WO2015151935A1 - キャリア箔付銅箔、銅張積層板及びプリント配線板 - Google Patents

キャリア箔付銅箔、銅張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2015151935A1
WO2015151935A1 PCT/JP2015/058928 JP2015058928W WO2015151935A1 WO 2015151935 A1 WO2015151935 A1 WO 2015151935A1 JP 2015058928 W JP2015058928 W JP 2015058928W WO 2015151935 A1 WO2015151935 A1 WO 2015151935A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper
foil
carrier foil
copper foil
Prior art date
Application number
PCT/JP2015/058928
Other languages
English (en)
French (fr)
Inventor
裕昭 津吉
眞 細川
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2015516127A priority Critical patent/JP5925961B2/ja
Priority to KR1020167020522A priority patent/KR101713505B1/ko
Priority to CN201580013402.8A priority patent/CN106103082B/zh
Publication of WO2015151935A1 publication Critical patent/WO2015151935A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/18Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/06Interconnection of layers permitting easy separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • H05K3/025Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates by transfer of thin metal foil formed on a temporary carrier, e.g. peel-apart copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/385Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by conversion of the surface of the metal, e.g. by oxidation, whether or not followed by reaction or removal of the converted layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • B23K2103/166Multilayered materials
    • B23K2103/172Multilayered materials wherein at least one of the layers is non-metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/538Roughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0315Oxidising metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation
    • H05K3/0032Etching of the substrate by chemical or physical means by laser ablation of organic insulating material
    • H05K3/0035Etching of the substrate by chemical or physical means by laser ablation of organic insulating material of blind holes, i.e. having a metal layer at the bottom

Definitions

  • This application relates to copper foil with carrier foil, copper clad laminate and printed wiring board.
  • the multilayer printed wiring board includes a plurality of conductor layers, and the conductor layers are electrically connected to each other by interlayer conduction means such as through holes.
  • interlayer conduction means such as through holes.
  • via holes have been used as interlayer conduction means instead of through holes in order to cope with higher density mounting and finer wiring.
  • the through hole is generally formed by drilling, whereas the via hole is formed by laser processing. Therefore, the via hole has a smaller diameter compared to the through hole, which is advantageous for high-density mounting.
  • various forms such as a blind via hole (BVH), an interstitial via hole (IVH), a stacking via hole and the like are known.
  • Patent Document 1 discloses that in the method of manufacturing a double-sided printed wiring board that requires interlayer conductive copper plating such as a through hole or a via hole or a multilayer printed wiring board having three or more layers, the print Copper foil with a peelable type carrier foil is used for the copper foil located on the outer layer of the wiring board, and the necessary processing of the through hole for the through hole or the hole for the via hole is performed without peeling off the carrier foil.
  • the double-sided printing is characterized in that the outer layer circuit pattern is registered on the copper foil located in the outer layer and then etched. Preparation method for one-plate or three or more layers of the multilayer printed wiring board. "Is disclosed.
  • Patent Document 1 a material excellent in laser drilling performance when performing drilling from the carrier foil surface of the copper foil with carrier foil in the outer layer of the multilayer laminate using a carbon dioxide laser is desired. Has been.
  • the copper foil with a carrier foil is a copper foil with a carrier foil having a layer configuration of carrier foil / peeling layer / bulk copper layer, and is composed of a copper composite compound on both sides of the copper foil with a carrier foil.
  • a roughening treatment layer having a fine concavo-convex structure formed by needle-like or plate-like convex portions having a length of 500 nm or less is provided, and the roughening treatment layer provided on the surface of the carrier foil is used as a laser light absorption layer.
  • the roughening treatment layer used on the surface of the bulk copper layer is used as an adhesive layer with the insulating layer constituting material.
  • the copper clad laminate according to the present application is characterized in that the adhesive layer side of the bulk copper layer of the copper foil with carrier foil according to the present application is laminated on at least one surface of the insulating layer constituting material.
  • the printed wiring board according to the present application is formed using the bulk copper layer of the copper foil with carrier foil according to the present application.
  • the copper foil with carrier foil has a fine concavo-convex structure formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound on both surfaces of the copper foil with carrier foil.
  • the roughening process layer which has is provided.
  • the roughening treatment layer provided on the surface of the carrier foil is used as a laser light absorption layer, and the roughening treatment layer provided on the surface of the bulk copper layer is used as an adhesive layer with the insulating layer constituting material.
  • the maximum length of the copper composite compound is formed by needle-like or plate-like convex portions having a length of 500 nm or less.
  • a copper clad laminate with a carrier foil provided with a roughened layer having a fine concavo-convex structure is obtained. If this copper clad laminate with carrier foil is used, good adhesion between the insulating layer constituting material and the bulk copper layer can be obtained. Moreover, since the roughening process layer provided in the surface of carrier foil absorbs a laser beam, it becomes possible to drill a carrier foil and a bulk copper layer simultaneously using a laser.
  • the copper foil with carrier foil according to the present application can be suitably used when manufacturing a multilayer printed wiring board by the build-up method and the coreless build-up method. If the copper foil with carrier foil is used, the insulating layer It can provide high-quality printed wiring boards with good adhesion to components and eliminating defects caused by splash around the hole openings formed by laser drilling. It becomes like this.
  • FIG. 1 is a scanning electron microscope image of a linear circuit having a circuit width of 8 ⁇ m and an inter-circuit gap width of 8 ⁇ m obtained using the copper foil with a carrier foil for laser drilling obtained in Example 1.
  • FIG. 1 is a scanning electron microscope image of a linear circuit having a circuit width of 8 ⁇ m and an inter-circuit gap width of 8 ⁇ m obtained using the copper foil with a carrier foil for laser drilling obtained in Example 1.
  • the copper clad laminate according to the present application has a layer configuration as shown in FIG.
  • the copper clad laminate according to the present application is obtained by laminating the copper foil 11 with carrier foil according to the present application on at least one surface of the insulating layer constituting material 5, and FIG. 1 (1-A) shows the insulating layer constituting material.
  • 5 shows an example in which the copper foil 11 with carrier foil according to the present application is laminated on both surfaces of FIG. 1
  • stacked is shown. In the example shown in FIG.
  • the copper clad laminate 1 shown in FIG. 1 is merely an example of the copper clad laminate according to the present application, and the invention according to the present application is not limited to the layer configuration shown in FIG.
  • the copper foil with carrier foil according to the present application has a layer configuration of “carrier foil 12 / peeling layer 13 / bulk copper layer 14” as shown in FIG. Roughening treatment provided on the surface of the carrier foil 12 with a “roughening treatment layer 4 having a fine concavo-convex structure formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a compound”
  • the layer 4 is used as a laser light absorption layer
  • the roughening treatment layer 4 provided on the surface of the bulk copper layer 14 is used as an adhesive layer with an insulating layer constituent material.
  • both surfaces of the copper foil with carrier foil are the surface opposite to the side facing the release layer 13 of the carrier foil (hereinafter referred to as the outer surface of the carrier foil) and the release layer 13 of the bulk copper layer 14. This refers to the surface opposite to the side to be used (hereinafter referred to as the outer surface of the bulk copper layer).
  • the outer surface of the carrier foil the surface opposite to the side to be used.
  • Carrier foil The carrier foil of the copper foil with carrier foil is not particularly limited in material. However, it is considered to provide a “roughening treatment layer having a fine concavo-convex structure formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound” on the outer surface of the carrier foil. Then, the carrier foil is preferably a foil having a copper component on the surface, such as a copper foil or a resin film coated with copper on the surface.
  • the thickness of the carrier foil there is no particular limitation regarding the thickness of the carrier foil.
  • a roughening treatment layer provided on the outer surface of the carrier foil is used as the laser light absorption layer. Therefore, considering the ease of laser drilling, shortening the processing time, reducing the material cost, etc., the thickness of the carrier foil is preferably in the range of 7 ⁇ m to 18 ⁇ m.
  • the material and thickness of the carrier foil are not particularly limited, but the laser drilling workability when performing laser drilling by irradiating the surface of the roughened layer with laser light is not limited.
  • the outer surface of the carrier foil preferably has the following surface characteristics.
  • the outer surface of the carrier foil is “ratio of surface area (three-dimensional area: A ⁇ m 2 ) and two-dimensional area when a two-dimensional area of 57570 ⁇ m 2 is measured by a laser method [(A) / (57570).
  • the value of “surface area ratio (B)” calculated in the above formula is preferably 1.1 or more, and more preferably 1.5 or more.
  • the surface area ratio (B) is 1.1 or more, the laser drilling performance is good, and when it is 1.5 or more, it becomes even better.
  • the value of the surface area ratio (B) exceeds 3.0, the thickness of the carrier foil varies, and as a result, the laser hole diameter tends to vary. For this reason, the value of the surface area ratio (B) on the outer surface of the carrier foil is preferably 3.0 or less.
  • the surface roughness (Rzjis) of the outer surface of the carrier foil is preferably 2.0 ⁇ m or more.
  • a roughening treatment layer having the above-mentioned fine concavo-convex structure is provided on the outer surface of a carrier foil having a surface having a surface roughness (Rzjis) of 2.0 ⁇ m or more, and the roughening treatment layer is used as a laser light absorption layer.
  • the laser drilling performance can be improved.
  • the rougher the surface roughness of the outer surface of the carrier foil the lower the reflectance of the laser beam on the outer surface of the carrier foil, and the better the laser drilling performance.
  • the surface roughness (Rzjis) is 6.0 ⁇ m or more, the thickness of the carrier foil varies, and as a result, the laser hole diameter tends to vary. For this reason, it is preferable that the surface roughness (Rzjis) of the outer surface of the carrier foil is 6.0 ⁇ m or less.
  • the release layer of the copper foil with carrier foil used in the laser drilling method according to the present application is not particularly limited as long as the carrier foil can be peeled off later, and has the characteristics required for the release layer. As long as it is satisfactory, it may be either an “organic release layer” formed using an organic component or an “inorganic release layer” formed using an inorganic component.
  • an organic component that contains at least one compound selected from the group consisting of a nitrogen-containing organic compound, a sulfur-containing organic compound, and a carboxylic acid.
  • the nitrogen-containing organic compound here includes a nitrogen-containing organic compound having a substituent.
  • examples of the nitrogen-containing organic compound include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, which are triazole compounds having a substituent, and 1H. It is preferable to use -1,2,4-triazole, 3-amino-1H-1,2,4-triazole and the like.
  • the sulfur-containing organic compound it is preferable to use mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, or the like.
  • the carboxylic acid it is particularly preferable to use a monocarboxylic acid, and it is particularly preferable to use oleic acid, linoleic acid, linolenic acid, or the like. This is because these organic components are excellent in heat resistance at high temperatures, and it is easy to form a release layer having a thickness of 5 nm to 60 nm on the surface of the carrier foil.
  • an “inorganic release layer” Ni, Mo, Co, Cr, Fe, Ti, W, P as an inorganic component, or a group consisting of an alloy or compound containing these as a main component It is possible to use at least one selected from In the case of these inorganic release layers, it can be formed using a known method such as an electrodeposition method, an electroless method, or a physical vapor deposition method.
  • both the organic release layer and the inorganic release layer can be preferably used, but when the heat is applied during lamination with the insulating layer constituting material, the appropriate peeling strength of the carrier foil is provided. It is preferable to use an organic release layer from the viewpoint of ensuring stability.
  • the bulk copper layer of the copper foil with carrier foil used in the present application is not particularly limited as long as it is a copper foil laminated so as to be peelable from the carrier foil via the peeling layer.
  • the method for producing the copper foil constituting the bulk copper layer is not particularly limited, and the copper foil can be produced by an electrolytic plating method, an electroless plating method, a vacuum deposition method, a sputtering deposition method, a chemical vapor reaction method, or the like. It can be produced by various methods including conventionally known methods. However, considering the production cost and the like, it is preferable to manufacture the bulk copper layer by electrolytic plating.
  • the thickness of the bulk copper layer is not particularly limited as long as it satisfies the thickness required when the copper layer is formed on a copper-clad laminate or a printed wiring board.
  • the copper foil with carrier foil according to the present application is provided with a roughened layer as a laser absorption layer on the outer surface of the carrier foil, and is a copper-clad laminate or a printed wiring board used for laser drilling. It can be suitably used as a production material.
  • the thickness of the bulk copper layer is preferably 0.1 ⁇ m to 9 ⁇ m.
  • the thickness of the bulk copper layer is 9 ⁇ m or less, three layers of “carrier foil / peeling layer / bulk copper layer” can be drilled simultaneously when the outer surface of the carrier foil is irradiated with laser light.
  • the thickness of the bulk copper layer exceeds 9 ⁇ m, the thickness of the entire copper foil with carrier foil becomes too thick, which is not preferable because the laser drilling performance deteriorates.
  • the thickness of the bulk copper layer is less than 0.1 ⁇ m, it is difficult to obtain a bulk copper layer having a uniform layer thickness, which is not preferable.
  • the thickness of the bulk copper layer is preferably thinner from the viewpoint of obtaining good laser drilling performance. Specifically, it is more preferably 5 ⁇ m or less, further preferably 3 ⁇ m or less, and most preferably 2 ⁇ m or less. Moreover, the thinner the bulk copper layer is, the more preferable it is for circuit formation using the bulk copper layer. On the other hand, from the viewpoint of obtaining a bulk copper layer having a more uniform layer thickness, the thickness of the bulk copper layer is more preferably 0.5 ⁇ m or more, and further preferably 1 ⁇ m or more.
  • the surface characteristics of the bulk copper layer are not particularly limited. However, considering the fact that the copper foil with carrier foil is laminated on the insulating layer constituting material to form a copper-clad laminate and performing circuit formation using this copper-clad laminate, the surface characteristics of the outer surface of the bulk copper layer are Before the roughening treatment layer is provided, the following is preferable.
  • the surface roughness (Rzjis) of the outer surface is preferably 2.0 ⁇ m or less, more preferably 1.5 ⁇ m or less, and further preferably 1.0 ⁇ m or less.
  • the glossiness (Gs60 °) of the outer surface of the bulk copper layer is preferably 100 or more, and more preferably 300 or more.
  • the fine concavo-convex structure is formed on the outer surface of the bulk copper layer having the above surface characteristics, it is possible to obtain a good adhesion with the insulating layer constituting material and a circuit having excellent high frequency characteristics. That is, in a high frequency circuit, it is required to form a circuit on a conductor having a smooth surface in order to suppress transmission loss due to the skin effect.
  • the roughening layer referred to in the present application is provided on the outer surface of the bulk copper layer, there is a concern about transmission loss of the high-frequency signal due to the uneven structure provided on the outer surface.
  • the fine concavo-convex structure is formed by a convex portion made of a copper composite compound containing copper oxide and cuprous oxide, a high-frequency signal is present in the roughening treatment layer made of the fine concavo-convex structure. Does not flow. For this reason, the said bulk copper layer shows the high frequency characteristic equivalent to the non-roughened copper layer which has not been roughened. Further, the roughened layer has good adhesion to the insulating material constituting the low dielectric constant used for the high frequency substrate.
  • the copper foil with carrier foil provided with the roughened layer having the fine concavo-convex structure on the outer surface of the bulk copper layer serving as the adhesive surface with the insulating layer constituting material is used for the circuit formation of the high-frequency circuit forming material and the printed wiring board. It is also suitable as a material.
  • both sides of the copper foil with carrier foil have “a fine concavo-convex structure formed by needle-like or plate-like convex portions having a maximum length of 500 nm or less made of a copper composite compound”.
  • a roughening treatment layer is provided.
  • the fine irregularities constituting the roughening layer on each surface The shape and size of the structure can be common.
  • the roughening layer is described without particularly distinguishing between the roughening layer provided on the outer surface of the carrier foil and the roughening layer provided on the outer surface of the bulk copper layer, the explanation matters Is common to all roughening layers.
  • the copper clad laminate with a carrier foil provided with the roughened layer having the fine concavo-convex structure on the outer surface of the carrier foil the roughened layer can be used as a laser light absorbing layer, and the carrier foil, the bulk copper layer, Can be drilled at the same time.
  • the roughening process layer which has this fine concavo-convex structure is provided in the outer surface of a bulk copper layer, the favorable adhesiveness of a bulk copper layer and an insulating-layer constituent material can be obtained.
  • the roughened layer is not easily damaged even if other objects touch the surface, and the convex portions forming the fine uneven structure are not damaged. So-called powder fall does not occur. Therefore, the copper foil with carrier foil according to the present application has roughening treatment layers on both surfaces, that is, the outer surface of the carrier foil and the outer surface of the bulk copper layer, but is easy to handle without powder falling off.
  • FIG. 2 shows the form of the surface of the roughened layer when the roughened layer referred to in the present application is provided on the surface of a general electrolytic copper foil that can be used as a carrier foil.
  • an electrolytic copper foil when used as the carrier foil, it is optional to provide the bulk copper layer on either the electrode surface side or the deposition surface side of the electrolytic copper foil. Therefore, when the electrolytic copper foil is used as a carrier foil, it is arbitrary which surface on the electrode surface side or the deposition surface side is used as the outer surface, that is, the laser light irradiation surface. Accordingly, FIG.
  • each roughening treatment layer fine convex portions protruding in a needle shape or plate shape are densely adjacent to each other, so that the surface of the electrolytic copper foil is extremely fine. An uneven structure is formed, and it is observed that these convex portions are provided so as to cover the surface of the electrolytic copper foil along the surface shape of the electrolytic copper foil.
  • the macroscopic surface shape of each surface is different.
  • the difference in the macroscopic surface shape is considered to be caused by the difference in the macroscopic surface shape between the electrode surface and the deposition surface of the electrolytic copper foil itself before the fine uneven structure is formed.
  • the electrode surface of the electrolytic copper foil becomes smooth because the surface shape of the cathode is transferred.
  • the other surface side (deposition surface side) generally has an uneven shape formed by electrodeposition of copper. Referring to FIG.
  • the surface of the roughening treatment layer maintains the macroscopic surface shape of each surface of the electrolytic copper foil before the roughening treatment, and the electrode surface has a relatively smooth macroscopic surface shape. It can be seen that the deposited surface has a macroscopic surface shape with irregularities. This is because the needle-like or plate-like convex portion having a maximum length of 500 nm or less covers the surface of the electrolytic copper foil along the surface shape of the electrolytic copper foil before the roughening treatment. Since it is provided densely on the surface, it is considered that the macroscopic surface shape of each surface of the electrolytic copper foil is maintained even after the fine concavo-convex structure is formed.
  • the fine concavo-convex structure is formed by convex portions having a maximum length of 500 nm or less.
  • the arrangement pitch at which the convex portions are arranged on the surface of the copper foil (electrolytic copper foil) is It is shorter than the length of each convex part.
  • a carbon dioxide laser having a dominant wavelength of 9.4 ⁇ m and 10.6 ⁇ m is used. Since the surface of the roughened layer has an arrangement pitch of the convex portions shorter than the emission wavelength of the carbon dioxide laser, the surface of the roughened layer suppresses the reflection of the laser beam by the carbon dioxide laser, and has a high light absorption. Absorbs laser light at a rate.
  • the maximum length of the convex part which forms the said fine uneven structure is 500 nm or less, and is short compared with the length of the convex part formed by the conventional blackening process.
  • the convex part formed by the conventional blackening process is thin and long protruding from the surface of the copper foil, so it is easy to be damaged when other objects come into contact with the surface, so-called powder falling during handling. It was happening.
  • the fine concavo-convex structure referred to in the present application does not have a convex portion that is thin and long protruding from the surface of the copper foil as in the conventional blackening treatment.
  • FIG. 3 is a scanning electron microscope observation image showing a cross section of the copper foil with carrier foil referred to in the present application.
  • FIG. 3 shows a cross section of the carrier foil-side copper foil on the carrier foil side.
  • a portion observed in a thin line shape is a convex portion.
  • the surface of the copper foil is covered with innumerable convex portions densely packed with each other, and each convex portion protrudes from the surface of the copper foil along the surface shape of the copper foil.
  • the “maximum length of the convex portion” means that when the length from the base end to the tip end of each convex portion observed in the shape of the line (line segment) in the cross section of the copper foil is measured.
  • the roughening treatment layer on the outer surface of the carrier foil used as the laser light absorption layer has a higher laser light absorbance as the maximum length of the convex portion is longer, and the laser drilling performance is improved.
  • the roughened layer on the outer surface of the bulk copper layer used as the adhesive layer with the insulating layer constituent material has a longer maximum length of the convex portion, and the insulating layer constituent material has a smaller anchor effect. Good adhesion can be obtained.
  • the maximum length of the part is preferably 400 nm or less, and more preferably 300 nm or less.
  • the maximum length of the convex portion is 100 nm or more.
  • the roughened layer having a fine uneven structure is visually recognized in a layered manner on the surface layer portion of the copper foil.
  • the thickness of the roughening treatment layer corresponds to the length (height) in the thickness direction in which the convex portion protrudes from the surface of the copper foil.
  • the length and the protruding direction of each convex portion forming the fine concavo-convex structure are not constant, and the protruding direction of each convex portion is not parallel to the thickness direction of the copper foil.
  • the height of each convex portion varies. For this reason, the thickness of the roughened layer also varies.
  • the average thickness of the roughened layer is 400 nm or less.
  • the maximum length of the convex portion is 500 nm or less, and as described above, since there is no convex portion that protrudes long from the surface of the copper foil (carrier foil or bulk copper layer), the scratch resistance performance is high. It can be set as a roughening process layer. For this reason, handling becomes easy, good laser drilling without variation can be performed, and good adhesion between the bulk copper layer and the insulating layer constituting material can be obtained.
  • the length of the tip portion that can be observed separately from the portion is 250 nm or less.
  • “the length of the tip portion that can be separately observed from other convex portions refers to the length shown below.
  • the convex portion protrudes in a needle shape or a plate shape on the surface of the roughened layer. Since the convex portions are densely provided on the surface of the copper layer, the base portion of the convex portion, that is, the interface between the convex portion made of the copper composite compound and the copper foil is observed from the surface of the copper layer. Can not do it. Therefore, when the roughened layer of the copper layer is observed in a plane as described above, one convex portion is separated from other convex portions among adjacent convex portions while being densely packed together.
  • the portion that can be observed as being independently present is referred to as the “tip portion that can be observed separately from other convex portions”, and the length of the tip portion is the tip of the convex portion (that is, the tip) The length from the tip of the portion) to the position on the most proximal side that can be separated and observed from other convex portions.
  • the maximum length of the convex portion is approximately 500 nm or less.
  • the maximum length of the convex portion is long in any case, and the length of the tip portion of the convex portion is also Longer is preferred.
  • the length of the tip portion of the convex portion is increased, it is likely to be damaged when another object comes into contact. Therefore, from the viewpoint of improving the scratch resistance and facilitating handling while maintaining good laser drilling performance and adhesion to the insulating layer constituent material, the length of the tip of the convex portion is longer.
  • the thickness is preferably 200 nm or less, and more preferably 100 nm or less.
  • the length of the tip portion of the convex portion is less than 30 nm, the laser drilling performance is lowered and the adhesion with the insulating layer constituting material is also lowered. For this reason, it is preferable that the length of the front-end
  • the length of the tip portion of the convex portion is 1 ⁇ 2 or less with respect to the maximum length of the convex portion.
  • the tip of the convex portion protrudes from the surface of the copper foil while being separated from other convex portions, so that the copper foil surface is densely covered with this fine uneven structure. can do.
  • the specific surface area (hereinafter simply referred to as “Kr adsorption specific surface area”) measured by adsorbing krypton on the surface of the fine concavo-convex structure in the roughened layer is 0.035 m 2 / g or more. It is preferable to satisfy the conditions.
  • the Kr adsorption specific surface area is 0.035 m 2 / g or more
  • the average height of the convex portion in the roughened layer is on the order of 200 nm, and stable laser drilling performance and scratch resistance performance can be stably achieved. This is because it can be secured.
  • the upper limit of the Kr adsorption specific surface area is not defined, the upper limit is about 0.3 m 2 / g, more preferably 0.2 m 2 / g.
  • the Kr adsorption specific surface area at this time is a pretreatment by heating the sample at 300 ° C. for 2 hours using a specific surface area / pore distribution measuring device 3Flex manufactured by Micromeritics. Measured using krypton (Kr) as the adsorbed gas.
  • the convex portion is made of a copper composite compound.
  • the copper composite compound is most preferably copper oxide, and copper oxide is the main component.
  • cuprous oxide may be contained.
  • a small amount of metallic copper may be contained.
  • the peak area of Cu (I) obtained by analyzing the constituent elements of the fine concavo-convex structure using X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy: hereinafter simply referred to as “XPS”)
  • the ratio of the peak area of Cu (I) to the total area with the peak area of Cu (II) (hereinafter referred to as the occupied area ratio) is 50% when the roughened layer is used as a laser light absorption layer. It is preferable that it is less than.
  • the exclusive area ratio of Cu (I) is preferably 50% or more.
  • each peak of Cu (I) and Cu (II) can be separated and detected.
  • the Cu (0) peak may be observed overlapping with the shoulder portion of the large Cu (I) peak.
  • the peak of Cu (0) is observed overlappingly, it shall be considered as a Cu (I) peak including this shoulder part.
  • the constituent element of the copper composite compound which forms a fine concavo-convex structure using XPS is analyzed, Cu (I) appearing at 932.4 eV corresponding to the binding energy of Cu 2p 3/2, and 934.
  • Cu (I) appearing at 932.4 eV corresponding to the binding energy of Cu 2p 3/2
  • 934 Each peak obtained by detecting the photoelectrons of Cu (II) appearing at 3 eV is separated into waveforms, and the occupation area ratio of the Cu (I) peak is specified from the peak areas of the respective components.
  • Quantum 2000 (beam condition: 40 W, 200 ⁇ m diameter) manufactured by ULVAC-PHI Co., Ltd. is used as an XPS analyzer
  • “MultiPack ver. 6.1A” is used as analysis software to perform state / semi-quantitative narrow measurement. be able to.
  • the Cu (I) peak obtained as described above is considered to be derived from monovalent copper constituting cuprous oxide (cuprous oxide: Cu 2 O). And it is thought that a Cu (II) peak originates in the bivalent copper which comprises copper oxide (cupric oxide: CuO). Furthermore, it is considered that the Cu (0) peak is derived from zero-valent copper constituting metallic copper. Therefore, when the occupation area ratio of the Cu (I) peak is less than 50%, the proportion of cuprous oxide in the copper composite compound constituting the roughened layer is smaller than the proportion of copper oxide. In consideration of the laser drilling performance, the smaller the occupation ratio of the Cu (I) peak, the better.
  • the occupancy rate is less than 40%, less than 30%, less than 20%, etc., the smaller the value, the better the laser drilling performance, and the occupancy rate is 0%, that is, a fine concavo-convex structure is formed. It is most preferable that the convex portion to be made of only copper oxide.
  • the roughened layer on the outer surface of the bulk copper layer is the roughened layer on the outer surface of the carrier foil serving as the laser light irradiation surface.
  • the copper composite compound preferably contains copper oxide and cuprous oxide, and more preferably contains cuprous oxide as a main component.
  • the Cu (I) peak occupancy is preferably 50% or more, more preferably 70% or more, More preferably, it is 80% or more, and particularly preferably 90% or more.
  • the occupied area ratio of the Cu (I) peak When the occupied area ratio of the Cu (I) peak is less than 50%, after performing laser drilling on the copper layer and further forming a circuit by an etching method, a fine uneven structure is formed in the etching solution. The constituent components of are easily dissolved. This is because copper oxide has higher solubility in acids such as an etchant than cuprous oxide. Therefore, when the occupied area ratio of the Cu (I) peak is less than 50%, the adhesiveness between the copper layer and the insulating layer constituting material may be lowered later, which is not preferable.
  • the upper limit value of the occupied area ratio of the Cu (I) peak is not particularly limited, but is preferably 99% or less.
  • the exclusive area ratio of the Cu (I) peak is preferably 98% or less, and more preferably 95% or less.
  • the occupied area ratio of the Cu (I) peak is calculated by a calculation formula of Cu (I) / ⁇ Cu (I) + Cu (II) ⁇ ⁇ 100 (%).
  • the fine concavo-convex structure described above is formed, for example, by applying the following wet roughening treatment to both surfaces of the copper foil with carrier foil (that is, the outer surface of the carrier foil and the outer surface of the bulk copper layer).
  • the copper composite compound which has copper oxide (cupric oxide) as a main component is formed in both surfaces of copper foil with a carrier foil by oxidizing on both surfaces of copper foil with carrier foil by a wet method.
  • a fine concavo-convex structure formed from needle-like or plate-like convex portions made of a copper composite compound containing copper oxide as a main component can be formed on both surfaces of the copper foil with carrier foil.
  • the “fine concavo-convex structure formed from needle-like or plate-like convex portions” made of a copper composite compound to be formed can be formed on both sides or one side of a copper foil with a carrier foil.
  • the “fine concavo-convex structure” itself referred to in the present application is formed at the stage of oxidation treatment.
  • the roughening process may be completed without performing a reduction process after the oxidation process.
  • a reduction treatment may be performed after the oxidation treatment. Even when the reduction treatment is performed, a part of the copper oxide can be reduced to cuprous oxide while maintaining the shape of the fine concavo-convex structure at the oxidation treatment stage. As a result, a “fine concavo-convex structure” made of a copper composite compound containing copper oxide and cuprous oxide can be formed.
  • a small amount of metallic copper may be contained in a copper composite compound containing copper oxide as a main component or a copper composite compound containing copper oxide and cuprous oxide.
  • an alkali solution such as a sodium hydroxide solution.
  • an alkaline solution By oxidizing both sides of the copper foil with carrier foil using an alkaline solution, convex portions made of a copper composite compound mainly composed of needle-like or plate-like copper oxide are formed on both sides of the copper foil with carrier foil. be able to.
  • both surfaces of the copper foil with carrier foil are oxidized with an alkaline solution, the convex portion grows long, and the maximum length may exceed 500 nm. It becomes difficult to form a structure. Therefore, in order to form the fine concavo-convex structure, it is preferable to use an alkaline solution containing an oxidation inhibitor capable of suppressing oxidation on both surfaces of the copper foil with a carrier foil.
  • Examples of such an oxidation inhibitor include an amino silane coupling agent. If an alkaline solution containing an amino silane coupling agent is used to oxidize both sides of the copper foil with carrier foil, the amino silane coupling agent in the alkaline solution is adsorbed on both sides of the copper foil with carrier foil. The oxidation by the alkaline solution can be suppressed. As a result, the growth of needle-like crystals of copper oxide can be suppressed, and extremely fine uneven structures can be formed on both surfaces of the copper foil with carrier foil.
  • amino-based silane coupling agent examples include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, 3- Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, etc. may be used. It can. All of these are dissolved in an alkaline solution and are stably held in the alkaline solution, and also exhibit an effect of suppressing oxidation on both sides of the copper foil with a carrier foil described above.
  • the fine concavo-convex structure formed by subjecting both surfaces of the copper foil with a carrier foil to an oxidation treatment with an alkaline solution containing an amino-based silane coupling agent has a shape even after a reduction treatment. Almost maintained.
  • Cu (I) obtained when qualitative analysis using XPS is performed on the constituent elements of the copper composite compound that forms the fine relief structure by adjusting the reducing agent concentration, solution pH, solution temperature, and the like.
  • the area occupied by the peak of Cu (I) can be appropriately adjusted with respect to the total area of the peak area of Cu and the peak area of Cu (II). Also, for example, by immersing the copper foil with carrier foil in an alkaline solution, fine irregularities mainly composed of copper oxide on both surfaces of the copper foil with carrier foil, that is, the outer surface of the carrier foil and the outer surface of the bulk copper layer, respectively. If the structure is formed and then the reduction treatment is performed only on the roughened layer on the outer surface of the bulk copper layer, the laser light irradiation surface has a Cu (I) peak occupancy of 0%, and the insulating layer constituent material
  • the bonding surface can be a copper foil with carrier foil having a Cu (I) peak occupancy of 50% or more.
  • the fine concavo-convex structure is formed on both surfaces of the copper foil with a carrier foil by a method such as immersing the copper foil with a carrier foil in a treatment solution. be able to. Therefore, by using this wet method, forming a fine relief structure on both sides of the copper foil with a carrier foil improves the laser drilling processability on the laser light irradiation surface side, and the nano anchor effect by the fine relief structure Thus, the adhesion between the insulating layer constituting material and the bulk copper layer can be improved.
  • the fine concavo-convex structure has high scratch resistance, so even if the fine concavo-convex structure is formed on both sides of the copper foil with carrier foil, handling is easy and prevents powder falling and the like. be able to.
  • Silane coupling agent treatment In copper foil with carrier foil, moisture resistance degradation when processed into a printed wiring board by providing a silane coupling agent treatment layer on the surface of the roughening treatment layer on the outer surface of the bulk copper layer. The characteristics can be improved.
  • the silane coupling agent treatment layer provided on the roughened surface is composed of olefin functional silane, epoxy functional silane, vinyl functional silane, acrylic functional silane, amino functional silane and mercapto functional silane as a silane coupling agent. Either can be used to form.
  • silane coupling agents are represented by the general formula R—Si (OR ′) n (where R: an organic functional group represented by an amino group, a vinyl group, etc., OR ′: a methoxy group, an ethoxy group, etc. And n: 2 or 3).
  • silane coupling agent vinyltrimethoxysilane, vinylphenyltrimethoxylane, ⁇ -methacryloxypropyltrimethoxysilane, mainly the same coupling agent used for prepreg glass cloth for printed wiring boards, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3 -Aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazole silane, triazine silane, 3-acryloxypropylmethoxysilane, ⁇ -mercaptopropyltrimethoxysilane and the like can be used.
  • silane coupling agents listed here do not adversely affect the characteristics after becoming a printed wiring board. Which type is used in the silane coupling agent can be appropriately selected according to the use of the copper clad laminate.
  • the above-mentioned silane coupling agent contains water as a main solvent and contains the silane coupling agent component in a concentration range of 0.5 g / L to 10 g / L, and is treated at a room temperature level. It is preferable to use a liquid.
  • concentration of the silane coupling agent in the silane coupling agent treatment liquid is less than 0.5 g / L, the adsorption rate of the silane coupling agent is slow, which is not suitable for general commercial profit, and the adsorption is not uniform. It becomes.
  • the concentration of the silane cup agent exceeds 10 g / L, the adsorption rate is not particularly high, and the performance quality such as moisture absorption resistance is not particularly improved. .
  • the adsorption method of the silane coupling agent to the surface of the roughening treatment layer using this silane coupling agent treatment liquid can employ an immersion method, a showering method, a spray method, etc., and is not particularly limited. That is, any method can be used as long as the surface of the roughened layer and the silane coupling agent treatment liquid can be brought into contact with each other and adsorbed in accordance with the process design.
  • the silane coupling agent After the silane coupling agent is adsorbed on the surface of the roughening treatment layer, it is sufficiently dried to perform a condensation reaction between the —OH group on the surface of the roughening treatment layer and the adsorbed silane coupling agent. Promote and completely evaporate the water resulting from the condensation.
  • the drying method at this time For example, even if an electric heater is used or a blast method that blows warm air is not particularly limited, a drying method and drying conditions corresponding to the production line may be employed.
  • the silane coupling agent treatment described above is a treatment applied to the roughened layer on the outer surface of the bulk copper layer in order to improve the adhesion with the insulating layer constituent material, and the outer surface of the carrier foil. It is not necessary to apply to the roughened layer.
  • the needle-shaped or plate-shaped convex portions having a maximum length of 500 nm or less constituting the fine concavo-convex structure are arranged at a pitch shorter than the wavelength of the carbon dioxide laser and shorter than the wavelength range of visible light. ing.
  • the light incident on the surface of the roughened layer is attenuated as a result of repeated irregular reflection within the fine concavo-convex structure. That is, the surface of the roughening treatment layer functions as a light absorption surface, and the surface of the roughening treatment layer is darkened to black, brown, or the like as compared with that before the roughening treatment.
  • the copper clad laminate according to the present application is also characterized by the color tone of the roughened layer on the outer surface of the carrier foil used as the laser light absorbing layer, and the brightness of the L * a * b * color system L * is 30 or less, more preferably 25 or less.
  • the maximum length of the convex portions constituting the fine concavo-convex structure may exceed 500 nm, which is not preferable.
  • the value of the lightness L * exceeds 30, even when the maximum length of the convex portion is 500 nm or less, the convex portion is not provided sufficiently densely on the outer surface of the carrier foil. There is.
  • the state of the roughening treatment may be insufficient, or the state of the roughening treatment may be uneven, and the bulk copper layer is lasered via the carrier foil. This is not a state suitable for drilling and is not preferable.
  • the lightness L * is 25 or less, the surface of the roughened layer becomes a more preferable state suitable for laser drilling.
  • the lightness L * was measured using a spectral color difference meter SE2000 manufactured by Nippon Denshoku Industries Co., Ltd., and the whiteness attached to the measuring device was used for the lightness calibration in accordance with JIS Z8722: 2000.
  • the value of the brightness L * is the same as that of the roughening process layer provided on the outer surface of the carrier foil. It is the same.
  • the brightness L * value of the surface of the roughened layer varies before and after that. There is no.
  • the copper-clad laminate 1 according to the present application is obtained by laminating the adhesive layer side of the bulk copper layer 14 of the copper foil 11 with carrier foil according to the present application on at least one surface of the insulating layer constituting material 5. Therefore, as shown to FIG. 4 (A), the surface (laser irradiation surface) by which a laser beam is irradiated becomes an outer surface of the carrier foil 12 of the copper foil 11 with carrier foil.
  • the carrier foil 12 and the bulk copper layer 14 are simultaneously formed by irradiating laser light from the outer surface side of the carrier foil 12. Laser drilling can be performed. Thereafter, the carrier foil 12 is peeled off, so that the splash existing around the opening of the via hole formed by laser drilling is removed together with the carrier foil from the surface of the bulk copper layer, and the periphery of the opening is flat.
  • a via hole 10 as shown in (B) can be formed.
  • the surface of the roughening treatment layer becomes a black or brown matte surface and suppresses reflection of laser light.
  • the thermal energy of the laser beam can be efficiently applied to the laser beam irradiation site.
  • the laser light irradiation surface of the copper clad laminate is a copper layer (referred to as carrier foil or bulk copper layer; hereinafter the same)
  • the surface is subjected to roughening treatment, blackening treatment, or the like. Unless otherwise, the surface of the copper layer becomes a mirror surface, and the laser light is reflected, so that the thermal energy of the laser light cannot be efficiently applied to the laser light irradiation site.
  • the boiling point of copper is 2562 ° C, whereas the boiling points of copper oxide and cuprous oxide are 2000 ° C and 1800 ° C, respectively. Compared with copper, the boiling points of copper oxide and cuprous oxide are low. For this reason, when the surface of the roughening treatment layer is irradiated with laser light, the laser irradiation site on the surface of the roughening treatment layer reaches the boiling point earlier than in the case where the copper layer itself is a laser light irradiation surface.
  • the thermal conductivity of copper is 354 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 at 700 ° C., whereas the thermal conductivity of copper oxide and cuprous oxide are both 20 W ⁇ m ⁇ 1 at 700 ° C.
  • the thermal conductivity of copper oxide and cuprous oxide is extremely small relative to the thermal conductivity of copper.
  • the melting points of copper oxide and cuprous oxide are 1201 ° C. and 1235 ° C., respectively, whereas the melting point of copper is 1083 ° C., which is low.
  • part becomes slow.
  • heat can be concentrated in the depth direction, and the temperature of the carrier foil and the bulk copper layer can be easily made higher than the melting point.
  • by providing the fine concavo-convex structure made of the copper composite compound on the laser light irradiation surface laser drilling can be performed more efficiently than when the copper layer itself is the laser light irradiation surface.
  • the printed wiring board according to the present application includes a copper layer formed using the bulk copper layer of the copper foil with carrier foil according to the present application, and is manufactured using the copper-clad laminate according to the present application. It may be.
  • the copper layer is preferably provided with a via hole formed by laser drilling.
  • the layer configuration and manufacturing method of the printed wiring board according to the present application are not limited to the forms described below, and the copper formed using the bulk copper layer of the copper foil with carrier foil according to the present application. Any form provided with a layer can be included.
  • FIG. 5 to FIG. 7 show an example of a manufacturing process of a multilayer printed wiring board by a so-called build-up method.
  • “carrier foil 12 / peeling layer 13 / bulk copper” are provided on both surfaces of an inner layer substrate 9 having an inner layer circuit 8 via an insulating layer constituting material 5 such as a prepreg / resin film.
  • a copper foil 11 with a carrier foil having the layer configuration of “layer 14” is laminated to obtain a first build-up laminate 40 with a carrier foil.
  • the copper foil 11 with carrier foil may be laminated only on one surface side of the insulating layer constituting material 5.
  • FIG. 5 (A) “carrier foil 12 / peeling layer 13 / bulk copper” are provided on both surfaces of an inner layer substrate 9 having an inner layer circuit 8 via an insulating layer constituting material 5 such as a prepreg / resin film.
  • a copper foil 11 with a carrier foil having the layer configuration of “layer 14” is laminated to obtain a first build-up laminate 40
  • an inner layer substrate 9 is provided with inner layer circuits 8 on both sides thereof, and filled vias (via holes) 10 for interlayer connection are formed.
  • the inner layer substrate 9 is not limited to the form shown in FIG. 5A, and any layer configuration may be used.
  • laser drilling is performed by irradiating the surface of the roughened layer 4 of the carrier foil 12 of the first buildup laminate 40 with carrier foil with a laser beam.
  • the carrier foil 12 is peeled off by the release layer 13 to remove all splashes present around the opening of the hole formed by the laser drilling process, and a clean bulk without splashing.
  • the surface of the copper layer 14 is exposed, and the first buildup layer-equipped laminate 41 shown in FIG.
  • the carrier foil 12 provided with the roughening treatment layer 4 having the fine uneven structure is present on both surfaces thereof.
  • Laser drilling can be easily performed from both surfaces of the first build-up laminate 40 with carrier foil. And the desmear process for removing the resin residue produced by the laser drilling process is performed, the inside of the via hole is plated and filled to form the filled via 10, and the plated layer 24 is formed on the surface of the bulk copper layer. And the laminated body 42 with the 1st buildup wiring layer shown in FIG.7 (D) can be formed by forming the 1st buildup wiring layer 31 by carrying out an etching process. *
  • FIG. 7D When the copper foil 11 with carrier foil is laminated on both surfaces of the laminate 42 with the first buildup wiring layer shown in FIG. 7D via the insulating layer constituting material 5 such as a prepreg / resin film, FIG. It becomes the 2nd buildup laminated body 43 with a carrier foil provided with the 2nd buildup wiring layer 32 shown to (E). In this way, the same operation as in FIG. 6B, FIG. 6C, and FIG. 7D is repeated as necessary to build the nth circuit pattern layer (n ⁇ 3: integer). It can also be laminated up.
  • the outer surface of the bulk copper layer 14 It is also preferable to use a copper foil with a carrier foil with a resin layer provided with a resin layer for constituting an insulating layer.
  • the multi-layer laminate after the final lamination is subjected to laser drilling if necessary, desmear treatment for removing the resin residue generated by laser drilling, and plating filling in the via hole A filled via is formed, and a plated layer is formed on the surface of the bulk copper layer, and then the outer copper layer is etched to form an outer layer circuit to form a multilayer printed wiring board.
  • the printed wiring board according to the present application is manufactured by using the copper foil 11 with carrier foil according to the present application, and then laser drilling is performed by peeling the carrier foil 12 with the release layer 13 after the laser drilling process. All splashes present around the opening of the via hole formed in (1) can be removed. Therefore, plating filling and circuit formation in the via hole can be performed by plating processing, etching processing or the like in a state where the surface of the bulk copper layer around the opening of the via hole is clean. Further, the roughened layer 4 on the outer surface of the bulk copper layer 14 makes it possible to obtain good adhesion to the insulating layer constituting material 5 constituting the interlayer insulating layer.
  • the copper foil with carrier foil according to the present application was produced as follows. First, an untreated copper foil with a carrier foil having a layer configuration of “carrier foil / peeling layer / bulk copper layer” was prepared. As the untreated copper foil with carrier foil, the surface roughness (Rzjis) of the outer surface of the carrier foil is 5.3 ⁇ m, the glossiness [Gs (60 °)] is 2.1, and the thickness of the carrier foil is The thickness was 12 ⁇ m, the bulk copper layer was 1.5 ⁇ m, and the release layer was composed of an organic release layer containing 1,2,3-benzotriazole.
  • the carrier according to the present application in which the outer surface of the carrier foil of the copper foil with untreated carrier foil and the outer surface of the bulk copper layer are subjected to surface treatment in the following procedure, and the roughened layer is provided on both surfaces thereof. A copper foil with foil was obtained.
  • the measuring method of surface roughness, surface area ratio, and glossiness is as follows.
  • the surface area ratio (B) was determined according to the above formula based on the surface area A when a two-dimensional area of 57570 ⁇ m 2 was measured by the laser method.
  • Glossiness was measured using a gloss meter PG-1M manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS Z 8741-1997, which is a glossiness measurement method.
  • the copper foil with carrier foil was pretreated and then roughened. Hereinafter, it demonstrates in order.
  • Pretreatment The copper foil with carrier foil was immersed in an aqueous sodium hydroxide solution, degreased with alkali, and washed with water. And this alkali-degreasing copper foil with a carrier foil was immersed in a sulfuric acid aqueous solution having a sulfuric acid concentration of 5 mass% for 1 minute, and then washed with water.
  • the copper foil with carrier foil subjected to the preliminary treatment was oxidized.
  • a copper compound containing copper oxide was formed on both surfaces of the copper foil with carrier foil 11 by immersing in a sodium hydroxide solution containing a predetermined oxidation treatment time (1 minute, 2 minutes, 4 minutes, 10 minutes).
  • aqueous solution room temperature
  • Table 1 shows the occupied area ratio of the peak of Cu (I) with respect to the total area of the peak area of Cu (I) and the peak area of Cu (II) of each sample. As a result of this qualitative analysis, the presence of “—COO group” was clearly confirmed in all samples.
  • Table 1 summarizes the Kr adsorption specific surface area and brightness L * of the surface of the roughened layer on the outer surface of the carrier foil of each sample, together with the occupied area ratio of the peak of Cu (I). In Table 1, “Kr adsorption specific surface area” is simply indicated as “specific surface area”.
  • the above four types of samples were respectively brought into contact with both surfaces of the insulating layer constituting material, and were laminated using a vacuum press machine under conditions of a press pressure of 3.9 MPa, a temperature of 220 ° C., and a press time of 90 minutes.
  • prepreg GFPL-830NS manufactured by Mitsubishi Gas Chemical Co., Ltd. was used as the insulating layer constituent material. This obtained the copper clad laminated board which provided the copper foil with carrier foil on both surfaces of the insulating layer structural material.
  • the carrier foil is peeled off, and a plated copper layer is adhered and formed on the exposed bulk copper layer, and a 18 ⁇ m thick copper layer
  • the copper clad laminated board provided with this was produced.
  • the test substrate provided with the linear circuit for 0.4 mm width peeling strength measurement was produced by the etching method using the said sample. And the peeling strength of each test board
  • Example 2 the same untreated copper foil with carrier foil as in Example 1 was used, and oxidation treatment was performed on both surfaces of the untreated copper foil with carrier foil (pretreatment time was 2 minutes). After the treatment, the outer surface of the carrier foil was not subjected to the reduction treatment, and only the outer surface of the bulk copper layer was subjected to the reduction treatment by shower spraying the same reduction treatment solution as in Example 1. In the same manner as in Example 1, a copper foil with carrier foil provided with the fine concavo-convex structure according to the present application on the outer surface of the carrier foil and the outer surface of the bulk copper layer was obtained.
  • Example 2 the occupied area ratio of the peak of Cu (I) with respect to the total area of the peak area of Cu (I) and the peak area of Cu (II) on each surface, the roughness of the carrier foil.
  • the Kr adsorption specific surface area and brightness L * of the surface of the chemical treatment layer were determined. The results are shown in Table 1. The presence of “—COO group” was also clearly confirmed in the copper foil with carrier foil of Example 2. Further, a copper clad laminate was obtained in the same manner as in Example 1, a test substrate for measuring the peel strength was produced, and the peel strength was measured.
  • Comparative Example 1 In Comparative Example 1, the same copper foil with carrier foil as in Example 1 was used, and the outer surface of the carrier foil was not subjected to the roughening treatment, and the conventional roughening treatment (copper sulfate type) was applied only to the outer surface of the bulk copper layer. (Roughening treatment using fine copper particles formed with a copper electrolyte). A copper clad laminate was obtained in the same manner as in Example 1 using the copper foil with carrier foil of Comparative Example 1 thus obtained.
  • Comparative Example 2 In Comparative Example 2, the same untreated copper foil with carrier foil as in Example 1 was used, the same pretreatment as in Example 1 was performed, blackening treatment was performed on both sides, reduction treatment was further performed, and the outer surface of the carrier foil And the copper foil with a carrier foil provided with the conventional reduction
  • the procedure of the blackening process and the reduction process will be described.
  • Blackening treatment A general blackening treatment was applied to the copper foil with carrier foil after the preliminary treatment.
  • Reduction treatment was performed on the copper foil with carrier foil that had been subjected to blackening treatment.
  • an aqueous solution containing 35 vol.% Of “CIRCUPOSIT PB OXIDE CONVERTER 60C” 6.7 vol% and “CUPOSIT Z” 1.5 vol% which is a reduction treatment liquid manufactured by Rohm & Haas Electronic Materials Co., Ltd. It was immersed for a minute, washed with water and dried. Through these steps, a copper foil with a carrier foil provided with a general reduction blackening treatment layer was obtained.
  • Example 2 Moreover, using the copper foil with a carrier foil obtained as described above, a copper clad laminate was obtained in the same manner as in Example 1, and a test substrate for measuring the peel strength was prepared, and the peel strength was obtained. Was measured.
  • Table 1 shows the specific surface area, lightness L * , and outer surface of the bulk copper layer of the fine concavo-convex structure formed on the surface of the carrier foil of the copper foil with carrier foil obtained in Example 1, Example 2 and Comparative Example 2.
  • stacked on the insulating layer structural material is shown.
  • FIG. 8 shows a scanning electron microscope observation image of a linear circuit having a circuit width of 8 ⁇ m and an inter-circuit gap width of 8 ⁇ m manufactured using the carrier foil-attached copper foil obtained in Example 1.
  • the convex portions of fine irregularities formed on the outer surface of the carrier foil of the copper foil with carrier foil according to the example The maximum length is 500 nm or less, and there is no difference in the content detected in the qualitative analysis of fine irregularities. Further, the value of the lightness L * of the surface of the roughened layer is 18 to 25 and shows a very small value. On the other hand, the value of the Kr adsorption specific surface area increases in proportion to the increase in the oxidation treatment time.
  • Example and Comparative Example 1 Here, laser drilling performance is examined. Irradiating a laser beam from the carrier foil side with a carbon dioxide laser as a laser light source on the copper-clad laminate using the copper foil with carrier foil obtained in Example and the copper-clad laminate obtained in Comparative Example 1 did. At this time, the mask diameter is 2.0 mm and the pulse width is 14 ⁇ sec. The laser irradiation conditions of pulse energy 19.3mJ, offset 0.8, laser beam diameter 153 ⁇ m are adopted, and a hole with a processing diameter of 60 ⁇ m is planned to be formed in the bulk copper layer of the copper clad laminate with carrier foil. A 100-shot via hole formation test was performed on each copper-clad laminate. Then, after laser irradiation, the carrier foil was removed, and when the hole diameter formed in the bulk copper layer was 60 ⁇ m or more, it was determined that the processing was performed satisfactorily. The results are shown in Table 2.
  • the aperture ratio in Table 2 is the ratio of the number of shots in which a laser shot was made by conducting a 100-shot via hole formation test.
  • the opening diameter distribution is a distribution width when the opening diameter of a via hole obtained in a 100-shot via hole formation test is measured.
  • Example 2 Comparison between Example and Comparative Example 2: When laser drilling performance of Comparative Example 2 was evaluated in the same manner as described above, the laser drilling performance of the copper-clad laminate of Comparative Example 2 was equivalent to that of the Example. It was. However, in the copper-clad laminate of Comparative Example 2, there was a tendency that scratches, scratches, etc. were likely to occur on the surface of the reduction blackening treatment layer on the outer surface of the carrier foil. The surface of the reduced blackening treatment layer where scratches or abrasions were generated was glossy. When the surface of the reduction blackening layer was glossy, the laser drilling performance was remarkably deteriorated, and laser drilling could not be performed on the copper-clad laminate. On the other hand, the copper foil with carrier foil for laser drilling according to the present application did not cause scratches or rubbing, and the laser drilling performance was not deteriorated.
  • the copper foil with carrier foil according to the present application By using the copper foil with carrier foil according to the present application, it is possible to remove all the splash around the hole opening formed by laser drilling and provide a copper-clad laminate with a clean copper layer It becomes. As a result, it is possible to provide a high-quality multilayer printed wiring board by eliminating defects caused by the splash. Further, in the copper foil with carrier foil according to the present application, the roughened layer of the carrier foil and the bulk copper layer is “formed by a needle-like or plate-like convex portion having a maximum length of 500 nm or less made of a copper composite compound. By using the “fine concavo-convex structure”, it becomes possible to form a fine pitch circuit more than conventional.
  • the copper foil with carrier foil according to the present application it is possible to manufacture a multilayer printed wiring board by a build-up method and a coreless build-up method without requiring a process change of the conventional manufacturing method, and a high quality A printed wiring board can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Laser Beam Processing (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

 レーザー穴明け加工する際に用いられる銅張積層板の製造に好適なキャリア箔付銅箔の提供を目的とする。 この目的を達成するため、キャリア箔/剥離層/バルク銅層の層構成を備えるキャリア箔付銅箔であって、当該キャリア箔付銅箔の両面に、銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層を備え、当該キャリア箔の表面に備えられた粗化処理層はレーザー光吸収層として用いられ、当該バルク銅層の表面に備えられた粗化処理層は絶縁層構成材との接着層として用いられることを特徴とするキャリア箔付銅箔を提供する。

Description

キャリア箔付銅箔、銅張積層板及びプリント配線板
 本件出願は、キャリア箔付銅箔、銅張積層板及びプリント配線板に関する。
 近年の携帯電話、モバイルツール、ノートブックPC等の軽量化・小型化の流れに伴い、これらの電子機器に組み込まれるプリント配線板に関しても同様の軽薄短小、高密度実装化が求められてきた。このようなプリント配線板に対する軽薄短小化、高密度実装化に対応するため、多層プリント配線板が使用されるようになってきた。
 多層プリント配線板は複数の導体層を備え、スルーホール等の層間導通手段により各導体層同士が電気的に接続されている。また、近年では、より一層の高密度実装化、微細配線化に対応するため、スルーホールに代えて、ビアホールが層間導通手段として用いられるようになってきた。スルーホールは一般にドリル加工により形成されるのに対して、ビアホールはレーザー加工により形成されるため、スルーホールと比較するとビアホールはより小径であり、高密度実装を行う上で有利である。層間導通手段としてのビアホールとして、例えば、ブラインドビアホール(BVH)、インタースティシャルビアホール(IVH)、スタッキングビアホール等、種々の形態が知られている。
 ビアホールを形成するには、レーザー光を銅箔等からなる導体層に照射する必要がある。銅箔は一般に鏡面であり、レーザー光を反射するためレーザー穴明け加工が困難である。このため、レーザー光照射面は良好なレーザー穴明け加工性能を備えることが求められる。さらに、レーザー穴明け加工時には、開口部の周囲に飛散したドロップレットが付着するスプラッシュ現象が生じる。スプラッシュ現象が起こると、開口部の周囲においてドロップレットが付着した部分が突起状となる。このため、穴明け加工後に銅めっき層の形成を行ったときに、突起状となった当該箇所でめっき層の異常析出を引き起こし、所望の回路形成ができない等の不良が発生する。従って、レーザー加工によりビアホールを形成する際には、このスプラッシュ現象によるドロップレットの付着を防止する必要がある。
 スプラッシュ現象を考慮した技術として、特許文献1には、「スルーホールやバイアホール等の層間導通銅メッキを必要とする両面プリント配線板又は3層以上の多層プリント配線板の製造方法において、前記プリント配線板の外層に位置する銅箔にはピーラブルタイプのキャリア箔付銅箔を用い、キャリア箔を引き剥がすことなく、スルーホール用貫通孔又はバイアホール用穴部の必要な加工処理を行い、スルーホール用貫通孔又はバイアホール用穴部のデスミア処理をし、スルーホール用貫通孔又はバイアホール用穴部の電気的導通確保のための層間導通銅メッキを行い、 その後、キャリア箔を引き剥がし、外層に位置する銅箔に外層回路パターンのレジストレーションを行って、エッチング処理することを特徴とする両面プリント配線板又は3層以上の多層プリント配線板の製造方法。」が開示されている。
 この特許文献1に開示されているように、キャリア箔を除去する前にレーザー穴明け加工を行い、その後にキャリア箔を除去すれば、キャリア箔と共に開口部周辺に付着したドロップレットを除去することができる。
WO00/69238号公報
 しかしながら、上述の特許文献1のように、炭酸ガスレーザーを用いて多層積層板の外層にあるキャリア箔付き銅箔のキャリア箔表面からレーザー穴明け加工を行おうとしたとき、キャリア箔の厚さが厚くなるほどレーザー穴明け加工性能が低下し、目標とする開口径を備えるビアホールが得られなくなる傾向がある。
 従って、特許文献1のように、炭酸ガスレーザーを用いて、多層積層板の外層にあるキャリア箔付き銅箔のキャリア箔表面から穴明け加工を行う場合のレーザー穴明け加工性能に優れる材料が求められてきた。
 そこで、本件発明者等が鋭意研究した結果、以下に述べるキャリア箔付銅箔を用いると、良好なレーザー穴明け加工ができることに想到した。以下、本件出願に係る発明の概要を述べる。
〈キャリア箔付銅箔〉
 本件出願に係るキャリア箔付銅箔は、キャリア箔/剥離層/バルク銅層の層構成を備えるキャリア箔付銅箔であって、当該キャリア箔付銅箔の両面に、銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層を備え、当該キャリア箔の表面に備えられた粗化処理層はレーザー光吸収層として用いられ、当該バルク銅層の表面に備えられた粗化処理層は絶縁層構成材との接着層として用いられることを特徴とする。
〈銅張積層板〉
 本件出願に係る銅張積層板は、本件出願に係るキャリア箔付銅箔の前記バルク銅層の前記接着層側を絶縁層構成材の少なくとも片面に積層したことを特徴とする。
〈プリント配線板〉
 本件出願に係るプリント配線板は、本件出願に係るキャリア箔付銅箔の前記バルク銅層を用いて形成されたことを特徴とする。
 本件出願に係るキャリア箔付銅箔は、当該キャリア箔付銅箔の両面に、銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層を備える。そして、当該キャリア箔の表面に備えられた粗化処理層はレーザー光吸収層として用いられ、バルク銅層の表面に備えられた粗化処理層は絶縁層構成材との接着層として用いられる。当該バルク銅層の表面に備えられた粗化処理層を接着層として絶縁層構成材に接着すれば、銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層を備えたキャリア箔付銅張積層板が得られる。このキャリア箔付銅張積層板を用いれば、絶縁層構成材とバルク銅層との良好な密着性を得ることができる。また、キャリア箔の表面に備えられた粗化処理層がレーザー光を吸収するため、レーザーを用いてキャリア箔とバルク銅層とを同時に穴明けすることが可能となる。そして、穴明け後にキャリア箔を引き剥がして除去することで、レーザー穴明け加工で形成した穴の開口部の周囲に存在するスプラッシュをキャリア箔と共に除去し、清浄なバルク銅層を露出させることができる。従って、本件出願に係るキャリア箔付銅箔は、ビルドアップ法、コアレスビルドアップ法により多層プリント配線板を製造する際に好適に用いることができ、当該キャリア箔付銅箔を用いれば、絶縁層構成材との密着性が良好であり、且つ、レーザー穴明け加工で形成した穴の開口部の周囲に存在するスプラッシュに起因して起こる不良を排除して、高品質のプリント配線板を提供できるようになる。
本件出願に係るキャリア箔付銅張積層板の基本層構成を示すための断面模式図である。 本件出願に係るキャリア箔付銅箔において、粗化処理層の形態を説明するための走査型電子顕微鏡観察像である。 本件出願に係るレーザー穴明け加工法を適用する際に、その表面にレーザー光が照射される粗化処理層の断面を示す走査型電子顕微鏡観察像である。 レーザー光を用いてブラインドビアホールを形成する際のレーザー穴明け加工のイメージを示すための断面模式図である。 ビルドアップ法で多層プリント配線板を製造する工程を示すための製造フローを示すための断面模式図である。 ビルドアップ法で多層プリント配線板を製造する工程を示すための製造フローを示すための断面模式図である。 ビルドアップ法で多層プリント配線板を製造する工程を示すための製造フローを示すための断面模式図である。 実施例1で得られたレーザー穴明け加工用のキャリア箔付銅箔を用いて得られた回路幅8μm/回路間ギャップ幅8μmの直線回路の走査型電子顕微鏡観察像である。
 以下、本件出願に係る「銅張積層板の形態」及び「プリント配線板の形態」に関して説明する。なお、「銅張積層板の形態」において、本件出願に係る「キャリア箔付銅箔の形態」を併せて説明する。
〈銅張積層板の形態〉
1.銅張積層板の層構成の概念
 本件出願に係る銅張積層板は、例えば、図1に示すような層構成を備える。本件出願に係る銅張積層板は、本件出願に係るキャリア箔付銅箔11を絶縁層構成材5の少なくとも片面に積層したものであり、図1(1-A)には、絶縁層構成材5の両面にそれぞれ本件出願に係るキャリア箔付銅箔11を積層した例を示し、図1(1-B)には、絶縁層構成材5の片面に本件出願に係るキャリア箔銅箔11を積層した例を示している。なお、図1(1-B)に示す例では、絶縁層構成材5の他面側には他の銅箔2が積層されている。但し、図1に示す銅張積層板1は、本件出願に係る銅張積層板の単なる一例であり、本件出願に係る発明は図1に示す層構成に限定解釈されるものではない。
1-1.キャリア箔付銅箔
 まず、本件出願に係るキャリア箔付銅箔に関して述べる。本件出願に係るキャリア箔付銅箔は、図1に示すように「キャリア箔12/剥離層13/バルク銅層14」の層構成を備え、当該キャリア箔付銅箔の両面に、「銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層」4を備え、当該キャリア箔12の表面に備えられた粗化処理層4はレーザー光吸収層として用いられ、当該バルク銅層14の表面に備えられた粗化処理層4は絶縁層構成材との接着層として用いられることを特徴とする。なお、キャリア箔付銅箔の両面とは、キャリア箔の剥離層13に面する側とは反対側の表面(以下、キャリア箔の外表面)、及び、バルク銅層14の剥離層13に面する側とは反対側の表面(以下、バルク銅層の外表面)をいう。当該キャリア箔付銅箔を用いて銅張積層板を製造すれば、バルク銅層側の粗化処理層により、絶縁層構成材との良好な密着性を得ることができ、キャリア箔側の粗化処理層によりレーザー穴明け加工性能の良好な銅張積層板を得ることができる。以下、各構成要素毎に述べる。
キャリア箔: 当該キャリア箔付銅箔のキャリア箔に関して、特に材質の限定はない。しかしながら、キャリア箔の外表面に、「銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層」を設けることを考慮すると、当該キャリア箔は、銅箔、表面が銅コーティングされた樹脂フィルム等、銅成分が表面に存在する箔であることが好ましい。
 また、キャリア箔の厚さに関する特段の限定はない。しかしながら、本件発明では、レーザー穴明け加工を施す際に、キャリア箔の外表面に設けられた粗化処理層をレーザー光吸収層として用いる。このため、レーザー穴明けの加工の容易性・加工時間の短縮・材料コストの削減等を考慮すると、当該キャリア箔の厚みは7μm~18μmの範囲とすることが好ましい。
 このように、当該キャリア箔の材質及び厚みは特に限定されるものではないが、上記粗化処理層の表面にレーザー光を照射してレーザー穴明け加工を施す際の、レーザー穴明け加工性が良好であるという観点から、当該キャリア箔の外表面は以下の表面特性を備えていることが好ましい。
 まず、当該キャリア箔の外表面は、「57570μmの二次元領域をレーザー法で測定したときの表面積(三次元面積:Aμm)と二次元領域面積との比[(A)/(57570)]で算出される表面積比(B)」の値が1.1以上であることが好ましく、1.5以上であることがより好ましい。表面積比(B)が1.1以上であると、レーザー穴明け性能が良好であり、1.5以上になると更に良好になる。一方、表面積比(B)の値が3.0を超えると、キャリア箔の厚みにバラツキが生じ、その結果、レーザー穴径にバラツキが生じやすくなる。このため、キャリア箔の外表面における表面積比(B)の値は3.0以下であることが好ましい。
 また、当該キャリア箔の外表面の表面粗さ(Rzjis)は2.0μm以上であることが好ましい。表面粗さ(Rzjis)が2.0μm以上の面を有するキャリア箔の外表面に対して、上記微細凹凸構造を有する粗化処理層を設け、当該粗化処理層をレーザー光吸収層として用いることにより、レーザー穴明け加工性能をより良好にすることができる。キャリア箔の外表面の表面粗さが粗くなるほど、キャリア箔の外表面におけるレーザー光の反射率が低下し、レーザー穴明け加工性能が向上し好ましい。一方、表面粗さ(Rzjis)が6.0μm以上になると、キャリア箔の厚みにバラツキが生じ、その結果、レーザー穴径にバラツキが生じやすくなる。このため、キャリア箔の外表面の表面粗さ(Rzjis)は6.0μm以下であることが好ましい。
剥離層: 本件出願に係るレーザー穴明け加工法で用いるキャリア箔付銅箔の剥離層は、キャリア箔が事後的に引き剥がしできる限り特に限定されるものではなく、剥離層に要求される特性を満足する限り、有機成分を用いて形成する「有機剥離層」、無機成分を用いて形成する「無機剥離層」のいずれであってもよい。
 剥離層として、「有機剥離層」を採用する場合は、有機成分として、窒素含有有機化合物、硫黄含有有機化合物及びカルボン酸からなる群から選択される化合物の少なくとも一つ以上を含むものを用いることが好ましい。ここでいう窒素含有有機化合物には、置換基を有する窒素含有有機化合物を含んでいる。具体的には、窒素含有有機化合物としては、置換基を有するトリアゾール化合物である1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等を用いることが好ましい。そして、硫黄含有有機化合物としては、メルカプトベンゾチアゾール、チオシアヌル酸及び2-ベンズイミダゾールチオール等を用いることが好ましい。また、カルボン酸としては、特にモノカルボン酸を用いることが好ましく、中でもオレイン酸、リノール酸及びリノレイン酸等を用いることが好ましい。これらの有機成分は、高温耐熱性に優れ、キャリア箔の表面に厚さ5nm~60nmの剥離層の形成が容易だからである。
 一方、剥離層として、「無機剥離層」を採用する場合には、無機成分としてNi、Mo、Co、Cr、Fe、Ti、W、P又は、これらを主成分とする合金又は化合物からなる群から選択される少なくとも一種以上を用いることが可能である。これらの無機剥離層の場合、電着法、無電解法、物理蒸着法等の公知の手法を用いて形成することが可能である。
 本件出願において、有機剥離層及び無機剥離層のいずれも好ましく用いることができるが、絶縁層構成材との積層時において熱が負荷された場合などにも、キャリア箔の適正な引き剥がし強さを安定的に確保できるという観点から有機剥離層とすることが好ましい。
バルク銅層: 本件出願で用いるキャリア箔付銅箔のバルク銅層は、剥離層を介してキャリア箔と剥離可能に積層された銅箔であれば、特に限定されるものではない。バルク銅層を構成する銅箔の製造方法は特に限定されるものではなく、電解めっき法、無電解めっき法、真空蒸着法、スパッタリング蒸着法、化学気相反応法等、銅箔を製造可能な従来公知の方法を含む各種の方法により製造することができる。但し、生産コスト等を考慮すると電解めっき法によりバルク銅層を製造することが好ましい。
 バルク銅層の厚さは、特に限定されるものではなく、銅張積層板、或いは、プリント配線板等において銅層を形成する際に要求される厚さを満足すればよい。しかしながら、本件出願に係るキャリア箔付銅箔は、キャリア箔の外表面にレーザー吸収層としての粗化処理層を備え、レーザー穴明け加工に供される銅張積層板、或いは、プリント配線板の製造材料として好適に用いることができる。このような使用態様を考慮すると、当該バルク銅層の厚さは、0.1μm~9μmであることが好ましい。バルク銅層の厚さが9μm以下であれば、キャリア箔の外表面にレーザー光を照射したときに「キャリア箔/剥離層/バルク銅層」の3層を同時に穴明けすることができる。これに対して、バルク銅層の厚さが9μmを超えると、キャリア箔付銅箔全体の厚さが厚くなり過ぎて、レーザー穴明け加工性能が低下するため好ましくない。また、一方、バルク銅層の厚さが0.1μm未満であると、均一な層厚のバルク銅層を得ることが困難になるため好ましくない。
 従って、良好なレーザー穴明け加工性能を得るという観点から、バルク銅層の厚さはより薄い方が好ましい。具体的には、5μm以下であることがより好ましく、3μm以下であることがさらに好ましく、2μm以下であることが最も好ましい。また、バルク銅層の厚さが薄い程、当該バルク銅層を用いて回路形成を行う上でも好ましい。一方、より均一な層厚のバルク銅層を得るという観点から、バルク銅層の厚さは0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。
 バルク銅層の表面特性は、特に限定されるものではない。しかしながら、当該キャリア箔付銅箔を絶縁層構成材に積層して銅張積層板とし、この銅張積層板を用いて回路形成を行うことを考慮すると、バルク銅層の外表面の表面特性は、粗化処理層が設けられる前において、次のとおりであることが好ましい。当該外表面の表面粗さ(Rzjis)は2.0μm以下であることが好ましく、1.5μm以下であることがより好ましく、1.0μm以下であることがさらに好ましい。また、バルク銅層の外表面の光沢度(Gs60°)は100以上であることが好ましく、300以上であることがより好ましい。
 上記表面特性を有するバルク銅層の外表面に上記微細凹凸構造を形成すれば、絶縁層構成材との良好な密着性を得ると共に高周波特性の優れた回路を形成することができる。すなわち、高周波回路では表皮効果による伝送損失を抑制するため、表面の平滑な導体に回路形成することが求められる。ここで、本件出願にいう粗化処理層をバルク銅層の外表面に設けた場合、外表面に付与された凹凸構造により、高周波信号の伝送損失が懸念される。しかしながら、後述するように、当該微細凹凸構造は、酸化銅及び亜酸化銅を含有する銅複合化合物からなる凸状部により形成されるため、当該微細凹凸構造からなる粗化処理層には高周波信号が流れない。このため、当該バルク銅層は粗化処理が施されていない無粗化銅層と同等の高周波特性を示す。また、当該粗化処理層は、高周波基板に使用される低誘電率の絶縁層構成材に対する密着性が良好である。従って、絶縁層構成材との接着面となるバルク銅層の外表面に当該微細凹凸構造を有する粗化処理層を備えたキャリア箔付銅箔は、高周波回路形成材料及びプリント配線板の回路形成材料としても好適である。
1-2.粗化処理層
 本件出願において、キャリア箔付銅箔の両面には、「銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造」を有する粗化処理層が設けられる。ここで、キャリア箔付銅箔のキャリア箔の外表面に設けられる粗化処理層と、バルク銅層の外表面に設けられる粗化処理層において、各面の粗化処理層を構成する微細凹凸構造の形状や大きさ等は共通のものとすることができる。以下において、粗化処理層について、キャリア箔の外表面に設けられる粗化処理層と、バルク銅層の外表面に設けられる粗化処理層とを特に区別せずに説明した場合、その説明事項はいずれの粗化処理層にも共通するものとする。
 上記微細凹凸構造を有する粗化処理層をキャリア箔の外表面に備えるキャリア箔付銅張積層板は、当該粗化処理層をレーザー光吸収層として用いることができ、キャリア箔とバルク銅層とを同時に穴明けすることができる。また、バルク銅層の外表面にこの微細凹凸構造を有する粗化処理層を備えるため、バルク銅層と絶縁層構成材との良好な密着性を得ることができる。さらに、当該粗化処理層は従来の黒化処理により形成される針状結晶等とは異なり、他の物体が表面に触れても、微細凹凸構造を形成する凸状部は損傷を受けにくく、いわゆる粉落ち等の現象が生じない。従って、本件出願に係るキャリア箔付銅箔は、その両面、すなわちキャリア箔の外表面及びバルク銅層の外表面にそれぞれ粗化処理層を有するが、粉落ち等がなくハンドリングが容易である。
 図2には、キャリア箔として用いることのできる一般的な電解銅箔の表面に本件出願にいう粗化処理層を設けたときの、その粗化処理層の表面の形態を示している。ここで、キャリア箔として電解銅箔を用いる場合、電解銅箔の電極面側又は析出面側のいずれの面にバルク銅層を設けるかは任意である。従って、電解銅箔をキャリア箔としたときに、その電極面側又は析出面側のいずれの面を外表面、すなわちレーザー光照射面として用いるのかは任意である。従って、図2には、いずれの面をレーザー光照射面とした場合も、その粗化処理層の表面の状態を把握できるように、電解銅箔の電極面側及び析出面側のそれぞれ粗化処理層を形成したときの走査型電子顕微鏡観察像を示している。
 図2に示すように、各粗化処理層の表面には、それぞれ、針状又は板状に突出した微細な凸状部が互いに隣接しながら密集することにより、電解銅箔の表面に極微細な凹凸構造が形成されており、これらの凸状部が電解銅箔の表面形状に沿って、電解銅箔の表面を被覆するように設けられている状態が観察される。
 ここで、電極面側の粗化処理層の表面と、析出面側の粗化処理層の表面とを対比すると、各面のマクロ的表面形状は異なっている。このマクロ的表面形状の相違は、当該微細凹凸構造が形成される前の電解銅箔自体の電極面と析出面のマクロ的表面形状の相違に起因すると考えられる。最初に述べたとおり、電解銅箔の電極面は陰極の表面形状が転写されるため平滑になる。一方、その他面側(析出面側)は、一般的に銅が電析して形成された凹凸形状を有する。図2を参照すると、粗化処理層の表面はそれぞれ電解銅箔の各面の粗化処理前のマクロ的表面形状が維持されており、電極面は比較的平滑なマクロ的表面形状を有し、析出面は凹凸を有するマクロ的表面形状を有することが分かる。これは、最大長さが500nm以下の針状又は板状の凸状部が粗化処理前の電解銅箔の表面形状に沿って、電解銅箔の表面を被覆するように、電解銅箔の表面に密集して設けられているため、当該微細凹凸構造を形成した後も電解銅箔の各面のマクロ的表面形状が維持されるものと考えられる。
 また、当該微細凹凸構造は、最大長さが500nm以下の凸状部により形成されており、図2を参照すると各凸状部が銅箔(電解銅箔)の表面に配列される配列ピッチは各凸状部の長さよりも短い。ここで、レーザー穴明け加工の際には主波長が9.4μm及び10.6μmの炭酸ガスレーザーが用いられる。当該粗化処理層の表面は、炭酸ガスレーザーの発光波長よりも各凸状部の配列ピッチが短いため、当該粗化処理層の表面は炭酸ガスレーザーによるレーザー光の反射を抑制し、高い吸光率でレーザー光を吸収する。このため、レーザー光吸収層として好適に用いることができる。また、当該微細凹凸構造を形成する凸状部の最大長さは500nm以下であり、従来の黒化処理により形成される凸状部の長さと比較すると短い。従来の黒化処理により形成される凸状部は、銅箔の表面から細く、長く突出するため、表面に他の物体が接触した場合に折れる等の損傷を受けやすく、ハンドリング時にいわゆる粉落ちが生じていた。これに対して、本件出願にいう微細凹凸構造には従来の黒化処理のように銅箔の表面から細く、長く突出する凸状部が存在しない。このため、ハンドリング時に作業者の指等が当該粗化処理層の表面に触れたとしても、当該微細凹凸構造を形成する凸状部が折れて粗化処理層の表面形状が局部的に変化したり、周囲に酸化銅の微粉が飛散する等の上記粉落ちが生じることがなく、ハンドリングを容易にすることができる。
 次に、図3を参照しながら、上記凸状部の「最大長さ」について説明する。図3は、本件出願にいうキャリア箔付銅箔の断面を示す走査型電子顕微鏡観察像である。但し、図3にはキャリア箔付銅箔のキャリア箔側の断面を示している。図3に示すように、当該キャリア箔付銅箔の断面において、細い線状に観察される部分が凸状部である。図3において、互いに密集した無数の凸状部により銅箔の表面が覆われており、各凸状部は銅箔の表面形状に沿って銅箔の表面から突出していることが確認される。本件出願において、「凸状部の最大長さ」とは、当該銅箔の断面において上記線(線分)状に観察される各凸状部の基端から先端までの長さを測定したときの最大値をいうものとする。ここで、レーザー光吸収層として用いられるキャリア箔の外表面の粗化処理層は、当該凸状部の最大長さが長いほどレーザー光吸光率が高くなり、レーザー穴明け加工性能が向上する。また、絶縁層構成材との接着層として用いられるバルク銅層の外表面の粗化処理層は、当該凸状部の最大長さが長い方が、微細なアンカー効果により絶縁層構成材との良好な密着性を得ることができる。一方、キャリア箔の外表面及びバルク銅層の外表面のいずれにおいても、当該凸状部の最大長さが短い方がハンドリングが容易になる。当該粗化処理層の表面に他の物体が接触したときに、該凸状部の最大長さが短い方がより損傷を受けにくくなるためである。また、凸状部の最大長さが短い方が、粗化処理前の銅箔の表面形状を維持することができ、粗化処理前後における表面粗さの変化を抑制することができる。そして、バルク銅層の外表面がいわゆる無粗化銅層である場合と同等の良好なエッチングファクターを備えたファインピッチ回路の形成が可能となる。そこで、良好なレーザー穴明け加工性能を維持しながら、絶縁層構成材との良好な密着性と共に良好なエッチングファクターを得ることができ、且つ、ハンドリングをより容易にするという観点から、当該凸状部の最大長さは400nm以下であることが好ましく、300nm以下であることが更に好ましい。一方、凸状部の最大長さが100nm未満になると、レーザー穴明け加工性能が低下すると共に、絶縁層構成材との密着性も低下する。このため、当該凸状部の最大長さは100nm以上であることが好ましい。
 ここで、図3に示すとおり、微細凹凸構造からなる粗化処理層は銅箔の表層部分に層状に視認される。粗化処理層の厚さは、上記凸状部が銅箔の表面から突出する厚さ方向の長さ(高さ)に相当する。しかしながら、微細凹凸構造を形成する各凸状部の長さや突出方向は一定ではなく、各凸状部の突出方向は銅箔の厚さ方向に対して平行ではない。さらに、各凸状部の高さにはバラツキがある。このため、粗化処理層の厚さにもバラツキが生じる。しかしながら、上記凸状部の最大長さと粗化処理層との間には一定の相関関係があり、本件発明者等が繰り返し試験を行った結果、当該粗化処理層の平均厚さが400nm以下である場合、上記凸状部の最大長さは500nm以下となり、上述したとおり、銅箔(キャリア箔又はバルク銅層)の表面から長く突出する凸状部が存在しないため、耐擦傷性能の高い粗化処理層とすることができる。このため、ハンドリングが容易になり、バラツキのない良好なレーザー穴明け加工を行うことができ、バルク銅層と絶縁層構成材との良好な密着性を得ることができる。
 また、走査型電子顕微鏡を用いて、傾斜角45°、50000倍以上の倍率で当該粗化処理層の表面を平面的に観察したときに、互いに隣接する凸状部のうち、他の凸状部と分離観察可能な先端部分の長さが250nm以下であることが好ましい。ここで、「他の凸状部と分離観察可能な先端部分の長さ(以下、「先端部分の長さ」と略す場合がある)」とは、以下に示す長さをいう。例えば、走査型電子顕微鏡により粗化処理層の表面を観察すると、図2を参照しながら上述したように、当該粗化処理層の表面には凸状部が針状又は板状に突出しており、当該凸状部が銅層の表面に密集して設けられているため、銅層の表面から凸状部の基端部、即ち銅複合化合物からなる凸状部と銅箔との界面を観察することができない。そこで、上述のように当該銅層の粗化処理層を平面的に観察したときに、互いに密集しながら隣接する凸状部のうち、他の凸状部と分離して、一つの凸状部として独立に存在し得ると観察することが可能な部分を上記「他の凸状部と分離観察可能な先端部分」と称し、この先端部分の長さとは、当該凸状部の先端(即ち先端部分の先端)から、他の凸状部と分離観察可能な最も基端部側の位置までの長さをいうものとする。
 当該凸状部の先端部分の長さが250nm以下である場合、上記凸状部の最大長さは概ね500nm以下となる。上述のとおり、レーザー穴明け加工性能及び絶縁層構成材との密着性を考慮した場合、いずれの場合も凸状部の最大長さが長い方が好ましく、当該凸状部の先端部分の長さも長い方が好ましい。しかしながら、当該凸状部の先端部分の長さが長くなると、他の物体が接触した際などに損傷を受けやすくなる。そこで、良好なレーザー穴明け加工性能及び絶縁層構成材との密着性を維持しながら、耐擦傷性をより向上し、ハンドリングをより容易にするという観点から、当該凸状部の先端部分の長さは、200nm以下であることが好ましく、100nm以下であることがより好ましい。一方、当該凸状部の先端部分の長さが30nm未満になると、レーザー穴明け加工性能が低下すると共に、絶縁層構成材との密着性も低下する。このため、当該凸状部の先端部分の長さは30nm以上であることが好ましい。
 さらに、当該凸状部の上記最大長さに対して、当該凸状部の上記先端部分の長さが1/2以下であることが好ましい。当該比率が1/2以下である場合、他の凸状部と分離しながら、銅箔の表面から凸状部の先端部分が突出することにより、銅箔表面をこの微細凹凸構造により密に被覆することができる。
 さらに、当該粗化処理層において微細凹凸構造の表面に対して、クリプトンを吸着させて測定した比表面積(以下、単に「Kr吸着比表面積」と称する。)が、0.035m/g以上という条件を満足することが好ましい。このKr吸着比表面積が、0.035m/g以上になると、粗化処理層における上記凸状部の平均高さが200nmオーダーとなり、良好なレーザー穴明け加工性能及び耐擦傷性能を安定的に確保することができるからである。ここで、Kr吸着比表面積の上限を定めていないが、上限は概ね0.3m/g程度であり、より好ましくは0.2m/gである。なお、このときのKr吸着比表面積は、マイクロメリティクス社製 比表面積・細孔分布測定装置 3Flexを用いて、試料に300℃×2時間の加熱を前処理として行い、吸着温度に液体窒素温度、吸着ガスにクリプトン(Kr)を用いて測定している。
 次に、微細凹凸構造を構成する成分について述べる。上述したとおり、上記凸状部は銅複合化合物からなる。本件出願において、レーザー穴明け加工性能が良好であるという観点から、レーザー光吸収層としての粗化処理層において、当該銅複合化合物は酸化銅であることが最も好ましく、酸化銅を主成分とすると共に亜酸化銅を含有してもよい。また、いずれの場合も金属銅を少量含有してもよい。
 すなわち、X線光電子分光分析法 (X-ray Photoelectron Spectroscopy:以下、単に「XPS」と称する。)を用いて上記微細凹凸構造の構成元素を分析したときに得られるCu(I)のピーク面積とCu(II)のピーク面積との合計面積に対して、Cu(I)のピーク面積が占める割合(以下、占有面積率)は、当該粗化処理層をレーザー光吸収層として用いる場合は50%未満であることが好ましい。一方、当該粗化処理層を絶縁層構成材との接着層として用いる場合は、Cu(I)の専有面積率は50%以上であることが好ましい。
 ここで、XPSにより上記粗化処理層の構成元素を分析する方法を説明する。XPSにより微細凹凸構造の構成元素を分析すると、Cu(I)及びCu(II)の各ピークを分離して検出できる。但し、Cu(I)及びCu(II)の各ピークを分離して検出した場合、大きなCu(I)ピークのショルダー部分に、Cu(0)ピークが重複して観察される場合がある。このようにCu(0)のピークが重複して観察された場合は、このショルダー部分を含めてCu(I)ピークとみなすものとする。即ち、本願発明では、XPSを用いて微細凹凸構造を形成する銅複合化合物の構成元素を分析し、Cu 2p 3/2の結合エネルギーに対応する932.4eVに現れるCu(I)、及び934.3eVに現れるCu(II)の光電子を検出して得られる各ピークを波形分離して、各成分のピーク面積からCu(I)ピークの占有面積率を特定する。但し、XPSの分析装置としてアルバック・ファイ株式会社製のQuantum2000(ビーム条件:40W、200μm径)を用い、解析ソフトウェアとして「MultiPack ver.6.1A」を用いて状態・半定量用ナロー測定を行うことができる。
 以上のようにして得られたCu(I)ピークは、亜酸化銅(酸化第一銅:CuO)を構成する1価の銅に由来すると考えられる。そして、Cu(II)ピークは、酸化銅(酸化第二銅:CuO)を構成する2価の銅に由来すると考えられる。更に、Cu(0)ピークは、金属銅を構成する0価の銅に由来すると考えられる。従って、Cu(I)ピークの占有面積率が50%未満の場合には、当該粗化処理層を構成する銅複合化合物における亜酸化銅が占める割合が酸化銅が占める割合よりも小さい。レーザー穴明け加工性能を考慮した場合、当該Cu(I)ピークの占有率は小さいほど好ましい。すなわち、当該占有率は、40%未満、30%未満、20%未満等のように、その値が小さいほどレーザー穴明け加工性能が向上し、当該占有率が0%、すなわち微細凹凸構造を構成する凸状部が酸化銅のみからなることが最も好ましい。
 一方、バルク銅層の外表面に当該粗化処理層を設ける場合、バルク銅層の外表面の粗化処理層については、レーザー光照射面となるキャリア箔の外表面の粗化処理層とは異なり、銅複合化合物は酸化銅及び亜酸化銅を含有することが好ましく、亜酸化銅を主成分とすることがより好ましい。具体的には、バルク銅層の外表面に設けられた粗化処理層において、上記Cu(I)ピークの占有率は50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましく、90%以上であることが特に好ましい。
 Cu(I)ピークの占有面積率が50%未満の場合には、当該銅層に対してレーザー穴明け加工を施した後、更に、エッチング法により回路形成を行うと、エッチング液に微細凹凸構造の構成成分が溶解し易くなる。酸化銅は、亜酸化銅と比較すると、エッチング液等の酸に対する溶解性が高いためである。従って、Cu(I)ピークの占有面積率が50%未満の場合、事後的に銅層と絶縁層構成材との密着性が低下する恐れがあるため、好ましくない。
 当該バルク銅層の外表面の粗化処理層において、Cu(I)ピークの占有面積率の上限値は特に限定されるものではないが、99%以下であることが好ましい。Cu(I)ピークの占有面積率が低くなるほど、バルク銅層と絶縁層構成材との密着性が向上する傾向にある。従って、両者の良好な密着性を得るため、Cu(I)ピークの専有面積率は98%以下が好ましく、95%以下がより好ましい。なお、Cu(I)ピークの占有面積率は、Cu(I)/{Cu(I)+Cu(II)} ×100(%)の計算式で算出するものとする。
 以上述べた微細凹凸構造は、例えば、次のような湿式による粗化処理をキャリア箔付銅箔の両面(すなわち、キャリア箔の外表面及びバルク銅層の外表面)に施すことにより形成することができる。まず、湿式法でキャリア箔付銅箔の両面に酸化処理を施すことで、キャリア箔付銅箔の両面に酸化銅(酸化第二銅)を主成分とする銅複合化合物を形成する。これにより、酸化銅を主成分とする銅複合化合物からなる「針状又は板状の凸状部より形成された微細凹凸構造」をキャリア箔付銅箔の両面に形成することができる。その後、必要に応じて還元処理を施し、キャリア箔付銅箔の両面又は片面において酸化銅の一部を亜酸化銅(酸化第一銅)に還元することにより、酸化銅及び亜酸化銅を含有する銅複合化合物からなる「針状又は板状の凸状部より形成された微細凹凸構造」をキャリア箔付銅箔の両面又は片面に形成することができる。ここで、本件出願にいう「微細凹凸構造」自体は、酸化処理の段階で形成される。従って、酸化銅を主成分とする微細凹凸構造、又は酸化銅からなる微細凹凸構造を形成する場合は、酸化処理の後に還元処理を施さずに当該粗化処理を終了すればよい。一方、亜酸化銅を一定の割合で含む微細凹凸構造を形成する場合は、酸化処理の後に還元処理を施せばよい。還元処理を施しても、酸化処理の段階で微細凹凸構造の形状をほぼ維持したまま、酸化銅の一部を亜酸化銅に還元することができる。その結果、酸化銅及び亜酸化銅を含有する銅複合化合物からなる「微細凹凸構造」を形成することができる。このようにキャリア箔付銅箔の両面に湿式法等により酸化処理を施した後に、必要に応じて、必要な程度還元処理を施すことで、本件出願にいう「微細凹凸構造」を形成することができる。なお、酸化銅を主成分とする銅複合化合物、又は、酸化銅及び亜酸化銅を含有する銅複合化合物に金属銅が少量含有してもよい。
 例えば、上記湿式法による粗化処理を施す際には、水酸化ナトリウム溶液等のアルカリ溶液を用いることが好ましい。アルカリ溶液を用いてキャリア箔付銅箔の両面を酸化することにより、キャリア箔付銅箔の両面に針状又は板状の酸化銅を主成分とする銅複合化合物からなる凸状部を形成することができる。ここで、アルカリ溶液によりキャリア箔付銅箔の両面に対して酸化処理を施した場合、当該凸状部が長く成長し、その最大長さが500nmを超える場合があり、本件出願にいう微細凹凸構造を形成することが困難になる。そこで、上記微細凹凸構造を形成するために、キャリア箔付銅箔の両面における酸化を抑制可能な酸化抑制剤を含むアルカリ溶液を用いることが好ましい。
 このような酸化抑制剤として、例えば、アミノ系シランカップリング剤を挙げることができる。アミノ系シランカップリング剤を含むアルカリ溶液を用いて、キャリア箔付銅箔の両面に酸化処理を施せば、当該アルカリ溶液中のアミノ系シランカップリング剤がキャリア箔付銅箔の両面に吸着し、アルカリ溶液による酸化を抑制することができる。その結果、酸化銅の針状結晶の成長を抑制することができ、極めて微細な凹凸構造をキャリア箔付銅箔の両面に形成することができる。
 上記アミノ系シランカップリング剤として、具体的には、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等を用いることができる。これらはいずれもアルカリ性溶液に溶解し、アルカリ性溶液中に安定に保持されると共に、上述したキャリア箔付銅箔の両面の酸化を抑制する効果を発揮する。
 以上のように、アミノ系シランカップリング剤を含むアルカリ溶液により、キャリア箔付銅箔の両面に酸化処理を施すことにより形成された微細凹凸構造は、その後、還元処理を施してもその形状がほぼ維持される。その結果、酸化銅及び亜酸化銅を含み、これら銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層を形成することができる。なお、還元処理において、還元剤濃度、溶液pH、溶液温度等を調整することにより、微細凹凸構造を形成する銅複合化合物の構成元素をXPSを用いて定性分析したときに得られるCu(I)のピーク面積とCu(II)のピーク面積との合計面積に対して、Cu(I)のピークの占有面積率を適宜調整できる。また、例えば、キャリア箔付銅箔をアルカリ溶液に浸漬することにより、キャリア箔付銅箔の両面、すなわちキャリア箔の外表面及びバルク銅層の外表面にそれぞれ酸化銅を主成分とする微細凹凸構造を形成し、その後、バルク銅層の外表面の粗化処理層にのみ還元処理を施せば、レーザー光照射面はCu(I)のピークの占有率が0%、絶縁層構成材との接着面はCu(I)のピークの占有率が50%以上のキャリア箔付銅箔とすることができる。以上の方法で形成した微細凹凸構造の構成元素をXPSにより分析すると、「-COOH」の存在が検出される。
 上述したように酸化処理及び還元処理は湿式法により行うことができるため、処理溶液中にキャリア箔付銅箔を浸漬する等の方法によりキャリア箔付銅箔の両面に上記微細凹凸構造を形成することができる。よって、この湿式法を利用して、キャリア箔付銅箔の両面に微細凹凸構造を形成すると、レーザー光照射面側のレーザー穴明け加工性を良好にすると共に、当該微細凹凸構造によるナノアンカー効果により絶縁層構成材とバルク銅層との密着性を良好にすることができる。さらに、当該微細凹凸構造は、上述したとおり、耐擦傷性能が高いため、キャリア箔付銅箔の両面に当該微細凹凸構造が形成されていても、ハンドリングが容易であり、粉落ち等を防止することができる。
1-3.シランカップリング剤処理
 キャリア箔付銅箔において、上記バルク銅層の外表面の粗化処理層の表面に、シランカップリング剤処理層を設けることで、プリント配線板に加工したときの耐吸湿劣化特性を改善することができる。当該粗化処理面に設けるシランカップリング剤処理層は、シランカップリング剤としてオレフィン官能性シラン、エポキシ官能性シラン、ビニル官能性シラン、アクリル官能性シラン、アミノ官能性シラン及びメルカプト官能性シランのいずれかを使用して形成することが可能である。これらのシランカップリング剤は、一般式 R-Si(OR’)nで示される(ここで、R:アミノ基やビニル基などに代表される有機官能基、OR’:メトキシ基またはエトキシ基などに代表される加水分解基、n:2または3である。)。
 ここでいうシランカップリング剤として、プリント配線板用にプリプレグのガラスクロスに用いられると同様のカップリング剤を中心にビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、4-グリシジルブチルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、3-アクリロキシプロピルメトキシシラン、γ-メルカプトプロピルトリメトキシシラン等を用いることが可能である。
 ここに列挙したシランカップリング剤は、プリント配線板となった後の特性に悪影響を与えないものである。このシランカップリング剤の中でいずれの種類を使用するかは、当該銅張積層板の用途等に応じて、適宜選択が可能である。
 上述のシランカップリング剤は、水を主溶媒として、当該シランカップリング剤成分を0.5g/L~10g/Lの濃度範囲となるように含有させ、室温レベルの温度としたシランカップ剤処理液を用いることが好ましい。このシランカップ剤処理液のシランカップリング剤濃度が0.5g/Lを下回る場合は、シランカップリング剤の吸着速度が遅く、一般的な商業ベースの採算に合わず、吸着も不均一なものとなる。一方、当該シランカップ剤濃度が10g/Lを超えるものとしても、特に吸着速度が速くなることもなく、耐吸湿劣化性等の性能品質を特に向上させるものでもなく、不経済となるため好ましくない。
 このシランカップリング剤処理液を用いた粗化処理層の表面へのシランカップリング剤の吸着方法は、浸漬法、シャワーリング法、噴霧法等の採用が可能であり、特に限定はない。即ち、工程設計に合わせて、最も均一に当該粗化処理層の表面とシランカップリング剤処理液とを接触させ、吸着させることのできる方法であればよい。
 当該粗化処理層の表面にシランカップリング剤を吸着させた後は、十分な乾燥を行い、当該粗化処理層の表面にある-OH基と、吸着したシランカップリング剤との縮合反応を促進させ、縮合の結果生じる水分を完全に蒸発させる。このときの乾燥方法に関して特段の限定は無い。例えば、電熱器を使用しても、温風を吹き付ける衝風法であっても、特に制限はなく、製造ラインに応じた乾燥方法と乾燥条件を採用すればよい。但し、以上で説明したシランカップリング剤処理は、絶縁層構成材との密着性を向上させるためにバルク銅層の外表面の粗化処理層に対して施す処理であり、キャリア箔の外表面の粗化処理層には施す必要はない。
1-4.粗化処理層表面の明度L 
 上述したとおり微細凹凸構造を構成する最大長さが500nm以下の針状又は板状の凸状部は、炭酸ガスレーザーの波長よりも短く、且つ、可視光の波長域よりも短いピッチで配列されている。当該粗化処理層の表面に入射した光は、微細凹凸構造内で乱反射を繰り返す結果、減衰する。つまり、当該粗化処理層の表面は吸光面として機能し、当該粗化処理層の表面は粗化処理前と比較すると黒色、茶褐色等に暗色化する。即ち、本件出願に係る銅張積層板は、レーザー光吸収層として用いられるキャリア箔の外表面の粗化処理層の表面の色調にも特色があり、L表色系の明度L が30以下、より好ましくは25以下である。この明度L の値が30を超えて明るい色調となると、当該微細凹凸構造を構成する上記凸状部の最大長さが500nmを超える場合があるため好ましくない。また、明度L の値が30を超える場合、上記凸状部の最大長さが500nm以下であっても、当該凸状部がキャリア箔の外表面に十分に密集して設けられていない場合がある。つまり、明度L の値が30を超える場合、粗化処理の状態が不十分である、又は、粗化処理の状態にムラがあることが考えられ、キャリア箔を介してバルク銅層にレーザー穴明け加工に適した状態ではなく、好ましくない。そして、この明度L が25以下になると、上記粗化処理層の表面はレーザー穴明け加工に適したより好ましい状態となる。なお、明度L の測定は、日本電色工業株式会社製 分光色差計 SE2000を用いて、明度の校正には測定装置に付属の白色板を用い、JIS Z8722:2000に準拠して行った。そして、同一部位に関して3回の測定を行い、3回の明度L の測定データの平均値を、本件出願にいう明度L の値としている。なお、バルク銅層の外表面に設ける粗化処理層についても、絶縁層構成材との良好な密着性を得る上でも、明度Lの値はキャリア箔の外表面に設ける粗化処理層と同様である。但し、バルク銅層の外表面に設けた粗化処理層に対して上述のシランカップリング剤処理を施した場合でも、その前後において、当該粗化処理層の表面の明度Lの値に変動はない。
2.レーザー穴明け加工法の基本概念
 次に、図4を参照しながら、上記銅張積層板を用いてレーザー穴明け加工を施す方法について説明する。ここでは、図1(1-A)に示す態様と同様の層構成を有する銅張積層板1にレーザー穴明け加工を施す場合を例に挙げて説明する。本件出願に係る銅張積層板1は絶縁層構成材5の少なくとも片面に、本件出願に係るキャリア箔付銅箔11のバルク銅層14の接着層側を積層したものである。従って、図4(A)に示すように、レーザー光が照射される側の面(レーザー照射面)は、キャリア箔付銅箔11のキャリア箔12の外表面となる。キャリア箔12の外表面には上記微細凹凸構造を有する粗化処理層が備えられているため、キャリア箔12の外表面側からレーザー光を照射すればキャリア箔12とバルク銅層14とを同時にレーザー穴明けを行うことができる。その後、キャリア箔12を引き剥がすことで、レーザー穴明け加工で形成したビアホールの開口部の周囲に存在するスプラッシュがキャリア箔と共にバルク銅層の表面から除去され、開口部の周囲が平坦な図4(B)に示すようなビアホール10を形成することができる。
 ここで、本件出願においてレーザー光照射面となるキャリア箔の外表面に上記粗化処理層を設けることにより、レーザー穴明け加工性能を向上させる理由について考えてみる。まず、キャリア箔の外表面を上記粗化処理層とすることにより、上述したとおり、当該粗化処理層の表面は黒色又は茶褐色のマット面となりレーザー光の反射を抑制する。その結果、レーザー光の熱エネルギーを効率よくレーザー光照射部位に与えることができる。これに対して、銅張積層板のレーザー光照射面が銅層(キャリア箔又はバルク銅層をいう。以下、同じ)自体である場合、表面に粗化処理や黒化処理等が施されていない限り、銅層の表面は鏡面となり、レーザー光が反射されるため、レーザー光の熱エネルギーを効率よくレーザー光照射部位に与えることができない。
 また、銅の沸点は2562℃であるのに対して、酸化銅及び亜酸化銅の沸点はそれぞれ2000℃、1800℃であり、銅と比較すると酸化銅及び亜酸化銅の沸点は低い。このため、レーザー光を上記粗化処理層の表面に照射すると、銅層自体がレーザー光照射面である場合と比較して、粗化処理層表面のレーザー照射部位は早く沸点に達する。一方、銅の熱伝導率は、700℃において354W・m-1・K-1であるのに対して、酸化銅及び亜酸化銅の熱伝導率は、いずれも700℃において20W・m-1・K-1 以下である。すなわち、酸化銅及び亜酸化銅の熱伝導率は銅の熱伝導率に対して極めて小さい。一方、酸化銅及び亜酸化銅の融点はそれぞれ1201℃、1235℃であるのに対して、銅の融点は1083℃であり低い。このため、銅層自体がレーザー光照射面である場合と比較すると上記粗化処理層の表面にレーザー光を照射した場合、レーザー照射部位の外側に熱が伝達する速度が遅くなる。その結果、熱を深さ方向に集中させることができ、容易にキャリア箔及びバルク銅層の温度を融点以上にすることができる。このため、上記銅複合化合物からなる微細凹凸構造をレーザー光照射面に設けることにより、銅層自体がレーザー光照射面である場合と比較すると効率よくレーザー穴明け加工を行うことができる。
<プリント配線板の形態>
 本件出願に係るプリント配線板は、本件出願に係るキャリア箔付銅箔のバルク銅層を用いて形成された銅層を備えることを特徴とし、本件出願に係る銅張積層板を用いて製造されたものであってもよい。また、本件出願に係るプリント配線板において、当該銅層にはレーザー穴明け加工により形成されたビアホールを備えることも好ましい。例えば、図5~図7に示すようなビルドアップ工程により製造された多層プリント配線板とすることができる。
 以下、本件出願に係るプリント配線板の形態を製造方法と併せて、図5~図7を参照しながら説明する。但し、本件出願に係るプリント配線板の層構成や製造方法等は以下に説明する形態に限定されるものではなく、本件出願に係るキャリア箔付銅箔のバルク銅層を用いて形成された銅層を備えるものであれば、いかなる形態も含み得る。
 図5~図7には、いわゆるビルドアップ法による多層プリント配線板の製造工程の一例を示している。例えば、図5(A)に示すように、内層回路8を備える内層基板9の両面に、プリプレグ・樹脂フィルム等の絶縁層構成材5を介して、「キャリア箔12/剥離層13/バルク銅層14」の層構成を備えるキャリア箔付銅箔11を積層し、キャリア箔付第1ビルドアップ積層体40を得る。このとき絶縁層構成材5の一面側のみに、当該キャリア箔付銅箔11を積層してもよい。この図5(A)に示す例では、内層基板9としてその両面に内層回路8を備え、層間接続のためのフィルドビア(ビアホール)10が形成されたものを図示している。但し、内層基板9は図5(A)に示す形態に限定されるものではなく、その層構成等はどのようなものであってもよい。
 そして、図6(B)に示すように、キャリア箔付第1ビルドアップ積層体40のキャリア箔12の粗化処理層4の表面にレーザー光を照射して、レーザー穴明け加工を行う。このレーザー穴明け加工が終了すると、キャリア箔12を剥離層13で引き剥がすことで、レーザー穴明け加工で形成した穴の開口部の周囲に存在するスプラッシュを全て除去し、スプラッシュのない清浄なバルク銅層14の表面を露出させ、図6(C)に示す第1ビルドアップ層付積層体41の状態となる。なお、図6(B)に示すキャリア箔付第1ビルドアップ積層体40の場合、その両表面に上記微細凹凸構造を有する粗化処理層4が設けられたキャリア箔12が存在するため、当該キャリア箔付第1ビルドアップ積層体40の両面からレーザー穴明け加工を容易に行うことができる。そして、レーザー穴明け加工により生じた樹脂残渣を除去するためのデスミア処理を施し、ビアホール内をめっき充填してフィルドビア10とすると共に、バルク銅層の表面にめっき層24を形成する。そして、エッチング加工して第1ビルドアップ配線層31を形成することで、図7(D)に示す第1ビルドアップ配線層付積層体42を形成することができる。 
 更に、図7(D)に示す第1ビルドアップ配線層付積層体42の両面に、プリプレグ・樹脂フィルム等の絶縁層構成材5を介して、キャリア箔付銅箔11を積層すると、図7(E)に示す第2ビルドアップ配線層32を備えるキャリア箔付第2ビルドアップ積層体43となる。このようにして、図6(B)、図6(C)及び図7(D)と同様の操作を必要に応じて繰り返すことで、第n回路パターン層(n≧3:整数)を備えるビルドアップ積層体することもできる。このとき、絶縁層構成材5と、上述の「キャリア箔12/剥離層13/バルク銅層14」の層構成を備えるキャリア箔付銅箔11の使用に代えて、バルク銅層14の外表面に絶縁層を構成するための樹脂層を備える樹脂層付きのキャリア箔付銅箔を用いることも好ましい。
 そして、最終の積層が終了した多層積層板は、必要に応じてレーザー穴明け加工を施し、レーザー穴明け加工により生じた樹脂残渣を除去するためのデスミア処理を施し、ビアホール内をめっき充填してフィルドビアとすると共に、バルク銅層の表面にめっき層を形成し、その後外層の銅層をエッチング加工する等して、外層回路を形成して多層プリント配線板となる。
 本件出願に係るプリント配線板は、本件出願に係るキャリア箔付銅箔11を用いて製造することにより、レーザー穴明け加工後に、キャリア箔12を剥離層13で引き剥がすことで、レーザー穴明け加工で形成したビアホールの開口部の周囲に存在するスプラッシュを全て除去することができる。そのため、ビアホールの開口部周辺のバルク銅層表面が清浄な状態で、めっき加工・エッチング加工等によりビアホール内のめっき充填や回路形成を行うことができる。また、バルク銅層14の外表面の粗化処理層4により、層間絶縁層を構成する絶縁層構成材5との良好な密着性を得ることが可能になる。
 以下、実施例及び比較例を通じて、本件出願に係るキャリア箔付銅箔を用いて銅張積層板及びプリント配線板を製造したときの技術的優位性に関して述べる。
 本件出願に係るキャリア箔付銅箔を次のようにして作製した。まず、「キャリア箔/剥離層/バルク銅層」の層構成を備える未処理のキャリア箔付銅箔を用意した。当該未処理のキャリア箔付銅箔として、キャリア箔の外表面の表面粗さ(Rzjis)が5.3μm、光沢度[Gs(60°)]が2.1であり、キャリア箔の厚さが12μmであり、バルク銅層の厚さが1.5μmであり、剥離層が1,2,3-ベンゾトリアゾールを含む有機剥離層からなるものを用いた。この未処理のキャリア箔付銅箔のキャリア箔の外表面及びバルク銅層の外表面に対し、以下の手順で表面処理を施して、その両面に粗化処理層を備えた本件出願に係るキャリア箔付銅箔を得た。なお、表面粗さ、表面積比、光沢度の測定方法は次のとおりである。
〔粗度の測定〕
 小坂研究所製の触針式表面粗さ計 SE3500を用い、JIS B 0601-2001に準拠して表面粗度の測定を行った。
〔表面積比の測定〕
 株式会社キーエンス レーザーマイクロスコープ VK-X100を用い、57570μmの二次元領域をレーザー法により測定したときの表面積Aに基づいて、上述した計算式に従って表面積比(B)を求めた。
〔光沢度の測定〕
 日本電色工業株式会社製光沢計PG-1M型を用い、光沢度の測定方法であるJIS Z 8741-1997に準拠して、光沢度の測定を行った。
 このキャリア箔付銅箔に対して、予備処理を施した後、粗化処理を施した。以下、順に説明する。
予備処理: 当該キャリア箔付銅箔を、水酸化ナトリウム水溶液に浸漬して、アルカリ脱脂し、水洗した。そして、このアルカリ脱脂したキャリア箔付銅箔を、硫酸濃度が5質量%の硫酸系水溶液に1分間浸漬した後、水洗した。
粗化処理: 前記予備処理を施したキャリア箔付銅箔に対して、酸化処理を施した。酸化処理では、当該キャリア箔付銅箔11を、液温70℃、pH=12、亜塩素酸濃度150g/L、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン濃度10g/Lを含む水酸化ナトリウム溶液に、所定の酸化処理時間(1分間、2分間、4分間、10分間)浸漬して、キャリア箔付銅箔11の両面に酸化銅を含有する銅化合物を形成した。
 次に、酸化処理の終了したキャリア箔付銅箔を、炭酸ナトリウムと水酸化ナトリウムを用いてpH=12に調整したジメチルアミンボラン濃度20g/Lの水溶液(室温)中に1分間浸漬して還元処理を施し、水洗、乾燥した。これらの工程により、本件出願に係る微細凹凸構造をキャリア箔の外表面及びバルク銅層の外表面に備えた4種類のキャリア箔付銅箔を得た。
 これらの4種類のキャリア箔付銅箔を試料として、各試料のキャリア箔の粗化処理層の表面を、XPSを用いて定性分析した。その結果、全試料において「酸化銅」、「亜酸化銅」の存在が明瞭に確認された。各試料のCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率は、それぞれ表1に示すとおりである。なお、この定性分析の結果、全ての試料において「-COO基」の存在が明瞭に確認された。Cu(I)のピークの占有面積率と共に、各試料のキャリア箔の外表面の粗化処理層の表面のKr吸着比表面積及び明度L を表1に纏めて示す。なお、表1においては、「Kr吸着比表面積」を、単に「比表面積」と表示している。
 また、上述の4種類の試料を絶縁層構成材の両面にそれぞれ当接させ、真空プレス機を使用して、プレス圧3.9MPa、温度220℃、プレス時間90分の条件で積層した。但し、絶縁層構成材として、三菱瓦斯化学株式会社製のプリプレグGFPL-830NSを用いた。これにより、キャリア箔付銅箔を絶縁層構成材の両面に備えた銅張積層板を得た。
 さらに、上述の4種類の試料を上述した方法で絶縁層構成材の片面に積層した後、キャリア箔を引き剥がし、露出したバルク銅層にめっき銅層を付着形成し、厚さ18μmの銅層を備えた銅張積層板を作製した。そして、当該試料を用いて、エッチング法により、0.4mm幅の引き剥がし強さ測定用の直線回路を備える試験基板を作製した。そして、JIS C6481(1996)に準拠して、各試験基板の引き剥がし強さを測定した。
 実施例2では、実施例1と同じ未処理のキャリア箔付銅箔を用い、予備処理の終了した未処理のキャリア箔付銅箔に対して、その両面に酸化処理(酸化処理時間2分間)を施した後、キャリア箔の外表面には還元処理を施さず、バルク銅層の外表面にのみ、実施例1と同じ還元処理溶液をシャワー噴霧することにより還元処理を施した以外は実施例1と同様にして、本件出願に係る微細凹凸構造をキャリア箔の外表面及びバルク銅層の外表面に備えたキャリア箔付銅箔を得た。そして、実施例1と同様にして、各面におけるCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率、キャリア箔の粗化処理層の表面のKr吸着比表面積及び明度Lを求めた。その結果を表1に示す。なお、実施例2のキャリア箔付銅箔についても「-COO基」の存在が明瞭に確認された。さらに、実施例1と同様にして銅張積層板を得ると共に、引き剥がし強さ測定用の試験基板を作製し、引き剥がし強さを測定した。
比較例
[比較例1]
 比較例1では、実施例1と同じキャリア箔付銅箔を用い、そのキャリア箔の外表面には粗化処理を施さず、バルク銅層の外表面にのみ従来の粗化処理(硫酸銅系銅電解液で形成する微細銅粒子を用いた粗化処理)を施した。このようにして得られた比較例1のキャリア箔付銅箔を用いて、実施例1と同様にして銅張積層板を得た。
[比較例2]
 比較例2では、実施例1と同じ未処理のキャリア箔付銅箔を用い、実施例1と同じ予備処理を施し、両面に黒化処理を施し、更に還元処理を施し、キャリア箔の外表面及びバルク銅層の外表面に、従来の還元黒化処理層を備えたキャリア箔付銅箔を得た。以下、黒化処理及び還元処理の手順を説明する。
黒化処理: 前記予備処理の終了したキャリア箔付銅箔に対して、一般的な黒化処理を施した。酸化処理では、ローム・アンド・ハース電子材料株式会社製の酸化処理液である「PRO BOND 80A OXIDE SOLUTION」10vol%、「PRO BOND 80B OXIDE SOLUTION」20vol%含有する液温85℃の水溶液に5分間浸漬し、黒化処理とした。
還元処理: 黒化処理を施したキャリア箔付銅箔に対して還元処理を施した。還元処理では、ローム・アンド・ハース電子材料株式会社製の還元処理液である「CIRCUPOSIT PB OXIDE CONVERTER 60C」6.7vol%、「CUPOSIT Z」1.5vol%含有する液温35℃の水溶液に5分間浸漬して、水洗し、乾燥した。これらの工程により、一般的な還元黒化処理層を備えるキャリア箔付銅箔を得た。そして、実施例1と同様にして、各面におけるCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対する、Cu(I)のピークの占有面積率、キャリア箔の粗化処理層の表面のKr吸着比表面積及び明度Lを求めた。その結果を表1に示す。 
 また、以上のようにして得られたキャリア箔付銅箔を用いて、実施例1と同様にして銅張積層板を得ると共に、引き剥がし強さ測定用の試験基板を作製し、引き剥がし強さを測定した。
[評価結果]
 以下の表1に、実施例1、実施例2及び比較例2で得られたキャリア箔付銅箔のキャリア箔表面に形成した微細凹凸構造の比表面積、明度L 、バルク銅層の外表面の粗化処理層側を絶縁層構成材に積層したときの引き剥がし強さに関する測定結果を示す。また、図8に実施例1で得られたキャリア箔付銅箔を用いて作製した回路幅8μm/回路間ギャップ幅8μmの直線回路の走査型電子顕微鏡観察像を示す。
Figure JPOXMLDOC01-appb-T000001
 この表1から理解できるように、酸化処理時間が1分~10分の間で変動しても、実施例に係るキャリア箔付銅箔のキャリア箔の外表面に形成した微細凹凸の凸状部の最大長さは500nm以下であり、微細凹凸の定性分析において検出される内容にも違いはない。更に、粗化処理層の表面の明度Lの値に関しても、18~25と非常にバラツキの少ない値を示している。これに対し、Kr吸着比表面積は、酸化処理時間の増加に比例して、値が大きくなっている。そこで、この4種類のキャリア箔付銅箔のバルク銅層の外表面の接着層側を絶縁層構成材に積層して、引き剥がし強さを測定すると、最も短い酸化処理時間であっても、実用的に十分な引き剥がし強さが得られており、Kr吸着比表面積の値に比例した引き剥がし強さが得られていることがわかる。このことから、実施例で採用した酸化処理時間は、適正なものと理解できる。
実施例と比較例1との対比: ここでは、レーザー穴明け加工性能について検討する。実施例で得られたキャリア箔付銅箔を用いた銅張積層板及び比較例1で得られた銅張積層板に対して、炭酸ガスレーザーをレーザー光源として、キャリア箔側からレーザー光を照射した。このとき、マスク径2.0mm、パルス幅14μsec.、パルスエネルギー19.3mJ、オフセット0.8、レーザー光径153μmのレーザー照射条件を採用し、キャリア箔付銅張積層板のバルク銅層に60μmの加工径の穴を形成することを予定して、各銅張積層板に対して100ショットのビアホール形成試験を行った。そして、レーザー照射を行った後、キャリア箔を除去し、バルク銅層に形成された穴径が60μm以上である場合に加工が良好に行われたと判断した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例の場合には、全ての銅張積層板において、良好なレーザー穴明け加工ができていると判断できる。これに対し、比較例1の場合、実施例に適用した同様のレーザー加工条件では、キャリア箔とバルク銅層とを同時に穴明けすることは困難であった。なお、表2にいう開口率とは、100ショットのビアホール形成試験を行い、レーザー穴明けできたショット数の割合である。そして、開口径分布とは、100ショットのビアホール形成試験で得られたビアホールの開口径を測定したときの分布幅である。
実施例と比較例2との対比: 比較例2について上記と同様にしてレーザー穴明け加工性能を評価したところ、比較例2の銅張積層板のレーザー穴明け加工性能は実施例と同等であった。しかし、比較例2の銅張積層板では、そのキャリア箔の外表面にある還元黒化処理層の表面に、スリ傷・擦れ等が発生し易い傾向があった。スリ傷・擦れ等が発生した還元黒化処理層の表面は光沢を帯びていた。還元黒化処理層の表面が光沢を帯びていた場合、レーザー穴明け加工性能が著しく低下し、その銅張積層板に対してはレーザー穴明け加工を施すことができなかった。一方、本件出願に係るレーザー穴明け加工用のキャリア箔付銅箔ではスリ傷・擦れ等が発生せず、レーザー穴明け加工性能の低下が起こらなかった。
 更に、実施例1で得られたレーザー穴明け加工用のキャリア箔付銅箔と、比較例1及び比較例2で用いたキャリア箔付銅箔とを用いて、MSAP(Modified Semi Additive Process)工法で回路高さ12μm、回路幅8μm/回路間ギャップ幅8μmの直線回路の形成を試みた。その結果、実施例で得られたキャリア箔付銅箔を用いた銅張積層板の場合、図8に示す走査型電子顕微鏡観察像(図8(a)は斜視観察像、図8(b)は断面観察像)から分かるように上記直線回路が得られた。これに対し、比較例1及び比較例2で得られた銅張積層板の場合は、実施例と比較するとエッチング時間が長くなり、上記直線回路を得ることができなかった。微細銅粒や還元黒化処理層を完全にエッチング除去するまでに時間を要し、その間に回路の浸食が進み、回路高さが低くなり、回路幅も細くなるためである。従って、従来公知の微細銅粒や還元黒化処理による粗化処理では、回路幅8μm/回路間ギャップ幅8μmの回路形成が困難であることが理解できる。
 本件出願に係るキャリア箔付銅箔を用いることで、レーザー穴明け加工で形成した穴の開口部の周囲に存在するスプラッシュを全て除去し、清浄な銅層を備える銅張積層板の提供が可能となる。その結果、当該スプラッシュに起因して起こる不良を排除して、高品質の多層プリント配線板を提供できるようになる。また、本件出願に係るキャリア箔付銅箔において、キャリア箔及びバルク銅層の粗化処理層を「銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造」で構成することで、従来以上のファインピッチ回路の形成が可能となる。そして、本件出願に係るキャリア箔付銅箔を用いれば、従来の製造方法の工程変更を必要せず、ビルドアップ法、コアレスビルドアップ法により多層プリント配線板を製造することができ、高品質のプリント配線板の提供が可能となる。
1  (キャリア箔付)銅張積層板
2  銅箔
3  電極面側の粗化処理面
4  析出面側の粗化処理面
5  絶縁層構成材
8  内層回路
9  内層基板
10 フィルドビア(ビアホール)
11 キャリア箔付銅箔
12 キャリア箔
13 剥離層
14 バルク銅層
23 第1ビルドアップ配線回路
24 めっき層
31 第1ビルドアップ配線層
32 第2ビルドアップ配線層
40 キャリア箔付第1ビルドアップ積層体
41 第1ビルドアップ層付積層体
42 第1ビルドアップ配線層付積層体
43 キャリア箔付第2ビルドアップ積層体

Claims (13)

  1. キャリア箔/剥離層/バルク銅層の層構成を備えるキャリア箔付銅箔であって、
     当該キャリア箔付銅箔の両面に、銅複合化合物からなる最大長さが500nm以下の針状又は板状の凸状部により形成された微細凹凸構造を有する粗化処理層を備え、
     当該キャリア箔の表面に備えられた粗化処理層はレーザー光吸収層として用いられ、
     当該バルク銅層の表面に備えられた粗化処理層は絶縁層構成材との接着層として用いられることを特徴とするキャリア箔付銅箔。
  2. X線光電子分光分析法により前記微細凹凸構造の構成元素を分析したときに得られるCu(I)のピーク面積と、Cu(II)のピーク面積との合計面積に対して、Cu(I)のピーク面積が占める割合が、前記レーザー光吸収層としての粗化処理層が50%未満であり、前記接着層としての粗化処理層が50%以上である請求項1に記載のキャリア箔付銅箔。
  3. 前記レーザー光吸収層としての粗化処理層は、酸化銅を主成分とする銅複合化合物からなる前記微細凹凸構造を有し、前記接着層としての粗化処理層は、亜酸化銅を主成分とする銅複合酸化物からなる前記微細凹凸構造を有する請求項1又は請求項2に記載のキャリア箔付銅箔。
  4. 走査型電子顕微鏡を用いて、傾斜角45°、50000倍以上の倍率で前記粗化処理層を観察したときに、互いに隣接する凸状部のうち、他の凸状部と分離観察可能な先端部分の長さが250nm以下である請求項1~請求項3のいずれか一項に記載のキャリア箔付銅箔。
  5. 前記凸状部の前記最大長さに対して、前記凸状部の前記先端部分の長さが1/2以下である請求項4に記載のキャリア箔付銅箔。
  6. 前記粗化処理層の表面にクリプトンを吸着して測定した比表面積が0.035m/g以上である請求項1~請求項5のいずれか一項に記載のキャリア箔付銅箔。
  7. 前記粗化処理層の表面をL表色系で表したときの明度Lが30以下である請求項1~請求項6のいずれか一項に記載のキャリア箔付銅箔。
  8. 前記粗化処理層を57570μmの二次元領域をレーザー法で測定したときの表面積を三次元表面積(Aμm)とし、前記二次元領域の面積に対する三次元表面積の比をBとしたとき、Bが1.1以上である請求項1~請求項7のいずれか一項に記載のキャリア箔付銅箔。
  9. 前記バルク銅層の前記接着層側の表面粗さ(Rzjis)が2.0μm以下である請求項1~請求項8のいずれか一項に記載のキャリア箔付銅箔。
  10. 前記バルク銅層の前記接着層側の面にはシランカップリング剤処理が施される請求項1~請求項9のいずれか一項に記載のキャリア箔付銅箔。
  11. 請求項1~請求項10のいずれか一項に記載のキャリア箔付銅箔の前記バルク銅層の前記接着層側を絶縁層構成材の少なくとも片面に積層したことを特徴とする銅張積層板。
  12. 請求項1~請求項10のいずれか一項に記載のキャリア箔付銅箔の前記バルク銅層を用いて形成された銅層を備えることを特徴とするプリント配線板。
  13. 前記銅層には、レーザー穴明け加工により形成されたビアホールを備える請求項12に記載のプリント配線板。
PCT/JP2015/058928 2014-03-31 2015-03-24 キャリア箔付銅箔、銅張積層板及びプリント配線板 WO2015151935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015516127A JP5925961B2 (ja) 2014-03-31 2015-03-24 キャリア箔付銅箔、銅張積層板及びプリント配線板の製造方法
KR1020167020522A KR101713505B1 (ko) 2014-03-31 2015-03-24 캐리어박이 구비된 구리박, 구리 클래드 적층판 및 프린트 배선판
CN201580013402.8A CN106103082B (zh) 2014-03-31 2015-03-24 带有载体箔的铜箔、覆铜层压板及印刷线路板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014073432 2014-03-31
JP2014-073432 2014-03-31
JP2014167806 2014-08-20
JP2014-167806 2014-08-20

Publications (1)

Publication Number Publication Date
WO2015151935A1 true WO2015151935A1 (ja) 2015-10-08

Family

ID=54240262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058928 WO2015151935A1 (ja) 2014-03-31 2015-03-24 キャリア箔付銅箔、銅張積層板及びプリント配線板

Country Status (5)

Country Link
JP (1) JP5925961B2 (ja)
KR (1) KR101713505B1 (ja)
CN (1) CN106103082B (ja)
TW (1) TWI589433B (ja)
WO (1) WO2015151935A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199824A (ja) * 2016-04-28 2017-11-02 株式会社ジェイデバイス 半導体パッケージの製造方法
WO2021001905A1 (ja) * 2019-07-01 2021-01-07 三菱電機株式会社 レーザ加工装置、レーザ加工方法、レーザ加工装置の制御装置および機械学習装置
JP2021014623A (ja) * 2019-07-12 2021-02-12 パナソニックIpマネジメント株式会社 金属基材付薄膜金属箔、金属張透明基材材料、透視型電極用積層板、及び透視型電極素材

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI616336B (zh) * 2016-03-03 2018-03-01 三井金屬鑛業股份有限公司 Method for manufacturing copper-clad laminate
CN107475698B (zh) * 2017-06-23 2020-04-10 安庆师范大学 一种超薄铜箔剥离层Ni-Cr-B-P的制备方法
JP6962803B2 (ja) * 2017-12-11 2021-11-05 Dowaホールディングス株式会社 クラッド材およびその製造方法
EP3857246A1 (de) * 2018-11-02 2021-08-04 Klaus Faber AG VERFAHREN ZUR ELEKTRISCHEN MESSUNG UND VERWENDUNG EINER MESSTECHNIK ZUR BESTIMMUNG DES VERSCHLEIßZUSTANDES VON ELEKTRISCHEN LEITUNGEN, SOWIE KABELVERSCHLEIßZUSTANDSMESSVORRICHTUNG
US10581081B1 (en) * 2019-02-01 2020-03-03 Chang Chun Petrochemical Co., Ltd. Copper foil for negative electrode current collector of lithium ion secondary battery
WO2021079952A1 (ja) * 2019-10-25 2021-04-29 ナミックス株式会社 複合銅部材
KR102454686B1 (ko) * 2020-12-30 2022-10-13 에스케이씨 주식회사 표면 처리 동박 및 이를 포함하는 회로 기판
WO2024043581A1 (ko) * 2022-08-24 2024-02-29 코오롱인더스트리 주식회사 절연 필름 및 이를 포함하는 적층체

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153797A (en) * 1980-04-28 1981-11-27 Hitachi Chemical Co Ltd Method of manufacturing multilayer printed circuit board substrate
JP2001068816A (ja) * 1999-08-24 2001-03-16 Mitsui Mining & Smelting Co Ltd 銅張積層板及びその銅張積層板を用いたレーザー加工方法
JP2004006612A (ja) * 2002-04-12 2004-01-08 Mitsui Mining & Smelting Co Ltd キャリア箔付銅箔及びそのキャリア箔付銅箔の製造方法並びにそのキャリア箔付銅箔を用いた銅張積層板
JP2006249519A (ja) * 2005-03-11 2006-09-21 Hitachi Chem Co Ltd 銅の表面処理方法及び銅
JP2014053342A (ja) * 2012-09-05 2014-03-20 Mitsui Mining & Smelting Co Ltd プリント配線板の製造方法及びプリント配線板
WO2014126193A1 (ja) * 2013-02-14 2014-08-21 三井金属鉱業株式会社 表面処理銅箔及び表面処理銅箔を用いて得られる銅張積層板
WO2015040998A1 (ja) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 銅箔、キャリア箔付銅箔及び銅張積層板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6199596A (ja) * 1984-10-22 1986-05-17 Hitachi Ltd 基板の穴あけ方法
TW469758B (en) * 1999-05-06 2001-12-21 Mitsui Mining & Amp Smelting C Manufacturing method of double-sided printed circuit board and multi-layered printed circuit board with more than three layers
DE20015125U1 (de) * 2000-08-31 2000-12-07 Reitter & Schefenacker Gmbh Außenrückblickspiegel für Fahrzeuge, vorzugsweise für Kraftfahrzeuge
US7026059B2 (en) * 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
JP2006312265A (ja) * 2005-05-09 2006-11-16 Furukawa Circuit Foil Kk キャリア付き極薄銅箔および該極薄銅箔を用いたプリント配線板、多層プリント配線板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153797A (en) * 1980-04-28 1981-11-27 Hitachi Chemical Co Ltd Method of manufacturing multilayer printed circuit board substrate
JP2001068816A (ja) * 1999-08-24 2001-03-16 Mitsui Mining & Smelting Co Ltd 銅張積層板及びその銅張積層板を用いたレーザー加工方法
JP2004006612A (ja) * 2002-04-12 2004-01-08 Mitsui Mining & Smelting Co Ltd キャリア箔付銅箔及びそのキャリア箔付銅箔の製造方法並びにそのキャリア箔付銅箔を用いた銅張積層板
JP2006249519A (ja) * 2005-03-11 2006-09-21 Hitachi Chem Co Ltd 銅の表面処理方法及び銅
JP2014053342A (ja) * 2012-09-05 2014-03-20 Mitsui Mining & Smelting Co Ltd プリント配線板の製造方法及びプリント配線板
WO2014126193A1 (ja) * 2013-02-14 2014-08-21 三井金属鉱業株式会社 表面処理銅箔及び表面処理銅箔を用いて得られる銅張積層板
WO2015040998A1 (ja) * 2013-09-20 2015-03-26 三井金属鉱業株式会社 銅箔、キャリア箔付銅箔及び銅張積層板

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017199824A (ja) * 2016-04-28 2017-11-02 株式会社ジェイデバイス 半導体パッケージの製造方法
WO2021001905A1 (ja) * 2019-07-01 2021-01-07 三菱電機株式会社 レーザ加工装置、レーザ加工方法、レーザ加工装置の制御装置および機械学習装置
JP2021014623A (ja) * 2019-07-12 2021-02-12 パナソニックIpマネジメント株式会社 金属基材付薄膜金属箔、金属張透明基材材料、透視型電極用積層板、及び透視型電極素材

Also Published As

Publication number Publication date
JP5925961B2 (ja) 2016-05-25
CN106103082B (zh) 2019-04-26
CN106103082A (zh) 2016-11-09
KR20160095178A (ko) 2016-08-10
TW201605611A (zh) 2016-02-16
KR101713505B1 (ko) 2017-03-07
JPWO2015151935A1 (ja) 2017-04-13
TWI589433B (zh) 2017-07-01

Similar Documents

Publication Publication Date Title
JP5925961B2 (ja) キャリア箔付銅箔、銅張積層板及びプリント配線板の製造方法
JP5901848B2 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
JP6297124B2 (ja) 銅箔、キャリア箔付銅箔及び銅張積層板
WO2017179416A1 (ja) 表面処理銅箔、キャリア付銅箔、並びにそれらを用いた銅張積層板及びプリント配線板の製造方法
JP6352449B2 (ja) キャリア付極薄銅箔及びその製造方法
JP6293365B2 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2018211951A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2019188712A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2010074061A1 (ja) 電子回路用の圧延銅箔又は電解銅箔及びこれらを用いた電子回路の形成方法
TW201942422A (zh) 表面處理銅箔、覆銅層積板、及印刷配線板的製造方法
JP2009235580A (ja) レーザー穴開け用銅箔
JP5702942B2 (ja) エッチング性に優れたプリント配線板用銅箔及びそれを用いた積層体
JP6304829B2 (ja) レーザー加工用銅箔、キャリア箔付レーザー加工用銅箔、銅張積層体及びプリント配線板の製造方法
JP5406099B2 (ja) エッチング性に優れたプリント配線板用銅箔及び積層体
KR101400778B1 (ko) 레이저 가공용 동박, 이를 채용한 동부착적층판 및 상기 동박의 제조방법
JP2011210984A (ja) 耐加熱変色性及びエッチング性に優れたプリント配線板用銅箔及び積層体
JP2011207092A (ja) エッチング性に優れたプリント配線板用銅箔又は銅層と絶縁基板との積層体
JP2012235061A (ja) 積層体及びこれを用いたプリント配線板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015516127

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167020522

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase
122 Ep: pct application non-entry in european phase

Ref document number: 15773216

Country of ref document: EP

Kind code of ref document: A1