WO2015156398A1 - イオン液体を用いた生体触媒用溶媒、及びその溶媒と生体触媒を含む生体触媒溶液 - Google Patents

イオン液体を用いた生体触媒用溶媒、及びその溶媒と生体触媒を含む生体触媒溶液 Download PDF

Info

Publication number
WO2015156398A1
WO2015156398A1 PCT/JP2015/061281 JP2015061281W WO2015156398A1 WO 2015156398 A1 WO2015156398 A1 WO 2015156398A1 JP 2015061281 W JP2015061281 W JP 2015061281W WO 2015156398 A1 WO2015156398 A1 WO 2015156398A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
enzyme
biocatalyst
anion
Prior art date
Application number
PCT/JP2015/061281
Other languages
English (en)
French (fr)
Inventor
恒太郎 金子
信裕 金子
河合 功治
Original Assignee
ミヨシ油脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミヨシ油脂株式会社 filed Critical ミヨシ油脂株式会社
Priority to EP20193685.3A priority Critical patent/EP3766969B1/en
Priority to EP15777322.7A priority patent/EP3130670B1/en
Priority to US15/302,179 priority patent/US10240141B2/en
Publication of WO2015156398A1 publication Critical patent/WO2015156398A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/96Stabilising an enzyme by forming an adduct or a composition; Forming enzyme conjugates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/08Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with only one hydroxy group and one amino group bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/10Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with one amino group and at least two hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/06Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton
    • C07C229/10Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • C07C229/12Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having only one amino and one carboxyl group bound to the carbon skeleton the nitrogen atom of the amino group being further bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of acyclic carbon skeletons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/12Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic the nitrogen atom of the amino group being further bound to hydrocarbon groups substituted by hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/40Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton with quaternised nitrogen atoms bound to carbon atoms of the carbon skeleton

Definitions

  • the present invention relates to a biocatalyst solvent that can be dissolved while maintaining the activity of the biocatalyst, and a biocatalyst solution containing the solvent and the biocatalyst.
  • biocatalysts such as enzymes and yeasts are fragile due to the effects of temperature, pH, solvent, or electrostatic repulsion between molecules, and their activity, that is, their catalytic ability is reduced. When used for biocatalytic reactions, it is necessary to maintain the three-dimensional structure of the active site and the three-dimensional structure of the amino acid residue.
  • Known long-term storage methods for biocatalysts include freeze-drying in a powder state, and cryopreservation in which the biocatalyst is dissolved and stored in a solution under low concentration and extremely low temperature conditions.
  • Patent Document 1 a method of using polyhydric alcohols such as glycerin and sorbitol for preservation of uricase (Patent Document 1), a method of stabilizing cholesterol oxidase by adding bovine serum albumin and saccharides to a solution containing cholesterol oxidase (Patent Document 2)
  • Patent Document 2 a method of stabilizing cholesterol oxidase by adding bovine serum albumin and saccharides to a solution containing cholesterol oxidase.
  • An ionic liquid is an organic salt composed of a cation and an anion.
  • an ionic liquid composed of an imidazolium cation or a quaternary ammonium cation and various anions is known, and its structural features. Therefore, various uses are being studied. Under such circumstances, it has been reported that an ionic liquid is added to a reaction solution of an enzyme or used as a solvent to maintain the enzyme activity (Patent Documents 3 and 4, Non-Patent Document 1). There was a problem.
  • the present invention has been made in view of the circumstances as described above, and can be dissolved in a liquid while retaining the activity of a biocatalyst at a low temperature to a high temperature and a high concentration, and can be stored for a long time. It is an object to provide a catalyst solvent.
  • Another object of the present invention is to provide a biocatalyst solution in which a biocatalyst is dissolved in such a biocatalyst solvent.
  • the biocatalyst solvent of the present invention has the following formula (I):
  • each R a is independently a hydroxyl group having one or more hydroxyl groups, the alkyl moiety being linear or branched having 1 to 10 carbon atoms, and the alkyl moiety optionally containing an oxygen atom.
  • Each represents one or more groups, the alkyl moiety is a linear or branched chain having 1 to 10 carbon atoms, and the alkyl moiety may contain an oxygen atom, and
  • R b represents Independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms, n represents an integer of 1 to 4). Consisting of an ionic liquid.
  • the biocatalyst solution of the present invention includes the biocatalyst solvent and the biocatalyst.
  • the biocatalyst is dissolved at a high concentration, and the biocatalyst in the solution is dissolved from a low temperature to a high temperature and a high concentration while maintaining its activity, and stored for a long period of time. can do.
  • the solvent for a biocatalyst of the present invention may be an anhydrous ionic liquid and a hydrous ionic liquid that has absorbed moisture in the air, and is composed of an ionic liquid containing a quaternary ammonium cation and an anion represented by the formula (I).
  • each R a of the quaternary ammonium cation independently has one or more hydroxyl groups, the alkyl moiety is linear or branched having 1 to 10 carbon atoms, and the alkyl moiety is oxygen.
  • a hydroxyalkyl group which may contain an atom, having at least one carboxy group, the alkyl moiety (not including the carbon of the carboxy group) is a linear or branched chain having 1 to 10 carbon atoms,
  • an alkyl moiety (not including the carbon of the carboxy group) is a straight chain having 1 to 10 carbon atoms or A hydroxycarboxyalkyl group which is branched and in which the alkyl moiety may contain an oxygen atom.
  • Examples of the hydroxyalkyl group represented by R a in formula (I) include mono, di, tri, tetra, penta, hexa, hepta, or octahydroxyalkyl groups, hydroxyalkoxyalkyl groups, alkoxyhydroxyalkyl groups, and hydroxypolyalkyleneoxy groups.
  • An alkyl group etc. are mentioned.
  • Examples of the monohydroxyalkyl group include a hydroxymethyl group, a 1-hydroxyethyl group, a 2-hydroxyethyl group, a 1-hydroxypropan-1-yl group, a 2-hydroxypropan-1-yl group, and a 3-hydroxypropane- 1-yl group, 1-hydroxypropan-2-yl group, 2-hydroxypropan-2-yl group, 1-hydroxybutan-1-yl group, 2-hydroxybutan-1-yl group, 3-hydroxybutane- 1-yl group, 4-hydroxybutan-1-yl group, 1-hydroxy-2-methylpropan-1-yl group, 2-hydroxy-2-methylpropan-1-yl group, 3-hydroxy-2-methyl Propan-1-yl group, 1-hydroxybutan-2-yl group, 2-hydroxybutan-2-yl group, 3-hydroxybutane-2- Group, 4-hydroxybutan-2-yl group, 1-hydroxy-2-methylpropan-2-yl group, 5-hydroxypentan-1-yl group, 6-hydroxyhexan-1-yl group, 7-hydroxy Examples include
  • Examples of the di, tri, tetra, penta, hexa, hepta, or octahydroxyalkyl group include dihydroxyethyl groups such as 1,2-dihydroxyethyl group; 1,2-dihydroxypropan-1-yl group, 2,3 A dihydroxypropan-1-yl group such as a dihydroxypropan-1-yl group; a dihydroxypropan-2-yl group such as a 1,2-dihydroxypropan-2-yl group or a 1,3-dihydroxypropan-2-yl group Trihydroxypropan-1-yl group; trihydroxypropan-2-yl group; 1,2-dihydroxybutan-1-yl group, 1,3-dihydroxybutan-1-yl group, 1,4-dihydroxybutane- 1-yl group, 2,3-dihydroxybutan-1-yl group, 2,4-dihydroxybutan-1-yl group, 3,4-di Dihydroxybutan-1-yl group such as hydroxybutan-1-yl
  • R 11 represents a hydrogen atom, a linear alkyl group having 1 to 3 carbon atoms, or a linear monohydroxyalkyl group having 1 to 3 carbon atoms.
  • R 11 represents a hydrogen atom, a linear alkyl group having 1 to 3 carbon atoms, or a linear monohydroxyalkyl group having 1 to 3 carbon atoms.
  • hydroxyalkyl groups 2,3-dihydroxypropan-1-yl group, 1,3-dihydroxypropan-2-yl group, 1,3-dihydroxy-2-ethylpropan-2-yl group, 1, A 3-dihydroxy-2-hydroxymethylpropan-2-yl group and a pentahydroxyhexane-1-yl group are preferred.
  • Examples of the carboxyalkyl group represented by R a in the formula (I) include those in which the hydroxyl group of the mono, di, tri, tetra, penta, hexa, hepta, or octahydroxyalkyl group exemplified above is substituted with a carboxy group. It is done.
  • Examples of the monocarboxyalkyl group include carboxymethyl group, 1-carboxyethyl group, 2-carboxyethyl group, 1-carboxypropan-1-yl group, 2-carboxypropan-1-yl group, 3-carboxypropane- 1-yl group, 1-carboxypropan-2-yl group, 2-carboxypropan-2-yl group, 1-carboxybutan-1-yl group, 2-carboxybutan-1-yl group, 3-carboxybutane- 1-yl group, 4-carboxybutan-1-yl group, 1-carboxy-2-methylpropan-1-yl group, 2-carboxy-2-methylpropan-1-yl group, 3-carboxy-2-methyl Propan-1-yl group, 1-carboxybutan-2-yl group, 2-carboxybutan-2-yl group, 3-carboxybutane-2- Group, 4-carboxybutan-2-yl group, 1-carboxy-2-methylpropan-2-yl group,
  • Examples of the hydroxycarboxyalkyl group in formula (I) include those obtained by substituting a part of the hydroxyl groups of the di, tri, tetra, penta, hexa, hepta, or octahydroxyalkyl groups exemplified above with carboxy groups. .
  • each R b independently represents a hydrogen atom or a linear or branched alkyl group having 1 to 5 carbon atoms.
  • alkyl group include a methyl group, an ethyl group, a propan-1-yl group, a propan-2-yl group, a butan-1-yl group, a 2-methylpropan-1-yl group, and a butan-2-yl group.
  • 2-methylpropan-1-yl group pentan-1-yl group, 1-methylbutan-1-yl group, 2-methylbutan-1-yl group, 3-methylbutan-1-yl group, 1-ethylbutane-1 -Yl group, 1,1-dimethylpropan-1-yl group, 1,2-dimethylpropan-1-yl group, 2,2-dimethylpropan-1-yl group.
  • a hydrogen atom or one having 1 to 3 carbon atoms is preferable, and a hydrogen atom, a methyl group, or an ethyl group is more preferable.
  • n represents an integer of 1 to 4, and preferably an integer of 1 to 3.
  • the anion of the ionic liquid used in the present invention is not particularly limited.
  • halogen-based anion examples include chloride ion, bromide ion, and iodo ion.
  • sulfur anion examples include a sulfate anion, a hydrogen sulfate anion, and an alkyl sulfonate anion (for example, methane sulfonate, ethyl sulfonate, butyl sulfonate, benzene sulfonate, p-toluene sulfonate, 2, 4, 6 Trimethylbenzene sulfonate, styrene sulfonate, 3-sulfopropyl methacrylate anion, 3-sulfopropyl acrylate, etc.), alkyl sulfate anion (eg methyl sulfate anion, ethyl sulfate anion, butyl sulfate anion, octyl sulfate) Anion, 2- (2-methoxyethoxy) ethyl sulfate anion, etc.).
  • Examples of the phosphorus anion include a phosphate anion, a hydrogen phosphate anion, a dihydrogen phosphate anion, a phosphonate anion, a hydrogen phosphonate anion, a phosphinate anion, and an alkyl phosphate anion (eg, dimethyl phosphate, diethyl phosphate).
  • alkyl phosphonate anion eg, methyl phosphonate anion, ethyl phosphonate anion, propyl phosphonate anion, butyl phosphonate anion, methyl methyl phosphonate anion, etc.
  • alkyl Examples thereof include phosphinate anions and hexaalkylphosphate anions.
  • cyan anion examples include tetracyanoborate anion, dicyanamide, thiocyanate anion, isothiocyanate anion and the like.
  • boron-based anion examples include tetrafluoroborate anions, bisoxalate borate anions, and tetraalkylborate anions such as tetraphenylborate.
  • fluorine-based anion examples include bis (fluorosulfonyl) imide anion, bis (perfluoroalkylsulfonyl) imide anion (for example, bis (trifluoromethylsulfonyl) imide anion, bis (pentafluoroethylsulfonyl) imide, bis (heptafluoro).
  • nitrogen oxide anion examples include nitrate anion and nitrite anion.
  • the carboxylate anion is an organic acid anion having at least one carboxylate anion (—COO ⁇ ) in the molecule, and includes a functional group having a hetero atom such as an oxygen atom, a nitrogen atom, or a sulfur atom. May be.
  • examples of the carboxylate anion include a saturated aliphatic carboxylate anion, an unsaturated aliphatic carboxylate anion, an alicyclic carboxylate anion, an aromatic carboxylate anion, a saturated aliphatic hydroxycarboxylate anion, Saturated aliphatic hydroxycarboxylic acid anion, alicyclic hydroxycarboxylic acid anion, aromatic hydroxycarboxylic acid anion, carbonylcarboxylic acid anion, alkyl ether carboxylic acid anion, halogen carboxylic acid anion, amino acid anion and the like.
  • the saturated aliphatic carboxylate anion is composed of a linear or branched aliphatic saturated hydrocarbon group and one or more carboxylate anions, and preferably has 1 to 22 carbon atoms.
  • the unsaturated aliphatic carboxylate anion is composed of a linear or branched aliphatic unsaturated hydrocarbon group and one or more carboxylate anions, and preferably has 3 to 22 carbon atoms.
  • protons dissociated from acrylic acid, methacrylic acid, crotonic acid, palmitoleic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, eleostearic acid, arachidonic acid, maleic acid, fumaric acid, etc.
  • Anions are examples of protons dissociated from acrylic acid, methacrylic acid, crotonic acid, palmitoleic acid, oleic acid, vaccenic acid, linoleic acid, linolenic acid, eleostearic acid, arachidonic acid, maleic acid, fumaric acid, etc. Anions.
  • the alicyclic carboxylate anion is composed of a saturated or unsaturated carbocycle having no aromaticity and one or more carboxylate anions, and preferably has 6 to 20 carbon atoms.
  • alicyclic carboxylate anions having a cyclohexane ring skeleton are preferable, and specific examples include anions in which protons are dissociated from cyclohexanecarboxylic acid and cyclohexanedicarboxylic acid.
  • the aromatic carboxylate anion consists of a single ring or a plurality of rings having aromaticity and one or more carboxylate anions, and preferably has 6 to 20 carbon atoms.
  • an aromatic carboxylate anion having a benzene ring skeleton is preferable, and specific examples include anions in which protons are dissociated from benzoic acid, cinnamic acid, phthalic acid, isophthalic acid, terephthalic acid and the like.
  • the saturated aliphatic hydroxycarboxylate anion is composed of a linear or branched aliphatic saturated hydrocarbon group, one or more carboxylate anions and one or more hydroxyl groups, and preferably has 2 to 24 carbon atoms. Among these, a saturated aliphatic hydroxycarboxylate anion having 2 to 7 carbon atoms and having 1 to 4 hydroxyl groups is preferable.
  • glycolic acid for example, glycolic acid, lactic acid, tartronic acid, glyceric acid, hydroxyacetic acid, hydroxybutyric acid, 2-hydroxydecanoic acid, 3-hydroxydecanoic acid, 12-hydroxystearic acid, dihydroxystearic acid, cerebronic acid
  • examples include anions in which protons are dissociated from malic acid, tartaric acid, citramalic acid, citric acid, isocitric acid, leucine acid, mevalonic acid, pantoic acid and the like.
  • the unsaturated aliphatic hydroxycarboxylate anion comprises a linear or branched aliphatic unsaturated hydrocarbon group, one or more carboxylate anions and one or more hydroxyl groups, and preferably has 3 to 22 carbon atoms.
  • Specific examples include anions in which protons are dissociated from ricinoleic acid, ricinoleic acid, ricinaleic acid, and the like.
  • the alicyclic hydroxycarboxylic acid anion is composed of a saturated or unsaturated carbocyclic ring having no aromaticity, one or more carboxylic acid anions and one or more hydroxyl groups, and preferably has 6 to 20 carbon atoms.
  • alicyclic hydroxycarboxylic acid anions having a 6-membered skeleton having 1 to 4 hydroxyl groups are preferred.
  • the aromatic hydroxycarboxylate anion is composed of a single ring or a plurality of rings having aromaticity, one or more carboxylate anions and one or more hydroxyl groups, and preferably has 6 to 20 carbon atoms.
  • an aromatic carboxylate anion having a benzene ring skeleton having 1 to 3 hydroxyl groups is preferable.
  • Specific examples include salicylic acid, hydroxybenzoic acid, dihydroxybenzoic acid, trihydroxybenzoic acid, hydroxymethylbenzoic acid, and vanillin.
  • Examples include anions in which protons are dissociated from acid, syringic acid, pyrotocatechuic acid, gentisic acid, orceric acid, mandelic acid, benzylic acid, atrolactic acid, furoletic acid, coumaric acid, umbelic acid, caffeic acid, ferulic acid, sinapinic acid It is done.
  • the carbonyl carboxylate anion is a carboxylic acid anion having 3 to 22 carbon atoms having a carbonyl group in the molecule, and preferably a carbonyl carboxylate anion having 1 to 2 carbonyl groups and having 3 to 7 carbon atoms.
  • a carbonyl carboxylate anion represented by CH 3 ((CH 2 ) p CO (CH 2 ) q ) COO ⁇ (p and q are integers of 0 to 2) is preferable.
  • Specific examples include anions in which protons are dissociated from pyruvic acid or the like.
  • the alkyl ether carboxylate anion is a C 2-22 carboxylate anion having an ether group in the molecule, including a polyoxyethylene alkyl ether carboxylate anion, and having 2 to 2 carbon atoms having an ether group.
  • ⁇ 12 alkylcarboxylate anions are preferred.
  • an alkyl ether carboxylate anion represented by CH 3 (CH 2 ) r O (CH 2 ) s COO ⁇ (where r and s are integers of 0 to 4) is preferable.
  • Specific examples include anions in which protons are dissociated from methoxyacetic acid, ethoxyacetic acid, methoxybutyric acid, ethoxybutyric acid, and the like.
  • the halogen carboxylate anion is preferably a halogen carboxylate anion having 2 to 22 carbon atoms.
  • Specific examples include anions in which protons are dissociated from fluorine-substituted halogen carboxylic acids such as trifluoroacetic acid, pentafluoropropionic acid, and perfluorononanoic acid.
  • the amino acid anion is not particularly limited, but glycine, alanine, glutamic acid, arginine, asparagine, aspartic acid, isoleucine, glutamine, histidine, cysteine, leucine, lysine, proline, phenylalanine, threonine, serine, tryptophan, tyrosine, methionine, Valine, sarcosine, aminobutyric acid, methylleucine, aminocaprylic acid, aminohexanoic acid, norvaline, aminovaleric acid, aminoisobutyric acid, thyroxine, creatine, ornithine, opine, theanine, tricolomine, kainic acid, domoic acid, ibotenic acid, acromelic acid , Anions in which protons are dissociated from cystine, hydroxyproline, phosphoserine, desmosine and the like.
  • An ionic liquid has a melting point of 100 ° C. or lower in a broad sense.
  • the ionic liquid of the present invention is preferably in a liquid state at a lower temperature from the viewpoint of suppression of denaturation due to dissolution and convenience in use when the biocatalyst is stored at a low temperature, and the functional group or characteristic group of the quaternary ammonium cation.
  • the melting point (freezing point) is preferably less than ⁇ 5 ° C., particularly preferably less than ⁇ 10 ° C.
  • the ionic liquid is non-volatile due to the structural characteristics of the organic salt, and there is little change in the concentration of the solution when storing the biocatalyst. Convenient from the aspect.
  • the biocatalyst solvent of the present invention increases the solubility of the biocatalyst due to the presence of cationic hydrogen bonding functional groups (hydroxyl group, carboxy group, ether group, hydrogen), and only alkyl groups that are not hydrogen bonding functional groups. It is more soluble than the tetraalkylammonium cation and imidazolium-based ionic liquids. Moreover, the solubility of a biocatalyst can be further improved by using a cation composed only of a hydrogen-bonding functional group or by adding a hydrogen-bonding functional group to an anion.
  • the anion having a hydrogen bonding functional group is not particularly limited, but a carboxylic acid anion having a hydrogen bonding oxygen atom at the anion site, a sulfonate anion, and a phosphate anion are preferable.
  • the biocatalyst solution of the present invention contains the above-mentioned biocatalyst solvent and a biocatalyst.
  • the method for dissolving the biocatalyst in the biocatalyst solvent is not particularly limited, and the biocatalyst can be dissolved by adding the biocatalyst to the liquid biocatalyst solvent by an appropriate method.
  • the ionic liquid of the present invention can be synthesized, for example, as follows.
  • R a in formula (I) is a hydroxyalkyl group, a carboxyalkyl group, or a hydroxycarboxyalkyl group and R b is a hydrogen atom can be synthesized as follows.
  • a solvent such as water or an organic solvent.
  • a solvent such as water or an organic solvent.
  • Alkanolamines composed of hydroxyalkyl groups having at least one hydroxy group corresponding to the quaternary ammonium cation represented by the formula (I) (for example, mono, di, trialkanolamine, 2-amino-1,3 -Propanediol, 2-amino-2-ethyl-1,3-propanediol, tris (hydroxymethyl) aminomethane, D-glucamine, etc.) or a carboxyalkyl group having 1 to 8 carboxy groups Amino acids (for example, glycine, aspartic acid, glutamic acid, etc.) or aminohydroxyalkanoic acids (for example, 3-amino-2-hydroxypropionic acid, etc.) each having one or more hydroxyl groups and carboxy groups, and organic acids corresponding to anions or The inorganic acid is reacted in a polar solvent such as water or acetonitrile.
  • a polar solvent such as water or acetonitrile.
  • reaction temperature and reaction time depend on the type of raw material, for example, the reaction can be carried out at room temperature for about 1 hour to 1 day. Then, the target ionic liquid can be obtained as a liquid by distilling off the solvent under reduced pressure and purifying as necessary. Further, when the reaction is carried out in an equimolar amount and the reaction is completed, a purification process is not necessary, and the production process can be further simplified.
  • R a in formula (I) is a hydroxyalkyl group, a carboxyalkyl group, or a hydroxycarboxyalkyl group and R b is an alkyl group
  • R a in formula (I) is a hydroxyalkyl group, a carboxyalkyl group, or a hydroxycarboxyalkyl group and R b is an alkyl group
  • an organic halogen compound such as an alkylene halohydrin or monohaloalkyl carboxylic acid corresponding to the structure of formula (I) and an alkylamine, or an organic halogen compound such as an alkyl halide, an alkanolamine, an amino acid,
  • An amine compound such as aminohydroxyalkanoic acid is reacted in a solvent such as acetonitrile.
  • the reaction temperature and reaction time depend on the type of raw material, but can be carried out, for example, at room temperature in about one day. After the reaction, the precipitated solid is filtered and washed, and then the next step is anion exchange.
  • the obtained reactant and an acid corresponding to the anion of formula (I) are reacted in water.
  • the reaction temperature and reaction time depend on the type of raw material, but can be carried out, for example, at room temperature in about one day.
  • an ion exchange resin or the like can be used.
  • the ion exchange resin to be used for example, a strongly basic ion exchange resin commercially available for water treatment or catalyst can be used.
  • the target compound can be obtained by distilling off water under reduced pressure and washing.
  • R a in the formula (I) is composed of a monohydroxyalkyl group, a carboxyalkyl group having two or more carboxy groups, a hydroxyalkyl group having two or more hydroxyl groups, or a monocarboxyalkyl group, and R b is a hydrogen atom.
  • a non-existing compound (n is 4) can be synthesized, for example, as follows.
  • a mono, di, or trialkanolamine and an organic halogen compound such as a haloalkyl carboxylic acid having two or more carboxy groups, or an amino mono, Di or trialkanoic acid is reacted with an organic halogen compound such as alkylene halohydrin in a polar solvent such as water or acetonitrile.
  • the reaction temperature and reaction time depend on the type of raw material, but can be carried out, for example, at room temperature in about one day.
  • the reaction product is washed to obtain a compound comprising a quaternary ammonium cation represented by the formula (I) and a halide ion.
  • anion exchange is performed.
  • the obtained compound is reacted with an organic acid or inorganic acid corresponding to the anion of the target compound in water.
  • the reaction temperature and reaction time depend on the type of raw material, but can be carried out, for example, at room temperature in about one day.
  • the target ionic liquid can be obtained by anion exchange with a hydroxide anion using a strongly basic ion exchange resin, and then anion exchange with an organic acid or inorganic acid corresponding to the anion of the target compound. Can do.
  • a compound in which R a in the formula (I) is composed of a hydroxycarboxyalkyl group and a hydroxyalkyl group or a carboxyalkyl group, and R b is a hydrogen atom or does not exist (n is 4) is, for example, as follows: It can also be synthesized.
  • an aminohydroxyalkanoic acid having at least one hydroxyl group and one carboxy group (for example, 3-amino-2-hydroxypropionic acid) to correspond to the structure of the quaternary ammonium cation represented by the formula (I) Etc.) and a hydroxyalkyl halide having two or more hydroxyl groups or a haloalkylcarboxylic acid having two or more carboxy groups are reacted in a polar solvent such as water or acetonitrile.
  • the reaction temperature and reaction time depend on the type of raw material, but can be carried out, for example, at room temperature in about one day.
  • the reaction product is washed to obtain a compound comprising a quaternary ammonium cation represented by the formula (I) and a halide ion.
  • anion exchange is performed.
  • the obtained compound is reacted with an organic acid or inorganic acid corresponding to the anion of the target compound in water.
  • the reaction temperature and reaction time depend on the type of raw material, but can be carried out, for example, at room temperature in about one day.
  • the target ionic liquid can be obtained by anion exchange with a hydroxide anion using a strongly basic ion exchange resin, and then anion exchange with an organic acid or inorganic acid corresponding to the anion of the target compound. Can do.
  • the solvent for a biocatalyst of the present invention comprises an ionic liquid containing a quaternary ammonium cation and an anion represented by the above formula (I).
  • the biocatalyst is a catalyst for biochemical reaction
  • the biocatalyst in the present invention is an organism-derived microorganism, animal or plant cell, tissue and enzyme derived from the organism, an artificial compound having an enzyme function, or a natural compound. And artificial enzymes that have been modified by artificial modifications to biomolecules and biomolecules.
  • the enzyme has a primary structure in which amino acids are linked one-dimensionally, and the structure of two or more dimensions is determined by the sequence state and number of the amino acids. These structures determine the unique properties of each enzyme.
  • the primary structure 20 types of amino acids are arranged one-dimensionally by peptide bonds. Many enzymes are composed of 100 to 300 amino acids, and the sequence of amino acids is one piece of information that determines the properties of the enzyme.
  • a part (plurality) in the entire one-dimensional array has a high-order regular structure such as ⁇ helix, ⁇ sheet, ⁇ turn and the like.
  • the tertiary structure has a three-dimensional structure in which the primary and secondary structures are three-dimensional. This three-dimensional structure determines the active center, which is a field as a reaction catalyst for enzymes, and the three-dimensional structure of amino acid residues consisting of hydrophilic and hydrophobic moieties.
  • the quaternary structure is an aggregate composed of a plurality of molecules of an enzyme having a three-dimensional structure.
  • biocatalysts such as enzymes have reaction specificity based on primary to quaternary structures. In order to maintain activity against catalytic reactions, not only primary and secondary structures. It is important to retain tertiary and quaternary structures.
  • oxidoreductase oxidoreductase
  • transferase transferase
  • hydrolase hydrolase
  • elimination enzyme lyase
  • isomerase Isomerase
  • synthetic enzyme ligase
  • oxidoreductase examples include glucose oxidase, alcohol oxidase, glucose dehydrogenase, alcohol dehydrogenase, fructose dehydrogenase, gluconate dehydrogenase, aldehyde dehydrogenase, amine dehydrogenase, succinate dehydrogenase, p-cresol methyl hydroxylase, histamine dehydrogenase, fumarate reductase. Nitrate reductase, arsenate reductase, sulfite reductase, catalase, peroxidase, cytochrome P450 and the like.
  • transferase examples include citrate synthase, methyltransferase, phosphotransferase, glycine hydroxymethyltransferase, transketolase, aspartate transaminase, hexokinase, glycerol kinase, creatine kinase, transaminase, transacylase and the like.
  • hydrolase examples include carboxylesterase, acetyl CoA hydrolase, alkaline phosphatase, phospholipase, arylsulfatase, amylase, glucoamylase, cellulase, DNA glycosylase, trypsin, chymotrypsin, pepsin, urease, serine protease, lipase and the like.
  • elimination enzymes include alginate lyase, pyruvate decarboxylase, phosphoketoketolase, citrate lyase, phosphopyruvate hydratase, tryptophan synthase, pectin lyase, aspartate ammonia lyase, cysteine lyase, adenylate cyclase, ferrochelatase. Etc.
  • isomerase examples include amino acid racemase, tartrate epimerase, glucose-6-phosphate 1-epimerase, maleate isomerase, phenylpyruvate tautomerase, phosphoglucose isomerase, phosphomannomutase, tyrosine-2, 3-aminomutase Etc.
  • synthase examples include tyrosine tRNA ligase, acetyl CoA synthetase, asparagine synthetase, GMP synthase, pyruvate carboxylase, DNA ligase and the like.
  • microorganisms to which the solvent for biocatalyst of the present invention can be applied include prokaryotes (bacteria, actinomycetes, archaea), eukaryotes (mold, yeast, mushroom, algae, protozoa) and the like.
  • prokaryotes bacteria, actinomycetes, archaea
  • eukaryotes mimerase-like cells
  • animal and plant cells include animal cells, plant cells, cultured animal cells, and cultured plant cells.
  • tissues derived from animals and plants include animal tissues and plant tissues.
  • biocatalysts such as enzymes and yeasts are susceptible to breakage of the three-dimensional structure of molecules due to the influence of temperature, pH, solvent, electrostatic repulsion between molecules, and the like, and their activity, ie, catalytic ability, is often reduced. Therefore, as a long-term storage method for biocatalysts, there are known freeze-drying methods in a powder state and cryopreservation methods in which they are dissolved and stored in a solution under low concentration and extremely low temperature conditions. In this case, a special device is required, and when the frozen solution is used after being dissolved, the structure of the biocatalyst is often changed and the activity is lowered, and the storage concentration is low and efficient. It is difficult to save.
  • An ionic liquid consisting of a salt structure with an anion and a cation can suppress the intermolecular interaction between enzymes, and is expected to increase the solubility of the enzyme.
  • the system ionic liquid has low affinity with the enzyme surface and low solubility in the enzyme.
  • polyhydric alcohol compounds such as glycerin, propylene glycol, glucose and trehalose having hydroxyl groups that have affinity for amino acid residues such as hydroxyl groups, carbonyl groups, and amino groups on the enzyme surface The effect of suppressing the action is low and the solubility in the enzyme is low.
  • an imidazolim ionic liquid having a hydroxyl group has a rigid ring structure, and therefore has low affinity for the enzyme, and therefore has low solubility in the enzyme.
  • the biocatalyst solvent of the present invention is an ionic liquid composed of an anion and a cation salt structure, and therefore can suppress the intermolecular interaction of the enzyme, and a hydrogen bonding functional group is added to the cation. It has a high affinity with amino residues such as hydroxyl groups, carbonyl groups, and amino groups on the enzyme surface, a small molecular size, and a flexible structure, so that high solubility can be obtained. Further, the presence of a hydrogen-bonding functional group in the anion can further increase the solubility.
  • enzymes have substrate specificity and reaction specificity expressed from amino acid residues and act as reaction catalysts.
  • Substrate specificity means that only the specific substrate reacts by recognizing and selecting the structure of the substrate to be bound by the three-dimensional structure of the reaction site and the amino acid residue.
  • Reaction specificity means that an enzyme catalyzes only a specific chemical reaction, and involves the three-dimensional structure of the reaction site, amino acid residues, and metal ions possessed by some enzymes.
  • metal ions existing inside an enzyme such as an oxidoreductase form a three-dimensional complex with an amino acid residue and exhibit a catalytic action.
  • amino acid residues such as hydroxyl groups, carbonyl groups, and amino groups that exhibit hydrophilicity on the enzyme surface
  • hydrophilic amino acid residues and hydrophobic functional groups such as hydroxyl groups, carbonyl groups, and amino groups inside the enzyme in the active site. It is important to preserve the three-dimensional structure of the enzyme by protecting amino acid residues having
  • water / buffer used as an enzyme solvent has high affinity with the hydrophilic part of the enzyme surface, but the hydrophobic part inside the enzyme is important for the expression of substrate specificity and reaction specificity.
  • the three-dimensional structure cannot be protected and the catalytic activity cannot be maintained.
  • An aqueous solution of bovine serum albumin, which is a protein may be used as a stabilizer, but there are concerns about infectious diseases such as BSE and it is difficult to use in the medical field.
  • An aqueous solution using a polyhydric alcohol-based stabilizer such as glycerin, propylene glycol, glucose, trehalose, etc.
  • hydrophilic sites on the enzyme surface is composed of hydrophilic sites on the enzyme surface, hydroxyl groups of these polyhydric alcohols, hydrophilicity inside the enzyme having an active site, and Each of the hydrophobic sites has an affinity for the hydroxyl group of the polyhydric alcohol and the hydrophobic alkyl chain, and can retain the three-dimensional structure of the enzyme, but its storage stability effect is low.
  • surfactants amino acids
  • the hydrophobic part of the surfactant binds to the hydrophobic amino acid residues in the hydrophobic region inside the enzyme, and the hydrophobic region generates charges. Since it becomes hydrophilic and moves to the hydrophilic surface, the three-dimensional structure of the enzyme collapses and becomes inactive.
  • ionic liquids that do not have a hydrogen-bonding functional group which are conventionally known as ionic liquids, such as imidazolium-based and tetraalkylammonium-based ionic liquids cannot protect hydrophilic amino residues on the surface and inside of the enzyme. Low storage stability.
  • the biocatalyst solvent of the present invention has an amino acid residue such as a hydroxyl group, a carbonyl group, or an amino group of an amino acid residue on the enzyme surface, an internal amino acid residue, or the like.
  • an amino acid residue such as a hydroxyl group, a carbonyl group, or an amino group of an amino acid residue on the enzyme surface, an internal amino acid residue, or the like.
  • Protect by hydrogen bonding with the group Furthermore, by simultaneously protecting the amino acid residue having an internal hydrophobic functional group at the hydrophobic site of the alkyl chain in the ionic liquid, the catalyst retains the three-dimensional structure of the enzyme even under high concentration conditions for a long time. The activity can be maintained.
  • the biocatalyst solvent of the present invention comprises a combination of a cation having a hydrogen bonding functional group (hydroxyl group, carboxy group, ether group, hydrogen) and an anion, and has a non-hydrogen bonding functional group due to its electrostatic action.
  • the retention of the three-dimensional structure of the enzyme is higher than that of the ionic compound, and the retention of the activity of the enzyme is higher.
  • the biocatalyst solvent of the present invention has a small molecular size and a flexible structure, even if it contains a hydroxyl group, the present ionic liquid molecule is more effective than the cyclic rigid imidazolium-based ionic liquid. Efficiently penetrates into the inside of a complicated three-dimensional structure, protects amino acid residues without steric distortion, and retains high activity of the enzyme.
  • An oxidoreductase is an enzyme that exhibits a catalytic action by transferring a hydrogen atom, transferring an electron, and adding an oxygen atom from a substrate. Many of them exhibit a catalytic action by a change in valence due to electron transfer of metal ions in the enzyme.
  • a transfer enzyme is an enzyme that catalyzes a reaction of transferring an atomic group (functional group) from one substrate to another. It is particularly important to maintain a three-dimensional structure that allows the substrate to be compatible because it undergoes a transfer reaction only to functional groups present in the reacting substrate.
  • a hydrolase is an enzyme that cleaves (hydrolyzes) a specific bond in a substrate by reacting a substrate with water, a hydroxyl group in an amino acid residue of the enzyme, and the like.
  • a desorbing enzyme is an enzyme that cleaves bonds such as carbon-carbon and carbon-oxygen in a substrate without being oxidized or hydrolyzed from the substrate molecule.
  • bonds such as carbon-carbon and carbon-oxygen in a substrate without being oxidized or hydrolyzed from the substrate molecule.
  • a metal ion and a substrate react to generate an intermediate, thereby cleaving a bond in the substrate molecule.
  • An isomerase is an enzyme that converts a substrate into stereoisomers having different spatial arrangements. Therefore, the three-dimensional structure of the amino acid residue in the enzyme that binds the substrate is important.
  • Synthetic enzyme is an enzyme that binds substrates to each other using the hydrolysis energy of ATP. In the reaction, two substrates react with each other through an intermediate in which ATP and a specific amino acid residue in an enzyme are bound to produce a target product.
  • biocatalyst solvent of the present invention protects amino acid residues or complexed metal ions by its structural characteristics, and can retain the activity of the biocatalyst.
  • the biocatalyst solvent of the present invention can suppress denaturation due to heat among various denaturation factors such as heat (temperature) and pH.
  • the hydrogen bond between amino acid residues is cleaved by heat, the steric structure is destroyed, and the enzyme is denatured.
  • the biocatalyst solvent of the present invention uses the amino acid residue in the enzyme and the hydrogen bonding functional group in the ionic liquid. By forming a hydrogen bond network between them, the three-dimensional structure is held more firmly and thermal denaturation is suppressed.
  • the biocatalyst solvent of the present invention has a high enzyme concentration even under room temperature conditions (25 ° C.) higher than ⁇ 20 to 5 ° C., which are general enzyme storage conditions, and under 40 ° C. acceleration conditions where the enzyme is deactivated. It retains activity over a long period of time, and can be dissolved and stored.
  • biocatalyst solvent of the present invention has high solubility in biocatalysts and can maintain activity even under high-temperature conditions, it can be used not only for storage of biocatalysts but also as an efficient reaction solvent in biocatalytic reactions. Highly useful.
  • the biocatalyst solution of the present invention includes the biocatalyst solvent of the present invention, and when used as a biocatalyst solution, the biocatalyst solvent of the present invention is highly hydrophilic due to its structural features and Therefore, the biocatalyst solvent of the present invention can be used alone or mixed with other solvent components such as water and polar solvents. Moreover, an additive can also be added and used.
  • the preservation of the biocatalyst is not particularly limited, but mainly means that the following conditions are satisfied.
  • the catalytic activity retention rate in the biocatalyst solution of the present invention depends on the type of biocatalyst and the like. For example, when urease is dissolved at 30.0 to 50.0 mg / mL and stored at 25 ° C., 30
  • the catalyst activity retention after 90 days can be 90% or more, 90 days after 40% or more, 180 days after 7% or more, and when stored at 40 ° C. which is an accelerated test, the catalyst activity retention after 30 days is 60 % Or more, 90 days later can be 13% or more.
  • the catalytic activity retention rate after 30 days can be 90% or more, and after 90 days it can be 68% or more.
  • the catalyst activity retention after 30 days can be 90% or more, and after 90 days it can be 29% or more.
  • the biocatalyst solution of urease or catalase can dissolve the biocatalyst at a high concentration of 20.0 mg / mL or more. Even at such a high concentration, the high catalytic activity retention rate as described above can be obtained. Long-term storage is also possible.
  • the catalyst activity retention after 7 days can be 90% or more, and after 21 days it can be 45% or more.
  • the catalyst activity retention after 7 days can be 90% or more, and after 21 days can be 15% or more.
  • citrate synthase is dissolved at 5.0-10.0 mg / mL and stored at a temperature of 25 ° C.
  • the catalyst activity retention after 7 days can be 80% or more, and after 21 days can be 11% or more.
  • the catalyst activity retention after 7 days can be 45% or more, and after 14 days can be 15% or more.
  • the catalytic activity retention rate after 21 days could be 10% or more, and stored at 40 ° C., which was an accelerated test.
  • the catalyst activity retention after 14 days can be 19% or more.
  • the retention rate of catalyst activity after 60 days can be 20% or more, and stored at 40 ° C., which is an accelerated test.
  • the catalyst activity retention after 30 days can be set to 13% or more.
  • the catalytic activity retention after 60 days can be 61% or more, and when stored at 40 ° C., which is an accelerated test, The catalyst activity retention after 21 days can be 10% or more.
  • the catalytic activity retention after 60 days can be 10% or more, and when stored at 40 ° C., which is an accelerated test, The catalyst activity retention after 14 days can be made 21% or more.
  • the catalyst activity retention after 14 days can be made 7% or more.
  • the retention of the three-dimensional structure and catalytic activity of the biocatalyst can be confirmed by the success or failure of the catalytic reaction.
  • the storage concentration of the biocatalyst in the biocatalyst solution of the present invention depends on the type of biocatalyst and the like. For example, urease is 10 ng / mL or more, catalase is 20 mg / mL or more, amylase is 0.5 mg / mL or more, quencher.
  • Acid synthase should be at least 5 mg / mL, alginate lyase at least 10 mg / mL, phosphoglucose isomerase and acetyl-CoA synthetase at least 1.5 mg / mL, hexokinase at least 10 mg / mL, and cytochrome P450 at least 1.0 mg / mL Can do.
  • the storage period of the biocatalyst depends on the type of biocatalyst, but can be, for example, 30 days or longer, further 60 days or longer, further 90 days or longer, and 180 days or longer.
  • the biocatalyst solution of the present invention can be stored in a liquid state for a long period of time, for example, within a range of 40 ° C. or less, and the biocatalyst can be stored.
  • Compound 1 was obtained by reacting monoethanolamine (10.00 g, 0.16 mol) and lactic acid (14.74 g, 0.16 mol) in water (100 mL) at room temperature for 3 hours, and then distilling off the water under reduced pressure and washing. Got.
  • Choline hydroxide was obtained by dissolving choline chloride in ion-exchanged water and passing the solution through a column packed with an ion-exchange resin (Diaion SA10A manufactured by Mitsubishi Chemical Corporation) substituted with OH type.
  • the obtained choline hydroxide (8.68 g, 0.07 mol) and lactic acid (6.45 g, 0.07 mol) are reacted in water (100 mL) at room temperature for 3 hours, and then the water is distilled off under reduced pressure and washed. Gave compound 20.
  • Compound 21 was obtained by the same synthesis method and blending ratio as in Example 20 using choline chloride and succinic acid.
  • FT-IR (KBr): 3177cm -1 : OH stretching vibration 2925cm -1 : C-H stretching vibration 1709cm -1 : COOH stretching vibration 1551cm -1 : COO - stretching vibration 1H-NMR (D2O 400MHz): ⁇ 2.43 (s, 4H, HOOCC H 2 C H 2 COO ⁇ ), ⁇ 3.07 (s, 9H, C H 3 N + ), ⁇ 3.39 (m, 2H, C H 2 N + ), ⁇ 3.93 (m, 2H, N + CH 2 C H 2 OH).
  • Tetrabutylammonium bromide was dissolved in ion-exchanged water and passed through a column packed with an ion-exchange resin (Diaion SA10A manufactured by Mitsubishi Chemical Corporation) substituted with OH type to obtain tetrabutylammonium hydroxide.
  • the obtained tetrabutylammonium hydroxide (8.05 g, 0.03 mol) and lactic acid (2.70 g, 0.03 mmol) were reacted in water (100 mL) at room temperature for 3 hours, after which water was distilled off under reduced pressure and washed. As a result, Compound 28 was obtained.
  • Compound 39 Bovine serum albumin aqueous solution Albumin (derived from bovine, general grade, pH 5.2: Nacalai Tesque) was dissolved in water to prepare 10 mg / mL.
  • Compound 40 Lysine aqueous solution L (+)-lysine (Wako Pure Chemical Industries, Ltd.) was dissolved in water to prepare 10 mg / mL.
  • Comparative Example 14 Compound 41: Lysine, bovine serum albumin aqueous solution L (+)-lysine (Wako Pure Chemical Industries, Ltd.) and albumin (derived from bovine, general grade, pH 5.2: Nacalai Tesque) A 54:46 ratio mixture was prepared with water to a 10 mg / mL aqueous solution. Comparative Example 15 Compound 42: Arginine aqueous solution L (+)-Arginine (Wako Pure Chemical Industries, Ltd.) was dissolved in water to prepare 10 mg / mL.
  • Compound 43 20% glycerol solution Glycerin (Wako Pure Chemical Industries, Ltd.) was dissolved in a 100 mM aqueous solution of potassium dihydrogen phosphate adjusted to pH 7.4 to prepare a 20% solution.
  • the moisture content resulting from the ionic liquids of compounds 1 to 35 in the atmosphere or during synthesis is measured by the Karl Fischer method or the simultaneous differential thermothermal gravimetric measurement device (TG / DTA). The compounds were evaluated at a constant (14% ⁇ 0.5%).
  • Enzymes used below are representative of various enzymes, such as the hydrolase urease (derived from Nata beans, Wako Pure Chemical Industries, Ltd.), ⁇ -amylase (derived from Bacillus subtilis, Wako Pure Chemical Industries, Ltd.). ), Oxidoreductase catalase (derived from bovine liver, Wako Pure Chemical Industries, Ltd.), cytochrome P450 (Human CYP3A4LR Easy CYP Bactosomes, Nippon Agricultural Industry Co., Ltd.), transferase citrate synthase (derived from porcine heart) , SIGMA-ALDRICH), hexokinase (derived from Saccharomyces cerevisiae, SIGMA-ALDRICH), alginate lyase (derived from Flavobacterium, SIGMA-ALDRICH), isomerase phosphoglucose isomerase (derived from rabbit muscle, SIGMA-ALDRICH) ), Derived from the synthetic enzyme acetyl-CoA
  • Enzyme dissolution test Dissolution of compounds 1-35 (Examples 1-27, Comparative Examples 1-8) in urease, ⁇ -amylase, catalase, citrate synthase, alginate lyase, phosphoglucose isomerase, acetyl CoA synthetase, hexokinase, cytochrome P450 Concentration was measured. A predetermined concentration of each enzyme was added at room temperature (25 ° C.) to the compounds 1 to 35 having the water content shown in Tables 1 to 3, and the dissolution was visually discriminated after mixing (Tables 1 to 3).
  • the solvent for biocatalysts of the present invention is urease at 15 mg / mL or more, catalase at 20 mg / mL or more, amylase at 0.5 mg / mL or more, citrate synthase at 5 mg / mL or more, alginate lyase at 10 mg / mL or more, phospho Glucose isomerase and acetyl CoA synthetase could be dissolved at 1.5 mg / mL or more, hexokinase at 10 mg / mL or more, and cytochrome P450 at 1.0 mg / mL or more.
  • compounds 1-27 are dialkylimidazolium-based ionic liquids of compounds 29-34, imidazolium-based ionic liquids having a hydroxyl group, and tetraalkylammonium ions of compound 28. It was confirmed that the structure of the present ionic liquid of a quaternary ammonium cation having a higher solubility than the liquid and having a hydrogen bonding functional group such as a hydroxyl group, a carboxy group, and hydrogen exhibits high solubility in the enzyme.
  • the compounds in which all of the functional groups of the cation are hydrogen bonding functional groups are obtained from the compounds 20 to 27 (Examples 20 to 27) in which the cation is composed of a hydrogen bonding functional group and an alkyl group. 1 to 19 were relatively more soluble, suggesting that the presence of cationic hydrogen-bonding functional groups (hydroxyl group, carboxy group, hydrogen) increases the solubility of the enzyme.
  • the compound 26 is more soluble than the compound 27 having the same anion, for example, the compounds 10 and 11 than the compounds 12 and 13 having the same cation, and the compound 20 than the compounds 21 and 22, and among the hydrogen bonding functional groups, a hydroxyl group Showed a high effect of increasing the solubility in enzymes.
  • the compounds 1 to 27 of the present invention have a relatively higher solubility than the glycerin (100%) of the compound 35 having three hydroxyl groups, and have a salt structure with an anion and a cation. It was suggested that the interaction between the enzyme molecules of the compound was suppressed.
  • the compounds in Tables 4 to 32 were mixed with urease, catalase, ⁇ -amylase, citrate synthase, hexokinase, alginate lyase, phosphoglucose isomerase, and acetyl CoA synthetase, respectively.
  • the enzyme was dissolved in an incubator set at 25 ° C., which is higher than the temperature at which the enzyme is retained and maintained, and at a higher temperature, and 40 ° C. as a stability promotion test.
  • cytochrome P450 having particularly low stability was dissolved at the enzyme concentration shown in Table 32 and left in a thermostat set at 3 ° C., which is generally higher than the temperature at which cytochrome P450 activity is maintained.
  • the compounds 1 to 34 were set to the maximum solubility of each compound in each enzyme.
  • the compounds 35 to 42 of the comparative example were set to the lowest value among the maximum solubilities of the compounds 1 to 27 (Examples 1 to 27) with respect to the respective enzymes, and the conditions were relatively mild.
  • each sample is collected, and the activity retention rate of the enzyme dissolved in each compound is measured using the following method to maintain the three-dimensional structure and stabilization effect of each compound enzyme. It was confirmed.
  • ⁇ Hydrolytic enzyme measurement of urease activity: Tables 4 to 9> The activity of urease was measured by quantifying ammonium ions decomposed from urea by the enzyme reaction of urease by the indophenol method.
  • a 1 mM substrate solution prepared by dissolving urea as a substrate in 10 mM phosphate buffer having a pH of 7.5
  • a 1 mM substrate solution was placed in an Erlenmeyer flask and pre-warmed at 30 ° C. for about 30 minutes.
  • the samples (compounds 1 to 6, 8 to 11, 13, 15, 18, 20, 22 to 24, 27 to 29, 33 to 33) which were allowed to stand for a predetermined period at the set concentrations and temperatures described in Tables 4 to 9 were used. 42) was added to the substrate solution so that the amount of the enzyme was 0.5 mg, and reacted at 30 ° C. for 60 minutes.
  • reaction solution 0.1 mL of the reaction solution is collected, and immediately a phenol solution (prepared by dissolving 10 g of phenol and 50 mg of sodium pentacyanonitrosyl iron (III) in ion-exchanged water and then measuring up to 1000 mL with ion-exchanged water) 2 mL and 2 mL of sodium hypochlorite solution (prepared by dissolving 5 g of sodium hydroxide and 8.4 mL of 5% sodium hypochlorite solution in ion-exchanged water, then made up to 1000 mL with ion-exchanged water) In addition, the reaction was allowed to proceed for 20 minutes in a 37 ° C constant temperature bath.
  • the amount of ammonium ion produced was determined from the amount of indophenol obtained by measuring the absorbance (V-550: JASCO Corporation) at a wavelength of 635 nm of this reaction solution, and urease activity was calculated.
  • V-550 JASCO Corporation
  • urease activity was calculated.
  • a calibration curve obtained by preparing an ammonium ion solution in a concentration range of 0.1 to 3.0 mM and quantifying by the indophenol method in the same manner as described above was used.
  • standard of an enzyme activity retention was computed as follows. Urease powder stored at an appropriate temperature was dissolved in a buffer (10 mM phosphate buffer having a pH of 7.5) to prepare an enzyme solution having an enzyme concentration of 50 mg / mL. Immediately after preparation, the solution is added to the substrate solution so that the amount of the enzyme is 0.5 mg, and after the enzyme reaction, the enzyme activity is determined based on the amount of ammonium ion determined by the indophenol method. Retention was calculated.
  • the compounds of the present invention are 90% or more after 30 days under high concentration conditions (30 to 50 mg / mL), 40% or more after 90 days, 180% After 7 days, the activity retention rate was 7% or more. That is, it was suggested that the biocatalyst solvent of the present invention retains the activity of the enzyme and has a high retention property of the three-dimensional structure of the enzyme under conditions of high concentration, high temperature, and long term.
  • the ionic liquid of the present invention retained 90% or more activity at 25 ° C. and 64% or more at 40 ° C. after 30 days from the start of storage, whereas it had an imidazolium-based ionic liquid having a hydroxyl group (compound 33). , 34), the activity retention after 30 days decreased to 0% at both 25 ° C and 40 ° C. That is, when the cation is an imidazolim series, even if it has a hydroxyl group, the molecular structure of the cation is cyclic and rigid, so that the retention of the three-dimensional structure of the amino acid residue inside the enzyme is low.
  • the solvent for biocatalysts is a quaternary ammonium compound with a small cation molecular size and a flexible structure, so that amino acid residues can be protected up to the inside of the enzyme, and the enzyme's three-dimensional structure has high retention.
  • Catalase activity measurement Tables 10 to 15> Catalase is an enzyme that breaks down hydrogen peroxide into oxygen and hydrogen. The activity was measured by quantifying the amount of hydrogen peroxide that is a reaction substrate of catalase.
  • a 16 mM substrate solution (prepared by dissolving hydrogen peroxide as a substrate in a 10 mM phosphate buffer having a pH of 7.0) was taken in an Erlenmeyer flask and pre-warmed at 25 ° C. for about 30 minutes.
  • samples (compounds 1 to 6, 8 to 11, 13, 15, 18, 20, 22 to 24, 27, 33 to 41) left for a predetermined period at the set concentrations and temperatures described in Tables 10 to 15 was added to the above substrate solution so that the amount of enzyme was 0.5 mg, and reacted at 25 ° C. for 30 minutes.
  • a titanium solution (1 g of titanium oxide and 10 g of potassium sulfate is dissolved in 150 mL of concentrated sulfuric acid, heated at 180 to 220 ° C. for 2 to 3 hours, and then made up to 1.5 L with ion-exchanged water. Preparation)
  • the reaction was stopped by adding 2.5 mL.
  • the absorbance at 410 nm of this stopped solution was measured, the amount of hydrogen peroxide was quantified, and the catalase activity was calculated.
  • For the amount of hydrogen peroxide use a calibration curve created from a hydrogen peroxide solution in the concentration range of 1 to 16 mM (prepared so that hydrogen peroxide is dissolved in 10 mM phosphate buffer at pH 7.0 to a predetermined concentration). Calculated.
  • standard of an enzyme activity retention was computed as follows. Catalase powder stored at an appropriate temperature was dissolved in a buffer (10 mM phosphate buffer at pH 7.0) to prepare an enzyme solution having an enzyme concentration of 50 mg / mL. Immediately after the preparation, the solution is added to the substrate solution so that the amount of the enzyme becomes 0.5 mg as described above, and after the enzyme reaction, the amount of hydrogen peroxide calculated by the same method as above is used as a reference. The enzyme activity retention rate was calculated.
  • the ionic liquids of the present invention were 91% or more and 40% at 25 ° C. (Tables 10 to 12). While Comparative Examples 6 to 14 (Compounds 33 to 41) maintained 0% to 89% at 25 ° C. and 40 ° C., the catalytic activity of 90% or more was maintained under the conditions at 0 ° C. (Tables 13 to 15). It was 0 to 88%. Furthermore, after 90 days, the ionic liquid of the present invention retained a catalytic activity of 75% or more at 25 ° C. and 30% or more at 40 ° C., whereas the comparative example was 0 to 67 at 25 ° C. % And 0 to 28% at 40 ° C., indicating the superiority of the ionic liquid of the present invention.
  • Amylase is an enzyme that converts amylose and amylopectin in starch into monosaccharides such as glucose and disaccharides such as maltose and oligosaccharides. The activity was measured by quantifying starch, which is a reaction substrate for amylase.
  • samples (compounds 3 to 6, 10, 11, 13, 18, 22, 23, 27) that were allowed to stand for a predetermined period of time at the set concentrations and temperatures described in Tables 16 and 17 were added with an enzyme amount of 0.5 mg. Then, it was added to the above substrate solution and reacted at 37 ° C. for 30 minutes.
  • standard of an enzyme activity retention was computed as follows. An amylase powder stored at an appropriate temperature was dissolved in a buffer (10 mM phosphate buffer having a pH of 6.5) to prepare an enzyme solution having an enzyme concentration of 0.5 mg / mL. Immediately after the preparation, the solution is added to the substrate solution so that the amount of the enzyme becomes 0.5 mg in the same manner as described above, and after the enzyme reaction, the amount of starch calculated by the same method as above is used as a reference. Activity retention was calculated.
  • Citrate synthase activity measurement Tables 18 and 19> Citrate synthase is an enzyme that contributes to the reaction of oxaloacetate + acetyl coenzyme A + H 2 O ⁇ citrate + coenzyme A + H +. The activity was measured by quantifying the product obtained by reacting coenzyme A produced by the reaction with DTNB (5,5′-dithiobis-2-nitrobenzoic acid).
  • a 0.2 mM oxaloacetic acid solution (prepared by dissolving oxaloacetic acid in a 50 mM aqueous solution of trishydroxymethylaminomethane (tris buffer) adjusted to pH 8.0 with hydrochloric acid) in a 10 mL screw tube, 50 ⁇ L, 0.2 mM acetyl Coenzyme A solution (prepared by dissolving acetyl coenzyme A in ion-exchanged water) 30 ⁇ L, 0.1 mM DTND solution (prepared by diluting with 1M Tris buffer adjusted to pH 8.0 so that DTND is 0.1 mM) ) 100 ⁇ L and ion-exchanged water 770 ⁇ L were added to prepare a substrate solution. This substrate solution was pre-warmed at 25 ° C. for about 30 minutes.
  • samples (compounds 3 to 6, 10, 11, 13, 18, 22, 23, 27) that were allowed to stand for a predetermined period at the set concentrations and temperatures described in Tables 18 and 19 were prepared with an enzyme amount of 0.1 mg. And added to the above substrate solution and reacted at 25 ° C. for 3 minutes.
  • the ionic liquids (compounds 3 to 6, 10, 11, 13, 18, 22, 23, 27) of the present invention were not less than 11% after 21 days under the condition of 25 ° C. (Table 18) (Table 18). In 19), the catalyst activity of 15% or more was retained after 14 days.
  • ⁇ Transferase Activity measurement of hexokinase: Tables 20 to 23> Hexokinase is an enzyme that contributes to the reaction of phosphorylating hexose such as glucose to hexose-6-phosphate in the presence of ATP. The activity was measured by quantifying NADPH (nicotinamide adenine dinucleotide phosphate reduced form) produced by the reaction of glucose decomposed by hexokinase with ATP.
  • NADPH nicotinamide adenine dinucleotide phosphate reduced form
  • a substrate solution was prepared by adding 0.3 mL of 1 mM NADP (nicotinamide adenine dinucleotide phosphate oxidation) solution, 0.3 mL of 10 mM magnesium chloride solution, and 0.9 mL of ion-exchanged water. This substrate solution was pre-warmed at 37 ° C. for about 30 minutes.
  • 10 U / mL G6PDH was prepared by dissolving G6PDH 1000 units (U) (from baker's yeast, SIGMA-ALDRICH) in 100 mL of 10 mM Tris buffer at pH 8.0.
  • samples (compounds 3 to 6, 10, 11, 13, 18, 22, 23, 27, and 35 to 41) that were allowed to stand for a predetermined period at the set concentrations and temperatures described in Tables 20 to 23 were used as enzyme amounts.
  • the ionic liquids of the present invention retain a catalytic activity of 10% or more after 21 days under the conditions of 25 ° C. (Tables 20 and 21). On the other hand, it was 0% in Comparative Examples 8 to 14 (Compounds 35 to 41). In addition, under the condition of 40 ° C. (Tables 22 and 23), after 14 days, the ionic liquid of the present invention retained 19% or more of the catalytic activity, whereas the comparative example was 0%. The superiority was shown.
  • ⁇ Desorption enzyme activity measurement of alginate lyase: Tables 24-27> Alginate lyase is an enzyme that contributes to the degradation reaction of alginic acid. The activity was measured by quantifying this product since a sugar having a double bond produced by the degradation of alginic acid by alginic acid lyase shows a specific absorbance change at 235 nm.
  • a substrate solution was prepared by adding 1.0 mL of a 0.2% alginate aqueous solution, 0.5 mL of 200 mM Tris buffer pH 7.0 and 0.5 mL of ion exchange water to a 10 mL screw tube. This substrate solution was pre-warmed at 25 ° C. for about 30 minutes.
  • the substrate solution used as a blank and the absorbance of the reaction solution at 235 nm were measured, the amount of the product was quantified, and the alginate lyase activity was calculated.
  • the amount of product was calculated using a calibration curve prepared from a solution having a concentration range of 0.01 to 0.2%.
  • standard of an enzyme activity retention was computed as follows.
  • the alginate lyase powder stored at an appropriate temperature is dissolved in a buffer (200 mM Tris buffer solution of pH 7.0) to prepare an enzyme solution with an enzyme concentration of 10.0 mg / mL.
  • the enzyme amount was added to the substrate solution so that the amount of the enzyme would be 0.03 mg, the enzyme reaction was performed, and then the absorbance calculated by the same method as described above was used as a reference.
  • the ionic liquids of the present invention retain a catalytic activity of 20% or more after 60 days under the conditions of 25 ° C. (Tables 24 and 25). did. In particular, compounds 4, 10, and 18 retained a high activity of 100%. On the other hand, Comparative Examples 8 to 14 (Compounds 35 to 41) were 0%. In addition, under the conditions of 40 ° C. (Tables 26 and 27), after 30 days, the ionic liquid of the present invention retained 13% or more of the catalytic activity, whereas the comparative example was 0%. The superiority was shown.
  • ⁇ Isomerization enzyme activity measurement of phosphoglucose isomerase: Tables 28 and 29> Phosphoglucose isomerase is an enzyme that converts glucose to fructose. The activity was measured by quantifying the amount of fructose produced by phosphoglucose isomerase.
  • A 200 mM glucose solution (prepared by dissolving glucose in 90 mL of 200 mM phosphate buffer pH 7.2, 10 mL of 100 mM magnesium sulfate solution)
  • B 200 mM phosphate buffer (pH 7.2)
  • C 500 mM perchloric acid aqueous solution
  • D 1.5% cysteine aqueous solution
  • E 70% sulfuric acid aqueous solution
  • F 0.12% carbazole-ethanol solution
  • samples (compounds 3 to 6, 10, 11, 13, 18, 22, 23, and 27) that were allowed to stand for a predetermined period at the set concentrations and temperatures described in Tables 28 and 29 had an enzyme amount of 0.03 mg.
  • 1.0 mL of B was added and reacted at 60 ° C. for 60 minutes.
  • 2.0 mL of C was added and cooled, and the volume was increased to 50 mL.
  • 1.0 mL of this solution was sampled, 0.2 mL of D and 6.0 mL of E were added and shaken and mixed. After cooling the solution, 0.2 mL of F was added and reacted at 60 ° C. for 10 minutes.
  • the amount of fructose can be determined by using a fructose solution having a concentration range of 1 to 200 mM (prepared so that fructose is dissolved in 200 mM phosphate buffer at pH 7.2 to a predetermined concentration) without adding an enzyme solution. It calculated using the analytical curve created from the light absorbency measured by operating.
  • standard of an enzyme activity retention was computed as follows. Phosphoglucose isomerase stored at an appropriate temperature was dissolved in a buffer (200 mM phosphate buffer at pH 7.2) to prepare an enzyme solution having an enzyme concentration of 1.5 mg / mL. Immediately after the preparation, the solution is added to the substrate solution so that the amount of the enzyme becomes 0.03 mg in the same manner as described above, the enzyme reaction is performed, and then the amount of fructose calculated by the same method as above is used as a reference. Activity retention was calculated.
  • the ionic liquids (compounds 3 to 6, 10, 11, 13, 18, 22, 23, 27) of the present invention are 61% or more after 60 days at 40 ° C. under conditions of 25 ° C. (Table 28) (Table In 29), 10% or more of the catalytic activity was retained after 21 days.
  • Acetyl CoA synthetase is an enzyme that uses the energy of ATP to catalyze the reaction of synthesizing acetyl CoA from coenzyme A (CoA) and acetic acid. The activity was measured by quantifying acetic acid, which is a reaction substrate of acetyl CoA synthetase.
  • F-kit acetic acid (Roche) was used for acetyl CoA synthetase activity measurement.
  • Solution I triethanolamine buffer (pH 8.4), L-malic acid, magnesium chloride solution
  • Solution II ATP, CoA, NAD solution
  • Solution III malate dehydrogenase, citrate synthase solution
  • ion-exchanged water samples (compounds 3 to 6, 10, 11, 13, 18, 22, 23, 27) that were allowed to stand for a predetermined period at the set concentrations and temperatures described in Tables 30 and 31, It added to said substrate solution so that it might be set to 0.03 mg, made the total amount 900 microliters, and pre-warmed at 30 degreeC for about 30 minutes.
  • the absorbance at 340 nm of the blank solution subjected to the above operation without adding the enzyme solution and the reaction solution was measured, and acetic acid was quantified to calculate the acetyl CoA synthetase activity.
  • the amount of acetic acid was calculated using a calibration curve prepared from an acetic acid solution having a concentration range of 0.1 to 1 mM.
  • standard of an enzyme activity retention was computed as follows. An acetyl CoA synthetase stored at an appropriate temperature was dissolved in a buffer (100 mM potassium phosphate buffer solution at pH 7.4) to prepare an enzyme solution having an enzyme concentration of 1.5 mg / mL. Immediately after the preparation, the solution is added to the substrate solution so that the amount of the enzyme becomes 0.03 mg in the same manner as described above, the enzyme reaction is performed, and then the amount of acetic acid calculated by the same method as described above is used as a reference. Activity retention was calculated.
  • the ionic liquids of the present invention are 10% or more after 60 days under the condition of 25 ° C. (Table 30) (Table 30). In 31), the catalyst activity of 21% or more was retained after 14 days.
  • ⁇ Oxidoreductase Activity measurement of cytochrome P450: Table 32> The activity of cytochrome P450 was measured by quantifying 6 ⁇ -hydroxytestosterone generated from the substrate testosterone by the enzymatic reaction of cytochrome P450 by HPLC.
  • samples (compounds 3 to 6, 10, 13, 15, 18, 20, 22, 29, 36) that were allowed to stand for a predetermined period of time at the set concentrations and temperatures described in Table 32 so that the enzyme amount was 1.0 ⁇ g. , 43) was collected, added to the substrate solution, and reacted at 37 ° C. for 30 minutes.
  • standard of an enzyme activity retention was computed as follows. After freezing cytochrome P450 that had been cryopreserved, it was quickly dissolved in a cytochrome P450 buffer to prepare an enzyme solution having an enzyme concentration of 1.0 mg / mL. Immediately after the preparation, the solution was added to the substrate solution so that the enzyme amount was 1.0 ⁇ g as described above, the enzyme reaction was performed, and the enzyme activity was retained based on the amount of 6 ⁇ -hydroxytestosterone determined by HPLC. The rate was calculated.
  • the biocatalyst solvent of the present invention has high retention of the three-dimensional structure of the enzyme even if it is cytochrome P450, which is particularly low in stability compared to general enzymes and requires cryopreservation. It was. 4).
  • -10 ° C storage test 50 mg / mL of catalase in the ionic liquid of the present invention (compounds 4, 10, 15: Examples 28, 29, 30) and an aqueous solution in which a conventional stabilizer was dissolved (compounds 36 to 41: comparative examples) 17-22) was dissolved in a concentration of 20 mg / mL and left in a low temperature incubator set at ⁇ 10 ° C. for 24 hours.
  • the aqueous solutions of compounds 36 to 41 were frozen. Thereafter, the mixture was allowed to stand in a 25 ° C. incubator (the aqueous solution of compounds 36 to 41 was dissolved), and the activity of catalase was measured in the same manner as described above.
  • the compounds 4, 10, and 15 of the present invention were in a liquid state even at ⁇ 10 ° C., retained 100% of their activity, and could be stored. That is, in general, the storage temperature is preferably lower.
  • the ionic liquid of the present invention has a freezing point lower than ⁇ 10 ° C. and is liquid even at a low temperature, and has high storage stability. In addition, it was confirmed that the convenience is high. 5.
  • Urease was dissolved in samples (compounds 4 to 6, 10, 18, 22, 23, 27, 29, 35 to 40, 42) to a concentration of 10 ⁇ g / mL and 10 ng / mL. It was left to stand in a thermostat set at 0 ° C. and 40 ° C., and after 180 days, the activity of urease was measured in the same manner as described above.
  • the comparative examples In the results of 10 ⁇ g / mL (Tables 34 and 35), the comparative examples (Compounds 29, 35 to 40, 42) decreased to 20% or less at 25 ° C. and 0% activity retention at 40 ° C. after 180 days. In contrast, the compounds of the present invention (Examples 4 to 6, 10, 18, 22, 23, 27) retain activity of 31% or more at 25 ° C. and 5% or more at 40 ° C. after 180 days. Showed the rate. Further, in the results of 10 ng / mL (Tables 36 and 37), the comparative examples (compounds 29, 35 to 40, and 42) had an activity retention of 25% or less at 25 ° C. and 0% at 40 ° C. after 180 days.
  • the compounds of the present invention (Examples 4 to 6, 10, 18, 22, 23, 27) had a concentration of 39% or more at 25 ° C. and 8% or more at 40 ° C. after 180 days.
  • the activity retention was shown. That is, it was suggested that even when the storage concentration of the biocatalyst is extremely low, the biocatalyst solvent of the present invention retains the activity of the enzyme and has a high retention property of the three-dimensional structure of the enzyme. 6).
  • Anhydrous ionic liquid storage stability test The storage stability test of urease in anhydrous ionic liquid was performed as follows.
  • samples (compounds 1 to 6, 8 to 11, 13, 15, 18, 20, 23, 24, 27, 29, 33 to 35) are placed in a screw tube and dehydrated under reduced pressure to prepare an anhydrous ionic liquid.
  • urease was added and dissolved so that the set concentrations shown in Tables 38 and 39 were obtained.
  • the inside of each screw tube was replaced with nitrogen so that no moisture was mixed into each screw tube, and the screw tube was sealed. And it was left to stand in the thermostat set to 25 degreeC and 40 degreeC, and the activity of urease was measured by the method similar to the above.
  • the comparative examples In the results at 25 ° C. (Table 38), the comparative examples (compounds 29, 33 to 35) decreased to an activity retention of 20% or less after 30 days, whereas the compounds of the present invention (Examples 1 to 6) 8-11, 13, 15, 18, 20, 23, 24, 27) showed an activity retention of 89% or more after 30 days.
  • the comparative examples In the results at 40 ° C. (Table 39), the comparative examples (Compounds 29, 33 to 35) decreased to an activity retention of 10% or less after 30 days, whereas the compounds of the present invention (Examples) 1 to 6, 8 to 11, 13, 15, 18, 20, 23, 24, 27) showed an activity retention of 63% or more after 30 days. That is, even if it was the anhydrous ionic liquid which does not contain water, it was suggested that the biocatalyst solvent of the present invention retains the activity of the enzyme and has a high retention property of the three-dimensional structure of the enzyme.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 低温度から高温度、高濃度で生体触媒の活性を保持したまま液体中で溶解、そして、長期間保存が可能な生体触媒用溶媒とそれを用いた生体触媒溶液を提供する。 本発明の生体触媒用溶媒は、下記式(I):(式中、Rはそれぞれ独立に、水酸基を1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいヒドロキシアルキル基、カルボキシ基を1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいカルボキシアルキル基、又は水酸基及びカルボキシ基を各々1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいヒドロキシカルボキシアルキル基を示し、Rはそれぞれ独立に水素原子又は炭素数1~5の直鎖もしくは分岐のアルキル基を示す。nは1~4の整数を示す。)で表わされる第4級アンモニウムカチオン及びアニオンを含むイオン液体からなる。

Description

イオン液体を用いた生体触媒用溶媒、及びその溶媒と生体触媒を含む生体触媒溶液
 本発明は、生体触媒の活性を保持した状態で溶解できる生体触媒用溶媒、及びその溶媒と生体触媒を含む生体触媒溶液に関するものである。
 酵素や酵母などの生体触媒は、温度、pH、溶媒又は分子間の静電気的な斥力等の影響により、分子の立体構造が壊れやすく、活性すなわち触媒能力が低下するものが多く、生体触媒を保存したり、生体触媒反応に利用したりする際、活性点の立体構造、アミノ酸残基の立体構造を保持する必要がある。生体触媒の長期保存方法としては、粉体状態での凍結乾燥法や、低濃度、極低温度条件下で溶液に溶解して保存する凍結保存法が知られている。
 一般的に、操作上の簡便さから溶液での保存が望ましいが、凍結保存法の場合、特殊な装置が必要となるとともに、凍結時に氷が生成するために生体触媒の立体構造を破壊してしまう問題、凍結した溶液を溶解して使用する際、生体触媒の構造が変化し活性が低下してしまう問題があり、更に、保存濃度は、例えばウレアーゼ、カタラーゼの場合、一般的に1~3mg/mL程度と低く、効率的な保存が困難である。
 そうした生体触媒の失活を防ぎ、酵素の活性を維持するために、安定化剤を添加する試みがなされている。例えば、グリセリン、ソルビトールのような多価アルコールをウリカーゼの保存に使用する方法(特許文献1)、牛血清アルブミン及び糖類を、コレステロールオキシダーゼを含む溶液に添加するコレステロールオキシダーゼの安定化法(特許文献2)が提案されているが、これらの方法では、保存濃度、保存温度や保存期間に対する酵素活性の低下の問題があった。
 また、イオン液体は、カチオンとアニオンからなる有機塩であり、一般的にはイミダゾリウム系カチオンや第4級アンモニウムカチオンと各種アニオンとから構成されたイオン液体が知られており、その構造的特徴から、様々な用途が検討されている。そうした中、イオン液体を酵素の反応溶液に添加もしくは溶媒として用いて、酵素の活性を保持することが報告されている(特許文献3,4、非特許文献1)が、溶解濃度、保存性に問題があった。
特開平06-70798号公報 特開平08-187095号公報 特開2005-270007号公報 特表2006-514832号公報
Biomacromolecules 2005,6,1457-1464
 従来の生体触媒用溶媒は、生体触媒に対する溶解性並びにアミノ酸残基の立体構造の保持性に改善の余地があり、溶液中に高濃度で酵素を溶解し、長期間、より高い温度条件下において活性を保持する方法が求められている。
 本発明は、以上の通りの事情に鑑みてなされたものであり、低温度から高温度、高濃度で生体触媒の活性を保持したまま液体中で溶解、そして、長期間保存が可能な、生体触媒用溶媒を提供することを課題としている。
 また、そのような生体触媒用溶媒に生体触媒を溶解させた生体触媒溶液を提供することを課題としている。
 前記の課題を解決するために、本発明の生体触媒用溶媒は、下記式(I):
Figure JPOXMLDOC01-appb-C000002
(式中、Rはそれぞれ独立に、水酸基を1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいヒドロキシアルキル基、カルボキシ基を1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいカルボキシアルキル基、又は水酸基及びカルボキシ基を各々1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいヒドロキシカルボキシアルキル基を示し、Rはそれぞれ独立に水素原子又は炭素数1~5の直鎖もしくは分岐のアルキル基を示す。nは1~4の整数を示す。)で表わされる第4級アンモニウムカチオン及びアニオンを含むイオン液体からなる。
 本発明の生体触媒溶液は、前記の生体触媒用溶媒と、生体触媒とを含む。
 本発明の生体触媒用溶媒によれば、生体触媒を高濃度で溶解し、その溶液中の生体触媒を、その活性を保持したまま、低温度から高温度、高濃度で溶解し、長期間保存することができる。
 以下に、本発明について詳細に説明する。
 本発明の生体触媒用溶媒は、無水イオン液体及び空気中の水分を吸収した含水イオン液体であってもよく、式(I)で表わされる第4級アンモニウムカチオン及びアニオンを含むイオン液体からなる。
 式(I)において、第4級アンモニウムカチオンのRはそれぞれ独立に、水酸基を1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいヒドロキシアルキル基、カルボキシ基を1個以上有し、アルキル部位(カルボキシ基の炭素は含まない。)が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいカルボキシアルキル基、又は水酸基及びカルボキシ基を各々1個以上有し、アルキル部位(カルボキシ基の炭素は含まない。)が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいヒドロキシカルボキシアルキル基を示す。
 ここで、アルキル部位が酸素原子を含む場合、該酸素原子は、例えば、アルキル部位にエーテル結合(-O-)、カルボニル基(-C=O)、アルデヒド基(-CHO)、又はエステル結合(-C(=O)O-)を形成する。
 式(I)におけるRのヒドロキシアルキル基としては、例えば、モノ、ジ、トリ、テトラ、ペンタ、ヘキサ、ヘプタ、又はオクタヒドロキシアルキル基、ヒドロキシアルコキシアルキル基、アルコキシヒドロキシアルキル基、ヒドロキシポリアルキレンオキシアルキル基等が挙げられる。
 モノヒドロキシアルキル基としては、例えば、ヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基、1-ヒドロキシプロパン-1-イル基、2-ヒドロキシプロパン-1-イル基、3-ヒドロキシプロパン-1-イル基、1-ヒドロキシプロパン-2-イル基、2-ヒドロキシプロパン-2-イル基、1-ヒドロキシブタン-1-イル基、2-ヒドロキシブタン-1-イル基、3-ヒドロキシブタン-1-イル基、4-ヒドロキシブタン-1-イル基、1-ヒドロキシ-2-メチルプロパン-1-イル基、2-ヒドロキシ-2-メチルプロパン-1-イル基、3-ヒドロキシ-2-メチルプロパン-1-イル基、1-ヒドロキシブタン-2-イル基、2-ヒドロキシブタン-2-イル基、3-ヒドロキシブタン-2-イル基、4-ヒドロキシブタン-2-イル基、1-ヒドロキシ-2-メチルプロパン-2-イル基、5-ヒドロキシペンタン-1-イル基、6-ヒドロキシヘキサン-1-イル基、7-ヒドロキシヘプタン-1-イル基、8-ヒドロキシオクタン-1-イル基、9-ヒドロキシノナン-1-イル基、10―ヒドロキシデカン-1-イル基等が挙げられる。これらのモノヒドロキシアルキル基の中でも、炭素数1~5のものが好ましく、炭素数1~3のものがより好ましい。
 ジ、トリ、テトラ、ペンタ、ヘキサ、ヘプタ、又はオクタヒドロキシアルキル基としては、例えば、1,2-ジヒドロキシエチル基等のジヒドロキシエチル基;1,2-ジヒドロキシプロパン-1-イル基、2,3-ジヒドロキシプロパン-1-イル基等のジヒドロキシプロパン-1-イル基;1,2-ジヒドロキシプロパン-2-イル基、1,3-ジヒドロキシプロパン-2-イル基等のジヒドロキシプロパン-2-イル基;トリヒドロキシプロパン-1-イル基;トリヒドロキシプロパン-2-イル基;1,2-ジヒドロキシブタン-1-イル基、1,3-ジヒドロキシブタン-1-イル基、1,4-ジヒドロキシブタン-1-イル基、2,3-ジヒドロキシブタン-1-イル基、2,4-ジヒドロキシブタン-1-イル基、3,4-ジヒドロキシブタン-1-イル基等のジヒドロキシブタン-1-イル基;1,2,3トリヒドロキシブタン-1-イル基、1,2,4トリヒドロキシブタン-1-イル基、1,3,4トリヒドロキシブタン-1-イル基、2,3,4トリヒドロキシブタン-1-イル基等のトリヒドロキシブタン-1-イル基;テトラヒドロキシブタン-1-イル基;1,2-ジヒドロキシ-2-メチルプロパン-1-イル基、1,3-ジヒドロキシ-2-メチルプロパン-1-イル基、2,3-ジヒドロキシ-2-メチルプロパン-1-イル基等のジヒドロキシ-2-メチルプロパン-1-イル基;トリヒドロキシ-2-メチルプロパン-1-イル基;テトラヒドロキシ-2-メチルプロパン-1-イル基;1,2-ジヒドロキシブタン-2-イル基、1,3-ジヒドロキシブタン-2-イル基、1,4-ジヒドロキシブタン-2-イル基、2,3-ジヒドロキシブタン-2-イル基、2,4-ジヒドロキシブタン-2-イル基、3,4-ジヒドロキシブタン-2-イル基等のジヒドロキシブタン-2-イル基;1,2,3トリヒドロキシブタン-2-イル基、1,2,4トリヒドロキシブタン-2-イル基、1,3,4トリヒドロキシブタン-2-イル基、2,3,4トリヒドロキシブタン-2-イル基等のトリヒドロキシブタン-2-イル基;テトラヒドロキシブタン-2-イル基;1,3-ジヒドロキシ-2-メチルプロパン-2-イル基、1,3-ジヒドロキシ-2-エチルプロパン-2-イル基、1,3-ジヒドロキシ-2-ヒドロキシメチルプロパン-2-イル基;ジ、トリ、テトラ、又はペンタヒドロキシペンタン-1-イル基;ジ、トリ、テトラ、ペンタ、又はヘキサヒドロキシヘキサン-1-イル基;ジ、トリ、テトラ、ペンタ、ヘキサ、又はヘプタヒドロキシヘプタン-1-イル基;ジ、トリ、テトラ、ペンタ、ヘキサ、ヘプタ、又はオクタヒドロキシオクタン-1-イル基等が挙げられる。これらのヒドロキシアルキル基の中でも、水酸基を2~6個有する炭素数3~8の直鎖状のヒドロキシアルキル基や、次式で表わされる分岐鎖状のヒドロキシアルキル基が好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、R11は水素原子、炭素数1~3の直鎖状のアルキル基、又は炭素数1~3の直鎖状のモノヒドロキシアルキル基を示す。)
 これらのヒドロキシアルキル基の中でも、2,3-ジヒドロキシプロパン-1-イル基、1,3-ジヒドロキシプロパン-2-イル基、1,3-ジヒドロキシ-2-エチルプロパン-2-イル基、1,3-ジヒドロキシ-2-ヒドロキシメチルプロパン-2-イル基、ペンタヒドロキシヘキサン-1-イル基が好ましい。
 式(I)におけるRのカルボキシアルキル基としては、例えば、上記において例示したモノ、ジ、トリ、テトラ、ペンタ、ヘキサ、ヘプタ、又はオクタヒドロキシアルキル基の水酸基をカルボキシ基に置換したものが挙げられる。
 モノカルボキシアルキル基としては、例えば、カルボキシメチル基、1-カルボキシエチル基、2-カルボキシエチル基、1-カルボキシプロパン-1-イル基、2-カルボキシプロパン-1-イル基、3-カルボキシプロパン-1-イル基、1-カルボキシプロパン-2-イル基、2-カルボキシプロパン-2-イル基、1-カルボキシブタン-1-イル基、2-カルボキシブタン-1-イル基、3-カルボキシブタン-1-イル基、4-カルボキシブタン-1-イル基、1-カルボキシ-2-メチルプロパン-1-イル基、2-カルボキシ-2-メチルプロパン-1-イル基、3-カルボキシ-2-メチルプロパン-1-イル基、1-カルボキシブタン-2-イル基、2-カルボキシブタン-2-イル基、3-カルボキシブタン-2-イル基、4-カルボキシブタン-2-イル基、1-カルボキシ-2-メチルプロパン-2-イル基、5-カルボキシペンタン-1-イル基、6-カルボキシヘキサン-1-イル基、7-カルボキシヘプタン-1-イル基、8-カルボキシオクタン-1-イル基、9-カルボキシノナン-1-イル基、10-カルボキシデカン-1-イル基等が挙げられる。これらのカルボキシ基含有アルキル基の中でも、炭素数1~5のものが好ましく、炭素数1~3のものがより好ましい。
 式(I)におけるヒドロキシカルボキシアルキル基としては、例えば、上記において例示したジ、トリ、テトラ、ペンタ、ヘキサ、ヘプタ、又はオクタヒドロキシアルキル基の水酸基の一部をカルボキシ基に置換したものが挙げられる。
 式(I)において、Rはそれぞれ独立に水素原子又は炭素数1~5の直鎖状もしくは分岐鎖状のアルキル基を示す。アルキル基としては、例えば、メチル基、エチル基、プロパン-1-イル基、プロパン-2-イル基、ブタン-1-イル基、2-メチルプロパン-1-イル基、ブタン-2-イル基、2-メチルプロパン-1-イル基、ペンタン-1-イル基、1-メチルブタン-1-イル基、2-メチルブタン-1-イル基、3-メチルブタン-1-イル基、1-エチルブタン-1-イル基、1,1-ジメチルプロパン-1-イル基、1,2-ジメチルプロパン-1-イル基、2,2-ジメチルプロパン-1-イル基が挙げられる。中でも、水素原子又は炭素数1~3のものが好ましく、水素原子、メチル基、エチル基がより好ましい。
 式(I)において、nは1~4の整数を示し、1~3の整数であることが好ましい。
 本発明に使用されるイオン液体のアニオンとしては、特に限定されるものではないが、例えば、ハロゲン系アニオン、硫黄系アニオン、リン系アニオン、シアン系アニオン、ホウ素系アニオン、フッ素系アニオン、窒素酸化物系アニオン、カルボン酸アニオン等が挙げられる。
 前記ハロゲン系アニオンとしては、例えば、クロリドイオン、ブロミドイオン、ヨードイオン等が挙げられる。
 前記硫黄系アニオンとしては、スルファートアニオン、水素スルファートアニオン、アルキルスルホナートアニオン(例えば、メタンスルホナート、エチルスルホナート、ブチルスルホナート、ベンゼンスルホナート、p-トルエンスルホナート、2,4,6-トリメチルベンゼンスルホナート、スチレンスルホナート、3-スルホプロピルメタクリレートアニオン、3-スルホプロピルアクリレート等)、アルキルスルファートアニオン(例えば、メチルスルファートアニオン、エチルスルファートアニオン、ブチルスルファートアニオン、オクチルスルファートアニオン、2-(2-メトキシエトキシ)エチルスルファートアニオン等)等が挙げられる。
 前記リン系アニオンとしては、ホスファートアニオン、水素ホスファートアニオン、二水素ホスファートアニオン、ホスホナートアニオン、水素ホスホナートアニオン、ホスフィナートアニオン、アルキルホスファートアニオン(例えば、ジメチルホスファート、ジエチルホスファート、ジプロピルホスファートアニオン、ジブチルホスファートアニオン等)、アルキルホスホナートアニオン(例えば、メチルホスホナートアニオン、エチルホスホナートアニオン、プロピルホスホナートアニオン、ブチルホスホナートアニオン、メチルメチルホスホナートアニオン等)、アルキルホスフィナートアニオン、ヘキサアルキルホスファートアニオン等が挙げられる。
 前記シアン系アニオンとしては、例えば、テトラシアノボレートアニオン、ジシアナミド、チオシアネートアニオン、イソチオシアネートアニオン等が挙げられる。
 前記ホウ素系アニオンとしては、例えば、テトラフルオロボレートアニオン、ビスオキサレートボラートアニオン、テトラフェニルボレートのようなテトラアルキルボレートアニオン等が挙げられる。
 前記フッ素系アニオンとしては、ビス(フルオロスルホニル)イミドアニオン、ビス(パーフルオロアルキルスルホニル)イミドアニオン(例えば、ビス(トリフルオロメチルスルホニル)イミドアニオン、ビス(ペンタフルオロエチルスルホニル)イミド、ビス(ヘプタフルオロプロパンスルホニル)イミドアニオン、ビス(ノナフルオロブチルスルホニル)イミド等)、パーフルオロアルキルスルホナートアニオン(例えば、トリフルオロメタンスルホナートアニオン、ペンタフルオロエタンスルホナートアニオン、ヘプタフルオロプロパンスルホナートアニオン、ノナフラートアニオン、パーフルオロオクタンスルホーナートアニオン等)、フルオロホスファートアニオン(例えば、ヘキサフルオロホスファートアニオン、トリ(ペンタフルオロエチル)トリフルオロホスファートアニオン等)、トリス(パーフルオロアルキルスルホニル)メチドアニオン(例えば、トリス(トリフルオロメタンスルホニル)メチドアニオン、トリス(ペンタフルオロエタンスルホニル)メチドアニオン、トリス(ヘプタフルオロプロパンスルホニル)メチドアニオン、トリス(ノナフルオロブタンスルホニル)メチドアニオン等)、フルオロハイドロジェネートアニオン等が挙げられる。
 前記窒素酸化物系アニオンとしては、例えば、硝酸アニオン、亜硝酸アニオンが挙げられる。
 前記カルボン酸アニオンは、分子中に、少なくとも1個以上のカルボン酸アニオン(-COO)を持つ有機酸アニオンであり、酸素原子、窒素原子、硫黄原子などのヘテロ原子を持つ官能基を含んでいても良い。特に限定されないが、カルボン酸アニオンとしては、例えば、飽和脂肪族カルボン酸アニオン、不飽和脂肪族カルボン酸アニオン、脂環式カルボン酸アニオン、芳香族カルボン酸アニオン、飽和脂肪族ヒドロキシカルボン酸アニオン、不飽和脂肪族ヒドロキシカルボン酸アニオン、脂環式ヒドロキシカルボン酸アニオン、芳香族ヒドロキシカルボン酸アニオン、カルボニルカルボン酸アニオン、アルキルエーテルカルボン酸アニオン、ハロゲンカルボン酸アニオン、アミノ酸アニオン等が挙げられる。
 前記飽和脂肪族カルボン酸アニオンは、直鎖状又は分岐鎖状の脂肪族飽和炭化水素基と1個以上のカルボン酸アニオンからなり、炭素数1~22が好ましい。具体的には、例えば、蟻酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、マルガリン酸、ステアリン酸、ベヘン酸、イソ酪酸、2-メチル酪酸、イソ吉草酸、2-エチルヘキサン酸、イソノナン酸、イソパルミチン酸、イソステアリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸等からプロトンが解離したアニオンが挙げられる。
 前記不飽和脂肪族カルボン酸アニオンは、直鎖状又は分岐鎖状の脂肪族不飽和炭化水素基と1個以上のカルボン酸アニオンからなり、炭素数3~22が好ましい。具体的には、例えば、アクリル酸、メタクリル酸、クロトン酸、パルミトレイン酸、オレイン酸、バクセン酸、リノール酸、リノレン酸、エレオステアリン酸、アラキドン酸、マレイン酸、フマル酸等からプロトンが解離したアニオンが挙げられる。
 前記脂環式カルボン酸アニオンは、芳香族性を持たない飽和もしくは不飽和の炭素環と1個以上のカルボン酸アニオンからなり、炭素数6~20が好ましい。中でも、シクロヘキサン環骨格を有する脂環式カルボン酸アニオンが好ましく、具体的には、例えば、シクロヘキサンカルボン酸、シクロヘキサンジカルボン酸からプロトンが解離したアニオンが挙げられる。
 前記芳香族カルボン酸アニオンは、芳香族性を持つ単環又は複数の環と1個以上のカルボン酸アニオンからなり炭素数6~20が好ましい。中でも、ベンゼン環骨格を有する芳香族カルボン酸アニオンが好ましく、具体的には、例えば、安息香酸、ケイヒ酸、フタル酸、イソフタル酸、テレフタル酸等からプロトンが解離したアニオンが挙げられる。
 前記飽和脂肪族ヒドロキシカルボン酸アニオンは、直鎖状又は分岐鎖状の脂肪族飽和炭化水素基、1個以上のカルボン酸アニオン及び1個以上の水酸基からなり、炭素数2~24が好ましい。中でも、1~4個の水酸基を有する炭素数2~7の飽和脂肪族ヒドロキシカルボン酸アニオンが好ましい。具体的には、例えば、グリコール酸、乳酸、タルトロン酸、グリセリン酸、ヒドロキシ酢酸、ヒドロキシ酪酸、2-ヒドロキシデカンサン酸、3-ヒドロキシデカン酸、12-ヒドロキシステアリン酸、ジヒドロキシステアリン酸、セレブロン酸、リンゴ酸、酒石酸、シトラマル酸、クエン酸、イソクエン酸、ロイシン酸、メバロン酸、パントイン酸等からプロトンが解離したアニオンが挙げられる。
 前記不飽和脂肪族ヒドロキシカルボン酸アニオンは、直鎖状又は分岐鎖状の脂肪族不飽和炭化水素基、1個以上のカルボン酸アニオン及び1個以上の水酸基からなり、炭素数3~22が好ましい。具体的には、リシノール酸、リシノレイン酸、リシネライジン酸等からプロトンが解離したアニオンが挙げられる。
 前記脂環式ヒドロキシカルボン酸アニオンは、芳香族性を持たない飽和もしくは不飽和の炭素環、1個以上のカルボン酸アニオン及び1個以上の水酸基からなり、炭素数6~20が好ましい。中でも、1~4個の水酸基を有する6員環骨格の脂環式ヒドロキシカルボン酸アニオンが好ましく、具体的には、例えば、ヒドロキシシクロヘキサンカルボン酸、ジヒドロキシシクロヘキサンカルボン酸、キナ酸(1,3,4,5-テトラヒドロキシシクロヘキサンカルボン酸)、シキミ酸等からプロトンが解離したアニオンが挙げられる。
 芳香族ヒドロキシカルボン酸アニオンは、芳香族性を持つ単環あるいは複数の環、1個以上のカルボン酸アニオン及び1個以上の水酸基からなり、炭素数6~20が好ましい。中でも、1~3個の水酸基を有するベンゼン環骨格の芳香族カルボン酸アニオンが好ましく、具体的には、例えば、サリチル酸、ヒドロキシ安息香酸、ジヒドロキシ安息香酸、トリヒドロキシ安息香酸、ヒドロキシメチル安息香酸、バニリン酸、シリング酸、ピロトカテク酸、ゲンチジン酸、オルセリン酸、マンデル酸、ベンジル酸、アトロラクチン酸、フロレト酸、クマル酸、ウンベル酸、コーヒー酸、フェルラ酸、シナピン酸等からプロトンが解離したアニオンが挙げられる。
 前記カルボニルカルボン酸アニオンは、分子内にカルボニル基を有する炭素数3~22のカルボン酸アニオンであり、1~2個のカルボニル基を有する炭素数3~7のカルボニルカルボン酸アニオンが好ましい。中でも、CH((CHCO(CH)COO(p及びqは0~2の整数を示す。)で表わされるカルボニルカルボン酸アニオンが好ましい。具体的には、例えば、ピルビン酸等からプロトンが解離したアニオンが挙げられる。
 前記アルキルエーテルカルボン酸アニオンは、ポリオキシエチレンアルキルエーテル カルボン酸アニオンを含む、分子内にエーテル基を有する炭素数2~22のカルボン酸アニオンであり、1~2個のエーテル基を有する炭素数2~12のアルキルカルボン酸アニオンが好ましい。中でも、CH(CHO(CHCOO(r及びsは0~4の整数を示す。)で表わされるアルキルエーテルカルボン酸アニオンが好ましい。具体的には、例えば、メトキシ酢酸、エトキシ酢酸、メトキシ酪酸、エトキシ酪酸等からプロトンが解離したアニオンが挙げられる。
 前記ハロゲンカルボン酸アニオンとしては、炭素数2~22のハロゲンカルボン酸アニオンが好ましい。具体的には、例えば、トリフルオロ酢酸、ペンタフルオロプロピオン酸、パーフルオロノナン酸等のフッ素置換のハロゲンカルボン酸等からプロトンが解離したアニオンが挙げられる。
 前記アミノ酸アニオンとしては、特に限定されないが、グリシン、アラニン、グルタミン酸、アルギニン、アスパラギン、アスパラギン酸、イソロイシン、グルタミン、ヒスチジン、システイン、ロイシン、リシン、プロリン、フェニルアラニン、トレオニン、セリン、トリプトファン、チロシン、メチオニン、バリン、サルコシン、アミノ酪酸、メチルロイシン、アミノカプリル酸、アミノヘキサン酸、ノルバリン、アミノ吉草酸、アミノイソ酪酸、チロキシン、クレアチン、オルニチン、オパイン、テアニン、トリコロミン、カイニン酸、ドウモイ酸、イボテン酸、アクロメリン酸、シスチン、ヒドロキシプロリン、ホスホセリン、デスモシン等からプロトンが解離したアニオンが挙げられる。
 イオン液体は、広義には100℃以下の融点である。本発明のイオン液体は、生体触媒を低温保存する際、溶解による変性の抑制、使用上の利便性から、より低温下で液状であることが望ましく、第4級アンモニウムカチオンの官能基や特性基及びアニオンの選択により、融点(凝固点)は好ましくは-5℃未満、特に好ましくは-10℃未満である。また、イオン液体は有機塩の構造的特徴から不揮発性であり、生体触媒を保存する際、溶液の濃度変化が少なく、生体触媒の使用時における設定濃度の精度、保存濃度保持(活性保持)の面から利便性が高い。
 本発明の生体触媒用溶媒は、カチオンの水素結合性官能基(水酸基、カルボキシ基、エーテル基、水素)が存在することにより生体触媒の溶解性を高め、水素結合性官能基ではないアルキル基のみで構成されたテトラアルキルアンモニウムカチオン、イミダゾリウム系イオン液体より、溶解性が高い。また、水素結合性官能基のみで構成されたカチオンを用いたり、アニオンに水素結合性官能基を付与させることより、更に生体触媒の溶解性を高めることができる。
 水素結合性官能基が存在するアニオンとしては、特に限定されないが、アニオン部位に水素結合性の酸素原子を持つカルボン酸アニオン、スルホン酸アニオン、リン酸アニオンが望ましい。
 本発明の生体触媒溶液は、上記の生体触媒用溶媒と、生体触媒とを含む。生体触媒を生体触媒用溶媒に溶解する方法は特に限定されるものではなく、液状の生体触媒用溶媒に適宜の方法によって生体触媒を添加することで溶解させることができる。
 本発明のイオン液体は、例えば、次のようにして合成することができる。
 式(I)のRがヒドロキシアルキル基、カルボキシアルキル基、又はヒドロキシカルボキシアルキル基でRが水素原子の化合物は次のようにして合成することができる。
 式(I)のR、Rに対応するヒドロキシ基を1個以上有するアルカノールアミン、カルボキシ基を1個以上有するアミノ酸、ヒドロキシ基及びカルボキシ基を各々1個以上有するアミノヒドロキシアルカン酸と、アニオンに対応する有機酸もしくは無機酸を、水や有機溶媒等の溶剤中で反応させる。または、式(I)のR、Rに対応するヒドロキシ基を1個以上有するアルカノールアミン、カルボキシ基を1個以上有するアミノ酸、ヒドロキシ基及びカルボキシ基を各々1個以上有するアミノヒドロキシアルカン酸と、アルキレンハロヒドリン、モノハロアルキルカルボン酸、モノハロヒドロキシアルキルカルボン酸等の有機ハロゲン化合物とを溶剤中で反応させ、得られた化合物と、目的の化合物のアニオンに対応する有機酸もしくは無機酸とを水や有機溶媒等の溶剤中で反応させる。
 式(I)で表わされる第4級アンモニウムカチオンに対応するヒドロキシ基を1個以上有するヒドロキシアルキル基で構成されているアルカノールアミン(例えば、モノ、ジ、トリアルカノールアミン、2-アミノ-1,3-プロパンジオ-ル、2-アミノ-2-エチル-1,3-プロパンジオール、トリス(ヒドロキシメチル)アミノメタン、D-グルカミン等)又はカルボキシ基を1~8個有するカルボキシアルキル基で構成されているアミノ酸(例えば、グリシン、アスパラギン酸、グルタミン酸等)又は水酸基及びカルボキシ基を各々1個以上有するアミノヒドロキシアルカン酸(例えば、3-アミノ-2-ヒドロキシプロピオン酸等)とアニオンに対応する有機酸もしくは無機酸を、水やアセトニトリル等の極性溶剤中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1時間~1日程度で行うことができる。その後、溶剤を減圧留去し、必要に応じて精製することにより、目的のイオン液体を液状物として得ることができる。また等モルで反応させ、反応が完結した場合は精製工程も必要がなく、更に製造工程が簡素化できる。
 式(I)のRがヒドロキシアルキル基、カルボキシアルキル基、又はヒドロキシカルボキシアルキル基で、Rがアルキル基の化合物は、例えば、次のようにして合成することができる。
 最初の工程として、式(I)の構造に対応するアルキレンハロヒドリン、モノハロアルキルカルボン酸などの有機ハロゲン化合物と、アルキルアミンとを、又はアルキルハライドなどの有機ハロゲン化合物と、アルカノールアミン、アミノ酸、アミノヒドロキシアルカン酸などのアミン系化合物とを、アセトニトリル等の溶媒中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1日程度で行うことができる。反応後、析出した固体をろ別、洗浄した後、次の工程としてアニオン交換を行う。アニオン交換を行う際には、例えば、得られた反応物と式(I)のアニオンに対応する酸とを水中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1日程度で行うことができる。あるいは、イオン交換樹脂等を用いることもできる。使用するイオン交換樹脂は、例えば、水処理用又は触媒用として市販されている強塩基性イオン交換樹脂が使用できる。
 その後、水を減圧留去し、洗浄することにより、目的の化合物を得ることができる。
 また、式(I)のRがモノヒドロキシアルキル基、カルボキシ基を2個以上有するカルボキシアルキル基、又は水酸基を2個以上有するヒドロキシアルキル基、モノカルボキシアルキル基で構成され、Rが水素原子又は存在しない(nが4)化合物は、例えば、次のようにして合成することもできる。
 式(I)で表わされる第4級アンモニウムカチオンの構造に対応させるべく、モノ、ジ、又はトリアルカノールアミンと、カルボキシ基を2個以上有するハロアルキルカルボン酸などの有機ハロゲン化合物とを、又はアミノモノ、ジ、又はトリアルカン酸と、アルキレンハロヒドリン等の有機ハロゲン化合物とを、水やアセトニトリル等の極性溶媒中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1日程度で行うことができる。その後、反応物を洗浄し、式(I)で表わされる第4級アンモニウムカチオンとハロゲン化物イオンからなる化合物を得ることができる。更にハロゲン化物イオンから目的のアニオンにする場合はアニオン交換を行う。アニオン交換を行う際には、例えば、得られた化応物と、目的の化合物のアニオンに対応する有機酸もしくは無機酸とを水中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1日程度で行うことができる。あるいは、強塩基性イオン交換樹脂等を用いて、水酸化物アニオンにアニオン交換した後に、更に目的の化合物のアニオンに対応する有機酸もしくは無機酸とアニオン交換することで目的のイオン液体を得ることができる。
 また、式(I)のRがヒドロキシカルボキシアルキル基及び、ヒドロキシアルキル基又はカルボキシアルキル基で構成され、Rが水素原子又は存在しない(nが4)化合物は、例えば、次のようにして合成することもできる。
 最初の工程として、式(I)で表わされる第4級アンモニウムカチオンの構造に対応させるべく、水酸基及びカルボキシ基を各々1個以上有するアミノヒドロキシアルカン酸(例えば、3-アミノ-2-ヒドロキシプロピオン酸等)と水酸基を2個以上有するヒドロキシアルキルハライド又はカルボキシ基を2個以上有するハロアルキルカルボン酸とを水やアセトニトリル等の極性溶媒中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1日程度で行うことができる。その後、反応物を洗浄し、式(I)で表わされる第4級アンモニウムカチオンとハロゲン化物イオンからなる化合物を得ることができる。更にハロゲン化物イオンから目的のアニオンにする場合はアニオン交換を行う。アニオン交換を行う際には、例えば、得られた化応物と、目的の化合物のアニオンに対応する有機酸もしくは無機酸とを水中で反応させる。反応温度と反応時間は原料の種類等にもよるが、例えば、室温下、1日程度で行うことができる。あるいは、強塩基性イオン交換樹脂等を用いて、水酸化物アニオンにアニオン交換した後に、更に目的の化合物のアニオンに対応する有機酸もしくは無機酸とアニオン交換することで目的のイオン液体を得ることができる。
 本発明の生体触媒用溶媒は、上記式(I)で表わされる第4級アンモニウムカチオン及びアニオンを含むイオン液体からなる。
 生体触媒とは、生化学反応の触媒であり、本発明における生体触媒とは、生物由来の微生物や動植物細胞、組織及びそれら生物由来の酵素、更には、酵素の機能を持つ人工化合物や、天然にある酵素や生体分子に人工的な改変を加えて新しい性能を持たせた人工酵素などが含まれる。
 酵素は、アミノ酸が一次元的に結合して一次構造をとるが、そのアミノ酸の配列状態と数によって、二次元以上の構造が決定される。これらの構造が各酵素特有な性質を決めている。
 一次構造は、20種のアミノ酸がペプチド結合により一次元に配列している。多くの酵素はアミノ酸が100~300個で構成され、アミノ酸の配列順序は、酵素の特性を決定させる一つの情報である。二次構造は、一次元配列全体の中である部分(複数)がαヘリックス、βシート、βターンなどの高次の規則的な構造をもつ。三次構造は、一次、二次構造が三次元的な立体構造をとる。この立体構造が酵素の反応触媒としての場である活性中心や、親水性部分・疎水性部分からなるアミノ酸残基の三次元構造などを決定し、一般的なタンパク質(構造タンパク質、輸送タンパク質、貯蔵タンパク質、収縮タンパク質、防御タンパク質、ホルモンタンパク質)にはない酵素等の生体触媒が持つ特異的な基質特異性、反応特異性を有する化学反応を発現する。四次構造は、三次元構造をとった酵素の複数分子からなる会合体である。つまり、酵素等の生体触媒は、タンパク質が持つ基質特異性に加えて、一次から四次構造による反応特異性を持ち、触媒反応に対する活性を保持するためには、一次、二次構造だけではなく三次、四次構造も保持することが重要である。
 本発明の生体触媒用溶媒が適用可能な酵素としては、例えば、酸化還元酵素(オキシドレダクターゼ)、転移酵素(トランスフェラーゼ)、加水分解酵素(ハイドロラーゼ)、脱離酵素(リアーゼ)、異性化酵素(イソメラーゼ)、合成酵素(リガーゼ)等が挙げられる。
 酸化還元酵素としては、例えば、グルコースオキシダーゼ、アルコールオキシダーゼ、グルコースデヒドロゲナーゼ、アルコールデヒドロゲナーゼ、フルクトースデヒドロゲナーゼ、グルコン酸デヒドロゲナーゼ、アルデヒドデヒドロゲナーゼ、アミンデヒドロゲナーゼ、コハク酸デヒドロゲナーゼ、p-クレゾールメチルヒドロキシラーゼ、ヒスタミンデヒドロゲナーゼ、フマル酸リダクターゼ、硝酸レダクターゼ、ヒ酸レダクターゼ、亜硫酸レダクターゼ、カタラーゼ、ペルオキシダーゼ、シトクロムP450等が挙げられる。
 転移酵素としては、例えば、クエン酸シンターゼ、メチルトランスフェラーゼ、ホスホトランスフェラーゼ、グリシンヒドロキシメチルトランスフェラーゼ、トランスケトラーゼ、アスパラギン酸トランスアミナーゼ、ヘキソキナーゼ、グリセロールキナーゼ、クレアチンキナーゼ、トランスアミナーゼ、トランスアシラーゼ等が挙げられる。
 加水分解酵素としては、例えば、カルボキシルエステラーゼ、アセチルCoAヒドロラーゼ、アルカリホスファターゼ、ホスホリパーゼ、アリールスルファターゼ、アミラーゼ、グルコアミラーゼ、セルラーゼ、DNAグリコシラーゼ、トリプシン、キモトリプシン、ペプシン、ウレアーゼ、セリンプロテアーゼ、リパーゼ等が挙げられる。
 脱離酵素としては、例えば、アルギン酸リアーゼ、ピルビン酸デカルボキシラーゼ、ホスホケトケトラーゼ、クエン酸リアーゼ、ホスホピルビン酸ヒドラターゼ、トリプトファンシンターゼ、ペクチンリアーゼ、アスパラギン酸アンモニアリアーゼ、システインリアーゼ、アデニル酸シクラーゼ、フェロキラターゼ等が挙げられる。
 異性化酵素としては、例えば、アミノ酸ラセマーゼ、酒石酸エピメラーゼ、グルコース-6-リン酸1-エピメラーゼ、マレイン酸イソメラーゼ、フェニルピルビン酸タウトメラーゼ、ホスホグルコースイソメラーゼ、ホスホマンノムターゼ、チロシン-2、3-アミノムターゼ等が挙げられる。
 合成酵素としては、例えば、チロシンtRNAリガーゼ、アセチルCoAシンセターゼ、アスパラギンシンテターゼ、GMP合成酵素、ピルビン酸カルボキシラーゼ、DNAリガーゼ等が挙げられる。
 本発明の生体触媒用溶媒が適用可能な微生物としては、例えば、原核生物(細菌、放線菌、古細菌)、真核生物(カビ、酵母、キノコ、藻類、原生動物)等が挙げられる。動植物細胞としては、例えば、動物細胞、植物細胞、動物培養細胞、植物培養細胞等が挙げられる。
 動植物由来の組織としては、例えば、動物組織、植物組織等が挙げられる。
 酵素、酵母などの生体触媒は、温度、pH、溶媒又は分子間の静電気的な斥力等の影響により、分子の立体構造が壊れやすく、活性すなわち触媒能力が低下するものが多い。そのため、生体触媒の長期保存方法としては、粉体状態での凍結乾燥法や、低濃度、極低温度条件下で溶液に溶解して保存する凍結保存法が知られているが、凍結保存法の場合、特殊な装置が必要となるとともに、凍結した溶液を溶解して使用する際、生体触媒の構造が変化し活性が低下してしまうことが多く、更に、保存濃度が低く、効率的な保存が困難である。
 酵素の溶解性を高めるためには、様々な要素を配慮する必要がある。例えば、酵素分子が持つ電荷で発生する斥力(クーロン相互作用)による酵素分子間の相互作用を酵素溶液中に塩等の添加で抑制し、単位体積中に、より多くの酵素分子を存在させること、また、酵素表面に多く存在する水酸基、カルボニル基、アミノ基等のアミノ酸残基と溶媒との親和性を高めることが重要である。
 アニオン、カチオンとの塩構造からなるイオン液体は、酵素同士の分子間相互作用を抑制できるため、酵素の溶解性を高めることが期待されるが、従来知られているイミダゾリウム系、テトラアルキルアンモニウム系イオン液体は、酵素表面との親和性が低く、酵素に対する溶解性が低い。一方で、酵素表面の水酸基、カルボニル基、アミノ基等のアミノ酸残基と親和性がある水酸基を持つグリセリン、プロピレングリコール、グルコース、トレハロース等の多価アルコール系等の化合物は、酵素の分子間相互作用を抑制する効果が低く、酵素に対する溶解性が低い。更に、水酸基を持つイミダゾリム系イオン液体は、剛直な環構造を持つため、酵素に対する親和性が低いため、酵素に対する溶解性は低い。
 これらに対して本発明の生体触媒用溶媒は、アニオン、カチオンの塩構造からなるイオン液体であるため、酵素の分子間相互作用を抑制することができ、また、カチオンに水素結合性官能基を有し、酵素表面の水酸基、カルボニル基、アミノ基等のアミノ残基との親和性が高く、分子サイズが小さく、柔軟な構造により、高い溶解性が得られる。更に、アニオンにも水素結合性官能基を存在させることにより、より溶解性を高めることができる。
 酵素活性の保存性には、酵素の立体構造を保持することが必要となる。一般的に、酵素はアミノ酸残基から発現する基質特異性、反応特異性を持ち、反応触媒として働く。基質特異性は、反応部位の立体構造とアミノ酸残基により、結合する基質の構造を認識、選択して、特定の基質のみ反応することをいう。反応特異性は、酵素が特定の化学反応しか触媒しないことをいい、反応部位の立体構造とアミノ酸残基並びに一部の酵素が持つ金属イオンが関与する。例えば、酸化還元酵素等の酵素内部に存在する金属イオンは、アミノ酸残基と3次元的に錯体形成して触媒作用を発現する。つまり、基質特異性、反応特異性、金属イオン等の失活は、アミノ酸残基の立体構造の崩壊が主要因である。そのため、酵素表面の親水性を発現する水酸基、カルボニル基、アミノ基等のアミノ残基と、活性部位の酵素内部の水酸基、カルボニル基、アミノ基等の親水性のアミノ酸残基及び疎水性官能基を有するアミノ酸残基を保護して、酵素の立体構造を保持することが重要となる。
 従来、酵素の溶媒として使用されている水・バッファーは、酵素表面の親水性部位との親和性は高いが、基質特異性、反応特異性の発現する上で重要となる酵素内部の疎水性部位の立体構造を保護できず触媒活性を保持できない。安定化剤としてタンパク質であるウシ血清アルブミンの水溶液を用いる場合があるが、BSE等の感染症の懸念があり、医療分野での使用が難しい。グリセリン、プロピレングリコール、グルコース、トレハロース等の多価アルコール系の安定化剤を用いた水溶液は、酵素表面の親水性部位とこれらの多価アルコールの水酸基と、活性点がある酵素内部の親水性並びに疎水性部位にそれぞれ多価アルコールの水酸基と疎水性のアルキル鎖と親和性があり、酵素の立体構造を保持できるが、その保存安定効果は低い。グリシン、リシン等の界面活性剤(アミノ酸)水溶液は、界面活性剤の疎水部位が酵素内部の疎水性領域にある疎水性アミノ酸残基と結合して、その疎水性領域は電荷が発生することで親水性となり、親水性の表面に移動するため、酵素の立体構造が崩れて失活する。更には、イオン液体として従来知られている水素結合性官能基を持たないイミダゾリウム系、テトラアルキルアンモニウム系等のイオン液体は、酵素表面及び内部の親水性のアミノ残基を保護できないため、酵素に対する保存性が低い。
 これらに対して本発明の生体触媒用溶媒は、イオン液体構造中のカチオン、アニオンに持つ水素結合性官能基が、酵素表面、内部のアミノ酸残基の水酸基、カルボニル基、アミノ基等のアミノ酸残基と水素結合して保護する。更に、同時に内部の疎水性官能基を有するアミノ酸残基をイオン液体中のアルキル鎖の疎水性部位で保護することで、長期間、高濃度の条件下でも、酵素の立体構造を保持して触媒活性を維持することができる。
 また、本発明の生体触媒用溶媒は、水素結合性官能基(水酸基、カルボキシ基、エーテル基、水素)を有するカチオンとアニオンの組み合わせからなり、その静電作用から水素結合性官能基を有する非イオン性化合物より、酵素の立体構造の保持性が高く、酵素の活性の保持性が高い。
 また、本発明の生体触媒用溶媒は、分子サイズが小さく且つ柔軟な構造を有しているため、水酸基を含有しても、環状の剛直な構造のイミダゾリウム系イオン液体より、本イオン液体分子は複雑な立体構造の内部まで効率よく入り込み、立体的に歪むことなくアミノ酸残基を保護し、酵素の活性の保持性が高い。
 酸化還元酵素は、基質から水素原子の移動、電子の移動、酸素原子の付加を行うことで、触媒作用を発現する酵素である。その多くは、酵素中の金属イオンの電子移動による価数の変化によって、触媒作用を発現している。
 転移酵素は、一方の基質から他方の基質へ原子団(官能基)を移動させる反応を触媒する酵素である。反応する基質中に存在する官能基にしか転移反応しないため、基質が適合できるための立体構造を保持することが特に重要となる。
 加水分解酵素は、基質と水、酵素のアミノ酸残基中の水酸基等を反応させて、基質中の特定の結合を切断(加水分解)する酵素である。
 脱離酵素は、基質分子から酸化や加水分解によらず、基質中の炭素-炭素、炭素-酸素などの結合を切断する酵素である。その多くは、金属イオンと基質が反応し、中間体を生成することで基質分子中の結合を切断させる。
 異性化酵素は、基質を空間的な配置が異なる立体異性体へ変換させる酵素である。そのため、基質を結合させる酵素中のアミノ酸残基の立体構造が重要となる。
 合成酵素は、ATPの加水分解エネルギーを利用して、基質と基質を結合させる酵素である。反応はATPと酵素中の特定のアミノ酸残基が結合した中間体を介して、2つの基質を反応させて目的物を生成させる。
 つまり、いずれの酵素においてもアミノ酸残基、アミノ酸残基の立体構造もしくはアミノ酸残基と3次元的に錯体形成した金属イオンが重要であり、それらが酵素の活性を発現する。本発明の生体触媒用溶媒は、その構造的特徴により、アミノ酸残基もしくは錯体形成した金属イオンを保護して、生体触媒の活性を保持することを可能とする。
 更に、本発明の生体触媒用溶媒は、熱(温度)、pH等の種々ある変性要因の中でも熱による変性を抑制することができる。熱によってアミノ酸残基間の水素結合が切断され、立体構造が崩壊して酵素は変性するが、本発明の生体触媒用溶媒は、酵素内部のアミノ酸残基とイオン液体中の水素結合性官能基との間に水素結合のネットワークを形成することにより、より強固に立体構造を保持して、熱変性を抑制する。つまり、本発明の生体触媒用溶媒は、一般的な酵素保存条件である-20~5℃よりも高い室温の条件(25℃)、酵素が失活する40℃の促進条件においても、高い酵素濃度で長期間に渡り活性を保持し、溶解、保存することができる。
 本発明の生体触媒用溶媒は、生体触媒に対して高い溶解性と高温条件下でも活性を保持することができるため、生体触媒の保存だけではなく、生体触媒反応における効率的な反応溶媒としても有用性が高い。
 本発明の生体触媒溶液は、本発明の生体触媒用溶媒を含み、生体触媒溶液として使用する際、本発明の生体触媒用溶媒は、その構造上の特徴から高親水性で、生体触媒に対して親和性が高いため、本発明の生体触媒用溶媒を単独でもしくは、水や極性溶媒等の他の溶媒成分と混合して使用することが可能である。また、添加剤を加えて使用することもできる。
 本発明において生体触媒の保存とは、特に限定されるものではないが、主に次のような条件を満足することを意味する。
 本発明の生体触媒溶液における触媒活性保持率は、生体触媒の種類等にもよるが、例えば、ウレアーゼは30.0~50.0mg/mLで溶解したときに温度25℃で保存した場合、30日後の触媒活性保持率を90%以上、90日後を40%以上、180日後を7%以上とすることができ、促進試験である40℃で保存した場合、30日後の触媒活性保持率を60%以上、90日後を13%以上とすることができる。カタラーゼは20.0~50.0mg/mLで溶解したときに温度25℃で保存した場合、30日後の触媒活性保持率を90%以上、90日後を68%以上とすることができ、促進試験である40℃で保存した場合、30日後の触媒活性保持率を90%以上、90日後を29%以上とすることができる。ウレアーゼやカタラーゼの生体触媒溶液は、20.0mg/mL以上の高濃度で生体触媒を溶解することができるが、このような高濃度であっても、上記のような高い触媒活性保持率での長期間の保存も可能である。アミラーゼは0.5~2.0mg/mLで溶解したときに温度25℃で保存した場合、7日後の触媒活性保持率を90%以上、21日後を45%以上とすることができ、促進試験である40℃で保存した場合、7日後の触媒活性保持率を90%以上、21日後を15%以上とすることができる。クエン酸シンターゼは5.0~10.0mg/mLで溶解したときに温度25℃で保存した場合、7日後の触媒活性保持率を80%以上、21日後を11%以上とすることができ、促進試験である40℃で保存した場合、7日後の触媒活性保持率を45%以上、14日後を15%以上とすることができる。ヘキソキナーゼは10.0~65.0mg/mLで溶解したときに温度25℃で保存した場合、21日後の触媒活性保持率を10%以上とすることができ、促進試験である40℃で保存した場合、14日後の触媒活性保持率を19%以上とすることができる。アルギン酸リアーゼは10.0~30.0mg/mLで溶解したときに温度25℃で保存した場合、60日後の触媒活性保持率を20%以上とすることができ、促進試験である40℃で保存した場合、30日後の触媒活性保持率を13%以上とすることができる。ホスホグルコースイソメラーゼは1.5mg/mLで溶解したときに温度25℃で保存した場合、60日後の触媒活性保持率を61%以上とすることができ、促進試験である40℃で保存した場合、21日後の触媒活性保持率を10%以上とすることができる。アセチルCoAシンセターゼは1.5mg/mLで溶解したときに温度25℃で保存した場合、60日後の触媒活性保持率を10%以上とすることができ、促進試験である40℃で保存した場合、14日後の触媒活性保持率を21%以上とすることができる。シトクロムP450は1.0mg/mLで溶解したときに温度3℃で保存した場合、14日後の触媒活性保持率を7%以上とすることができる。ここで生体触媒の立体構造と触媒活性の保持は、触媒反応の成否で確認することができる。
 本発明の生体触媒溶液における生体触媒の保存濃度は、生体触媒の種類等にもよるが、例えば、ウレアーゼは10ng/mL以上、カタラーゼは20mg/mL以上、アミラーゼは0.5mg/mL以上、クエン酸シンターゼは5mg/mL以上、アルギン酸リアーゼは10mg/mL以上、ホスホグルコースイソメラーゼ及びアセチルCoAシンセターゼは1.5mg/mL以上、ヘキソキナーゼは10mg/mL以上、シトクロムP450は1.0mg/mL以上とすることができる。
 生体触媒の保存期間は、生体触媒の種類等にもよるが、例えば30日以上、更には60日以上、更には90日以上、更には180日以上とすることができる。
 生体触媒の保存温度については、本発明の生体触媒溶液は、例えば40℃以下の範囲において、液状で長期間活性を保持したまま生体触媒を保存することができる。
 以下に、実施例により本発明を更に詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。
<実施例1> 化合物1
Figure JPOXMLDOC01-appb-C000004
 モノエタノールアミン(10.00g、0.16mol)と乳酸(14.74g、0.16mol)を水中(100mL)で、室温下、3時間反応後、水を減圧留去、洗浄することにより化合物1を得た。
FT-IR(KBr):3392cm-1:O-H伸縮振動 2950cm-1:C-H伸縮振動 1579cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 1.24 (d, 3H, CH 3 CH), δ 3.01 (t, 2H, N+CH 2 CH2OH), δ 3.71 (t, 2H, N+CH2CH 2 OH), δ 4.00 (m, 1H, CH3CH(OH)COO).
13C-NMR (D2O 100MHz): δ 20.1 (CH3CH), δ 41.4 (N+ CH2CH2OH), δ 58.3 (N+CH2 CH2OH), δ 68.5 (CH3 CH(OH)COO) , δ 182.5 (CH3CH(OH)COO).
<実施例2> 化合物2
Figure JPOXMLDOC01-appb-C000005
 ジエタノールアミンと乳酸を用いて、実施例1と同様な合成方法及び配合比で化合物2を得た。
FT-IR(KBr):3392cm-1:O-H伸縮振動 2950cm-1:C-H伸縮振動 1584cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 1.26 (d, 3H, CH 3 CH), δ 3.13 (t, 4H, N+CH 2 CH2OH), δ 3.79 (t, 4H, N+CH2CH 2 OH), δ 4.02 (m, 1H, CH3CH(OH)COO).
13C-NMR (D2O 100MHz): δ 20.1 (CH3CH), δ 49.0 (N+ CH2CH2OH), δ 56.9 (N+CH2 CH2OH), δ 68.5 (CH3 CH(OH)COO) , δ 182.5 (CH3CH(OH)COO).
<実施例3> 化合物3
Figure JPOXMLDOC01-appb-C000006
 トリエタノールアミンと酢酸を用いて、実施例1と同様な合成方法及び配合比で化合物3を得た。
FT-IR(KBr):3360cm-1:O-H伸縮振動 2950cm-1:C-H伸縮振動 1558cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 1.84 (s, 3H, CH 3 COO), δ 3.31(t, 6H, N+CH 2 CH2OH), δ 3.85 (t, 6H, N+CH2CH 2 OH).
13C-NMR (D2O 100MHz): δ 23.3 (CH3COO), δ 55.4 (N+ CH2CH2OH), δ 55.6 (N+CH2 CH2OH), δ 181.4 (CH3 COO).
<実施例4> 化合物4
Figure JPOXMLDOC01-appb-C000007
 トリエタノールアミンと乳酸を用いて、実施例1と同様な合成方法及び配合比で化合物4を得た。
FT-IR(KBr):3313cm-1:O-H伸縮振動 2939cm-1:C-H伸縮振動 1591cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 1.25 (d, 3H, CH 3 CH), δ 3.32 (t, 6H, N+CH 2 CH2OH), δ 3.86 (t, 6H, N+CH2CH 2 OH), δ 4.01 (m, 1H, CH3CH(OH)COO).
13C-NMR (D2O 100MHz): δ 20.1 (CH3CH), δ 55.4 (N+ CH2CH2OH), δ 55.6 (N+CH2 CH2OH), δ 68.5 (CH3 CH(OH)COO) , δ 182.5 (CH3CH(OH)COO).
<実施例5> 化合物5
Figure JPOXMLDOC01-appb-C000008
 トリエタノールアミンとコハク酸を用いて、実施例1と同様な合成方法及び配合比で化合物5を得た。
FT-IR(KBr):3360m-1:O-H伸縮振動 2939cm-1:C-H伸縮振動 1714cm-1:COOH伸縮振動 1563cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 2.51 (s, 4H, HOOCCH 2 CH 2 COO), δ 3.22 (t, 6H, N+CH 2 CH2OH), δ 3.84 (t, 6H, N+CH2CH 2 OH).
13C-NMR (D2O 100MHz): δ 31.4 (HOOCCH2 CH2COO), δ 48.9 (N+ CH2CH2OH), δ 56.5 (N+CH2 CH2OH), δ 179.7 (COOH, COO).
<実施例6> 化合物6
Figure JPOXMLDOC01-appb-C000009
 トリエタノールアミンとクエン酸を用いて、実施例1と同様な合成方法及び配合比で化合物6を得た。
FT-IR(KBr):3313m-1:O-H伸縮振動 2939cm-1:C-H伸縮振動 1717cm-1:COOH伸縮振動 1588cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 2.63 (m, 4H, HOOCCH 2 C(OH)(COO)CH 2 COOH), δ 3.37 (t, 6H, N+CH 2 CH2OH), δ 3.84 (t, 6H, N+CH2CH 2 OH).
13C-NMR (D2O 100MHz): δ 43.7 (HOOCCH2C(OH)(COO)CH2COOH), δ 55.0 (N+ CH2CH2OH), δ 55.3 (N+CH2 CH2OH), δ 73.8 (HOOCCH2 C(OH)(COO)CH2COOH), δ 174.8 (HOOCCH2C(OH)(COO)CH2 COOH), δ 178.7 (HOOCCH2C(OH)(COO)CH2COOH).
<実施例7> 化合物7
Figure JPOXMLDOC01-appb-C000010
 トリエタノールアミンとメトキシ酢酸を用いて、実施例1と同様な合成方法及び配合比で化合物7を得た。
FT-IR(KBr):3312m-1:O-H伸縮振動 2950cm-1:C-H伸縮振動 1593cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 3.28 (t, 3H, CH 3 OCH2COO), δ 3.39 (t, 6H, N+CH 2 CH2OH), δ 3.78 (s, 2H, CH3OCH 2 COO), δ 3.87 (t, 6H, N+CH2CH 2 OH).
13C-NMR (D2O 100MHz): δ 55.1 (N+ CH2CH2OH), δ 55.3 (N+CH2 CH2OH), δ 58.1 (CH3OCH2COO), δ 71.2 (CH3OCH2COO), δ 178.0 (CH3OCH2 COO).
<実施例8> 化合物8
Figure JPOXMLDOC01-appb-C000011
 2-アミノ-1,3-プロパンジオ-ルと乳酸を用いて、実施例1と同様な合成方法及び配合比で化合物8を得た。
FT-IR(KBr):3231cm-1:O-H伸縮振動 2972cm-1:C-H伸縮振動 1571cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 1.17-1.24 (m, 3H, CH 3 CH(OH)COO), δ 3.22-3.27 (m, 1H, CH3CH(OH)COO), δ 3.55-3.71 (m, 1H, HOCH2CH(N+H3)CH2OH), δ 3.97-4.02 (m, 4H, HOCH 2 CH(N+H3)CH 2 OH).
13C-NMR (D2O 100MHz): δ 20.0 (CH3CH(OH)COO), δ 53.9 (HOCH2 CH(N+H3)CH2OH), δ 59.3 (HOCH2CH(N+H3)CH2OH), δ 68.4 (CH3 CH(OH)COO), δ 182.4 (CH3CH(OH)COO).
<実施例9> 化合物9
Figure JPOXMLDOC01-appb-C000012
 2-アミノ-2-エチル-1,3-プロパンジオールと乳酸を用いて、実施例1と同様な合成方法及び配合比で化合物9を得た。
FT-IR(KBr):3231cm-1:O-H伸縮振動 2937cm-1:C-H伸縮振動 1571cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 0.77-0.81 (m, 3H, NH3 +C(CH2OH)2CH2CH 3 ), δ 1.17-1.24 (m, 3H, CH 3 CH(OH)COO), δ 1.51-1.57 (m, 2H, NH3 +C(CH2OH)2CH 2 CH3), δ 3.52 (s, 4H, NH3 +C(CH 2 OH)2CH2CH3), δ 3.94-3.99 (m, 1H, CH3CH(OH)COO).
13C-NMR (D2O 100MHz): δ 6.3 (NH3 +C(CH2OH)2CH2 CH3), δ 20.0 (CH3CH(OH)COO), δ 23.5 (NH3 +C(CH2OH)2 CH2CH3), δ 60.3 (NH3 + C(CH2OH)2CH2CH3), δ 61.0 (NH3 +C(CH2OH)2CH2CH3), δ 68.5 (CH3 CH(OH)COO) , δ 182.4 (CH3CH(OH)COO).
<実施例10> 化合物10
Figure JPOXMLDOC01-appb-C000013
 トリス(ヒドロキシメチル)アミノメタンと乳酸を用いて、実施例1と同様な合成方法及び配合比で化合物10を得た。
FT-IR(KBr):3228cm-1:O-H伸縮振動 2935cm-1:C-H伸縮振動 1571cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 1.15-1.17 (m, 3H, CH 3 CH(OH)COO), δ 3.53 (s, 6H, NH3 +C(CH 2 OH)3), δ 3.91-4.11 (m, 1H, CH3CH(OH)COO).
13C-NMR (D2O 100MHz): δ 20.0 (CH3CH(OH)COO), δ 59.8 (NH3 + C(CH2OH)3), δ 60.7 (NH3 +C(CH2OH)3), δ 68.4 (CH3 CH(OH)COO), δ 182.4 (CH3CH(OH)COO).
<実施例11> 化合物11
Figure JPOXMLDOC01-appb-C000014
 トリス(ヒドロキシメチル)アミノメタンとクエン酸を用いて、実施例1と同様な合成方法及び配合比で化合物11を得た。
FT-IR(KBr):3145cm-1:O-H伸縮振動 2946cm-1:C-H伸縮振動 1711cm-1:COOH伸縮振動 1572cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 2.58-2.75 (m, 4H, HOOCCH 2 C(OH)(COO)CH 2 COOH), δ 3.57 (s, 6H, NH3 +C(CH 2 OH)3).
13C-NMR (D2O 100MHz): δ 43.7 (HOOCCH2C(OH)(COO)CH2COOH), δ 59.2 (NH3 + C(CH2OH)3), δ 61.4 (NH3 +C(CH2OH)3), δ 73.8 (HOOCCH2 C(OH)(COO)CH2COOH), δ 174.8 (HOOCCH2C(OH)(COO)CH2 COOH), δ 178.6 (HOOCCH2C(OH)(COO)CH2COOH).
<実施例12> 化合物12
Figure JPOXMLDOC01-appb-C000015
 トリス(ヒドロキシメチル)アミノメタンとメトキシ酢酸を用いて、実施例1と同様な合成方法及び配合比で化合物12を得た。
FT-IR(KBr):3148cm-1:O-H伸縮振動 2928cm-1:C-H伸縮振動 1574cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 0.95 (t, 3H, CH 3 OCH2COO),δ 3.48 (s, 6H, NH3 +C(CH 2 OH)3), δ 3.66 (s, 2H, CH3OCH 2 COO).
13C-NMR (D2O 100MHz): δ 14.0 (CH3O), δ 59.2 (NH3 + C(CH2OH)3), δ 61.3 (NH3 +C(CH2OH)3),δ 69.1 (CH3OCH2COO), δ 178.1 (CH3OCH2 COO).
<実施例13> 化合物13
Figure JPOXMLDOC01-appb-C000016
 トリス(ヒドロキシメチル)アミノメタンとメタンスルホン酸を用いて、実施例1と同様な合成方法及び配合比で化合物13を得た。
FT-IR(KBr):3388cm-1:O-H伸縮振動 2959cm-1:C-H伸縮振動
1H-NMR (D2O 400MHz): δ 2.72 (s, 3H, CH 3 SO3 ), δ 3.65 (s, 6H, NH3 +C(CH 2 OH)3).
13C-NMR (D2O 100MHz): δ 38.5 (CH3SO3 ), δ 59.4 (NH3 + C(CH2OH)3), δ 61.4 (NH3 +C(CH2OH)3).
<実施例14> 化合物14
Figure JPOXMLDOC01-appb-C000017
 D-グルカミンと酢酸を用いて、実施例1と同様な合成方法及び配合比で化合物14を得た。
FT-IR(KBr):3152cm-1:O-H伸縮振動 2921cm-1:C-H伸縮振動 1549cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 1.76 (s, 3H, CH 3 COO), δ 2.89-3.09 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.47-3.68 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.86-3.90 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C-NMR (D2O 100MHz): δ 23.2 (CH3COO), δ 41.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9-70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +),  δ 181.4 (CH3 COO).
<実施例15> 化合物15
Figure JPOXMLDOC01-appb-C000018
 D-グルカミンと乳酸を用いて、実施例1と同様な合成方法及び配合比で化合物15を得た。
FT-IR(KBr):3234cm-1:O-H伸縮振動 2926cm-1:C-H伸縮振動 1572cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 1.14 (m, 3H, CH 3 CH(OH)COO), δ 2.83-3.02 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.45-3.66 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.81-3.85 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 3.90-3.95 (m, 1H, CH3CH(OH)COO).
13C-NMR (D2O 100MHz): δ 20.1 (CH3CH(OH)COO), δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.4 (CH3 CH(OH)COO), δ 68.9-70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 182.5 (CH3CH(OH)COO).
<実施例16> 化合物16
Figure JPOXMLDOC01-appb-C000019
 D-グルカミンとコハク酸を用いて、実施例1と同様な合成方法及び配合比で化合物16を得た。
FT-IR(KBr):3177cm-1:O-H伸縮振動 2925cm-1:C-H伸縮振動 1709cm-1:COOH伸縮振動 1551cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 2.42 (s, 4H, HOOCCH 2 CH 2 COO), δ 2.89-3.08 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.46-3.67 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.85-3.89 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C-NMR (D2O 100MHz): δ 31.2 (HOOCCH2 CH2COO), δ 41.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9-70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 179.6 (HOOCCH2CH2 COO).
<実施例17> 化合物17
Figure JPOXMLDOC01-appb-C000020
 D-グルカミンとクエン酸を用いて、実施例1と同様な合成方法及び配合比で化合物17を得た。
FT-IR(KBr):3226cm-1:O-H伸縮振動 2931cm-1:C-H伸縮振動 1711cm-1:COOH伸縮振動 1575cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 2.66-2.83 (m, 4H, HOOCCH 2 C(OH)(COO)CH 2 COOH), δ 2.90-3.10 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.48-3.68 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.86-3.90 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C-NMR (D2O 100MHz): δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 43.6 (HOOCCH2C(OH)(COO)CH2COOH), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9-70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 73.8 (HOOCCH2 C(OH)(COO)CH2COOH), δ 174.6 (HOOCCH2C(OH)(COO)CH2 COOH), δ 178.6 (HOOCCH2C(OH)(COO)CH2COOH).
<実施例18> 化合物18
Figure JPOXMLDOC01-appb-C000021
 D-グルカミンとメトキシ酢酸を用いて、実施例1と同様な合成方法及び配合比で化合物18を得た。
FT-IR(KBr):3174cm-1:O-H伸縮振動 2924cm-1:C-H伸縮振動 1577cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 2.89-3.09 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.20 (s, 3H, CH 3 OCH2COO), δ 3.48-3.69 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.72 (s, 2H, CH3OCH 2 COO), δ 3.86-3.90 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C-NMR (D2O 100MHz): δ 41.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 58.0 (CH3OCH2COO), δ 62.6 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 69.0-70.8 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +), δ 71.1 (CH3OCH2COO), δ 178.0 (CH3OCH2 COO).
<実施例19> 化合物19
Figure JPOXMLDOC01-appb-C000022
 D-グルカミンとメタンスルホン酸を用いて、実施例1と同様な合成方法及び配合比で化合物19を得た。
FT-IR(KBr):3388cm-1:O-H伸縮振動 2959cm-1:C-H伸縮振動
1H-NMR (D2O 400MHz): δ 2.71 (s, 3H, CH 3 SO3 ), δ 2.95-3.15 (m, 2H, HOCH2(CH(OH))3CH(OH)CH 2 NH3 +), δ 3.53-3.73 (m, 5H, HOCH 2 (CH(OH))3CH(OH)CH2NH3 +), δ 3.90-3.96 (m, 1H, HOCH2(CH(OH))3CH(OH)CH2NH3 +).
13C-NMR (D2O 100MHz): δ 38.5 (CH3SO3 ), δ 41.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 62.7 (HOCH2(CH(OH))3CH(OH)CH2NH3 +), δ 68.9-70.9 (HOCH2(CH(OH))3 CH(OH)CH2NH3 +).
<実施例20> 化合物20
Figure JPOXMLDOC01-appb-C000023
 塩化コリンをイオン交換水に溶解し、OH型に置換したイオン交換樹脂(三菱化学(株)製ダイアイオン SA10A)を充填したカラムに通液することによってコリンヒドロキシドを得た。得られたコリンヒドロキシド(8.68g、0.07mol)と乳酸(6.45g、0.07mol)を水中で(100mL)、室温下、3時間反応後、水を減圧留去、洗浄することにより化合物20を得た。
FT-IR(KBr):3464cm-1:O-H伸縮振動 2920cm-1:C-H伸縮振動 1570cm-1:COO-伸縮振動
1H-NMR (D2O 400MHz): δ 1.30 (m, 3H, CH 3 CH(OH)COO),δ3.07 (s, 9H, CH 3 N+), δ 3.38 (m, 2H, CH 2 N+), δ 3.92 (m, 2H, N+CH2CH 2 OH), δ 3.96 (m, 1H, CH3CH).
13C-NMR (D2O 100MHz): δ 20.1 (CH3CH(OH)COO), δ53.9 (CH3N+), δ 55.6 (CH2N+), δ 68.4 (N+CH2 CH2OH), δ 72.8 (CH3 CH(OH)COO), δ 182.3 (CH3CH(OH)COO).
<実施例21> 化合物21
Figure JPOXMLDOC01-appb-C000024
 塩化コリンとコハク酸を用いて、実施例20と同様な合成方法及び配合比で化合物21を得た。
FT-IR(KBr):3177cm-1:O-H伸縮振動 2925cm-1:C-H伸縮振動 1709cm-1:COOH伸縮振動 1551cm-1:COO伸縮振動
1H-NMR (D2O 400MHz): δ 2.43 (s, 4H, HOOCCH 2 CH 2 COO), δ3.07 (s, 9H, CH 3 N+), δ 3.39 (m, 2H, CH 2 N+), δ 3.93 (m, 2H, N+CH2CH 2 OH).
13C-NMR (D2O 100MHz): δ 30.8 (HOOCCH2 CH2COO), δ53.9 (CH3N+), δ 55.5 (CH2N+), δ 67.4 (N+CH2 CH2OH), δ 179.1 (HOOCCH2CH2 COO).
<実施例22> 化合物22
Figure JPOXMLDOC01-appb-C000025
 塩化コリンとリン酸を用いて、実施例20と同様な合成方法及び配合比で化合物22を得た。
FT-IR(KBr):3464cm-1:O-H伸縮振動 2920cm-1:C-H伸縮振動
1H-NMR (D2O 400MHz): δ 3.08 (s, 9H, CH 3 N+), δ 3.39 (m, 2H, CH 2 N+), δ 3.93 (m, 2H, N+CH2CH 2 OH).
13C-NMR (D2O 100MHz): δ 53.9 (CH3N+), δ 55.6 (CH2N+), δ 67.4 (N+CH2 CH2OH).
<実施例23~27>
 化合物23~27は、特開2012-31137号公報に記載の方法で合成した。
<実施例23> 化合物23
Figure JPOXMLDOC01-appb-C000026
<実施例24> 化合物24
Figure JPOXMLDOC01-appb-C000027
<実施例25> 化合物25
Figure JPOXMLDOC01-appb-C000028
<実施例26> 化合物26
Figure JPOXMLDOC01-appb-C000029
<実施例27> 化合物27
Figure JPOXMLDOC01-appb-C000030
<比較例1> 化合物28:BuCHCH(OH)COO
Figure JPOXMLDOC01-appb-C000031
 テトラブチルアンモニウムブロミドをイオン交換水に溶解し、OH型に置換したイオン交換樹脂(三菱化学(株)製ダイアイオン SA10A)を充填したカラムに通液することによってテトラブチルアンモニウムヒドロキシドを得た。得られたテトラブチルアンモニウムヒドロキシド(8.05g、0.03mol)と乳酸(2.70g、0.03mmol)を水中で(100mL)、室温下、3時間反応後、水を減圧留去、洗浄することにより化合物28を得た。下記の室温(-5,-10℃)での性状、酵素溶解試験、酵素活性保持率の測定では、液状の14%水溶液に溶解して評価した。
<比較例2~5>
 化合物29のイオン液体は和光純薬工業(株)、化合物30~32のイオン液体は関東化学(株)の試薬を用いた。
<比較例2> 化合物29:BMI-BF
Figure JPOXMLDOC01-appb-C000032
<比較例3> 化合物30:EMI-TFSI
Figure JPOXMLDOC01-appb-C000033
<比較例4> 化合物31:BTMA-TFSI
Figure JPOXMLDOC01-appb-C000034
<比較例5> 化合物32:BMI-PF
Figure JPOXMLDOC01-appb-C000035
<比較例6,7>
 化合物33、34のイオン液体は特表2006-514832号公報に記載の方法に従って合成した。
<比較例6> 化合物33:HOPMI-PF
Figure JPOXMLDOC01-appb-C000036
<比較例7> 化合物34:DHOPMI-PF
Figure JPOXMLDOC01-appb-C000037
<比較例8> 化合物35:グリセリン(100%)
 和光純薬工業(株)の試薬を用いた。
 
<比較例9> 化合物36:バッファー
 バッファーとして、ウレアーゼ、カタラーゼ保存試験においては、水酸化ナトリウムでpH調製したリン酸二水素カリウムの10mM水溶液(リン酸緩衝液:ウレアーゼ:pH7.5、カタラーゼ:pH7.0)を用いた。また、ヘキソキナーゼ、アルギン酸リアーゼ保存試験においては、塩酸でpH調製したトリスヒドロキシメチルアミノメタンの水溶液(トリス緩衝液:ヘキソキナーゼ:50mM(pH8.5)、アルギン酸リアーゼ:200mM(pH7.0))を用いた。また、シトクロムP450保存試験においては、水酸化ナトリウムでpH7.4に調製したリン酸二水素カリウムの100mM水溶液を用いた。
<比較例10> 化合物37:グリセリン水溶液
 グリセリン(和光純薬工業(株))を水に溶解して10mg/mLに調製した。
<比較例11> 化合物38:グルコース水溶液
 D(+)-グルコース(関東化学(株))を水に溶解して10mg/mLに調製した。
<比較例12> 化合物39:ウシ血清アルブミン水溶液
 アルブミン(牛由来、一般グレード、pH5.2:ナカライテスク(株))を水に溶解して10mg/mLに調製した。
<比較例13> 化合物40:リシン水溶液
 L(+)-リシン(和光純薬工業(株))を水に溶解して10mg/mLに調製した。
<比較例14> 化合物41:リシン、ウシ血清アルブミン水溶液
 L(+)-リシン(和光純薬工業(株))とアルブミン(牛由来、一般グレード、pH5.2:ナカライテスク(株))を重量比54:46の混合物を水で10mg/mL水溶液に調製した。
<比較例15> 化合物42:アルギニン水溶液
 L(+)-アルギニン(和光純薬工業(株))を水に溶解して10mg/mLに調製した。
<比較例16> 化合物43:20%グリセリン溶液
 グリセリン(和光純薬工業(株))をpH7.4に調製したリン酸二水素カリウムの100mM水溶液に溶解して、20%溶液に調製した。
 化合物1~35のイオン液体の大気中もしくは合成中から起因する含水率は、カールフィッシャー法もしくは示差熱熱重量同時測定装置(TG/DTA)で測定し、化合物1~34については、水分量を一定にして(14%±0.5%)、化合物の評価を行った。
 なお、下記に使用する酵素は、各種酵素の代表的な酵素として、それぞれ加水分解酵素のウレアーゼ(ナタ豆由来、和光純薬工業(株))、α-アミラーゼ(枯草菌由来、和光純薬工業(株))、酸化還元酵素のカタラーゼ(ウシ肝臓由来、和光純薬工業(株))、シトクロムP450(Human CYP3A4LR Easy CYP Bactosomes 日本農産工業(株))、転移酵素のクエン酸シンターゼ(ブタ心臓由来、SIGMA-ALDRICH)、ヘキソキナーゼ(出芽酵母由来、SIGMA-ALDRICH)、脱離酵素のアルギン酸リアーゼ(フラボバクテリウム由来、SIGMA-ALDRICH)、異性化酵素のホスホグルコースイソメラーゼ、(ウサギ筋由来、SIGMA-ALDRICH)、合成酵素のアセチルCoAシンセターゼを由来、(パン酵母由来、SIGMA-ALDRICH)を選定して用いた。
 上記の実施例、比較例の化合物を用いて、次の測定及び評価を行った。
1.凝固点の測定
 化合物1~42をスクリュー管に添加して、-5℃及び-10℃に設定した低温恒温器に24時間放置し、性状(液体、固体)を確認して凝固点を測定した(表1~3)。
 その結果、一般的な酵素の保存水溶液である化合物36~42(比較例9~15)及びグリセリン(比較例8)は、>-5℃の条件下で凝固したのに対して、化合物1~27(実施例1~27)は、-10℃でも液状で流動性があり、本発明のイオン液体が低温安定性に優れていることをが示された。
2.酵素溶解試験
 化合物1~35(実施例1~27、比較例1~8)のウレアーゼ、α-アミラーゼ、カタラーゼ、クエン酸シンターゼ、アルギン酸リアーゼ、ホスホグルコースイソメラーゼ、アセチルCoAシンセターゼ、ヘキソキナーゼ、シトクロムP450に対する溶解濃度を測定した。表1~3に示す含水率の化合物1~35に、室温(25℃)で各酵素を所定濃度添加し、混合後、溶解を目視にて判別した(表1~3)。
 本発明の生体触媒用溶媒は、ウレアーゼは15mg/mL以上、カタラーゼは20mg/mL以上、アミラーゼは0.5mg/mL以上、クエン酸シンターゼは5mg/mL以上、アルギン酸リアーゼは10mg/mL以上、ホスホグルコースイソメラーゼ及びアセチルCoAシンセターゼは1.5mg/mL以上、ヘキソキナーゼは10mg/mL以上、シトクロムP450は1.0mg/mL以上溶解することができた。
 いずれの酵素に対しても、化合物1~27(実施例1~27)は、化合物29~34のジアルキルイミダゾリウム系イオン液体、水酸基を持つイミダゾリウム系イオン液体及び化合物28のテトラアルキルアンモニウム系イオン液体より溶解性が高く、水酸基、カルボキシ基、水素等の水素結合性官能基を持つ第4級アンモニウムカチオンの本イオン液体の構造が酵素に対して高溶解性を示すことが確認された。また、実施例のイオン液体中においても、カチオンが水素結合性官能基とアルキル基からなる化合物20~27(実施例20~27)より、カチオンの官能基の全てが水素結合性官能基の化合物1~19の方が、相対的に溶解性が高く、カチオンの水素結合性官能基(水酸基、カルボキシ基、水素)の存在により、酵素の溶解性が高められることが示唆された。
 一方で、同じカチオン内で比較した場合(化合物3⇔化合物4~7、化合物14⇔化合物15~19、化合物23⇔化合物24~26)、アニオンに水素結合性官能基(水酸基、カルボキシ基、エーテル基)があるイオン液体の方が酵素に対する溶解度は高く、アニオンへの水素結合性官能基の導入により溶解度を、更に高めることが可能であることを確認した。
 同じアニオンを持つ化合物27より化合物26、例えば、同じカチオンを持つ化合物12,13より化合物10,11、化合物21,22より化合物20の方が、溶解性が高く、水素結合性官能基の中でも水酸基が酵素に対する溶解度を高める効果が高いことを示した。
 また、いずれの酵素においても、本発明の化合物1~27は、3つの水酸基をもつ化合物35のグリセリン(100%)より、相対的に溶解度が高く、アニオン、カチオンとの塩構造からなる本発明化合物の酵素分子間における相互作用の抑制効果が示唆された。
 さらに、ウレアーゼに対する無水イオン液体溶解濃度を測定した。
 まずは、表1~3に示す化合物1~34を減圧脱水により無水物にして、目視で状態を確認した。化合物22と28の無水物は25℃で固体であったのに対して、それ以外の化合物1~21、23~27、29~34は、無水物でも液体であった。無水物において液体の化合物1~6,8~11,13,15,18,20,23,24,27,29,33,34(実施例1~6,8~11,13,15,18,20,23,24,27,比較例2,6,7)に、室温(25℃)でウレアーゼを所定濃度添加し、混合後、溶解性を目視にて判別した(表1~3)。
 その結果、系中に水が存在しない無水物でも、上記の含水イオン液体のカチオン、アニオンの構造と酵素に対する溶解性の間に同様な傾向を示すことを確認した。つまり、水の存在に関わらず本願イオン液体の構造が、酵素に対する高い溶解性を発現することが示唆された。
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
3.酵素活性保持率の測定
 表4~32中の化合物に、それぞれウレアーゼ、カタラーゼ、α-アミラーゼ、クエン酸シンターゼ、ヘキソキナーゼ、アルギン酸リアーゼ、ホスホグルコースイソメラーゼ、アセチルCoAシンセターゼを、表4~31記載の酵素濃度で溶解して、一般的に、酵素を溶解、活性を保持する温度より高い25℃及び、更に高温条件、また安定性の促進試験として40℃の条件に設定した恒温器に放置した。また、安定性の特に低いシトクロムP450は、表32記載の酵素濃度で溶解して、一般的にシトクロムP450の活性を保持する温度より高い3℃の条件に設定した恒温器に放置した。
 尚、設定濃度については、化合物1~34はそれぞれの化合物の各酵素に対する最大溶解度に設定した。また、比較例の化合物35~42は、化合物1~27(実施例1~27)の各酵素に対する最大溶解度のうち、最も低い値に設定し、比較的温和な条件とした。所定期間、放置した後、各サンプルを採取して、下記方法を用いて、それぞれの化合物に溶解した酵素の活性保持率を測定して、各化合物の酵素における立体構造の保持性、安定化効果を確認した。
<加水分解酵素:ウレアーゼの活性測定:表4~9>
 ウレアーゼの活性は、ウレアーゼの酵素反応によって、尿素から分解生成するアンモニウムイオンをインドフェノール法によって定量して測定した。
 まず、三角フラスコに1mMの基質溶液(pH7.5の10mMリン酸緩衝液に基質となる尿素を溶解して調製)を100mL取り、30℃で約30分間予備加温した。
 次に、表4~9中に記載の設定濃度及び温度で、所定期間放置したサンプル(化合物1~6,8~11,13,15,18,20,22~24,27~29,33~42)を、酵素量が0.5mgとなるように上記の基質溶液に加え、30℃で60分間反応させた。
 反応後、反応溶液を0.1mL採取し、直ちにフェノール溶液(イオン交換水にフェノール10gとペンタシアノニトロシル鉄(III)酸ナトリウム50mgを溶解した後、イオン交換水で1000mLにメスアップして調製)2mLと、次亜塩素酸ナトリウム溶液(イオン交換水に水酸化ナトリウム5gと5%の次亜塩素酸ナトリウム溶液8.4mLを溶解した後、イオン交換水で1000mLにメスアップして調製)2mLを加え、37℃の恒温槽中で20分間反応させた。
 この反応液の波長635nmの吸光度(V-550:日本分光(株))を測定して得られたインドフェノール量からアンモニウムイオンの生成量を求めて、ウレアーゼ活性を算出した。アンモニウムイオンの定量は、0.1~3.0mMの濃度範囲でアンモニウムイオン溶液を調製して、上記と同様にインドフェノール法で定量して得られた検量線を用いた。
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。適正温度で保存したウレアーゼ粉末をバッファー(pH7.5の10mMリン酸緩衝液)に溶解して酵素濃度50mg/mLの酵素溶液を調製した。調製後、直ちにその溶液を、上記と同様に、酵素量が0.5mgとなるように基質溶液に加え、酵素反応を行った後、インドフェノール法で定量したアンモニウムイオン量を基準として、酵素活性保持率を算出した。
 その結果を表4~9に示す。
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 40℃の条件の結果(表7~9)では、イミダゾリム系イオン液体、テトラアルキルアンモニウム系イオン液体及び一般的な添加剤水溶液(化合物28,29,33~42)は、酵素濃度(1~30mg/mL)が低いにも関わらず、30日後には0~30%、90日後には0%の活性保持率に低下したのに対して、本発明の化合物1~6,8~11,13,15,18,20,22~24,27(実施例1~6,8~11,13,15,18,20,22~24,27)は、高濃度条件下(30~50mg/mL)、30日後には64%以上、90日後には13%以上の活性保持率を示した。また、25℃の条件(表4~6)では、30日後、低濃度条件(1~30mg/mL)の比較例1~2,6~15の化合物28,29,33~42の活性保持率が0~88%、90日後には0%に対して、本発明の化合物は、高濃度条件下(30~50mg/mL)の30日後において90%以上、90日後には40%以上、180日後には7%以上の活性保持率を示した。つまり、高濃度、高温、長期間の条件下において、本発明の生体触媒用溶媒は酵素の活性を保持し、酵素の立体構造の高い保持性を有することが示唆された。
 また、本発明のイオン液体は、保存開始30日後、25℃で90%以上、40℃で64%以上の活性を保持していたのに対して、水酸基を持つイミダゾリウム系イオン液体(化合物33,34)は、30日後の活性保持率は25℃、40℃とも0%に低下した。つまり、カチオンがイミダゾリム系の場合、水酸基を有していても、カチオンの分子構造が環状構造で剛直なため、酵素内部のアミノ酸残基の立体構造の保持性が低いのに対して本発明の生体触媒用溶媒は、カチオンの分子サイズが小さく、柔軟な構造の4級アンモニウム系化合物であるため、酵素内部までアミノ酸残基を保護することができ、酵素の立体構造の高い保持性を有することが示唆された。
<酸化還元酵素:カタラーゼの活性測定:表10~15>
 カタラーゼは過酸化水素を酸素と水素に分解する酵素である。その活性は、カタラーゼの反応基質である過酸化水素量を定量して測定した。
 まず、三角フラスコに16mMの基質溶液(pH7.0の10mMリン酸緩衝液に基質となる過酸化水素を溶解して調製)を100mL取り、25℃で約30分間予備加温した。
 次に、表10~15中に記載の設定濃度及び温度で、所定期間放置したサンプル(化合物1~6,8~11,13,15,18,20,22~24,27,33~41)を、酵素量が0.5mgとなるように上記の基質溶液に加え、25℃で30分間反応させた。
 反応後、チタン溶液(1gの酸化チタンと10gの硫酸カリウムを150mLの濃硫酸に溶解し、180~220℃で2~3時間加温した後、イオン交換水で1.5Lにメスアップして調製)2.5mLを加えて反応を停止させた。この反応停止した溶液の410nmの吸光度を測定し、過酸化水素量を定量して、カタラーゼ活性を算出した。過酸化水素量は1~16mMの濃度範囲の過酸化水素溶液(pH7.0の10mMリン酸緩衝液に過酸化水素を溶解し、所定の濃度となるように調製)から作成した検量線を用いて算出した。
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。適正温度で保存したカタラーゼ粉末をバッファー(pH7.0の10mMリン酸緩衝液)に溶解して酵素濃度50mg/mLの酵素溶液を調製した。調製後、直ちにその溶液を、上記と同様に、酵素量が0.5mgとなるように基質溶液に加え、酵素反応を行った後、上記と同様の方法で算出した過酸化水素量を基準として、酵素活性保持率を算出した。
 その結果を表10~15に示す。
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
 30日後、本発明のイオン液体(化合物1~6,8~11,13,15,18,20,22~24,27)は、25℃の条件(表10~12)で91%以上、40℃の条件(表13~15)で90%以上の触媒活性を保持したのに対して、比較例6~14(化合物33~41)は、25℃で0~89%、40℃の条件で0~88%となった。さらに、90日後、本発明のイオン液体は、25℃の条件で75%以上、40℃の条件で30%以上の触媒活性を保持したのに対して、比較例は、25℃で0~67%、40℃の条件で0~28%となり、本発明のイオン液体の優位性が示された。
 ウレアーゼ(表4~9)及びカタラーゼ(表10~15)に対して、例えば、分子中に2つ水酸基を持つ本発明のイオン液体(化合物20,24)と比較して、分子中に3つの水酸基を持つグリセリン100%のサンプル(化合物35)は、酵素活性保持率が低い傾向が認られた。つまり、酵素の立体構造を保持して、活性を維持するためには水酸基だけではなく、カチオン、アニオンから構成される塩構造も寄与することが示唆された。
<加水分解酵素:アミラーゼの活性測定:表16,17>
 アミラーゼはデンプン中のアミロースやアミロペクチンを、単糖類であるブドウ糖や二糖類であるマルトースおよびオリゴ糖に変換する酵素である。その活性は、アミラーゼの反応基質であるでんぷんを定量して測定した。
 まず、三角フラスコに0.3%でんぷん溶液25mLと、0.5M酢酸ナトリウム緩衝液10mLと、イオン交換水12.5mLを加え、基質溶液を調製した。そして、この基質溶液を37℃で約30分間予備加温した。
 次に、表16,17中に記載の設定濃度及び温度で、所定期間放置したサンプル(化合物3~6,10,11,13,18,22,23,27)を、酵素量が0.5mgとなるように上記の基質溶液に加え、37℃で30分間反応させた。
 反応後、1Nの塩酸6mLを加えて反応を停止させた。そして、0.5mLのヨウ素溶液(120mgのヨウ化カリウムと12mgヨウ素を10mLのイオン交換水に溶解して調製)を加えて、この溶液の700nmの吸光度を測定し、でんぷん量を定量して、アミラーゼ活性を算出した。でんぷん量は0.1~0.3%の濃度範囲のでんぷん溶液から作成した検量線を用いて算出した。
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。適正温度で保存したアミラーゼ粉末をバッファー(pH6.5の10mMリン酸緩衝液)に溶解して酵素濃度0.5mg/mLの酵素溶液を調製した。調製後、直ちにその溶液を、上記と同様に、酵素量が0.5mgとなるように基質溶液に加え、酵素反応を行った後、上記と同様の方法で算出したでんぷん量を基準として、酵素活性保持率を算出した。
 その結果を表16,17に示す。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
 21日後、本発明のイオン液体(化合物3~6,10,11,13,18,22,23,27)は、25℃の条件(表16)で45%以上、40℃の条件(表17)で15%以上の触媒活性を保持した。
<転移酵素:クエン酸シンターゼの活性測定:表18,19>
 クエン酸シンターゼはオキサロ酢酸+アセチル補酵素A+H2O → クエン酸+補酵素A+H+の反応に寄与する酵素である。その活性は、反応によって生成する補酵素Aを、DTNB(5,5'-ジチオビス-2-ニトロ安息香酸)と反応して得られる生成物を定量して測定した。
 まず、10mLのスクリュー管に0.2mMオキサロ酢酸溶液(塩酸でpH8.0に調製したトリスヒドロキシメチルアミノメタンの50mM水溶液(トリス緩衝液)にオキサロ酢酸を溶解して調製)50μL、0.2mMアセチル補酵素A溶液(イオン交換水にアセチル補酵素Aを溶解して調製)30μL、0.1mMDTND溶液(DTNDを0.1mMとなるようにpH8.0に調製した1Mトリス緩衝液で希釈して調製)100μL、イオン交換水770μLを加え、基質溶液を調製した。そして、この基質溶液を25℃で約30分間予備加温した。
 次に、表18,19中に記載の設定濃度及び温度で、所定期間放置したサンプル(化合物3~6,10,11,13,18,22,23,27)を、酵素量が0.1mgとなるように上記の基質溶液に加え、25℃で3分間反応させた。
 反応後、ブランクとなる基質溶液と、反応溶液の412nmの吸光度を測定し、補酵素AとDTNBから生じる生成物を下記式により定量した。
 濃度(M)=(反応溶液の吸光度-ブランクの吸光度)/13600
        ※モル吸光係数13600 L/(M・cm)
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。適正温度で保存したクエン酸シンターゼをバッファー(pH8.0に調製した1Mトリス緩衝液)に溶解して酵素濃度0.1mg/mLの酵素溶液を調製した。調製後、直ちにその溶液を、上記と同様に、酵素量が0.1mgとなるように基質溶液に加え、酵素反応を行った後、上記と同様の方法で算出した生成物量を基準として、酵素活性保持率を算出した。
 その結果を表18、19に示す。
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
 本発明のイオン液体(化合物3~6,10,11,13,18,22,23,27)は、25℃の条件(表18)では、21日後に11%以上、40℃の条件(表19)では、14日後に15%以上の触媒活性を保持した。
<転移酵素:ヘキソキナーゼの活性測定:表20~23>
 ヘキソキナーゼはATPの存在下、グルコースなどのヘキソースをリン酸化して、ヘキソース-6-リン酸とする反応に寄与する酵素である。その活性は、ヘキソキナーゼが分解したグルコースが、ATPと反応して生じたNADPH(ニコチンアミドアデニンジヌクレオチドリン酸還元型)を定量して測定した。
 まず、10mLのスクリュー管にpH8.5の50mMトリス緩衝液0.6mL、10mMグルコース溶液0.3mL、pH7.0の4mM ATP溶液、10U/mL G6PDH(グルコース6リン酸デヒドロゲナーゼ)溶液0.3mL、1mM NADP(ニコチンアミドアデニンジヌクレオチドリン酸酸化型)溶液0.3mL、10mM塩化マグネシウム溶液0.3mL、イオン交換水0.9mLを加え、基質溶液を調製した。そして、この基質溶液を37℃で約30分間予備加温した。10U/mL G6PDHは、G6PDH 1000単位(U)(パン酵母由来、SIGMA-ALDRICH)をpH8.0の10mMトリス緩衝液100mLで溶解して作成したものを用いた。
 次に、表20~23中に記載の設定濃度及び温度で、所定期間放置したサンプル(化合物3~6,10,11,13,18,22,23,27,35~41)を、酵素量が0.05mgとなるように上記の基質溶液に加え、25℃で1分間反応させた。
 反応後、ブランクとなる基質溶液と、反応溶液の340nmの吸光度を測定し、NADPHを下記式により定量した。
 濃度(mM)=(反応溶液の吸光度-ブランクの吸光度)/6.22
  ※NADPHの340nmにおけるミリモル分子吸光係数(L/(mM・cm))
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。適正温度で保存したヘキソキナーゼをバッファー(pH8.5に調製した50mMトリス緩衝液)に溶解して酵素濃度10.0mg/mLの酵素溶液を調製した。調製後、直ちにその溶液を、上記と同様に、酵素量が0.05mgとなるように基質溶液に加え、酵素反応を行った後、上記と同様の方法で算出したNADPH量を基準として、酵素活性保持率を算出した。
 その結果を表20~23に示す。
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
 本発明のイオン液体(化合物3~6,10,11,13,18,22,23,27)は、25℃の条件(表20,21)では、21日後、10%以上の触媒活性を保持したのに対して、比較例8~14(化合物35~41)では0%であった。また、40℃の条件(表22,23)では、14日後、本発明のイオン液体は19%以上の触媒活性を保持したのに対して、比較例は0%となり、本発明のイオン液体の優位性が示された。
<脱離酵素:アルギン酸リアーゼの活性測定:表24~27>
 アルギン酸リアーゼはアルギン酸を分解反応に寄与する酵素である。その活性は、アルギン酸リアーゼがアルギン酸を分解することにより生成する2重結合を有する糖が、235nmに特異的な吸光度変化を示すことから、この生成物を定量して測定した。
 まず、10mLのスクリュー管に0.2%のアルギン酸水溶液1.0mL、pH7.0の200mMトリス緩衝液0.5mL、イオン交換水0.5mLを加え、基質溶液を調製した。そして、この基質溶液を25℃で約30分間予備加温した。
 次に、表24~27中に記載の設定濃度及び温度で、所定期間放置したサンプル(化合物3~6,10,11,13,18,22,23,27,35~41)を、酵素量が0.03mgとなるように上記の基質溶液に加え、25℃で5分間反応させた。
 反応後、ブランクとなる基質溶液と、反応溶液の235nmの吸光度を測定し、生成物量を定量して、アルギン酸リアーゼ活性を算出した。生成物量は0.01~0.2%の濃度範囲の溶液から作成した検量線を用いて算出した。
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。適正温度で保存したアルギン酸リアーゼ粉末をバッファー(pH7.0の200mMトリス緩衝液)に溶解して酵素濃度10.0mg/mLの酵素溶液を調製し、調製後、直ちにその溶液を、上記と同様に、酵素量が0.03mgとなるように基質溶液に加え、酵素反応を行った後、上記と同様の方法で算出した吸光度を基準として算出した。
 その結果を表24~27に示す。
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
 本発明のイオン液体(化合物3~6,10,11,13,18,22,23,27)は、25℃の条件(表24,25)では、60日後、20%以上の触媒活性を保持した。特に、化合物4,10,18は100%の高い活性を保持した。これに対して、比較例8~14(化合物35~41)は0%であった。また、40℃の条件(表26,27)では、30日後、本発明のイオン液体は13%以上の触媒活性を保持したのに対して、比較例は0%となり、本発明のイオン液体の優位性が示された。
<異性化酵素:ホスホグルコースイソメラーゼの活性測定:表28,29>
 ホスホグルコースイソメラーゼはグルコースをフルクトースへ変換する酵素である。その活性は、ホスホグルコースイソメラーゼによって生成したフルクトース量を定量して測定した。
 まず、次の溶液を調製した。
  A:200mMグルコース溶液
    (pH7.2の200mMリン酸緩衝液90mL、100mM 硫酸マグネシウム
     溶液 10mLにグルコース溶解して作成)
  B:200mMリン酸緩衝液(pH7.2)
  C:500mM過塩素酸水溶液
  D:1.5%システイン水溶液
  E:70% 硫酸水溶液
  F:0.12%カルバゾール-エタノール溶液
 続いて、10mLのスクリュー管にAを1.0mL採取して基質溶液とし、60℃で約30分間予備加温した。次に、表28,29中に記載の設定濃度及び温度で、所定期間放置したサンプル(化合物3~6,10,11,13,18,22,23,27)を、酵素量が0.03mgとなるように上記の基質溶液に添加し、Bを1.0mL加え、60℃で60分間反応させた。反応後、Cを2.0mL加えて冷却し、50mLにメスアップした。そして、この溶液を1.0mL採取して、Dを0.2mL、Eを6.0mL加えて振り混ぜ、溶液を冷却後、Fを0.2mL加えて60℃で10分間反応させた。
 反応後、酵素溶液を添加せずに上記操作を行ったブランク溶液と、反応溶液の560nmの吸光度を測定し、フルクトースを定量して、ホスホグルコースイソメラーゼ活性を算出した。フルクトース量は、酵素溶液を添加せずに、1~200mMの濃度範囲のフルクトース溶液(pH7.2の200mMリン酸緩衝液にフルクトースを溶解し、所定の濃度となるように調製)を用いて上記操作を行って測定した吸光度から作成した検量線を用いて算出した。
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。適正温度で保存したホスホグルコースイソメラーゼをバッファー(pH7.2の200mMリン酸緩衝液)に溶解して酵素濃度1.5mg/mLの酵素溶液を調製した。調製後、直ちにその溶液を、上記と同様に、酵素量が0.03mgとなるように基質溶液に加え、酵素反応を行った後、上記と同様の方法で算出したフルクトース量を基準として、酵素活性保持率を算出した。
 その結果を表28,29に示す。
Figure JPOXMLDOC01-appb-T000065
Figure JPOXMLDOC01-appb-T000066
 本発明のイオン液体(化合物3~6,10,11,13,18,22,23,27)は、25℃の条件(表28)では、60日後に61%以上、40℃の条件(表29)では、21日後に10%以上の触媒活性を保持した。
<合成酵素:アセチルCoAシンセターゼの活性測定:表30,31>
 アセチルCoAシンセターゼはATPのエネルギーを使い、補酵素A(CoA)と酢酸からアセチルCoAを合成する反応を触媒する酵素である。その活性は、アセチルCoAシンセターゼの反応基質である酢酸を定量して測定した。
 アセチルCoAシンセターゼ活性測定にはF-キット酢酸(Roche)を用いた。溶液I(トリエタノールアミン緩衝液(pH8.4)、 L-リンゴ酸、塩化マグネシウム溶液)300μL 、溶液II(ATP、CoA、NAD溶液)60μL 、溶液III(リンゴ酸デヒドロゲナーゼ、クエン酸合成酵素溶液)3μL、イオン交換水、表30,31中に記載の設定濃度及び温度で、所定期間放置したサンプル(化合物3~6,10,11,13,18,22,23,27)を、酵素量が0.03mgとなるように上記の基質溶液に加え、合計量を900μLとして、30℃で約30分間予備加温した。
 次に、1mM酢酸カリウム溶液を100μL添加して30℃で30分間反応させた。
 反応後、酵素溶液を添加せずに上記操作を行ったブランク溶液と、反応溶液の340nmの吸光度を測定し、酢酸を定量して、アセチルCoAシンセターゼ活性を算出した。酢酸量は0.1~1mMの濃度範囲の酢酸溶液から作成した検量線を用いて算出した。
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。適正温度で保存したアセチルCoAシンセターゼをバッファー(pH7.4の100mMリン酸カリウム緩衝液)に溶解して酵素濃度1.5mg/mLの酵素溶液を調製した。調製後、直ちにその溶液を、上記と同様に、酵素量が0.03mgとなるように基質溶液に加え、酵素反応を行った後、上記と同様の方法で算出した酢酸量を基準として、酵素活性保持率を算出した。
 その結果を表30,31に示す。
Figure JPOXMLDOC01-appb-T000067
Figure JPOXMLDOC01-appb-T000068
 本発明のイオン液体(化合物3~6,10,11,13,18,22,23,27)は、25℃の条件(表30)では、60日後に10%以上、40℃の条件(表31)では、14日後に21%以上の触媒活性を保持した。
<酸化還元酵素:シトクロムP450の活性測定:表32>
 シトクロムP450の活性は、シトクロムP450の酵素反応によって基質であるテストステロンから生成する6β-ヒドロキシテストステロンをHPLCによって定量して測定した。
 三角フラスコにpH7.4の0.1Mリン酸カリウムバッファー890μLと、3200nmol/Lのテストステロンのメタノール溶液を10μL、3200nmol/LのNADPH(ニコチンアミドアデニンジヌクレオチドリン酸還元型)水溶液を100μL加え、37℃の恒温槽に入れて3分間予備加温した。
 次に、酵素量が1.0μgとなるように、表32に記載の設定濃度及び温度で所定期間放置したサンプル(化合物3~6,10,13,15,18,20,22,29,36,43)を採取し、上記の基質溶液に加え、37℃で30分間反応させた。
 反応後、直ちに内部標準液(32nmol/Lの酢酸コルチゾン水溶液)100μLを加えた後、ボルテックスミキサーで撹拌し反応を止めた。そして、酢酸エチルを2mL加え、30秒間ボルテックスミキサーで撹拌し、反応物を酢酸エチルに抽出させた。静置後、水層と酢酸エチル層に分離させ、酢酸エチル層を回収した。水層に酢酸エチル750μL加え、攪拌静置後、マイクロピペットを用いて酢酸エチル層を回収した。この操作を2回行い、回収した酢酸エチルを減圧留去し、留去後の化合物をMeOHで溶解して、HPLCにて6β-ヒドロキシテストステロンを定量した。
 なお、酵素活性保持率の基準となる酵素活性の値は、次のように算出した。凍結保存したシトクロムP450を溶かした後、シトクロムP450用バッファーに素早く溶解して酵素濃度1.0mg/mLの酵素溶液を調製した。調製後、直ちにその溶液を上記と同様に、酵素量が1.0μgとなるように基質溶液に加え、酵素反応を行った後、HPLCで定量した6β-ヒドロキシテストステロン量を基準として、酵素活性保持率を算出した。
 その結果を表32に示す。
Figure JPOXMLDOC01-appb-T000069
 3℃で保存した結果(表32)では、比較例(化合物29,36,43)は、14日後は6%以下の活性保持率に低下したのに対して、本発明の化合物(実施例3~6,10,13,15,18,20,22)は、14日後は7%以上の活性保持率を示した。
 つまり、一般的な酵素に比べて安定性が特に低く、凍結保存が必要なシトクロムP450であっても、本発明の生体触媒用溶媒は、酵素の立体構造の高い保持性を有することが示唆された。
4.-10℃保存試験
 カタラーゼを本発明のイオン液体(化合物4,10,15:実施例28,29,30)に50mg/mL、従来の安定化剤を溶解した水溶液(化合物36~41:比較例17~22)に20mg/mLの濃度に溶解して、-10℃で設定した低温恒温器に24時間放置した。本発明のイオン液体溶液は液性を保持したのに対して、化合物36~41の水溶液は凍結した。その後、25℃の恒温器に放置して昇温して(化合物36~41の水溶液は溶解)、上記と同様にカタラーゼの活性を測定した。
 その結果を表33に示す。
Figure JPOXMLDOC01-appb-T000070
 25、40℃で一日後の活性が100%保持した化合物36~41の水溶液中のカタラーゼは、-10℃で凍結、溶解するとの相変化を経た結果、酵素の立体構造が変化して失活した。一方、本発明の化合物4,10,15は-10℃でも液状であり、その活性を100%保持し、保存が可能であった。つまり、一般的には保存温度はより低温の方が好ましいが、表1に示すように本発明のイオン液体は凝固点が-10℃より低く、低温下でも液状であり、保存性が高く、使用上、利便性が高いことを確認した。
5.低濃度保存試験
 サンプル(化合物4~6,10,18,22,23,27,29,35~40,42)に濃度が10μg/mL、10ng/mLとなるようにウレアーゼを溶解して、25℃及び、40℃に設定した恒温器に放置し、180日後、上記と同様にウレアーゼの活性を測定した。
 その結果を表34~37に示す。
Figure JPOXMLDOC01-appb-T000071
Figure JPOXMLDOC01-appb-T000072
Figure JPOXMLDOC01-appb-T000073
Figure JPOXMLDOC01-appb-T000074
 10μg/mLの結果(表34,35)では、比較例(化合物29,35~40,42)は、180日後には、25℃では20%以下、40℃では0%の活性保持率に低下したのに対して、本発明の化合物(実施例4~6,10,18,22,23,27)は、180日後には、25℃では31%以上、40℃では5%以上の活性保持率を示した。また、10ng/mLの結果(表36,37)では、比較例(化合物29,35~40,42)は、180日後には、25℃では25%以下、40℃では0%の活性保持率に低下したのに対して、本発明の化合物(実施例4~6,10,18,22,23,27)は、180日後には、25℃では39%以上、40℃では8%以上の活性保持率を示した。つまり、生体触媒の保存濃度が極低濃度であっても、本発明の生体触媒用溶媒は酵素の活性を保持し、酵素の立体構造の高い保持性を有することが示唆された。
6.無水イオン液体保存性試験
 無水イオン液体中のウレアーゼの保存性試験を、次のように実施した。まず、サンプル(化合物1~6,8~11,13,15,18,20,23,24,27,29,33~35)をスクリュー管に入れ減圧脱水して無水イオン液体を作成し、そこに、表38,39中に記載の設定濃度となるようにウレアーゼを加えて溶解した。その後、それぞれのスクリュー管に水分が混入しないようにスクリュー管内を窒素置換し、密閉した。そして、25℃及び40℃に設定した恒温器中に放置し、上記と同様の方法でウレアーゼの活性を測定した。
 その結果を表38,39に示す。
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
 25℃の結果(表38)では、比較例(化合物29,33~35)は、30日後は20%以下の活性保持率に低下したのに対して、本発明の化合物(実施例1~6,8~11,13,15,18,20,23,24,27)は、30日後は89%以上の活性保持率を示した。また、40℃のの結果(表39)では、比較例(化合物29,33~35)は、30日後は10%以下の活性保持率に低下したのに対して、本発明の化合物(実施例1~6,8~11,13,15,18,20,23,24,27)は、30日後は63%以上の活性保持率を示した。つまり、水を含まない無水イオン液体であっても、本発明の生体触媒用溶媒は酵素の活性を保持し、酵素の立体構造の高い保持性を有することが示唆された。
 また、表4~9の含水イオン液体に保存したウレアーゼの結果と、表38,39の無水イオン液体の結果を比較すると、相対的に活性保持率は同等であることから、酵素の活性保持の効果は、水の存在に関わらず、イオン液体の構造に起因するものであると示唆された。
 一方で、4.-10℃保存試験の結果から、イオン液体の相変化(固体から液体)が酵素の活性を失活させることを確認したが、イオン液体の生体触媒用溶媒の用途先によっては、含水物だけではなく無水物の形態での利用も想定され、その場合、相変化がなく、無水物で液体のイオン液体が望ましいと考えられる。

Claims (4)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rはそれぞれ独立に、水酸基を1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいヒドロキシアルキル基、カルボキシ基を1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいカルボキシアルキル基、又は水酸基及びカルボキシ基を各々1個以上有し、アルキル部位が炭素数1~10の直鎖状もしくは分岐鎖状で、該アルキル部位が酸素原子を含んでいてもよいヒドロキシカルボキシアルキル基を示し、Rはそれぞれ独立に、水素原子又は炭素数1~5の直鎖もしくは分岐のアルキル基を示す。nは1~4の整数を示す。)で表わされる第4級アンモニウムカチオン及びアニオンを含むイオン液体からなる生体触媒用溶媒。
  2.  イオン液体の式(I)で表わされる第4級アンモニウムカチオンは、nが1~3であり、Rが水素原子である請求項1に記載の生体触媒用溶媒。
  3.  イオン液体のアニオンがカルボン酸アニオンである請求項1又は2に記載の生体触媒用溶媒。
  4.  請求項1から3のいずれかに記載の生体触媒用溶媒と、生体触媒とを含む、生体触媒溶液。
PCT/JP2015/061281 2014-04-10 2015-04-10 イオン液体を用いた生体触媒用溶媒、及びその溶媒と生体触媒を含む生体触媒溶液 WO2015156398A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20193685.3A EP3766969B1 (en) 2014-04-10 2015-04-10 Biocatalyst solvent using ionic liquid, and biocatalyst solution containing biocatalyst and said solvent
EP15777322.7A EP3130670B1 (en) 2014-04-10 2015-04-10 Biocatalyst solvent using ionic liquid, and biocatalyst solution containing biocatalyst and said solvent
US15/302,179 US10240141B2 (en) 2014-04-10 2015-04-10 Biocatalyst solvent using ionic liquid, and biocatalyst solution containing biocatalyst and said solvent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014081483 2014-04-10
JP2014-081483 2014-04-10
JP2014166930 2014-08-19
JP2014-166930 2014-08-19

Publications (1)

Publication Number Publication Date
WO2015156398A1 true WO2015156398A1 (ja) 2015-10-15

Family

ID=54287969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/061281 WO2015156398A1 (ja) 2014-04-10 2015-04-10 イオン液体を用いた生体触媒用溶媒、及びその溶媒と生体触媒を含む生体触媒溶液

Country Status (4)

Country Link
US (1) US10240141B2 (ja)
EP (2) EP3130670B1 (ja)
JP (1) JP6081515B2 (ja)
WO (1) WO2015156398A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180273698A1 (en) * 2017-03-27 2018-09-27 Panasonic Intellectual Property Management Co., Ltd. Ionic liquid and method for dissolving cellulose using the same
CN109223740A (zh) * 2016-12-26 2019-01-18 云南中医学院 一种氨丁三醇有机酸盐的应用
WO2021095398A1 (ja) 2019-11-14 2021-05-20 ミヨシ油脂株式会社 有機アンモニウム塩とそれを用いた水素結合性材料処理剤
US11274289B1 (en) * 2016-10-04 2022-03-15 United States Of America As Represented By The Secretary Of The Air Force Ultra-stable protein ionic liquids
WO2022074740A1 (ja) 2020-10-06 2022-04-14 エンバイロ・ビジョン株式会社 廃水処理装置及び廃水処理方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7129767B2 (ja) * 2016-08-22 2022-09-02 ミヨシ油脂株式会社 生体触媒用反応溶媒とそれを用いた基質と生体触媒との反応方法
JP6906140B2 (ja) * 2016-10-18 2021-07-21 パナソニックIpマネジメント株式会社 イオン液体およびそれを用いてセルロースを溶解する方法
CN108165495B (zh) * 2018-03-22 2021-01-12 杭州微球科技有限公司 一种用于微生物菌种冷藏保存的稳定剂
CN108863761B (zh) * 2018-06-15 2020-10-16 浙江大学 一种疏水性季铵型生物相容离子液体及其制备方法和应用
CN109517879B (zh) * 2018-11-08 2021-09-10 东软威特曼生物科技(南京)有限公司 一种肌酸激酶及其同工酶测定试剂及其试剂盒
CN110105228B (zh) * 2019-06-05 2020-07-28 中国科学院兰州化学物理研究所 一种质子型离子液体及其制备方法和作为水基润滑添加剂的应用
JP2022129896A (ja) * 2021-02-25 2022-09-06 ミヨシ油脂株式会社 ホスホン酸又はホスフィン酸アニオンを有する有機アンモニウム塩並びに当該塩を形成し得る配合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270007A (ja) * 2004-03-25 2005-10-06 Kaneka Corp 安定化酵素及びその製造方法並びにその安定化酵素を用いた材料合成方法
JP2011137807A (ja) * 2009-12-01 2011-07-14 Hokkaido Univ 電子顕微鏡による試料観察用の液状媒体とそれを用いた電子顕微鏡による試料観察方法
JP2012012313A (ja) * 2010-06-29 2012-01-19 Miyoshi Oil & Fat Co Ltd イオン液体
JP2012031137A (ja) * 2010-06-29 2012-02-16 Miyoshi Oil & Fat Co Ltd 親水性イオン液体
JP2014131975A (ja) * 2012-12-05 2014-07-17 Miyoshi Oil & Fat Co Ltd 親水性室温イオン液体とその用途
JP2014131974A (ja) * 2012-12-05 2014-07-17 Miyoshi Oil & Fat Co Ltd 親水性室温イオン液体とその用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0456088B1 (en) 1990-05-09 1996-08-21 F. Hoffmann-La Roche Ag Stabilized uric acid reagent
JP3219181B2 (ja) 1995-01-10 2001-10-15 東洋紡績株式会社 コレステロールオキシダーゼの安定化法
GB0300595D0 (en) * 2003-01-10 2003-02-12 Univ Cambridge Tech Ionic liquids
GB0407908D0 (en) * 2004-04-07 2004-05-12 Univ York Ionic liquids
JP2008247675A (ja) * 2007-03-30 2008-10-16 Tdk Corp MnZn系フェライトの製造方法
PT103752A (pt) 2007-05-25 2008-11-25 Inst De Biolog Ex E Tecnologia Processo de biocatálise fúngica num meio de cultura contendo líquidos iónicos solúveis em água

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270007A (ja) * 2004-03-25 2005-10-06 Kaneka Corp 安定化酵素及びその製造方法並びにその安定化酵素を用いた材料合成方法
JP2011137807A (ja) * 2009-12-01 2011-07-14 Hokkaido Univ 電子顕微鏡による試料観察用の液状媒体とそれを用いた電子顕微鏡による試料観察方法
JP2012012313A (ja) * 2010-06-29 2012-01-19 Miyoshi Oil & Fat Co Ltd イオン液体
JP2012031137A (ja) * 2010-06-29 2012-02-16 Miyoshi Oil & Fat Co Ltd 親水性イオン液体
JP2014131975A (ja) * 2012-12-05 2014-07-17 Miyoshi Oil & Fat Co Ltd 親水性室温イオン液体とその用途
JP2014131974A (ja) * 2012-12-05 2014-07-17 Miyoshi Oil & Fat Co Ltd 親水性室温イオン液体とその用途

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11274289B1 (en) * 2016-10-04 2022-03-15 United States Of America As Represented By The Secretary Of The Air Force Ultra-stable protein ionic liquids
CN109223740A (zh) * 2016-12-26 2019-01-18 云南中医学院 一种氨丁三醇有机酸盐的应用
US20180273698A1 (en) * 2017-03-27 2018-09-27 Panasonic Intellectual Property Management Co., Ltd. Ionic liquid and method for dissolving cellulose using the same
JP2018162447A (ja) * 2017-03-27 2018-10-18 パナソニックIpマネジメント株式会社 イオン液体およびそれを用いてセルロースを溶解する方法
US10875973B2 (en) 2017-03-27 2020-12-29 Panasonic Intellectual Property Management Co., Ltd. Ionic liquid and method for dissolving cellulose using the same
WO2021095398A1 (ja) 2019-11-14 2021-05-20 ミヨシ油脂株式会社 有機アンモニウム塩とそれを用いた水素結合性材料処理剤
WO2022074740A1 (ja) 2020-10-06 2022-04-14 エンバイロ・ビジョン株式会社 廃水処理装置及び廃水処理方法

Also Published As

Publication number Publication date
US20170029801A1 (en) 2017-02-02
JP2016041682A (ja) 2016-03-31
JP6081515B2 (ja) 2017-02-15
EP3130670B1 (en) 2020-10-21
EP3766969B1 (en) 2023-10-04
EP3130670A4 (en) 2018-02-28
EP3130670A1 (en) 2017-02-15
EP3766969A1 (en) 2021-01-20
US10240141B2 (en) 2019-03-26

Similar Documents

Publication Publication Date Title
JP6081515B2 (ja) イオン液体を用いた生体触媒溶液および生体触媒用溶媒を使用する方法
Zhao et al. New eutectic ionic liquids for lipase activation and enzymatic preparation of biodiesel
ES2267856T3 (es) Catalisis enzimatica en presencia de liquidos ionicos.
Zhao Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids
KR101867119B1 (ko) 액체 양이온 교환제
TWI601819B (zh) 丙胺酸之需氧性製造方法或因消耗丙胺酸而產生之化合物的需氧性製造方法
Parthasarathy et al. Substrate specificity of 2-hydroxyglutaryl-CoA dehydratase from Clostridium symbiosum: toward a bio-based production of adipic acid
Fröhlich et al. Formate dehydrogenase-a biocatalyst with novel applications in organic chemistry
Lou et al. Markedly improving lipase-mediated asymmetric ammonolysis of D, Lp-hydroxyphenylglycine methyl ester by using an ionic liquid as the reaction medium
Adlercreutz Fundamentals of biocatalysis in neat organic solvents
KR20190125826A (ko) 써모마이세스 라누지노서스 유래 자체 고정화 리파아제를 이용한 트리메틸올프로판 트리에스테르의 제조방법
KR840008165A (ko) L-카르니틴의 제조방법 및 이에 사용되는 화학적 중간 물질
JP7129767B2 (ja) 生体触媒用反応溶媒とそれを用いた基質と生体触媒との反応方法
Yasufuku et al. High temperature-induced high enantioselectivity of lipase for esterifications of 2-phenoxypropionic acids in organic solvent
US7078225B2 (en) Method for enzymatically producing an optically active cyanohydrin
WO2021095398A1 (ja) 有機アンモニウム塩とそれを用いた水素結合性材料処理剤
Lou et al. Hydroxynitrile lyase catalysis in ionic liquid-containing systems
JP2009278930A (ja) 有機カルボン酸エステルからの光学活性有機カルボン酸の製造方法
Li et al. Application of organic solvent system for lipase-catalyzed regioselective benzoylation of 1-β-D-arabinofuranosylcytosine
Hwang et al. Stereochemistry of phosphoenolpyruvate carboxylation catalyzed by phosphoenolpyruvate carboxykinase
JP7525254B2 (ja) 有機アンモニウム塩とそれを用いた生体試料処理剤
KR100463966B1 (ko) 시아노카르복실산 에스테르로부터 디카르복실산모노에스테르의 제조
Lubberink et al. One-Step Biocatalytic Synthesis of Sustainable Surfactants Using Selective Amide Bond Formation
NL1011687C2 (nl) Werkwijze voor het bereiden van een reactieproduct door enzymatische katalyse.
CN106636293B (zh) 一种羟酸酯的手性拆分方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15777322

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15302179

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015777322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015777322

Country of ref document: EP