WO2018211951A1 - 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板 - Google Patents

粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板 Download PDF

Info

Publication number
WO2018211951A1
WO2018211951A1 PCT/JP2018/017276 JP2018017276W WO2018211951A1 WO 2018211951 A1 WO2018211951 A1 WO 2018211951A1 JP 2018017276 W JP2018017276 W JP 2018017276W WO 2018211951 A1 WO2018211951 A1 WO 2018211951A1
Authority
WO
WIPO (PCT)
Prior art keywords
roughened
copper foil
particles
carrier
copper
Prior art date
Application number
PCT/JP2018/017276
Other languages
English (en)
French (fr)
Inventor
翼 加藤
光由 松田
浩人 飯田
哲聡 ▲高▼梨
吉川 和広
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to JP2018546913A priority Critical patent/JP6430092B1/ja
Priority to CN201880016577.8A priority patent/CN110382745B/zh
Priority to KR1020197027210A priority patent/KR102297790B1/ko
Priority to MYPI2019006734A priority patent/MY194654A/en
Publication of WO2018211951A1 publication Critical patent/WO2018211951A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/16Electroplating with layers of varying thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/188Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by direct electroplating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/381Improvement of the adhesion between the insulating substrate and the metal by special treatment of the substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils

Definitions

  • the present invention relates to a roughened copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
  • the SAP method is a method suitable for forming an extremely fine circuit, and as an example, it is performed using a roughened copper foil with a carrier.
  • a roughened copper foil 110 is pressed and adhered to an insulating resin substrate 111 having a base substrate 111a and a lower layer circuit 111b (a prepreg 112 and a primer layer 113).
  • a via hole 114 is formed by laser drilling as necessary (step (b)).
  • the roughened copper foil 110 is removed by etching to expose the primer layer 113 having the roughened surface profile (step (c)).
  • the electroless copper plating 115 is applied to the roughened surface (step (d))
  • it is masked with a predetermined pattern by exposure and development using the dry film 116 (step (e)), and the electrolytic copper plating 117 is applied.
  • Step (f) After the dry film 116 was removed to form the wiring portion 117a (step (g)), unnecessary electroless copper plating 115 between the adjacent wiring portions 117a and 117a was removed by etching (step (h)).
  • a wiring 118 formed in a predetermined pattern is obtained.
  • the roughened copper foil itself is removed by etching after laser drilling (step (c)).
  • an insulating layer for example, primer layer 113 or it
  • adhesion between the prepreg 112) and the plating circuit for example, the wiring 118
  • the surface profile suitable for improving the adhesion to the plating circuit tends to be rough unevenness in general, the etching property for the electroless copper plating tends to be lowered in the step (h). That is, as the electroless copper plating bites into rough irregularities, more etching is required to eliminate residual copper.
  • Patent Document 1 International Publication No. 2016/158775 discloses a roughened copper foil having a roughened surface on at least one side, the roughened surface being a plurality of substantially spherical shapes made of copper particles. It is disclosed that a projection is provided, and the average height of the substantially spherical projection is 2.60 ⁇ m or less.
  • Patent Document 1 has a limit in reducing the diameter of the roughened particles while ensuring circuit adhesion, and the diameter of the roughened particles is reduced so that the ten-point average roughness Rz is less than 1.7 ⁇ m. It ’s difficult. This is because circuit adhesion deteriorates when the diameter of coarse particles is reduced in order to refine the circuit in the SAP method.
  • the present inventors have provided sufficient circuit adhesion by providing secondary roughened particles smaller than the primary roughened particles at a sufficient density on the surface of the primary roughened particles having a constricted portion (particularly the constricted portion).
  • the fact that the coarse particles can be reduced to a level suitable for forming a thin wire circuit having a ten-point average roughness Rz of 1.7 ⁇ m or less was obtained. That is, the surface has excellent circuit adhesion as well as excellent etching property for electroless copper plating when used in the SAP method, although it is a low-roughness roughened copper foil suitable for fine wire circuit formation.
  • the knowledge that a profile can be given to a laminated body was acquired.
  • the knowledge that extremely fine dry film resolution was realizable was also acquired in the dry film image development process in SAP method by using the said roughening process copper foil.
  • the object of the present invention is to provide only a low-roughness roughened copper foil suitable for forming a thin wire circuit, but only etching property and dry film resolution for electroless copper plating when used in the SAP method. It is another object of the present invention to provide a roughened copper foil that can impart a surface profile excellent in circuit adhesion to a laminate. Moreover, the other object of this invention is to provide the copper foil with a carrier provided with such a roughening process copper foil.
  • a roughened copper foil having a roughened surface on at least one side comprising a plurality of primary roughened particles having a constricted portion
  • the primary roughened particles have a plurality of secondary roughened particles smaller than the primary roughened particles on the surface including the constricted portion
  • the density of secondary roughened particles which is a value obtained by dividing the number of the secondary roughened particles in the constricted portion by the surface area of the constricted portion, is 9 to 30 particles / ⁇ m 2 , and 10% of the roughened surface.
  • a roughened copper foil having a point average roughness Rz of 0.7 to 1.7 ⁇ m is provided.
  • a carrier a release layer provided on the carrier, and the roughened copper foil provided on the release layer with the roughened surface facing outside.
  • the provided copper foil with a carrier is provided.
  • a copper clad laminate obtained using the roughened copper foil or the carrier-attached copper foil.
  • a printed wiring board obtained using the roughened copper foil or the carrier-attached copper foil.
  • the “primary roughened particles” are roughened particles having a size exceeding 150 nm, which are directly formed on the base surface 10a of the roughened copper foil 10, as schematically shown in FIGS. 12 and typically has the form of a “substantially spherical protrusion”.
  • the “substantially spherical protrusion” is a protrusion having a substantially spherical round shape, and is distinguished from an anisotropic shape protrusion or particle such as a needle shape, a columnar shape, and an elongated shape. is there. As shown as primary roughened particles 12 in FIGS.
  • the primary roughened particles 12 and the particle size thereof can be specified by analyzing a cross-sectional image acquired by SEM observation using commercially available software. For example, three-dimensional analysis software Amira (Thermo Fisher, manufactured by SCIENTIFIC) can be used and image processing can be performed according to various conditions described in the examples of the present specification.
  • the “secondary roughened particles” are formed on the base bottom surface 10a of the roughened copper foil 10 and the surfaces of the primary roughened particles 12 as schematically shown in FIGS. It means the roughened particles 14 that are smaller than the primary roughened particles 12, that is, the size of 150 nm or less.
  • the secondary roughened particles 14 may also be granular protrusions such as substantially spherical protrusions.
  • the secondary roughened particles 14 and the particle diameter thereof can be specified by analyzing a cross-sectional image acquired by SEM observation using commercially available software. For example, three-dimensional analysis software Amira (Thermo Fisher, manufactured by SCIENTIFIC) can be used and image processing can be performed according to various conditions described in the examples of the present specification.
  • the “necked portion” means a portion 12a that is hidden by itself when the primary roughened particles 12 are viewed from directly above, as schematically shown in FIG. That is, it means a portion having a neck diameter less than the maximum neck diameter of the primary roughened particles 12 and a portion 12a closer to the basal plane 10a than the maximum neck diameter.
  • the constricted portion can be determined by analyzing a cross-sectional image obtained by SEM observation using commercially available software. For example, three-dimensional analysis software Amira (Thermo Fisher, manufactured by SCIENTIFIC) can be used and image processing can be performed according to various conditions described in the examples of the present specification.
  • electrode surface refers to the surface on the side in contact with the cathode when the metal is electrolytically deposited.
  • the “deposition surface” refers to a surface on which a metal is electrolytically deposited, that is, a surface not in contact with the cathode.
  • the copper foil according to the present invention is a roughened copper foil.
  • This roughened copper foil has a roughened surface on at least one side.
  • the roughened surface is provided with a plurality of primary roughened particles 12 having a constricted portion 12a.
  • the primary roughened particles 12 have a plurality of secondary roughened particles 14 smaller than the primary roughened particles 12 on the surface including the constricted portion 12a.
  • Secondary roughening particle density is divided by the surface area of the constricted portion 12a, the number of secondary roughening particles 14 of the constricted portion 12a is 9 to 30 / [mu] m 2.
  • the ten-point average roughness Rz of the roughened surface is 0.7 to 1.7 ⁇ m.
  • the secondary roughened particles 14 smaller than the primary roughened particles 12 are provided at a sufficient density on the surface (particularly the narrowed portion 12a) of the primary roughened particles 12 having the constricted portions 12a.
  • the diameter of the roughened particles it is possible to reduce the diameter of the roughened particles to a level suitable for forming a thin wire circuit having a ten-point average roughness Rz of 1.7 ⁇ m or less, while realizing sufficient circuit adhesion. That is, the surface has excellent circuit adhesion as well as excellent etching property for electroless copper plating when used in the SAP method, although it is a low-roughness roughened copper foil suitable for fine wire circuit formation. A profile can be imparted to the laminate.
  • extremely fine dry film resolution can be realized in the dry film development step in the SAP method.
  • the plating circuit adhesion and the etching performance for electroless copper plating are inherently difficult to achieve at the same time. That is, as described above, since the surface profile suitable for improving the adhesion to the plating circuit tends to be rough unevenness, the etching property of the electroless copper plating is lowered in the step (h) of FIG. It's easy to do. That is, as the electroless copper plating bites into rough irregularities, more etching is required to eliminate residual copper. In this regard, according to the roughened copper foil of Patent Document 1, it is said that excellent plating circuit adhesion can be secured while reducing the etching amount. However, in recent years, it has been desired to reduce the diameter of the roughened particles with further miniaturization of the circuit required for the SAP method.
  • the primary roughened particles 12 have a constricted portion 12a, and the secondary roughened particles 14 having a sufficient density are formed in the constricted portion 12a, thereby improving the adhesion with the plating circuit.
  • the roughened copper foil of this invention is used for preparation of the printed wiring board by a semi-additive method (SAP).
  • SAP semi-additive method
  • the roughened copper foil 10 of the present invention has a roughened surface on at least one side. That is, the roughened copper foil may have a roughened surface on both sides, or may have a roughened surface only on one side. When both sides have roughened surfaces, the surface on the laser irradiation side (the surface opposite to the surface to be in close contact with the insulating resin) is also roughened when used in the SAP method. As a result, the laser drillability can be improved.
  • the roughened surface comprises a plurality of primary roughened particles 12 and a plurality of secondary roughened particles 14 on the surface thereof, and the plurality of primary roughened particles 12 and secondary roughened particles 14 are respectively copper particles.
  • each of the primary roughened particles 12 and the secondary roughened particles 14 is basically composed of one copper particle.
  • the copper particles may be made of metallic copper, or may be made of a copper alloy. However, when the copper particles are a copper alloy, the solubility in the copper etching solution may decrease, or the life of the etching solution may decrease due to the alloy components mixed in the copper etching solution. Preferably it consists of.
  • the density of secondary roughened particles which is the value obtained by dividing the number of secondary roughened particles 14 in the constricted portion 12a by the surface area of the constricted portion 12a, is 9-30 particles / ⁇ m 2 , preferably 9-25 particles / ⁇ m 2. , more preferably 9 to 20 / [mu] m 2. Within these ranges, circuit adhesion can be further improved while effectively preventing the secondary coarse particles from falling off.
  • the ten-point average roughness Rz of the roughened surface is 0.7 to 1.7 ⁇ m, preferably 0.7 to 1.6 ⁇ m, more preferably 0.8 to 1.6 ⁇ m, and still more preferably 0.8 to 1.6 ⁇ m. 1.5 ⁇ m. Within these ranges, circuit adhesion and fine line formability can be further improved. Rz is determined in accordance with JIS B 0601-1994.
  • the number of secondary roughening particles 14 per unit planar area of the roughened surface is preferably from 50 to 500 / [mu] m 2, more preferably 50-400 Pieces / ⁇ m 2 , more preferably 50 to 300 pieces / ⁇ m 2 . Within these ranges, circuit adhesion can be further improved while effectively preventing the secondary coarse particles from falling off.
  • the ratio of the surface area of the constricted portion to the entire surface area of the roughened surface is preferably 0.3 to 0.5, more preferably 0.3 to 0.5. 0.45. Within these ranges, circuit adhesion can be further improved while effectively preventing the secondary coarse particles from falling off.
  • the thickness of the roughened copper foil 10 of the present invention is not particularly limited, but is preferably 0.1 to 18 ⁇ m, more preferably 0.5 to 10 ⁇ m, still more preferably 0.5 to 7 ⁇ m, and particularly preferably 0.5. -5 ⁇ m, most preferably 0.5-3 ⁇ m.
  • This thickness is a thickness including the primary roughened particles 12 and the secondary roughened particles 14.
  • the roughened copper foil of the present invention is not limited to the one obtained by subjecting the surface of the normal copper foil to the roughening treatment, but may be one obtained by subjecting the copper foil surface of the copper foil with carrier to the roughening treatment. Good.
  • the roughened copper foil according to the present invention is not limited to the method described below, and the roughened copper foil according to the present invention is used. It may be manufactured by any method as long as the surface profile of the treated copper foil can be realized.
  • the thickness of the copper foil is not particularly limited, but is preferably 0.1 to 18 ⁇ m, more preferably 0.5 to 7 ⁇ m, still more preferably 0.5 to 5 ⁇ m, and particularly preferably 0.5 to 3 ⁇ m.
  • the copper foil is prepared in the form of a copper foil with a carrier, the copper foil is prepared by a wet film formation method such as an electroless copper plating method and an electrolytic copper plating method, a dry film formation method such as sputtering and chemical vapor deposition, or It may be formed by a combination thereof.
  • Roughening treatment At least one surface of the copper foil is roughened using copper particles.
  • This roughening is performed by electrolysis using a copper electrolytic solution for roughening treatment.
  • This electrolysis is preferably performed through a three-step plating process.
  • a copper sulfate solution containing a copper concentration of 5 to 20 g / L, a sulfuric acid concentration of 30 to 200 g / L, a chlorine concentration of 20 to 100 ppm and a 9-phenylacridine (9PA) concentration of 20 to 100 ppm is used.
  • Electrodeposition is preferably carried out under plating conditions of a liquid temperature of 20 to 40 ° C., a current density of 5 to 25 A / dm 2 and a time of 2 to 10 seconds.
  • a copper sulfate solution containing a copper concentration of 65 to 80 g / L and a sulfuric acid concentration of 200 to 280 g / L is used, the liquid temperature is 45 to 55 ° C., the current density is 1 to 10 A / dm 2 , and the time is 2
  • Electrodeposition is preferably performed under plating conditions of ⁇ 25 seconds.
  • a copper sulfate solution containing a copper concentration of 10 to 20 g / L, a sulfuric acid concentration of 30 to 130 g / L, a chlorine concentration of 20 to 100 ppm and a 9PA concentration of 100 to 200 ppm is used.
  • Electrodeposition is preferably performed under plating conditions of a current density of 10 to 40 A / dm 2 and a time of 0.3 to 1.0 second.
  • the quantity of electricity in the first and second stage plating processes is such that the ratio (Q 1 / Q 2 ) of the quantity of electricity Q 1 in the first stage plating process to the quantity of electricity Q 2 in the second stage plating process is 3. It is preferable to set it to be 0 or more.
  • 1-stage plating process is performed using an additive such as 9pa, and by satisfying the Q 1 / Q 2 ⁇ 3.0, to form a primary roughening particles 12 having a constricted portion 12a it can.
  • grains 14 smaller than it can be formed in the surface of the primary roughening particle
  • the first plating process is performed using an additive such as 9PA, and the first and second plating processes are performed so as to satisfy Q 1 + Q 2 ⁇ 100 C / dm 2 . Is preferred.
  • the copper foil after the roughening treatment may be subjected to a rust prevention treatment.
  • the rust prevention treatment preferably includes a plating treatment using zinc.
  • the plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment.
  • the zinc-nickel alloy treatment may be a plating treatment containing at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co.
  • the Ni / Zn adhesion ratio in the zinc-nickel alloy plating is preferably 1.2 to 10, more preferably 2 to 7, and still more preferably 2.7 to 4 in terms of mass ratio.
  • the rust prevention treatment preferably further includes a chromate treatment, and this chromate treatment is more preferably performed on the surface of the plating containing zinc after the plating treatment using zinc.
  • rust prevention property can further be improved.
  • a particularly preferable antirust treatment is a combination of a zinc-nickel alloy plating treatment and a subsequent chromate treatment.
  • the copper foil may be treated with a silane coupling agent to form a silane coupling agent layer.
  • a silane coupling agent layer can be formed by appropriately diluting and applying a silane coupling agent and drying.
  • silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltriethoxysilane, N-2 (amino Amino functions such as ethyl) 3-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) butoxy) propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane Silane coupling agents, or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agents such as vinyltrimethoxysilane and vinylphenyltrimethoxysilane, or 3-methacryloxypropyl Trime Acrylic-functional silane coupling agent such as Kishishiran, or imid
  • the roughened copper foil of the present invention can be provided in the form of a copper foil with carrier.
  • the carrier-attached copper foil includes a carrier, a release layer provided on the carrier, and the roughened copper foil of the present invention provided on the release layer with the roughened surface facing outside. It becomes.
  • a known layer structure can be adopted as the carrier-attached copper foil except that the roughened copper foil of the present invention is used.
  • the carrier is a layer (typically a foil) for supporting the roughened copper foil and improving its handleability.
  • the carrier include an aluminum foil, a copper foil, a resin film whose surface is metal-coated with copper or the like, a glass plate, etc., preferably a copper foil.
  • the copper foil may be a rolled copper foil or an electrolytic copper foil.
  • the thickness of the carrier is typically 200 ⁇ m or less, preferably 12 ⁇ m to 35 ⁇ m.
  • the surface on the release layer side of the carrier preferably has a 10-point surface roughness Rz of 0.5 to 1.5 ⁇ m, more preferably 0.6 to 1.0 ⁇ m.
  • Rz can be determined according to JIS B 0601-1994.
  • the release layer is a layer having a function of weakening the peeling strength of the carrier, ensuring the stability of the strength, and further suppressing the interdiffusion that may occur between the carrier and the copper foil during press molding at a high temperature. .
  • the release layer is generally formed on one side of the carrier, but may be formed on both sides.
  • the release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids and the like. Examples of nitrogen-containing organic compounds include triazole compounds, imidazole compounds, and the like. Among these, triazole compounds are preferred in terms of easy release stability.
  • triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N ′, N′-bis (benzotriazolylmethyl) urea, 1H-1,2,4-triazole and 3-amino- And 1H-1,2,4-triazole.
  • sulfur-containing organic compound examples include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol and the like.
  • carboxylic acid examples include monocarboxylic acid and dicarboxylic acid.
  • examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film.
  • the release layer may be formed by bringing a release layer component-containing solution into contact with at least one surface of the carrier and fixing the release layer component to the surface of the carrier.
  • the carrier may be brought into contact with the release layer component-containing solution by immersion in the release layer component-containing solution, spraying of the release layer component-containing solution, flowing down of the release layer component-containing solution, or the like.
  • the release layer component may be fixed to the carrier surface by adsorption or drying of the release layer component-containing solution, electrodeposition of the release layer component in the release layer component-containing solution, or the like.
  • the thickness of the release layer is typically 1 nm to 1 ⁇ m, preferably 5 nm to 500 nm.
  • the roughened copper foil of the present invention described above is used as the roughened copper foil.
  • the roughening treatment of the present invention is performed by roughening using copper particles.
  • a copper layer is formed as a copper foil on the surface of the release layer, and then at least roughening is performed. . Details of the roughening are as described above.
  • copper foil is comprised with the form of an ultra-thin copper foil in order to utilize the advantage as copper foil with a carrier.
  • a preferable thickness of the ultrathin copper foil is 0.1 ⁇ m to 7 ⁇ m, more preferably 0.5 ⁇ m to 5 ⁇ m, and still more preferably 0.5 ⁇ m to 3 ⁇ m.
  • auxiliary metal layer is preferably made of nickel and / or cobalt.
  • the thickness of the auxiliary metal layer is preferably 0.001 to 3 ⁇ m.
  • the roughened copper foil or carrier-attached copper foil of the present invention is preferably used for the production of a copper-clad laminate for printed wiring boards. That is, according to the preferable aspect of this invention, the copper clad laminated board obtained using the said roughening copper foil or the said copper foil with a carrier is provided. By using the roughened copper foil or the copper foil with carrier of the present invention, a copper clad laminate particularly suitable for the SAP method can be provided.
  • This copper-clad laminate comprises the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil, or the copper with carrier of the present invention
  • the foil and a resin layer provided in close contact with the roughened surface of the roughened copper foil in the copper foil with carrier are provided.
  • the roughened copper foil or the copper foil with carrier may be provided on one side of the resin layer or may be provided on both sides.
  • the resin layer comprises a resin, preferably an insulating resin.
  • the resin layer is preferably a prepreg and / or a resin sheet.
  • the prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin.
  • a base material such as a synthetic resin plate, a glass plate, a glass woven fabric, a glass nonwoven fabric, and paper is impregnated with a synthetic resin.
  • the insulating resin include an epoxy resin, a cyanate resin, a bismaleimide triazine resin (BT resin), a polyphenylene ether resin, and a phenol resin.
  • the insulating resin that constitutes the resin sheet include insulating resins such as epoxy resins, polyimide resins, and polyester resins.
  • the thickness of the resin layer is not particularly limited, but is preferably 1 to 1000 ⁇ m, more preferably 2 to 400 ⁇ m, and still more preferably 3 to 200 ⁇ m.
  • the resin layer may be composed of a plurality of layers.
  • a resin layer such as a prepreg and / or a resin sheet may be provided on a roughened copper foil or a copper foil with a carrier via a primer resin layer previously applied to the surface of the copper foil.
  • the roughened copper foil or carrier-attached copper foil of the present invention is preferably used for the production of a printed wiring board, particularly preferably for the production of a printed wiring board by a semi-additive method (SAP). That is, according to the preferable aspect of this invention, the printed wiring board obtained using the roughening process copper foil mentioned above or the said copper foil with a carrier is provided.
  • SAP semi-additive method
  • the printed wiring board according to this aspect includes a layer configuration in which a resin layer and a copper layer are laminated in this order.
  • the roughened copper foil of the present invention is removed in the step (c) of FIG. 1, and therefore the printed wiring board produced by the SAP method no longer contains the roughened copper foil of the present invention. Only the surface profile transferred from the roughened surface of the roughened copper foil remains.
  • the resin layer is as described above for the copper-clad laminate. In any case, a known layer structure can be adopted for the printed wiring board.
  • the printed wiring board examples include a single-sided or double-sided printed wiring board in which a circuit is formed on a single-sided or double-sided prepreg and a laminated body obtained by bonding and curing the roughened copper foil of the present invention or a copper foil with a carrier, A multilayer printed wiring board obtained by multilayering these may be used.
  • Other specific examples include a flexible printed wiring board, a COF, a TAB tape and the like that form a circuit by forming the roughened copper foil or the carrier-attached copper foil of the present invention on a resin film.
  • a copper foil with resin (RCC) obtained by applying the above resin layer to the roughened copper foil or copper foil with carrier of the present invention is formed, and the resin layer is used as an insulating adhesive layer as described above.
  • a roughened copper foil is used as a whole or part of the wiring layer, and a build-up wiring board in which a circuit is formed by a modified semi-additive (MSAP) method, a subtractive method, etc., or a roughening treatment
  • MSAP modified semi-additive
  • SAP semi-additive
  • the roughened copper foil or the copper foil with carrier of the present invention is suitable for the SAP method.
  • a configuration as shown in FIGS. 1 and 2 can be employed.
  • the electrode surface side of the pickled carrier is placed in a CBTA aqueous solution having a CBTA (carboxybenzotriazole) concentration of 1 g / L, a sulfuric acid concentration of 150 g / L, and a copper concentration of 10 g / L, at a liquid temperature of 30 ° C. So as to adsorb the CBTA component on the electrode surface of the carrier.
  • a CBTA layer was formed as an organic release layer on the surface of the carrier electrode surface.
  • auxiliary metal layer Formation of auxiliary metal layer
  • the carrier on which the organic peeling layer is formed is immersed in a solution having a nickel concentration of 20 g / L prepared using nickel sulfate, and the liquid temperature is 45 ° C., the pH is 3, and the current density is 5 A / dm.
  • nickel having a thickness equivalent to 0.001 ⁇ m was deposited on the organic release layer.
  • a nickel layer was formed as an auxiliary metal layer on the organic release layer.
  • the carrier on which the auxiliary metal layer is formed is immersed in a copper sulfate solution having a copper concentration of 60 g / L and a sulfuric acid concentration of 200 g / L, and the solution temperature is 50 ° C. and the current density is 5 to 30 A / dm. Then , an ultrathin copper foil having a thickness of 1.2 ⁇ m was formed on the auxiliary metal layer.
  • the roughening process was performed with respect to the precipitation surface of the above-mentioned ultra-thin copper foil. This roughening treatment was performed by the following three-stage plating, but the first-stage plating was performed in two steps. In the plating process at each stage, a copper sulfate solution having the copper concentration, sulfuric acid concentration, chlorine concentration and 9-phenylacridine (9PA) concentration shown in Table 1 was used, and the current density shown in Table 2 was obtained at the liquid temperature shown in Table 1. I electrodeposited. The energization time in the first and second stage plating was 4.4 seconds per time, and the energization time in the third stage plating was 0.6 seconds. Thus, four types of roughened copper foils of Examples 1 to 4 were produced.
  • the surface of the roughening treatment layer of the obtained copper foil with a carrier was subjected to a rust prevention treatment comprising zinc-nickel alloy plating treatment and chromate treatment.
  • the surface of the carrier was subjected to a zinc-nickel alloy plating treatment.
  • a chromate treatment was performed on the surface on which the zinc-nickel alloy plating treatment was performed using a 1 g / L aqueous solution of chromic acid under the conditions of pH 11, liquid temperature 25 ° C., and current density 1 A / dm 2 .
  • Silane coupling agent treatment A silane coupling agent is prepared by adsorbing an aqueous solution containing 3 g / L of 3-aminopropyltrimethoxysilane on the surface of the copper foil with a carrier and evaporating water with an electric heater. Processed. At this time, the silane coupling agent treatment was not performed on the carrier side.
  • the roughened surface is 10 ⁇ m ⁇ 10 ⁇ m.
  • Three-dimensional analysis data Amira (manufactured by Thermo Fisher SCIENTIFIC) was used for 900 slice images of the three-dimensional shape data of the roughened copper foil obtained by 3D-SEM.
  • Various data related to the roughened surface were obtained by analysis. Specifically, it is as follows.
  • ⁇ Plane area A of measurement area> The planar area A of the measurement region was 9.9 ⁇ m (X direction) ⁇ 9 ⁇ m (Z direction) 89.1 ⁇ m 2 .
  • the secondary roughened particle density in the constricted portion was calculated by dividing the number of secondary roughened particles E in the constricted portion by the surface area C of the constricted portion.
  • the number of secondary roughened particles per plane area was calculated by dividing the total number D of secondary roughened particles by the plane area A of the measurement region.
  • the ratio of the surface area of the constricted portion was calculated by dividing the surface area C of the constricted portion by the surface area B of the measurement region.
  • a copper-clad laminate was produced using a copper foil with a carrier.
  • a roughened copper foil with a carrier-attached copper foil is laminated on the surface of the inner layer substrate via a prepreg (manufactured by Mitsubishi Gas Chemical Co., Ltd., GHPL-830NSF, thickness 0.1 mm), pressure 4.0 MPa, temperature After thermocompression bonding at 220 ° C. for 90 minutes, the carrier was peeled off to produce a copper clad laminate.
  • ⁇ Plating circuit adhesion (peel strength)> A dry film was laminated to the laminate for SAP evaluation, and exposure and development were performed. After depositing a copper layer having a thickness of 19 ⁇ m by pattern plating on the laminate masked with the developed dry film, the dry film was peeled off. The electroless copper plating exposed by the sulfuric acid / hydrogen peroxide etching solution was removed, and a sample for measuring peel strength having a height of 20 ⁇ m and a width of 10 mm was prepared. In accordance with JIS C 6481 (1996), the peel strength when the copper layer was peeled from the sample for evaluation was measured.
  • ⁇ Etching property> The laminate for SAP evaluation was etched by 0.2 ⁇ m with a sulfuric acid / hydrogen peroxide etching solution, and the amount (depth) until copper on the surface was completely removed was measured. This measurement was performed by confirming with an optical microscope (500 times). More specifically, every time 0.2 ⁇ m etching was performed, the operation of confirming the presence or absence of copper with an optical microscope was repeated, and the value ( ⁇ m) obtained by (number of times of etching) ⁇ 0.2 ⁇ m was used as an index of etching property.
  • ⁇ Dry film resolution (minimum L / S)>
  • a dry film having a thickness of 25 ⁇ m was laminated on the surface of the laminate for SAP evaluation, and exposure and development were performed using a mask in which a line / space (L / S) pattern of 2 ⁇ m / 2 ⁇ m to 15 ⁇ m / 15 ⁇ m was formed. .
  • the exposure amount at this time was set to 125 mJ.
  • the surface of the sample after development is observed with an optical microscope (magnification: 500 times), and the smallest (that is, the finest) L / S in the L / S that can be developed without any problem is adopted as an index for the resolution of the dry film. did.
  • L / S 15 ⁇ m / 15 ⁇ m to 10 ⁇ m / 10 ⁇ m.
  • a clear contrast is observed between the dry film patterns when the resolution can be achieved without any problem, whereas a dark portion is observed between the dry film patterns when the resolution is not performed well. Contrast is not observed.
  • Example 1 and 2 were all good in plating circuit adhesion, etching properties, and dry film resolution.
  • Example 3 was inferior in plating circuit adhesion.
  • Example 4 was inferior to etching property and dry film resolution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

細線回路形成に適した低粗度の粗化処理銅箔でありながら、SAP法に用いた場合に、無電解銅めっきに対するエッチング性及びドライフィルム解像性のみならず、回路密着性にも優れた表面プロファイルを積層体に付与可能な、粗化処理銅箔が提供される。本発明の粗化処理銅箔は、少なくとも一方の側に粗化処理面を有するものであって、粗化処理面がくびれ部分を有する複数の一次粗化粒子を備えてなり、一次粗化粒子がくびれ部分を含む表面に一次粗化粒子よりも小さい複数の二次粗化粒子を有し、くびれ部分の二次粗化粒子の個数をくびれ部分の表面積で除した値である二次粗化粒子密度が9~30個/μm2であり、かつ、粗化処理面の十点平均粗さRzが0.7~1.7μmである。

Description

粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
 本発明は、粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板に関するものである。
 近年、回路の微細化に適したプリント配線板の製造工法として、SAP(セミ・アディティブ・プロセス)法が広く採用されている。SAP法は、極めて微細な回路を形成するのに適した手法であり、その一例としてキャリア付粗化処理銅箔を用いて行われている。例えば、図1及び2に示されるように、粗化処理銅箔110を、下地基材111aに下層回路111bを備えた絶縁樹脂基板111上にプリプレグ112とプライマー層113をプレスして密着させ(工程(a))、キャリア(図示せず)を引き剥がした後、必要に応じてレーザー穿孔によりビアホール114を形成する(工程(b))。次いで、粗化処理銅箔110をエッチングにより除去して、粗化表面プロファイルが付与されたプライマー層113を露出させる(工程(c))。この粗化表面に無電解銅めっき115を施した(工程(d))後に、ドライフィルム116を用いた露光及び現像により所定のパターンでマスキングし(工程(e))、電気銅めっき117を施す(工程(f))。ドライフィルム116を除去して配線部分117aを形成した(工程(g))後、隣り合う配線部分117a,117a間の不要な無電解銅めっき115をエッチングにより除去して(工程(h))、所定のパターンで形成された配線118を得る。
 このように粗化処理銅箔を用いたSAP法は、粗化処理銅箔自体はレーザー穿孔後にエッチングにより除去されることになる(工程(c))。そして、粗化処理銅箔が除去された積層体表面には粗化処理銅箔の粗化処理面の凹凸形状が転写されているので、その後の工程において絶縁層(例えばプライマー層113又はそれが無い場合にはプリプレグ112)とめっき回路(例えば配線118)との密着性を確保することができる。しかしながら、めっき回路との密着性を上げるのに適した表面プロファイルは、概して粗い凹凸となる傾向があるため、工程(h)において無電解銅めっきに対するエッチング性が低下しやすい。すなわち、無電解銅めっきが粗い凹凸に食い込んでいる分、残留銅を無くすためにより多くのエッチングを要してしまう。
 そこで、粗化粒子を小さくし、かつ、くびれ形状を持たせることで、SAP法に用いた場合に、必要なめっき回路密着性を確保しながら良好なエッチング性を実現できる手法が提案されている。例えば、特許文献1(国際公開第2016/158775号)には、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、粗化処理面が銅粒子からなる複数の略球状突起を備えてなり、略球状突起の平均高さが2.60μm以下であるものが開示されている。
国際公開第2016/158775号
 近年SAP法に要求される回路の更なる微細化に伴い、より優れたエッチング性を実現すべく、粗化処理銅箔における粗化粒子の更なる小径化が望まれる。しかしながら、特許文献1の手法は、回路密着性を確保しながら粗化粒子を小径化するには限界があり、十点平均粗さRzが1.7μmを下回るほどに粗化粒子を小径化することは難しい。これは、SAP法において回路を微細化すべく粗化粒子を小径化すると、回路密着性が悪化するためである。
 本発明者らは、今般、くびれ部分を有する一次粗化粒子の表面(特にくびれ部分)に一次粗化粒子よりも小さい二次粗化粒子を十分な密度で設けることで、十分な回路密着性を実現可能としながらも、十点平均粗さRz1.7μm以下という細線回路形成に適したレベルにまで粗化粒子を小径化できるとの知見を得た。すなわち、細線回路形成に適した低粗度の粗化処理銅箔でありながら、SAP法に用いた場合に、無電解銅めっきに対する優れたエッチング性のみならず、回路密着性にも優れた表面プロファイルを積層体に付与できるとの知見を得た。また、上記粗化処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現できるとの知見も得た。
 したがって、本発明の目的は、細線回路形成に適した低粗度の粗化処理銅箔でありながら、SAP法に用いた場合に、無電解銅めっきに対するエッチング性及びドライフィルム解像性のみならず、回路密着性にも優れた表面プロファイルを積層体に付与可能な、粗化処理銅箔を提供することにある。また、本発明の他の目的は、そのような粗化処理銅箔を備えたキャリア付銅箔を提供することにある。
 本発明の一態様によれば、少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、前記粗化処理面がくびれ部分を有する複数の一次粗化粒子を備えてなり、前記一次粗化粒子が前記くびれ部分を含む表面に前記一次粗化粒子よりも小さい複数の二次粗化粒子を有し、
 前記くびれ部分の前記二次粗化粒子の個数を前記くびれ部分の表面積で除した値である二次粗化粒子密度が9~30個/μmであり、かつ、前記粗化処理面の十点平均粗さRzが0.7~1.7μmである、粗化処理銅箔が提供される。
 本発明の他の一態様によれば、キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた前記粗化処理銅箔とを備えた、キャリア付銅箔が提供される。
 本発明の他の一態様によれば、前記粗化処理銅箔又は前記キャリア付銅箔を用いて得られた銅張積層板が提供される。
 本発明の他の一態様によれば、前記粗化処理銅箔又は前記キャリア付銅箔を用いて得られたプリント配線板が提供される。
SAP法を説明するための工程流れ図であり、前半の工程(工程(a)~(d))を示す図である。 SAP法を説明するための工程流れ図であり、後半の工程(工程(e)~(h))を示す図である。 本発明の粗化処理銅箔における、一次粗化粒子及び二次粗化粒子を含む粗化処理面を示す模式断面図である。 本発明の粗化処理銅箔における二次粗化粒子のくびれ部分を示す模式断面図である。 3D-SEM観察でのx軸、y軸及びz軸及びスライス面Sを粗化処理銅箔との関係において示す図である。
 定義
 本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
 本明細書において「一次粗化粒子」とは、図3及び4に模式的に示されるように、粗化処理銅箔10の基底面10aに直接形成される、150nmを超えるサイズの粗化粒子12であり、典型的には「略球状突起」の形態を有する。本明細書において「略球状突起」とは、略球状の丸みを帯びた概形を有する突起であり、針状、柱状、細長い形状等の異方形状の突起ないし粒子とは区別されるものである。図3及び4において一次粗化粒子12として示されるように、略球状突起は、くびれた根元部分で銅箔の基底面10aと連結しているため、完全なる球体にはなり得ないが、根元部分以外の部分が概ね球状であればよい。したがって、略球状突起は、略球状の丸みを帯びた概形が保持されているかぎり、多少の凹凸や変形等の存在は許容される。なお、上記突起を単に球状突起と称してもよいが、上述のとおり完全なる球体にはなり得ないため、上述した略球状突起を意味するものとして解されるべきである。一次粗化粒子12及びその粒径は、SEM観察により取得した断面画像を市販のソフトウェアを用いて解析することにより、特定することができる。例えば、3次元解析ソフトAmira(Thermo Fisher SCIENTIFIC社製)を用い、画像処理については本明細書の実施例に記載される諸条件に従って行うことができる。
 本明細書において「二次粗化粒子」とは、図3及び4に模式的に示されるように、粗化処理銅箔10の基底面10a及び一次粗化粒子12の表面に形成される、一次粗化粒子12よりも小さい、すなわち150nm以下のサイズの粗化粒子14を意味する。二次粗化粒子14も略球状突起等の粒状突起でありうる。二次粗化粒子14及びその粒径は、SEM観察により取得した断面画像を市販のソフトウェアを用いて解析することにより、特定することができる。例えば、3次元解析ソフトAmira(Thermo Fisher SCIENTIFIC社製)を用い、画像処理については本明細書の実施例に記載される諸条件に従って行うことができる。
 本明細書において「くびれ部分」とは、図4に模式的に示されるように、一次粗化粒子12を真上から見たときにそれ自体で隠れて見えなくなる部分12aを意味する。すなわち、一次粗化粒子12の最大首径未満の首径を有する部分で、かつ、該最大首径より基底面10a側の部分12aを意味する。くびれ部分は、SEM観察により取得した断面画像を市販のソフトウェアを用いて解析することにより、決定することができる。例えば、3次元解析ソフトAmira(Thermo Fisher SCIENTIFIC社製)を用い、画像処理については本明細書の実施例に記載される諸条件に従って行うことができる。
 本明細書において、「電極面」とは金属を電解析出した時に陰極と接していた側の面を指す。
 本明細書において、「析出面」とは金属が電解析出されていく側の面、すなわち陰極と接していない側の面を指す。
 粗化処理銅箔
 本発明による銅箔は粗化処理銅箔である。この粗化処理銅箔は、少なくとも一方の側に粗化処理面を有する。粗化処理面は、図3に模式的に示されるように、くびれ部分12aを有する複数の一次粗化粒子12を備えてなる。一次粗化粒子12は、くびれ部分12aを含む表面に一次粗化粒子12よりも小さい複数の二次粗化粒子14を有する。くびれ部分12aの二次粗化粒子14の個数をくびれ部分12aの表面積で除した値である二次粗化粒子密度は9~30個/μmである。また、粗化処理面の十点平均粗さRzは0.7~1.7μmである。このように、くびれ部分12aを有する一次粗化粒子12の表面(特にくびれ部分12a)に一次粗化粒子12よりも小さい二次粗化粒子14を十分な密度で設けることで、SAP法に用いた場合に、十分な回路密着性を実現可能としながらも、十点平均粗さRz1.7μm以下という細線回路形成に適したレベルにまで粗化粒子を小径化することができる。すなわち、細線回路形成に適した低粗度の粗化処理銅箔でありながら、SAP法に用いた場合に、無電解銅めっきに対する優れたエッチング性のみならず、回路密着性にも優れた表面プロファイルを積層体に付与することができる。また、上記粗化処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現することができる。
 めっき回路密着性と、無電解銅めっきに対するエッチング性は本来的には両立し難いものである。すなわち、前述したように、めっき回路との密着性を上げるのに適した表面プロファイルは、概して粗い凹凸となる傾向があるため、図2の工程(h)において無電解銅めっきのエッチング性が低下しやすい。すなわち、無電解銅めっきが粗い凹凸に食い込んでいる分、残留銅を無くすためにより多くのエッチングを要してしまう。この点、特許文献1の粗化処理銅箔によればエッチング量の低減を実現しながら、優れためっき回路密着性を確保できるとされている。しかしながら、近年SAP法に要求される回路の更なる微細化に伴い粗化粒子の小径化が望まれるところ、特許文献1の手法では十点平均粗さRzが1.7μmを下回るほどに粗化粒子を小径化することは難しい。これに対し、本発明においては、一次粗化粒子12にくびれ部分12aを持たせ、このくびれ部分12aに十分な密度の二次粗化粒子14を形成することにより、めっき回路との密着性を損なうことなく、十点平均粗さRz1.7μm以下という細線回路形成に適したレベルにまで粗化粒子の大幅な小径化が可能となる。すなわち、上記範囲内のRzで表される一次粗化粒子12の小径化によって本来ならば回路密着性が低下しうるが、本発明においては一次粗化粒子12の表面(特にくびれ部分12a)に十分な密度で二次粗化粒子14を存在させることで、優れた回路密着性が実現可能となる。そして、そのように優れた密着性と無電解銅めっきに対する優れたエッチング性を両立できたことによって、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現できるものと考えられる。したがって、本発明の粗化処理銅箔は、セミアディティブ法(SAP)によるプリント配線板の作製に用いられるのが好ましい。別の表現をすれば、本発明の粗化処理銅箔は、プリント配線板用の絶縁樹脂層に凹凸形状を転写するために用いられるのが好ましいともいえる。
 本発明の粗化処理銅箔10は、少なくとも一方の側に粗化処理面を有する。すなわち、粗化処理銅箔は両側に粗化処理面を有するものであってもよいし、一方の側にのみ粗化処理面を有するものであってもよい。両側に粗化処理面を有する場合は、SAP法に用いた場合にレーザー照射側の面(絶縁樹脂に密着させる面と反対側の面)も粗化されていることになるので、レーザー吸収性が高まる結果、レーザー穿孔性をも向上させることができる。
 粗化処理面は、複数の一次粗化粒子12及びその表面にある複数の二次粗化粒子14を備えてなり、これら複数の一次粗化粒子12及び二次粗化粒子14はそれぞれ銅粒子からなるのが好ましい。すなわち、個々の一次粗化粒子12及び二次粗化粒子14はそれぞれ基本的に1個の銅粒子で構成される。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。しかしながら、銅粒子が銅合金の場合、銅エッチング液に対する溶解性が低下したり、或いは銅エッチング液への合金成分混入によりエッチング液の寿命が低下したりすることがあるため、銅粒子は金属銅からなることが好ましい。
 くびれ部分12aの二次粗化粒子14の個数をくびれ部分12aの表面積で除した値である二次粗化粒子密度は9~30個/μmであり、好ましくは9~25個/μm、より好ましくは9~20個/μmである。これらの範囲内であると、二次粗化粒子の脱落を効果的に防止しながら、回路密着性をより一層向上することができる。
 粗化処理面の十点平均粗さRzは0.7~1.7μmであり、好ましくは0.7~1.6μm、より好ましくは0.8~1.6μm、さらに好ましくは0.8~1.5μmである。これらの範囲内であると、回路密着性及び細線形成性をより一層向上することができる。RzはJIS B 0601-1994に準拠して決定される。
 本発明の粗化処理銅箔10は、粗化処理面の単位平面面積あたりの二次粗化粒子14の個数が、50~500個/μmであるのが好ましく、より好ましくは50~400個/μm、さらに好ましくは50~300個/μmである。これらの範囲内であると、二次粗化粒子の脱落を効果的に防止しながら、回路密着性をより一層向上することができる。
 本発明の粗化処理銅箔10は、粗化処理面の全体の表面積に占める、くびれ部分の表面積の割合が、0.3~0.5であるのが好ましく、より好ましくは0.3~0.45である。これらの範囲内であると、二次粗化粒子の脱落を効果的に防止しながら、回路密着性をより一層向上することができる。
 本発明の粗化処理銅箔10の厚さは特に限定されないが、0.1~18μmが好ましく、より好ましくは0.5~10μm、さらに好ましくは0.5~7μm、特に好ましくは0.5~5μm、最も好ましくは0.5~3μmである。この厚さは一次粗化粒子12及び二次粗化粒子14を含んだ厚さである。なお、本発明の粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面の粗化処理を行ったものであってもよい。
 粗化処理銅箔の製造方法
 本発明による粗化処理銅箔の好ましい製造方法の一例を説明するが、本発明による粗化処理銅箔は以下に説明する方法に限らず、本発明の粗化処理銅箔の表面プロファイルを実現できるかぎり、あらゆる方法によって製造されたものであってよい。
(1)銅箔の準備
 粗化処理銅箔の製造に使用する銅箔として、電解銅箔及び圧延銅箔の双方の使用が可能である。銅箔の厚さは特に限定されないが、0.1~18μmが好ましく、より好ましくは0.5~7μm、さらに好ましくは0.5~5μm、特に好ましくは0.5~3μmである。銅箔がキャリア付銅箔の形態で準備される場合には、銅箔は、無電解銅めっき法及び電解銅めっき法等の湿式成膜法、スパッタリング及び化学蒸着等の乾式成膜法、又はそれらの組合せにより形成したものであってよい。
(2)粗化処理
 銅粒子を用いて銅箔の少なくとも一方の表面を粗化する。この粗化は、粗化処理用銅電解溶液を用いた電解により行われる。この電解は3段階のめっき工程を経て行われるのが好ましい。1段階目のめっき工程では、銅濃度5~20g/L、硫酸濃度30~200g/L、塩素濃度20~100ppm及び9-フェニルアクリジン(9PA)濃度20~100ppmを含む硫酸銅溶液を用いて、液温20~40℃、電流密度5~25A/dm、時間2~10秒のめっき条件で電着を行うのが好ましい。2段階目のめっき工程では、銅濃度65~80g/L及び硫酸濃度200~280g/Lを含む硫酸銅溶液を用いて、液温45~55℃及び電流密度1~10A/dm、時間2~25秒のめっき条件で電着を行うのが好ましい。3段階目のめっき工程では、銅濃度10~20g/L、硫酸濃度30~130g/L、塩素濃度20~100ppm及び9PA濃度100~200ppmを含む硫酸銅溶液を用いて、液温20~40℃、電流密度10~40A/dm、時間0.3~1.0秒のめっき条件で電着を行うのが好ましい。1段階目及び2段階目のめっき工程における電気量は、1段階目のめっき工程における電気量Qの2段階目のめっき工程における電気量Qに対する比(Q/Q)が3.0以上となるように設定するのが好ましい。1段階目のめっき工程が9PA等の添加剤等を用いて行われ、かつ、Q/Q≧3.0を満たすことで、くびれ部分12aを有する一次粗化粒子12を形成することができる。そして、9PA等の添加剤を用いた3段階目のめっき工程が行われることで、一次粗化粒子12の表面にそれよりも小さい二次粗化粒子14を形成させることができる。特に、1段階目のめっき工程が9PA等の添加剤等を用いて行われ、かつ、1段階目及び2段階目のめっき工程がQ+Q≦100C/dmを満たすように行われるのが好ましい。こうすることで、十点平均粗さRz<1.7μmを満たす比較的低粗度の表面プロファイルが形成されるとともに、3段階目のめっきが一次粗化粒子12の表面全体に行き渡り、一次粗化粒子12のくびれ部分12aにも二次粗化粒子14が高密度に形成される。
(3)防錆処理
 所望により、粗化処理後の銅箔に防錆処理を施してもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2~10が好ましく、より好ましくは2~7、さらに好ましくは2.7~4である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。
(4)シランカップリング剤処理
 所望により、銅箔にシランカップリング剤処理を施し、シランカップリング剤層を形成してもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリエトキシシラン、N-2(アミノエチル)3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。
 キャリア付銅箔
 本発明の粗化処理銅箔は、キャリア付銅箔の形態で提供することができる。この場合、キャリア付銅箔は、キャリアと、このキャリア上に設けられた剥離層と、この剥離層上に粗化処理面を外側にして設けられた本発明の粗化処理銅箔とを備えてなる。もっとも、キャリア付銅箔は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。
 キャリアは、粗化処理銅箔を支持してそのハンドリング性を向上させるための層(典型的には箔)である。キャリアの例としては、アルミニウム箔、銅箔、表面を銅等でメタルコーティングした樹脂フィルムやガラス板等が挙げられ、好ましくは銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよい。キャリアの厚さは典型的には200μm以下であり、好ましくは12μm~35μmである。
 キャリアの剥離層側の面は、0.5~1.5μmの十点表面粗さRzを有するのが好ましく、より好ましくは0.6~1.0μmである。RzはJIS B 0601-1994に準拠して決定することができる。このような十点表面粗さRzをキャリアの剥離層側の面に付与しておくことで、その上に剥離層を介して作製される本発明の粗化処理銅箔に望ましい表面プロファイルを付与しやすくすることができる。
 剥離層は、キャリアの引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に固定されること等により行えばよい。キャリアの剥離層成分含有溶液への接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm~1μmであり、好ましくは5nm~500nmである。
 粗化処理銅箔としては、上述した本発明の粗化処理銅箔を用いる。本発明の粗化処理は銅粒子を用いた粗化が施されたものであるが、手順としては、先ず剥離層の表面に銅層を銅箔として形成し、その後少なくとも粗化を行えばよい。粗化の詳細については前述したとおりである。なお、銅箔はキャリア付銅箔としての利点を活かすべく、極薄銅箔の形態で構成されるのが好ましい。極薄銅箔としての好ましい厚さは0.1μm~7μmであり、より好ましくは0.5μm~5μm、さらに好ましくは0.5μm~3μmである。
 剥離層と銅箔の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。補助金属層の厚さは、0.001~3μmとするのが好ましい。
 銅張積層板
 本発明の粗化処理銅箔ないしキャリア付銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔又は上記キャリア付銅箔を用いて得られた銅張積層板が提供される。本発明の粗化処理銅箔ないしキャリア付銅箔を用いることで、SAP法に特に適した銅張積層板を提供することができる。この銅張積層板は、本発明の粗化処理銅箔と、この粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなるか、あるいは本発明のキャリア付銅箔と、このキャリア付銅箔における粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔又はキャリア付銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。絶縁性樹脂の好ましい例としては、エポキシ樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂(BT樹脂)、ポリフェニレンエーテル樹脂、フェノール樹脂等が挙げられる。また、樹脂シートを構成する絶縁性樹脂の例としては、エポキシ樹脂、ポリイミド樹脂、ポリエステル樹脂等の絶縁樹脂が挙げられる。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1~1000μmが好ましく、より好ましくは2~400μmであり、さらに好ましくは3~200μmである。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介して粗化処理銅箔ないしキャリア付銅箔に設けられていてもよい。
 プリント配線板
 本発明の粗化処理銅箔ないしキャリア付銅箔はプリント配線板の作製に用いられるのが好ましく、特に好ましくはセミアディティブ法(SAP)によるプリント配線板の作製に用いられる。すなわち、本発明の好ましい態様によれば、前述した粗化処理銅箔又は上記キャリア付銅箔を用いて得られたプリント配線板が提供される。本発明の粗化処理銅箔ないしキャリア付銅箔を用いることで、プリント配線板の製造において、優れためっき回路密着性のみならず、無電解銅めっきに対するエッチング性にも優れた表面プロファイルを積層体に付与することができる。また、上記粗化処理銅箔を用いることで、SAP法におけるドライフィルム現像工程において、極めて微細なドライフィルム解像性を実現することができる。したがって、極めて微細な回路形成が施されたプリント配線板を提供することができる。本態様によるプリント配線板は、樹脂層と、銅層とがこの順に積層された層構成を含んでなる。SAP法の場合には本発明の粗化処理銅箔は図1の工程(c)において除去されるため、SAP法により作製されたプリント配線板は本発明の粗化処理銅箔をもはや含まず、粗化処理銅箔の粗化処理面から転写された表面プロファイルが残存するのみである。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔ないしキャリア付銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔ないしキャリア付銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔ないしキャリア付銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミアディティブ(MSAP)法、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミアディティブ(SAP)法で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の粗化処理銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。特に、本発明の粗化処理銅箔ないしキャリア付銅箔はSAP法に適している。例えば、SAP法により回路形成した場合には図1及び2に示されるような構成が採用可能である。
 本発明を以下の例によってさらに具体的に説明する。
 例1~4
 粗化処理銅箔の作製及び評価を以下のようにして行った。
(1)キャリアの作製
 陰極として表面を#2000のバフで研磨したチタン製の電極を用意した。また、陽極としてDSA(寸法安定性陽極)を用意した。これらの電極を用い、銅濃度80g/L、硫酸濃度260g/Lの硫酸銅溶液に浸漬して、溶液温度45℃、電流密度55A/dmで電解し、厚さ18μmの電解銅箔をキャリアとして得た。
(2)剥離層の形成
 酸洗処理されたキャリアの電極面側を、CBTA(カルボキシベンゾトリアゾール)濃度1g/L、硫酸濃度150g/L及び銅濃度10g/LのCBTA水溶液に、液温30℃で30秒間浸漬し、CBTA成分をキャリアの電極面に吸着させた。こうして、キャリアの電極面の表面にCBTA層を有機剥離層として形成した。
(3)補助金属層の形成
 有機剥離層が形成されたキャリアを、硫酸ニッケルを用いて作製されたニッケル濃度20g/Lの溶液に浸漬して、液温45℃、pH3、電流密度5A/dmの条件で、厚さ0.001μm相当の付着量のニッケルを有機剥離層上に付着させた。こうして有機剥離層上にニッケル層を補助金属層として形成した。
(4)極薄銅箔形成
 補助金属層が形成されたキャリアを、銅濃度60g/L、硫酸濃度200g/Lの硫酸銅溶液に浸漬して、溶液温度50℃、電流密度5~30A/dmで電解し、厚さ1.2μmの極薄銅箔を補助金属層上に形成した。
(5)粗化処理
 上述の極薄銅箔の析出面に対して粗化処理を行った。この粗化処理は、以下の3段階めっきにより行ったが、1段階目のめっきは2回に分けて行った。各段階のめっき工程では、表1に示す銅濃度、硫酸濃度、塩素濃度及び9-フェニルアクリジン(9PA)濃度を有する硫酸銅溶液を用い、表1に示す液温で、表2に示す電流密度で電着を行った。1段階目及び2段階目のめっきにおける通電時間は1回あたり4.4秒とし、3段階目のめっきにおける通電時間は0.6秒とした。こうして例1~4の4種類の粗化処理銅箔を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(6)防錆処理
 得られたキャリア付銅箔の粗化処理層の表面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度0.2g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度300g/Lの電解液を用い、液温40℃、電流密度0.5A/dmの条件で、粗化処理層及びキャリアの表面に亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸1g/L水溶液を用い、pH11、液温25℃、電流密度1A/dmの条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(7)シランカップリング剤処理
 3-アミノプロピルトリメトキシシラン3g/Lを含む水溶液をキャリア付銅箔の銅箔側の表面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、シランカップリング剤処理はキャリア側には行わなかった。
(8)粗化処理銅箔表面の評価
 得られた粗化処理銅箔について、一次粗化粒子及び二次粗化粒子を含む表面プロファイルの諸特性を以下のとおり評価した。
(8-1)3D-SEMによる三次元形状の評価
 得られた粗化処理銅箔の粗化処理面を3D-SEM観察することにより、各種表面プロファイルデータを得た。得られたデータを用いて、粗化処理面の三次元形状を評価するための3つのパラメータ(くびれ部分の二次粗化粒子密度、平面面積あたりの二次粗化粒子数、及びくびれ部分の表面積が占める割合)を算出した。具体的には以下のとおりである。
(8-1-1)3D-SEM観察
 FIB-SEM装置(日立ハイテクサイエンス社製SMF-1000又はカールツァイス社製Crossbeam540、いずれもGEMINIカラム搭載モデル)を用いて、粗化処理面の10μm×10μm(=100μm)の測定領域に対して、下記測定条件にて三次元形状データの取得を行った。この三次元形状データの取得は、図5に示されるように、x軸及びz軸を粗化処理銅箔10の面内方向とし、かつ、y軸を粗化処理銅箔10の厚さ方向と規定した上で、x-y面と平行なスライス面Sでの粗化処理銅箔10の断面画像を取得し、このスライス面をz軸方向に10nmずつ平行移動させながら、上記測定領域において合計900枚の断面画像を取得することにより行った。
<SEM条件>
‐加速電圧:0.5kV
‐アパーチャ:30μm
‐スキャン時間:20秒/視野
‐検出器:Inlens-SE
‐ImageScale:10μm(x方向長さ)
<FIB条件>
‐加速電圧:30kV
‐照射電流:3nA
‐フィード:10nm(スライス面Sの間隔)
‐深さ:15~30μm(サンプル形状に応じて設定)
(8-1-2)3D-SEM画像解析
 3D-SEMで得られた粗化処理銅箔の三次元形状データのスライス画像900枚を3次元解析ソフトAmira(Thermo Fisher SCIENTIFIC社製)を用いて解析することにより、粗化処理面に関する各種データを取得した。具体的には以下のとおりである。
<事前解析:くびれ部分の決定>
 本明細書において前述した定義に従い、一次粗化粒子のくびれ部分を決定した。
<測定領域の平面面積A>
 測定領域の平面面積Aは、9.9μm(X方向)×9μm(Z方向)=89.1μmとした。
<測定領域の表面積B>
 測定領域の表面積Bは、Amiraにおける表面積計算機能によって求めた。
<くびれ部分の表面積C>
 測定領域の表面積Bのうち、くびれ部分に相当する表面積をくびれ部分の表面積Cとした。
<二次粗化粒子の総数D>
 Amiraの機能「Remove Island」をXY面、YZ面、ZX面の各方向に適用し、一次粗化粒子と二次粗化粒子を分離した。このとき、サイズの設定は各平面上で15ピクセル(150nm)以下とし、Fraction設定値は0.25とした。得られた二次粗化粒子から体積20000nm以下のものを除外した上で、二次粗化粒子の個数をカウントし、その総数を二次粗化粒子の総数Dとした。
<くびれ部分の二次粗化粒子数E>
 Dで得た二次粗化粒子のうち、くびれ部分に存在するものを分離し、その個数を数え、くびれ部分の二次粗化粒子数Eとした。
(8-1-3)評価用パラメータの算出
 くびれ部分の二次粗化粒子密度は、くびれ部分の二次粗化粒子数Eをくびれ部分の表面積Cで除することにより算出した。平面面積あたりの二次粗化粒子数は、二次粗化粒子の総数Dを測定領域の平面面積Aで除することにより算出した。くびれ部分の表面積が占める割合は、くびれ部分の表面積Cを測定領域の表面積Bで除することにより算出した。
(8-2)十点平均粗さRzの測定
 150倍の対物レンズを備えたレーザー顕微鏡(株式会社キーエンス製、VK-9510)を用いて粗化処理面を観察し、6550.11μmの視野画像を取得した。得られた視野画像から10μm×10μmの領域を互いに重複しない範囲で任意に10箇所選び、JIS B 0601-1994に準拠して十点平均粗さRzをそれぞれ測定した。10箇所のRzの平均値を当該サンプルのRzとして採用した。
(9)銅張積層板の作製
 キャリア付銅箔を用いて銅張積層板を作製した。まず、内層基板の表面に、プリプレグ(三菱瓦斯化学株式会社製、GHPL-830NSF、厚さ0.1mm)を介してキャリア付銅箔の粗化処理銅箔を積層し、圧力4.0MPa、温度220℃で90分間熱圧着した後、キャリアを剥離し、銅張積層板を作製した。
(10)SAP評価用積層体の作製
 次いで、硫酸・過酸化水素系エッチング液で表面の銅箔をすべて除去した後、脱脂、Pd系触媒付与、及び活性化処理を行った。こうして活性化された表面に無電解銅めっき(厚さ:1μm)を行い、SAP法においてドライフィルムが張り合わせられる直前の積層体(以下、SAP評価用積層体という)を得た。これらの工程はSAP法の公知の条件に従って行った。
(11)SAP評価用積層体の評価
 上記得られたSAP評価用積層体について、各種特性の評価を以下のとおり行った。
<めっき回路密着性(剥離強度)>
 SAP評価用積層体にドライフィルムを張り合わせ、露光及び現像を行った。現像されたドライフィルムでマスキングされた積層体にパターンめっきで厚さ19μmの銅層を析出させた後、ドライフィルムを剥離した。硫酸・過酸化水素系エッチング液で表出している無電解銅めっきを除去し、高さ20μm、幅10mmの剥離強度測定用サンプルを作成した。JIS C 6481(1996)に準拠して、評価用サンプルから銅層を剥離する際の、剥離強度を測定した。
<エッチング性>
 SAP評価用積層体に対して硫酸・過酸化水素系エッチング液で0.2μmずつエッチングを行い、表面の銅が完全になくなるまでの量(深さ)を計測した。この計測は、光学顕微鏡(500倍)で確認することにより行った。より詳しくは、0.2μmエッチングする毎に光学顕微鏡で銅の有無で確認する作業を繰り返し、(エッチングの回数)×0.2μmにより得られた値(μm)をエッチング性の指標として用いた。例えば、エッチング性が1.2μmということは、0.2μmのエッチングを6回行ったところで、光学顕微鏡で残存銅が検出されなくなったことを意味する(すなわち0.2μm×6回=1.2μm)。すなわち、この値が小さいほど少ない回数のエッチングで表面の銅を除去できることを意味する。すなわちこの値が小さいほどエッチング性が良好であることを意味する。
<ドライフィルム解像性(最小L/S)>
 SAP評価用積層体の表面に厚さ25μmのドライフィルムを張り合わせ、ライン/スペース(L/S)が2μm/2μmから15μm/15μmまでのパターンが形成されたマスクを用いて露光及び現像を行った。このときの露光量は125mJとした。現像後のサンプルの表面を光学顕微鏡(倍率:500倍)で観察し、問題なく現像が行えたL/Sにおける最小の(すなわち最も微細な)L/Sをドライフィルム解像性の指標として採用した。例えば、ドライフィルム解像性評価の指標である最小L/S=10μm/10μmということは、L/S=15μm/15μmから10μm/10μmまでは問題無く解像できたことを意味する。例えば、問題無く解像できた場合はドライフィルムパターン間で鮮明なコントラストが観察されるのに対し、解像が良好に行われなかった場合にはドライフィルムパターン間に黒ずんだ部分が観察され鮮明なコントラストが観察されない。
 結果
 例1~4において得られた評価結果は表3及び4に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4に示されるように、例1及び2はいずれも、めっき回路密着性、エッチング性及びドライフィルム解像性のいずれにも良好であった。一方、例3(比較)はめっき回路密着性に劣るものであった。また、例4(比較)はエッチング性とドライフィルム解像性に劣るものであった。

 

Claims (8)

  1.  少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、前記粗化処理面がくびれ部分を有する複数の一次粗化粒子を備えてなり、前記一次粗化粒子が前記くびれ部分を含む表面に前記一次粗化粒子よりも小さい複数の二次粗化粒子を有し、
     前記くびれ部分の前記二次粗化粒子の個数を前記くびれ部分の表面積で除した値である二次粗化粒子密度が9~30個/μmであり、かつ、前記粗化処理面の十点平均粗さRzが0.7~1.7μmである、粗化処理銅箔。
  2.  前記粗化処理面の単位平面面積あたりの前記二次粗化粒子の個数が50~500個/μmである、請求項1に記載の粗化処理銅箔。
  3.  前記粗化処理面の全体の表面積に占める、前記くびれ部分の表面積の割合が、0.3~0.5である、請求項1又は2に記載の粗化処理銅箔。
  4.  プリント配線板用の絶縁樹脂層に凹凸形状を転写するために用いられる、請求項1~3のいずれか一項に記載の粗化処理銅箔。
  5.  セミアディティブ法(SAP)によるプリント配線板の作製に用いられる、請求項1~4のいずれか一項に記載の粗化処理銅箔。
  6.  キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた請求項1~5のいずれか一項に記載の粗化処理銅箔とを備えた、キャリア付銅箔。
  7.  請求項1~5のいずれか一項に記載の粗化処理銅箔又は請求項6に記載のキャリア付銅箔を用いて得られた銅張積層板。
  8.  請求項1~5のいずれか一項に記載の粗化処理銅箔又は請求項6に記載のキャリア付銅箔を用いて得られたプリント配線板。

     
PCT/JP2018/017276 2017-05-19 2018-04-27 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板 WO2018211951A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018546913A JP6430092B1 (ja) 2017-05-19 2018-04-27 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
CN201880016577.8A CN110382745B (zh) 2017-05-19 2018-04-27 粗糙化处理铜箔、带载体铜箔、覆铜层叠板及印刷电路板
KR1020197027210A KR102297790B1 (ko) 2017-05-19 2018-04-27 조화 처리 구리박, 캐리어를 구비한 구리박, 동장 적층판 및 프린트 배선판
MYPI2019006734A MY194654A (en) 2017-05-19 2018-04-27 Roughened copper foil, carrier-attached copper foil, copper clad laminate, and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-099935 2017-05-19
JP2017099935 2017-05-19

Publications (1)

Publication Number Publication Date
WO2018211951A1 true WO2018211951A1 (ja) 2018-11-22

Family

ID=64273618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017276 WO2018211951A1 (ja) 2017-05-19 2018-04-27 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板

Country Status (6)

Country Link
JP (1) JP6430092B1 (ja)
KR (1) KR102297790B1 (ja)
CN (1) CN110382745B (ja)
MY (1) MY194654A (ja)
TW (1) TWI675748B (ja)
WO (1) WO2018211951A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188712A1 (ja) * 2018-03-27 2019-10-03 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
CN112447967A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
KR20210110383A (ko) 2019-03-26 2021-09-07 미쓰이금속광업주식회사 프린트 배선판의 제조 방법
KR20210111298A (ko) 2019-03-26 2021-09-10 미쓰이금속광업주식회사 프린트 배선판의 제조 방법
JP7051988B1 (ja) 2020-11-27 2022-04-11 古河電気工業株式会社 粗化処理銅箔、銅張積層板、及びプリント配線板
WO2022244828A1 (ja) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022244827A1 (ja) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022244826A1 (ja) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
US12004304B2 (en) 2019-03-26 2024-06-04 Mitsui Mining & Smelting Co., Ltd. Method for manufacturing printed wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168887A (ja) * 2010-01-22 2011-09-01 Furukawa Electric Co Ltd:The 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板
WO2016158775A1 (ja) * 2015-03-31 2016-10-06 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2016174998A1 (ja) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 粗化処理銅箔及びプリント配線板
WO2017006739A1 (ja) * 2015-07-03 2017-01-12 三井金属鉱業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251319B2 (ja) * 2003-06-27 2009-04-08 日本製箔株式会社 厚銅シート、それを用いたプリント配線板
JP5985812B2 (ja) * 2011-11-04 2016-09-06 Jx金属株式会社 印刷回路用銅箔
KR102128954B1 (ko) * 2012-06-06 2020-07-01 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 프린트 배선판용 동박, 그 제조방법, 및 그 동박을 사용한 프린트 배선판
JP5417538B1 (ja) * 2012-06-11 2014-02-19 Jx日鉱日石金属株式会社 表面処理銅箔及びそれを用いた積層板、プリント配線板、電子機器、並びに、プリント配線板の製造方法
CN104125711B (zh) * 2013-04-26 2017-10-24 Jx日矿日石金属株式会社 高频电路用铜箔、覆铜板、印刷布线板、带载体的铜箔、电子设备及印刷布线板的制造方法
JP6425401B2 (ja) * 2013-04-26 2018-11-21 Jx金属株式会社 高周波回路用銅箔、高周波回路用銅張積層板、高周波回路用プリント配線板、高周波回路用キャリア付銅箔、電子機器、及びプリント配線板の製造方法
JP5885790B2 (ja) * 2013-08-20 2016-03-15 Jx金属株式会社 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、プリント配線板、電子機器、電子機器の製造方法、並びに、プリント配線板の製造方法
JP5885791B2 (ja) * 2013-08-20 2016-03-15 Jx金属株式会社 表面処理銅箔及びそれを用いた積層板、キャリア付銅箔、銅箔、プリント配線板、電子機器、電子機器の製造方法、並びに、プリント配線板の製造方法
JP6487704B2 (ja) * 2015-02-12 2019-03-20 福田金属箔粉工業株式会社 処理銅箔及び該処理銅箔を用いた銅張積層板並びにプリント配線板
KR101759288B1 (ko) * 2015-10-15 2017-07-19 와이엠티 주식회사 표면에 돌기가 형성된 초박형 무전해 동박 및 이를 이용한 인쇄회로기판의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011168887A (ja) * 2010-01-22 2011-09-01 Furukawa Electric Co Ltd:The 粗化処理銅箔、その製造方法、銅張積層板及びプリント配線板
WO2016158775A1 (ja) * 2015-03-31 2016-10-06 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2016174998A1 (ja) * 2015-04-28 2016-11-03 三井金属鉱業株式会社 粗化処理銅箔及びプリント配線板
WO2017006739A1 (ja) * 2015-07-03 2017-01-12 三井金属鉱業株式会社 粗化処理銅箔、銅張積層板及びプリント配線板

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188712A1 (ja) * 2018-03-27 2019-10-03 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JPWO2019188712A1 (ja) * 2018-03-27 2021-04-22 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP7166335B2 (ja) 2018-03-27 2022-11-07 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
KR20210110383A (ko) 2019-03-26 2021-09-07 미쓰이금속광업주식회사 프린트 배선판의 제조 방법
KR20210111298A (ko) 2019-03-26 2021-09-10 미쓰이금속광업주식회사 프린트 배선판의 제조 방법
CN113574976A (zh) * 2019-03-26 2021-10-29 三井金属矿业株式会社 印刷电路板的制造方法
US12004304B2 (en) 2019-03-26 2024-06-04 Mitsui Mining & Smelting Co., Ltd. Method for manufacturing printed wiring board
CN112447967A (zh) * 2019-09-02 2021-03-05 宁德时代新能源科技股份有限公司 正极活性材料、正极极片及锂离子二次电池
JP2022085378A (ja) * 2020-11-27 2022-06-08 古河電気工業株式会社 粗化処理銅箔、銅張積層板、及びプリント配線板
WO2022113806A1 (ja) * 2020-11-27 2022-06-02 古河電気工業株式会社 粗化処理銅箔、銅張積層板、及びプリント配線板
JP7051988B1 (ja) 2020-11-27 2022-04-11 古河電気工業株式会社 粗化処理銅箔、銅張積層板、及びプリント配線板
WO2022244828A1 (ja) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022244827A1 (ja) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2022244826A1 (ja) * 2021-05-20 2022-11-24 三井金属鉱業株式会社 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
TWI804323B (zh) * 2021-05-20 2023-06-01 日商三井金屬鑛業股份有限公司 粗化處理銅箔、附載體銅箔、銅箔積層板及印刷配線板
TWI808765B (zh) * 2021-05-20 2023-07-11 日商三井金屬鑛業股份有限公司 粗化處理銅箔、附載體銅箔、銅箔積層板及印刷配線板

Also Published As

Publication number Publication date
CN110382745A (zh) 2019-10-25
TW201900410A (zh) 2019-01-01
CN110382745B (zh) 2021-06-25
JP6430092B1 (ja) 2018-11-28
KR102297790B1 (ko) 2021-09-06
JPWO2018211951A1 (ja) 2019-06-27
MY194654A (en) 2022-12-10
KR20190121327A (ko) 2019-10-25
TWI675748B (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
JP6430092B1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP6945523B2 (ja) 表面処理銅箔、キャリア付銅箔、並びにそれらを用いた銅張積層板及びプリント配線板の製造方法
JP6193534B2 (ja) 粗化処理銅箔、銅張積層板及びプリント配線板
JP6293365B2 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP6905157B2 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
JP6352449B2 (ja) キャリア付極薄銅箔及びその製造方法
JP7453154B2 (ja) 表面処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2019188712A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2017141983A1 (ja) プリント配線板の製造方法
WO2021157362A1 (ja) 粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2016152390A1 (ja) キャリア付極薄銅箔、その製造方法、銅張積層板及びプリント配線板
WO2020195748A1 (ja) プリント配線板用金属箔、キャリア付金属箔及び金属張積層板、並びにそれらを用いたプリント配線板の製造方法
KR20240009937A (ko) 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
KR20240009403A (ko) 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
KR20240009404A (ko) 조화 처리 구리박, 캐리어 구비 구리박, 동장 적층판 및 프린트 배선판
CN116964252A (zh) 带载体铜箔、覆铜层叠板及印刷电路板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018546913

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18803207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197027210

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18803207

Country of ref document: EP

Kind code of ref document: A1