WO2020044965A1 - 温度感応性吸水剤、水処理方法、および水処理装置 - Google Patents

温度感応性吸水剤、水処理方法、および水処理装置 Download PDF

Info

Publication number
WO2020044965A1
WO2020044965A1 PCT/JP2019/030659 JP2019030659W WO2020044965A1 WO 2020044965 A1 WO2020044965 A1 WO 2020044965A1 JP 2019030659 W JP2019030659 W JP 2019030659W WO 2020044965 A1 WO2020044965 A1 WO 2020044965A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
temperature
absorbing agent
group
sensitive
Prior art date
Application number
PCT/JP2019/030659
Other languages
English (en)
French (fr)
Inventor
彩 大里
辻 猛志
渕上 浩司
戸村 啓二
藤原 茂樹
亮 功刀
佐藤 祐也
江梨 渡辺
正己 中川
壮平 ▲浜▼口
康二 久保
Original Assignee
Jfeエンジニアリング株式会社
青木油脂工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeエンジニアリング株式会社, 青木油脂工業株式会社 filed Critical Jfeエンジニアリング株式会社
Priority to EP19855010.5A priority Critical patent/EP3845295A1/en
Priority to SG11202101550YA priority patent/SG11202101550YA/en
Priority to JP2020540195A priority patent/JPWO2020044965A1/ja
Priority to US17/268,064 priority patent/US20210316250A1/en
Priority to CN201980052736.4A priority patent/CN112638507A/zh
Publication of WO2020044965A1 publication Critical patent/WO2020044965A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/005Osmotic agents; Draw solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0021Forward osmosis or direct osmosis comprising multiple forward osmosis steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0023Accessories; Auxiliary operations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/445Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by forward osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/103Heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/02Temperature
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/14Additives which dissolves or releases substances when predefined environmental conditions are reached, e.g. pH or temperature

Definitions

  • the present invention relates to a temperature-sensitive water-absorbing agent for extracting water from an aqueous solution containing water as a solvent, and a water treatment method and a water-treatment apparatus using the temperature-sensitive water-absorbing agent.
  • U.S. Pat. No. 6,037,097 discloses, via a semi-permeable membrane, a contaminated feed solution stream containing water and having a first osmotic pressure to a withdrawal side supplying a withdrawal solution stream containing a solute and having a second osmotic pressure.
  • a technique for producing a cooled single-phase water-rich stream by passing, passing, heating, coagulating, and cooling is disclosed.
  • Patent Literature 1 discloses a random copolymer or a sequential copolymer of a low-molecular-weight diol as a solute to be extracted.
  • Patent Document 2 discloses that a heat phase separation substance stream containing a heat phase separation substance and a feed stream containing a solvent are caused to flow countercurrently or cocurrently through a semipermeable membrane so that the solvent flows through the heat phase separation substance stream. A technique for moving the object is described.
  • Patent Literature 2 discloses a specific hydrophobic group-modified alkylene oxide polymer having a hydrophobic group having 1 to 3 carbon atoms as a thermal phase separation substance.
  • the osmotic pressure is low, the water-absorbing performance as the water-absorbing agent is insufficient, or the phase separation temperature is high and energy is high.
  • the polymer of the diol which is the temperature-sensitive water-absorbing agent described in Patent Document 1 has a problem that the osmotic pressure is low and the water-absorbing performance is not sufficient.
  • the alkylene oxide polymer having an alkyl group having 1 to 3 carbon atoms at the terminal described in Patent Document 2 has a cloud point as a separation temperature of as high as 150 ° C. Therefore, it is extremely difficult for the temperature-sensitive water-absorbing agent described in Patent Literature 2 to reach the cloud point using waste heat in a water treatment device using forward osmosis, and energy costs required for the water treatment device Is high.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a temperature-sensitive water-absorbing agent capable of obtaining a high osmotic pressure and lowering a cloud point. Another object is to provide a water treatment method and a water treatment device that can reduce energy costs.
  • a temperature-sensitive water-absorbing agent is characterized by comprising a polyoxyalkylene adduct represented by the general formula (1).
  • R 1 is a residue obtained by removing a hydroxyl group from a monohydric alcohol having 6 to 13 carbon atoms
  • R 2 is a hydrogen atom or an alkyl or alkenyl group having 1 to 13 carbon atoms
  • AO is a carbon atom having 1 to 13 carbon atoms.
  • n is the average number of moles of alkylene oxide added, and is 1 to 235, and when n is 2 or more, two or more AOs may be the same or different.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is the temperature-sensitive water-absorbing agent according to the above invention, wherein R 1 in the polyoxyalkylene adduct represented by the general formula (1) has 6 to 13 carbon atoms. It is a residue.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is the temperature-sensitive water-absorbing agent according to the above invention, wherein R 1 in the polyoxyalkylene adduct represented by the general formula (1) is an aliphatic straight-chain 1 to 6 carbon atoms It is a hydric alcohol residue.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is the above-mentioned invention, wherein R 1 in the polyoxyalkylene adduct represented by the general formula (1) is an aliphatic branched monovalent having 6 to 13 carbon atoms. It is an alcohol residue.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is characterized in that, in the above invention, AO in the polyoxyalkylene adduct represented by the general formula (1) is represented by the general formula (2). And ⁇ (A 1 O) x / (A 2 O) y / (A 3 O) z ⁇ (2) (In the general formula (2), A 1 O represents an oxyethylene group, A 2 O represents an oxypropylene group, A 3 O represents an oxybutylene group, x is an average addition mole number of ethylene oxide of 1 to 100, y is an average addition mole number of propylene oxide from 0 to 80, z is an average addition mole number of butylene oxide from 0 to 55.
  • a 1 O, A 2 O, and A 3 O may be any of a random form, a block form, or a form containing both the random form and the block form.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is the temperature-sensitive water-absorbing agent according to the above invention, wherein AO is an oxyethylene group and an oxypropylene group in the polyoxyalkylene adduct represented by the general formula (1).
  • x / y is 0.3 or more and 3.3 or less
  • x / 2z when AO is an oxyethylene group and an oxybutylene group is 0.3 or more and 3.3 or less
  • AO is an oxyethylene group, an oxypropylene group
  • x / (y + 2z) is 0.3 or more and 3.3 or less.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is the temperature-sensitive water-absorbing agent according to the above invention, wherein AO is an oxyethylene group and an oxypropylene group in the polyoxyalkylene adduct represented by the general formula (1).
  • x / y is 0.5 or more and 2.9 or less
  • x / 2z when AO is an oxyethylene group and an oxybutylene group is 0.5 or more and 2.9 or less
  • AO is an oxyethylene group, an oxypropylene group
  • x / (y + 2z) is 0.5 to 2.9.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is the temperature-sensitive water-absorbing agent according to the above invention, wherein AO is an oxyethylene group and an oxypropylene group in the polyoxyalkylene adduct represented by the general formula (1).
  • x / y is 1.5 or more and 2.7 or less
  • x / 2z when AO is an oxyethylene group and an oxybutylene group is 1.5 or more and 2.7 or less
  • AO is an oxyethylene group, an oxypropylene group
  • x / (y + 2z) is not less than 1.5 and not more than 2.7.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is characterized in that in the above invention, the molecular weight of the polyoxyalkylene adduct is 500 or more and 6000 or less.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is characterized in that, in the above invention, the molecular weight of the polyoxyalkylene adduct is from 1,000 to 4,000.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is characterized in that, in the above invention, the polyoxyalkylene adduct has a cloud point of 30 ° C or more and 80 ° C or less.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is characterized in that, in the above invention, the polyoxyalkylene adduct has a cloud point of 40 ° C or more and 75 ° C or less.
  • the temperature-sensitive water-absorbing agent according to one embodiment of the present invention is characterized in that it is used as an attractant in the production of fresh water by the forward osmosis method in the above invention.
  • a water treatment method is a water treatment method for separating water from an aqueous solution containing water as a solvent using the temperature-sensitive water-absorbing agent according to the above invention.
  • a forward osmosis step in which water is transferred to a draw solution containing the temperature-sensitive water-absorbing agent through a membrane to form a diluted draw solution, and the diluted draw solution is heated to a temperature equal to or higher than the cloud point of the temperature-sensitive water-absorbing agent.
  • a water treatment apparatus is a water treatment apparatus that separates water from an aqueous solution containing water as a solvent using the temperature-sensitive water-absorbing agent according to the above invention, wherein the semi-permeable water is separated from the aqueous solution.
  • Forward osmosis means for transferring water to a draw solution containing the temperature-sensitive water-absorbing agent through a membrane to form a diluted draw solution, and heating the diluted draw solution to a temperature equal to or higher than the cloud point of the temperature-sensitive water-absorbing agent. It is characterized by comprising a heating means, and a water separating means for separating the separated water from the diluted draw solution heated by the heating means.
  • the temperature-sensitive water-absorbing agent of the present invention a high osmotic pressure can be obtained and a cloud point can be lowered. According to the water treatment method and the water treatment device according to the present invention, it is possible to reduce energy costs.
  • FIG. 1 is a graph showing the dependence of the osmotic pressure difference on the number of EOs in the temperature-sensitive water-absorbing agent according to the embodiment for each carbon number of the alkyl group at one end.
  • FIG. 2 is a graph showing the membrane permeation rate of a drug when the membrane permeation rate in Comparative Example 1 is 1.
  • FIG. 3 is a graph showing the relative value of the permeation amount when the permeation amount in Comparative Example 1 is set to 1, for each carbon number of the terminal alkyl group.
  • FIG. 4 is a graph showing the relative value of the separation time for each carbon number of the terminal alkyl group when the separation time in Comparative Example 1 is set to 1.
  • FIG. 1 is a graph showing the dependence of the osmotic pressure difference on the number of EOs in the temperature-sensitive water-absorbing agent according to the embodiment for each carbon number of the alkyl group at one end.
  • FIG. 2 is a graph showing the membrane permeation rate of a drug when the membrane perme
  • FIG. 5 is a graph showing the relationship between the EO number / PO number ratio and the osmotic pressure of the temperature-sensitive water-absorbing agent having an alkyl group at one end.
  • FIG. 6 is a graph showing the relationship between the EO number / PO number ratio and the cloud point of the temperature-sensitive water-absorbing agent having an alkyl group at one end.
  • FIG. 7 is a graph showing the molecular weight dependence of the viscosity of an aqueous solution of a temperature-sensitive water-absorbing agent.
  • FIG. 8 is a block diagram schematically showing the water treatment apparatus according to the first embodiment of the present invention.
  • FIG. 9 is a block diagram schematically showing a water treatment device according to the second embodiment of the present invention.
  • FIG. 10 is a block diagram schematically showing a water treatment apparatus according to the third embodiment of the present invention.
  • the temperature-sensitive water-absorbing agent is hydrophilic at a low temperature, is soluble in water, and increases the amount of water absorption.On the other hand, the amount of water absorption decreases as the temperature increases, and becomes hydrophobic when the temperature exceeds a predetermined temperature, and the solubility decreases. Substance.
  • the temperature at which water solubility and water insolubility change is called a cloud point. That is, the temperature-sensitive water-absorbing agent is a water-absorbing agent having a cloud point and having a property of aggregating when heated.
  • the temperature-sensitive water-absorbing agent is often used as an attractant in the forward osmosis method.
  • a drug having a polymer of ethylene oxide (EO) and at least one selected from propylene oxide (PO) and butylene oxide (BO) is used. Used.
  • the temperature-sensitive water-absorbing agent is a substance that separates when heated above the cloud point, and includes at least a hydrophobic part and a hydrophilic part.
  • the temperature-sensitive water-absorbing agent include a polymer (block copolymer, random copolymer) of linear ethylene oxide (EO) and at least one selected from propylene oxide (PO) and butylene oxide (BO). Or a block copolymer and a random copolymer).
  • the temperature-sensitive water-absorbing agent specifically comprises a polyoxyalkylene adduct represented by the general formula (1).
  • R 1 is a residue obtained by removing a hydroxyl group from a linear or branched monohydric alcohol having 6 to 13 carbon atoms, and is an aliphatic monohydric alcohol residue having 6 to 13 carbon atoms; It is an aliphatic linear monohydric alcohol residue having 6 to 13 or an aliphatic branched monohydric alcohol residue having 6 to 13 carbon atoms.
  • R 1 examples include a hexyl group, an isohexyl group, a heptyl group, an isoheptyl group, an octyl group, an isooctyl group, a 2-ethylhexyl group, a nonyl group, an isononyl group, a 3,5,5-trimethylhexyl group, and a decyl group.
  • R 2 is a hydrogen atom or an alkyl or alkenyl group having 1 to 13 carbon atoms.
  • R 2 include hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, isopentyl, hexyl, isohexyl, heptyl, isoheptyl, octyl, Isooctyl group, 2-ethylhexyl group, nonyl group, isononyl group, 3,5,5-trimethylhexyl group, decyl group, isodecyl group, undecyl group, isoundecyl group, dodecyl group, isododecyl group, tridecyl group, isotridecyl group, propenyl group , Butenyl, pentenyl, isopentenyl, hexenyl, isohe
  • AO is an oxyalkylene group having 2 to 4 carbon atoms. Specific examples of AO include an oxyethylene group, an oxypropylene group, and an oxybutylene group.
  • n is an average number of added moles of the alkylene oxide of 1 to 235. When n is 2 or more, two or more AOs may be the same or different.
  • the temperature-sensitive water-absorbing agent is a heavy water containing ethylene oxide (EO) group as a hydrophilic part and at least one selected from a propylene oxide (PO) group and a butylene oxide (BO) group as a hydrophobic part. It is composed of coalesced particles and has a cloud point and aggregates when heated.
  • the temperature-sensitive water-absorbing agent has an alkyl group at at least one terminal of the polymer, preferably only at one terminal, and the alkyl group has 6 to 13 carbon atoms.
  • AO in the polyoxyalkylene adduct represented by the general formula (1) can have a composition represented by the general formula (2).
  • a 1 O represents an oxyethylene group
  • a 2 O represents an oxypropylene group
  • a 3 O represents an oxybutylene group
  • x is an average addition mole number of ethylene oxide of 1 to 100
  • y is an average addition mole number of propylene oxide from 0 to 80
  • z is an average addition mole number of butylene oxide from 0 to 55.
  • y is equivalent to 2z, and y and z do not become 0 at the same time.
  • the addition form of A 1 O, A 2 O, and A 3 O may be any of a random form, a block form, or a form containing both the random form and the block form.
  • z in the general formula (2) is 0, and x / y is a typical value. Is 0.3 or more and 3.3 or less.
  • y in the general formula (2) is 0, and x / 2z is typically 0.3 or more and 3.3 or less.
  • x / (y + 2z) is typically 0.3 or more and 3.3 or less.
  • z in the general formula (2) is 0, and x / y is: It is preferably 0.5 or more and 2.9 or less, more preferably 1.5 or more and 2.7 or less.
  • y in the general formula (2) is 0, and x / 2z is preferably 0.5 or more and 2.9 or less, more preferably 1 or less. 0.5 or more and 2.7 or less.
  • x / (y + 2z) is preferably 0.5 or more and 2.9 or less, more preferably 1.5 or more and 2.7 or less. It is as follows.
  • Optimal requirements for a temperature-sensitive water-absorbing agent can include primarily high osmotic pressure, low cloud point, low viscosity, and high molecular weight.
  • a forward osmosis (FO) membrane is mainly used as the semipermeable membrane of the membrane module.
  • a draw solution containing a temperature-sensitive water-absorbing agent flowing into the membrane module is required. Is required to be higher than the osmotic pressure of the aqueous solution. If the osmotic pressure of the draw solution is lower than the osmotic pressure of the aqueous solution, water does not move from the aqueous solution to the draw solution.
  • the recovery rate of fresh water from the aqueous solution is low, the water intake power and the pretreatment solid-liquid separation for the aqueous solution using sand filtration, microfiltration membrane (MF membrane), ultrafiltration membrane (UF membrane), etc.
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • the recovery rate is about 30 to 50%.
  • Table 1 is a table showing the relationship between the salt concentration of seawater, which is an aqueous solution, and the osmotic pressure of concentrated water, which is an aqueous solution, at each recovery rate. As shown in Table 1, when salt water having a salt concentration of 3 to 4% is used as an aqueous solution used for the production of fresh water, the osmotic pressure of the concentrated water is about 30 to 60 atm. When seawater with an assumed salt concentration of 4 to 5% is used, the osmotic pressure of the concentrated water is about 40 to 70 atm.
  • the osmotic pressure difference between the concentrated water and the temperature-sensitive water-absorbing agent is preferably about 40 atm. This is because, if the osmotic pressure difference is too small, the movement of water through the forward osmosis membrane is difficult to occur, while if the osmotic pressure difference is 40 atm or more, the movement of water is sufficiently performed.
  • the osmotic pressure of the temperature-sensitive water-absorbing agent is typically at least 30 atm, and preferably at least 70 atm in the production of freshwater from seawater in a temperate zone (hereinafter, desalination of seawater). In desalination, it is typically at least 40 atm, preferably at least 80 atm. Thus, it is desirable that the osmotic pressure of the temperature-sensitive water-absorbing agent for obtaining fresh water be as high as possible.
  • the cloud point of the temperature-sensitive water-absorbing agent is specifically, for example, 80 ° C. or lower, preferably 75 ° C. or lower, and more preferably 70 ° C. or lower in order to utilize lower-temperature waste heat.
  • the cloud point of the temperature-sensitive water-absorbing agent must be higher than the maximum temperature assumed in the aqueous solution if the aqueous solution does not cool down when the water-containing solution is not cooled in the membrane module.
  • the cloud point of the temperature-sensitive water-absorbing agent is preferably 30 ° C. or higher in seawater desalination in a temperate zone, and 40 ° C. or higher in seawater desalination in a tropical zone.To use surface seawater also in a tropical zone, 50 ° C. or higher is more preferable.
  • the cloud point of the temperature-sensitive water-absorbing agent is typically from 30 ° C to 80 ° C, preferably from 40 ° C to 75 ° C, more preferably from 50 ° C to 70 ° C.
  • the molecular weight of the temperature-sensitive water-absorbing agent is preferably larger than the molecular weight cut-off of the semipermeable membrane.
  • the molecular weight cut-off in the NF membrane NFW manufactured by Synder is 300 to 500 Da. Therefore, the molecular weight of the temperature-sensitive water-absorbing agent is preferably 500 or more.
  • the molecular weight of the temperature-sensitive water-absorbing agent is preferably 6000 or less. Further, as the molecular weight of the temperature-sensitive water-absorbing agent increases, the draw solution containing the temperature-sensitive water-absorbing agent becomes higher in viscosity. Therefore, it is necessary to change a pump to be selected depending on the viscosity.
  • the viscosity of the draw solution containing the temperature-sensitive water-absorbing agent exceeds, for example, 230 cP, it becomes difficult to use a general vortex pump, and a high-viscosity pump such as a slurry pump is required. In this case, there is a problem that the equipment cost of the pump is higher than that of a general vortex pump. Therefore, the viscosity of the temperature-sensitive water-absorbing agent is preferably 230 cP or less.
  • the molecular weight of the temperature-sensitive water-absorbing agent corresponding to this viscosity range is 4000 or less. From the above, the molecular weight of the temperature-sensitive water-absorbing agent is preferably 500 or more and 6000 or less, more preferably 1000 or more and 4000 or less.
  • the EO group shows hydrophilicity and the PO group shows hydrophobicity. Therefore, the ratio of the average addition number of ethylene oxide (hereinafter referred to as EO number) to the average addition number of propylene oxide (hereinafter referred to as PO number) (ratio of EO number / PO number) is determined by the osmotic pressure and cloud point of the temperature-sensitive water-absorbing agent. Will determine the If the EO number / PO number ratio is too small, the hydrophobicity increases and the osmotic pressure decreases, while if it is too large, the hydrophilicity increases and the cloud point increases.
  • EO number / PO number ratio is determined by the osmotic pressure and cloud point of the temperature-sensitive water-absorbing agent.
  • the EO number / PO number ratio satisfying the above requirements of the osmotic pressure and the cloud point is typically 0.3 or more and 3.3 or less, preferably 0.5 or more and 2.9 or less, more preferably. 1.5 or more and 2.7 or less.
  • the EO group shows hydrophilicity and the BO group shows hydrophobicity. Therefore, the ratio of the number of EOs to the average number of added butylene oxides (hereinafter referred to as the number of BOs) (the ratio of the number of EOs / the number of BOs) is a factor that determines the osmotic pressure and cloud point of the temperature-sensitive water-absorbing agent.
  • the hydrophobicity of the BO group is about twice as high as that of the PO group. Therefore, the hydrophobicity of the case where the number of POs is two and the case where the number of BOs is one are two. Sex becomes equal.
  • the EO number / 2BO number ratio satisfying the above requirements of the osmotic pressure and the cloud point is typically 0.3 or more and 3.3 or less, preferably 0.5 or more and 2.9 or less, more preferably. 1.5 or more and 2.7 or less.
  • the EO group shows hydrophilicity
  • the PO group and BO group show hydrophobicity. Therefore, the ratio of the number of EOs to the number of POs and the number of BOs (the ratio of the number of EOs / (the number of POs + 2BOs)) is a factor that determines the osmotic pressure and the cloud point of the temperature-sensitive water-absorbing agent.
  • the ratio of the number of EOs / (the number of POs + 2BOs) that satisfies the requirements of the osmotic pressure and the cloud point described above is typically from 0.3 to 3.3, preferably from 0.5 to 2.9, More preferably, it is 1.5 or more and 2.7 or less.
  • the present inventors have conducted intensive studies, and as a temperature-sensitive water-absorbing agent, are composed of a polymer containing an EO group of a hydrophilic part and a PO group of a hydrophobic part, It has been found that the polymer preferably has an alkyl group at only one terminal (hereinafter, one terminal). Further, they have also found that the number of carbon atoms of the alkyl group is preferably 6 or more and 13 or less.
  • the above-mentioned EO / PO / BO polymer having an alkyl group at one terminal is produced as follows. That is, first, an alcohol such as, for example, hexanol, 2-ethylhexanol, 3,5,5-trimethylhexanol, decanol, isodecanol, or isotridecanol is converted into an alcohol in the presence of a metal catalyst such as potassium hydroxide (KOH). And reacting ethylene oxide with at least one selected from propylene oxide and butylene oxide at a temperature of 150 ° C. to 200 ° C. After the polymerization, neutralization is performed by adding an equimolar amount of an acid such as acetic acid or hydrochloric acid. Thus, a temperature-sensitive water-absorbing agent is produced.
  • a metal catalyst such as potassium hydroxide (KOH).
  • Tables 2 and 3 are tables showing properties of the temperature-sensitive water-absorbing agent according to the example based on the present invention and properties of the temperature-sensitive water-absorbing agent according to a comparative example for comparison with the example.
  • R 1 in the general formula (1) is an alkyl group and R 2 is a hydrogen atom (H).
  • the cloud point, the osmotic pressure, and the viscosity when the temperature-sensitive water-absorbing agent is manufactured by changing the ratio of EO / PO / PO and the molecular weight are variously shown.
  • FIG. 1 is a graph showing the EO number dependency of the osmotic pressure difference in the temperature-sensitive water-absorbing agent according to the embodiment for each carbon number of the alkyl group at one end.
  • the osmotic pressure difference is the osmotic pressure difference from 70 atm, which is the osmotic pressure of seawater having a concentration of 5% as concentrated water, when the recovery rate of fresh water is 50%.
  • FIG. 1 shows the osmotic pressures of a drug having the same cloud point and molecular weight but different structures and having an alkyl group at one end and a conventional diol.
  • “C4” means that the alkyl group at one terminal has 4 carbon atoms.
  • FIG. 2 is a graph showing the membrane permeation rates of the drugs of Comparative Example 2 and Examples 1, 2, 4, 6, and 7 when the membrane permeation rate in Comparative Example 1 is set to 1 as a reference.
  • the membrane permeation speed represents the permeation flow rate, and is obtained by dividing the permeation flow rate by the product of the membrane area and time.
  • a water treatment device for measuring the membrane permeation speed an experimental device equipped with a forward osmosis membrane was used, and the experimental conditions were as follows.
  • FIG. 1 As a water treatment device for measuring the membrane permeation speed, an experimental device equipped with a forward osmosis membrane was used, and the experimental conditions were as follows.
  • the quality of the water to be released is affected when the aqueous solution is released, depending on the amount of the mixed water-absorbing agent. Concentrations that affect the water quality of the release destination differ depending on the region and place, but considering the effect on the environment, further install a device that removes the temperature-sensitive water-absorbing agent mixed from the aqueous solution before release If necessary, the equipment cost of the water treatment device increases. From the above viewpoints, it is desirable that the permeation amount is small.
  • FIG. 3 shows the comparative examples of the temperature-sensitive water-absorbing agents according to Comparative Examples 1 and 2 and Examples 1, 2, 4, 6, 7, and 17 shown in Tables 2 and 3 having the same molecular weight and the same cloud point. It is the graph which showed the measurement result of the relative value of the permeation amount when the permeation amount in one drug (diol) was set to 1, for every carbon number of the terminal alkyl group.
  • the experimental conditions are the same as the film experimental conditions described above.
  • the permeation amount is smaller in the temperature-sensitive water-absorbing agent having an alkyl group at one end than in Comparative Example 1. Also, it can be seen that the larger the carbon number of the alkyl group at one end, the smaller the amount of permeation tends to be. In particular, it can be seen that the permeation amount when the terminal alkyl group has 6 or more carbon atoms is reduced to 1/5 or less as compared with the permeation amount of Comparative Example 1. From the above, the permeation amount is reduced by having an alkyl group at one end as a structure of the temperature-sensitive water-absorbing agent, and is significantly reduced if the terminal alkyl group has 6 or more carbon atoms. I understand.
  • Example 6 in which R 1 is a branched monohydric alcohol has a smaller permeation amount than Example 17 in which R 1 is a linear monohydric alcohol. This is presumably because the branching causes steric hindrance of the molecule and hinders penetration of the drug through the membrane. Therefore, from the viewpoint of the permeation amount, R 1 is preferably a branched monohydric alcohol.
  • a separation step of heating a diluted draw solution and separating a solvent and a temperature-sensitive water-absorbing agent in a separation tank is performed.
  • the separation time becomes longer, the equipment of the water treatment apparatus becomes larger and the cost increases. Therefore, the shorter the separation time in the separation step, the better.
  • the principle of separation is as follows. First, when the temperature of the diluted draw solution is equal to or lower than the cloud point, the polymer chain is dissolved by strong interaction between the hydrophilic portion of ethylene oxide and water.
  • the interaction between the hydrophilic portion and water becomes unstable, and the polymer chain shrinks to form micelles.
  • the solvent and the temperature-sensitive water-absorbing agent are separated.
  • the hydrophobicity at the terminal of the structural molecule of the temperature-sensitive water-absorbing agent increases.
  • the hydrophobicity of the terminal increases, a network is formed by a part of the polymer sharing a terminal group between two adjacent micelles and acting as a bridge connecting the micelles. The formation of the network leads to an increase in viscosity, resulting in a low number of associations and a time-consuming separation of water from the temperature-sensitive water-absorbing agent.
  • the thickening effect becomes stronger and the possibility of prolonging the separation time increases.
  • FIG. 4 shows the temperature-sensitive water-absorbing agents of Comparative Examples 1 and 2 and Examples 1, 2, 4, 6, and 7, which have the same molecular weight and the same cloud point, when the separation time in Comparative Example 1 is 1.
  • 7 is a graph showing relative values of separation time for each number of carbon atoms in a terminal alkyl group. From FIG. 4, it can be seen that the drug of Example 7 in which the alkyl group at one end has 13 carbon atoms has a separation time of 3 to 3 times as compared with the drugs of Comparative Examples 1 and 2 and Examples 1, 2, 4 and 6. It turns out that it becomes about 6 times.
  • the number of carbon atoms in the terminal alkyl group is preferably 10 or less. That is, the number of carbon atoms in the terminal alkyl group is preferably 6 or more and 10 or less.
  • the ratio of EO number / PO number is an important factor.
  • the EO group is hydrophilic and has a water-absorbing property of the temperature-sensitive agent
  • the PO group is hydrophobic and has a performance of aggregating in separation at heating. Therefore, if the ratio of the number of EO / PO is too small, the water absorption is reduced and the osmotic pressure is reduced. Conversely, if the ratio is too large, the cloud point is increased.
  • FIG. 5 shows a temperature-sensitive water absorption in which one terminal is an alkyl group (hexyl group, 2-ethylhexyl group, 3,5,5-trimethylhexyl group, isodecyl group, or isotridecyl group) based on Tables 2 and 3. It is a graph which shows the relationship of the osmotic pressure with respect to the EO number / PO number ratio of the agent.
  • FIG. 5 shows that the relationship between the osmotic pressure and the EO number / PO number ratio can be expressed by the following equation (3).
  • Osmotic pressure (atm) (EO number / PO number ratio) ⁇ 38 + 60 (3)
  • the EO number / PO number ratio is preferably 0.3 or more from the equation (3).
  • the osmotic pressure is preferably 80 atm or more, and therefore, the ratio of the number of EO / PO is preferably 0.5 or more from the equation (3).
  • FIG. 6 shows a temperature-sensitive water absorption in which one terminal is an alkyl group (hexyl group, 2-ethylhexyl group, 3,5,5-trimethylhexyl group, isodecyl group, or isotridecyl group) based on Tables 2 and 3. It is a graph which shows the relationship of the cloud point with respect to the EO number / PO number ratio of the agent.
  • FIG. 6 shows that the relationship between the cloud point and the EO number / PO number ratio can be expressed by the following equation (4).
  • Cloud point (° C.) (EO number / PO number ratio) ⁇ 16 + 27 (4)
  • the cloud point is 30 ° C. or higher if the EO number / PO number ratio is 0.3 or more. That is, it is understood that the above requirement of the temperature of the cloud point can be satisfied within the range of 30 ° C. or more derived from the equation (3) based on the above-mentioned osmotic pressure.
  • the cloud point of the temperature-sensitive water-absorbing agent is typically 80 ° C or lower, preferably 75 ° C or lower, more preferably 50 ° C or higher and 70 ° C or lower.
  • the EO number / PO number ratio is typically 3.3 or less, preferably 2.9 or less, more preferably 2.7 or less. From the above, the EO number / PO number ratio is typically 0.3 or more and 3.3 or less, preferably 0.5 or more and 2.9 or less, more preferably 1.5 or more and 2.7 or less. It is.
  • FIG. 7 is a graph showing the molecular weight dependence of the viscosity in an aqueous solution of a temperature-sensitive water-absorbing agent having a concentration of 80% at a temperature of 40 ° C. based on Tables 2 and 3.
  • the viscosity of the draw solution exceeds, for example, 350 cP
  • the increase in viscosity causes a significant increase in the separation time.
  • FIG. 7 shows that the molecular weight of the temperature-sensitive water-absorbing agent corresponding to the viscosity of 350 cP is 6000. That is, it is understood from FIG. 7 that the molecular weight of the temperature-sensitive water-absorbing agent is preferably 6000 or less.
  • the viscosity of the temperature-sensitive water-absorbing agent is preferably 230 cP or less.
  • FIG. 7 shows that the molecular weight of the temperature-sensitive water-absorbing agent is preferably 4000 or less.
  • the molecular weight of the temperature-sensitive water-absorbing agent needs to be larger than the molecular weight cut-off of the membrane used for the membrane treatment. From this viewpoint, the molecular weight of the temperature-sensitive water-absorbing agent needs to be specifically 500 or more. Further, as described above, when a UF membrane is used to lower the operating pressure, it is more preferable that the molecular weight of the temperature-sensitive water-absorbing agent be 1000 or more. From the above, it can be seen that the molecular weight of the temperature-sensitive water-absorbing agent is preferably 500 or more and 6000 or less, more preferably 1000 or more and 4000 or less.
  • the temperature-sensitive water-absorbing agent is composed of a polymer of an ethylene oxide group and at least one selected from a propylene oxide group and a butylene oxide group.
  • One end of the molecule of the sensitive water absorbing agent is an alkyl group.
  • the number (EO number) of ethylene oxide added due to the hydrophobicity of the alkyl group is larger than that of a temperature-sensitive water-absorbing agent having the same molecular weight, the same cloud point, and having no alkyl group at one end. Become.
  • Ethylene oxide is a molecule that exhibits water absorption, and by making one terminal an alkyl group, the number of EO can be increased and the osmotic pressure can be increased. Further, by setting the carbon number of the alkyl group at one end to be 6 or more and 13 or less, the cloud point can be lowered while obtaining a high osmotic pressure.
  • FIG. 8 is a block diagram schematically illustrating the water treatment apparatus 1 according to the first embodiment.
  • the water treatment apparatus 1 according to the first embodiment includes a membrane module 11, a heater 12, a separation tank 13, a final treatment unit 14, and heat exchangers 21 and 22.
  • the membrane module 11 as a forward osmosis means is, for example, a cylindrical or box-shaped container in which a semipermeable membrane 11a is installed.
  • the inside of the membrane module 11 is partitioned into two chambers by the semipermeable membrane 11a.
  • Examples of the form of the membrane module 11 include various forms such as a spiral module type, a laminated module type, and a hollow fiber module type.
  • the semipermeable membrane 11a provided in the membrane module 11 is preferably one that can selectively permeate water, and a forward osmosis (FO) membrane is used, but a reverse osmosis (RO) membrane can also be used.
  • the material of the separation layer of the semipermeable membrane 11a is not particularly limited, and examples thereof include materials such as cellulose acetate, polyamide, polyethyleneimine, polysulfone, and polybenzimidazole.
  • the semipermeable membrane 11a is a support layer that physically supports the separation layer without substantially contributing to the separation layer even if the material used for the separation layer is composed of only one type (one layer). And two or more layers having the following.
  • the support layer examples include polysulfone, polyketone, polyethylene, polyethylene terephthalate, and general nonwoven fabrics.
  • the shape of the semipermeable membrane 11a is not limited, and various types of membranes such as a flat membrane, a tubular membrane, and a hollow fiber can be used.
  • an aqueous solution can flow into one chamber partitioned by the semipermeable membrane 11a, and a draw solution as an aqueous solution containing a temperature-sensitive water-absorbing agent can flow into the other chamber.
  • the pressure at which the draw solution is introduced into the membrane module 11 is 0.1 MPa or more and 0.5 MPa or less, and is, for example, 0.2 MPa in the first embodiment.
  • the aqueous solution is mainly seawater, but may be brackish water, brackish water, industrial effluent, associated water, or sewage, or an aqueous solution containing water as a solvent obtained by subjecting such water to filtration if necessary. It is not particularly limited.
  • the draw solution a solution mainly composed of the temperature-sensitive water-absorbing agent according to the above-described embodiment, which is made of a polymer having at least one cloud point, is used.
  • the draw solution is used to attract water from the aqueous solution. That is, the attractant used for attracting water is a solute of the draw solution, and the draw solution itself can use either the attractant alone or a solution containing the attractant.
  • the attractant used for attracting water is a solute of the draw solution, and the draw solution itself can use either the attractant alone or a solution containing the attractant.
  • the heater 12 as a heating means for the diluted draw solution is provided on the upstream side of the separation tank 13 along the flow direction of the diluted draw solution.
  • the heater 12 heats the diluted draw solution flowing out of the membrane module 11 and heat-exchanged by the heat exchanger 22 to a temperature equal to or higher than the cloud point.
  • the diluted draw solution heated by the heater 12 to a temperature higher than the cloud point is separated into water and a temperature-sensitive water-absorbing agent which is a polymer.
  • the diluted draw solution separated by the heater 12 is divided into a water-based solution (water-rich solution) as the separation water and a water-containing solution having a lower water content than the water-rich solution. It is separated into a draw solution mainly composed of a sensitive water absorbing agent.
  • the draw solution having a lower moisture content than the water-rich solution is supplied to the membrane module 11 via the heat exchanger 21 as a draw solution to be reused (hereinafter, a regenerated draw solution).
  • the heat exchanger 21 is provided downstream of the separation tank 13 along the flow direction of the regenerated draw solution, and is provided downstream of the membrane module 11 along the flow direction of the concentrated aqueous solution.
  • the heat exchanger 21 performs heat exchange between the regenerated draw solution flowing out of the separation tank 13 and the concentrated aqueous solution that has passed through the membrane module 11.
  • the flow rate of the concentrated aqueous solution flowing into the heat exchanger 21 is controlled such that the temperature of the regenerated draw solution supplied to the membrane module 11 becomes a predetermined temperature.
  • the temperature of the regenerated draw solution is reduced. Control to a predetermined temperature.
  • the temperature of the regenerated draw solution supplied to the membrane module 11 is controlled to a predetermined temperature of 25 ° C. or more and 50 ° C. or less, for example, about 40 ° C.
  • the heat exchanger 22 is provided on the downstream side of the membrane module 11 along the flow direction of the diluted draw solution, and is provided on the downstream side of the separation tank 13 along the flow direction of the water-rich solution obtained by the separation tank 13. Provided. The heat exchanger 22 performs heat exchange between the diluted draw solution discharged from the membrane module 11 and the water-rich solution obtained by the separation tank 13.
  • the final treatment unit 14 as a separation treatment means is composed of, for example, a coalescer, an activated carbon adsorption unit, an ultrafiltration membrane unit, a nanofiltration membrane (NF membrane) unit, or a reverse osmosis membrane unit.
  • the final treatment unit 14 separates the remaining temperature-sensitive water-absorbing agent from the water-rich solution flowing out of the separation tank 13 to generate fresh water as generated water.
  • the polymer solution containing the temperature-sensitive water-absorbing agent separated by the final processing unit 14 may be discarded or introduced into the diluted draw solution upstream of the heater 12 or the heat exchanger 22. Further, a part of the separated polymer solution can be discarded, and the remaining polymer solution can be introduced as a draw solution into the diluted draw solution.
  • a method of introducing the polymer solution into the diluted draw solution not only a method of introducing the polymer solution into a pipe through which the diluted draw solution flows, but also a method of introducing the polymer solution into a tank (not shown) for storing the diluted draw solution. It is possible to adopt a method.
  • a forward osmosis step is performed in the membrane module 11 as a forward osmosis unit. That is, in the membrane module 11, the aqueous solution and the regenerated draw solution are brought into contact via the semipermeable membrane 11a. As a result, in the membrane module 11, water in the aqueous solution passes through the semipermeable membrane 11a and moves to the regenerated draw solution due to the osmotic pressure difference. In other words, from one of the chambers in the membrane module 11 to which the aqueous solution is supplied, the concentrated aqueous solution that is concentrated by the movement of water to the regenerated draw solution flows out.
  • a forward osmosis side heat exchange step is performed. That is, the concentrated aqueous solution obtained by passing the aqueous solution through the membrane module 11 is supplied to the heat exchanger 21.
  • the regenerated draw solution flowing out of the separation tank 13 is supplied to the heat exchanger 21.
  • the regenerated draw solution is adjusted to a predetermined temperature, specifically, for example, a temperature of about 40 ° C. by the heat exchanger 21. As will be described later, the heated diluted draw solution flows into the separation tank 13.
  • the temperature of the regenerated draw solution flowing out of the separation tank 13 is higher than the temperature of the concentrated aqueous solution. Therefore, in the heat exchanger 21, the temperature of the regenerated draw solution is lowered. In order to lower the temperature of the regenerated draw solution to a predetermined temperature, the flow rate of the concentrated aqueous solution used for heat exchange in the heat exchanger 21 is adjusted. That is, in the heat exchanger 21, the regenerated draw solution is cooled by the concentrated aqueous solution, while the concentrated aqueous solution is heated by the regenerated draw solution.
  • a blow valve (not shown) as an adjustment valve between the membrane module 11 and the heat exchanger 21 to adjust the flow rate of the concentrated aqueous solution flowing into the heat exchanger 21.
  • the regenerated draw solution that has undergone heat exchange and has been cooled is supplied to the other chamber of the membrane module 11.
  • the concentrated aqueous solution heated to a temperature of, for example, 55 to 70 ° C. after heat exchange is discharged out of the system.
  • Heating process In the heater 12 as a heating means, a heating step is performed. That is, the temperature of the diluted draw solution obtained by diluting the regenerated draw solution in the forward osmosis step is increased in the outlet heat exchange step described later, and then the heater 12 is further heated to a temperature equal to or higher than the cloud point. Thereby, at least a part of the temperature-sensitive water-absorbing agent is aggregated, and phase separation is performed.
  • the heating temperature in the heating step can be adjusted by controlling the heater 12.
  • the heating temperature is not higher than the boiling point of water and is preferably not higher than 100 ° C. at atmospheric pressure. In the first embodiment, the heating temperature is not lower than the cloud point and not higher than 100 ° C., for example, 88 ° C.
  • a water separation step is performed in the separation tank 13 as a water separation means. That is, in the separation tank 13, the diluted draw solution is separated into a water-rich solution containing a large amount of water and a concentrated regenerated draw solution containing a high concentration of the temperature-sensitive water-absorbing agent.
  • the pressure in the separation tank 13 is, for example, the atmospheric pressure.
  • the phase separation between the water-rich solution and the regenerated draw solution can be carried out by allowing the solution temperature to stand above the cloud point.
  • the liquid temperature in the separation tank 13 is, for example, 88 ° C. which is equal to or higher than the cloud point and equal to or lower than 100 ° C.
  • the draw solution separated from the diluted draw solution and concentrated is supplied to the membrane module 11 via the heat exchanger 21 as a regenerated draw solution.
  • the draw concentration of the regenerated draw solution is, for example, 60 to 95%.
  • the water-rich solution separated from the diluted draw solution is supplied to the final processing unit 14 via the heat exchanger 22.
  • the water-rich solution has, for example, a draw concentration of 1% and a water content of 99%.
  • an outflow side heat exchange step is performed. That is, the diluted draw solution flowing out of the membrane module 11 is first supplied to the heat exchanger 22.
  • the water-rich solution obtained in the separation tank 13 is supplied to the heat exchanger 22.
  • the heat exchanger 22 adjusts the water-rich solution to a predetermined temperature, specifically, a temperature of 30 ° C or more and 50 ° C or less, for example, about 45 ° C.
  • the water separation step is performed with the liquid temperature set to the cloud point or higher and 100 ° C. or lower.
  • the temperature of the water-rich solution flowing out of the separation tank 13 is higher than that of the diluted draw solution flowing out of the membrane module 11 after the temperature is lowered in the heat exchanger 22.
  • the processing temperature in the final processing unit 14 at the subsequent stage is, for example, 20 ° C. or more and 50 ° C. or less, preferably 35 ° C. or more and 45 ° C. or less, and in the first embodiment, for example, 45 ° C. Therefore, in the heat exchanger 22, temperature adjustment is performed to lower the temperature of the water-rich solution to the processing temperature of the final processing unit 14. That is, in the heat exchanger 22, the water-rich solution is cooled by the diluted draw solution, while the diluted draw solution is heated by the water-rich solution.
  • a final processing step as a separation processing step is performed.
  • the polymer solution that is to be the separation processing draw solution is separated from the water-rich solution.
  • product water such as fresh water is obtained.
  • the product water separated from the water-rich solution is supplied to an external required application as a final product obtained from the aqueous solution.
  • the separation draw solution separated from the generated water is a polymer solution having a draw concentration of about 0.5 to 25%, and is discarded outside or along the flow direction of the diluted draw solution. And can be introduced upstream of the heater 12 or the heat exchanger 22. It is also possible to discard a part of the polymer solution and introduce the remaining polymer solution upstream of the heater 12 or the heat exchanger 22 along the flow direction of the diluted draw solution.
  • the heat exchanger 21 for cooling the regenerated draw solution with the concentrated aqueous solution is provided. Accordingly, it is not necessary to separately provide a cooling mechanism for cooling the regenerated draw solution flowing out of the separation tank 13, and the energy balance in the water treatment apparatus 1 can be stabilized. Also, by using the concentrated aqueous solution as the cooling water, it is not necessary to remove the aqueous solution for cooling, so that the energy for cooling the regenerated draw solution can be reduced, and the energy required for water treatment is further reduced. it can.
  • FIG. 9 shows a water treatment apparatus 2 according to the second embodiment.
  • the water treatment apparatus 2 includes a membrane module 11, in which a semipermeable membrane 11a is provided, a heater 12, a separation tank 13, a final treatment unit 14, Heat exchangers 21 and 22 are provided.
  • the water treatment apparatus 2 further includes a downstream side of the heat exchanger 22 along the flow direction of the diluted draw solution, an upstream side of the heater 12, and a flow direction of the regenerated draw solution.
  • a heat exchanger 23 is provided downstream of the separation tank 13 and upstream of the heat exchanger 21.
  • the second-stage heat exchange step is performed by the heat exchanger 23 as the second-stage heat exchange means. That is, in the water treatment method according to the second embodiment, the diluted draw solution flowing out of the membrane module 11 is first heat-exchanged with the high-temperature water-rich solution in the heat exchanger 22 to be heated. Thereafter, as a subsequent heat exchange step, the diluted draw solution is heat-exchanged in the heat exchanger 23 with a regenerated draw solution having a temperature similar to that of the water-rich solution to increase the temperature. Further, the diluted draw solution is heated by the heater 12 to a temperature higher than the cloud point and lower than 100 ° C. Other water treatment methods are the same as in the first embodiment.
  • the same effect as the first embodiment can be obtained. Further, the temperature of the diluted draw solution to be supplied to the separation tank 13 is increased by lowering the temperature of the regenerated draw solution flowing out of the separation tank 13 by the heat exchanger 23, so that the heater 12 The temperature range for raising the temperature when heating the diluted draw solution can be made smaller than in the first embodiment. Therefore, the energy required for heating by the heater 12 can be reduced, and the energy consumed for heating in the water treatment apparatus 2 can be further reduced.
  • FIG. 10 shows a water treatment apparatus 3 according to the third embodiment.
  • the water treatment apparatus 3 includes a membrane module 11, in which a semipermeable membrane 11a is provided, a heater 12, a separation tank 13, a final treatment unit 14, and a water treatment apparatus 3 as in the second embodiment. Heat exchangers 21, 22, 23 are provided.
  • the downstream side of the pipe of the membrane module 11 along the flow direction of the dilution draw solution are provided branching point P 0.
  • the diluted draw solution is branched in at least two directions, and one pipe is connected to the heat exchanger 22 and the other pipe is connected to the heat exchanger 23.
  • converging points P 1 dilution draw solution that has passed through the heat exchanger 22 and 23 are joined is provided in the flow direction of the dilution draw solution on the upstream side of the piping heater 12.
  • confluence P 1 dilute draw solution to merge, which is branched.
  • Each of the heat exchangers 22 and 23 as the parallel heat exchange means is configured to be able to exchange heat between the diluted draw solution and another solution.
  • the parallel heat exchange process is performed by the heat exchangers 22 and 23. That is, in the water treatment method according to the third embodiment, dilute draw solution flowing out of the membrane module 11 is branched at a branch point P 0 of the pipe at the upstream side of the heat exchanger 22. The diluted draw solution flowing through one of the branched pipes is supplied to the heat exchanger 22 and exchanges heat with a high-temperature water-rich solution to increase the temperature.
  • Dilute draw solution through the other pipe which is branched at the branch point P 0 is supplied to the heat exchanger 23, is heat exchanged is heated between water rich solution about the same temperature regeneration draw solution You.
  • dilute draw solution flowing out of the membrane module 11, as a parallel heat exchange step after being branched at the branch point P 0, and passes in parallel to the heat exchanger 22 and 23, respectively water rich solution and regeneration draw Heat exchange with solution.
  • the width can be expanded.
  • the flow rate ratio of one dilute draw solution and the other dilute draw solution is adjusted by the control valve provided in the vicinity of the branch point P 0 (not shown) .
  • the flow rate ratio at the branch point P 0 in the diluted draw solution is adjusted by a control valve so that the temperature of one diluted draw solution is substantially equal to the temperature of the other diluted draw solution at the junction P 1 .
  • the diluted draw solution that has merged at the merging point P 1 is heated by the heater 12 to a temperature equal to or higher than the cloud point and equal to or lower than 100 ° C.
  • Other configurations are the same as those of the first embodiment.
  • the diluted draw solution flowing out of the membrane module 11 is branched and heat-exchanged with the regenerated draw solution in the heat exchanger 23 and heat-exchanged with the water-rich solution in the heat exchanger 22.
  • the temperature of the diluted draw solution is raised in parallel.
  • the temperature of the diluted draw solution can be further increased on the upstream side of the heater 12 as compared with the first and second embodiments.
  • the width can be further reduced as compared with the first and second embodiments. Therefore, the energy required for heating by the heater 12 can be further reduced, and the energy consumed for heating in the water treatment apparatus 3 can be further reduced.
  • a cooling mechanism such as a cooling tower can be separately provided.
  • a cooling mechanism is separately provided in the water treatment apparatuses 1, 2, and 3
  • a heat exchanger is newly provided on the upstream side of the final treatment unit 14 and on the downstream side of the heat exchanger 22 to provide the water-rich solution and the cooling liquid. It is also possible to perform a heat exchange between the two.
  • the temperature-sensitive water-absorbing agent, the water treatment method, and the water treatment apparatus according to the present embodiment and the present embodiment are used for desalination of seawater, sewage, gas / oilfield drainage and associated water, and industrial / mineral wastewater reuse in agriculture and industry. It can be widely used for water treatment for the purpose.

Landscapes

  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Polyethers (AREA)

Abstract

高い浸透圧を得ることができるとともに、曇点を低くすることを目的として、一般式:R1O(AO)2…(1)で表されるポリオキシアルキレン付加物からなる温度感応性吸水剤とする。なお、一般式(1)中、R1は炭素数6~13の1価アルコールから水酸基を除いた残基、R2は水素原子、または炭素数1~13のアルキル基もしくはアルケニル基、AOは炭素数2~4のオキシアルキレン基、nはアルキレンオキサイドの平均付加モル数で1~235でありnが2以上の場合、2個以上のAOは同一でも異なっていても良い。R1は炭素数6~13の脂肪族1価アルコール残基、脂肪族直鎖1価アルコール残基、または脂肪族分岐1価アルコール残基である。

Description

温度感応性吸水剤、水処理方法、および水処理装置
 本発明は、溶媒として水を含む含水溶液から水を抽出するための温度感応性吸水剤、および温度感応性吸水剤を用いた水処理方法および水処理装置に関する。
 従来、海水から半透膜を用いて淡水を抽出する方法が種々知られている。具体的に、海水に浸透圧以上の圧力を加えて強制的に逆浸透膜に水を透過させる、逆浸透法が主に開発されてきた。しかしながら、逆浸透法においては、海水に対して高圧に加圧する必要があることから、設備費および運転費が高コスト化するという問題があった。そこで、近年、海水より高濃度の塩溶液と海水とを半透膜を介して接触させ、高圧に加圧することなく浸透圧によって海水中の水を塩溶液に移動させ、分離、回収を行うことによって、淡水を生成する方法が開発されている。
 例えば、特許文献1には、水を含み第1の浸透圧を有する汚染供給溶液流を、引き抜き溶質を含み第2の浸透圧を有する引き抜き溶液流を供給する引き抜き側へ半透膜を介して通過させた後、加熱、凝集、冷却によって、冷却単相水リッチ流を生成する技術が開示されている。特許文献1には、引き抜き溶質として、低分子量ジオールのランダム共重合体またはシーケンシャル共重合体が挙げられている。
 また、特許文献2には、熱相分離物質を含有する熱相分離物質流と溶媒を含有する供給流とを、半透膜を介して向流または並流させて溶媒を熱相分離物質流に移動させる技術が記載されている。特許文献2には、熱相分離物質として、特定の疎水基修飾アルキレンオキサイドポリマーであって、疎水基の有する炭素数が1~3個であるものが挙げられている。
特表2014-512951号公報 特開2017-148734号公報
 しかしながら、上述した従来技術において用いられている引き抜き溶質や熱相分離物質などのいわゆる温度感応性吸水剤においては、浸透圧が低く吸水剤としての吸水性能が不足したり、相分離温度が高くエネルギーコストが高くなったりするという問題があった。すなわち、特許文献1に記載された温度感応性吸水剤であるジオールの重合体は、浸透圧が低く吸水性能が十分ではないという問題がある。また、特許文献2に記載された、末端を炭素数が1~3個のアルキル基としたアルキレンオキサイド重合体は、分離温度である曇点が150℃と高温である。そのため、特許文献2に記載された温度感応性吸水剤は、正浸透を利用した水処理装置における廃熱を利用して曇点まで到達させることが極めて困難であり、水処理装置に要するエネルギーコストが高くなるという問題がある。
 本発明は、上記に鑑みてなされたものであって、その目的は、高い浸透圧を得ることができるとともに、曇点を低くすることができる温度感応性吸水剤を提供することにある。また、他の目的は、エネルギーコストを低減できる水処理方法および水処理装置を提供することにある。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る温度感応性吸水剤は、一般式(1)で表されるポリオキシアルキレン付加物からなることを特徴とする。
 R1O(AO)2 …(1)
(一般式(1)中、R1は炭素数6~13の1価アルコールから水酸基を除いた残基、R2は水素原子または炭素数1~13のアルキル基もしくはアルケニル基、AOは炭素数2~4のオキシアルキレン基、nはアルキレンオキサイドの平均付加モル数であって1~235でありnが2以上の場合、2個以上のAOは同一でも異なっていても良い。)
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記一般式(1)で表されるポリオキシアルキレン付加物中のR1が炭素数6~13の脂肪族1価アルコール残基であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記一般式(1)で表されるポリオキシアルキレン付加物中のR1が炭素数6~13の脂肪族直鎖1価アルコール残基であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記一般式(1)で表されるポリオキシアルキレン付加物中のR1が炭素数6~13の脂肪族分岐1価アルコール残基であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記一般式(1)で表されるポリオキシアルキレン付加物中のAOが一般式(2)で表されることを特徴とする。
 -(A1O)/(A2O)/(A3O)- …(2)
(一般式(2)中、A1Oはオキシエチレン基、A2Oはオキシプロピレン基、A3Oはオキシブチレン基を表し、xはエチレンオキサイドの平均付加モル数で1~100であり、yはプロピレンオキサイドの平均付加モル数で0~80であり、zはブチレンオキサイドの平均付加モル数で0~55である。yは2zと等価であり、yとzとは同時に0にならない。A1O、A2O、A3Oの付加形態は、ランダム状、ブロック状、または、ランダム状およびブロック状をともに含んだ形態のいずれでも良い。)
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記一般式(1)で表されるポリオキシアルキレン付加物中において、AOがオキシエチレン基およびオキシプロピレン基である場合のx/yは0.3以上3.3以下、AOがオキシエチレン基およびオキシブチレン基である場合のx/2zは0.3以上3.3以下、AOがオキシエチレン基、オキシプロピレン基、およびオキシブチレン基である場合のx/(y+2z)は0.3以上3.3以下であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記一般式(1)で表されるポリオキシアルキレン付加物中において、AOがオキシエチレン基およびオキシプロピレン基である場合のx/yは0.5以上2.9以下、AOがオキシエチレン基およびオキシブチレン基である場合のx/2zは0.5以上2.9以下、AOがオキシエチレン基、オキシプロピレン基、およびオキシブチレン基である場合のx/(y+2z)は0.5以上2.9以下であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記一般式(1)で表されるポリオキシアルキレン付加物中において、AOがオキシエチレン基およびオキシプロピレン基である場合のx/yは1.5以上2.7以下、AOがオキシエチレン基およびオキシブチレン基である場合のx/2zは1.5以上2.7以下、AOがオキシエチレン基、オキシプロピレン基、およびオキシブチレン基である場合のx/(y+2z)は1.5以上2.7以下であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記ポリオキシアルキレン付加物の分子量は、500以上6000以下であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記ポリオキシアルキレン付加物の分子量は、1000以上4000以下であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記ポリオキシアルキレン付加物の曇点は、30℃以上80℃以下であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、前記ポリオキシアルキレン付加物の曇点は、40℃以上75℃以下であることを特徴とする。
 本発明の一態様に係る温度感応性吸水剤は、上記の発明において、正浸透法による淡水の製造において誘引物質として用いられることを特徴とする。
 本発明の一態様に係る水処理方法は、上記の発明による温度感応性吸水剤を用いて、溶媒として水を含む含水溶液から水を分離する水処理方法であって、前記含水溶液から半透膜を介して前記温度感応性吸水剤を含むドロー溶液に水を移動させて希釈ドロー溶液とする正浸透工程と、前記希釈ドロー溶液を前記温度感応性吸水剤の曇点以上の温度に加熱する加熱工程と、前記加熱工程において加熱された前記希釈ドロー溶液から分離水を分離する水分離工程と、を含むことを特徴とする。
 本発明の一態様に係る水処理装置は、上記の発明による温度感応性吸水剤を用いて、溶媒として水を含む含水溶液から水を分離する水処理装置であって、前記含水溶液から半透膜を介して前記温度感応性吸水剤を含むドロー溶液に水を移動させて希釈ドロー溶液とする正浸透手段と、前記希釈ドロー溶液を前記温度感応性吸水剤の曇点以上の温度に加熱する加熱手段と、前記加熱手段によって加熱された前記希釈ドロー溶液から分離水を分離する水分離手段と、を備えることを特徴とする。
 本発明に係る温度感応性吸水剤によれば、高い浸透圧を得ることができるとともに、曇点を低くすることが可能になる。本発明に係る水処理方法および水処理装置によれば、エネルギーコストを低減することが可能になる。
図1は、実施形態による温度感応性吸水剤における浸透圧差のEO数依存性を、片末端のアルキル基の炭素数ごとに示すグラフである。 図2は、比較例1における膜透過速度を1とした場合の薬剤の膜透過速度を示すグラフである。 図3は、比較例1における浸透量を1とした場合の浸透量の相対値を末端のアルキル基の炭素数ごとに示したグラフである。 図4は、比較例1における分離時間を1とした場合の分離時間の相対値を末端のアルキル基の炭素数ごとに示したグラフである。 図5は、片末端をアルキル基とした温度感応性吸水剤のEO数/PO数比に対する浸透圧の関係を示すグラフである。 図6は、片末端をアルキル基とした温度感応性吸水剤のEO数/PO数比に対する曇点の関係を示すグラフである。 図7は、温度感応性吸水剤の水溶液における粘度の分子量依存性を示すグラフである。 図8は、本発明の第1の実施形態による水処理装置を模式的に示すブロック図である。 図9は、本発明の第2の実施形態による水処理装置を模式的に示すブロック図である。 図10は、本発明の第3の実施形態による水処理装置を模式的に示すブロック図である。
 以下、本発明の実施形態について図面を参照しつつ説明する。なお、以下の実施形態の全図においては、同一または対応する部分には同一の符号を付す。また、本発明は以下に説明する実施形態によって限定されるものではない。
 (温度感応性吸水剤)
 まず、本発明の実施形態による温度感応性吸水剤について説明する。温度感応性吸水剤とは、低温においては親水性で水によく溶けて吸水量が多くなる一方、温度の上昇に従って吸水量が低下して、所定温度以上になると疎水性化し、溶解度が低下する物質である。温度感応性吸水剤において、水溶性と水不溶性とが変化する温度は曇点と呼ばれる。すなわち、温度感応性吸水剤は、曇点を有し加温すると凝集する性質を有する吸水剤である。そのため、温度感応性吸水剤は、正浸透法において誘引物質として用いられることが多い。ここで、本実施形態において用いられる温度感応性吸水剤としては、エチレンオキサイド(EO)と、プロピレンオキサイド(PO)およびブチレンオキサイド(BO)から選ばれた少なくとも1種類との重合体を有する薬剤が用いられる。
 本実施形態において温度感応性吸水剤は、曇点以上に加温した場合に分離する物質であって、少なくとも疎水部および親水部を含む。温度感応性吸水剤としては、例えば直鎖のエチレンオキサイド(EO)と、プロピレンオキサイド(PO)およびブチレンオキサイド(BO)から選ばれた少なくとも1種類との重合体(ブロック共重合体、ランダム共重合体、またはブロック共重合体およびランダム共重合体をともに含む)からなるポリマーを挙げることができる。
 温度感応性吸水剤は、具体的に、一般式(1)で表されるポリオキシアルキレン付加物からなる。
 R1O(AO)2 …(1)
 一般式(1)において、R1は、炭素数6~13の直鎖または分岐1価アルコールから水酸基を除いた残基であり、炭素数6~13の脂肪族1価アルコール残基、炭素数6~13の脂肪族直鎖1価アルコール残基、または炭素数6~13の脂肪族分岐1価アルコール残基である。R1の具体例を挙げると、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、3,5,5―トリメチルヘキシル基、デシル基、イソデシル基、ウンデシル基、イソウンデシル基、ドデシル基、イソドデシル基、トリデシル基、イソトリデシル基、ヘキセニル基、イソヘキセニル基、ヘプテニル基、イソヘプテニル基、オクテニル基、イソオクテニル基、ノネニル基、イソノネニル基、デセニル基、イソデセニル基、ウンデセニル基、イソウンデセニル基、ドデセニル基、イソドデセニル基、トリデセニル基、イソトリデセニル基からなる群から選ばれた少なくとも2種類の混合物であっても良い。
 一般式(1)において、R2は、水素原子、または炭素数1~13のアルキル基もしくはアルケニル基である。R2の具体例を挙げると、水素、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、ヘキシル基、イソヘキシル基、ヘプチル基、イソヘプチル基、オクチル基、イソオクチル基、2-エチルヘキシル基、ノニル基、イソノニル基、3,5,5―トリメチルヘキシル基、デシル基、イソデシル基、ウンデシル基、イソウンデシル基、ドデシル基、イソドデシル基、トリデシル基、イソトリデシル基、プロペニル基、ブテニル基、ペンテニル基、イソペンテニル基、ヘキセニル基、イソヘキセニル基、ヘプテニル基、イソヘプテニル基、オクテニル基、イソオクテニル基、ノネニル基、イソノネニル基、デセニル基、イソデセニル基、ウンデセニル基、イソウンデセニル基、ドデセニル基、イソドデセニル基、トリデセニル基、イソトリデセニル基からなる群から選ばれた少なくとも2種類の混合物であっても良い。
 一般式(1)において、AOは、炭素数2~4のオキシアルキレン基である。AOの具体例を挙げると、オキシエチレン基、オキシプロピレン基、オキシブチレン基である。nは、アルキレンオキサイドの平均付加モル数で1~235であり、nが2以上の場合、2個以上のAOは互いに同一でも異なっていても良い。
 換言すると、温度感応性吸水剤は、親水部としてのエチレンオキサイド(EO)群と、疎水部としてのプロピレンオキサイド(PO)群およびブチレンオキサイド(BO)郡から選ばれた少なくとも1種類とを含む重合体からなり、曇点を有して加温すると凝集する。温度感応性吸水剤は、重合体の少なくとも片末端、好適には片末端にのみアルキル基を有し、アルキル基の炭素数は6以上13以下である。
 また、一般式(1)で表されるポリオキシアルキレン付加物中のAOとしては、一般式(2)で表される組成にすることが可能である。
 -(A1O)/(A2O)/(A3O)- …(2)
(一般式(2)中、A1Oはオキシエチレン基、A2Oはオキシプロピレン基、A3Oはオキシブチレン基を表し、xはエチレンオキサイドの平均付加モル数で1~100であり、yはプロピレンオキサイドの平均付加モル数で0~80であり、zはブチレンオキサイドの平均付加モル数で0~55である。yは2zと等価であり、yとzとは同時に0にならない。A1O、A2O、A3Oの付加形態は、ランダム状、ブロック状、または、ランダム状およびブロック状をともに含んだ形態のいずれでも良い。)
 一般式(1)で表されるポリオキシアルキレン付加物中において、AOがオキシエチレン基およびオキシプロピレン基である場合、一般式(2)におけるzが0であって、x/yは、典型的には0.3以上3.3以下である。AOがオキシエチレン基およびオキシブチレン基である場合、一般式(2)におけるyが0であって、x/2zは、典型的には0.3以上3.3以下である。AOがオキシエチレン基、オキシプロピレン基、およびオキシブチレン基である場合、x/(y+2z)は、典型的には0.3以上3.3以下である。
 また、一般式(1)で表されるポリオキシアルキレン付加物中において、AOがオキシエチレン基およびオキシプロピレン基である場合、一般式(2)におけるzが0であって、x/yは、好適には0.5以上2.9以下であり、より好適には1.5以上2.7以下である。AOがオキシエチレン基およびオキシブチレン基である場合、一般式(2)におけるyが0であって、x/2zは、好適には0.5以上2.9以下であり、より好適には1.5以上2.7以下である。AOがオキシエチレン基、オキシプロピレン基、およびオキシブチレン基である場合、x/(y+2z)は、好適には0.5以上2.9以下であり、より好適には1.5以上2.7以下である。 
 これらの物質は加温時に白濁した後、温度を保持したまま数分間静置すると、白濁した微粒子同士が凝集して水層とポリマー層とに分離する。温度感応性吸水剤の最適な要件としては、主に、高浸透圧、低曇点、低粘度、および高分子量を挙げることができる。
 (高浸透圧)
 正浸透法によって淡水を製造する場合、膜モジュールの半透膜としては、主に正浸透(FO:Forward Osmosis)膜が用いられる。詳細は後述するが、正浸透膜を備えた膜モジュールによって海水などの含水溶液を脱塩して生成水(淡水)を得るためには、膜モジュールに流入する温度感応性吸水剤を含むドロー溶液の浸透圧を、含水溶液の浸透圧より高くする必要がある。ドロー溶液の浸透圧が含水溶液の浸透圧より低いと、含水溶液からドロー溶液に水が移動しないためである。また、含水溶液からの淡水の回収率が少ないと、取水動力、並びに砂ろ過、精密ろ過膜(MF膜)、および限外ろ過膜(UF膜)等を用いた含水溶液に対する前処理固液分離の処理に要するコストが高コスト化する。そのため、含水溶液からの淡水の回収率は高い方が望ましい。なお、膜モジュールの半透膜として逆浸透(RO:Reverse Osmosis)膜を用いて淡水を製造する場合、回収率は、30~50%程度である。
 表1は、含水溶液である海水の塩濃度と、それぞれの回収率における濃縮含水溶液である濃縮水の浸透圧との関係を示す表である。表1に示すように、淡水の製造に用いる含水溶液として、温帯地域を想定した塩濃度が3~4%の海水を用いる場合、濃縮水の浸透圧は30~60atm程度であり、熱帯地域を想定した塩濃度が4~5%の海水を用いる場合、濃縮水の浸透圧は40~70atm程度である。この点、濃縮水の浸透圧と温度感応性吸水剤の浸透圧との差が大きくなるほど、正浸透膜の透過速度が高くなるため、淡水を得るために必要な膜面積を小さくでき、正浸透膜の設備コストを抑制できる。ここで、濃縮水と温度感応性吸水剤との浸透圧差としては、40atm程度が望ましい。これは、浸透圧差が小さすぎると正浸透膜を介した水の移動が生じにくくなる一方、浸透圧差が40atm以上であれば、水の移動が十分に行われるためである。したがって、温度感応性吸水剤の浸透圧は、温帯地域における海水からの淡水の製造(以下、海水淡水化)においては、典型的には30atm以上、好適には70atm以上であり、熱帯地域における海水淡水化においては、典型的には40atm以上、好適には80atm以上である。このように、淡水を得るための温度感応性吸水剤の浸透圧はできるだけ高いことが望ましい。
Figure JPOXMLDOC01-appb-T000001
 (低曇点)
 正浸透膜を用いて淡水を製造する場合、温度感応性吸水剤を含有するドロー溶液を曇点より高い温度まで加熱することによって、温度感応性吸水剤を凝集させてドロー溶液から分離する。そのため、温度感応性吸水剤の曇点が低いほど、加熱器や熱交換器の設備費を低減でき、さらには低温排熱が利用可能になるので、温度感応性吸水剤の曇点は低い方が望ましい。そこで、温度感応性吸水剤の曇点は、具体的に例えば80℃以下であり、75℃以下が好ましく、より低温の廃熱を利用するために、70℃以下がより好ましい。また、温度感応性吸水剤の曇点は、膜モジュール内において水の吸水時に凝集しないこと、および含水溶液を冷却しない場合には含水溶液において想定される最高温度以上である必要がある。そのため、温度感応性吸水剤の曇点は、温帯地域における海水淡水化においては30℃以上、熱帯地域における海水淡水化においては40℃以上が好ましく、熱帯地域においても表層海水を利用するために、50℃以上がより好ましい。以上から、温度感応性吸水剤における曇点は、典型的には、30℃以上80℃以下、好適には、40℃以上75℃以下、より好適には、50℃以上70℃以下である。
 (高分子量)
 温度感応性吸水剤の分子量は、小さすぎると膜モジュールにおける半透膜の分画分子量を下回ってしまい、ドロー溶液が半透膜を介して含水溶液側に漏れ出す可能性がある。そのため、温度感応性吸水剤の分子量は半透膜の分画分子量より大きいことが好ましい。具体的に、例えばSynder社製のNF膜NFWにおける分画分子量は、300~500Daである。そのため、温度感応性吸水剤の分子量は500以上が好ましい。また、より操作圧力を低くするためには、UF膜を利用することが好ましい。具体的に、例えばSUEZ社製のUF膜GEシリーズにおける分画分子量は、1000Da程度である。そのため、温度感応性吸水剤の分子量は、1000以上とするのがより好ましい。
 (低粘度)
 一方、ドロー溶液の粘度が例えば350cPを超えると、粘性の増加による分離時間の大幅な増加を招く。そのため、温度感応性吸水剤の分子量は、6000以下であることが好ましい。また、温度感応性吸水剤の分子量が大きくなるほど、温度感応性吸水剤を含むドロー溶液は高粘度になるため、粘度によって選定すべきポンプを変更する必要がある。温度感応性吸水剤を含むドロー溶液の粘度が例えば230cPを超えると、一般的な渦流ポンプを使用することが困難になり、スラリーポンプなどの高粘度用のポンプが必要になる。この場合、ポンプの設備費が一般的な渦流ポンプに比して高価になるという問題がある。そのため、温度感応性吸水剤の粘度としては、230cP以下であることが好ましい。なお、この粘度の範囲に対応する温度感応性吸水剤の分子量は、4000以下である。以上から、温度感応性吸水剤の分子量は、好適には500以上6000以下、より好適には1000以上4000以下である。
 (EO数/PO数比)
 温度感応性吸水剤の構造においては、EO基が親水性を示すとともにPO基が疎水性を示す。そのため、プロピレンオキサイドの平均付加数(以下、PO数)に対するエチレンオキサイドの平均付加数(以下、EO数)の比率(EO数/PO数比)は、温度感応性吸水剤における浸透圧および曇点を決定する要因になる。EO数/PO数比は、小さすぎると疎水性が強くなって浸透圧が低くなる一方、大きすぎると親水性が強く曇点が高くなる。そのため、上述した浸透圧および曇点の要件を満たすEO数/PO数比は、典型的には0.3以上3.3以下、好適には0.5以上2.9以下、より好適には1.5以上2.7以下である。
 (EO数/BO数比)
 温度感応性吸水剤の構造においては、EO基が親水性を示すとともにBO基が疎水性を示す。そのため、ブチレンオキサイドの平均付加数(以下、BO数)に対するEO数の比率(EO数/BO数比)は、温度感応性吸水剤における浸透圧および曇点を決定する要因になる。温度感応性吸水剤においてBO基の疎水性の強さはPO基の疎水性の強さの約2倍であることから、PO数が2個の場合とBO数が1個の場合との疎水性が同等になる。すなわち、上述した浸透圧および曇点の要件を満たすEO数/2BO数比は、典型的には0.3以上3.3以下、好適には0.5以上2.9以下、より好適には1.5以上2.7以下である。
 (EO数/(PO数+2BO数)比)
 温度感応性吸水剤の構造においては、EO基が親水性を示すとともにPO基およびBO基が疎水性を示す。そのため、PO数およびBO数に対するEO数の比率(EO数/(PO数+2BO数)比)は、温度感応性吸水剤における浸透圧および曇点を決定する要因になる。そのため、上述した浸透圧および曇点の要件を満たすEO数/(PO数+2BO数)比は、典型的には0.3以上3.3以下、好適には0.5以上2.9以下、より好適には1.5以上2.7以下である。
 上述した温度感応性吸水剤の実現のために、本発明者が鋭意検討を行った結果、温度感応性吸水剤として、親水部のEO群と疎水部のPO群とを含む重合体からなり、重合体の一方の末端のみ(以下、片末端)にアルキル基を有することが好ましいことを見出した。さらに、アルキル基の炭素数は、6以上13以下であることが好ましいことも併せて見出すに至った。
 (温度感応性吸水剤の製造方法)
 上述した、片末端にアルキル基を有するEO/PO/BO重合体(ポリオキシエチレンポリオキシプロピレンポリオキシブチレンアルキルエーテル)は、次のように製造される。すなわち、まず、例えばヘキサノール、2-エチルヘキサノール、3,5,5-トリメチルヘキサノール、デカノール、イソデカノール、またはイソトリデカノールなどのアルコールを、例えば水酸化カリウム(KOH)などの金属触媒の存在下において、150℃~200℃の温度で、エチレンオキサイドと、プロピレンオキサイドおよびブチレンオキサイドから選ばれた少なくとも1種類とを反応させる。重合後に、例えば酢酸や塩酸などの酸を等モル量に添加することで中和させる。以上により、温度感応性吸水剤が製造される。
 (実施例)
 次に、上述した温度感応性吸水剤の実施例について説明する。表2および表3は、本発明に基づいた実施例による温度感応性吸水剤の性質と、実施例と比較するための比較例による温度感応性吸水剤の性質とを示す表である。表2および表3においては、一般式(1)におけるR1がアルキル基かつR2が水素原子(H)である、片末端のアルキル基における炭素数、アルキル基の種類、EO数、PO数、EO数/PO数比、および分子量を種々変えて温度感応性吸水剤の薬剤を製造した場合の、曇点、浸透圧、および粘度を示す。なお、分子量は、ゲル浸透クロマトグラフィー(GPC)によって測定することができ、有効数字は2桁とする。また、図1は、実施形態による温度感応性吸水剤における浸透圧差のEO数依存性を、片末端のアルキル基の炭素数ごとに示すグラフである。ここで、浸透圧差は、淡水の回収率が50%となる場合での、濃縮水としての濃度が5%の海水の浸透圧である70atmとの浸透圧差である。なお、図1においては、曇点および分子量が同じであって、構造が互いに異なる薬剤において、片末端をアルキル基とした薬剤、および従来のジオールについての浸透圧を示す。図1において、例えば「C4」は、片末端のアルキル基の炭素数が4であることを意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (炭素数と浸透圧との関係)
 表2に示すように、片末端のアルキル基としては、ブチル基(比較例2)、イソペンタデシル基(比較例3)、ヘキシル基(実施例1)、2-エチルヘキシル基(実施例2,3)、3,5,5-トリメチルヘキシル基(実施例4,5)、イソデシル基(実施例6)、およびイソトリデシル基(実施例7)とした。表2および図1から、片末端をアルキル基とすることで、浸透圧が増加することが分かる。図1から、片末端をブチル基とした比較例2の薬剤においては、比較例1におけるジオールに比して、浸透圧の上昇があまりないことが分かる。一方、片末端を、ヘキシル基とした実施例1の薬剤、2-エチルヘキシル基とした実施例2,3の薬剤、3,5,5-トリメチルヘキシル基とした実施例4,5の薬剤、イソデシル基とした実施例6の薬剤、イソトリデシル基とした実施例7の薬剤においては、浸透圧が高くなることが分かる。これは、アルキル基が疎水性であることから付加されるEO数が多くなったことに起因すると考えられる。他方、片末端をイソペンタデシル基とした比較例3の薬剤においては、水溶液にした際にゲル化した。そのため、曇点および浸透圧の測定は不可能であり、正浸透を利用した水処理装置における温度感応性吸水剤としては不適である。これらのことから、実施例1~7における、炭素数が6以上13以下のアルキル基を片末端に有する温度感応性吸水剤が、正浸透膜を利用した水処理装置に適していることが分かる。
 (浸透圧と膜透過速度の関係)
 次に、温度感応性吸水剤の膜透過速度における浸透圧との関係について説明する。図2は、比較例1における膜透過速度を基準の1とした場合の比較例2および実施例1,2,4,6,7の薬剤における膜透過速度を示すグラフである。なお、膜透過速度とは透過流速を表し、透過流量を膜面積と時間との積で除算したものである。また、膜透過速度を測定する水処理装置としては、正浸透膜を備えた実験装置を用い、実験条件は以下の条件とした。図2から、浸透圧が高いほど膜透過速度が高いことが分かる。
 <膜実験条件>
 半透膜:HTI社製 三酢酸セルロース膜
 含水溶液:NaClの4%水溶液
 ドロー溶液:各種の温度感応性吸水剤の80%水溶液
 温度:40℃
 (炭素数と浸透量との関係)
 正浸透膜を用いた水処理装置において、含水溶液と温度感応性吸水剤とが半透膜を介して接する際に、温度感応性吸水剤が含水溶液側に浸透する現象が生じる。本明細書において、温度感応性吸水剤が含水溶液側に浸透する量を浸透量という。この浸透量が大きいと、2つの問題が生じる。第1に、温度感応性吸水剤の浸透によって、温度感応性吸水剤の補給頻度が増加する。この補給頻度の増加は、薬剤の消費の増加になるため好ましくない。第2に、含水溶液に温度感応性吸水剤が混入すると、混入した量によっては、含水溶液の放出に際して放出先の水質に影響を与える。放出先の水質に影響を与える濃度については、地域や場所に応じて異なるが、環境に対する影響を考慮することで、放出前の含水溶液から混入した温度感応性吸水剤を除去する装置をさらに設ける必要が生じると、水処理装置における設備コストが増加する。以上の観点から、浸透量は小さい方が望ましい。
 図3は、表2および表3に示す互いに同じ分子量かつ同じ曇点である比較例1,2、および実施例1,2,4,6,7,17による温度感応性吸水剤において、比較例1の薬剤(ジオール)における浸透量を1とした場合の浸透量の相対値を測定した結果を末端のアルキル基の炭素数ごとに示したグラフである。なお、実験条件は、上述した膜実験条件と同様である。
 図3から、比較例1に比して、片末端にアルキル基を有する温度感応性吸水剤においては、浸透量が小さくなることが分かる。また、片末端のアルキル基の炭素数が大きいほど、浸透量が小さくなる傾向にあることが分かる。特に、末端のアルキル基の炭素数が6以上の場合の浸透量は、比較例1の浸透量に比して1/5以下に低下することが分かる。以上のことから、浸透量に関しては、温度感応性吸水剤の構造として片末端にアルキル基を有することによって低減され、末端のアルキル基の炭素数が6以上であれば、大幅に低減されることが分かる。また、R1が分岐1価アルコールである実施例6は、R1が直鎖1価アルコールである実施例17に比して、浸透量が小さい。これは、分岐することで分子の立体障害が生じ、膜における薬剤の透過が妨げられるためであると考えられる。そのため、浸透量の観点から、R1は、分岐1価アルコールが好ましい。
 (分離時間と末端のアルキル基の炭素数との関係)
 正浸透膜を用いた水処理装置において、希釈ドロー溶液を加熱して、分離槽において溶媒と温度感応性吸水剤とを分離する分離工程が行われる。この分離工程において、分離時間が長くなると水処理装置の設備が大きくなって高コスト化する。そのため、分離工程における分離時間は短い方が好ましい。ここで、分離の原理は次の通りである。まず、希釈ドロー溶液の温度が曇点以下の場合においては、エチレンオキサイドの親水部と水との強い相互作用によって高分子鎖が溶解する。一方、温度が曇点以上になると、親水部と水との相互作用が不安定になってポリマー鎖が収縮し、さらにミセルを形成する。ポリマー鎖が会合して凝集することによって、溶媒と温度感応性吸水剤とが分離する。末端のアルキル基の炭素数が増加すると、温度感応性吸水剤の構造分子の末端における疎水性が強くなる。末端の疎水性が強くなると、一部のポリマーが隣り合った2つのミセルの間で末端基を共有し、ミセル間を繋ぐ架橋として作用することでネットワークが形成される。ネットワークの形成は、粘度の増加を招来して、会合数が低くなって水と温度感応性吸水剤との分離に時間を要する原因になる。末端のアルキル鎖の炭素数の増加に伴って、増粘効果は強くなり分離時間が長時間化する可能性が増加する。
 図4は、互いに同じ分子量かつ同じ曇点である比較例1,2、および実施例1,2,4,6,7における温度感応性吸水剤において、比較例1における分離時間を1とした場合の分離時間の相対値を、末端のアルキル基の炭素数ごとに示したグラフである。図4から、片末端のアルキル基の炭素数が13である実施例7の薬剤は、比較例1,2や実施例1,2,4,6の薬剤に比して、分離時間が3~6倍程度になることが分かる。分離時間が増加すると、分離工程を行う分離槽の大型化が必要になって設備のコストが増加したり、滞留時間が増加することによって薬剤に要するコストが増加したりする。そのため、分離時間は短い方が好ましい。したがって、分離時間の観点からは、末端のアルキル基の炭素数は10以下であることが好ましい。すなわち、末端のアルキル基の炭素数は、好適には、6以上10以下である。
 (EO数/PO数比の規定)
 温度感応性吸水剤の吸水性および曇点に関して、EO数/PO数比は重要な要因である。EO基は、親水性で感温剤の吸水性を有し、PO基は、疎水性で加温時の分離において凝集する性能を有する。そのため、EO数/PO数比が小さすぎると吸水性が低くなって浸透圧が低下し、反対に大きすぎると曇点が高くなる。
 図5は、表2および表3に基づいて、片末端をアルキル基(ヘキシル基、2-エチルヘキシル基、3,5,5-トリメチルヘキシル基、イソデシル基、またはイソトリデシル基)とした温度感応性吸水剤のEO数/PO数比に対する浸透圧の関係を示すグラフである。図5から、浸透圧とEO数/PO数比との関係は、以下の(3)式によって表すことができることが分かる。
 浸透圧(atm)=(EO数/PO数比)×38+60 ……(3)
 上述したように、温帯地域における海水淡水化において、浸透圧は好適には70atm以上であることから、(3)式からEO数/PO数比は0.3以上が好ましい。熱帯地域の海水淡水化において、浸透圧は好適には80atm以上であることから、(3)式からEO数/PO数比は0.5以上が好ましい。
 図6は、表2および表3に基づいて、片末端をアルキル基(ヘキシル基、2-エチルヘキシル基、3,5,5-トリメチルヘキシル基、イソデシル基、またはイソトリデシル基)とした温度感応性吸水剤のEO数/PO数比に対する曇点の関係を示すグラフである。図6から、曇点とEO数/PO数比との関係は、以下の式(4)によって表すことができることが分かる。
 曇点(℃)=(EO数/PO数比)×16+27 ……(4)
 (4)式から、EO数/PO数比が0.3以上であれば曇点は30℃以上となることが分かる。すなわち、上述した浸透圧に基づいて(3)式から導出した30℃以上の範囲であれば、上述した曇点の温度の要件を満たすことができることが分かる。さらに、上述したように、温度感応性吸水剤の曇点は、典型的には80℃以下、好適には75℃以下、より好適には50℃以上70℃以下である。これらの曇点の温度範囲および(4)式から、EO数/PO数比は、典型的には3.3以下、好適には2.9以下、より好適には2.7以下である。以上から、EO数/PO数比は、典型的には、0.3以上3.3以下、好適には、0.5以上2.9以下、より好適には1.5以上2.7以下である。
 (分子量と粘度との関係)
 図7は、表2および表3に基づいて、40℃の温度で80%の濃度の温度感応性吸水剤の水溶液における粘度の分子量依存性を示すグラフである。上述したように、ドロー溶液の粘度が例えば350cPを超えると、粘性の増加による分離時間の大幅な増加を招く。図7から、粘度が350cPに対応する温度感応性吸水剤の分子量が6000であることが分かる。すなわち、図7から、温度感応性吸水剤の分子量は6000以下が好ましいことが分かる。また、上述したように、温度感応性吸水剤を含むドロー溶液の粘度が230cPを超えると一般的な渦流ポンプが使用できなくなるため、高粘度用の高価なポンプが必要になる。そこで、温度感応性吸水剤の粘度は、230cP以下が好ましい。この場合、図7から、温度感応性吸水剤の分子量は4000以下が好ましいことが分かる。また、正浸透膜を用いた水処理装置においては、吸水した温度感応性吸水剤を加熱して分離を行った後、残存する温度感応性吸水剤を除去するために膜処理を施して最終生成溶液を回収する工程を含む場合がある。残存する温度感応性吸水剤の分子量が小さすぎると、正浸透膜の分画分子量を下回る可能性が高くなって、温度感応性吸水剤を除去できなくなるという問題が生じる。そのため、温度感応性吸水剤の分子量は、膜処理に用いられる膜の分画分子量より大きい必要がある。この観点から、温度感応性吸水剤の分子量は具体的に500以上である必要がある。さらに、上述したように、操作圧力を低くするためにUF膜を用いた場合、温度感応性吸水剤の分子量は1000以上にするのがより好ましい。以上から、温度感応性吸水剤の分子量は、好適には500以上6000以下、より好適には1000以上4000以下であることが分かる。
 以上説明した実施形態による温度感応性吸水剤によれば、温度感応性吸水剤を、エチレンオキサイド群と、プロピレンオキサイド群およびブチレンオキサイド群から選ばれた少なくとも1種類との重合体から構成し、温度感応性吸水剤の分子における片末端をアルキル基としている。これにより、アルキル基が有する疎水性によって付加されるエチレンオキサイドの数(EO数)が、同じ分子量で同じ曇点であって片末端にアルキル基を有しない温度感応性吸水剤と比して多くなる。エチレンオキサイドは吸水性を発現する分子であって、片末端をアルキル基とすることによって、EO数を増加させることができ、浸透圧を増加させることができる。さらに、片末端のアルキル基の炭素数を、6以上13以下としていることにより、高い浸透圧を得つつ、曇点を低くできる。
 (水処理装置)
 (第1の実施形態)
 次に、上述した本発明の実施形態による温度感応性吸水剤を用いた、第1の実施形態による水処理装置について説明する。図8は、第1の実施形態による水処理装置1を模式的に示すブロック図である。図8に示すように、第1の実施形態による水処理装置1は、膜モジュール11、加熱器12、分離槽13、最終処理ユニット14、および熱交換器21,22を備えて構成される。
 正浸透手段としての膜モジュール11は、内部に半透膜11aが設置された、例えば円筒形または箱形の容器である。膜モジュール11の内部は、半透膜11aによって2つの室に仕切られる。膜モジュール11の形態は、例えばスパイラルモジュール型、積層モジュール型、中空糸モジュール型などの種々の形態を挙げることができる。膜モジュール11としては、公知の半透膜装置を用いることができ、市販品を用いることもできる。
 膜モジュール11に設けられた半透膜11aは、水を選択的に透過できるものが好ましく、正浸透(FO)膜が用いられるが、逆浸透(RO)膜を用いることも可能である。半透膜11aの分離層の材質は、特に限定されるものではなく、例えば、酢酸セルロース系、ポリアミド系、ポリエチレンイミン系、ポリスルホン系、またはポリベンゾイミダゾール系などの材質を挙げることができる。半透膜11aは、分離層に用いられる材質が1種類(1層)のみの膜から構成しても、分離層と実質的に分離に寄与せずに分離層を物理的に支持する支持層とを有する2層以上から構成しても良い。支持層としてはポリスルホン系、ポリケトン系、ポリエチレン系、ポリエチレンテレフタラート系、一般的な不織布などの材質を挙げることができる。なお、半透膜11aの形態についても限定されるものではなく、平膜、管状膜、または中空糸などの種々の形態の膜を用いることができる。
 膜モジュール11の内部において、半透膜11aによって仕切られた一方の室に含水溶液を流すことができ、他方の室に温度感応性吸水剤を含む吸水溶液としてのドロー溶液を流すことができる。ドロー溶液の膜モジュール11への導入圧力は、0.1MPa以上0.5MPa以下、第1の実施形態においては例えば0.2MPaである。含水溶液は、主に海水であるが、かん水、汽水、工業排水、随伴水、もしくは下水、または必要に応じてこれらの水に対してろ過処理を施した、溶媒として水を含む含水溶液であれば特に限定されない。
 ドロー溶液としては、少なくとも1つの曇点を有するポリマーからなる上述した実施形態による温度感応性吸水剤を主体とする溶液が用いられる。第1の実施形態において、ドロー溶液は、含水溶液からの水の誘引に用いられる。すなわち、水の誘引に用いられる誘引物質は、ドロー溶液の溶質であって、ドロー溶液自体は、誘引物質のみでも誘引物質を含む溶液のいずれも用いることが可能である。これにより、膜モジュール11の一方の室においては、含水溶液からドロー溶液に水が誘引されて、希釈されたドロー溶液(希釈ドロー溶液)が流出される。一方、膜モジュール11の他方の室においては、ドロー溶液に水が移動して濃縮された含水溶液(濃縮含水溶液)が流出する。
 希釈ドロー溶液の加熱手段としての加熱器12は、希釈ドロー溶液の流れ方向に沿って分離槽13の上流側に設けられる。加熱器12は、膜モジュール11から流出して熱交換器22によって熱交換された希釈ドロー溶液を、曇点の温度以上に加熱する。加熱器12によって曇点の温度以上に加熱された希釈ドロー溶液は、水とポリマーである温度感応性吸水剤とに分相される。
 水分離手段としての分離槽13においては、加熱器12によって分相された希釈ドロー溶液が、分離水としての水を主体とする溶液(水リッチ溶液)と、水リッチ溶液より含水率が低く温度感応性吸水剤を主体とするドロー溶液とに分離される。水リッチ溶液より含水率が低いドロー溶液は、再利用されるドロー溶液(以下、再生ドロー溶液)として熱交換器21を介して膜モジュール11に供給される。
 熱交換器21は、再生ドロー溶液の流れ方向に沿って、分離槽13の下流側に設けられるとともに、濃縮含水溶液の流れ方向に沿って、膜モジュール11の下流側に設けられる。これにより、熱交換器21は、分離槽13から流出される再生ドロー溶液と膜モジュール11を通過した濃縮含水溶液との間で、熱交換を行う。熱交換器21に流入される濃縮含水溶液の流量は、膜モジュール11に供給される再生ドロー溶液の温度が所定温度になるように制御される。具体的に、熱交換器21における濃縮含水溶液が通過する流路にバイパス弁(図示せず)を設けて、バイパス弁を流れる濃縮含水溶液の流量を制御することによって、再生ドロー溶液の温度を所定温度に制御する。膜モジュール11に供給される再生ドロー溶液は、所定温度として、25℃以上50℃以下の例えば40℃程度に温度制御される。
 熱交換器22は、希釈ドロー溶液の流れ方向に沿って、膜モジュール11の下流側に設けられるとともに、分離槽13によって得られる水リッチ溶液の流れ方向に沿って、分離槽13の下流側に設けられる。熱交換器22は、膜モジュール11から流出された希釈ドロー溶液と、分離槽13によって得られる水リッチ溶液との間で、熱交換を行う。
 分離処理手段としての最終処理ユニット14は、例えばコアレッサー、活性炭吸着ユニット、限外ろ過膜ユニット、ナノろ過膜(NF膜)ユニット、または逆浸透膜ユニットから構成される。最終処理ユニット14は、分離槽13から流出した水リッチ溶液から残存する温度感応性吸水剤を分離させて、生成水としての淡水を生成する。最終処理ユニット14によって分離された温度感応性吸水剤を含むポリマー溶液は、廃棄したり、加熱器12の上流側または熱交換器22の上流側における希釈ドロー溶液に導入したりしても良い。さらに、分離されたポリマー溶液の一部を廃棄し、残りのポリマー溶液をドロー溶液として希釈ドロー溶液に導入することも可能である。ここで、ポリマー溶液を希釈ドロー溶液に導入する方法としては、希釈ドロー溶液が流れる配管に導入する方法のみならず、希釈ドロー溶液を貯留するタンク(図示せず)に導入する方法など、種々の方法を採用することが可能である。
 (水処理方法)
 次に、以上のように構成された第1の実施形態による水処理装置1を用いた、水処理方法について説明する。
 (正浸透工程)
 正浸透手段としての膜モジュール11においては、正浸透工程が行われる。すなわち、膜モジュール11において、含水溶液と再生ドロー溶液とを半透膜11aを介して接触させる。これによって、膜モジュール11内において、浸透圧差により含水溶液中の水が半透膜11aを通過して再生ドロー溶液に移動する。すなわち、膜モジュール11内の含水溶液が供給される一方の室からは、再生ドロー溶液に水が移動することによって濃縮された濃縮含水溶液が流出する。再生ドロー溶液が供給される他方の室からは、含水溶液から水が移動して希釈された希釈ドロー溶液が流出する。ここで、膜モジュール11においては熱交換も行われ、含水溶液の流入側から濃縮含水溶液の流出側に向かって温度が上昇する一方、再生ドロー溶液の流入側から希釈ドロー溶液の流出側に向かって温度が下降する。
 (正浸透側熱交換工程)
 正浸透側熱交換手段としての熱交換器21においては、正浸透側熱交換工程が行われる。すなわち、含水溶液が膜モジュール11を通過して得られた濃縮含水溶液は、熱交換器21に供給される。一方、熱交換器21には、分離槽13から流出された再生ドロー溶液が供給される。第1の実施形態においては、熱交換器21によって、再生ドロー溶液を所定温度、具体的に例えば40℃程度の温度に調整する。後述するように、分離槽13には、加熱された希釈ドロー溶液が流入される。これに起因して、分離槽13から流出する再生ドロー溶液の温度は、濃縮含水溶液の温度よりも高い。そこで、熱交換器21において、再生ドロー溶液を降温させる。再生ドロー溶液を所定温度に降温させるために、熱交換器21において熱交換に供される濃縮含水溶液の流量が調整される。すなわち、熱交換器21において、再生ドロー溶液は濃縮含水溶液によって冷却される一方、濃縮含水溶液は再生ドロー溶液によって加熱される。なお、膜モジュール11と熱交換器21との間に調整弁としてのブロー弁(図示せず)を設けて、熱交換器21に流入させる濃縮含水溶液の流量を調整することも可能である。熱交換されて降温された再生ドロー溶液は、膜モジュール11の他方の室に供給される。一方、熱交換されて例えば55~70℃の温度に昇温された濃縮含水溶液は系外に排出される。
 (加熱工程)
 加熱手段としての加熱器12においては、加熱工程が行われる。すなわち、正浸透工程によって再生ドロー溶液が希釈されて得られた希釈ドロー溶液を、後述する流出側熱交換工程において昇温した後に、加熱器12によってさらに曇点以上の温度まで加熱する。これにより、温度感応性吸水剤の少なくとも一部が凝集されて、相分離が行われる。加熱工程における加熱温度は、加熱器12を制御することによって調整可能である。なお、加熱温度は、水の沸点以下であって、大気圧の場合に100℃以下が好ましく、第1の実施形態においては、曇点以上100℃以下の例えば88℃である。
 (水分離工程)
 水分離手段としての分離槽13においては、水分離工程が行われる。すなわち、分離槽13において、希釈ドロー溶液は、水分を多く含有する水リッチ溶液と、温度感応性吸水剤を高濃度に含む濃縮された再生ドロー溶液とに分離される。なお、分離槽13における圧力は、例えば大気圧である。水リッチ溶液と再生ドロー溶液との相分離は、液温を曇点以上として静置することによって行うことができる。第1の実施形態において分離槽13における液温は、曇点以上100℃以下の例えば88℃である。希釈ドロー溶液から分離されて濃縮されたドロー溶液は、再生ドロー溶液として、熱交換器21を介して膜モジュール11に供給される。再生ドロー溶液のドロー濃度は、例えば60~95%である。一方、希釈ドロー溶液から分離された水リッチ溶液は、熱交換器22を介して最終処理ユニット14に供給される。水リッチ溶液は例えば、ドロー濃度が1%であって水が99%である。
 (流出側熱交換工程)
 流出側熱交換手段としての熱交換器22においては、流出側熱交換工程が行われる。すなわち、膜モジュール11から流出した希釈ドロー溶液は、まず、熱交換器22に供給される。一方、熱交換器22には、分離槽13において得られた水リッチ溶液が供給される。第1の実施形態においては、熱交換器22によって、水リッチ溶液を所定温度、具体的に、30℃以上50℃以下の例えば45℃程度の温度に調整する。上述したように、分離槽13においては液温を曇点以上100℃以下として水分離工程が行われる。そのため、分離槽13から流出する水リッチ溶液は、熱交換器22において降温された後に膜モジュール11から流出する希釈ドロー溶液よりも高温である。一方、後段の最終処理ユニット14における処理温度は、例えば20℃以上50℃以下、好適には35℃以上45℃以下、第1の実施形態においては、例えば45℃である。そこで、熱交換器22において、水リッチ溶液を最終処理ユニット14の処理温度まで降温させる温度調整が行われる。すなわち、熱交換器22において、水リッチ溶液は希釈ドロー溶液によって冷却される一方、希釈ドロー溶液は水リッチ溶液によって加熱される。
 (最終処理工程)
 分離処理手段としての最終処理ユニット14においては、分離処理工程としての最終処理工程が行われる。分離槽13において分離された水リッチ溶液には、温度感応性吸水剤が残存している可能性がある。そこで、最終処理ユニット14において、水リッチ溶液から分離処理ドロー溶液となるポリマー溶液を分離させる。これにより、淡水などの生成水が得られる。水リッチ溶液から分離された生成水は、含水溶液から得られた最終生成物として、外部の必要な用途に供給される。なお、最終処理ユニット14において、生成水と分離された分離処理ドロー溶液は、ドロー濃度が0.5~25%程度のポリマー溶液であり、外部に廃棄したり、希釈ドロー溶液の流れ方向に沿って加熱器12または熱交換器22の上流側に導入したりできる。また、ポリマー溶液の一部を廃棄し、残りのポリマー溶液を希釈ドロー溶液の流れ方向に沿って加熱器12または熱交換器22の上流側に導入することも可能である。
 以上説明したように、本発明の第1の実施形態による水処理装置1によれば、再生ドロー溶液を濃縮含水溶液によって冷却するための熱交換器21を設けている。これにより、分離槽13から流出された再生ドロー溶液を冷却するための冷却機構を別途設ける必要がなくなるとともに、水処理装置1におけるエネルギー収支を安定化することができる。また、濃縮含水溶液を冷却水として用いることによって、冷却用の含水溶液を取水する必要がなくなるため、再生ドロー溶液を冷却するためのエネルギーを低減でき、水処理において必要となるエネルギーをより一層低減できる。
 (第2の実施形態)
 (水処理装置および水処理方法)
 次に、上述した本発明の実施形態による温度感応性吸水剤を用いた、第2の実施形態による水処理装置について説明する。図9は、第2の実施形態による水処理装置2を示す。図9に示すように、水処理装置2は、第1の実施形態と同様に、内部に半透膜11aが設けられた膜モジュール11、加熱器12、分離槽13、最終処理ユニット14、および熱交換器21,22を備える。水処理装置2においてはさらに、第1の実施形態と異なり、希釈ドロー溶液の流れ方向に沿った熱交換器22の下流側で加熱器12の上流側、かつ再生ドロー溶液の流れ方向に沿った分離槽13の下流側で熱交換器21の上流側に、熱交換器23が設けられている。
 後段熱交換手段としての熱交換器23によって、後段熱交換工程が行われる。すなわち、第2の実施形態による水処理方法においては、膜モジュール11から流出した希釈ドロー溶液は、まず熱交換器22において高温の水リッチ溶液との間で熱交換されて昇温される。その後、後段熱交換工程として、希釈ドロー溶液は、熱交換器23において水リッチ溶液と同程度の温度の再生ドロー溶液との間で熱交換されて昇温される。さらに、希釈ドロー溶液は、加熱器12によって曇点以上100℃以下の温度にまで加熱される。その他の水処理方法については、第1の実施形態と同様である。
 第2の実施形態によれば、熱交換器21,22によって熱交換を行っていることにより、第1の実施形態と同様の効果を得ることができる。また、熱交換器23によって、分離槽13を流出した再生ドロー溶液の温度を降温させつつ、分離槽13に供給するための希釈ドロー溶液の温度を昇温させていることにより、加熱器12によって希釈ドロー溶液を加熱する際に昇温させる温度幅を、第1の実施形態に比して小さくできる。したがって、加熱器12による加熱に必要なエネルギーを低減でき、水処理装置2において、加熱に消費するエネルギーをより一層低減できる。
 (第3の実施形態)
 (水処理装置および水処理方法)
 次に、上述した本発明の実施形態による温度感応性吸水剤を用いた、第3の実施形態による水処理装置について説明する。図10は、第3の実施形態による水処理装置3を示す。図10に示すように、水処理装置3は、第2の実施形態と同様に、内部に半透膜11aが設けられた膜モジュール11、加熱器12、分離槽13、最終処理ユニット14、および熱交換器21,22,23を備える。水処理装置3においては、第1,第2の実施形態と異なり、希釈ドロー溶液の流れ方向に沿った膜モジュール11の下流側の配管に、分岐点P0が設けられている。分岐点P0においては、希釈ドロー溶液が少なくとも2方向に分岐されて一方の配管が熱交換器22に連結されているとともに、他方の配管が熱交換器23に連結されている。一方、希釈ドロー溶液の流れ方向に沿って、加熱器12の上流側の配管に、熱交換器22,23を通過した希釈ドロー溶液が合流する合流点P1が設けられている。合流点P1においては、分岐された希釈ドロー溶液が合流する。
 並列熱交換手段としての熱交換器22,23はそれぞれ、希釈ドロー溶液を他の溶液と熱交換可能に構成される。熱交換器22,23によって並列熱交換工程が行われる。すなわち、第3の実施形態による水処理方法においては、膜モジュール11から流出した希釈ドロー溶液は、熱交換器22,23の上流側における配管の分岐点P0において分岐される。分岐された一方の配管を流れる希釈ドロー溶液は、熱交換器22に供給されて高温の水リッチ溶液との間で熱交換されて昇温される。分岐点P0において分岐された他方の配管を流れる希釈ドロー溶液は、熱交換器23に供給されて、水リッチ溶液と同程度の温度の再生ドロー溶液との間で熱交換されて昇温される。換言すると、膜モジュール11から流出した希釈ドロー溶液は、並列熱交換工程として、分岐点P0において分岐された後、熱交換器22,23に並列に通過して、それぞれ水リッチ溶液および再生ドロー溶液と熱交換される。これにより、再生ドロー溶液によって昇温させる希釈ドロー溶液の流量、および水リッチ溶液によって昇温させる希釈ドロー溶液の流量を、第1,第2の実施形態に比して低減でき、昇温させる温度幅を拡大できる。
 熱交換器22,23を並列して通過した希釈ドロー溶液は、熱交換器22,23の下流側、かつ加熱器12の上流側における合流点P1において合流する。ここで、分岐点P0において分岐される、一方の希釈ドロー溶液と他方の希釈ドロー溶液との流量比率は、分岐点P0の近傍に設けられた調節弁(図示せず)によって調整される。具体的には、希釈ドロー溶液における分岐点P0での流量比率は、合流点P1において一方の希釈ドロー溶液の温度と他方の希釈ドロー溶液との温度が略等しくなるように、調節弁によって調整される。合流点P1において合流した希釈ドロー溶液は、加熱器12によって、曇点以上100℃以下の温度にまで加熱される。その他の構成は、第1の実施形態と同様である。
 第3の実施形態によれば、膜モジュール11から流出した希釈ドロー溶液を分岐させて、熱交換器23において再生ドロー溶液と熱交換させつつ、熱交換器22において水リッチ溶液と熱交換させることで、希釈ドロー溶液を並列して昇温させている。これにより、加熱器12の上流側において、希釈ドロー溶液を第1,第2の実施形態に比してより一層高温にできるので、加熱器12によって希釈ドロー溶液を加熱する際に昇温させる温度幅を、第1,第2の実施形態に比してさらに小さくできる。したがって、加熱器12による加熱に必要なエネルギーをさらに低減でき、水処理装置3において、加熱に消費するエネルギーをさらに低減できる。
 以上、本発明の実施形態について具体的に説明したが、本発明は、上述の実施形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。例えば、上述の実施形態において挙げた数値はあくまでも例に過ぎず、必要に応じてこれと異なる数値を用いてもよく、本実施形態による本発明の開示の一部をなす記述および図面により本発明は限定されることはない。
 なお、上述した第1~第3の実施形態による水処理装置1,2,3においては、冷却塔などの冷却機構を別途設けることも可能である。この場合、冷却塔によって冷却された冷却液を熱交換器21に供給して、冷却液と再生ドロー溶液との間で熱交換を行うことも可能である。さらに、水処理装置1,2,3に冷却機構を別途設けた場合、最終処理ユニット14の上流側かつ熱交換器22の下流側に新たに熱交換器を設けて、水リッチ溶液と冷却液との間で熱交換を行うことも可能である。
 本実施形態および本実施例に係る温度感応性吸水剤、水処理方法及び水処理装置は、海水の淡水化や下水、ガス・油田排水や随伴水、工鉱業排水の農業・工業への再利用などを目的とした水処理などに広く利用できる。
 1,2,3 水処理装置
 11 膜モジュール
 11a 半透膜
 12 加熱器
 13 分離槽
 14 最終処理ユニット
 21,22,23 熱交換器

Claims (15)

  1.  一般式(1)で表されるポリオキシアルキレン付加物からなることを特徴とする温度感応性吸水剤。
     R1O(AO)2 …(1)
    (一般式(1)中、R1は炭素数6~13の1価アルコールから水酸基を除いた残基、R2は水素原子または炭素数1~13のアルキル基もしくはアルケニル基、AOは炭素数2~4のオキシアルキレン基、nはアルキレンオキサイドの平均付加モル数で1~235でありnが2以上の場合、2個以上のAOは同一でも異なっていても良い。)
  2.  前記一般式(1)で表されるポリオキシアルキレン付加物中のR1が炭素数6~13の脂肪族1価アルコール残基である
     ことを特徴とする請求項1に記載の温度感応性吸水剤。
  3.  前記一般式(1)で表されるポリオキシアルキレン付加物中のR1が炭素数6~13の脂肪族直鎖1価アルコール残基である
     ことを特徴とする請求項1または2に記載の温度感応性吸水剤。
  4.  前記一般式(1)で表されるポリオキシアルキレン付加物中のR1が炭素数6~13の脂肪族分岐1価アルコール残基である
     ことを特徴とする請求項1または2に記載の温度感応性吸水剤。
  5.  前記一般式(1)で表されるポリオキシアルキレン付加物中のAOが一般式(2)で表される
     ことを特徴とする請求項1~4のいずれか1項に記載の温度感応性吸水剤。
     -(A1O)/(A2O)/(A3O)- …(2)
    (一般式(2)中、A1Oはオキシエチレン基、A2Oはオキシプロピレン基、A3Oはオキシブチレン基を表し、xはエチレンオキサイドの平均付加モル数で1~100であり、yはプロピレンオキサイドの平均付加モル数で0~80であり、zはブチレンオキサイドの平均付加モル数で0~55である。yは2zと等価であり、yとzとは同時に0にならない。A1O、A2O、A3Oの付加形態は、ランダム状、ブロック状、または、ランダム状およびブロック状をともに含んだ形態のいずれでも良い。)
  6.  前記一般式(1)で表されるポリオキシアルキレン付加物中において、AOがオキシエチレン基およびオキシプロピレン基である場合のx/yは0.3以上3.3以下、AOがオキシエチレン基およびオキシブチレン基である場合のx/2zは0.3以上3.3以下、AOがオキシエチレン基、オキシプロピレン基、およびオキシブチレン基である場合のx/(y+2z)は0.3以上3.3以下である
     ことを特徴とする請求項5に記載の温度感応性吸水剤。
  7.  前記一般式(1)で表されるポリオキシアルキレン付加物中において、AOがオキシエチレン基およびオキシプロピレン基である場合のx/yは0.5以上2.9以下、AOがオキシエチレン基およびオキシブチレン基である場合のx/2zは0.5以上2.9以下、AOがオキシエチレン基、オキシプロピレン基、およびオキシブチレン基である場合のx/(y+2z)は0.5以上2.9以下である
     ことを特徴とする請求項5に記載の温度感応性吸水剤。
  8.  前記一般式(1)で表されるポリオキシアルキレン付加物中において、AOがオキシエチレン基およびオキシプロピレン基である場合のx/yは1.5以上2.7以下、AOがオキシエチレン基およびオキシブチレン基である場合のx/2zは1.5以上2.7以下、AOがオキシエチレン基、オキシプロピレン基、およびオキシブチレン基である場合のx/(y+2z)は1.5以上2.7以下である
     ことを特徴とする請求項5に記載の温度感応性吸水剤。
  9.  前記ポリオキシアルキレン付加物の分子量は、500以上6000以下である
     ことを特徴とする請求項1~8のいずれか1項に記載の温度感応性吸水剤。
  10.  前記ポリオキシアルキレン付加物の分子量は、1000以上4000以下である
     ことを特徴とする請求項1~8のいずれか1項に記載の温度感応性吸水剤。
  11.  前記ポリオキシアルキレン付加物の曇点は、30℃以上80℃以下である
     ことを特徴とする請求項1~10のいずれか1項に記載の温度感応性吸水剤。
  12.  前記ポリオキシアルキレン付加物の曇点は、40℃以上75℃以下である
     ことを特徴とする請求項1~10のいずれか1項に記載の温度感応性吸水剤。
  13.  正浸透法による淡水の製造において誘引物質として用いられる
     ことを特徴とする請求項1~12のいずれか1項に記載の温度感応性吸水剤。
  14.  請求項1~13のいずれか1項に記載の温度感応性吸水剤を用いて、溶媒として水を含む含水溶液から水を分離する水処理方法であって、
     前記含水溶液から半透膜を介して前記温度感応性吸水剤を含むドロー溶液に水を移動させて希釈ドロー溶液とする正浸透工程と、
     前記希釈ドロー溶液を前記温度感応性吸水剤の曇点以上の温度に加熱する加熱工程と、
     前記加熱工程において加熱された前記希釈ドロー溶液から分離水を分離する水分離工程と、を含む
     ことを特徴とする水処理方法。
  15.  請求項1~13のいずれか1項に記載の温度感応性吸水剤を用いて、溶媒として水を含む含水溶液から水を分離する水処理装置であって、
     前記含水溶液から半透膜を介して前記温度感応性吸水剤を含むドロー溶液に水を移動させて希釈ドロー溶液とする正浸透手段と、
     前記希釈ドロー溶液を前記温度感応性吸水剤の曇点以上の温度に加熱する加熱手段と、
     前記加熱手段によって加熱された前記希釈ドロー溶液から分離水を分離する水分離手段と、を備える
     ことを特徴とする水処理装置。
PCT/JP2019/030659 2018-08-29 2019-08-05 温度感応性吸水剤、水処理方法、および水処理装置 WO2020044965A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19855010.5A EP3845295A1 (en) 2018-08-29 2019-08-05 Temperature-sensitive water absorbent, water treatment method, and water treatment device
SG11202101550YA SG11202101550YA (en) 2018-08-29 2019-08-05 Thermo-sensitive draw solute, water treatment method, and water treatment apparatus
JP2020540195A JPWO2020044965A1 (ja) 2018-08-29 2019-08-05 温度感応性吸水剤、水処理方法、および水処理装置
US17/268,064 US20210316250A1 (en) 2018-08-29 2019-08-05 Thermo-sensitive draw solute, water treatment method, and water treatment apparatus
CN201980052736.4A CN112638507A (zh) 2018-08-29 2019-08-05 温度敏感性吸水剂、水处理方法和水处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-159985 2018-08-29
JP2018159985 2018-08-29

Publications (1)

Publication Number Publication Date
WO2020044965A1 true WO2020044965A1 (ja) 2020-03-05

Family

ID=69644747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030659 WO2020044965A1 (ja) 2018-08-29 2019-08-05 温度感応性吸水剤、水処理方法、および水処理装置

Country Status (6)

Country Link
US (1) US20210316250A1 (ja)
EP (1) EP3845295A1 (ja)
JP (1) JPWO2020044965A1 (ja)
CN (1) CN112638507A (ja)
SG (1) SG11202101550YA (ja)
WO (1) WO2020044965A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206116A1 (ja) * 2020-04-08 2021-10-14 株式会社日本触媒 ドロー溶質、ドロー溶液及び水処理装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7162308B2 (ja) * 2018-08-31 2022-10-28 株式会社日本触媒 ドロー溶質及び水処理装置
US11407659B1 (en) * 2021-07-09 2022-08-09 Kuwait Institute For Scientific Research Desalination and cooling system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148734A (ja) 2016-02-24 2017-08-31 旭化成株式会社 溶媒分離方法
JP2018108538A (ja) * 2016-12-28 2018-07-12 大阪瓦斯株式会社 正浸透膜分離方法、並びに該方法を行う水処理設備及び発電設備
WO2018150690A1 (ja) * 2017-02-17 2018-08-23 国立大学法人神戸大学 水処理方法および水処理システム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9399193B2 (en) * 2011-02-18 2016-07-26 Samsung Electronics Co., Ltd. Draw solute for forward osmosis, draw solution including the same, forward osmosis water treatment device using the same, and forward osmosis method for water treatment using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017148734A (ja) 2016-02-24 2017-08-31 旭化成株式会社 溶媒分離方法
JP2018108538A (ja) * 2016-12-28 2018-07-12 大阪瓦斯株式会社 正浸透膜分離方法、並びに該方法を行う水処理設備及び発電設備
WO2018150690A1 (ja) * 2017-02-17 2018-08-23 国立大学法人神戸大学 水処理方法および水処理システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021206116A1 (ja) * 2020-04-08 2021-10-14 株式会社日本触媒 ドロー溶質、ドロー溶液及び水処理装置
JPWO2021206116A1 (ja) * 2020-04-08 2021-10-14

Also Published As

Publication number Publication date
CN112638507A (zh) 2021-04-09
US20210316250A1 (en) 2021-10-14
SG11202101550YA (en) 2021-03-30
JPWO2020044965A1 (ja) 2021-09-02
EP3845295A1 (en) 2021-07-07

Similar Documents

Publication Publication Date Title
JP6172385B2 (ja) 温度感応性吸水剤、水処理方法及び水処理装置
WO2020044965A1 (ja) 温度感応性吸水剤、水処理方法、および水処理装置
US10358517B2 (en) Amphiphilic block copolymer; composition, membrane, and separation module thereof; and methods of making same
US10252221B2 (en) Porous asymmetric polyphenylene ether membranes and associated separation modules and methods
US20170043297A1 (en) Asymmetric poly(phenylene ether) co-polymer membrane, separation module thereof; and methods of making
JP7117718B2 (ja) 水処理方法および水処理システム
JP6210033B2 (ja) 水の脱塩処理方法および装置
JP6414528B2 (ja) 水の脱塩処理方法および装置
Tishchenko et al. Ultrafiltration and microfiltration membranes in latex purification by diafiltration with suction
JP6974797B2 (ja) 正浸透水処理方法および装置
JP2021154188A (ja) 正浸透水処理方法および装置
JP2024005365A (ja) 水処理方法および水処理システム
JP2020142162A (ja) 正浸透水処理方法および装置
JP2019155289A (ja) 水処理方法および装置
JP2022129707A (ja) 正浸透水処理で使用される感温剤水溶液の浄化方法および装置
JP2021159874A (ja) 正浸透水処理方法および装置
JP2020175312A (ja) 正浸透水処理方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19855010

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020540195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019855010

Country of ref document: EP

Effective date: 20210329