WO2015152207A1 - エレクトレット - Google Patents

エレクトレット Download PDF

Info

Publication number
WO2015152207A1
WO2015152207A1 PCT/JP2015/060066 JP2015060066W WO2015152207A1 WO 2015152207 A1 WO2015152207 A1 WO 2015152207A1 JP 2015060066 W JP2015060066 W JP 2015060066W WO 2015152207 A1 WO2015152207 A1 WO 2015152207A1
Authority
WO
WIPO (PCT)
Prior art keywords
electret
polytetrafluoroethylene
sheet
carrier
treatment
Prior art date
Application number
PCT/JP2015/060066
Other languages
English (en)
French (fr)
Inventor
北川 義幸
俊克 円城寺
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to US15/301,902 priority Critical patent/US10213716B2/en
Priority to CN201580017171.8A priority patent/CN106165040B/zh
Publication of WO2015152207A1 publication Critical patent/WO2015152207A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0027Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions
    • B01D46/0032Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with additional separating or treating functions using electrostatic forces to remove particles, e.g. electret filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/28Plant or installations without electricity supply, e.g. using electrets
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/244Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons
    • D06M15/256Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of halogenated hydrocarbons containing fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0435Electret
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0471Surface coating material
    • B01D2239/0478Surface coating material on a layer of the filter
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/18Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/20Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/11Oleophobic properties

Definitions

  • the present invention relates to an electret and a filter using the electret.
  • porous filters have been used for dust collection, protection, ventilation, etc. in dust masks, various air conditioning elements, air purifiers, cabin filters, and various devices.
  • the filter made of a fibrous material has a high porosity, has a long life, and low ventilation resistance, and is widely used.
  • These fibrous filters capture particles on the fiber by a mechanical collection mechanism such as interception, diffusion, inertial collision, etc., but the equivalent aerodynamic diameter of the captured particles in a practical use environment is 0.1. It is known that the filter collection efficiency has a minimum value when it is about ⁇ 1.0 ⁇ m.
  • a method using electric attraction For example, a method of applying a charge to the particles to be collected or a charge of a filter, or a combination of both is used.
  • There are known methods for applying electric charge to the filter such as a method in which a filter is arranged between the electrodes and dielectric polarization is performed during ventilation, and a method in which an insulating material is provided with a long-life electrostatic charge. Therefore, it is widely used as an electret filter.
  • the electret filter uses electret materials that can be electretized and have excellent moisture resistance and heat stability in order to increase the initial collection efficiency and suppress performance degradation due to attenuation of electrostatic charge during filter processing and storage. It is done.
  • the electret filter has a drawback that the electrostatic attractive force is reduced as the particles are collected.
  • the oil mist having a small surface tension can remarkably accelerate the disappearance of the charge by covering the fiber surface thinly.
  • polyolefin, polyester, polycarbonate, phenol resin, etc. with excellent charge stability are used.
  • polyolefins such as polypropylene, polyethylene, polymethylpentene and the like having the smallest surface tension are used.
  • the oil mist does not exhibit sufficient oil repellency as a material property for oil mists represented by poly alpha olefin (PAO), dioctyl phthalate (DOP) and tobacco smoke, etc.
  • PAO poly alpha olefin
  • DOP dioctyl phthalate
  • tobacco smoke etc.
  • oil repellency is provided by lowering the surface tension of the fibrous material constituting the filter, and the loss of electric charge is suppressed by suppressing the spread of mist on the fiber surface and the absorption and diffusion into the fiber material.
  • a method for improving oil mist resistance by reducing the resistance is known.
  • a method of mixing an additive having a perfluoro group in a resin for example, Patent Document 1
  • a method of melt spinning a thermoplastic fluororesin for example, Patent Document 2 and Patent Document 3
  • a method of coating the surface with an emulsion processing agent having a perfluoro group for example, Patent Document 4
  • a method of introducing fluorine atoms by replacing hydrogen atoms using plasma and fluorine gas for example, Patent Documents
  • the electret which reduced surface tension and improved oil mist resistance while maintaining charge stability by 5) etc. is used.
  • oil repellency means an effect of suppressing the spread of liquid by lowering the surface tension, and includes the action (water repellency) against water having a large surface tension value in view of the principle of wetting. It is what
  • fluorine-based resins and fluorine-based low-molecular additives are not suitable for melt spinning because of the elimination of fluorine telomers and the formation of thermal decomposition products such as hydrogen fluoride and carbonyl fluoride in environments exceeding 320 ° C. Unsuitable.
  • fluorine atoms by fluorine gas or plasma treatment, it is necessary to strictly control oxygen and moisture amounts in order to prevent leakage of fluorine gas and to suppress hydrophilicity, and special equipment with high airtightness is required.
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctanesulfonic acid
  • fluorine-containing acrylate processing agents developed for textiles contain emulsifiers and film-forming aids, and C 6 F 13 or shorter short-chain perfluoro groups as side chains to comply with PFOA and PFOS regulations. Because it is used, the processing agent loses crystallinity. For this reason, there is a problem that the processing agent itself does not have the stability of electrostatic charge but also significantly impairs the charge stability of the fibrous material as the base material even if the amount of adhesion is low.
  • Patent Document 6 a fluorine-based resin that imparts solubility and thermoplasticity by amorphization and has both charge stability and coating properties is also known, but it is necessary to use a special monomer as the main skeleton, There is a problem that the manufacturing cost is remarkably increased.
  • Patent Document 7 a method for adding various additives to improve the heat resistance stability of the electret material has been disclosed (for example, Patent Document 7).
  • charging enhancement is disclosed in order to improve the electrostatic charge amount and improve the filter collection efficiency.
  • a method is known in which additives are mixed to increase the amount of charge when contacting a liquid (for example, Patent Document 8).
  • these electret filters do not exhibit sufficient oil repellency as material characteristics for oil mists represented by various mineral oils, vegetable oils, poly-alpha olefins (PAO), dioctyl phthalate (DOP), tobacco smoke and the like. Therefore, although the initial collection efficiency is high, there is a problem that the oil mist resistance is low and the average collection efficiency is low.
  • PAO poly-alpha olefins
  • DOP dioctyl phthalate
  • the electret according to the present invention has both the oil stability and the oil repellency when conventional electrets having oil mist resistance have large restrictions on production facilities and costs, and when a short-chain perfluoro compound corresponding to environmental regulations is used. It is an object to obtain an electret with excellent oil repellency, oil mist resistance, and charge stability that can be manufactured by a simple method at a low cost. is there.
  • the present invention provides an electret containing a known additive to improve electrostatic charge when the liquid particles, such as oil mist, adhere to the electrostatic charge more than an electret containing no additive. Is remarkable. Therefore, an object of the present invention is to obtain an electret that increases the amount of electrostatic charge and further suppresses the attenuation of electrostatic charge with respect to the liquid particles.
  • the electret of the present invention has finally been completed as a result of extensive studies by the inventor in order to solve the above-mentioned problems. That is, the present invention is as follows.
  • the carrier is a carrier containing 0.01 to 15.0% by weight of at least one kind of hindered amine and triazine additives.
  • the carrier is a carrier containing 0.01 to 15.0% by weight of a hindered phenol additive. 4).
  • the electret according to any one of the above 1 to 4 wherein a fibrous material is used as a carrier, and polytetrafluoroethylene is carried on the carrier by a solution method or a vapor deposition method. 6). 6.
  • the carrier is a melt blown nonwoven fabric made of a thermoplastic resin having a melting point of 320 ° C. or lower. 7).
  • the electret of the present invention can obtain an electret excellent in oil repellency, oil mist resistance, and charge stability and a filter using the same with a simple apparatus and process without using PFOA and PFOS analogs.
  • the filter using it is used suitably as a filter aiming at protection of a dust mask, various air-conditioning elements, an air cleaner, a cabin filter, and various devices.
  • the carrier used in the present invention is not particularly limited as long as it has desired characteristics, but it is preferably made of a synthetic resin having high electrical resistance in consideration of the degree of freedom of shape and the charge stability of the material itself.
  • a synthetic resin having high electrical resistance in consideration of the degree of freedom of shape and the charge stability of the material itself.
  • Specific examples include non-fluorinated synthetic resins such as polyester, polycarbonate, polyamide, polyolefin, cyclic olefin, polyvinyl chloride, polyvinylidene chloride, polyphenylene sulfide, polyphenylene oxide, and phenol resin.
  • polyethylene, polybutene, polypropylene Polyolefins such as polymethylpentene, polystyrene and cyclic olefin are preferred.
  • the balance of hydrophobicity, electrical resistance, moldability, etc. is favorable, and the electret excellent in practicality is obtained.
  • a synthetic resin containing a fluorine atom as a carrier.
  • a synthetic resin containing a fluorine atom for example, polytetrafluoroethylene, perfluoroethylene propene copolymer (FEP), perfluoroalkoxyalkane (PFA), ethylene / tetrafluoroethylene Copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer (THV), etc.
  • FEP, PFA, and ETFE are more preferable.
  • the compounding agents include various metal salts, antioxidants, light stabilizers, ionomer resins, and the like, and the compounding composition includes blend polymers obtained by mixing different resin components.
  • the initial charge amount and charge stability as the electret it is preferable that at least one kind is a synthetic resin that can be electretized.
  • additives can be used for the synthetic resin, and examples thereof include hindered amine additives, triazine additives and hindered phenol additives.
  • the hindered amine-based additive or the triazine-based additive has a large effect of improving the electrostatic charge, and is particularly preferable because of the effect of improving the electrostatic charge in electretization by the liquid contact charging method.
  • the content is 0.01 to 15.0% by weight, preferably 0.05 to 12.5% by weight, and preferably 0.1 to 10.0% by weight with respect to the carrier. Is more preferable. If the content is less than 0.01% by weight, it is not preferable because a sufficient electrostatic charge improving effect cannot be imparted. Conversely, if the content exceeds 15.0% by weight, the uniformity is significantly deteriorated. It is not preferable.
  • hindered phenol additives with a hydroxyl group at the terminal functional group have high durability against oil mist, ease the low surface tension of the electret surface with improved oil repellency, and affinity for water and solvents.
  • the content is 0.01 to 15.0% by weight, preferably 0.05 to 12.5% by weight, and preferably 0.1 to 10.0% by weight with respect to the carrier. Is more preferable. If the content is less than 0.01% by weight, sufficient electrostatic charge improvement and surface tension relaxation effects cannot be imparted. On the other hand, if the content exceeds 15.0% by weight, the uniformity is deteriorated, and further, the surface tension value is increased, and the durability against the liquid particles is decreased.
  • hindered amine or triazine additive examples include poly [((6- (1,1,3,3, -tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl. ) ((2,2,6,6, -tetramethyl-4-piperidyl) imino) hexamethylene ((2,2,6,6, -tetramethyl-4-piperidyl) imino)] (manufactured by Ciba Geigy, Chimassorb ( (Registered trademark) 944LD), dimethyl-1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate (manufactured by Ciba Geigy, Tinuvin (registered trademark) 622LD), 2 -(3,5-di-t-butyl-4-hydroxybenzyl) -2-n-butylmalonate bis (1,2,2,6,6-pentamethyl-4-piperidyl)
  • the hindered phenol-based additive is not particularly limited. Specifically, pentaerythrityl-tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (Irganox 1010) , Manufactured by BASF), octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (Irganox 1076, manufactured by BASF), tris- (3,5-di-t-butyl-4- Hydroxybenzyl) -isocyanurate (Irganox 3114, manufactured by BASF), 3,9-bis- ⁇ 2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) -propionyloxy] -1, 1-dimethylethyl ⁇ -2,4,8,10-tetraoxaspiro- [5,5] undecane GA-80, include Sumitomo Chemical Co.
  • any shape of an injection molded body, a film shape, a fibrous material, a powdered material, and a particulate material can be preferably used. More preferably, it is a fibrous material.
  • the fibrous material of the present invention includes fibrous materials such as woven and knitted fabrics, nonwoven fabrics, and cotton-like materials made of long fibers or short fibers, and fibrous materials obtained from stretched films. What was shape
  • molded in the shape and thickness can be used. When using an electret for a filter use, it is preferable that it is a nonwoven fabric.
  • a method for obtaining a nonwoven fabric a single component fiber, a composite fiber such as a core-sheath fiber or a side-by-side fiber, a method of forming a short fiber such as a split fiber into a sheet by carding, airlaid, wet papermaking, etc., a continuous fiber by a spunbond method,
  • a conventionally known method such as a method of forming a sheet by a melt blown method, an electrospinning method, a force spinning method, or the like can be used.
  • non-woven fabrics obtained by a melt blown method, an electrospinning method, or a force spinning method which can easily obtain a fineness and fineness from the viewpoint of effectively using a mechanical collection mechanism, are preferable, and treatment of residual solvent is not required.
  • a nonwoven fabric obtained by a melt blown method, a melt electrospinning method or a melt force spinning method is more preferable.
  • the diameter of the fiber used in the fibrous material of the present invention is preferably 0.001 to 100 ⁇ m, more preferably 0.005 to 20 ⁇ m, still more preferably 0.01 to 10 ⁇ m, and 0
  • the thickness is particularly preferably from 0.02 to 5 ⁇ m, and most preferably from 0.03 to 3 ⁇ m.
  • the diameter of the fiber is larger than 100 ⁇ m, it is difficult to obtain a practical collection efficiency, and the efficiency reduction at the time of charge attenuation is large.
  • the diameter of the fiber is smaller than 0.001 ⁇ m, it is difficult to impart an electrostatic charge as an electret.
  • the fibrous material in the present invention may be a single product or a uniform product made of a material, or a mixture of two or more materials having different methods, materials and fiber diameters.
  • oil repellency is given by lowering the surface tension of the constituent fibers, and the mist spreads on the fiber surface and absorbs and diffuses inside the fiber material.
  • a method of reducing the disappearance of electric charges by suppressing the mist and improving the mechanical collection efficiency due to the clogging effect by bringing the collected mist closer to the sphere.
  • a method in which an additive having a perfluoro group is mixed in the resin, a method in which a thermoplastic fluororesin is melt-spun, and an emulsion processing agent having a perfluoro group are coated on the surface.
  • examples thereof include a treatment method, a method of introducing fluorine atoms by substituting hydrogen atoms using plasma and fluorine gas, and the like.
  • fluorinated resins and fluorinated low-molecular additives are not suitable for melt spinning because of the formation of hydrogen fluoride, carbonyl fluoride, and the like as thermal decomposition products.
  • fluorine atoms by fluorine gas or plasma treatment, it is necessary to strictly control oxygen and moisture amounts in order to prevent leakage of fluorine gas and to suppress hydrophilicity, and special equipment with high airtightness is required.
  • a hindered amine-based additive or a triazine-based additive is used as an additive due to highly reactive fluorine radicals in fluorine gas or plasma treatment, a reaction occurs at the N atom portion in the additive, which is not preferable.
  • acrylate processing agents developed for textiles contain emulsifiers and film-forming aids, and comply with PFOA and PFOS regulations. For this reason, the short-chain perfluoro group of C6F13 or less is used as a side chain, so that the crystallinity is lost. There is a problem that the electret property of the material is remarkably impaired, which is not preferable.
  • fluorine is applied to the electret of the present invention by applying fluorine by a method such as a solution method in which it is dissolved in a solvent or a vapor deposition method in which a fluorine-containing substance is gasified and applied. It is preferable to do.
  • polytetrafluoroethylene having a melting point of 35 ° C. or higher and 320 ° C. or lower is supported on at least a part of the carrier, and oil repellency is imparted.
  • the melting point of polytetrafluoroethylene is preferably 60 ° C. or higher and 315 ° C. or lower, more preferably 80 ° C. or higher and 300 ° C. or lower, and further preferably 100 ° C. or higher and 290 ° C. or lower.
  • polytetrafluoroethylene having a distribution in molecular weight may be used, and a single structure molecule or a mixture may be preferably used.
  • polytetrafluoroethylene having the above melting point is used as follows: (1) In the case of a high molecular weight having a melting point of 320 ° C. or higher, the melt viscosity is high and it is difficult to coat; When the processing temperature is increased, there are problems in deterioration of the support (especially synthetic polymer) and heat resistance. (3) Low melting point polytetrafluoroethylene used in the present invention (minimum surface tension of 13 to 17.5 mN / m) Compared with general polytetrafluoroethylene (minimum surface tension of 17.5 mN / m), it has a small surface tension due to its crystal form and CF 3 group terminal density, and has a high oil repellency effect.
  • PVD physical vapor deposition
  • the oil repellency change due to the change in molecular orientation is suppressed, (9) it has a melting point, so it has self-adhesiveness by heat treatment, and (10) general high melting point polytetrafluoroethylene does not have It can be exemplified that it is soluble in a fluorine-based solvent.
  • Immobilization by heat treatment at or above the melting point of polytetrafluoroethylene (5) Adhering polytetrafluoroethylene to the carrier by sputtering, and heat treatment at or above the melting point of polytetrafluoroethylene as necessary (6) Dissolving polytetrafluoroethylene in a solvent and applying, spraying, and immersing it on a carrier. After so-called coating treatment, the solvent is removed, and if necessary, the melting point is higher than the melting point of polytetrafluoroethylene.
  • a method of melting and fixing by performing heat treatment can be exemplified.
  • the particle diameter of polytetrafluoroethylene is preferably 0.1 nm to 10 ⁇ m, more preferably 1 nm to 1 ⁇ m, and more preferably 5 nm.
  • the thickness is more preferably from 500 nm to 500 nm, and most preferably from 10 nm to 300 nm.
  • the particle size is larger than 10 ⁇ m, the uniformity and handling at the time of dispersion become difficult, and the coating layer thickness becomes excessive.
  • the particle diameter is less than 0.1 nm, it is difficult to maintain the characteristics as a linear polytetrafluoroethylene molecule.
  • fine particles are preferable from the viewpoint of uniformity and size maintenance.
  • the method for adjusting the particle size includes (1) a method of adjusting emulsion polymerization and suspension polymerization during polymerization, (2) a method of pulverizing by physical action such as impact and friction, and (3) a fluorine-based solvent.
  • a method of dissolving in supercritical carbon dioxide or the like and forming particles by a method such as spraying or reprecipitation can be used, and a preferable method can be used according to the target particle diameter.
  • particles obtained by emulsion polymerization or suspension polymerization it may be used as a processing agent as it is in a solid-liquid mixed state, or it is preferably taken out as particles through a drying step.
  • wet or dry pulverizers As a method of pulverizing by physical action, various types of wet or dry pulverizers can be used. Specifically, a ball mill, a bead mill, a jet mill, a homogenizer, and the like can be exemplified. It is also preferable to use it in a suspended state.
  • water, a hydrocarbon organic solvent, a halogen organic solvent or the like can be preferably used as a dispersion medium, and it is also preferable to use a mixture of two or more.
  • an organic solvent is used, the permeability and coating uniformity can be enhanced by the affinity with the synthetic resin used as the carrier.
  • various surfactants can be used.
  • the surfactant used at the time of dispersion preferably has a boiling point of 320 ° C. or lower or a thermal decomposition temperature, more preferably 250 ° C. or lower, further preferably 200 ° C. or lower, and most preferably 150 ° C. or lower.
  • the surfactant is preferably evaporated by heat treatment or inactivated by thermal decomposition.
  • removing the surfactant include hydrolysis with an acid or alkali solution, oxidative decomposition using hypochlorous acid, hydrogen peroxide, etc., reactive organic substances having a glycidyl group, metal ions, metal A method of sealing a functional group with an alkoxide or the like is also preferably used.
  • the polytetrafluoroethylene used in the present invention has a melting point of 320 ° C. or lower, which is a thermal decomposition temperature, and clear volatilization is confirmed at a temperature higher than the melting point. Therefore, it is also preferable to use the carrier by carrying it by vapor deposition.
  • the melting point is 36 ° C. in the case of nC 10 F 22
  • the melting point is 76 ° C. in the case of nC 12 F 26
  • the melting point is nC 14 F 30.
  • the melting point is 103 ° C.
  • n—C 16 F 34 is melting point 125 ° C.
  • n—C 20 F 42 is melting point 167 ° C.
  • n—C 31 F 64 is melting point 219 ° C.
  • low molecular weight PTFE Cephalal Lube V manufactured by Central Glass Co., Ltd. has a melting point range of 100 to 290 ° C. (peak temperature 270 ° C.), and is heated by heating above the temperature at which melting starts. It can be used as a vapor deposition source, and it is also preferable to heat and use at 290 ° C. or higher and 320 ° C. or lower at which the whole is liquefied.
  • polytetrafluoroethylenes exhibit stability as a solid when used, and have characteristics as a liquid and a gas when heated, and can be preferably used as a material for physical vapor deposition (PVD method). Since these can maintain the structure of polytetrafluoroethylene by heating at a temperature lower than the thermal decomposition temperature, plasma treatment and high molecular weight polytetrafluoroethylene that produce an amorphous fluoropolymer in terms of molecular weight and structure. This is an advantageous feature for pyrolysis vapor deposition at a high temperature using as a raw material.
  • PVD method physical vapor deposition
  • a method of vapor deposition processing a method is used in which vapor is generated by heating tetrafluoroethylene with various heat sources and deposited as droplets or crystals on the surface of the carrier held at a lower temperature.
  • Such a method is preferably used for either a batch method in which the entire processed surface is processed at once or a method in which different processed surfaces of the support are continuously processed by moving the support or the reaction vessel. .
  • the vapor deposition processing in the present invention can be preferably carried out in any atmosphere of pressurization, normal pressure, reduced pressure, vacuum state and pressure swing, air, and inert gas.
  • any atmosphere of pressurization normal pressure, reduced pressure, vacuum state and pressure swing, air, and inert gas.
  • By setting it to a reduced pressure or vacuum state it is possible to improve the transpiration rate and reduce the transpiration temperature, and it is possible to promote precipitation of transpiration by pressurization.
  • a preferable adhesion state can be obtained depending on the purpose by adjusting the polytetrafluoroethylene loading conditions.
  • the degree of vacuum is high, the mean free path of the molecule is large, and polytetrafluoroethylene is unevenly distributed on the surface of the carrier on the evaporation side.
  • uniformity can be improved by wrapping around.
  • a process in which the pressure swing or the processing surface (front and back) is changed in the same carrier is also a preferable method.
  • the carrier is preferably treated at 60 ° C. or more and 140 ° C. or less, more preferably 70 ° C. or more and 140 ° C. or less, and further preferably 80 ° C. or more and 140 ° C. or less during or after the vapor deposition process.
  • This is because such treatment improves the adhesion to the carrier, reduces the electret stabilization effect by removing low molecular weight substances, and reduces the VOC component released.
  • it can be adjusted by vapor deposition tank temperature, carrier cooling, and heating during vapor deposition, and a heating method is used after the processing.
  • the fine concavo-convex structure is preferably finer than the droplet to be collected. This is because not only an increase in wet work due to an increase in surface area, but also a high oil-repellent surface in accordance with the Cassie-Baxter theory can be obtained by the presence of an air layer between the adhered particles and the carrier.
  • polytetrafluoroethylene having a melting point of 330 ° C. or higher has a molecular weight of tens of thousands to hundreds of thousands, it cannot be dissolved in either hydrocarbon or halogen solvents.
  • polytetrafluoroethylene having a melting point of 35 ° C. or higher and 320 ° C. or lower used in the present invention is insoluble in hydrocarbon solvents, while hydrochlorofluorocarbon (HCFC), perfluorocarbon (PFC), hydrofluorocarbon (HFC) ), Hydrofluoroether (HFE), a cyclic fluorinated product, and an aromatic fluorinated product, it can be used as a solvent-based coating agent.
  • HCFC hydrochlorofluorocarbon
  • PFC perfluorocarbon
  • HFC hydrofluorocarbon
  • HFE Hydrofluoroether
  • a coating agent it is possible to use a conventionally known method, and it is possible to apply at least a part of the polytetrafluoroethylene used in the present invention by a technique such as coating, spraying or dipping in the above solvent. After making it adhere to a support
  • the carrier is a porous shape such as a fibrous material or a particulate material, not only continuous processing in a planar shape but also a roll shape It can also be produced by immersing the solvent in the state of a laminate and drying it.
  • the coverage and unevenness of the coating layer can be adjusted by the application amount and concentration, and when used as a coating agent, fine particles can be used as a coating method or a method of applying to a structure having unevenness due to fine particles in advance. It is also preferable to comprise.
  • an undissolved polytetrafluoroethylene or an organic or inorganic material having a glass transition temperature or melting point of 40 ° C. or higher can be used as fine particles to be blended in advance as a coating agent.
  • the particle diameter is preferably from 0.1 nm to 10 ⁇ m, more preferably from 1 nm to 1 ⁇ m, further preferably from 5 nm to 500 nm, and most preferably from 10 nm to 300 nm. In the case of particles having an aspect ratio exceeding 1, the minor axis side is defined as the diameter.
  • polytetrafluoroethylene is supported on the surface of the carrier with an uneven structure, and the uneven structure is finer than the liquid droplets to be collected. This is because not only an increase in wet work due to an increase in surface area, but also a high oil-repellent surface in accordance with the Cassie-Baxter theory can be obtained by the presence of an air layer between the adhered particles and the carrier.
  • heat treatment is preferably performed at 60 ° C. or more and 140 ° C. or less, more preferably 70 ° C. or more and 140 ° C. or less, and further preferably 80 ° C. or more and 140 ° C. or less, during or after coating. This is because such treatment improves adhesion, stabilizes the structure of polytetrafluoroethylene molecules, and removes low molecular weight substances, thereby removing oil repellency and electret stabilizing effects and free low molecular components.
  • the electret according to the present invention and the filter using the electret are formed by electretizing at least one of a carrier or polytetrafluoroethylene and imparting an electrostatic charge.
  • the electretization method is not particularly limited as long as desired characteristics can be obtained at the time of use, and is preferably used either before or after supporting polytetrafluoroethylene. If it is the former, there is an advantage in adhesion and processing by attracting the polytetrafluoroethylene powder with electrostatic attraction, and if it is the latter, the electric lines of force are not shielded, so that the electret effect can be expressed more. .
  • any electrification method may be selected from those subjected to known charging methods such as corona charging method, liquid contact charging method, friction charging method, electric field charging method, hot electric field charging method, and electron beam irradiation method.
  • known charging methods such as corona charging method, liquid contact charging method, friction charging method, electric field charging method, hot electric field charging method, and electron beam irradiation method.
  • a liquid contact charging method that can uniformly apply an electrostatic charge to the inside of the porous shape is preferable.
  • the liquid contact charging method is a method of charging by contacting a liquid with a jet of water or a solution or a solvent, a droplet flow, steam, ultrasonic waves, or the like. Examples include high-pressure water charge and ultrasonic charge.
  • Specific electretization methods include polarization by high voltage, collision of charged ions, electric action such as charged particle injection, interaction with solids such as friction and collision, contact with liquid and collision
  • Conventionally known methods can be preferably used. More preferably, it is a method using contact with liquid or friction, and is more preferable from the viewpoint of oil repellency and oil mist resistance because electretization is possible without increasing the oxidation product having polarity. .
  • the initial charge amount that contributes to the filter efficiency is preferably 400% or more, more preferably 800% or more as a performance increase rate described below with respect to a non-electret having no charge (non-charged state), 1200% or more is more preferable, and 1600% or more is most preferable.
  • the performance increase rate is calculated from the air dust efficiency of 0.3 to 0.5 ⁇ m at a wind speed of 10 cm / s in the non-charged state.
  • Performance increase rate [%] (Ln (efficiency after charging) / Ln (n (non-charging efficiency)) ⁇ 100
  • the electret of the present invention is preferably 10% or more, more preferably 30% or more, and more preferably 70% as the performance maintenance rate described below as the charge stability required during use of the filter, storage and shape processing.
  • the above is more preferable, 80% or more is particularly preferable, and 90% or more is most preferable.
  • the performance maintenance rate is calculated from the air dust efficiency of 0.3 to 0.5 ⁇ m at a wind speed of 10 cm / s before and after being left for 30 minutes in an 80 ° C. environment.
  • Performance maintenance ratio [%] (Ln (efficiency after heat treatment) ⁇ Ln (efficiency before heat treatment)) ⁇ 100
  • the oil repellency obtained by the present invention can be adjusted according to the required properties (for example, waterproof, antifouling, water repellency, oil repellency).
  • fibrous materials such as nonwoven fabrics and woven fabrics.
  • the surface tension that gives the permeability within 10 seconds is at least a non-processed product (for example, 36 mN / in typical value in PP melt blown). If it is improved over m), it can be preferably used.
  • it is preferably 31 mN / m or less, more preferably 29 mN / m or less, further preferably 27 mN / m or less, and most preferably 25 mN / m or less.
  • DOP 31mN / m and PAO for example, Emery3004
  • 29mN / m which are the test liquids of the national certification oil mist for dust masks, and take into account the response to mineral and vegetable oil mist in actual use. .
  • liquid absorbing layer When the electret of the present invention is used as a filter, it is also preferable to use a laminated fiber layer (hereinafter referred to as “liquid absorbing layer”) having an oil absorbing or water absorbing function.
  • liquid-absorbing layer that has a liquid-absorbing function such as oil absorption and water absorption, droplet dripping caused by oil repellency is suppressed, and by moving and diffusing liquid droplets from the electret surface, electret loss or An increase in ventilation resistance can be suppressed.
  • the material of the liquid-absorbing layer is not particularly limited as long as it absorbs liquid droplets, but is a fiber sheet material made of polypropylene, polyethylene, polystyrene, polyamide, polyacrylonitrile, polyester, polycarbonate, cellulose, rayon, activated carbon, zeolite.
  • a sheet material containing a porous material such as pulp in the gap or processed into a surface can be preferably used. More preferred are olefinic materials such as polypropylene, polyethylene and polystyrene, or polyester, and more preferred is polypropylene.
  • Either a non-electret or an electret can be preferably used as the material used as the liquid absorbing layer, and it is more preferable that the material is formed into an electret.
  • the method for producing the liquid absorbing layer is not particularly limited as long as the desired properties can be obtained, but preferred methods such as a thermal bond method, a spun bond method, a spun lace method, an electrospinning method using a melting and solution method, and a force spinning method.
  • a thermal bond method a spun bond method
  • a spun lace method an electrospinning method using a melting and solution method
  • a force spinning method a force spinning method.
  • the material made into a sheet can be used.
  • the fibers constituting the liquid absorbing layer preferably have a diameter of 0.005 to 100 ⁇ m, more preferably 0.01 to 20 ⁇ m, still more preferably 0.5 to 5 ⁇ m, and 1 to 10 ⁇ m. Most preferably.
  • Examples of the prefilter layer and the fiber protective layer include a spunbond nonwoven fabric, a thermal bond nonwoven fabric, and urethane foam, and examples of the reinforcing member include a thermal bond nonwoven fabric and various nets.
  • Examples of the functional fiber layer include antibacterial, antiviral and colored fiber layers for identification and design purposes. Providing these functions to the liquid-absorbing layer is preferable as a method for reducing thickness and ventilation resistance.
  • the electret of the present invention and the filter using the same can be widely used for functions such as dust collection, protection, ventilation, antifouling, waterproofing, etc. obtained by the present invention, and in particular, a dust mask, various air conditioning elements, It can be suitably used as a filter for the purpose of protecting air cleaners, cabin filters, and various devices.
  • the oil repellency test method was carried out by the following test.
  • JIS K6768 method a test solution of 40.0 mN / m to 25.4 mN / m was prepared according to the formulation specified in JIS K6768.
  • AATCC 118 method first to eighth grade test solutions defined in the AATCC 118 method were prepared.
  • PAO PAO (Emery3004) was prepared as a test solution.
  • 20 ⁇ l of each test solution was dropped on the surface of the test sample with a micropipettor for microbiological test, and the degree of penetration after 10 seconds of standing was observed.
  • the value of the non-penetrated test solution, which was dropped from the 40.0 mN / m test solution in order, and dropped just before the penetrated test solution was taken as the result of the oil repellency test.
  • the test result was set to 40.0 mN / m.
  • the test result was set to 25.4 mN / m.
  • the value of the test solution dropped in order from the first grade test solution and dropped immediately before the permeated test solution was taken as the result of the oil repellency test.
  • the test result was grade 0.
  • the test result was set to 8th grade.
  • the case where the test solution permeated was indicated as x, and the case where the test solution was not permeated was indicated as ⁇ .
  • Oil mist resistance test The load resistance (oil mist resistance) test to oil mist was carried out by the following two methods. PAO mist was used as the low polarity mineral-based particles, and tobacco smoke was used as the composite particles containing water and a wide variety of polar molecules.
  • Oil mist resistance test method 1 PAO durability life
  • a sample punched out to 72 mm ⁇ was attached to an adapter with an effective air diameter of 50 mm ⁇ and ventilated under the following conditions.
  • Evaluation device TSI-8130 type filter tester Air volume: 6 L / min (5 cm / s)
  • Particle Detection Method Light Scattering Concentration Method Particle loading was performed continuously, and when the collection efficiency in the above apparatus reached 50%, the end point of the evaluation was taken as an evaluation end point, and the sample was collected on a sample per 50 mm ⁇ from the weight before and after the test. PAO weight was calculated.
  • Oil mist resistance test method 2 Tobacco smoke durability life
  • [Tobacco smoke load] Four Mobius made by Nippon Tobacco Co., Ltd.
  • Evaluation device TSI-8130 type filter tester Air volume: 6 L / min (5 cm / s) Loaded particles: Solid NaCl (generated from 2w% NaCl water) Equilibrium charging Number mode diameter 0.075 ⁇ m Concentration: 200 mg / m 3 Particle Detection Method: Light Scattering Concentration Method Since the evaluation air volume is small, a value of 20 seconds is set as the time for the upper and lower detectors to equilibrate, and a numerical value in one cycle of filter tester mode (efficiency measurement mode) is used.
  • Examples 1-1 to 1-5 N-C 10 F 22 , n-C 12 F 26 , n-- dissolved in perfluoroheptane with respect to a polypropylene nonwoven fabric having a basis weight of 30 g / m 2 , an average fiber diameter of 3 ⁇ m and a thickness of 0.25 mm obtained by the melt blown method.
  • After impregnating each of polytetrafluoroethylene composed of C 14 F 30 , nC 16 F 34 , and nC 20 F 42 drying is performed at room temperature, and each processed sheet has a loading amount of 0.75 g / m 2. Obtained.
  • the obtained sheet was subjected to an oil repellency test using liquid droplets and electretized by a corona discharge method, and various evaluations were performed. The results are shown in Table 1-1.
  • Example 1-6 Except that polytetrafluoroethylene having a melting point in the range of 100 ° C. to 290 ° C. (cephalal lube V manufactured by Central Glass Co., Ltd.) was dispersed in perfluoroheptane and the supernatant was used, the same as in Examples 1-1 to 1-5 And various evaluations were performed. The results are shown in Table 1-1.
  • Example 1-7 The same treatment and various evaluations as in Example 1-6 were performed except that the electret treatment was performed by allowing pure water to permeate through the polypropylene nonwoven fabric. The results are shown in Table 1-1.
  • Examples 1-8 to 1-12> A polypropylene nonwoven fabric having a basis weight of 30 g / m 2 , an average fiber diameter of 3 ⁇ m, and a thickness of 0.25 mm obtained by the melt blown method was attached to a thermostatic plate maintained at 30 ° C., and installed on the ceiling of a cylindrical ceramic reaction vessel. A hot plate whose bottom is heated to 300 ° C. is installed, and a polycrystal composed of nC 10 F 22 , nC 12 F 26 , nC 14 F 30 , nC 16 F 34 , nC 20 F 42 Tetrafluoroethylene was evaporated from the metallic boat to obtain processed sheets each having a loading amount of 0.75 g / m 2 . The obtained sheet was subjected to an aging treatment at 60 ° C. for 15 minutes, and then subjected to electret treatment by a corona discharge method, and various evaluations were performed. The results are shown in Table 1-2.
  • Example 1-13> The same treatments and various evaluations were performed as in Examples 1-8 to 1-12, except that polytetrafluoroethylene having a melting point in the range of 100 ° C. to 290 ° C. (Cefal Luve V manufactured by Central Glass Co., Ltd.) was used. The results are shown in Table 1-2.
  • Example 1-14> The same treatment and various evaluations as in Example 1-13 were performed except that the electretization treatment was performed by allowing pure water to permeate through the polypropylene nonwoven fabric. The results are shown in Table 1-2.
  • Example 1-3 The same treatment as in Example 13 was performed except that low molecular weight polytetrafluoroethylene having a melting point of 330 ° C. (Lublon L-2 manufactured by Daikin Industries, Ltd.) was used, but no transpiration occurred and an increase in the weight of the sample was observed. There wasn't.
  • the electretization process was performed by the corona discharge method, and various evaluations were performed. The results are shown in Table 1-3.
  • the processed sheet was obtained by carrying 1.02 g / m 2 by infiltration and drying, and various evaluations were performed. The results are shown in Table 1-3.
  • Examples 1-1 to 1-14 show that polytetrafluoroethylene is preferable as a simple substance or as a mixture.
  • the electret of the present invention has an initial efficiency and charge higher than those of the electret using the acrylate-based water / oil repellent. It turns out that it is excellent in stability and durability.
  • Examples 2-1 to 2-15> Dissolved in perfluoroheptane in polypropylene meltblown nonwoven fabric (weight per unit: 30 g / m 2 , average fiber diameter: 3 ⁇ m, thickness: 0.25 mm) containing 0.01, 5, and 15% by weight of Chiba Geigy 944LD, a hindered amine additive After impregnating polytetrafluoroethylene composed of n-C 10 F 22 , n-C 12 F 26 , n-C 14 F 30 , n-C 16 F 34 , and n-C 20 F 42 , respectively, And dried to obtain processed sheets each having a loading amount of 0.75 g / m 2 .
  • the obtained sheet was subjected to an oil repellency test using droplets.
  • the obtained sheet was placed on a reticulated support (96 mesh) having an air permeability of 120 cm 3 / cm 2 / sec, and a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm located 3 cm above the nonwoven fabric.
  • Water injection treatment was performed.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq.
  • Examples 2-16 to 2-18> Treatment and various evaluations similar to those in Examples 2-1 to 2-15 except that Cefral Lube V manufactured by Central Glass Co., Ltd. was dissolved in perfluoroheptane as polytetrafluoroethylene having a melting point in the range of 100 ° C. to 280 ° C. The results are shown in Tables 2-1 and 2-2.
  • Constant temperature plate maintained at 30 ° C. with a polypropylene melt blown nonwoven fabric (weight per unit: 30 g / m 2 , average fiber diameter: 3 ⁇ m, thickness: 0.25 mm) containing Chima Geig 944LD made by Ciba Geigy, a hindered amine additive. And placed on the ceiling of a reaction vessel made of cylindrical ceramic. A heat plate heated to 300 ° C. is installed at the bottom, and a polycrystal composed of nC 10 F 22 , nC 12 F 26 , nC 14 F 30 , nC 16 F 34 , and nC 20 F 42 is used.
  • Each of the tetrafluoroethylenes was evaporated from the metallic boat to obtain processed sheets having a loading amount of 0.75 g / m 2 .
  • the obtained sheet was subjected to an oil repellency test using droplets.
  • the obtained sheet was placed on a reticulated support (96 mesh) having an air permeability of 120 cm 3 / cm 2 / sec, and a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm located 3 cm above the nonwoven fabric.
  • Water injection treatment was performed.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet. Various evaluations were performed on the obtained sheets, and the results are shown in Tables 2-3 and 2-4.
  • Examples 2-34 to 2-36> The same treatment and various evaluations as in Examples 2-19 to 2-33 were carried out except that Cefral Lube V manufactured by Central Glass Co., Ltd. was used as polytetrafluoroethylene having a melting point in the range of 100 ° C. to 280 ° C. The results are shown in Table 2-4.
  • ⁇ Comparative Example 2-1> A polypropylene melt blown non-woven fabric containing no additives (30 g / m 2 basis weight, average fiber diameter 3 ⁇ m, thickness 0.25 mm) is placed on a mesh-like support (96 mesh) with an air permeability of 120 cm 3 / cm 2 / sec, and 3 cm above the non-woven fabric.
  • the water injection process was performed at a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet. Various evaluations were performed on the obtained sheets, and the results are shown in Table 2-5.
  • Comparative Examples 2-2 to 2-5 The same treatment and various evaluations were carried out as in Comparative Example 2-1, except that a polypropylene melt blown nonwoven fabric containing 0.01, 5, 15, and 20% by weight of Chiba Geigy 944LD manufactured by Ciba Geigy, which is a hindered amine additive, was used. Are shown in Table 2-5.
  • the obtained sheet was placed on a reticulated support (96 mesh) having an air permeability of 120 cm 3 / cm 2 / sec, and a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm located 3 cm above the nonwoven fabric.
  • Water injection treatment was performed.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet.
  • Table 2-5 Various evaluations were performed on the obtained sheets, and the results are shown in Table 2-5.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet.
  • Various evaluations were performed on the obtained sheets, and the results are shown in Table 2-6.
  • C6 acrylate water repellent for polypropylene meltblown nonwoven fabric (weight per unit 30 g / m 2 , average fiber diameter 3 ⁇ m, thickness 0.25 mm) containing 0.01, 5, 15% by weight of Chiba Geigy 945LD manufactured by Ciba Geigy, a hindered amine additive Unidyne TG-5503, an oil repellent agent, was impregnated with an aqueous dispersion and dried to support 0.95 g / m 2 to obtain a processed sheet. The obtained sheet was subjected to an oil repellency test using droplets.
  • the obtained sheet was placed on a reticulated support (96 mesh) having an air permeability of 120 cm 3 / cm 2 / sec, and a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm located 3 cm above the nonwoven fabric.
  • Water injection treatment was performed.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet.
  • Table 2-6 Various evaluations were performed on the obtained sheets, and the results are shown in Table 2-6.
  • Examples 3-1 to 3-15 Perfluoroheptane for polypropylene meltblown nonwoven fabric (basis weight 30 g / m 2 , average fiber diameter 3 ⁇ m, thickness 0.25 mm) containing 0.01, 5, 15% by weight of Irganox 1010 manufactured by BASF, which is a hindered phenol additive After impregnating polytetrafluoroethylene composed of nC 10 F 22 , nC 12 F 26 , nC 14 F 30 , nC 16 F 34 , and nC 20 F 42 dissolved in Then, drying was performed at room temperature to obtain processed sheets having a loading amount of 0.75 g / m 2 .
  • the obtained sheet was placed on a ground electrode made of an aluminum flat plate, and subjected to corona charging treatment at a voltage of 20 kV for 10 seconds using a needle electrode from a distance of 1 cm from the nonwoven fabric to obtain an electret sheet.
  • Various evaluations were performed on the obtained sheets, and the results are shown in Tables 3-1 and 3-2.
  • Examples 3-16 to 3-18> The same treatment as in Examples 3-1 to 3-15 was carried out except that Cefral Lube V manufactured by Central Glass Co., Ltd. was dissolved in perfluoroheptane as polytetrafluoroethylene having a melting point in the range of 100 ° C. to 280 ° C. An electret sheet was obtained. Various evaluations were performed on the obtained sheets, and the results are shown in Table 3-2.
  • Examples 3-19 to 3-33> A polypropylene melt blown nonwoven fabric containing 30,5 and 15% by weight of Irganox 1010 manufactured by BASF, which is a hindered phenol additive, was maintained at 30 ° C. (weight per unit area 30 g / m 2 , average fiber diameter 3 ⁇ m, thickness 0.25 mm). It was attached to a thermostat and installed on the reaction vessel ceiling made of cylindrical ceramic. A heat plate heated to 300 ° C. is installed at the bottom, and a polycrystal composed of nC 10 F 22 , nC 12 F 26 , nC 14 F 30 , nC 16 F 34 , and nC 20 F 42 is used.
  • Each of the tetrafluoroethylenes was evaporated from the metallic boat to obtain processed sheets having a loading amount of 0.75 g / m 2 .
  • the obtained sheet was placed on a ground electrode made of an aluminum flat plate, and subjected to corona charging treatment at a voltage of 20 kV for 10 seconds using a needle electrode from a distance of 1 cm from the nonwoven fabric to obtain an electret sheet.
  • Various evaluations were performed on the obtained sheets, and the results are shown in Tables 3-3 and 3-4.
  • Examples 3-34 to 3-36> An electret sheet that was processed in the same manner as in Examples 3-19 to 3-33 except that Cefral Lube V manufactured by Central Glass Co., Ltd. was used as polytetrafluoroethylene having a melting point in the range of 100 ° C. to 280 ° C. Got. Various evaluations were performed on the obtained sheets, and the results are shown in Table 3-4.
  • the obtained sheet was placed on a ground electrode made of an aluminum flat plate, and subjected to corona charging treatment at a voltage of 20 kV for 10 seconds using a needle electrode from a distance of 1 cm from the nonwoven fabric to obtain an electret sheet.
  • Various evaluations were performed on the obtained sheets, and the results are shown in Table 3-5.
  • the obtained sheet was placed on a ground electrode made of an aluminum flat plate, and subjected to corona charging treatment at a voltage of 20 kV for 10 seconds using a needle electrode from a distance of 1 cm from the nonwoven fabric to obtain an electret sheet.
  • Various evaluations were performed on the obtained sheets, and the results are shown in Table 3-6.
  • Examples 3-37 to 3-51> Polypropylene meltblown nonwoven fabric containing 0.01, 5, and 12.5% by weight of Irganox 1010 manufactured by BASF, which is a hindered phenol additive, with a basis weight of 30 g / m 2 , an average fiber diameter of 3 ⁇ m, and a thickness of 0.25 mm.
  • Polytetrafluoroethylene composed of nC 10 F 22 , nC 12 F 26 , nC 14 F 30 , nC 16 F 34 , and nC 20 F 42 dissolved in fluoroheptane is infiltrated, respectively. Then, it dried at normal temperature and obtained the processed sheet of the load of 0.75g / m ⁇ 2 >, respectively.
  • the obtained sheet was placed on a reticulated support (96 mesh) having an air permeability of 120 cm 3 / cm 2 / s, and water was supplied at a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm located 3 cm above the nonwoven fabric.
  • An injection process was performed.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet.
  • Tables 3-7 and 3-8 were evaluated for the obtained sheets, and the results are shown in Tables 3-7 and 3-8.
  • Examples 3-52 to 3-54> Treatment and various evaluations similar to those in Examples 3-37 to 3-51 except that Cefral Lube V manufactured by Central Glass Co., Ltd. was dissolved in perfluoroheptane as polytetrafluoroethylene having a melting point in the range of 100 ° C. to 280 ° C. The results are shown in Table 3-8.
  • Examples 3-55 to 3-69> Polypropylene meltblown nonwoven fabric (weight per unit 30 g / m 2 , average fiber diameter 3 ⁇ m, thickness 0.25 mm) containing 0.01, 5, 12.5 wt% of BASF's Irganox 1010, a hindered phenol additive, at 30 ° C. It was affixed to a kept thermostat and installed on the ceiling of a cylindrical ceramic reaction vessel. A heat plate heated to 300 ° C. is installed at the bottom, and a polycrystal composed of nC 10 F 22 , nC 12 F 26 , nC 14 F 30 , nC 16 F 34 , and nC 20 F 42 is used.
  • Each of the tetrafluoroethylenes was evaporated from the metallic boat to obtain processed sheets having a loading amount of 0.75 g / m 2 .
  • the obtained sheet was placed on a reticulated support (96 mesh) having an air permeability of 120 cm 3 / cm 2 / s, and water was supplied at a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm located 3 cm above the nonwoven fabric.
  • An injection process was performed.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet. Various evaluations were performed on the obtained sheets, and the results are shown in Tables 3-9 and 3-10.
  • Examples 3-70 to 3-72> The same treatment and various evaluations as in Examples 3-55 to 3-69 were carried out except that Cefral Lube V manufactured by Central Glass Co., Ltd. was used as polytetrafluoroethylene having a melting point in the range of 100 ° C. to 280 ° C. The results are shown in Table 3-10.
  • a polypropylene melt blown non-woven fabric containing no additive (30 g / m 2 basis weight, average fiber diameter 3 ⁇ m, thickness 0.25 mm) is placed on a mesh support (96 mesh) with an air permeability of 120 cm 3 / cm 2 / sec, and 3 cm above the non-woven fabric.
  • the water injection process was performed at a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet. Various evaluations were performed on the obtained sheets, and the results are shown in Table 3-11.
  • Comparative Examples 3-16 to 3-19> The same treatment and various evaluations as in Comparative Example 3-15 were carried out except that a polypropylene melt blown nonwoven fabric containing 0.01, 5, 12.5, and 20% by weight of Irganox 1010 manufactured by BASF, which is a hindered phenol additive, was used. The results are shown in Table 3-11.
  • ⁇ Comparative Example 3-20> Melting point in the range of 100 ° C. to 280 ° C. for polypropylene melt blown nonwoven fabric (weight per unit: 30 g / m 2 , average fiber diameter of 3 ⁇ m, thickness of 0.25 mm) containing 20% by weight of Irganox 1010 manufactured by BASF as a hindered phenol additive
  • Irganox 1010 manufactured by BASF as a hindered phenol additive
  • Example 3-21 The same treatment as in Example 3-55 was performed on a polypropylene melt blown nonwoven fabric (weight per unit area 30 g / m 2 , average fiber diameter 3 ⁇ m, thickness 0.25 mm) containing 20% by weight of Irganox 1010 manufactured by BASF, which is a hindered phenol additive.
  • the same treatment and various evaluations as in Example 3-55 were carried out except that polytetrafluoroethylene having a melting point in the range of 100 ° C. to 280 ° C. was used to evaporate Cefral Lube V manufactured by Central Glass Co., Ltd. into perfluoroheptane. The results are shown in Table 3-11.
  • the obtained sheet was placed on a reticulated support (96 mesh) having an air permeability of 120 cm 3 / cm 2 / s, and water was supplied at a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm located 3 cm above the nonwoven fabric.
  • An injection process was performed.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet. Various evaluations were performed on the obtained sheets, and the results are shown in Table 3-12.
  • the obtained sheet was placed on a reticulated support (96 mesh) having an air permeability of 120 cm 3 / cm 2 / s, and water was supplied at a pressure of 2 MPa from a nozzle having a diameter of 0.1 mm ⁇ and a pitch of 0.6 mm located 3 cm above the nonwoven fabric.
  • An injection process was performed.
  • the water used is high-purity water obtained by subjecting general tap water to a two-stage reverse osmosis membrane treatment and then an ion exchange membrane treatment.
  • the conveyance speed of the support was 3 m / min, and the lower part of the mesh body just below the nozzle was in a reduced pressure state of 600 mmAq. This treatment was performed 3 times on the surface of the sheet. Thereafter, this sheet was naturally dried or retained in a hot air oven at 80 ° C. for 1 minute to obtain an electret sheet.
  • the electret of the present invention can obtain an electret having a high chargeability with a simple device and process and having an increased electrostatic charge retention rate against liquid particles such as oil mist and a filter using the same. Great contribution to the world.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Textile Engineering (AREA)
  • Filtering Materials (AREA)

Abstract

【課題】初期の静電電荷を高め、さらに液体粒子に対する静電電荷の減衰を抑制させたエレクトレットを得ること。 【解決手段】融点35℃以上320℃以下のポリテトラフルオロエチレンを付着させ、担体およびポリテトラフルオロエチレンの少なくとも一方が静電電荷を付与されてなるエレクトレット。

Description

エレクトレット
 本発明はエレクトレットおよびそれを用いたフィルターに関する。
 従来より、防塵マスク、各種空調用エレメント、空気清浄機、キャビンフィルター、各種装置において集塵、保護、通気などを目的とし多孔質フィルターが用いられている。
 多孔質フィルターのうち、繊維状物からなるフィルターは高い空隙率を持ち長寿命、低通気抵抗という利点を有しており幅広く用いられている。これら繊維状物からなるフィルターは、さえぎり、拡散、慣性衝突などの機械的捕集機構により繊維上に粒子を捕捉するが、実用的な使用環境において捕捉する粒子の空気力学相当径が0.1~1.0μm程度の場合にフィルター捕集効率の極小値をもつことが知られている。
 上記の極小値におけるフィルター捕集効率を向上させるため、電気的な引力を併用する方法が知られている。たとえば、被捕集粒子に電荷を与える、またはフィルターに電荷を与える方法、さらには両者の組み合わせが用いられる。フィルターに電荷を与える方法としては、電極間にフィルターを配置し通風時に誘電分極させる方法や絶縁材料に長寿命の静電電荷を付与する方法が知られており、特に後者の手法は外部電源などのエネルギーを必要としないため、エレクトレットフィルターとして幅広く用いられている。
 エレクトレットフィルターは、初期捕集効率を高め、またフィルター加工や保管時における静電電荷の減衰による性能低下を抑制するため、エレクトレット化が可能で耐湿安定性および耐熱安定性に優れたエレクトレット材料が用いられる。
 しかしながら、エレクトレットフィルターは粒子の捕集に伴い静電引力が低下するという欠点があり、とりわけ表面張力の小さなオイルミストは繊維表面を薄く被覆することで電荷の消失が著しく促進される。一般的なエレクトレットフィルターには、電荷安定性に優れたポリオレフィン、ポリエステル、ポリカーボネート、フェノール樹脂等が用いられているが、これらのうち最も表面張力の小さなポリプロピレン、ポリエチレン、ポリメチルペンテンなどのポリオレフィン類からなる繊維状物であっても、ポリαオレフィン(PAO)、フタル酸ジオクチル(DOP)およびタバコ煙などに代表されるオイルミストに対しては材料特性として十分な撥油性を示さないため、オイルミスト負荷時の捕集効率維持性能(以下、「耐オイルミスト性」という)が低いという問題がある。
 かかる問題を解決するため、フィルターを構成する繊維状物の表面張力を下げることで撥油性を与え、繊維表面でのミストの広がりや繊維素材内部への吸収拡散を抑制することで電荷の消失を低減させることで耐オイルミスト性を向上させる方法が知られている。具体的には、撥油性を高めるために樹脂内にパーフルオロ基を有した添加剤を混合する方法(たとえば特許文献1)、熱可塑性フッ素樹脂を溶融紡糸する方法(たとえば特許文献2および特許文献3)、パーフルオロ基を有したエマルジョン加工剤で表面をコーティング処理する方法(たとえば特許文献4)、プラズマおよびフッ素ガスなどを用い水素原子を置換することによりフッ素原子を導入する方法(たとえば特許文献5)等により電荷安定性を維持しながら表面張力を低減させ、耐オイルミスト性を高めたエレクトレットが用いられている。
 なお、以下、素材としての低表面張力化を「撥油性」、オイルミストに対する効率低下抑制効果を「耐オイルミスト性」と記載する。なお、本発明で言う撥油性とは低表面張力化により液体のひろがり抑制効果を意味するものであり、濡れの原理から鑑みて表面張力値の大きな水に対しての作用(撥水性)も含まれるものである。
 しかしながら、フッ素系樹脂やフッ素系低分子添加剤は、320℃を越える環境下においてはフッ素テロマーの脱離や熱分解物としてフッ化水素やフッ化カルボニルなどの生成がみられるため溶融紡糸には不適である。また、フッ素ガスやプラズマ処理によるフッ素原子導入では、フッ素ガスの漏洩防止や親水化を抑制するために酸素、水分量管理を厳密に行う必要があり、気密性の高い特殊設備が必要となる。また、生体蓄積性の問題により、PFOA(パーフルオロオクタン酸)およびPFOS(パーフルオロオクタンスルホン酸)ならびにその塩、ならびにテロマーを生じる母物質の使用、ならびにその製造が禁止されており、これらの材料を添加したり、ランダムにフッ素-水素置換が生じたり、熱分解や酸化分解を生じる工程は好ましいとはいえない。
 また、テキスタイル用に開発された含フッ素アクリレート系加工剤には乳化剤や製膜助剤が含有され、さらにPFOAおよびPFOS規制に対応させるためC13以下の短鎖パーフルオロ基が側鎖として用いられるため、加工剤が結晶性を失っている。そのため、加工剤自身が静電電荷の安定性を持たないばかりか、低付着量であっても基材となる繊維状物の電荷安定性を著しく阻害するという問題がある。
 また、アモルファス化により可溶性と熱可塑性を付与し、電荷安定性とコーティング性を両立したフッ素系樹脂(たとえば特許文献6)も知られているが、主骨格として特殊なモノマーを用いる必要があり、製造コストが著しく大きくなるという問題がある。
 また、エレクトレット材料の耐熱安定性を高めるために各種添加剤を添加する方法が開示されており(たとえば特許文献7)、静電電荷量を向上させフィルター捕集効率を向上させるために、帯電強化添加剤を混合し液体接触時の電荷量を高める方法が知られている(たとえば特許文献8)。
 しかしながら、本発明者らが検討したところ帯電強化添加剤を混合した場合にはエレクトレット材料の表面張力が増加し、とりわけ表面張力の小さなオイルミストを捕集した場合に繊維表面が薄く被覆されることで電荷の消失が著しく促進されるという問題を有することを確認した。
 すなわち、これらのエレクトレットフィルターは、各種鉱油、植物油、ポリαオレフィン(PAO)、フタル酸ジオクチル(DOP)およびタバコ煙などに代表されるオイルミストに対しては材料特性として十分な撥油性を示さないため、初期捕集効率は高いものの、耐オイルミスト性が低く、平均捕集効率低くなるという問題がある。
特開2009-6313号公報 特開2002-266219号公報 特開2007-18995号公報 特開2004-352976号公報 特表2008-540856号公報 国際公開第2009/104699号 特開平1-287914号公報 特表2011-522137号公報
 本発明のエレクトレットは、従来の耐オイルミスト性を有するエレクトレットが生産設備やコストの制約が大きく、環境規制に対応した短鎖パーフルオロ化合物を用いた場合には電荷安定性と撥油性を両立することが困難であるという課題を解決したものであり、低コストで簡便な手法にて製造が可能な撥油性、耐オイルミスト性、電荷安定性に優れたエレクトレットを得ることを課題とするものである。
 さらに、本発明は、静電電荷を向上させるために公知の添加剤を含有したエレクトレットは、オイルミストのような液体粒子が付着した場合において、添加剤を含有しないエレクトレットよりも静電電荷の減衰が著しい。そこで、本発明は静電電荷量を高め、さらに液体粒子に対する静電電荷の減衰を抑制させたエレクトレットを得ることも課題とするものである。
 本発明のエレクトレットは前記の課題を解決するために、発明者が鋭意検討した結果、遂に本発明を完成するに到った。すなわち、本発明は下記とおりである。
1.融点35℃以上320℃以下のポリテトラフルオロエチレンを担体に付着させ、担体およびポリテトラフルオロエチレンの少なくとも一方が静電電荷を付与されてなるエレクトレット。
2.担体がヒンダードアミン系およびトリアジン系添加剤の少なくとも1種を0.01~15.0重量%含有する担体である上記1に記載のエレクトレット。
3.担体がヒンダードフェノール系添加剤を0.01~15.0重量%含有する担体である上記1に記載のエレクトレット。
4.静電電荷が液体接触荷電法により付与された上記1~3のいずれかに記載のエレクトレット。
5.担体に繊維状物を用い、ポリテトラフルオロエチレンを溶液法または蒸着法で担体に担持する上記1~4のいずれかに記載のエレクトレット。
6.担体が融点320℃以下の熱可塑性樹脂からなるメルトブローン不織布である上記1~5のいずれかに記載のエレクトレット。
7.上記1~6のいずれかに記載のエレクトレットを用いたフィルター。
 本発明のエレクトレットは、PFOAおよびPFOS類縁物を用いることなく、簡便な装置や工程で撥油性、耐オイルミスト性、電荷安定性に優れたエレクトレットおよびそれを用いたフィルターを得ることが可能となる。そして、それを用いたフィルターは防塵マスク、各種空調用エレメント、空気清浄機、キャビンフィルター、各種装置の保護を目的としたフィルターとして好適に用いられるものである。
 以下に本発明の具体例を例示するが、本発明の趣旨に則り用途毎に最適な構成を選択することができる。
 本発明に用いられる担体は所望の特性を有するものであれば特に制限されないが、形状の自由度および素材自身の電荷安定性を考慮し、電気抵抗の高い合成樹脂からなることが好ましい。具体的には非フッ素系合成樹脂であるポリエステル、ポリカーボネート、ポリアミド、ポリオレフィン、環状オレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフェニレンサルファイド、ポリフェニレンオキサイド、フェノール樹脂などがあげられ、なかでもポリエチレン、ポリブテン、ポリプロピレン、ポリメチルペンテン、ポリスチレン、環状オレフィン等のポリオレフィンが好ましい。ポリオレフィンからなる場合は、疎水性、電気抵抗、成形性などのバランスが良好であり、実用性に優れたエレクトレットが得られる。
 撥油性をより高めるために担体にフッ素原子を含有した合成樹脂を用いることも好ましく、例えばポリテトラフルオロエチレン、パーフルオロエチレンプロペンコポリマー(FEP)、パーフルオロアルコキシアルカン(PFA)、エチレン・テトラフルオロエチレンコポリマー(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン・ヘキサフルオロプロピレン・ビニリデンフロライドコポリマー(THV)などであり、撥油性の観点からはポリテトラフルオロエチレン、FEP、PFA、ETFEがより好ましい。
 上記合成樹脂には樹脂自体の劣化を抑制し、さらにはエレクトレットの初期電荷量および電荷安定性を高めるために、従来公知の配合剤および配合組成を好ましく用いることができる。たとえば、配合剤としては各種金属塩、酸化防止剤、光安定化剤、アイオノマー樹脂などであり、配合組成としては、異なる樹脂成分を混合することにより得られるブレンドポリマーなどである。エレクトレットとしての初期電荷量および電荷安定性を考慮した場合、少なくとも1種がエレクトレット化可能な合成樹脂であることが好ましい。
 上記合成樹脂には静電電荷を向上させるための添加剤として、公知のものを使用することができ、ヒンダードアミン系添加剤、トリアジン系添加剤やヒンダードフェノール系添加剤が挙げられる。
 ヒンダードアミン系添加剤またはトリアジン系添加剤は、静電電荷を向上させる効果が大きく、とりわけ液体接触荷電法によるエレクトレット化において静電電荷の向上効果が大きく好ましい。含有量としては、担体に対して0.01~15.0重量%含まれており、0.05~12.5重量%含まれるのが好ましく、0.1~10.0重量%含まれるのがより好ましい。含有量が0.01重量%未満であると十分な静電電荷向上の効果を付与することができないため好ましくなく、逆に含有量15.0重量%を超えても均一性が著しく悪化するため好ましくない。
 また、末端官能基にヒドロキシル基を有するヒンダードフェノール系の添加剤は、オイルミストに対する耐久性が高い上、撥油性を高めたエレクトレット表面の低表面張力を緩和し、水や溶剤などに対する親和性がやや高まるため、静電電荷の付与方法に液体接触荷電法を採用した場合に均一な静電電荷を付与できるため好ましい。含有量としては、担体に対して0.01~15.0重量%含まれており、0.05~12.5重量%含まれるのが好ましく、0.1~10.0重量%含まれるのがより好ましい。含有量が0.01重量%未満であると十分な静電電荷向上および表面張力を緩和による効果を付与することができない。逆に含有量が15.0重量%を超えると均一性が悪化し、さらには表面張力値が高くなり液体粒子に対する耐久性が低下するため好ましくない。
 ヒンダードアミン系またはトリアジン系添加剤としては、具体的には、ポリ〔((6-(1,1,3,3,-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル)((2,2,6,6,-テトラメチル-4-ピペリジル)イミノ)ヘキサメチレン((2,2,6,6,-テトラメチル-4-ピペリジル)イミノ)〕(チバガイギー製、キマソーブ(登録商標)944LD)、ハコク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物(チバガイギー製、チヌビン(登録商標)622LD)、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)(チバガイギー製、チヌビン(登録商標)144)、ジブチルアミン・1,3,5-トリアジン・N,N’-ビス(2,2,6,6ーテトラメチルー4-ピペリジル-1,6-ヘキサメチレンジアミン・N-(2,2,6,6ーテトラメチルー4-ピペリジル)ブチルアミンの重縮合物(チバガイギー製、キマソーブ(登録商標)2020FDL)、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-((ヘキシル)オキシ)-フェノール(チバガイギー製、チヌビン(登録商標)1577FF)などが挙げられる。
 ヒンダードフェノール系添加剤としては、特に限定するわけではないが、具体的には、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](Irganox1010、BASF社製)、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(Irganox1076、BASF社製)、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレイト(Irganox3114、BASF社製)、3,9-ビス-{2-[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)-プロピオニルオキシ]-1,1-ジメチルエチル}-2,4,8,10-テトラオキサスピロ-[5,5]ウンデカン(スミライザーGA-80、住友化学社製)等が挙げられる。
 本発明の担体の形状としては、射出成型体、フィルム形状、繊維状物、粉末状物、粒子状物のいずれの形状であっても好ましく用いられるが、粒子除去および通気用途に用いる場合には繊維状物であることがより好ましい。
 本発明の繊維状物とは、長繊維または短繊維からなる織編物、不織布、綿状物等の繊維状物や延伸フィルムから得られる繊維状物を含むものであり、用途に応じて適当な形状および厚みに成形したものを使用することができる。エレクトレットをフィルター用途として利用する場合は、不織布であることが好ましい。
 不織布を得る方法としては、単成分繊維、芯鞘繊維やサイドバイサイド繊維といった複合繊維、分割繊維等の短繊維をカーディング、エアレイド、湿式抄紙法などによりシート化する方法、連続繊維をスパンボンド法、メルトブローン法、エレクトロスピニング法、フォーススピニング法などによりシート化する方法など、従来公知の方法を用いることが可能である。なかでも、機械的捕集機構を効果的に利用する観点から緻密で細繊度を容易に得られるメルトブローン法、エレクトロスピニング法やフォーススピニング法で得られる不織布が好ましく、残溶剤の処理を必要としない観点からメルトブローン法、溶融エレクトロスピニング法や溶融フォーススピニング法で得られる不織布がより好ましい。
 本発明の繊維状物に用いられる繊維の直径は、0.001~100μmであることが好ましく、0.005~20μmであることがより好ましく、0.01~10μmであることがさらに好ましく、0.02~5μmであることが特に好ましく、0.03~3μmであることが最も好ましい。繊維の直径が100μmよりも太い場合には実用的な捕集効率を得ることが困難であり、電荷減衰時の効率低下が大きい。繊維の直径が0.001μmよりも細い場合にはエレクトレットとしての静電電荷を付与することが困難である。
 本発明における繊維状物は単独の製法、素材からなる均一物であってもよく、製法、素材および繊維径の異なる2種以上の素材を用いてなる混合物であってもよい。
 本発明における繊維状物のオイルミストなどの液体粒子に対する耐久性を向上させる方法として、構成繊維の表面張力を下げることで撥油性を与え繊維表面でのミストの広がりや繊維素材内部への吸収拡散を抑制することで電荷の消失を低減させ、捕集されたミストを球体に近づけることで目詰まり効果による機械的捕集効率を向上させる方法が知られている。
 具体的には、撥油性を高めるために樹脂内にパーフルオロ基を有した添加剤を混合する方法、熱可塑性フッ素樹脂を溶融紡糸する方法、パーフルオロ基を有したエマルジョン加工剤で表面をコーティング処理する方法、プラズマおよびフッ素ガスなどを用い水素原子を置換することによりフッ素原子を導入する方法等が挙げられる。
 しかしながら、フッ素系樹脂やフッ素系低分子添加剤は、熱分解物としてフッ化水素やフッ化カルボニルなどの生成がみられるため溶融紡糸には不適である。また、フッ素ガスやプラズマ処理によるフッ素原子導入では、フッ素ガスの漏洩防止や親水化を抑制するために酸素、水分量管理を厳密に行う必要があり、気密性の高い特殊設備が必要となる。さらにフッ素ガスやプラズマ処理では反応性の高いフッ素ラジカルにより、添加剤としてヒンダードアミン系添加剤またはトリアジン系添加剤を使用する場合、添加剤中のN原子部分において反応が生じるため好ましくない。
 また、テキスタイル用に開発されたアクリレート系加工剤を使用する方法が挙げられるが、テキスタイル用に開発されたアクリレート系加工剤には乳化剤や製膜助剤が含有され、さらにPFOAならびにPFOS規制に対応させるためC6F13以下の短鎖パーフルオロ基が側鎖として用いられるために結晶性を失っており、加工剤自身がエレクトレット性を有さないばかりか、低付着量であっても基材となる繊維素材のエレクトレット性を著しく阻害するという問題があり好ましくない。
 また、アモルファス化により可溶性と熱可塑性を付与し、エレクトレット性とコーティング性を両立したフッ素系樹脂を使用する方法も知られているが、主骨格として特殊なモノマーを用いる必要があり、製造コストが著しく大きくなるという問題があり好ましくない。
 上記の問題を回避すべく、本発明のエレクトレットへのフッ素の付与には、溶媒に溶解させて付与する溶液法、またはフッ素含有物質をガス化させて付与する蒸着法などの手法によりフッ素を付与することが好ましい。
 本発明のエレクトレットは、担体の少なくとも一部に融点35℃以上320℃以下のポリテトラフルオロエチレンが担持されてなり、撥油性が付与されてなる。ポリテトラフルオロエチレンの融点としては60℃以上315℃以下が好ましく、80℃以上300℃以下がより好ましく、100℃以上290℃以下がさらに好ましい。融点が上記範囲であれば分子量に分布を有したポリテトラフルオロエチレンでも良いし、単一構造の分子であっても、混合物であっても好ましく用いることができる。
 上記融点を有するポリテトラフルオロエチレンを用いる理由としては、(1)融点が320℃以上となる高分子量の場合は溶融粘度が高くコーティング困難であること、(2)融点が高いため担体への担持加工温度が高くなると、担体(とりわけ合成高分子)の劣化および耐熱性に問題が生じること、(3)本発明で用いられる低融点ポリテトラフルオロエチレン(最小表面張力13~17.5mN/m)は一般的なポリテトラフルオロエチレン(最小表面張力17.5mN/m)に比して結晶形やCF基末端密度により表面張力が小さく撥油性効果が高いこと、(4)エピタキシャル成長を利用した場合、結晶性分子の規則構造により、CF基が有する平面上分子における最小表面張力(6mN/m)を発現すること、(5)分子量が小さく粉砕処理が可能なこと、(6)実用可能な温度範囲で融点および沸点を有しており、常圧、減圧、真空条件下で加熱することにより物理蒸着処理(PVD処理)が可能なこと、(7)付着成分の分子量や構造制御が困難できないプラズマ処理(炭化フッ素化)と異なりPFOAやPFOS規制の観点から有利であること、(8)常温で固体であり結晶性を有しているため分子配向の変化による撥油性変化が抑制されること、(9)融点を有しているため熱処理により自己接着性を有すること、(10)一般の高融点ポリテトラフルオロエチレンが有していないフッ素系溶剤に対する溶解性があること、などを例示することができる。
 上記特性を利用し本発明に用いられるポリテトラフルオロエチレンの担体への担持方法としては、(1)粒子化されたポリテトラフルオロエチレン粒子を散布し、担体またはポリテトラフルオロエチレンの融点以上で熱処理を行うことで固定化する方法、(2)ポリテトラフルオロエチレン粒子を気流中に分散させ担体表面および内部に浸透後、担体またはポリテトラフルオロエチレンの融点以上で熱処理を行うことで固定化する方法、(3)ポリテトラフルオロエチレン粒子を液体中に分散させ担体に塗布浸透後、液体を乾燥除去し、担体またはポリテトラフルオロエチレンの融点以上で熱処理を行うことで固定化する方法、(4)ポリテトラフルオロエチレンを融点以上熱分解温度以下の温度で蒸散させ担体上で冷却固化、必要に応じてポリテトラフルオロエチレンの融点以上で熱処理を行うことで固定化する方法、(5)ポリテトラフルオロエチレンをスパッタ法により担体に付着させ、必要に応じてポリテトラフルオロエチレンの融点以上で熱処理を行うことで溶融固定化する方法、(6)ポリテトラフルオロエチレンを溶媒に溶解させ担体に塗布、噴霧、浸漬する、いわゆるコーティング加工した後溶媒を除去し、必要に応じてポリテトラフルオロエチレンの融点以上で熱処理を行うことで溶融固定化する方法、などを例示することができる。
 これらの手法は単独でも良いし、組み合わせて用いることもできる。たとえば、粉末状で担持させた後に再加熱を行うことで蒸散再付着させる方法、粒子状で担持させた後にポリテトラフルオロエチレンまたは担体に対する溶剤を接触させることで接着固定する方法などを用いることで、密着性、分散性、撥油性、耐熱性などの諸特性を向上させることが出来る。
 粒子の直接散布または液体もしくは気流中に分散させ付着させる方法においては、ポリテトラフルオロエチレンの粒子径は0.1nm以上10μm以下であることが好ましく、1nm以上1μm以下であることがより好ましく、5nm以上500nm以下であることがさらに好ましく、10nm以上300nm以下であることが最も好ましい。粒子経が10μmより大きい場合には分散時の均一性や取り扱いが困難となるとともに、コーティングの層厚みが過大となる。一方で粒子経が0.1nm未満であると直鎖からなるポリテトラフルオロエチレン分子としての特性維持が困難となる。とりわけ、担体自身の寸法や形状に特徴がある場合に、均一性と寸法維持の観点から微細粒子であることが好ましい。
 上記粒子径を調整する手法としては、(1)乳化重合ならびに懸濁重合の粒子として重合時に調整する方法、(2)衝撃、摩擦などの物理的作用により粉砕する方法、(3)フッ素系溶媒、超臨界二酸化炭素などに溶解させ、噴霧や再析出などの手法により粒子化する方法などがあげられ、目的とする粒子径に応じて好ましい手法を用いることができる。乳化重合や懸濁重合により得られる粒子の場合には、固液混合状態で加工剤としてそのまま用いても良いし、乾燥工程を経て粒子として取り出すことも好ましい。
 物理的作用により粉砕する方法としては、湿式もしくは乾式の各種粉砕機を用いることが可能であり、具体的にはボールミル、ビーズミル、ジェットミル、ホモジナイザーなどを例示することができ、粉砕と同時に乳化、懸濁させて用いることも好ましい。
 液体に分散して用いる場合には分散媒として、水、炭化水素系有機溶媒、ハロゲン系有機溶媒などを好ましく用いることが可能であり、2種以上を混合して用いることも好ましい。有機溶媒を用いた場合には、担体として用いる合成樹脂との親和性により、浸透性やコーティングの均一性を高めることができる。分散媒を水とする場合には各種界面活性剤を用いることもできる。
 分散時に用いられる界面活性剤としては320℃以下の沸点または熱分解温度を有していることが好ましく、250℃以下がより好ましく、200℃以下がさらに好ましく、150℃以下が最も好ましい。界面活性剤は撥油性の付与およびエレクトレット性を阻害するため、熱処理により蒸散させる、または熱分解により不活性化させることが好ましい。
 また、界面活性剤の他の除去方法としては、酸またはアルカリ溶液による加水分解、次亜塩素酸、過酸化水素などを用いた酸化分解、グリシジル基などを有した反応性有機物、金属イオン、金属アルコキシドなどで官能基を封止する方法も好ましく用いられる。
 本発明に用いられるポリテトラフルオロエチレンは、熱分解温度となる320℃以下に融点を有しており、融点以上の温度においては明確な揮発蒸散性が確認される。したがって、担体に対して蒸着法で担持させて用いることも好ましい。たとえば常圧(大気中1気圧)における融点に関し、n-C1022からなる場合には融点36℃、n-C1226からなる場合には融点76℃、n-C1430からなる場合には融点103℃、n-C1634からなる場合には融点125℃、n-C2042からなる場合には融点167℃、n-C3164からなる場合には融点219℃を有している。
 また、市販混合物として、セントラル硝子株式会社製低分子量PTFEセフラルルーブVにおいては、融点範囲として100~290℃(ピーク温度270℃)を有しており、融解が開始される温度以上で加熱することにより蒸着源として用いることが可能であり、全体が液状化する290℃以上320℃以下で加熱して用いることも好ましい。
 これらのポリテトラフルオロエチレンは、使用時には固体としての安定性を発現し、加熱時には液体および気体としての特性を有し物理蒸着法(PVD法)の素材として好ましく用いることができる。これらは熱分解温度以下で加熱を行うことにより、ポリテトラフルオロエチレンの構造を保持することができるため、分子量や構造の面で不定形なフッ素重合体の生じるプラズマ処理や高分子量ポリテトラフルオロエチレンを原料とした高温での熱分解蒸着法に対し、有利な特徴である。
 蒸着加工の手法としては、各種熱源によりテトラフルオロエチレンを加熱することで蒸気を発生させ、より低温に保持した担体表面に液滴または結晶として析出させる方法が用いられる。かかる手法は、加工面全体を一度に処理するバッチ法であっても、担体または反応槽を移動させることで、担体の異なる加工面を連続的に処理する方法のいずれであっても好ましく用いられる。
 本発明における蒸着加工は加圧、常圧、減圧、真空状態およびその圧力のスイング、大気中および不活性ガスいずれの雰囲気においても好ましく実施することができる。
 減圧または真空状態とすることで、蒸散速度の向上および蒸散温度の低減が可能であり、加圧により蒸散物の析出を促進することができる。また、真空または不活性雰囲気とすることでポリテトラフルオロエチレンや担体の酸化を抑制することが可能であるが、本発明は熱分解温度以下で低温処理が可能であるためコスト面で大気雰囲気を用いることも可能である。
 本発明においては、ポリテトラフルオロエチレンの担持条件の調整により目的に応じて好ましい付着状態を得ることができる。とりわけ、繊維状物などの多孔質構造体の場合には真空度が高い場合には、分子の平均自由工程が大きくポリテトラフルオロエチレンは蒸散側の担体表面に偏在し、低真空または常圧、加圧条件の場合には回り込みによる均一性向上が可能となる。付着面を調整するために、同一担体において圧力のスイングや加工面(表裏)を変えた処理なども好ましい方法である。
 本発明においては、蒸着加工時または蒸着加工後に担体が60℃以上140℃以下に処理されることが好ましく、70℃以上140℃以下がより好ましく、80℃以上140℃以下がさらに好ましい。かかる処理により担体との接着性向上、低分子量物の除去によるエレクトレットの安定化効果や遊離されるVOC成分が低減されるためである。具体的には蒸着加工時には蒸着槽温度、担体の冷却、加熱により調整することが可能であり、加工後には加熱による方法が用いられる。
 本発明においては蒸気の状態で付着させた後冷却固化させても良いし、凝集させた液体や固体粒子として付着させることも好ましい。担体表面へのポリテトラフルオロエチレンの担持を微細な凹凸構造とすることで撥油性を向上させるとともに、担体表面積の増加により総電荷量およびオイルミスト捕集可能な表面積を増加させることができる。
 ポリテトラフルオロエチレンの蒸気が存在する雰囲気に凝縮核となる高融点ポリテトラフルオロエチレンや有機、無機粒子を同時に供給する方法も好ましい。
 前記微細な凹凸構造としては、捕集対象とする液滴よりも微細であることが好ましい。表面積の増加による濡れ仕事の増加のみならず、付着した粒子と担体の間に空気層が存在することで、Cassie-Baxter理論に沿った高い撥油表面を得ることができるためである。
 融点が330℃以上のポリテトラフルオロエチレンは分子量が数万から数十万を有するため炭化水素系、ハロゲン系溶剤いずれにも溶解させることができない。それに対し、本発明に用いられる融点が35℃以上320℃以下のポリテトラフルオロエチレンは、炭化水素系溶剤に不溶である一方、ハイドロクロロフルオロカーボン(HCFC)、パーフルオロカーボン(PFC)、ハイドロフルオロカーボン(HFC)、ハイドロフルオロエーテル(HFE)および環状フッ素化物、芳香族フッ素化物からなる含フッ素溶媒に可溶であるため、溶剤系のコーティング剤として用いることもできる。
 コーティング剤としての使用においては、従来公知の方法を用いることが可能であり、本発明に用いられるポリテトラフルオロエチレンの少なくとも一部を上記溶媒に溶解した状態で塗布、噴霧、浸漬などの手法により担体に付着させた後、必要に応じて熱処理を行うことでコーティング層を得ることができる。
 上記のコーティング加工法に関しては担体の形状に応じて好ましい方法が用いられるが、担体が繊維状物や粒子状物などの多孔質形状であれば、平面状での連続加工のみならず、ロール状、積層体などの状態で溶媒を浸漬させ、乾燥させることによっても製造することが可能である。
 コーティング層の被覆率ならびに凹凸については、塗布量、塗布濃度で調整することが可能であり、コーティング剤として用いる場合には、予め微粒子による凹凸を有した構造に塗布する方法やコーティング剤として微粒子を含んでなることも好ましい。
 コーティング剤として予め配合する微粒子としてはポリテトラフルオロエチレンの未溶解物または40℃以上のガラス転移温度もしくは融点を有する有機もしくは無機材料を用いることができる。粒子直径としては0.1nm以上10μm以下であることが好ましく、1nm以上1μm以下であることがより好ましく、5nm以上500nm以下であることがさらに好ましく、10nm以上300nm以下であることが最も好ましい。アスペクト比が1を超える粒子の場合には短径側を直径として定義する。
 蒸着加工同様に、担体表面へのポリテトラフルオロエチレンの担持を凹凸構造とし、その凹凸構造は、捕集対象とする液滴よりも微細であることが好ましい。表面積の増加による濡れ仕事の増加のみならず、付着した粒子と担体の間に空気層が存在することで、Cassie-Baxter理論に沿った高い撥油表面を得ることができるためである。
 本発明においては、コーティング加工時またはコーティング加工後に、好ましくは60℃以上140℃以下、よりこのましくは70℃以上140℃以下、さらに好ましくは80℃以上140℃以下に加熱処理されてなることも好ましい、かかる処理により接着性向上、ポリテトラフルオロエチレン分子の構造安定化、低分子量物の除去により撥油性およびエレクトレットの安定化効果と遊離される低分子成分が除去されるためである。
 本発明におけるエレクトレットおよびそれを用いたフィルターは、担体またはポリテトラフルオロエチレンの少なくとも一方がエレクトレット化され、静電電荷を付与されてなる。エレクトレット化法は使用時に所望の特性が得られるものであれば特に制限されず、ポリテトラフルオロエチレンの担持前、担持後いずれでも好ましく用いられる。前者であれば、ポリテトラフルオロエチレン粉末を静電的な引力にて引き寄せることで付着や加工に利点があり、後者であれば電気力線が遮蔽されないため、エレクトレット効果をより発現させることができる。
 具体的なエレクトレット化法としては、コロナ荷電法、液体接触荷電法、摩擦帯電法、電界荷電法、熱間電界荷電法、電子線照射法といった公知の帯電方法を施すものから任意に選択することができる。なかでも繊維が集合したような多孔形状のものに静電電荷を付与する場合には、多孔形状の内部まで均一に静電電荷が付与できる液体接触荷電法が好ましい。液体接触荷電法とは、水または溶液や溶剤の噴流または液滴流、蒸気、超音波などにより液体と接触させることで帯電させる方法であり、具体的に水を用いる場合には水流吸引荷電や高圧水流荷電、超音波荷電などが挙げられる。
 具体的なエレクトレット化法としては、高電圧による分極、荷電イオンの衝突、荷電粒子の注入など電気的作用によるもの、摩擦、衝突など固体との相互作用によるもの、液体との接触および衝突を利用したものなど、従来公知の方法を好ましく用いることができる。より好ましくは液体との接触や摩擦を用いたものであり、極性を有した酸化生成物を増加させずにエレクトレット化が可能となるため撥油性および耐オイルミスト性の観点からより好ましい方法である。
 本発明のエレクトレットは、フィルター効率に寄与する初期電荷量は電荷を有しない非エレクトレット(無帯電状態)に対して以下に記載の性能上昇率として400%以上が好ましく、800%以上がより好ましく、1200%以上がさらに好ましく、1600%以上が最も好ましい。
 性能上昇率は無帯電状態における風速10cm/sの0.3~0.5μm大気塵効率から算出される。
 
 性能上昇率[%]=(Ln(荷電後効率)÷Ln(無帯電効率))×100
 
 本発明のエレクトレットは、フィルター使用時、保管時および形状加工時に求められる電荷安定性としては、以下に記載の性能維持率として10%以上であることが好ましく、30%以上がより好ましく、70%以上がさらに好ましく、80%以上が特に好ましく、90%以上が最も好ましい。性能維持率は80℃環境下における30分放置の前後にて風速10cm/sの0.3~0.5μm大気塵効率から算出される。
 
 性能維持率[%]=(Ln(熱処理後効率)÷Ln(熱処理前効率))×100
 
 本発明により得られる撥油性に関しては、必要とされる特性(たとえば防水、防汚、撥水、撥油)に応じて調整することが可能であるが、例えば不織布、織布等の繊維状物からなるフィルターとして用いられる場合には、JIS K6768およびAATCC118法により用いられる表面張力試験液において、10秒以内の浸透性を与える表面張力として少なくとも無加工品(たとえばPPメルトブローンにおける代表値としては36mN/m)よりも向上していれば好ましく用いることができる。具体的には31mN/m以下が好ましく、29mN/m以下がより好ましく、27mN/m以下がさらに好ましく、25mN/m以下が最も好ましい。これらは防じんマスクの国家検定オイルミストの試験液体であるDOPが31mN/m、PAO(たとえばEmery3004)が29mN/mであり、実使用における鉱物および植物性オイルミストへの対応を考慮したものである。本発明者らの検討によると、シート形状での撥油性とフィルターとしての耐油性には相関があり、毛管現象により吸収が生じない程度の撥油性が得られていれば、フィルターとしても明確な耐油性(効率低下の抑制)が確認される。これは素材表面の耐油性(接触角)と多孔質体への吸収現象に相関があるためであり、ミスト試験時における繊維表面に捕集されたエアロゾルの接触角や捕集状態との相関がある。また混合物であるタバコ煙自体の表面張力値は明確ではないが、上記液体における浸透性低下とともに、明確な耐久性向上効果が確認される。
 本発明のエレクトレットをフィルターとして用いる場合に、吸油または吸水機能を有した繊維層(以下、「吸液層」という)を積層して用いることも好ましい。吸油や吸水などの吸液機能を有した吸液層を用いることで、撥油性により生じた液滴の滴りを抑制し、エレクトレット表面から液滴を移行し拡散することで、エレクトレット性の消失や通気抵抗上昇を抑制することができる。
 吸液層の素材としては、液滴を吸収するものであれば特に制限されないが、ポリプロピレン、ポリエチレン、ポリスチレン、ポリアミド、ポリアクリロニトリル、ポリエステル、ポリカーボネート、セルロース、レーヨンなどからなる繊維シート素材、活性炭、ゼオライト、パルプなど多孔質材料を間隙に含有または表面に加工したシート素材などを好ましく用いることができる。より好ましくはポリプロピレン、ポリエチレン、ポリスチレンなどのオレフィン系素材またはポリエステルであり、さらに好ましくはポリプロピレンである。
 吸液層に用いられる繊維は1種類または2種類以上を組み合わせて用いることも好ましく、通風抵抗や粗大粒子の捕集などの観点で適当な素材を選択することができる。
 吸液層として用いられる素材は非エレクトレットおよびエレクトレットいずれでも好ましく用いることが可能であり、エレクトレット化されてなることがより好ましい。
 吸液層の製法は所望の特性が得られるものであれば特に制限されないが、サーマルボンド法、スパンボンド法、スパンレース法、溶融および溶液法によるエレクトロスピニング法および、フォーススピニング法など、好ましい方法によりシート化した素材を用いることができる。
 吸液層を構成する繊維としては、直径が0.005~100μmであることが好ましく、0.01~20μmであることがより好ましく、0.5~5μmであることがさらに好ましく、1~10μmであることが最も好ましい。
 さらに必要に応じて他の構成部材と併用して用いることができる。すなわち、プレフィルター層、繊維保護層、補強部材、または機能性繊維層などと組み合わせて用いることも好ましい。
 プレフィルター層および繊維保護層としては、例えばスパンボンド不織布、サーマルボンド不織布、発泡ウレタンなどであり、補強部材としては、例えばサーマルボンド不織布、各種ネットを例示することができる。また、機能性繊維層としては例えば抗菌、抗ウイルスおよび識別や意匠を目的とした着色繊維層などを例示することができる。吸液層にこれら機能を持たせることは厚みや通気抵抗を低減する方法として好ましい。
 本発明のエレクトレットおよびそれを用いたフィルターは、本発明により得られる集塵、保護、通気、防汚、防水などの機能により幅広く用いることが可能であり、とりわけ、防塵マスク、各種空調用エレメント、空気清浄機、キャビンフィルター、各種装置の保護を目的としたフィルターとして好適に用いることができる。
 以下、本発明の実施の形態について説明する。試験方法を下記に示す。
(撥油性試験法)
撥油性試験法は以下の試験にて実施した。
 JIS K6768法においては、JIS K6768に定められた配合にて40.0mN/mから25.4mN/mの試験液を調整した。
 AATCC118法においては、AATCC118法に定められた1級から8級までの試験液を準備した。
 PAO法においては、PAO(Emery3004)を試験液として準備した。
 各々の試験法において、各々の試験液を微生物試験用マイクロピペッターにて試験サンプル表面に対し20μlずつ滴下し、静置10秒後の浸透度合いを観察した。
 JIS K6768法では、40.0mN/mの試験液から順に滴下し、浸透した試験液の直前に滴下した非浸透であった試験液の値を撥油性試験の結果とした。
 なお、40.0mN/mの試験液が浸透した場合は、直前に滴下した非浸透であった試験液がないため、試験結果を40.0mN/mとした。また、25.4mN/mの試験液が非浸透の場合は、浸透した試験液がないため、試験結果を25.4mN/mとした。
 AATCC118法では、1級の試験液から順に滴下し、浸透した試験液の直前に滴下した試験液の値を撥油性試験の結果とした。
 なお、1級の試験液が浸透の場合は、直前に滴下した非浸透であった試験液がないため、試験結果を0級とした。また、8級の試験液が非浸透の場合は、浸透した試験液がないため、試験結果を8級とした。
 PAO法では、試験液が浸透した場合を×、非浸透の場合を○とした。
 なお、表裏に差異がある場合には、より撥油性の低い方を試験結果とした。
(捕集効率試験)
 フィルターの初期および熱負荷後の捕集効率試験は以下の方法にて実施した。
   評価粒子:大気塵
   風速  :10cm/s
   効率算出:光散乱計数法による0.3~0.5μm間の粒子個数
   捕集効率(%)=(1-(下流側個数÷上流側個数))×100
(性能上昇率)
 エレクトレットの性能上昇率(エレクトレット化の度合い)は以下の方法にて評価した。フッ素加工後のシートサンプルを荷電(エレクトレット化)処理した後に捕集効率を計測し、さらにメガファックF410(DIC株式会社製)パーフルオロアルキル基含有カルボン酸0.5%水溶液にシートを含浸・乾燥させ、自然帯電を含む静電電荷が無くなった状態(無帯電状態)とした後に再度捕集効率を計測した。
※静電電荷が消失し、かつ繊維状物としての通気抵抗および捕集効率への影響を与えない方法で帯電寄与を評価することが本手法の趣旨である。
 下式にて性能上昇率を算出した。
   性能上昇率[%]=(Ln(荷電後効率)÷Ln(無帯電効率))×100
(性能維持率)
 性能維持率は以下の方法にて実施した。
 フッ素加工後のシートサンプルを荷電(エレクトレット化)処理した後に捕集効率を計測(荷電後)し、80℃環境下30分加熱後(熱処理後)に捕集効率を再計測し、下式にて性能維持率を算出した。
   透過率=(下流側個数÷上流側個数)
   性能維持率[%]=(Ln(熱処理後効率)÷Ln(荷電後効率))×100
(耐オイルミスト試験)
 オイルミストへの負荷耐性(耐オイルミスト性)試験は以下の2種の方法にて実施した。
低極性の鉱物系粒子としてPAOミストを用い、水および多種多様な極性分子を含有する複合粒子としてタバコ煙を用いた。
 (耐オイルミスト性試験法1:PAO耐久寿命)
 72mmφに打ち抜いたサンプルを有効通気径50mmφのアダプターに装着し下記条件にて通風を行った。
   評価装置 :TSI-8130型フィルターテスター
   風量   :6L/min(5cm/s)
   負荷粒子 :PAO(Emery3004)平衡帯電
         個数最頻径0.184μm
   濃度   :100mg/m
   粒子検出法:光散乱濃度法
 連続的に粒子負荷を行い、上記装置における捕集効率が50%となった時点を評価の終点とし、試験前後の重量より50mmφあたりのサンプル上に捕集されたPAO重量を算出した。
 (耐オイルミスト性試験法2:タバコ煙耐久寿命)
[タバコ煙負荷]
 1mアクリル容器中でJEM1467法に準拠した吸煙器と手法にて日本たばこ社製メビウスを4本燃焼させた。72mmφに打ち抜いたサンプルを有効通気径50mmφのアダプターに装着し、風量12L/minにて10分間通気を行った。参考となる粒子濃度は柴田科学デジタル粉塵計P-2Lにて4000CPMから3000CPMへの減少となり、概ね1本/サイクル程度の負荷量となる。初期および1サイクル負荷ごとに効率(下記)および重量を計測し、効率50%を割り込んだ時点を終点とする。縦および横軸を普通軸として捕集効率とタバコ煙の捕集重量をプロットし、効率50%となる時点の数値を読み取り耐久寿命として算出する。
[タバコ煙負荷時の捕集効率]
 タバコ煙負荷後のサンプルを用いた場合、光散乱計数器(レーザーパーティクルカウンター)の粒子径計測に干渉を生じるため、光散乱濃度法にて効率評価を行った。なお、レーザーパーティクルカウンターによる0.3~0.5μmの効率とほぼ一致することを確認している。
 タバコ煙負荷サンプルを有効通気径50mmφのアダプターに装着し下記条件にて通風を行った。
   評価装置 :TSI-8130型フィルターテスター
   風量   :6L/min(5cm/s)
   負荷粒子 :固体NaCl(2w%NaCl水から発生)平衡帯電
         個数最頻径0.075μm
   濃度   :200mg/m
   粒子検出法:光散乱濃度法
 なお、評価風量が小さいため上下の検出器が平衡となる時間として20秒の値を設定し、1サイクルのフィルターテスターモード(効率計測モード)の数値を用いる。
<実施例1-1~1-5>
 メルトブローン法により得られた目付30g/m、平均繊維直径3μm、厚み0.25mmのポリプロピレン不織布に対し、パーフルオロヘプタンに溶解させたn-C1022、n-C1226、n-C1430、n-C1634、n-C2042からなるポリテトラフルオロエチレンをそれぞれ浸透させたのち常温で乾燥を行い、各々0.75g/mの担持量の加工シートを得た。
 得られたシートに対して液滴による撥油性試験を行うとともにコロナ放電法によりエレクトレット化処理を行い、各種評価を行った。結果を表1-1に示した。
<実施例1-6>
 100℃~290℃の範囲に融点を持つポリテトラフルオロエチレン(セントラル硝子株式会社製 セフラルルーブV)をパーフルオロヘプタンに分散させ、上澄み部分を用いた他は実施例1-1~1-5と同様の処理および各種評価を行った。結果を表1-1に示した。
<実施例1-7>
 ポリプロピレン不織布に純水を透過させることでエレクトレット化処理を行った他は実施例1-6と同様の処理および各種評価を行った。結果を表1-1に示した。
<実施例1-8~1-12>
 メルトブローン法により得られた目付30g/m、平均繊維直径3μm、厚み0.25mmのポリプロピレン不織布を30℃に保った恒温板に張り付け、円筒セラミック製の反応容器天井に設置した。底部を300℃に加熱した熱板を設置し、n-C1022、n-C1226、n-C1430、n-C1634、n-C2042からなるポリテトラフルオロエチレンをそれぞれ金属性ボート上から蒸散させることで各々0.75g/mの担持量の加工シートを得た。
 得られたシートは60℃で15分間エージング処理を行った後、コロナ放電法によりエレクトレット化処理を行い、各種評価を行った。結果を表1-2に示した。
<実施例1-13>
 100℃~290℃の範囲に融点を持つポリテトラフルオロエチレン(セントラル硝子株式会社製 セフラルルーブV)を用いた他は実施例1-8~1-12と同様の処理および各種評価を行った。結果を表1-2に示した。
<実施例1-14>
 ポリプロピレン不織布に純水を透過させることでエレクトレット化処理を行った他は実施例1-13と同様の処理および各種評価を行った。結果を表1-2に示した。
<比較例1-1>
 メルトブローン法により得られた目付30g/m、平均繊維直径3μm、厚み0.25mmのポリプロピレン不織布に対し、コロナ放電法によりエレクトレット化処理を行い加工シートを得、各種評価を行った。結果を表1-3に示した。
<比較例1-2>
 メルトブローン法により得られた目付30g/m、平均繊維直径3μm、厚み0.25mmのポリプロピレン不織布に対し、330℃に融点を持つ低分子量ポリテトラフルオロエチレン(ダイキン工業株式会社製 ルブロンL-2)をパーフルオロヘプタンに分散させ、上澄み部分を添着に用いたが未溶解であった。パーフルオロヘプタン溶液処理後に乾燥したが重量増加はみられなかった。コロナ放電法によりエレクトレット化処理を行い、各種評価を行った。結果を表1-3に示した。
<比較例1-3>
 330℃に融点を持つ低分子量ポリテトラフルオロエチレン(ダイキン工業株式会社製 ルブロンL-2)を用いた他は実施例13同様の処理を実施したが、蒸散が生じずサンプルの重量増加は観察されなかった。コロナ放電法によりエレクトレット化処理を行い、各種評価を行った。結果を表1-3に示した。
<比較例1-4>
 メルトブローン法により得られた目付30g/m、平均繊維直径3μm、厚み0.25mmのポリプロピレン不織布にCアクリレート系撥水撥油剤であるダイキン工業株式会社製 ユニダインTG-5502を水分散体にて浸透、乾燥させることで1.02g/m担持させ加工シートを得、各種評価を行った。結果を表1-3に示した。
<比較例1-5>
 担持量を0.27g/mとした以外は比較例1-4と同様の処理および各種評価を行った。結果を表1-3に示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 実施例1-1~1-14と比較例1-1よりポリテトラフルオロエチレンの担持加工をすることで、PAOならびにタバコ煙への耐久特性が向上することがわかる。
 実施例1-1~1-14よりポリテトラフルオロエチレンは単体でも混合物でも好ましいことがわかる。
 実施例1-6、1-7、1-13および1-14と比較例1-2および1-3の比較により融点330℃のポリテトラフルオロエチレンでは効果が無いことがわかる。
 実施例1-6と1-7の比較、および実施例1-13と1-14の比較により、コロナ放電によるエレクトレット化より液体接触法によるエレクトレット化の方が高効率、長寿命化に効果があることがわかる。
 実施例1-1~1-14および比較例1-1と比較例1-4および1-5の比較により本発明のエレクトレットはアクリレート系撥水撥油剤を使用したエレクトレットに対して初期効率、電荷安定性、耐久性に優れることがわかる。
<実施例2-1~2-15>
 ヒンダードアミン系添加剤であるチバガイギー製 キマソーブ944LDを0.01、5、15重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、パーフルオロヘプタンに溶解させたn-C1022、n-C1226、n-C1430、n-C1634、n-C2042からなるポリテトラフルオロエチレンをそれぞれ浸透させたのち、常温で乾燥を行い、各々0.75g/mの担持量の加工シートを得た。
 得られたシートに対して液滴による撥油性試験を行った。また得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表2-1および表2-2に示した。
<実施例2-16~2-18>
 100℃~280℃の範囲に融点を持つポリテトラフルオロエチレンとして、セントラル硝子株式会社製 セフラルルーブVをパーフルオロヘプタンに溶解させた他は実施例2-1~2-15と同様の処理および各種評価を実施し、その結果を表2-1および2-2に示した。
<実施例2-19~2-33>
 ヒンダードアミン系添加剤であるチバガイギー製 キマソーブ944LDを0.01、5、15重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)を30℃に保った恒温板に張り付け、円筒セラミック製の反応容器天井に設置した。底部に300℃に加熱した熱板を設置し、n-C1022、n-C1226、n-C1430、n-C1634、n-C2042からなるポリテトラフルオロエチレンそれぞれを金属性ボート上から蒸散させることで各々0.75g/mの担持量の加工シートを得た。
 得られたシートに対して液滴による撥油性試験を行った。また得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表2-3および表2-4に示した。
<実施例2-34~2-36>
 100℃~280℃の範囲に融点を持つポリテトラフルオロエチレンとしてセントラル硝子株式会社製 セフラルルーブVを用いた他は、実施例2-19~2-33と同様の処理および各種評価を実施し、その結果を表2-4に示した。
<比較例2-1>
 添加剤を含有しないポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm) を通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表2-5に示した。
<比較例2-2~2-5>
 ヒンダードアミン系添加剤であるチバガイギー製 キマソーブ944LDを0.01、5、15、20重量%含有するポリプロピレンメルトブローン不織布を用いた他は比較例2-1と同様の処理および各種評価を実施し、その結果を表2-5に示した。
<比較例2-6~2-8>
 ヒンダードアミン系添加剤であるチバガイギー製 キマソーブ944LDを0.01、5、15重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、330℃に融点を持つダイキン工業株式会社製 ルブロンL-2をパーフルオロヘプタンに分散させ、上澄み部分を添着に用いたが固形分が得られなかった。パーフルオロヘキサン処理後に乾燥し、シートを得た。
 得られたシートに対して液滴による撥油性試験を行った。また得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表2-5に示した。
<比較例2-9~2-11>
 330℃に融点を持つダイキン工業株式会社製 ルブロンL-2を用いた他は実施例2-19~2-33と同様の処理を実施したが、重量増加は観察されなかった。
 得られたシートに対して液滴による撥油性試験を行った。また得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表2-6に示した。
<比較例2-12~2-14>
 ヒンダードアミン系添加剤であるチバガイギー製 キマソーブ944LDを0.01、5、15重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、C6アクリレート系撥水撥油剤であるダイキン工業株式会社製 ユニダインTG-5503を水分散体にて浸透、乾燥させることで0.95g/m担持させ、加工シートを得た。
 得られたシートに対して液滴による撥油性試験を行った。また得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表2-6に示した。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
<実施例3-1~3-15>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、15重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、パーフルオロヘプタンに溶解させたn-C1022、n-C1226、n-C1430、n-C1634、n-C2042からなるポリテトラフルオロエチレンをそれぞれ浸透させたのち、常温で乾燥を行い、各々0.75g/mの担持量の加工シートを得た。
 得られたシートをアルミ平板の接地電極上に置き、不織布との1cmの距離から針状電極を用いて電圧20kV、10秒間のコロナ荷電処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-1および3-2に示した。
<実施例3-16~3-18>
 100℃~280℃の範囲に融点を持つポリテトラフルオロエチレンとして、セントラル硝子株式会社製 セフラルルーブVをパーフルオロヘプタンに溶解させた他は実施例3-1~3-15と同様の処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-2に示した。
<実施例3-19~3-33>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、15重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)を30℃に保った恒温板に張り付け、円筒セラミック製の反応容器天井に設置した。底部に300℃に加熱した熱板を設置し、n-C1022、n-C1226、n-C1430、n-C1634、n-C2042からなるポリテトラフルオロエチレンそれぞれを金属性ボート上から蒸散させることで各々0.75g/mの担持量の加工シートを得た。
 得られたシートをアルミ平板の接地電極上に置き、不織布との1cmの距離から針状電極を用いて電圧20kV、10秒間のコロナ荷電処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-3および表3-4に示した。
<実施例3-34~3-36>
 100℃~280℃の範囲に融点を持つポリテトラフルオロエチレンとしてセントラル硝子株式会社製 セフラルルーブVを用いた他は、実施例3-19~3-33と同様の処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-4に示した。
<比較例3-1>
 添加剤を含有しないポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)をアルミ平板の接地電極上に置き、不織布との1cmの距離から針状電極を用いて電圧20kV、10秒間のコロナ荷電処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-5に示した。
<比較例3-2~3-5>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、15、20重量%含有するポリプロピレンメルトブローン不織布を用いた他は比較例1と同様の処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-5に示した。
<比較例3-6~3-8>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、15重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、330℃に融点を持つダイキン工業株式会社製 ルブロンL-2をパーフルオロヘプタンに分散させ、上澄み部分を添着に用いたが固形分が得られなかった。パーフルオロヘキサン処理後に乾燥し、シートを得た。
 得られたシートをアルミ平板の接地電極上に置き、不織布との1cmの距離から針状電極を用いて電圧20kV、10秒間のコロナ荷電処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-5に示した。
<比較例3-9~3-11>
 330℃に融点を持つダイキン工業株式会社製 ルブロンL-2を用いた他は実施例3-19~3-33と同様の処理を実施したが、重量増加は観察されなかった。
 得られたシートに対して液滴による撥油性試験を行った。また得られたシートをアルミ平板の接地電極上に置き、不織布との1cmの距離から針状電極を用いて電圧20kV、10秒間のコロナ荷電処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-6に示した。
<比較例3-12~3-14>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、15重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、C6アクリレート系撥水撥油剤であるダイキン工業株式会社製 ユニダインTG-5503を水分散体にて浸透、乾燥させることで0.95g/m担持させ、加工シートを得た。
 得られたシートをアルミ平板の接地電極上に置き、不織布との1cmの距離から針状電極を用いて電圧20kV、10秒間のコロナ荷電処理を実施し、エレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-6に示した。
<実施例3-37~3-51>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、12.5重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、パーフルオロヘプタンに溶解させたn-C1022、n-C1226、n-C1430、n-C1634、n-C2042からなるポリテトラフルオロエチレンをそれぞれ浸透させたのち、常温で乾燥を行い、各々0.75g/mの担持量の加工シートを得た。
 得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-7および表3-8に示した。
<実施例3-52~3-54>
 100℃~280℃の範囲に融点を持つポリテトラフルオロエチレンとして、セントラル硝子株式会社製 セフラルルーブVをパーフルオロヘプタンに溶解させた他は実施例3-37~3-51と同様の処理および各種評価を実施し、その結果を表3-8に示した。
<実施例3-55~3-69>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、12.5重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)を30℃に保った恒温板に張り付け、円筒セラミック製の反応容器天井に設置した。底部に300℃に加熱した熱板を設置し、n-C1022、n-C1226、n-C1430、n-C1634、n-C2042からなるポリテトラフルオロエチレンそれぞれを金属性ボート上から蒸散させることで各々0.75g/mの担持量の加工シートを得た。
 得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-9および表3-10に示した。
<実施例3-70~3-72>
 100℃~280℃の範囲に融点を持つポリテトラフルオロエチレンとしてセントラル硝子株式会社製 セフラルルーブVを用いた他は、実施例3-55~3-69と同様の処理および各種評価を実施し、その結果を表3-10に示した。
<比較例3-15>
 添加剤を含有しないポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)を通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。得られたシートに対して各種評価を実施し、その結果を表3-11に示した。
<比較例3-16~3-19>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、12.5、20重量%含有するポリプロピレンメルトブローン不織布を用いた他は比較例3-15と同様の処理および各種評価を実施し、その結果を表3-11に示した。
<比較例3-20>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を20重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、100℃~280℃の範囲に融点を持つポリテトラフルオロエチレンとして、セントラル硝子株式会社製 セフラルルーブVをパーフルオロヘプタンに溶解させた他は実施例3-37と同様の処理および各種評価を実施し、その結果を表3-11に示した。
<比較例3-21>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を20重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、実施例3-55と同様の処理にて100℃~280℃の範囲に融点を持つポリテトラフルオロエチレンとして、セントラル硝子株式会社製 セフラルルーブVをパーフルオロヘプタンに蒸散させた他は実施例3-55と同様の処理および各種評価を実施し、その結果を表3-11に示した。
<比較例3-22~3-24>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、12.5重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、330℃に融点を持つダイキン工業株式会社製 ルブロンL-2をパーフルオロヘプタンに分散させ、上澄み部分を添着に用いたが固形分が得られなかった。パーフルオロヘキサン処理後に乾燥し、シートを得た。
 得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-12に示した。
<比較例3-25~3-27>
 330℃に融点を持つダイキン工業株式会社製 ルブロンL-2を用いた他は実施例3-55~69と同様の処理を実施したが、重量増加は観察されなかった。
 得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-12に示した。
<比較例3-28~3-30>
 ヒンダードフェノール系添加剤であるBASF社製Irganox1010を0.01、5、12.5重量%含有するポリプロピレンメルトブローン不織布(目付30g/m、平均繊維直径3μm、厚み0.25mm)に対し、C6アクリレート系撥水撥油剤であるダイキン工業株式会社製 ユニダインTG-5503を水分散体にて浸透、乾燥させることで0.95g/m担持させ、加工シートを得た。
 得られたシートを通気度120cm/cm/秒の網状支持体(96メッシュ)に載せ、不織布の上方3cmに位置する直径0.1mmφ、ピッチ0.6mmのノズルから、2MPaの圧力で水噴射処理を行った。なお使用した水は、一般的な水道水を二段の逆浸透膜処理、次いでイオン交換膜処理を施した高純度の水である。支持体の搬送速度を3m/分とし、ノズル直下の網状体の下方を600mmAqの減圧状態とした。この処理をシートの表面について3回行った。その後このシートを自然乾燥、または、80℃の熱風オーブン中に1分間滞留させてエレクトレット化したシートを得た。
 得られたシートに対して各種評価を実施し、その結果を表3-12に示した。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 PFOAおよびPFOS類縁物を用いることなく簡便な装置や工程で高帯電性、撥油性、耐油性に優れたエレクトレットおよびフィルターを得ることが可能となる。
 本発明のエレクトレットは、簡便な装置や工程で高い帯電性を有し、オイルミストなどの液体粒子に対する静電電荷の維持率を高めたエレクトレットおよびそれを用いたフィルターを得ることが可能となり、産業界への寄与大である。
 

Claims (7)

  1.  融点35℃以上320℃以下のポリテトラフルオロエチレンを担体に付着させ、担体およびポリテトラフルオロエチレンの少なくとも一方が静電電荷を付与されてなるエレクトレット。
  2.  担体がヒンダードアミン系およびトリアジン系添加剤の少なくとも1種を0.01~15.0重量%含有する担体である請求項1に記載のエレクトレット。
  3.  担体がヒンダードフェノール系添加剤を0.01~15.0重量%含有する担体である請求項1に記載のエレクトレット。
  4.  静電電荷が液体接触荷電法により付与された請求項1~3のいずれかに記載のエレクトレット。
  5.  担体に繊維状物を用い、ポリテトラフルオロエチレンを溶液法または蒸着法で担体に担持する請求項1~4のいずれかに記載のエレクトレット。
  6.  担体が融点320℃以下の熱可塑性樹脂からなるメルトブローン不織布である請求項1~5のいずれかに記載のエレクトレット。
  7.  請求項1~6のいずれかに記載のエレクトレットを用いたフィルター。
     
PCT/JP2015/060066 2014-04-04 2015-03-31 エレクトレット WO2015152207A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/301,902 US10213716B2 (en) 2014-04-04 2015-03-31 Electret
CN201580017171.8A CN106165040B (zh) 2014-04-04 2015-03-31 驻极体

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014077732 2014-04-04
JP2014-077732 2014-04-04
JP2014-087625 2014-04-21
JP2014087625 2014-04-21
JP2015-000069 2015-01-05
JP2015000069 2015-01-05

Publications (1)

Publication Number Publication Date
WO2015152207A1 true WO2015152207A1 (ja) 2015-10-08

Family

ID=54240528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060066 WO2015152207A1 (ja) 2014-04-04 2015-03-31 エレクトレット

Country Status (3)

Country Link
US (1) US10213716B2 (ja)
CN (1) CN106165040B (ja)
WO (1) WO2015152207A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057148A1 (ja) * 2015-10-02 2017-04-06 東洋紡株式会社 エレクトレットおよびエレクトレットフィルター
JP2018062722A (ja) * 2016-10-14 2018-04-19 東洋紡株式会社 エレクトレット材料およびそれを用いたフィルター、並びにエレクトレット材料の製造方法
JP2018103109A (ja) * 2016-12-27 2018-07-05 東洋紡株式会社 エレクトレットフィルターおよびエレクトレットフィルターの製造方法
JP2018103108A (ja) * 2016-12-27 2018-07-05 東洋紡株式会社 エレクトレットフィルター

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6482814B2 (ja) * 2013-10-15 2019-03-13 株式会社ユポ・コーポレーション フィルター
CN110072603B (zh) * 2016-12-26 2021-08-27 松下知识产权经营株式会社 空气过滤器滤材
JP7076718B2 (ja) * 2017-01-05 2022-05-30 スリーエム イノベイティブ プロパティズ カンパニー 帯電強化添加剤を含むエレクトレットウェブ
JP7453797B2 (ja) * 2020-01-24 2024-03-21 キヤノン株式会社 静電フィルター用ユニット及び静電フィルター
CN111424376A (zh) * 2020-03-30 2020-07-17 吉安市三江超纤无纺有限公司 用于口罩的超纤抗菌无纺布及其制造方法和应用
US20210379518A1 (en) * 2020-06-08 2021-12-09 W. L. Gore & Associates, Inc. Filter media and methods of making and using
CN111875885B (zh) * 2020-08-03 2022-10-14 徐州海天石化有限公司 一种熔喷布专用驻极母料及其制备方法
US20230390678A1 (en) 2020-11-02 2023-12-07 3M Innovative Properties Company Core-sheath fibers, nonwoven fibrous web, and filtering articles including the same
CN115589761B (zh) * 2022-12-12 2023-03-10 杭州兆华电子股份有限公司 一种多孔压电驻极体的制备方法
CN115678360B (zh) * 2022-12-29 2023-05-09 杭州兆华电子股份有限公司 一种复合驻极体的制备方法及其获得的复合驻极体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190389A (ja) * 1992-01-08 1993-07-30 Toray Ind Inc 抗菌性エレクトレット材料
JP2013034941A (ja) * 2011-08-08 2013-02-21 Toyobo Co Ltd 耐油性フィルター
JP2013166859A (ja) * 2012-02-15 2013-08-29 Three M Innovative Properties Co フルオロポリマー組成物

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01168364A (ja) * 1987-12-24 1989-07-03 Toray Ind Inc 濾過方法
JP2672329B2 (ja) 1988-05-13 1997-11-05 東レ株式会社 エレクトレット材料
AU669420B2 (en) * 1993-03-26 1996-06-06 Minnesota Mining And Manufacturing Company Oily mist resistant electret filter media
JP2854223B2 (ja) * 1993-09-08 1999-02-03 ジャパンゴアテックス株式会社 撥油防水性通気フィルター
US6238466B1 (en) 1997-10-01 2001-05-29 3M Innovative Properties Company Electret articles and filters with increased oily mist resistance
US6627563B1 (en) * 1999-08-19 2003-09-30 3M Innovative Properties Company Oily-mist resistant filter that has nondecreasing efficiency
US6454839B1 (en) * 1999-10-19 2002-09-24 3M Innovative Properties Company Electrofiltration apparatus
JP2002266219A (ja) 2001-03-05 2002-09-18 Daikin Ind Ltd テトラフルオロエチレン系不織布
US6802315B2 (en) * 2001-03-21 2004-10-12 Hollingsorth & Vose Company Vapor deposition treated electret filter media
JP4329559B2 (ja) 2003-05-02 2009-09-09 ダイキン工業株式会社 含フッ素重合体を含んでなる表面処理剤
US20060021302A1 (en) * 2004-07-30 2006-02-02 Bernard Bobby L Anti-microbial air filter
JP4956961B2 (ja) 2004-12-22 2012-06-20 旭硝子株式会社 電解質膜、その製造方法及び固体高分子型燃料電池用膜電極接合体
DE602005014437D1 (de) 2004-12-22 2009-06-25 Asahi Glass Co Ltd Elektrolytmembran, Verfahren zu deren Herstellung und Membran-Elektrodenanordnung für Festpolymerbrennstoffzellen
US7244291B2 (en) 2005-05-02 2007-07-17 3M Innovative Properties Company Electret article having high fluorosaturation ratio
US20080003384A1 (en) * 2006-06-29 2008-01-03 Polymer Ventures, Inc. Multi-layer coatings to increase water and grease resistance of porous materials and materials having such protection
EP2221096B1 (en) * 2007-11-14 2017-03-22 Nitto Denko Corporation Filter filtration material, method for producing the same and filter unit
JP5446879B2 (ja) 2008-02-22 2014-03-19 旭硝子株式会社 エレクトレットおよび静電誘導型変換素子
DE102008019085A1 (de) * 2008-04-15 2009-10-22 Microdyn - Nadir Gmbh Filterverbundmaterial, Verfahren zu seiner Herstellung sowie aus dem Filterverbundmaterial hergestellte Flachfilterelemente
US7765698B2 (en) 2008-06-02 2010-08-03 3M Innovative Properties Company Method of making electret articles based on zeta potential
JP5475541B2 (ja) * 2010-05-07 2014-04-16 日本バイリーン株式会社 帯電フィルタ及びマスク
TW201219458A (en) * 2010-06-30 2012-05-16 Daikin Ind Ltd Organosol composition of fluorine-containing polymer
CN101905101B (zh) * 2010-07-30 2012-03-21 杭州电子科技大学 一种熔喷聚丙烯驻极体过滤材料的制备方法
JP2012130885A (ja) * 2010-12-22 2012-07-12 Asahi Glass Co Ltd 撥油防水性通気フィルタおよびその製造方法
US9508971B2 (en) * 2011-02-28 2016-11-29 Nitto Denko Corporation Gas-permeable filter provided with oil repellency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190389A (ja) * 1992-01-08 1993-07-30 Toray Ind Inc 抗菌性エレクトレット材料
JP2013034941A (ja) * 2011-08-08 2013-02-21 Toyobo Co Ltd 耐油性フィルター
JP2013166859A (ja) * 2012-02-15 2013-08-29 Three M Innovative Properties Co フルオロポリマー組成物

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057148A1 (ja) * 2015-10-02 2017-04-06 東洋紡株式会社 エレクトレットおよびエレクトレットフィルター
US10940415B2 (en) 2015-10-02 2021-03-09 Toyobo Co., Ltd. Electret and electret filter
JP2018062722A (ja) * 2016-10-14 2018-04-19 東洋紡株式会社 エレクトレット材料およびそれを用いたフィルター、並びにエレクトレット材料の製造方法
JP2018103109A (ja) * 2016-12-27 2018-07-05 東洋紡株式会社 エレクトレットフィルターおよびエレクトレットフィルターの製造方法
JP2018103108A (ja) * 2016-12-27 2018-07-05 東洋紡株式会社 エレクトレットフィルター

Also Published As

Publication number Publication date
US20170113170A1 (en) 2017-04-27
CN106165040B (zh) 2019-01-22
CN106165040A (zh) 2016-11-23
US10213716B2 (en) 2019-02-26

Similar Documents

Publication Publication Date Title
WO2015152207A1 (ja) エレクトレット
JP6926699B2 (ja) エレクトレット材料およびそれを用いたフィルター、並びにエレクトレットフィルターの製造方法
EP2303770B1 (en) Method for in situ formation of metal nanoclusters within a porous substrate
WO2016088692A1 (ja) エレクトレットフィルターの製造方法
JP2013034941A (ja) 耐油性フィルター
EP2145916B1 (en) Substrate coating comprising a complex of an ionic fluoropolymer and surface charged nanoparticles
JP6794618B2 (ja) エレクトレットフィルター
WO2011046657A2 (en) Multifunctional electroprorcessed membranes
WO2018156561A1 (en) Electret-containing filter media
KR20130119980A (ko) 대전방지성 코팅으로서의 이온성 플루오르폴리머의 용도
JP6582840B2 (ja) エレクトレット
KR102314307B1 (ko) 일렉트릿 및 일렉트릿 필터
JP2016128159A (ja) エレクトレット
JP2015200058A (ja) エレクトレット
JP2014226628A (ja) エレクトレットフィルター
JP2018062722A (ja) エレクトレット材料およびそれを用いたフィルター、並びにエレクトレット材料の製造方法
JP2015213899A (ja) エレクトレット
US20230226501A1 (en) Electrostatically charged porous nonwoven web, membrane and mask derived therefrom and methods for manufacture and cleaning
JP6743705B2 (ja) エレクトレットフィルター
JP2018103109A (ja) エレクトレットフィルターおよびエレクトレットフィルターの製造方法
WO2020246550A1 (ja) 膜蒸留用多孔質膜
KR20140074028A (ko) 냉각 필터용 여재 및 이를 구비한 냉각 필터
JP2018103108A (ja) エレクトレットフィルター
JP2017094250A (ja) エレクトレット濾材、それを用いたフィルター、およびエレクトレット濾材の製造方法
JP2015085232A (ja) 耐油性エレクトレットろ材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15774036

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15301902

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15774036

Country of ref document: EP

Kind code of ref document: A1