WO2015156404A1 - 温度感応性吸水剤、水処理方法及び水処理装置 - Google Patents
温度感応性吸水剤、水処理方法及び水処理装置 Download PDFInfo
- Publication number
- WO2015156404A1 WO2015156404A1 PCT/JP2015/061289 JP2015061289W WO2015156404A1 WO 2015156404 A1 WO2015156404 A1 WO 2015156404A1 JP 2015061289 W JP2015061289 W JP 2015061289W WO 2015156404 A1 WO2015156404 A1 WO 2015156404A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- temperature
- absorbing agent
- sensitive
- aqueous solution
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 239000002250 absorbent Substances 0.000 title claims abstract description 22
- 230000002745 absorbent Effects 0.000 title claims abstract description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims description 155
- 238000009292 forward osmosis Methods 0.000 claims abstract description 63
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims abstract description 49
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims abstract description 48
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000013505 freshwater Substances 0.000 claims abstract description 31
- 229920001400 block copolymer Polymers 0.000 claims abstract description 28
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerol group Chemical group OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims abstract description 24
- 238000004519 manufacturing process Methods 0.000 claims abstract description 22
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 14
- 230000008569 process Effects 0.000 claims abstract description 10
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical group CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000005667 attractant Substances 0.000 claims abstract description 5
- 230000031902 chemoattractant activity Effects 0.000 claims abstract description 5
- 239000012528 membrane Substances 0.000 claims description 111
- 239000006096 absorbing agent Substances 0.000 claims description 103
- 239000000243 solution Substances 0.000 claims description 103
- 239000007864 aqueous solution Substances 0.000 claims description 45
- 239000000126 substance Substances 0.000 claims description 40
- 238000000926 separation method Methods 0.000 claims description 31
- 238000010438 heat treatment Methods 0.000 claims description 25
- 239000007788 liquid Substances 0.000 claims description 13
- 238000001816 cooling Methods 0.000 claims description 10
- 125000001165 hydrophobic group Chemical group 0.000 claims description 6
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 238000004581 coalescence Methods 0.000 claims 1
- 230000003204 osmotic effect Effects 0.000 description 72
- 229920000642 polymer Polymers 0.000 description 19
- 150000003839 salts Chemical class 0.000 description 19
- 230000005484 gravity Effects 0.000 description 18
- 229920001223 polyethylene glycol Polymers 0.000 description 15
- 239000002243 precursor Substances 0.000 description 15
- 238000003786 synthesis reaction Methods 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 239000013535 sea water Substances 0.000 description 14
- 238000005374 membrane filtration Methods 0.000 description 12
- 229920000151 polyglycol Polymers 0.000 description 11
- 239000010695 polyglycol Substances 0.000 description 11
- 238000001914 filtration Methods 0.000 description 9
- 238000002835 absorbance Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 238000006116 polymerization reaction Methods 0.000 description 8
- 229920001451 polypropylene glycol Polymers 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000001223 reverse osmosis Methods 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001346 alkyl aryl ethers Chemical class 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000001471 micro-filtration Methods 0.000 description 6
- 239000012466 permeate Substances 0.000 description 6
- 238000005191 phase separation Methods 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010612 desalination reaction Methods 0.000 description 5
- 239000012527 feed solution Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 235000011187 glycerol Nutrition 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 4
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- CCGKOQOJPYTBIH-UHFFFAOYSA-N ethenone Chemical group C=C=O CCGKOQOJPYTBIH-UHFFFAOYSA-N 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 150000002924 oxiranes Chemical class 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 229910052708 sodium Inorganic materials 0.000 description 4
- 229910000104 sodium hydride Inorganic materials 0.000 description 4
- 239000002351 wastewater Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 239000012267 brine Substances 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 239000000706 filtrate Substances 0.000 description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- RBACIKXCRWGCBB-UHFFFAOYSA-N 1,2-Epoxybutane Chemical compound CCC1CO1 RBACIKXCRWGCBB-UHFFFAOYSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 125000004106 butoxy group Chemical group [*]OC([H])([H])C([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000009287 sand filtration Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- OATROSAUCSGRBB-UHFFFAOYSA-N 2-ethyloxirane;oxolane Chemical compound CCC1CO1.C1CCOC1 OATROSAUCSGRBB-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- 241000208199 Buxus sempervirens Species 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229920000604 Polyethylene Glycol 200 Polymers 0.000 description 1
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 1
- 229920002582 Polyethylene Glycol 600 Polymers 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical group CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical group 0.000 description 1
- 239000002519 antifouling agent Substances 0.000 description 1
- 238000010533 azeotropic distillation Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- QMNOIORHZMRPLS-UHFFFAOYSA-N butan-1-ol;ethane-1,2-diol;propane-1,2-diol Chemical compound OCCO.CCCCO.CC(O)CO QMNOIORHZMRPLS-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229940124447 delivery agent Drugs 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000011033 desalting Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000001728 nano-filtration Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 239000003027 oil sand Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- JLFNLZLINWHATN-UHFFFAOYSA-N pentaethylene glycol Chemical compound OCCOCCOCCOCCOCCO JLFNLZLINWHATN-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- ULWHHBHJGPPBCO-UHFFFAOYSA-N propane-1,1-diol Chemical compound CCC(O)O ULWHHBHJGPPBCO-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 1
- 229940039790 sodium oxalate Drugs 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000003828 vacuum filtration Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/264—Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/002—Forward osmosis or direct osmosis
- B01D61/0022—Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/002—Forward osmosis or direct osmosis
- B01D61/005—Osmotic agents; Draw solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/14—Ultrafiltration; Microfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/58—Multistep processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/445—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/26—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
- C08G65/2603—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
- C08G65/2606—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
- C08G65/2609—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/06—Specific process operations in the permeate stream
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2301/00—General aspects of water treatment
- C02F2301/04—Flow arrangements
- C02F2301/046—Recirculation with an external loop
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2303/00—Specific treatment goals
- C02F2303/18—Removal of treatment agents after treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a temperature-sensitive water-absorbing agent used in a water desalting method and apparatus for producing fresh water from water to be treated such as seawater or brine.
- Patent Document 5 discloses a random copolymer or a sequential copolymer of a low molecular weight diol composed of, for example, ethanediol and propanediol as a temperature-sensitive water-absorbing agent.
- the osmotic pressure of the temperature-sensitive water-absorbing agent solution shown in the example of Patent Document 5 is at most 95 atm, which is insufficient.
- An object of the present invention is to provide a temperature-sensitive water-absorbing agent and a water treatment method that are more suitable than conventional ones in the production of fresh water by a forward osmosis method using a temperature-sensitive water-absorbing agent that has a cloud point and aggregates when heated as an attractant. And providing a water treatment device.
- the temperature sensitive water-absorbing agent of the present invention is (1) A temperature-sensitive water-absorbing agent that is used as an attracting substance in the production of fresh water by the forward osmosis method and has a cloud point and aggregates when heated.
- the temperature-sensitive water-absorbing agent includes at least a hydrophobic portion and a hydrophilic portion.
- a block copolymer comprising an ethylene oxide group and a group consisting of propylene oxide and / or butylene oxide, the basic skeleton being a glycerin skeleton.
- the hydrophobic portion of the block copolymer is the butylene oxide.
- the hydrophobic group of the block copolymer is an ethyl group.
- the number of ethylene oxides constituting the block copolymer is in the range of 10 to 30, and It is preferable that the number of butylene oxides and the number of the propylene oxides are in the range of the following formula. 0.8 ⁇ (BO + PO / 3.5 + 10) /EO ⁇ 1.1 (In the formula, EO represents the number of ethylene oxide, BO represents the number of butylene oxide, and PO represents the number of propylene oxide)
- the temperature-sensitive water-absorbing agent of the present invention is a temperature-sensitive water-absorbing agent used as an attracting substance in the production of fresh water by the forward osmosis method, and the temperature-sensitive water-absorbing agent has a basic skeleton of trimethylol. It is a block copolymer containing a propane skeleton and containing ethylene oxide and butylene oxide.
- the number of ethylene oxides constituting the block copolymer is in the range of 10 to 30, and the number of butylene oxides and propylene
- the number of oxides is preferably in the range of the following formula. 0.8 ⁇ (BO + PO / 3.5 + 13) /EO ⁇ 1.1 (In the formula, EO represents the number of ethylene oxide, BO represents the number of butylene oxide, and PO represents the number of propylene oxide)
- the production of fresh water by the forward osmosis method is a water treatment method using the temperature-sensitive water-absorbing agent according to any one of (1) to (7) as the attracting substance, Then, an aqueous solution that is an aqueous solution of the temperature-sensitive water-absorbing agent is brought into contact through a semipermeable membrane, water in the water to be treated is moved to the aqueous solution through the semipermeable membrane, and diluted with water.
- a cooling step of re-use as the water solution is preferably carried out by water treatment method comprising.
- the production of fresh water by the forward osmosis method is a water treatment apparatus using the temperature-sensitive water-absorbing agent according to any one of (1) to (7) as the attracting substance, Water to be treated and an aqueous solution that is an aqueous solution of the temperature-sensitive water-absorbing agent are brought into contact with each other through a semipermeable membrane, and the water in the water to be treated is transferred to the aqueous solution through the semipermeable membrane and diluted with the water.
- Forward osmosis means for obtaining the diluted aqueous solution and membrane concentrated water, heating means for heating the diluted aqueous solution to a temperature equal to or higher than the cloud point of the aqueous solution, and the temperature sensitive aggregated by the heating means.
- Separating means for separating the diluted water-absorbing aqueous solution containing a water-soluble water-absorbing agent into a concentrated solution containing an aggregate of the temperature-sensitive water-absorbing agent and a dilute solution mainly composed of water, and the separating means.
- the concentrated solution is less than or equal to the cloud point of the absorbent solution.
- a temperature-sensitive water-absorbing agent that has a cloud point and aggregates when heated as an attracting substance
- a temperature-sensitive water-absorbing agent and a water treatment method that are more suitable than conventional ones.
- a water treatment device can be provided.
- FIG. 1 is a table showing the relationship between the salt concentration of water to be treated and the concentrated water osmotic pressure at each recovery rate.
- FIG. 2 is a table showing the structure and characteristic data of a conventional temperature-sensitive water-absorbing agent.
- FIG. 3 is a block diagram schematically showing an embodiment of the present invention.
- FIG. 4A is a table showing the structure and characteristic data of the temperature-sensitive water-absorbing agent according to the embodiment.
- FIG. 4B is a table showing a continuation of the table showing the structure and characteristic data of the temperature-sensitive water-absorbing agent according to the embodiment of FIG. 4A.
- FIG. 5 is a diagram showing the reaction of polyglycol monoether with epoxypropane.
- FIG. 6 shows the reaction of polyglycol monoether with epoxide.
- FIG. 7 illustrates the reaction of polyglycol with epoxybutane catalyzed by sodium.
- FIG. 8 is a table showing the names and molecular weights of precursors and prototypes.
- FIG. 9 is a table showing the names and molecular formulas of precursors and prototypes.
- FIG. 10 shows a synthesis scheme of GE1000-BBB (A5).
- FIG. 11 shows the synthesis of TP1000-BB (B1).
- FIG. 12 is a graph showing the osmotic pressure estimated from the chemical potential of magnesium chloride.
- FIG. 13 is a graph showing the relationship between the MgCl 2 concentration and the TDS concentration.
- FIG. 14 is a table showing the cloud point of the prototype.
- FIG. 15 is a graph showing the cloud point of the GE1000-BBP (A2) solution.
- FIG. 16 is a graph showing the cloud point of the GE1000-BBB (A5) solution.
- FIG. 17 is a graph showing the cloud point of the GE1000-BBPP (A3) solution.
- FIG. 18 is a graph showing the cloud point of the GE1000-BBB (A5) solution.
- FIG. 19 is a graph showing the osmotic pressure of GE1000-BBB (A5).
- FIG. 20A is a table showing characteristics of prototype chemicals.
- FIG. 20B is a continuation of the table showing the properties of the prototype chemical in FIG. 20A.
- FIG. 21 is a graph showing the absorbance of deionized water as a comparative control in a membrane filtration experiment of an upper diluted solution obtained after heating and gravity separation of a thermosensitive water-absorbing solution.
- FIG. 22 is a graph showing the absorbance of permeated water obtained by subjecting a dilute upper layer solution obtained after heating and gravity separation of a temperature-sensitive water-absorbing solution to membrane filtration at 175 psi.
- FIG. 23 is a graph showing the absorbance of permeated water obtained by subjecting a dilute upper layer solution obtained after heating and gravity separation of a temperature-sensitive water-absorbing solution to 250 psi.
- FIG. 24 is a graph showing the FT-IR absorbance of GE1000-BBB (A5), which is a temperature-sensitive water-absorbing agent.
- FIG. 25 is a schematic view of an experimental apparatus for measuring FO membrane permeation flux.
- FIG. 26 is a diagram summarizing the weight of permeated water with respect to time.
- the requirements for the optimum temperature-sensitive water-absorbing agent in the production of fresh water by the forward osmosis method using a temperature-sensitive water-absorbing agent that has a cloud point and aggregates when heated as an attracting substance Will be described.
- the requirements for this optimum temperature-sensitive water-absorbing agent mainly include (1) high osmotic pressure, (2) low cloud point, (3) low viscosity, and (4) a three-dimensional structure with a large projected area.
- these requirements will be described in order.
- FIG. 1 is a table showing the relationship between the salt concentration of the water to be treated and the concentrated water osmotic pressure at each recovery rate.
- the osmotic pressure is about 30 to 60 atm.
- the osmotic pressure may be 110 atm or more. preferable. This is because the greater the difference between the osmotic pressure of the concentrated water and the temperature-sensitive water absorbing agent, the higher the permeation rate of the forward osmosis membrane, so the required membrane area for obtaining fresh water is reduced and membrane equipment costs are reduced. Because it can be done.
- the osmotic pressure difference is preferably about 50 atm.
- the osmotic pressure is about 100 to 140 atm.
- the osmotic pressure of the temperature-sensitive water-absorbing agent is also used. Is preferably 190 atm or more.
- the osmotic pressure of the temperature-sensitive water-absorbing agent should be 30 atm or more, preferably 110 atm or more in seawater desalination, and 100 atm or more, preferably 190 atm when treating high salt concentration wastewater such as associated water. It is good to have more.
- the osmotic pressure of the temperature-sensitive water-absorbing agent for obtaining fresh water is desirably as high as possible.
- the cloud point of the temperature-sensitive water-absorbing agent must be not agglomerated during FO membrane filtration. If seawater is not cooled, it must be above its maximum temperature. Therefore, when used in a temperate region, 30 ° C or higher is preferable, and in a tropical region, 40 ° C or higher is preferable.
- a three-dimensional structure having a large projected area such as a glycerin skeleton or a trimethylolpropane skeleton, is more preferable than a three-dimensional structure of a chain because the polymer hardly penetrates the membrane in the vertical direction and a high removal rate is obtained.
- the temperature-sensitive water-absorbing agent has a three-dimensional structure with a large projected area.
- Typical examples of substances showing a cloud point include esters of ethylene oxide and fatty acids.
- Various products are marketed as surfactants.
- an aqueous solution containing these substances at a concentration of about 50% is heated, it becomes cloudy above the cloud point, but does not separate into water and a high salt concentration solution even after standing for a long time. Therefore, it is not suitable for use as a temperature-sensitive water-absorbing agent in a desalination system using an FO membrane.
- the osmotic pressure is around 50 atm, and the applicable salt concentration of waste water is also limited.
- a temperature-sensitive water-absorbing agent that is a substance that separates when heated to a cloud point or higher
- conventionally, for example, linear ethylene oxide (EO) and propylene oxide (PO) polymers are exemplified (see FIG. 2). ).
- EO linear ethylene oxide
- PO propylene oxide
- FIG. 2 is a table showing the structure and characteristic data of a conventional temperature-sensitive water-absorbing agent.
- the cloud point of the 40% solution is 73 ° C.
- the osmotic pressure in the 95% solution is 178 atm.
- This substance has a high osmotic pressure but a high cloud point of 73 ° C.
- the EO number is reduced, the separation temperature is lowered, but the osmotic pressure is also lowered as in the case of the linear polymer 1 shown in FIG.
- the osmotic pressure increases when the EO number is increased, the cloud point becomes extremely high as in the linear polymer 3 shown in FIG. That is, a conventional polymer of linear ethylene oxide and propylene oxide, which is a temperature-sensitive water-absorbing agent, cannot realize both high osmotic pressure and low cloud point.
- the temperature-sensitive water-absorbing agent according to the present embodiment satisfying the requirements of the above-mentioned (1) high osmotic pressure, (2) low cloud point, (3) low viscosity, and (4) a three-dimensional structure with a large projected area. Details of the production of fresh water by the forward osmosis method used as the attracting substance will be described below with reference to FIGS. 3, 4A and 4B.
- FIG. 3 is a block diagram schematically showing an embodiment of the present invention.
- the water treatment apparatus 100 schematically includes a forward osmosis membrane apparatus 10 having a semipermeable membrane 3, a gravity separation tank 11, a membrane filtration apparatus 12, and a post-treatment apparatus. 13, a heater 14, a cooler 15, and a heat exchanger 16.
- the treated water 1 such as seawater is inserted into the forward osmosis membrane apparatus 10, and the membrane concentrated water 2 remaining after the water is transmitted to the opposite chamber through the semipermeable membrane 3. Discharged.
- the absorbent solution 4 flows into the chamber on the opposite side of the forward osmosis membrane device 10, where it contacts the treated water 1 through the semipermeable membrane 3, moves from the treated water 1 and is diluted with water. And exit the forward osmosis membrane device 10.
- the diluted water-absorbing aqueous solution 5 exiting the forward osmosis membrane device 10 passes through the heat exchanger 16 and is heated by heat exchange with the concentrated solution 7 separated by gravity, and is further heated by the heater 14 and is then heated by the gravity separation tank. Enter 11.
- the dilute solution 6 separated in the gravity separation tank 11 is filtered by a membrane filtration device 12, and the obtained membrane filtrate 8 is further purified by an aftertreatment device 13 such as activated carbon to obtain treated water.
- This post-treatment device 13 is not necessary when the concentration of the temperature-sensitive water-absorbing agent contained in the membrane filtrate 8 is low enough to meet the purpose of use.
- the membrane concentrated water 9 that has not been filtered by the membrane filtration device 12 is returned to the front stage of the heater 14 and phase-separated together with the diluted aqueous solution 5.
- the concentrated solution 7 separated in the gravity separation tank 11 is cooled by the cooler 15 through the heat exchanger 16 and returned to the forward osmosis membrane device 10 as the absorbent solution 4.
- the treated water 1 to be treated by the water treatment apparatus 100 is a solution using water as a solvent, and is a mine for mining seawater, brine, shale gas, oil sand, CBM (coal bed methane), petroleum, or the like.
- the accompanying water from the well is a mine for mining seawater, brine, shale gas, oil sand, CBM (coal bed methane), petroleum, or the like.
- the accompanying water from the well includes sewage, various industrial wastewater, wastewater from oil fields, gas fields, and the like.
- evaporation residues mainly Na + , K + , Ca 2+ , Cl ⁇ , SO 4 2 ⁇ , etc.
- organic substances oil or added
- suspended substance in a range of 100 to 10,000 mg / L.
- the water treatment method according to the present embodiment schematically includes at least a filtration step, a forward osmosis step, a heating step, a separation step, a cooling / circulation step, and a membrane treatment step.
- a filtration step a forward osmosis step
- a heating step a separation step
- a cooling / circulation step a membrane treatment step
- the to-be-processed water 1 is first filtered as needed.
- This filtration treatment is performed, for example, with a filter using a microfiltration membrane (MF membrane), and a normal membrane used as a microfiltration membrane can be used as the filtration membrane.
- MF membrane microfiltration membrane
- a normal membrane used as a microfiltration membrane can be used as the filtration membrane.
- ceramic membranes and porous glass membranes can also be used.
- membrane filtrate water that has passed through the microfiltration membrane and membrane concentrated water remaining without passing through the membrane are obtained.
- UF membrane ultrafiltration membrane
- sand filtration in addition to filtration using a microfiltration membrane, filtration using an ultrafiltration membrane (UF membrane) or filtration such as sand filtration can be used.
- the material of the ultrafiltration membrane is the same as that of the microfiltration membrane.
- Temperature-sensitive water-absorbing agent is a substance that is hydrophilic and well soluble in water at low temperatures, but becomes hydrophobic and decreases in solubility above a certain temperature, and the temperature at which it changes from water-soluble to water-insoluble is called the cloud point. When this temperature is reached, the hydrophobized temperature-sensitive water-absorbing agent aggregates and white turbidity occurs.
- This temperature-sensitive water-absorbing agent is used as various surfactants, dispersants, emulsifiers and the like. In this embodiment, it is used as an attracting substance in the production of fresh water by the forward osmosis method.
- the temperature-sensitive water-absorbing agent used in the forward osmosis step satisfies the requirements for (1) high osmotic pressure, (2) low cloud point, (3) low viscosity, and (4) a three-dimensional structure with a large projected area. is there.
- FIG. 4A is a table showing the structure and characteristic data of the temperature-sensitive water-absorbing agent according to the embodiment.
- FIG. 4B is a table showing a continuation of the table showing the structure and characteristic data of the temperature-sensitive water-absorbing agent according to the embodiment of FIG. 4A.
- FIG. 4A and FIG. 4B are the results of the applicant's trial manufacture of polymers having various three-dimensional structures and investigating the characteristics of each polymer.
- the applicant of the present invention adjusts the hydrophilic part for obtaining a desired osmotic pressure (that is, a part having hydrophilicity) and the cloud point.
- a temperature-sensitive water-absorbing agent was synthesized by introducing a hydrophobic portion (that is, a portion having hydrophobicity) such as propylene oxide (PO) or butylene oxide (BO), and the characteristics thereof were investigated.
- a hydrophobic portion that is, a portion having hydrophobicity
- PO propylene oxide
- BO butylene oxide
- GE1000-36P (A1) in FIG. 4A a sufficient osmotic pressure of 270 atm was obtained by setting the number of ethylene oxide (EO number) to 20.
- EO number number of ethylene oxide
- a low cloud point of 34 ° C. was obtained by using a large number of 36 propylene oxides per molecule (PO number).
- PO number since the PO number was large, the molecular weight was as high as 3100, and the viscosity was as extremely high as 400 cP.
- a block copolymer having a glycerin skeleton and comprising ethylene oxide, propylene oxide, and butylene oxide has 20 ethylene oxides adjacent to the glycerin skeleton, and butylene adjacent to the ethylene oxide.
- its cloud point was 28 ° C., which was lower than the preferred range.
- GE1000-BBB end capping A2SP
- an ethyl group was introduced as a hydrophobic group at the end of GE1000-BBB (A5). Due to the increase in hydrophobicity, the cloud point was lowered to 33 ° C. relative to 40 ° C. of GE1000-BBB (A5), the viscosity was also 186 cP, and 34 cP was lowered. On the other hand, the osmotic pressure was slightly reduced by an increase in hydrophobicity of 200 atm.
- the basic skeleton is a trimethylolpropane skeleton and the hydrophobic portion is BO.
- the EO number was 20
- the osmotic pressure was slightly lower at 150 atm because the basic skeleton had 3 more carbon atoms than the glycerin skeleton and the hydrophobicity increased.
- the BO number was 6
- the cloud point was as low as 40 ° C.
- the viscosity could be as low as 240 cP, which is almost equivalent to GE1000-BBB (A5).
- the present applicant has obtained the following knowledge about the relationship between the three-dimensional structure and the characteristics.
- the EO number and the osmotic pressure the osmotic pressure is generated by EO which is a hydrophilic part, and a higher value is obtained as the number of EO in one molecule increases.
- the number of EO is preferably about 10 to 30.
- the BO number, the PO number, and the cloud point the cloud point tends to take a lower value as the added mole number of BO or PO increases.
- the temperature-sensitive water-absorbing agent includes at least a hydrophobic part and a hydrophilic part in the temperature-sensitive water-absorbing agent
- the basic skeleton is a glycerin skeleton, an ethylene oxide group, propylene oxide, and And / or a block copolymer containing a group consisting of butylene oxide (A1 to A5, A2SP, C1 in FIGS. 4A and 4B).
- the number of ethylene oxides constituting the block copolymer is in the range of 10 to 30, and the number of butylene oxides and the number of propylene oxides Is in the range of the formula “0.8 ⁇ (BO + PO / 3.5 + 10) /EO ⁇ 1.1”.
- the temperature-sensitive water-absorbing agent according to the present embodiment is a block copolymer (B1 in FIG. 4B) having a basic skeleton of a trimethylolpropane skeleton and containing ethylene oxide and butylene oxide.
- the hydrophobic portion of the block copolymer may be butylene oxide, and a hydrophobic group such as an ethyl group may be added to the end portion of the block copolymer (see FIG. 4B, A2SP). More specifically, in the temperature-sensitive water-absorbing agent according to this embodiment, the number of ethylene oxides constituting the block copolymer is in the range of 10 to 30, and the cloud point is in the range of 30 to 70 ° C. In order to achieve this, the number of butylene oxides and the number of propylene oxides must be in the range of the formula “0.8 ⁇ (BO + PO / 3.5 + 13) /EO ⁇ 1.1”.
- the concentration of the absorbent solution 4 must be adjusted so that the osmotic pressure of the absorbent solution 4 is sufficiently higher than the osmotic pressure of the water 1 to be treated.
- the semipermeable membrane 3 used in the forward osmosis step is preferably one that can selectively permeate water, and a forward osmosis (FO) membrane is preferable, but a reverse osmosis (RO) membrane can also be used.
- the material of the semipermeable membrane 3 is not particularly limited, and examples thereof include cellulose acetate-based, polyamide-based, polyethyleneimine-based, polysulfone-based, and polybenzimidazole-based materials.
- the form of the semipermeable membrane 3 is not particularly limited, and may be any one of a flat membrane, a tubular membrane, a hollow fiber, and the like.
- the semipermeable membrane 3 is usually installed in a cylindrical or box-shaped container, and the water 1 to be treated flows into one chamber partitioned by the semipermeable membrane 3.
- the absorbent solution 4 can be allowed to flow into the other chamber, a known semipermeable membrane device can be used, and a commercially available product can also be used.
- the treated water 1 When the treated water 1 is brought into contact with the absorbent solution 4 through the semipermeable membrane 3 in the forward osmosis step, the water in the treated water 1 moves to the absorbent solution 4 through the semipermeable membrane 3 due to the difference in osmotic pressure.
- the membrane concentrated water 2 flows out from the chamber into which the water to be treated 1 flows, and the diluted water absorbing solution 5 flows out from the chamber into which the water absorbing solution 4 flows.
- the diluted water-absorbing aqueous solution 5 diluted by the movement of water from the water 1 to be treated in the forward osmosis step is heated to a temperature equal to or higher than the cloud point to agglomerate at least a part of the temperature-sensitive water-absorbing agent.
- This agglomeration is a phenomenon in which the temperature-sensitive water-absorbing agent contained in the diluted water-absorbing aqueous solution 5 and fine droplets formed by phase separation of water are united.
- the heating temperature in the heating step can be controlled, for example, by adjusting the flow rate of the heat medium that introduces the heat exchanger 16. It is preferable to use the sensible heat of the concentrated solution 7 separated in the next separation step as the heat source for the heating step.
- Phase separation is performed into a concentrated solution layer (lower layer) mainly composed of a temperature-sensitive water-absorbing agent phase-separated in the heating step and a dilute solution layer (upper layer) mainly composed of water and containing a small amount of the temperature-sensitive water-absorbing agent.
- This phase separation can be performed by standing in the gravity separation tank 11 at a liquid temperature higher than the cloud point.
- the fine droplets of the temperature-sensitive drug generated at the time of warming rapidly settle, The droplets coalesce to form a concentrated solution layer below.
- the time required for this phase separation is about 2 to 30 minutes.
- the separation process should be performed using a centrifuge such as a super decanter that separates heavy and light liquids, or a liquid separation device such as a coalescer that promotes agglomeration using media such as resin. You can also.
- a centrifuge such as a super decanter that separates heavy and light liquids
- a liquid separation device such as a coalescer that promotes agglomeration using media such as resin. You can also.
- the concentrated solution 7 separated in the separation step is cooled to a temperature lower than the cloud point of the absorbent solution 4 to be dissolved in water and regenerated into the absorbent solution 4.
- this temperature can be employed in a wide range, considering the economy, a temperature of room temperature or higher is preferable.
- this cold heat source it is preferable to use the water to be treated 1 or the diluted water-absorbing aqueous solution 5 obtained in the forward osmosis process from the viewpoint of efficient use of energy.
- this cooling is insufficient, the cloud point is lowered when the concentration is lowered by the water moving from the water 1 to be treated in the forward osmosis process, so the phase is separated in some cases and the osmotic pressure is lost. .
- the regenerated water absorbing solution 4 can be circulated and reused as it is.
- the diluted solution 6 (upper layer liquid) separated in the separation step is subjected to membrane filtration with a nanofiltration membrane (NF membrane) or a reverse osmosis membrane (RO membrane) as necessary, and the remaining temperature sensitivity.
- NF membrane nanofiltration membrane
- RO membrane reverse osmosis membrane
- Membrane filtered water is fresh water and can be used for drinking water, industrial water and the like.
- the membrane concentrated water 9 that remains without being membrane filtered contains a temperature-sensitive water-absorbing agent, and therefore should be circulated before the heating step. Alternatively, it can be concentrated and directly returned to the forward osmosis step as an absorbent solution 4. Since the membrane concentrated water 2 obtained in the forward osmosis step contains a high concentration of salt, it can be concentrated by precipitating and separating the salt to effectively use it.
- a temperature sensitivity that is more suitable than the conventional one.
- Water-absorbing agent, water treatment method and water treatment apparatus can be provided.
- the temperature-sensitive water-absorbing agent used as an attracting substance in the production of fresh water by the forward osmosis method described above and examples relating to the evaluation of the water-absorbing aqueous solution containing at least the temperature-sensitive water-absorbing agent are referred to. Will be described below.
- an oligomer or polymer of polyethylene glycol (Polyethylene Glycol: PEG) or polypropylene glycol (PPG), generally referred to as polyglycol, is used as an antifouling agent, a surfactant, or a drug delivery agent. It is known to have hydrophilic properties useful for biomedical applications. Its hydrophilicity decreases as the monomer changes from ethylene to propylene and then to butylene.
- An aqueous polyglycol solution in water exhibits a miscibility gap characteristic that the polymer agglomeration separates into a polymer rich phase and a water rich phase.
- ⁇ Setting> The aim was to achieve a cloud point of about 45 ° C. and a specific gravity greater than 1 (greater than water) in order to obtain a better separation tendency after flocculation while maintaining an osmotic pressure of 150 atmospheres or higher.
- Block copolymer derivatives ie, block copolymers as temperature sensitive water-absorbing agents
- Block copolymer derivatives with a capacity of up to 250 mL were synthesized for use in preliminary tests.
- FIG. 5 is a diagram showing the reaction of polyglycol monoether with epoxypropane.
- synthetic polyethylene glycol and synthetic polypropylene glycol were propylated and / or butylated as shown in FIG. Either procedure can reduce the cloud point of polyglycol.
- the phase separation efficiency was determined using both infrared spectrophotometry and refractive index measurement, and the viscosity of these synthetic polymer draw solutions was measured using an Ubbelohde viscometer.
- PEG poly(ethylene glycol)
- PEG monobutyl ether and monomethyl ether are inexpensive, non-toxic and available in large quantities from various chemical suppliers, these starting materials can be used in the preparation of PEG-PPG block copolymers. Dedicated to use. These PEG materials having an average degree of polymerization x of about 8 oxoethylene units to 50 oxoethylene units or more are sold by Fluka Chemical.
- the degree of polymerization of the oxopropylene / oxybutylene unit y is easily controlled by the amount (grams) of propylene oxide or butylene oxide added to the PEG monoalkyl ether.
- the viscosity of the final liquid is affected by the total chain length (the longer the chain length x + y, the higher the liquid viscosity), again in this case both the choice of starting PEG or monoalkyl ether and the amount of propylene oxide added Subject to experimental restrictions.
- FIG. 6 shows the reaction of polyglycol monoether with epoxide.
- the preparation of these similar block copolymers involves the same starting material, the same procedure, PEG monoalkyl ether, and is easy to adopt in this example for the optimal PEG copolymer material.
- ⁇ PEG-PPG synthesis action Propylene oxide (Propylene Oxide: PO), and poly (ethylene glycol) monoalkyl ether (Poly (ethylene glycol) Monoalkyl Ether: PEG-MAE) of different molecular weights (about 200, 400, 600, 1000, 2000 g / mol), Either monomethyl ether (molecular weight 550, 1100, 2000 g / mol) or monobutyl ether (molecular weight 330, 580, 1300, 2200 g / mol) were obtained from Fluka Chemical Company (Buchs, Switzerland) and they were the starting PEG mono Served as an alkyl ether.
- PO Propylene oxide
- PEG-MAE poly (ethylene glycol) monoalkyl ether
- PEG-MAE poly (ethylene glycol) monoalkyl ether
- Either monomethyl ether mo100, 2000 g / mol
- monobutyl ether molecular weight 330, 580, 1300,
- Solvents (toluene, dioxane, and cyclohexane) were obtained from Sigma-Aldrich and used as they were.
- a sodium hydride (NaH) initiator (60% dispersion in mineral oil) is available from Sigma-Aldrich.
- NaH sodium hydride
- PEG-MAE must be dried by azeotropic distillation with toluene before use.
- Reflux PO over calcium hydride before use (Fluka Chemical).
- PO polymerization was carried out by anion ring opening using PEG-MAE and sodium / sodium hydride as initiators. All polymerizations were oven dried under vacuum prior to use and carried out in 200-500 ml (fill capacity) serum containers. PEG-MAE and NaH were added to the vial followed by sealing with an aluminum crimp top and a Teflon membrane. After purging the vial with argon for 5 minutes, the calculated volume of PO and solvent were added by syringe through the membrane.
- FIG. 7 illustrates the reaction of polyglycol with epoxybutane catalyzed by sodium. Sodium oxalate was protonated again using acidic silica gel.
- a precursor (GE1000) having an osmotic pressure exceeding 200 atm was identified.
- the precursor was derivatized with a butylene group (B) and a propylene group (P), and the osmotic pressure and cloud point were determined by the precursor.
- B butylene group
- P propylene group
- the initial goal was to develop an osmotic pressure of 150 atm or higher at a solution concentration of 95% w / w and a cloud point of around 45 ° C. at a solution concentration of 40% w / w.
- GE1000-BBB is a glycerol ethoxylate with a molecular weight of 1000, and its derivatization uses an average of 3 butoxy groups per OH molecule for a total of 18 EO molecules and 9 butoxy groups per glycerol molecule.
- GE1000 glycerol ethoxylate molecular weight 1000
- GE1000-BBB glycerol ethoxylate (butoxylation) molecular weight 1532
- FIG. 8 is a table showing the names and molecular weights of precursors and prototypes.
- FIG. 9 is a table showing the names and molecular formulas of precursors and prototypes.
- FIG. 10 shows a synthesis scheme of GE1000-BBB (A5).
- FIG. 11 shows the synthesis of TP1000-BB (B1).
- the final results including the relevant structures and the final chemicals are shown below.
- additional experiments were also performed as follows. See FIGS. 8 and 9 for a list of draw solutes, chemical names, molecular formulas, and molecular weights for each prototype.
- TP1000-BB (B1) shown in FIG. 11 is as follows. 1.1 mol Na / 10 mol-OH (catalytic amount) -H 2 2. Butylene oxide 2mol / mol-OH 3. Acidic silica filtration Evaporate moisture
- GE1000-BBP (A2) having a cloud point of 55 ° C.
- GE1000-BBB (A5) having a cloud point of 47 ° C. were synthesized. When measuring osmotic pressure, it showed very promising and positive results.
- An osmotic pressure test was performed on a 20% MgCl 2 solution through a CTI FO membrane from HTI. The osmotic pressure of 20% MgCl 2 solution is 270 atm.
- FIG. 12 is a graph showing the osmotic pressure estimated from the chemical potential of magnesium chloride.
- FIG. 13 is a graph showing the relationship between the MgCl 2 concentration and the TDS concentration.
- Cloud point The change in cloud point with various aqueous solution concentrations was characterized for the synthesized derivatives, the main purpose of which is to determine the cloud point of the 40% solution by the weight of the derivatized glycol. Met.
- Osmotic pressure The osmotic pressure was determined against a 20% MgCl 2 solution at room temperature through a CTI membrane from HTI in a U-shaped static pressure tube. The membrane separates the two solutions.
- FIG. 14 is a table showing the cloud point of the prototype. The cloud points are listed in the table of FIG. 14, and the change of the cloud point accompanying the change in density is plotted on the graphs of FIGS.
- FIG. 15 is a graph showing the cloud point of the GE1000-BBP (A2) solution.
- FIG. 16 is a graph showing the cloud point of the GE1000-BBB (A5) solution.
- FIG. 17 is a graph showing the cloud point of the GE1000-BBPP (A3) solution.
- FIG. 18 is a graph showing the cloud point of the GE1000-BBB (A5) solution.
- Osmotic pressure 24 hours by keeping equilibrium of various concentrations of GE1000-BBB (A5) against various concentrations of MgCl 2 solution separated by HTI CTA FO membrane in U-tube fixture The osmotic pressure test was conducted over a wide range.
- FIG. 19 is a graph showing the osmotic pressure of GE1000-BBB (A5).
- a 95% w / w aqueous solution of GE1000-BBB (A5) showed an osmotic pressure exceeding 270 atmospheres at 40 degrees Celsius, and absorbed moisture from 20% and 18% MgCl 2 solutions.
- ⁇ Discussion> As can be seen in the graph of FIG. 19 in the osmotic pressure test at room temperature and 40 ° C., the osmotic pressure of 95% GE1000-BBB (A5) is higher than that of the 20% MgCl 2 solution (270 atm). The osmotic pressure of 60% GE1000-BBB (A5) is lower than 69 atmospheres and the osmotic pressure of 40% GE1000-BBB (A5) is lower than 20 atmospheres.
- This set of data needs to be considered in light of the cloud point data in FIG. 18 where the cloud point of a solution of less than 40% is close to the test temperature of 40 ° C. during the osmotic test, and therefore these temperatures and The osmotic pressure at the concentration should be low.
- FIG. 20A is a table showing characteristics of prototype chemicals.
- FIG. 20B is a continuation of the table showing the properties of the prototype chemical in FIG. 20A.
- the polymer rich layer was removed by vacuum sampling and the same operation was repeated for the moisture rich layer.
- the gravity separation method was repeated three times for each initial draw solution.
- the moisture-rich layer was filled into a high pressure cell (Sterlitch HP 4750, 1000 psig compatible) and argon / CO 2 high pressure gas (175 and 250 psig). ) Is added to the cell to allow the pure water to permeate through the membrane without allowing any draw solution to permeate.
- Kars' Advanced Materials, Inc. analyzed permeates using Nexus 670 FTIR with a diamond ATR chip and a comparative analysis search library. The purpose was not to allow the draw solution to permeate through the membrane.
- FIG. 21 is a graph showing the absorbance of deionized water as a comparative control in a membrane filtration experiment of an upper diluted solution obtained after heating and gravity separation of a thermosensitive water-absorbing solution.
- FIG. 22 is a graph showing the absorbance of permeated water obtained by subjecting a dilute upper layer solution obtained after heating and gravity separation of a temperature-sensitive water-absorbing solution to membrane filtration at 175 psi.
- FIG. 23 is a graph showing the absorbance of permeated water obtained by subjecting a dilute upper layer solution obtained after heating and gravity separation of a temperature-sensitive water-absorbing solution to 250 psi.
- FIG. 24 is a graph showing the FT-IR absorbance of GE1000-BBB (A5), which is a temperature-sensitive water-absorbing agent.
- the lower limit of FTIR quantification was 1 mg / L, and the characteristic peaks (for example, 1100 cm ⁇ 1 and 2900 cm ⁇ 1 ) of the draw solution shown in FIG. 24 were not detected in the permeate. Thus, it was observed that a 99.999% recovery was guaranteed.
- FIG. 25 is a schematic view of an experimental apparatus for measuring FO membrane permeation flux.
- a prototype FO membrane was set as the membrane cell. The effective area of the membrane was 0.135 m 2 .
- a 95% solution of GE1000-BBB (A5) was allowed to flow as a draw solution on the active layer side of the membrane.
- a 3.5% solution of sodium chloride was flowed in a reverse flow on the support layer side as a feed solution (that is, water to be treated).
- the draw and feed solutions were maintained at 40 degrees Celsius.
- the draw and feed solutions were kept homogeneous with a magnetic stirrer.
- the weights of the feed solution and the concentrated feed solution were measured every 2 minutes.
- the flux of permeated water was calculated from the change in weight over time.
- FIG. 26 is a diagram summarizing the weight of permeated water with respect to time.
- the gradient was 7.4 g / min. Since the specific gravity of the permeated water was about 1 kg / L, the water flux was calculated to be 0.079 m 3 / m 2 per day.
- the temperature-sensitive water-absorbing agent, the water treatment method and the water treatment apparatus according to this embodiment and this example are desalination of seawater, sewage, gas / oil field drainage and associated water, and reuse of industrial and mining wastewater for agriculture and industry. It can be widely used for water treatment for the purpose.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Polyethers (AREA)
Abstract
Description
(1)正浸透法による淡水の製造において誘引物質として用いられ、曇点を有し加温すると凝集する温度感応性吸水剤であって、当該温度感応性吸水剤には、少なくとも疎水部と親水部が含まれており、基本骨格をグリセリン骨格とし、エチレンオキシド群と、プロピレンオキシドおよび/またはブチレンオキシドからなる群とを含むブロック共重合体であることを特徴とする。
0.8≦(BO+PO/3.5+10)/EO≦1.1
(式中、EOは前記エチレンオキシドの数を示し、BOは前記ブチレンオキシドの数を示し、POは前記プロピレンオキシドの数を示す)
0.8≦(BO+PO/3.5+13)/EO≦1.1
(式中、EOは前記エチレンオキシドの数を示し、BOは前記ブチレンオキシドの数を示し、POは前記プロピレンオキシドの数を示す)
図1から図4Bを参照して、本実施形態について説明する。
正浸透法による淡水の製造において、FO膜(正浸透膜)で塩水を脱塩して淡水を得る場合、FO膜に流入する温度感応性吸水剤の浸透圧は濃縮水の浸透圧より高い値でないと吸水できない。一方、塩水からの淡水の回収率が過小だと、取水動力および、砂ろ過やMF膜やUF膜等の前処理固液分離の処理コストが嵩むため、塩水からの淡水の回収率は高い方が望ましい。RO膜による海水淡水化処理では一般に30~50%程度で使用される。
正浸透法による淡水の製造においては、温度感応性吸水剤を含有する吸水溶液を、曇点より高い温度に加温して温度感応性吸水剤を凝集させて分離する。このとき、温度感応性吸水剤の曇点が低いほど熱交換器の設備費が安くなり、また低温排熱が利用可能となるため好適である。そのため、温度感応性吸水剤の曇点は低いことが望ましい。曇点は、例えば、70℃以下、好ましくは50℃以下、よりこの好ましくは45℃以下がよい。
正浸透法による淡水の製造においては、温度感応性吸水剤を含有する吸水溶液が高粘度の場合、膜装置や配管の圧力損失が大となり電気代が嵩む。また、FO膜表面での物質移動速度が遅くなるため濃度分極が甚だしくなり、高い膜ろ過速度が得られず膜設備コストが嵩む。そのため、温度感応性吸水剤を含有する吸水溶液は、低粘度であることが望ましい。
FO膜利用淡水化システムでは、曇点分離後の仕上処理としてRO膜やNF膜などの半透膜ろ過を行う場合があるため、膜処理では、従来の直鎖の立体構造より、グリセリン骨格やトリメチロールプロパン骨格等のように分岐のある、投影面積の大きな立体構造の方が、ポリマーが縦方向に膜を透過し難く、高い除去率が得られるため好ましい。このように、温度感応性吸水剤は投影面積の大きな立体構造であることが望ましい。
図3に示していないが、被処理水1を必要によりまずろ過処理する。このろ過処理は、例えば、精密ろ過膜(MF膜)を用いたろ過器で行い、ろ過膜は、精密ろ過膜として使用されている通常の膜を使用することができる。例えば、酢酸セルロース、ポリテトラフルオロエチレン、ポリスルホン、ポリ塩化ビニルなどの外、セラミック製の膜や多孔質ガラス製の膜なども利用できる。精密ろ過処理では、精密ろ過膜を通過した膜ろ過水と、膜を通過しないで残った膜濃縮水が得られる。
正浸透工程は、ろ過処理した被処理水1と、温度感応性吸水剤を水に溶解した高浸透圧の吸水溶液4を半透膜3を介して接触させ、被処理水1中の水を半透膜3を通して吸水溶液4に移動させ、水で希釈された希釈吸水溶液5と膜濃縮水2を得る工程である。
「0.8≦(BO+PO/3.5+10)/EO≦1.1」
となる。ここで、式中、EOはエチレンオキシドの数を示し、BOはブチレンオキシドの数を示し、POはプロピレンオキシドの数を示すものである。
正浸透工程で被処理水1から水が移動して希釈された希釈吸水溶液5を曇点以上の温度まで加温して、温度感応性吸水剤の少なくとも一部を凝集させる。この凝集は、希釈吸水溶液5に含まれる温度感応性吸水剤および水が相分離して生成した微細な液滴が合一する現象である。加温工程における加温温度は、例えば熱交換器16を導入する熱媒体の流量の調整で制御できる。この加温工程の熱源には、次の分離工程で分離された濃厚溶液7の顕熱を使用することが好ましい。
加温工程で相分離した温度感応性吸水剤を主体とする濃厚溶液層(下層)と、水を主体とし少量の温度感応性吸水剤を含有する希薄溶液層(上層)に相分離する。この相分離は曇点以上の液温で、重力分離槽11内で静置することによって行うことができる。その際、曇点以上の液温に加温された希釈吸水溶液が重力分離槽11に投入されると、加温の際に生成した温度感応性薬剤の微細液滴が速やかに沈降し、液滴同士が合一して下に濃厚溶液層が形成される。この分相に要する時間は、2~30分程度である。
分離工程で分離された濃厚溶液7を吸水溶液4の曇点より低い温度に冷却することで水に溶解させて吸水溶液4に再生する。この温度は広い範囲で採用可能であるが、経済性を考慮すると常温かそれより高い温度が好ましい。この冷熱源としては、被処理水1あるいは正浸透工程において得られた希釈吸水溶液5を用いることがエネルギーの効率利用の点で好ましい。この冷却が不充分な場合には、正浸透工程で被処理水1から移動してくる水によって濃度が下がる際に曇点も低下するため場合によっては相分離し、浸透圧が失われてしまう。なお、再生した吸水溶液4は、そのまま循環して再利用できる。
一方、分離工程で分離された希薄溶液6(上層液)は、必要に応じてナノろ過膜(NF膜)や逆浸透膜(RO膜)などで膜ろ過して、残存している温度感応性吸水剤を除去する。膜ろ過水は淡水であり、飲料水や工業用水などに利用できる。膜ろ過されないで残った膜濃縮水9は、温度感応性吸水剤が含まれているので、加温工程の前段に循環するのがよい。あるいは、濃縮して吸水溶液4として正浸透工程に直接返送することもできる。なお、正浸透工程で得られた膜濃縮水2は、塩分を高濃度で含んでいるので、これを濃縮して塩分を析出させて分離し、有効利用することもできる。
<背景>
本実施例において全般的にポリグリコールと称する、ポリエチレングリコール(Polyethylene Glycol:PEG)やポリプロピレングリコール(Polypropylene Glycol:PPG)のオリゴマーやポリマーは、防汚剤、界面活性剤としての適用や、薬物送達剤としての生物医学的適用に有用な親水性を有することで知られる。その親水性は、エチレンからプロピレンへ、そしてブチレンへとモノマーが変化するに伴い低下する。水中でポリグリコール水溶液は、ポリマーの凝集によりポリマーの豊富な相と水分の豊富な相に分離されるというミシビリティギャップの特性を示す。
単分散である所望のポリグリコールの合成のため、PEG200、PEG400、PEG600などの原料や、他の前駆物質を使用した。ナトリウム金属を脱プロトン化剤として使用し、合成の際に様々なグリコール前駆体を使用した。文献を確認し、合成のための前駆原料の浸透圧、粘度、屈折率、曇点について情報収集した。
150気圧以上の浸透圧を維持すると同時に、凝集した後、より優れた分離傾向を得るために約45℃の曇点および1を超える(水を超える)特定の比重の達成を目的とした。予備試験で使用するため、最大250mLの容量のブロックコポリマー誘導体(すなわち、温度感応性吸水剤としてのブロック共重合体)を合成した。
a.約45℃で曇点に達するまたは凝集すること
b.5~40℃の水に高濃度に(約70~90wt%)溶解すること
c.95%濃度で150気圧を超える浸透圧を発揮すること
d.毒性がないこと
PEG-PPGブロックコポリマーCH3(CH2)n(OCH2CH2)x[OCH2CH(CH3)]yOHの親水性(または、親水性-親油性バランス(Hydrophilic-Lipophilic Balance:HLB)比は、メチレン単位(n)、オキソエチレン単位(x)、およびオキソプロピレン単位(y)の相対量に影響を受けることが示されている。オキソエチレン単位(x)の比率が高くなればなるほど、親水性が高くなり、またブロックコポリマーの曇点温度が上昇する。使用するPEGモノアルキルエーテルの選択や、プロピレンオキシド単位の平均重合度によって、これらの比率は実験上の制限を受ける。
図5を参照されたい。Dow Chemical社が、その非イオン界面活性剤製品シリーズであるTergitol(登録商標)で成功を収めたことからも明らかなように、このようなコポリマーの調製は、比較的単純で産業の拡大に適応しやすい。
プロピレンオキシド(Propylene Oxide:PO)、および異なる分子量(約200、400、600、1000、2000g/mol)のポリ(エチレングリコール)モノアルキルエーテル(Poly(ethylene glycol) Monoalkyl Ether:PEG-MAE)、つまりモノメチルエーテル(分子量550、1100、2000g/mol)またはモノブチルエーテル(分子量330、580、1300、2200g/mol)のいずれか、をFluka Chemical社(スイス、ブーフス)より入手し、それらが出発物質PEGモノアルキルエーテルとしての役割を果たした。
GE1000-BBBは、分子量1000のグリセロールエトキシレートであり、その誘導体化には、1グリセロール分子あたり合計で18EO分子と9ブトキシ基について、1OH分子あたり平均3ブトキシ基が用いられる。
GE1000=グリセロールエトキシレート 分子量1000
GE1000-BBB=グリセロールエトキシレート(ブトキシ化) 分子量1532
1.1モルNa/10モル‐OH(触媒量)、‐H2
2.ブチレンオキシド(エポキシブタン)3モル/1モル‐OH
3.酸性シリカゲルろ過(水分補給)
4.水分を蒸発させる
1.ナトリウムを少量使用し、全て溶解するまで撹拌する。セ氏50度まで熱を加える。
2.ブチレンオキシドで還流させ、使い果たすまで撹拌し(65~75℃で)、最後に100℃まで温度を上昇させ、あらゆる残留エポキシドを取り除く。
3.脱イオン水をシリカゲルカラムまたはシリカゲル漏斗に加え、エポキシドを真空ろ過する。
4.低温での低真空ろ過の実施を可能とするため、セ氏100度で水分を蒸発させる。
1.1モルNa/10モル‐OH(触媒量)‐H2
2.ブチレンオキシド2モル/モル‐OH
3.酸性シリカろ過
4.水分を蒸発させる
濃度の変化に伴うGE1000(A)の様々な誘導体の曇点を確定した。第2の前駆体TP1000(B)、トリメチロールプロパンを誘導体化し、曇点を確定した。
・合成
第1の前駆体GE1000(A)からの、GE1000-PPBB(A4)およびGE1000-BBPP(A3)の合成を実施した。新たな第2の前駆体TP1000(B)からの、副次的誘導体の合成も実施した。加えてTP1000-BB(B1)を合成した。また、もうひとつの前駆体GE1200(C)について、そこから誘導体GE1200-BBB(C1)を合成した。
様々な水溶液の濃度に伴う曇点の変化を、合成した誘導体に対して特徴づけたが、その主な目的は、誘導体化したグリコールの重量によって40%溶液の曇点を確定することであった。
浸透圧を、U字静圧管の中で、HTI社のCTA膜を通し、室温で20%のMgCl2溶液に対して確定した。当該膜は2つの溶液を分離するものである。
・曇点
図14乃至図17を参照されたい。図14は、プロトタイプの曇点を示す表である。曇点を図14の表で一覧にし、図15乃至図18のグラフに、濃度変化に伴う曇点の変化をプロットする。図15は、GE1000-BBP(A2)溶液の曇点を示すグラフである。図16は、GE1000-BBB(A5)溶液の曇点を示すグラフである。図17は、GE1000-BBPP(A3)溶液の曇点を示すグラフである。
72時間にわたり、20%のMgCl2水溶液に対し、GE1000-BBPP(A3)液の95%溶液の量は増減しなかった。このことから、これらの溶液各々は270気圧の浸透圧(つまり20%のMgCl2水溶液の浸透圧)を有すると考えられる。
・合成
パフォーマンス検証試験のため、400mLのGE1000-BBB(A5)を合成した。
1%から70%の溶液について、GE1000-BBB(A5)の曇点測定を実施した。傾向を以下の図18に示す。図18は、GE1000-BBB(A5)溶液の曇点を示すグラフである。
GE1000-BBB(A5)の曇点曲線は、逆向きのU字曲線の形状で、熱的に相変化するポリマーに通常見られる曲線を示す。
U字管固定具の中でHTI社のCTA FO膜により分離されたMgCl2溶液の様々な濃度に対し、GE1000-BBB(A5)の様々な濃度の平衡を保つことで、24時間にわたり浸透圧試験を実施した。
室温および40℃での浸透圧試験における図19のグラフでの図示から分かるように、95%のGE1000-BBB(A5)の浸透圧は20%のMgCl2溶液の浸透圧(270気圧)より高く、60%のGE1000-BBB(A5)の浸透圧は69気圧より低く、40%のGE1000-BBB(A5)の浸透圧は20気圧より低い。
図20A及び図20Bを参照されたい。図20Aは、プロトタイプの化学物質の特性を示す表である。図20Bは、図20Aのプロトタイプの化学物質の特性を示す表の続きを示す表である。
水中濃度が40%のドロー溶液(誘引溶液)を、曇点以上の温度への加温および重力分離によって、その水溶液から分離した。ポリマーの豊富な層を真空採取で取り除き、水分の豊富な層を、この場合もまた、曇点以上への加温によってあらゆる溶解ポリマーから分離した。
図25を参照されたい。図25は、FO膜透過流束測定用実験装置の概略図である。プロトタイプのFO膜を膜セルに設定した。膜の有効面積は0.135m2であった。GE1000-BBB(A5)の95%溶液をドロー溶液として膜の活性層側で流した。塩化ナトリウムの3.5%溶液をフィード溶液(すなわち、被処理水)として支持層側で逆の流れで流した。加熱器を用いて、ドロー溶液およびフィード溶液をセ氏40度に維持した。ドロー溶液およびフィード溶液を、マグネチックスターラにより均質に保った。フィード溶液および濃縮フィード溶液の重量を2分毎に測定した。これらの重量の時間変化から、透過水の流束を算出した。
2 膜濃縮水
3 半透膜
4 吸水溶液
5 希釈吸水溶液
6 希薄溶液
7 濃厚溶液
8 膜ろ過水
9 膜濃縮水
10 正浸透膜装置
11 重力分離槽
12 膜ろ過装置
13 後処理装置
14 加熱器
15 冷却器
16 熱交換器
Claims (9)
- 正浸透法による淡水の製造において誘引物質として用いられ、曇点を有し加温すると凝集する温度感応性吸水剤であって、当該温度感応性吸水剤には、少なくとも疎水部と親水部が含まれており、基本骨格をグリセリン骨格とし、エチレンオキシド群と、プロピレンオキシドおよび/またはブチレンオキシドからなる群とを含むブロック共重合体であることを特徴とする温度感応性吸水剤。
- 前記ブロック共重合体の疎水部を前記ブチレンオキシドとする請求項1に記載の温度感応性吸水剤。
- 前記ブロック共重合体の端部に疎水基を付加する請求項1又は請求項2に記載の温度感応性吸水剤。
- 前記ブロック共重合体の前記疎水基がエチル基である請求項3に記載の温度感応性吸水剤。
- 前記ブロック共重合体を構成する前記エチレンオキシドの数が、10~30個の範囲にあり、且つ、前記ブチレンオキシドの数と前記プロピレンオキシドの数が、下式の範囲にある請求項1乃至請求項4の何れか一項に記載の温度感応性吸水剤。
0.8≦(BO+PO/3.5+10)/EO≦1.1
(式中、EOは前記エチレンオキシドの数を示し、BOは前記ブチレンオキシドの数を示し、POは前記プロピレンオキシドの数を示す) - 正浸透法による淡水の製造において誘引物質として用いられる温度感応性吸水剤であって、当該温度感応性吸水剤は、基本骨格をトリメチロールプロパン骨格とし、エチレンオキシド、及び、ブチレンオキシドを含むブロック共重合体であることを特徴とする温度感応性吸水剤。
- 前記ブロック共重合体を構成する前記エチレンオキシドの数が、10~30個の範囲にあり、且つ、前記ブチレンオキシドの数と前記プロピレンオキシドの数が、下式の範囲にある請求項6に記載の温度感応性吸水剤。
0.8≦(BO+PO/3.5+13)/EO≦1.1
(式中、EOは前記エチレンオキシドの数を示し、BOは前記ブチレンオキシドの数を示し、POは前記プロピレンオキシドの数を示す) - 前記正浸透法による淡水の製造において請求項1乃至7の何れか一項に記載の前記温度感応性吸水剤を前記誘引物質として用いる水処理方法であって、
被処理水と、前記温度感応性吸水剤の水溶液である吸水溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記吸水溶液に移動させ、前記水で希釈された希釈吸水溶液と膜濃縮水を得る正浸透工程と、
前記希釈吸水溶液を前記吸水溶液の前記曇点以上の温度まで加温する加温工程と、
前記加温工程で凝集した前記温度感応性吸水剤を含む前記希釈吸水溶液を、前記温度感応性吸水剤の凝集液を含有する濃厚溶液と、前記水を主体とする希薄溶液と、に相分離する分離工程と、
前記分離工程で分離された前記濃厚溶液を前記吸水溶液の前記曇点以下の温度まで冷却した後、前記正浸透工程へ循環し、前記吸水溶液として再使用する冷却工程と、
を含む水処理方法。 - 前記正浸透法による淡水の製造において請求項1乃至7の何れか一項に記載の前記温度感応性吸水剤を前記誘引物質として用いる水処理装置であって、
被処理水と、前記温度感応性吸水剤の水溶液である吸水溶液を半透膜を介して接触させ、前記被処理水中の水を前記半透膜を通して前記吸水溶液に移動させ、前記水で希釈された希釈吸水溶液と膜濃縮水を得る正浸透手段と、
前記希釈吸水溶液を前記吸水溶液の前記曇点以上の温度まで加温する加温手段と、
前記加温手段で凝集した前記温度感応性吸水剤を含む前記希釈吸水溶液を、前記温度感応性吸水剤の凝集液を含有する濃厚溶液と、前記水を主体とする希薄溶液と、に相分離する分離手段と、
前記分離手段で分離された前記濃厚溶液を前記吸水溶液の前記曇点以下の温度まで冷却した後、前記正浸透手段へ循環し、前記吸水溶液として再使用する冷却手段と、
を含む水処理装置。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/302,081 US20170182477A1 (en) | 2014-04-11 | 2015-04-10 | Thermo-sensitive water absorbent, method of water treatment, and water treatment apparatus |
EP15776803.7A EP3130398B1 (en) | 2014-04-11 | 2015-04-10 | Temperature-sensitive absorbent, water treatment method, and water treatment apparatus |
JP2016512798A JP6172385B2 (ja) | 2014-04-11 | 2015-04-10 | 温度感応性吸水剤、水処理方法及び水処理装置 |
KR1020167028081A KR101987870B1 (ko) | 2014-04-11 | 2015-04-10 | 온도-감응성 흡수제, 수처리방법, 및 수처리장치 |
US16/698,768 US20200094221A1 (en) | 2014-04-11 | 2019-11-27 | Method of water treatment |
US16/698,719 US20200094219A1 (en) | 2014-04-11 | 2019-11-27 | Thermo-sensitive water absorbent |
US16/698,755 US20200094220A1 (en) | 2014-04-11 | 2019-11-27 | Water treatment apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461978519P | 2014-04-11 | 2014-04-11 | |
US61/978,519 | 2014-04-11 |
Related Child Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/302,081 A-371-Of-International US20170182477A1 (en) | 2014-04-11 | 2015-04-10 | Thermo-sensitive water absorbent, method of water treatment, and water treatment apparatus |
US16/698,719 Division US20200094219A1 (en) | 2014-04-11 | 2019-11-27 | Thermo-sensitive water absorbent |
US16/698,768 Continuation US20200094221A1 (en) | 2014-04-11 | 2019-11-27 | Method of water treatment |
US16/698,755 Continuation US20200094220A1 (en) | 2014-04-11 | 2019-11-27 | Water treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015156404A1 true WO2015156404A1 (ja) | 2015-10-15 |
Family
ID=54287975
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/061289 WO2015156404A1 (ja) | 2014-04-11 | 2015-04-10 | 温度感応性吸水剤、水処理方法及び水処理装置 |
Country Status (5)
Country | Link |
---|---|
US (4) | US20170182477A1 (ja) |
EP (1) | EP3130398B1 (ja) |
JP (1) | JP6172385B2 (ja) |
KR (1) | KR101987870B1 (ja) |
WO (1) | WO2015156404A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016027865A1 (ja) * | 2014-08-21 | 2017-04-27 | 旭化成株式会社 | 溶媒分離システムおよび方法 |
JP2017100081A (ja) * | 2015-12-02 | 2017-06-08 | Jfeエンジニアリング株式会社 | 水の脱塩処理装置 |
JP2018012080A (ja) * | 2016-07-22 | 2018-01-25 | Jfeエンジニアリング株式会社 | 水処理方法および水処理装置 |
JP2018058021A (ja) * | 2016-10-05 | 2018-04-12 | Jfeエンジニアリング株式会社 | 水処理方法および水処理装置 |
WO2018045393A3 (en) * | 2016-08-22 | 2018-05-24 | Trevi Systems Inc. | Osmotic fluid purification and draw compounds thereof |
WO2020054761A1 (ja) * | 2018-09-11 | 2020-03-19 | 株式会社ダイセル | エーテル誘導体の製造方法 |
JP2020041139A (ja) * | 2018-09-11 | 2020-03-19 | 国立大学法人神戸大学 | エーテル誘導体の製造方法 |
JPWO2020045525A1 (ja) * | 2018-08-31 | 2021-06-03 | 株式会社日本触媒 | ドロー溶質及び水処理装置 |
JP2021107491A (ja) * | 2019-12-27 | 2021-07-29 | 株式会社日本触媒 | アミノ基含有重合体 |
WO2021206116A1 (ja) | 2020-04-08 | 2021-10-14 | 株式会社日本触媒 | ドロー溶質、ドロー溶液及び水処理装置 |
WO2022239706A1 (ja) * | 2021-05-12 | 2022-11-17 | 株式会社Ihi | 水素製造システム及び水素製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018156756A1 (en) * | 2017-02-23 | 2018-08-30 | Qatar Foundation For Education, Science And Community Development | Hybrid forward osmosis and freezing desalination system and method |
US11433359B1 (en) * | 2018-01-29 | 2022-09-06 | Arrowhead Center, Inc. | Antimicrobial filtration membranes |
US20210002148A1 (en) * | 2018-02-26 | 2021-01-07 | Jfe Engineering Corporation | Water treatment apparatus, water treatment method, and method of starting water treatment apparatus |
JP7258805B2 (ja) | 2020-03-19 | 2023-04-17 | 株式会社東芝 | 作業媒体及び水処理システム |
US20240157298A1 (en) | 2021-04-07 | 2024-05-16 | Nippon Shokubai Co., Ltd. | Draw Solute and Water Treatment Equipment |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007231265A (ja) * | 2006-02-06 | 2007-09-13 | Mitsubishi Chemicals Corp | 温度応答性高分子組成物 |
US20100155329A1 (en) * | 2008-12-18 | 2010-06-24 | Quantumsphere, Inc. | Systems and methods for forward osmosis fluid purification |
JP2012111705A (ja) * | 2010-11-24 | 2012-06-14 | Arimino Kagaku Kk | 酸性染毛料組成物 |
JP2012170954A (ja) * | 2011-02-18 | 2012-09-10 | Samsung Electronics Co Ltd | 正浸透用誘導溶液、これを用いた正浸透水処理装置、および正浸透水処理方法 |
WO2012148864A1 (en) * | 2011-04-25 | 2012-11-01 | Trevi Systems Inc. | Recovery of retrograde soluble solute for forward osmosis water treatment |
EP2617480A1 (en) * | 2012-01-17 | 2013-07-24 | Samsung Electronics Co., Ltd | Draw solute for forward osmosis, forward osmosis water treatment device, and forward osmosis method for water treatment |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08337073A (ja) * | 1995-06-14 | 1996-12-24 | Fuji Photo Film Co Ltd | 平版印刷用湿し水 |
DE19648504A1 (de) * | 1996-11-22 | 1998-05-28 | Basf Ag | Verwendung von hydrophobierten, alkoxylierten mindestens dreiwertigen Alkoholen zur Erhöhung der Lösegeschwindigkeit von teilchenförmigen Waschmittelformulierungen in Wasser |
JP4770187B2 (ja) * | 2005-01-31 | 2011-09-14 | 日油株式会社 | 石鹸組成物 |
MX338159B (es) * | 2010-08-24 | 2016-04-05 | Dow Global Technologies Llc | Polioles de polieter de oxido de etileno/oxido de propileno y poliuretanos elaborados de los mismos. |
JP5720998B2 (ja) * | 2011-03-30 | 2015-05-20 | 日油株式会社 | 化粧料用基剤及びこれを配合してなる化粧料 |
-
2015
- 2015-04-10 KR KR1020167028081A patent/KR101987870B1/ko active IP Right Grant
- 2015-04-10 JP JP2016512798A patent/JP6172385B2/ja active Active
- 2015-04-10 EP EP15776803.7A patent/EP3130398B1/en active Active
- 2015-04-10 US US15/302,081 patent/US20170182477A1/en not_active Abandoned
- 2015-04-10 WO PCT/JP2015/061289 patent/WO2015156404A1/ja active Application Filing
-
2019
- 2019-11-27 US US16/698,719 patent/US20200094219A1/en not_active Abandoned
- 2019-11-27 US US16/698,755 patent/US20200094220A1/en not_active Abandoned
- 2019-11-27 US US16/698,768 patent/US20200094221A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007231265A (ja) * | 2006-02-06 | 2007-09-13 | Mitsubishi Chemicals Corp | 温度応答性高分子組成物 |
US20100155329A1 (en) * | 2008-12-18 | 2010-06-24 | Quantumsphere, Inc. | Systems and methods for forward osmosis fluid purification |
JP2012111705A (ja) * | 2010-11-24 | 2012-06-14 | Arimino Kagaku Kk | 酸性染毛料組成物 |
JP2012170954A (ja) * | 2011-02-18 | 2012-09-10 | Samsung Electronics Co Ltd | 正浸透用誘導溶液、これを用いた正浸透水処理装置、および正浸透水処理方法 |
WO2012148864A1 (en) * | 2011-04-25 | 2012-11-01 | Trevi Systems Inc. | Recovery of retrograde soluble solute for forward osmosis water treatment |
EP2617480A1 (en) * | 2012-01-17 | 2013-07-24 | Samsung Electronics Co., Ltd | Draw solute for forward osmosis, forward osmosis water treatment device, and forward osmosis method for water treatment |
Non-Patent Citations (1)
Title |
---|
KAZUAKI WAKITA: "Highly concentrated microemulsions induced by amphiphilic poly(alkylene glycol)derivative and their applications", FRAGRANCE JOURNAL, April 2011 (2011-04-01), pages 91 - 93, XP008184738 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016027865A1 (ja) * | 2014-08-21 | 2017-04-27 | 旭化成株式会社 | 溶媒分離システムおよび方法 |
JP2017100081A (ja) * | 2015-12-02 | 2017-06-08 | Jfeエンジニアリング株式会社 | 水の脱塩処理装置 |
JP2018012080A (ja) * | 2016-07-22 | 2018-01-25 | Jfeエンジニアリング株式会社 | 水処理方法および水処理装置 |
WO2018045393A3 (en) * | 2016-08-22 | 2018-05-24 | Trevi Systems Inc. | Osmotic fluid purification and draw compounds thereof |
JP2019529077A (ja) * | 2016-08-22 | 2019-10-17 | トレヴィ システムズ インコーポレイテッドTrevi Systems Inc. | 浸透流体精製及びその駆動化合物 |
US11612860B2 (en) | 2016-08-22 | 2023-03-28 | Trevi Systems Inc. | Osmotic fluid purification and draw compounds thereof |
JP7178987B2 (ja) | 2016-08-22 | 2022-11-28 | トレヴィ システムズ インコーポレイテッド | 浸透流体精製及びその駆動化合物 |
JP2018058021A (ja) * | 2016-10-05 | 2018-04-12 | Jfeエンジニアリング株式会社 | 水処理方法および水処理装置 |
JPWO2020045525A1 (ja) * | 2018-08-31 | 2021-06-03 | 株式会社日本触媒 | ドロー溶質及び水処理装置 |
JP7162308B2 (ja) | 2018-08-31 | 2022-10-28 | 株式会社日本触媒 | ドロー溶質及び水処理装置 |
US11639299B2 (en) | 2018-08-31 | 2023-05-02 | Nippon Shokubai Co., Ltd. | Draw solute and water treatment equipment |
JP2020041139A (ja) * | 2018-09-11 | 2020-03-19 | 国立大学法人神戸大学 | エーテル誘導体の製造方法 |
WO2020054761A1 (ja) * | 2018-09-11 | 2020-03-19 | 株式会社ダイセル | エーテル誘導体の製造方法 |
JP2021107491A (ja) * | 2019-12-27 | 2021-07-29 | 株式会社日本触媒 | アミノ基含有重合体 |
JP7332466B2 (ja) | 2019-12-27 | 2023-08-23 | 株式会社日本触媒 | アミノ基含有重合体 |
WO2021206116A1 (ja) | 2020-04-08 | 2021-10-14 | 株式会社日本触媒 | ドロー溶質、ドロー溶液及び水処理装置 |
JPWO2021206116A1 (ja) * | 2020-04-08 | 2021-10-14 | ||
WO2022239706A1 (ja) * | 2021-05-12 | 2022-11-17 | 株式会社Ihi | 水素製造システム及び水素製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20200094220A1 (en) | 2020-03-26 |
US20200094221A1 (en) | 2020-03-26 |
EP3130398A4 (en) | 2017-11-15 |
US20200094219A1 (en) | 2020-03-26 |
JP6172385B2 (ja) | 2017-08-02 |
US20170182477A1 (en) | 2017-06-29 |
JPWO2015156404A1 (ja) | 2017-04-13 |
EP3130398A1 (en) | 2017-02-15 |
KR101987870B1 (ko) | 2019-06-11 |
EP3130398B1 (en) | 2019-07-24 |
KR20160132930A (ko) | 2016-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6172385B2 (ja) | 温度感応性吸水剤、水処理方法及び水処理装置 | |
US11612860B2 (en) | Osmotic fluid purification and draw compounds thereof | |
EP2813280B1 (en) | Hollow fiber semipermeable membrane, method for manufacturing same, module, and water treatment method | |
KR102066781B1 (ko) | 수분 플럭스 향상을 위한 화학 첨가제들 | |
KR102293090B1 (ko) | 복합 반투막 | |
JP7162308B2 (ja) | ドロー溶質及び水処理装置 | |
JP2015054293A (ja) | 半透膜による水処理方法 | |
JP6210033B2 (ja) | 水の脱塩処理方法および装置 | |
WO2020044965A1 (ja) | 温度感応性吸水剤、水処理方法、および水処理装置 | |
JP2015192979A (ja) | 半透膜による水処理装置 | |
JP2014100692A (ja) | 水処理方法 | |
JP6210008B2 (ja) | 水処理装置 | |
WO1996032356A1 (en) | Improved reverse osmosis purification of water | |
US5942120A (en) | Composite microporous ultrafiltration membrane, method of making thereof, and separation methods | |
JP6634979B2 (ja) | 水処理方法および水処理装置 | |
JP2015037771A (ja) | 水処理方法 | |
WO2017125300A1 (en) | Processes for removing boron containing compounds from aqueous systems | |
JP2020142162A (ja) | 正浸透水処理方法および装置 | |
JP2014113535A (ja) | 水回収方法及びfo法用の誘導溶液 | |
JP2022129707A (ja) | 正浸透水処理で使用される感温剤水溶液の浄化方法および装置 | |
JP2019155289A (ja) | 水処理方法および装置 | |
JP2017170366A (ja) | 溶媒分離方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15776803 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016512798 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15302081 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015776803 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015776803 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167028081 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |