-% bis 10 Gew-% Aluminiumoxid (Al203), von 8 Gew-% bis 18 Gew-% Natriumoxid (Na20), von 5 Gew-% bis 15 Gew-% Kaliumoxid (K20), von 4 Gew-% bis 14 Gew-% Magnesiumoxid (MgO), von 0 Gew-% bis 10 Gew-% Kalziumoxid (CaO) und von 0 Gew-% bis 15 Gew-% Boroxid (B203). Die Innenscheibe kann außerdem weitere Bestandteile und Verunreinigungen enthalten. Die Innenscheibe enthält besonders bevorzugt zumindest von 55 Gew-% bis 72 Gew-% (ganz besonders bevorzugt von 57 Gew-% bis 65 Gew-%) Siliziumoxid (Si02), von 5 Gew-% bis 10 Gew-% (ganz besonders bevorzugt von 7 Gew-% bis 9 Gew-%) Aluminiumoxid (Al203), von 10 Gew-% bis 15 Gew-% (ganz besonders bevorzugt von 12 Gew-% bis 14 Gew-%) Natriumoxid (Na20), von 7 Gew-% bis 12 Gew-% (ganz besonders bevorzugt von 8,5 Gew-% bis 10,5 Gew-%) Kaliumoxid (K20) und von 6 Gew-% bis 1 1 Gew-% (ganz besonders bevorzugt von 7,5 Gew-% bis 9,5 Gew-%) Magnesiumoxid (MgO).
Diese bevorzugten Glaszusammensetzungen haben neben der Möglichkeit des chemischen Vorspannens einen weiteren überraschenden Vorteil. Solche Scheiben sind dazu geeignet, zusammen mit Scheiben aus herkömmlichem Kalk-Natron-Glas (auch Normalglas genannt) kongruent gebogen zu werden. Hierfür sind ähnliche thermische Eigenschaften verantwortlich, so dass die beiden Glasarten im gleichen Temperaturbereich biegbar werden, nämlich etwa von 450 °C bis 700 °C. Wie dem Fachmann hinreichend bekannt ist, eignen sich kongruent gebogene Scheiben aufgrund ihrer optimal aufeinander angepassten Form in besonderer Weise dazu, zu einem Verbundglas verbunden zu werden. Eine Innenscheibe mit den bevorzugten chemischen Zusammensetzungen ist also besonders geeignet, in einem Verbundglas mit einer Außenscheibe anderer Zusammensetzung, insbesondere aus Kalk-Natron-Glas, verwendet zu werden.
Die Innenscheibe kann alternativ aber auch eine nicht-vorgespannte Scheibe sein. Insbesondere bei sehr dünnen Glasscheiben nehmen die Spannungswerte, die durch das chemische Vorspannen erreicht werden können, und damit die stabilisierende Wirkung immer mehr ab. Ist die Innenscheibe nicht vorgespannt, so enthält sie in einer bevorzugten Ausgestaltung Borosilikatglas. Es hat sich gezeigt, dass damit eine besonders ausgeprägte Stabilität und Bruchfestigkeit erreicht werden kann.
Die thermoplastische Zwischenschicht enthält mindestens eine thermoplastische Folie und ist in einer vorteilhaften Ausgestaltung durch eine einzelne thermoplastische Folie ausgebildet. Das ist vorteilhaft hinsichtlich eines einfachen Aufbaus und einer geringen Gesamtdicke des Verbundglases. Die thermoplastische Zwischenschicht beziehungsweise die thermoplastische Folie enthält bevorzugt zumindest Polyvinylbutyral (PVB), Ethylenvinylacetat (EVA), Polyurethan (PU) oder Gemische oder Copolymere oder Derivate davon, die sich für Verbundgläser bewährt haben. Die Dicke der thermoplastischen Zwischenschicht beträgt bevorzugt von 0,2 mm bis 1 ,0 mm. Beispielsweise können thermoplastische Folie der Standarddicke von 0,76 mm verwendet werden.
In einer besonders bevorzugten Ausgestaltung weist das Verbundglas keine weiteren Scheiben oder Polymerschichten auf, besteht also lediglich aus der Außenscheibe, der Innenscheibe und der thermoplastischen Zwischenschicht.
Die Außenscheibe, die Innenscheibe und die thermoplastische Zwischenschicht können klar und farblos, aber auch getönt oder gefärbt sein. Die Gesamttransmission durch das Verbundglas beträgt in einer bevorzugten Ausgestaltung größer 70%, insbesondere wenn das Verbundglas eine Windschutzscheibe ist. Der Begriff Gesamttransmission bezieht sich auf das durch ECE-R 43, Anhang 3, § 9.1 festgelegte Verfahren zur Prüfung der Lichtdurchlässigkeit von Kraftfahrzeugscheiben. Das Verbundglas ist bevorzugt in einer oder in mehreren Richtungen des Raumes gebogen, wie es für Kraftfahrzeugscheiben üblich ist, wobei typische Krümmungsradien im Bereich von etwa 10 cm bis etwa 40 m liegen. Das Verbundglas kann aber auch plan sein, beispielsweise wenn es als Scheibe für Busse, Züge oder Traktoren vorgesehen ist. Das erfindungsgemäße Verbundglas kann eine funktionelle Beschichtung aufweisen, beispielweise eine IR-reflektierende oder absorbierende Beschichtung, eine UV- reflektierende oder absorbierende Beschichtung, eine farbgebende Beschichtung, eine Beschichtung niedriger Emissivität, eine heizbare Beschichtung, eine Beschichtung mit Antennenfunktion, eine splitterbindende Beschichtung oder eine Beschichtung zur Abschirmung von elektromagnetischer Strahlung. Die funktionelle Beschichtung ist bevorzugt auf der Außenscheibe angeordnet. Die dickere Außenscheibe, die zudem bevorzugt aus Normalglas besteht, lässt sich technisch einfacher und kostengünstiger beschichten, beispielweise durch physikalische Gasphasenabscheidung (wie Sputtern) als die sehr dünne Innenscheibe. Insbesondere lässt sich eine Beschichtung und eine chemische Vorspannung technisch nur sehr schwierig kombinieren. Eine vor dem Vorspannen aufgebrachte Beschichtung stört den lonendiffusionsprozess beim chemischen Vorspannen. Ein Beschichten nach dem chemischen Vorspannen ändert aufgrund der typischen hohen Temperaturen die Spannungsverteilung in der Scheibe. Die funktionelle Beschichtung ist bevorzugt auf der zur thermoplastischen Zwischenschicht hingewandte Oberfläche der Außenscheibe angeordnet, wo sie vor Korrosion und Beschädigung geschützt ist.
Das Verbundglas kann auch mit einer Zusatzfunktion versehen werden, indem zusätzlich oder alternativ zur funktionellen Beschichtung die Zwischenschicht funktionelle Einlagerungen aufweist, beispielsweise Einlagerungen mit IR-absorbierenden, UV- absorbierenden, farbgebenden oder akustischen Eigenschaften. Die Einlagerungen sind beispielsweise organische oder anorganische Ionen, Verbindungen, Aggregate, Moleküle, Kristalle, Pigmente oder Farbstoffe.
Die Erfindung wird weiter gelöst durch ein Verfahren zur Herstellung eines erfindungsgemäßen Verbundglases, wobei
(a) die Innenscheibe, die thermoplastische Zwischenschicht und die Außenscheibe in dieser Reihenfolge flächenmäßig übereinander angeordnet werden und
(b) die Innenscheibe und die Außenscheibe durch Lamination miteinander verbunden werden.
Soll das Verbundglas gebogen sein, so wird zumindest die Außenscheibe vor der Lamination einem Biegeprozess unterzogen.
In einer Ausführung der Erfindung wird die Innenscheibe nicht vorgebogen. Aufgrund ihrer sehr geringen Dicke weist die Innenscheibe eine folienartige Flexibilität auf und kann so an die vorgebogene Außenscheibe angepasst werden, ohne selbst vorgebogen werden zu müssen. Die Herstellung des Verbundglases wird so vereinfacht.
In einer alternativen Ausführung wird die Innenscheibe ebenfalls einem Biegeprozess unterzogen. Dies ist insbesondere bei starken Biegungen in mehrere Richtungen des Raums (sogenannte dreidimensionale Biegungen) vorteilhaft.
Die Außenscheibe und die Innenscheibe können einzelnen gebogen werden. Bevorzugt werden die Außenscheibe und die Innenscheibe gemeinsam (d.h. zeitgleich und durch dasselbe Werkzeug) kongruent gebogen, weil dadurch die Form der Scheiben für die später erfolgende Laminierung optimal aufeinander abgestimmt sind. Typische Temperaturen für Glasbiegeprozesse betragen beispielsweise 500°C bis 700°C.
In einer bevorzugten Ausführung wird die Innenscheibe mit einer chemischen Vorspannung versehen. Gegenfalls wird die Innenscheibe nach dem Biegen langsam abgekühlt. Ein zu schnelles Abkühlen erzeugt thermische Spannungen in der Scheibe, die beim späteren chemischen Tempern zu Formänderungen führen können. Die Abkühlrate beträgt bevorzugt bis zur Abkühlung auf eine Temperatur von 400 °C bevorzugt von 0,05 °C/sec bis 0,5 °C/sec, besonders bevorzugt von 0,1 °C/sec bis 0,3°C/sec. Durch ein derartig langsames Abkühlen können thermische Spannungen im Glas vermieden werden, welche insbesondere zu optischen Mängeln führen sowie zu einer negativen Beeinträchtigung der späteren chemischen Vorspannung. Es kann danach weiter abgekühlt werden, auch mit höheren Abkühlraten, weil unterhalb 400 °C die Gefahr der Erzeugung thermischen Spannungen gering ist.
Das chemische Vorspannen erfolgt bevorzugt bei einer Temperatur von 300 °C bis 600 °C, besonders bevorzugt von 400 °C bis 500 °C. Die Innenscheibe wird dabei mit einer Salzschmelze behandelt, beispielsweise in die Salzschmelze eingetaucht. Während der Behandlung werden insbesondere Natrium-Ionen des Glases durch größere Ionen, insbesondere größere Alkali-Ionen ausgetauscht, wobei die gewünschten Oberflächen- Druckspannungen entstehen. Die Salzschmelze ist bevorzugt die Schmelze eines Kaliumsalzes, besonders bevorzugt Kaliumnitrat (KN03) oder Kaliumsulfat (KS04), ganz besonders bevorzugt Kaliumnitrat (KN03). Der lonenaustauch wird durch die Diffusion der Alkali-Ionen bestimmt. Die gewünschten Werte für die Oberflächen-Druckspannungen und Druckspannungstiefen können daher insbesondere durch die Temperatur und die Dauer des Vorspannprozesses eingestellt werden. Übliche Zeiten für die Dauer betragen von 2 Stunden bis 48 Stunden. Nach der Behandlung mit der Salzschmelze wird die Scheibe auf Raumtemperatur abgekühlt. Anschließend wird die Scheibe gereinigt, bevorzugt mit Schwefelsäure (H2S04).
Die thermoplastische Zwischenschicht wird bevorzugt als Folie bereitgestellt. Die Herstellung des Verbundglases durch Lamination erfolgt mit üblichen, dem Fachmann an sich bekannten Methoden, beispielsweise Autoklavverfahren, Vakuumsackverfahren, Vakuumringverfahren, Kalanderverfahren, Vakuumlaminatoren oder Kombinationen davon. Die Verbindung von Außenscheibe und Innenscheibe erfolgt dabei üblicherweise unter Einwirkung von Hitze, Vakuum und / oder Druck.
Die Erfindung umfasst weiter die Verwendung einer erfindungsgemäßen Verbundscheibe in einem Fahrzeug, bevorzugt einem Kraftfahrzeug, besonders bevorzugt einem Personenkraftwagen, insbesondere als Windschutzscheibe, Seitenscheibe, Rückscheibe oder Dachscheibe.
Im Folgenden wird die Erfindung anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein.
Es zeigen:
Fig. 1 einen Querschnitt durch eine Ausgestaltung des erfindungsgemäßen Verbundglases und
Fig. 2 ein Flussdiagramm einer Ausführungsform des erfindungsgemäßen Verfahrens.
Fig. 1 zeigt ein erfindungsgemäßes Verbundglas, welches aus einer Innenscheibe 1 und einer Außenscheibe 2 besteht, die über eine thermoplastische Zwischenschicht 3 miteinander verbunden sind. Die Zwischenschicht 3 ist aus einer einzelnen Folie aus PVB mit einer Dicke von 0,76 mm ausgebildet. Das Verbundglas ist als Windschutzscheibe eines Kraftfahrzeugs vorgesehen. Das Verbundglas ist, wie für Kraftfahrzeug-Windschutzscheiben üblich, dreidimensional gekrümmt. Das bedeutet, dass die Scheibe eine Krümmung in mehreren Richtungen des Raumes aufweist, insbesondere in horizontaler und vertikaler Richtung. Der Einfachheit halber ist das Verbundglas in der Figur jedoch schematisch plan dargestellt.
Die Dicke, das Glasmaterial und die Vorspannung der Innenscheibe 1 und der Außenscheibe 2 sind für ein erfindungsgemäßes Verbundglas in Tabelle 1 zusammengefasst (Beispiel).
Die Stabilität des erfindungsgemäßen Verbundglases wurde mittels standardisierter Tests beurteilt, wobei die Ergebnisse mit denen eines Verbundglases mit herkömmlichen Dicken (Vergleichsbeispiel, siehe Tabelle 1 ) verglichen wurden. Tabelle 1
Figure imgf000013_0001
Stabilität gegenüber Steinschlag (spitzer Stein)
Ein Projektil mit Diamantspitze wurde aus wachsender Höhe auf das erfindungsgemäße Verbundglas (Beispiel) fallengelassen, um das Auftreffen eines spitzen Steins zu simulieren. Gemessen wurde die Höhe, bei der das Verbundglas brach. Bei Auftreffen auf die Außenscheibe 2 war bei einer Höhe 1400 mm Glasbruch zu beobachten. Das erfindungsgemäße Verbundglas mit den sehr geringen Glasdicken wies überraschend eine höhere Steinschlagfestigkeit auf als das herkömmliche Vergleichsbeispiel (Glasbruch bei einer Höhe von 1 100 mm).
Kugelfall-Tests nach ECE R43
Die Tests wurden an einer 30cm x 30cm-Probe durchgeführt. Beim ersten Test wurde eine Stahlkugel mit einem Gewicht von 227 g aus einer Höhe von 8,5 m auf die Außenscheibe 2 fallengelassen. Dieser Test simuliert das Auftreffen eines Steins von außen auf das Verbundglas. Der Test galt als bestanden, wenn die Kugel vom Verbundglas aufgehalten wurde und dieses nicht durchdrang und wenn die abgegebene Splittermenge auf der dem Einschlag abgewandten Seite eine bestimmte (dickenabhängige) Menge unterschreitet. Das Vergleichsbeispiel mit einer für Windschutzscheiben bewährten Glaskombination bestand den Test erwartungsgemäß. Aber auch das erfindungsgemäße Verbundglas nach Bespiel mit den geringen Glasdicken bestand den Test überraschend. Von der Innenscheibe 1 lösten sich sogar weniger Splitter beim Aufprall der Kugel, was für die Sicherheit der Fahrzeuginsassen als vorteilhaft zu werten ist.
Beim zweiten Test wurde eine Stahlkugel mit einem Gewicht von 2260 g aus einer Höhe von 4 m auf die Innenscheibe 1 fallengelassen. Dieser Test simuliert das Auftreffen des Kopfs eines Fahrzeuginsassen auf das Verbundglas. Der Test galt aus bestanden, wenn die Kugel vom Verbundglas aufgehalten wurde und dieses nicht innerhalb von 5 s nach dem Aufbrechen durchdrang. Das Vergleichsbeispiel mit den großen Glasstärken bestand den Test erwartungsgemäß. Aber auch das erfindungsgemäße Verbundglas nach Beispiel mit den geringen Glasdicken bestand den Test.
Das erfindungsgemäße Verbundglas weist aufgrund der sehr geringen Glasstärken ein sehr geringes Gewicht auf. Wie die Tests gezeigt haben, zeichnet sich das Verbundglas aber dennoch durch eine hohe Bruchfestigkeit und Steinschlagfestigkeit aus. Das Verbundglas erfüllt insbesondere die hohen Sicherheitsanforderungen an Verbundgläser im Fahrzeugbereich, so dass es beispielsweise als Windschutzscheibe verwendet werden kann. Es ist insbesondere möglich, eine extrem dünne Innenscheibe für Fahrzeugscheiben zu verwenden. Dieses Ergebnis war für den Fachmann unerwartet und überraschend. Alternativ kann die Innenscheibe 1 beispielsweise auch aus nicht-vorgespanntem Borosilikatglas bestehen. Es hat sich gezeigt, dass auch mit einer solchen Glaskombination (Außenscheibe 1 ,6 mm, nicht-vorgespanntes Kalk-Natron-Glas; Zwischenschicht 0,76 mm PVB; Innenscheibe 0,3 mm nicht-vorgespanntes Borosilikatglas) sehr gute Ergebnisse hinsichtlich der Stabilität und Bruchfestigkeit erreicht werden können.
Fig. 2 zeigt ein Flussdiagramm eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens zur Herstellung eines erfindungsgemäßen Verbundglases. Eine Innenscheibe 1 und eine Außenscheibe 2 werden in einem planen Ausgangszustand bereitgestellt. Die Innenscheibe 1 und die Außenscheibe 2 werden zusammen einem Biegeprozess unterzogen und kongruent gebogen in ihre endgültige dreidimensionale Form.
Optional wird die Innenscheibe 1 nach dem Biegen chemisch vorgespannt. Die Innenscheibe 1 wird dazu nach dem Biegen langsam abgekühlt, um thermische Spannungen zu vermeiden. Eine geeignete Abkühlrate beträgt beispielsweise 0,1 °C/sec. Die Innenscheibe 1 wird anschließend für einen Zeitraum von einigen Stunden, beispielsweise 4 Stunden, bei einer Temperatur von 460 °C mit einer Schmelze aus Kaliumnitrat behandelt und dabei chemisch vorgespannt. Die Behandlung bewirkt einen diffusionsgetriebenen Austausch von Natriumionen durch größere Kaliumionen über die Oberflächen des Glases. Dadurch werden Oberflächendruckspannungen erzeugt. Die Innenscheibe 1 wird anschließend abgekühlt und dann mit Schwefelsäure gewaschen, um Rückstände des Kaliumnitrats zu entfernen.
Anschließend wird eine thermoplastische Zwischenschicht 3 zwischen Innenscheibe 1 und Außenscheibe 2 angeordnet. Der Stapel aus Innenscheibe 1 , Zwischenschicht 3 und Außenscheibe 2 wird auf herkömmliche Weise durch Lamination verbunden, beispielsweise durch ein Vakuumsackverfahren.
Bezugszeichenliste:
(1 ) Innenscheibe
(2) Außenscheibe
(3) Zwischenschicht

Claims

Patentansprüche
1 . Fahrzeug- Verbundglas zur Abtrennung eines Fahrzeuginnenraums von einer äußeren Umgebung, mindestens umfassend:
- eine Innenscheibe (1 ) aus Glas mit einer Dicke von 0,1 mm bis 0,4 mm,
- eine Außenscheibe (2) aus Glas mit einer Dicke von 1 ,0 mm bis 1 ,8 mm und
- eine thermoplastische Zwischenschicht (3), welche die Innenscheibe (1 ) mit der Außenscheibe (2) verbindet,
wobei die Dicke der Innenscheibe (1 ) höchstens 25 % der Dicke der Außenscheibe (2) beträgt.
2. Fahrzeug-Verbundglas nach Anspruch 1 , das eine Windschutzscheibe ist.
3. Fahrzeug- Verbundglas nach Anspruch 1 oder 2, wobei die Innenscheibe (1 ) eine vorgebogene Scheibe ist.
4. Fahrzeug- Verbundglas nach Anspruch 1 bis 3, wobei die Innenscheibe (1 ) eine chemisch vorgespannte Scheibe ist.
5. Fahrzeug- Verbundglas nach Anspruch 4, wobei die Innenscheibe (1 ) Aluminosilikatglas enthält und bevorzugt von 55 Gew-% bis 72 Gew-% Siliziumoxid (Si02), von 5 Gew-% bis 10 Gew-% Aluminiumoxid (Al203), von 10 Gew-% bis 15 Gew-% Natriumoxid (Na20), von 7 Gew-% bis 12 Gew-% Kaliumoxid (K20) und von 6 Gew-% bis 1 1 Gew-% Magnesiumoxid (MgO) enthält.
6. Fahrzeug- Verbundglas nach Anspruch 1 bis 3, wobei die Innenscheibe (1 ) eine nichtvorgespannte Scheibe ist und Borosilikatglas enthält.
7. Fahrzeug- Verbundglas nach einem der Ansprüche 1 bis 6, wobei die Innenscheibe (1 ) eine Dicke von 0,2 mm bis 0,4 mm, bevorzugt ungefähr 0,3 mm aufweist.
8. Fahrzeug-Verbundglas nach einem der Ansprüche 1 bis 7, wobei die Außenscheibe (2) eine Dicke von 1 ,4 mm bis 1 ,8 mm, bevorzugt von 1 ,5 mm bis 1 ,7 mm aufweist, besonders bevorzugt etwa 1 ,6 mm.
9. Fahrzeug-Verbundglas nach einem der Ansprüche 1 bis 8, wobei die Außenscheibe (2) eine nicht-vorgespannte Scheibe ist und bevorzugt Kalk-Natron-Glas enthält.
10. Fahrzeug- Verbundglas nach einem der Ansprüche 1 bis 9, wobei die Zwischen- Schicht (3) durch eine einzelne thermoplastische Folie ausgebildet ist, die bevorzugt zumindest Polyvinylbutyral (PVB), Ethylenvinylacetat (EVA), Polyurethan (PU) oder Gemische oder Copolymere oder Derivate davon enthält, und wobei die Zwischenschicht (3) bevorzugt eine Dicke von 0,2 mm bis 1 mm aufweist.
1 1 . Fahrzeug-Verbundglas nach einem der Ansprüche 1 bis 10, wobei
- die zur Zwischenschicht (3) hingewandte Oberfläche (II) der Außenscheibe (2) mit einer funktionellen Beschichtung versehen ist, die bevorzugt eine IR-reflektierende oder absorbierende Beschichtung, eine UV-reflektierende oder absorbierende Beschichtung, eine farbgebende Beschichtung, eine Beschichtung niedriger Emissivität, eine heizbare Beschichtung, eine Beschichtung mit Antennenfunktion, eine splitterbindende Beschichtung oder eine Beschichtung zur Abschirmung von elektromagnetischer Strahlung ist;
oder
- wobei die Zwischenschicht (3) funktionelle Einlagerungen mit IR-absorbierenden, UV-absorbierenden, farbgebenden oder akustischen Eigenschaften aufweist, bevorzugt organische oder anorganische Ionen, Verbindungen, Aggregate, Moleküle, Kristalle, Pigmente oder Farbstoffe.
12. Verfahren zur Herstellung eines Fahrzeug- Verbundglases nach einem der Ansprüche 1 bis 1 1 , wobei
(a) die Innenscheibe (1 ), die thermoplastische Zwischenschicht (3) und die Außenscheibe (2) in dieser Reihenfolge flächenmäßig übereinander angeordnet werden und
(b) die Innenscheibe (1 ) und die Außenscheibe (2) durch Lamination miteinander verbunden werden.
13. Verfahren nach Anspruch 12, wobei die Innenscheibe (1 ) und die Außenscheibe (2) gemeinsam gebogen werden.
14. Verfahren nach Anspruch 12 oder 13, wobei die Innenscheibe (1 ) in gebogenem Zustand chemisch vorgespannt wird.
15. Verwendung eines Fahrzeug- Verbundglases nach einem der Ansprüche 1 bis 1 1 einem Kraftfahrzeug, bevorzugt einem Personenkraftwagen, insbesondere Windschutzscheibe, Seitenscheibe, Rückscheibe oder Dachscheibe.
PCT/EP2015/054810 2014-04-15 2015-03-09 Verbundglas mit dünner innenscheibe WO2015158464A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EA201692058A EA201692058A1 (ru) 2014-04-15 2015-03-09 Многослойное стекло с тонкой внутренней пластиной
MX2016013450A MX2016013450A (es) 2014-04-15 2015-03-09 Vidrio compuesto con cristal interno delgado.
CA2944082A CA2944082A1 (en) 2014-04-15 2015-03-09 Composite glass with thin inner pane
BR112016022689A BR112016022689A2 (pt) 2014-04-15 2015-03-09 Vidro composto com vidraça interna fina
EP15709461.6A EP3131753A1 (de) 2014-04-15 2015-03-09 Verbundglas mit dünner innenscheibe
KR1020167028631A KR20160135280A (ko) 2014-04-15 2015-03-09 얇은 내측 판유리를 갖는 적층된 유리
JP2016562849A JP2017518246A (ja) 2014-04-15 2015-03-09 薄い内側板ガラスを含む合わせガラス
US15/301,856 US20170113520A1 (en) 2014-04-15 2015-03-09 Composite glass with thin inner pane
CN201580019621.7A CN106458743A (zh) 2014-04-15 2015-03-09 具有薄内玻璃板的复合玻璃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14164731 2014-04-15
EP14164731.3 2014-04-15

Publications (1)

Publication Number Publication Date
WO2015158464A1 true WO2015158464A1 (de) 2015-10-22

Family

ID=50478775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/054810 WO2015158464A1 (de) 2014-04-15 2015-03-09 Verbundglas mit dünner innenscheibe

Country Status (10)

Country Link
US (1) US20170113520A1 (de)
EP (1) EP3131753A1 (de)
JP (1) JP2017518246A (de)
KR (1) KR20160135280A (de)
CN (1) CN106458743A (de)
BR (1) BR112016022689A2 (de)
CA (1) CA2944082A1 (de)
EA (1) EA201692058A1 (de)
MX (1) MX2016013450A (de)
WO (1) WO2015158464A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017103032A1 (de) 2015-12-16 2017-06-22 Saint-Gobain Glass France Beheizbares verbundglas mit dünner innenscheibe und dünner aussenscheibe
US9812111B1 (en) * 2016-10-19 2017-11-07 Solutia Inc. Sound insulation panels having high interlayer thickness factors
EP3269546A1 (de) * 2016-07-13 2018-01-17 Saint-Gobain Glass France Beheiztes glas
WO2018030095A1 (ja) * 2016-08-10 2018-02-15 日本電気硝子株式会社 車両用合わせガラス
WO2018030093A1 (ja) * 2016-08-10 2018-02-15 日本電気硝子株式会社 車両用合わせガラス
WO2018030094A1 (ja) * 2016-08-10 2018-02-15 日本電気硝子株式会社 車両用合わせガラス
JP2018076189A (ja) * 2016-11-07 2018-05-17 日本電気硝子株式会社 合わせガラス
WO2018095693A1 (de) 2016-11-24 2018-05-31 Saint-Gobain Glass France Verfahren zur herstellung einer gebogenen verbundglasscheibe mit einer dünnen glasscheibe
WO2018114307A1 (de) 2016-12-22 2018-06-28 Schott Ag Verbundglasscheibe
WO2018172022A1 (de) 2017-03-22 2018-09-27 Saint-Gobain Glass France Vorrichtung und verfahren zum aufnehmen, verformen und ablegen einer dünnen glasscheibe
JP2019503967A (ja) * 2015-12-17 2019-02-14 サン−ゴバン グラス フランス 非対称の積層ガラス
JP2019503963A (ja) * 2015-12-16 2019-02-14 コーニング インコーポレイテッド 非対称ガラス積層板
JP2019517976A (ja) * 2016-04-26 2019-06-27 エルジー・ケム・リミテッド 接合ガラスおよび接合ガラスの製造方法
EP3575274A1 (de) * 2018-05-31 2019-12-04 AGC Automotive Americas Co. Glasartikel
DE102020000521A1 (de) 2020-01-28 2021-07-29 Constantin Dohr Verbundglas unter Verwendung von Dünnglas unter anderem für den Einsatz bei Fahrzeugen, vorzugsweise bei Kraftfahrzeugen, Wohnmobilen, Wohnwagen und dgl.

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016054621A1 (en) * 2014-10-03 2016-04-07 Silatronix, Inc. Functionalized silanes and electrolyte compositions and electrochemical devices containing them
FR3045596B1 (fr) * 2015-12-17 2018-01-19 Saint-Gobain Glass France Verre mince colore renforce chimiquement
CN108602322B (zh) * 2015-12-29 2021-01-26 康宁公司 用于减小层压结构中的弓形弯曲的不对称处理方法
EP3560899B1 (de) * 2016-12-21 2022-02-02 LG Chem, Ltd. Verfahren zur herstellung von gekrümmtem verbundglas sowie gekrümmtes verbundglas
WO2018122769A1 (en) * 2016-12-30 2018-07-05 Agp America S.A. Lightweight automotive laminate with high resistance to breakage
KR101911621B1 (ko) * 2017-02-27 2018-10-24 주식회사 엘지화학 접합 유리 및 접합 유리의 제조 방법
CO2017009265A1 (es) * 2017-09-13 2018-01-31 Agp America Sa Dispositivo y método para el laminado de vidrio delgado con una prensa de placa
CN110944835A (zh) * 2017-08-25 2020-03-31 可乐丽欧洲有限责任公司 包含具有着色框的夹层膜层的层压玻璃
FR3077293B1 (fr) * 2018-01-26 2021-06-04 Saint Gobain Vitrage feuillete.
EP3774331A1 (de) * 2018-03-27 2021-02-17 Pilkington Group Limited Verbundglasscheibe
WO2020012783A1 (ja) 2018-07-13 2020-01-16 セントラル硝子株式会社 自動車のフロントガラス用合せガラス、及びその製造方法
CN110944838A (zh) * 2018-07-25 2020-03-31 法国圣戈班玻璃厂 包括化学钢化的薄玻璃片材的层压窗玻璃
US20220177349A1 (en) * 2020-07-06 2022-06-09 Corning Incorporated Radiation shielding glass articles
WO2022131274A1 (ja) * 2020-12-18 2022-06-23 Agc株式会社 ボロシリケートガラス、合わせガラス、及び車両用窓ガラス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595624A (en) * 1983-08-10 1986-06-17 Post Office, Postal Headquarters Security glazing
US5002820A (en) * 1989-05-25 1991-03-26 Artistic Glass Products Laminated safety glass
WO2013004473A1 (fr) * 2011-07-04 2013-01-10 Agc Glass Europe Vitrage automobile
DE102012210906A1 (de) * 2012-06-27 2014-01-02 Schott Ag Sicherheitssonderverglasung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU87241A1 (fr) * 1988-06-15 1990-02-28 Glaverbel Procede d'augmentation de la resistance a la penetration au travers d'une baie vitree et vitrage a resistance a l'effraction renforcee
FR2697242B1 (fr) * 1992-10-22 1994-12-16 Saint Gobain Vitrage Int Vitrage trempé chimique.
ATE219725T1 (de) * 1997-10-24 2002-07-15 Agfa Gevaert Verbundscheibe mit einem dünnen borosilikatglassubstrat als eine bildende schicht
JP2002326847A (ja) * 2001-03-01 2002-11-12 Asahi Glass Co Ltd 合わせガラス
JP4698170B2 (ja) * 2004-06-17 2011-06-08 新日鐵化学株式会社 エポキシ樹脂、及びその製造方法、並びにそのエポキシ樹脂組成物
JP2007197288A (ja) * 2006-01-30 2007-08-09 Nippon Sheet Glass Co Ltd 合わせガラス及びこれを用いたガラス窓構造
JP5622069B2 (ja) * 2009-01-21 2014-11-12 日本電気硝子株式会社 強化ガラス、強化用ガラス及び強化ガラスの製造方法
DE102009017805B4 (de) * 2009-04-20 2012-05-16 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Transparentes Verbundglas und dessen Verwendung
JP5483262B2 (ja) * 2009-12-04 2014-05-07 日本電気硝子株式会社 合わせガラス
US9616641B2 (en) * 2011-06-24 2017-04-11 Corning Incorporated Light-weight hybrid glass laminates
US10035331B2 (en) * 2011-06-24 2018-07-31 Corning Incorporated Light-weight hybrid glass laminates
WO2013094567A1 (ja) * 2011-12-22 2013-06-27 旭硝子株式会社 積層ガラスの製造方法、積層ガラスおよび窓ガラス
WO2013184897A1 (en) * 2012-06-08 2013-12-12 Corning Incorporated Laminated glass structures having high glass to polymer interlayer adhesion
ES2898321T3 (es) * 2012-08-21 2022-03-07 Saint Gobain Cristal compuesto con propiedades ópticas conmutables eléctricamente
BE1020862A3 (fr) * 2012-08-21 2014-06-03 Agc Glass Europe Vitrage automobile.
US9387651B2 (en) * 2012-09-26 2016-07-12 Corning Incorporated Methods for producing ion exchanged glass and resulting apparatus
US9931634B2 (en) * 2014-02-27 2018-04-03 The Regents Of The Univeristy Of California High throughput DNA damage quantification of human tissue with home-based collection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4595624A (en) * 1983-08-10 1986-06-17 Post Office, Postal Headquarters Security glazing
US5002820A (en) * 1989-05-25 1991-03-26 Artistic Glass Products Laminated safety glass
WO2013004473A1 (fr) * 2011-07-04 2013-01-10 Agc Glass Europe Vitrage automobile
DE102012210906A1 (de) * 2012-06-27 2014-01-02 Schott Ag Sicherheitssonderverglasung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3131753A1 *

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017103032A1 (de) 2015-12-16 2017-06-22 Saint-Gobain Glass France Beheizbares verbundglas mit dünner innenscheibe und dünner aussenscheibe
JP2019503963A (ja) * 2015-12-16 2019-02-14 コーニング インコーポレイテッド 非対称ガラス積層板
RU2690459C1 (ru) * 2015-12-16 2019-06-03 Сэн-Гобэн Гласс Франс Обогреваемое многослойное стекло с тонким внутренним стеклом и тонким внешним стеклом
JP2019503967A (ja) * 2015-12-17 2019-02-14 サン−ゴバン グラス フランス 非対称の積層ガラス
JP2019517976A (ja) * 2016-04-26 2019-06-27 エルジー・ケム・リミテッド 接合ガラスおよび接合ガラスの製造方法
US10919270B2 (en) 2016-04-26 2021-02-16 Lg Chem, Ltd. Laminated glass and manufacturing method for laminated glass
EP3269546A1 (de) * 2016-07-13 2018-01-17 Saint-Gobain Glass France Beheiztes glas
WO2018011287A1 (de) * 2016-07-13 2018-01-18 Saint-Gobain Glass France Beheiztes glas
JPWO2018030093A1 (ja) * 2016-08-10 2019-06-06 日本電気硝子株式会社 車両用合わせガラス
WO2018030094A1 (ja) * 2016-08-10 2018-02-15 日本電気硝子株式会社 車両用合わせガラス
WO2018030093A1 (ja) * 2016-08-10 2018-02-15 日本電気硝子株式会社 車両用合わせガラス
WO2018030095A1 (ja) * 2016-08-10 2018-02-15 日本電気硝子株式会社 車両用合わせガラス
CN109476539A (zh) * 2016-08-10 2019-03-15 日本电气硝子株式会社 车辆用夹层玻璃
CN109476538A (zh) * 2016-08-10 2019-03-15 日本电气硝子株式会社 车辆用夹层玻璃
US10800145B2 (en) 2016-10-19 2020-10-13 Solutia Inc. Sound insulation panels having high interlayer thickness factors
US10016960B2 (en) 2016-10-19 2018-07-10 Solutia Inc. Sound insulation panels having high interlayer thickness factors
US9812111B1 (en) * 2016-10-19 2017-11-07 Solutia Inc. Sound insulation panels having high interlayer thickness factors
CN109843826A (zh) * 2016-11-07 2019-06-04 日本电气硝子株式会社 夹层玻璃
JP2018076189A (ja) * 2016-11-07 2018-05-17 日本電気硝子株式会社 合わせガラス
KR102244653B1 (ko) * 2016-11-24 2021-04-26 쌩-고벵 글래스 프랑스 얇은 유리판을 갖는 구부러진 복합유리판을 제조하는 방법
CN108602324A (zh) * 2016-11-24 2018-09-28 法国圣戈班玻璃厂 制造具有薄玻璃质玻璃板的弯曲的复合玻璃质玻璃板的方法
US11192341B2 (en) 2016-11-24 2021-12-07 Saint-Gobain Glass France Method for producing a curved composite glass pane having a thin glass pane
KR20190082946A (ko) * 2016-11-24 2019-07-10 쌩-고벵 글래스 프랑스 얇은 유리판을 갖는 구부러진 복합유리판을 제조하는 방법
CN108602324B (zh) * 2016-11-24 2021-09-10 法国圣戈班玻璃厂 制造具有薄玻璃质玻璃板的弯曲的复合玻璃质玻璃板的方法
RU2720685C1 (ru) * 2016-11-24 2020-05-12 Сэн-Гобэн Гласс Франс Способ получения гнутого многослойного оконного стекла, содержащего тонкий стеклянный лист
JP2020513389A (ja) * 2016-11-24 2020-05-14 サン−ゴバン グラス フランス 薄いガラスペインを有する湾曲複合ガラスペインの製造方法
WO2018095693A1 (de) 2016-11-24 2018-05-31 Saint-Gobain Glass France Verfahren zur herstellung einer gebogenen verbundglasscheibe mit einer dünnen glasscheibe
WO2018114307A1 (de) 2016-12-22 2018-06-28 Schott Ag Verbundglasscheibe
US11745459B2 (en) 2016-12-22 2023-09-05 Schott Ag Thin glass substrate, in particular a borosilicate glass thin glass substrate, method and apparatus for its production
US11890844B2 (en) 2016-12-22 2024-02-06 Schott Ag Thin glass substrate, method and apparatus for its production
US11993062B2 (en) 2016-12-22 2024-05-28 Schott Ag Composite glass pane
US12005687B2 (en) 2016-12-22 2024-06-11 Schott Ag Thin glass substrate, method and apparatus for its production
WO2018172022A1 (de) 2017-03-22 2018-09-27 Saint-Gobain Glass France Vorrichtung und verfahren zum aufnehmen, verformen und ablegen einer dünnen glasscheibe
US11572299B2 (en) 2017-03-22 2023-02-07 Saint-Gobain Glass France Device and method for picking up, shaping, and placing a thin glass pane
US10981357B2 (en) 2018-05-31 2021-04-20 Agc Automotive Americas Co. Glass article
EP3575274A1 (de) * 2018-05-31 2019-12-04 AGC Automotive Americas Co. Glasartikel
DE102020000521A1 (de) 2020-01-28 2021-07-29 Constantin Dohr Verbundglas unter Verwendung von Dünnglas unter anderem für den Einsatz bei Fahrzeugen, vorzugsweise bei Kraftfahrzeugen, Wohnmobilen, Wohnwagen und dgl.

Also Published As

Publication number Publication date
MX2016013450A (es) 2017-01-18
CN106458743A (zh) 2017-02-22
EP3131753A1 (de) 2017-02-22
JP2017518246A (ja) 2017-07-06
EA201692058A1 (ru) 2017-02-28
US20170113520A1 (en) 2017-04-27
CA2944082A1 (en) 2015-10-22
BR112016022689A2 (pt) 2017-08-15
KR20160135280A (ko) 2016-11-25

Similar Documents

Publication Publication Date Title
WO2015158464A1 (de) Verbundglas mit dünner innenscheibe
EP3558668B1 (de) Verbundglasscheibe
EP3060392B1 (de) Verbundglas mit mindestens einer chemisch vorgespannten scheibe
EP3390044B1 (de) Beheizbares verbundglas mit dünner innenscheibe und dünner aussenscheibe
DE102009017805B4 (de) Transparentes Verbundglas und dessen Verwendung
EP3230058B1 (de) Verbundglas mit geringer dicke für ein head-up-display (hud)
EP3356139A1 (de) Verbundglas mit dünner innenscheibe und schalldämpfender thermoplastischer zwischenschicht
DE69402661T2 (de) Verfahren zur verstärkung eines glasgegenstandes
DE202012013655U1 (de) Leichte Hybrid-Glaslaminate
EP3154783A1 (de) Verbundscheibe aus einer polymeren scheibe und einer glasscheibe
DE2223316A1 (de) Platten mit einer Glasscheibe und deren Herstellung
WO2015058884A1 (de) Verbundscheibe aus einer polymeren scheibe und einer glasscheibe
EP2705951B1 (de) Transparentes durchschusshemmendes Laminat
DE1946358A1 (de) Durch Ionenaustausch getemperte Glasgegenstaende
WO2011120680A1 (de) Transparenter glas-polymer-verbund
DE102013114225A1 (de) Chemisch vorspannbares Glas und daraus hergestelltes Glaselement
DE2105954A1 (de) Geschichtete Sicherheitsglaswind schutzscheibe
DE1570868B2 (de) Verbundglas mit einer Weichmacherhaltigen Polyvinylbutyralfolie als Zwischenschicht, deren Adhäsion am Glas gezielt steuerbar ist
EP3148797B1 (de) Brandschutzscheibe und brandschutzverglasung
DE102012218115A1 (de) Transparentes Schutzlaminat
EP3546211A1 (de) Fahrzeugfenster und verfahren zu dessen herstellung
DE1905682A1 (de) Mehrschichtige Windschutzscheibe
DE1919819A1 (de) Chemisch verstaerkte Glasscheiben
WO2024089129A1 (de) Verbundscheibe mit bereichsweiser erhöhter oberflächendruckspannung sowie fahrzeug mit derselben
WO2024002826A1 (de) Verfahren zur herstellung einer fahrzeugverbundscheibe mit verbessertem aufprallschutz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15709461

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015709461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015709461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2944082

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15301856

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201606886

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/013450

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167028631

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2016562849

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022689

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 201692058

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112016022689

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160929