WO2024043581A1 - 절연 필름 및 이를 포함하는 적층체 - Google Patents

절연 필름 및 이를 포함하는 적층체 Download PDF

Info

Publication number
WO2024043581A1
WO2024043581A1 PCT/KR2023/011704 KR2023011704W WO2024043581A1 WO 2024043581 A1 WO2024043581 A1 WO 2024043581A1 KR 2023011704 W KR2023011704 W KR 2023011704W WO 2024043581 A1 WO2024043581 A1 WO 2024043581A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
film
less
liquid crystal
laminate
Prior art date
Application number
PCT/KR2023/011704
Other languages
English (en)
French (fr)
Inventor
정두환
백상현
이두봉
박종웅
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority claimed from KR1020230103406A external-priority patent/KR20240028296A/ko
Publication of WO2024043581A1 publication Critical patent/WO2024043581A1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers

Definitions

  • This application relates to an insulating film and a laminate containing the same.
  • 5G which refers to the 5th generation mobile communication, transmits massive amounts of data at ultra-high speed and connects everything in real time (ultra-low latency) compared to LTE (Long-Term Evolution), the existing 4th generation mobile communication. It is the core infrastructure of the 4th Industrial Revolution.
  • LTE Long-Term Evolution
  • the biggest challenge of this 5G mobile communication technology is reducing transmission loss.
  • 5G uses a high-frequency region (short-wavelength region) with high propagation, and in this case, the rate of absorption by materials (transmission loss rate) while the radio wave travels is high. Therefore, low dielectric constant characteristics that can reduce transmission loss are required for components such as semiconductors for 5G mobile communication and printed circuit boards (PCBs), and insulators using liquid crystal polymer resins are mainly being considered to secure low dielectric constant characteristics.
  • liquid crystal polymer films have various strengths such as high strength, high heat resistance, and low moisture absorption, but there is a problem in that commercialization of the film is not easy. This is due to the characteristics of liquid crystal polymer resin. Specifically, liquid crystal polymer resin forms a liquid crystal structure in a molten state and has high orientation characteristics in the flow direction, so when manufacturing the film, the film is torn in the discharge direction from the die and has poor dimensional stability (dimensional non-uniformity). As such, it is difficult to secure film forming properties.
  • Japanese Patent No. 4091209 applies polyarylate, an amorphous (or amorphous) polymer, to improve the insulating strength of the film and the left-right vibration of the bubble (film forming ability). An attempt was made to do so. Additionally, Japanese Patent No. 3896324 attempts to improve dimensional stability by applying thermoplastic resins (PEI, PES, PPS, and polyarylate). As such, conventional attempts such as those in the above patent document focus on improving the film forming properties of liquid crystal polymer films.
  • PEI, PES, PPS, and polyarylate thermoplastic resins
  • One purpose of the present application is to solve the problems of the prior art described above.
  • Another object of the present application is to provide a liquid crystal polymer film with improved adhesion to copper foil.
  • an insulating film for forming Flexible Copper Clad Laminate (FCCL) by being laminated with a copper-containing metal layer
  • An insulating film is provided wherein the surface roughness ratio calculated according to the relationship below satisfies 78% or more:
  • S r1 is the arithmetic average roughness of one side of the metal layer forming FCCL with the insulating film, and is in the range of 0.1 to 0.6 ⁇ m,
  • S r2 is the arithmetic average roughness of one side of the insulating film, which is measured after immersing and washing the insulating film or the FCCL in a ferric chloride (FeCl 3 ⁇ 6H 2 O, Iron(III) Chloride anhydrous) solution for less than 1 hour. and
  • the arithmetic average roughness was measured using 800 ⁇ m as the cut-off standard.
  • 'comprise' is to specify a specific characteristic, area, integer, step, operation, element and/or component, and to specify another specific property, area, integer, step, operation, element, component and/or group. It does not exclude the existence or addition of .
  • an insulating film (or liquid crystal film) with improved adhesion to copper foil that solves the problems of the above-described prior art and a laminate including the same are provided.
  • the inventor of the present application confirmed that a liquid crystal polymer film manufactured by applying a polyarylate resin shows some effect in improving the film forming properties of the liquid crystal polymer film, but that the adhesive force between the liquid crystal polymer film and copper foil is lowered.
  • the inventor of the present application states that, in the conventional method of manufacturing a liquid crystal polymer film, the viscosity of the resin composition increases due to the application of polyarylate resin, which lowers the wetting ability during the adhesion process with the copper foil and the insulating film. It was determined that the above problem occurred due to insufficient adhesion between the devices, and the invention of this application was completed to solve this problem.
  • an insulating film for forming FCCL Flexible Copper Clad Laminate
  • FCCL Flexible Copper Clad Laminate
  • An insulating film may be provided in which the surface roughness ratio calculated according to the relationship below satisfies 78% or more:
  • S r1 is the arithmetic average roughness of one side of the metal layer forming FCCL with the insulating film, and is in the range of 0.1 to 0.6 ⁇ m,
  • S r2 is the arithmetic average roughness of one side of the insulating film, which is measured after immersing and washing the insulating film or the FCCL in a ferric chloride (FeCl 3 ⁇ 6H 2 O, Iron(III) Chloride anhydrous) solution for less than 1 hour. and
  • the arithmetic average roughness was measured using 800 ⁇ m as the cut-off standard.
  • the present application relates to insulating films.
  • the present application can provide an insulating film for forming Flexible Copper Clad Laminate (FCCL) with an excellent surface roughness ratio and a laminate including the same.
  • FCCL Flexible Copper Clad Laminate
  • the insulating film can be laminated with a copper-containing metal layer and used to form FCCL (Flexible Copper Clad Laminate), and has properties suitable for this use (e.g., properties that can solve the problems of the prior art described above) ) can have.
  • FCCL Flexible Copper Clad Laminate
  • the insulating film can satisfy the surface roughness described later and is formed from components described later.
  • the insulating film satisfies a surface roughness ratio of 78% or more calculated according to the relationship below.
  • S r1 may mean the arithmetic average roughness of one side of the metal layer forming FCCL together with the insulating film.
  • one side of the metal layer on which S r1 is measured may mean, for example, one side of the metal layer that faces the insulating film or is in contact with the insulating film when manufacturing FCCL.
  • one side of the metal layer (copper foil) laminated with the insulating film is generally 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, or 0.5 ⁇ m or more, and 0.6 ⁇ m or less, 0.5 ⁇ m or less, and 0.4 ⁇ m or more. It may have an arithmetic mean roughness (S r1 ) of ⁇ m or less, 0.3 ⁇ m or less, or 0.2 ⁇ m or less.
  • S r2 may mean the arithmetic average roughness of one side of the insulating film.
  • the one side of the insulating film on which S r2 is measured means, for example, one side of the insulating film that faces the metal layer (e.g., copper foil) or is in contact with the metal layer (e.g., copper foil) when manufacturing FCCL. can do.
  • the S r2 is obtained by adding the insulating film or the FCCL (formed by laminating the insulating film and the metal layer) in a ferric chloride (FeCl 3 ⁇ 6H 2 O, Iron(III) Chloride anhydrous) solution within 1 hour.
  • a ferric chloride FeCl 3 ⁇ 6H 2 O, Iron(III) Chloride anhydrous
  • the concentration of the ferric chloride solution i.e., the weight % of ferric chloride excluding the solvent in 100% by weight of the solution
  • the concentration of the ferric chloride solution may be 90% or more, 95% or more, and 100% or less.
  • the arithmetic average illuminance as described above may be measured using 800 ⁇ m as a cut-off standard.
  • such arithmetic average roughness can be measured using known equipment such as, for example, an optical surface roughness meter (3D Profiler).
  • the inventor of the present application designed the surface roughness of the insulating film to be similar to that of the metal layer (e.g., copper foil). In this case, it was experimentally confirmed that deterioration of adhesion can be prevented. Specifically, as confirmed in the experiment below, when the adhesion between the metal layer (e.g., copper foil) forming FCCL and the insulating film is insufficient, there is a large difference between the surface roughness of the insulating film and the surface roughness of the copper foil before etching.
  • the metal layer e.g., copper foil
  • etching or etching it is necessary to design the insulating film so that the surface roughness of the insulating film (after etching or etching) follows the surface roughness of the copper foil before etching to a certain extent or more.
  • a design includes, for example, controlling the viscosity (melt viscosity) of the insulating film to 1,000 poise or less, as described later.
  • the lower limit of the surface roughness ratio calculated according to the above relationship is 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87 % or higher, 88% or higher, 89% or higher, 90% or higher, 91% or higher, 92% or higher, 93% or higher, 94% or higher, 95% or higher, 96% or higher, 97% or higher, 98% or higher, or 99% or higher You can.
  • the upper limit may be, for example, 100% or less, specifically 99% or less, 98% or less, 97% or less, 96% or less, or 95% or less.
  • the insulating film may have a film viscosity of 1,000 poise or less. In another example, the insulating film may have a film viscosity of 300 to 1000 poise or less. (However, the film viscosity is measured at 320° C. and a shear rate of 500/sec). This viscosity satisfies the surface roughness ratio calculated according to the above relational equation and can prevent a decrease in the adhesion of the insulating film to the copper foil. In addition, this viscosity makes it possible to obtain a higher adhesive strength than that expected when using polyarylate as a component of an insulating film in the prior art.
  • the lower film viscosity limit of the insulating film is 300 poise or more, 350 poise or more, 400 poise or more, 450 poise or more, 500 poise or more, 550 poise or more, 600 poise or more, 650 poise or more, 700 poise or more, 750 poise or more. It may be more than 800 poise, more than 850 poise, more than 900 poise, or more than 950 poise.
  • the upper limit is, for example, 950 poise or less, 900 poise or less, 850 poise or less, 800 poise or less, 750 poise or less, 700 poise or less, 650 poise or less, 600 poise or less, 550 poise or less, 500 poise or less, 450 poise or less. It may be poise or less, 400 poise or less, or 350 poise or less.
  • the insulating film may be formed or manufactured to satisfy at least the above-described surface roughness ratio and/or film viscosity.
  • the insulating film may include polyarylate and liquid crystal polymer resin. More specifically, the insulating film may be manufactured from a composition containing polyarylate and liquid crystal polymer resin. More specifically, the insulating film may be manufactured from a composition containing polyarylate and two or more types of liquid crystal polymer resin (better, two or more types of liquid crystal polyester resins with different melting points).
  • the insulating film may be formed by melt molding a composition containing an insulating film forming component.
  • the insulating film can be obtained by melting and kneading a composition containing polyarylate and liquid crystal polymer resin with an extruder and discharging the molten resin through a slit in a die.
  • a T-shaped die or a circular die may be used.
  • the extruded insulating film may be stretched.
  • known techniques such as uniaxial stretching, biaxial stretching, inflation, or laminate stretching can be considered.
  • an insulating film laminate may be formed by forming an insulating film in a die slit and simultaneously bonding different types of thermoplastic polymer films.
  • Heteroplastic polymers that can be used at this time include polyolefins such as polyethylene, polypropylene, and ethylene- ⁇ -olefin copolymer; Alternatively, polyester such as polystyrene, polycarbonate, polyethylene terephthalate or polybutylene terephthalate may be used, and in addition, polyacetal, polyamide, polyphenylene ether, polyether sulfone, ethylene-vinyl acetate copolymer, poly Vinyl chloride, polyvinylidene chloride, polyphenylene sulfide, fluororesin, etc. can be used.
  • the polyarylate used to form the insulating film is an aromatic polyester manufactured by condensation polymerization of aromatic dicarboxylic acid and aromatic diol, and has the above-mentioned film viscosity, elastic modulus, and/or Alternatively, the specific structure is not particularly limited as long as there is no obstacle to satisfying the relational expression. Polyarylate functions advantageously in improving the formability or film forming properties of the insulating film.
  • polyarylate components which are amorphous polymers
  • polyarylate which has a high level of viscosity
  • bonds the insulating film to the metal layer e.g. copper foil
  • the metal layer e.g. copper foil
  • the liquid crystal polymer resin is selected to prevent a decrease in adhesion that occurs due to the use of polyarylate resin.
  • Liquid crystal resin or liquid crystal polymer used to form an insulating film refers to a polymer that maintains a crystalline state in a molten state and has liquid crystallinity.
  • the chemical composition or structure of the liquid crystalline polymer is not particularly limited as long as it does not impede satisfying the surface viscosity ratio and/or film viscosity of the above-mentioned relationship.
  • the liquid crystal polymer may include one or more liquid crystal polymers such as thermoplastic liquid crystal polyester, or thermoplastic liquid crystal polyesteramide to which an amide bond is introduced.
  • liquid crystal polymers such as thermoplastic liquid crystal polyester, or thermoplastic liquid crystal polyesteramide to which an amide bond is introduced.
  • the liquid crystal polymer is one or more polymers in which an isocyanate-derived bond such as an imide bond, a carbonate bond, a carbodiimide bond, or an isocyanurate bond is introduced into the aromatic polyester or aromatic polyesteramide. It can be included.
  • thermoplastic liquid crystal polyester may be prepared from aromatic hydroxycarboxylic acid, aromatic dihydroxy, aromatic dicarboxylic acid, aromatic diamine, aromatic hydroxyamine and/or aromatic aminocarboxylic acid monomer. .
  • the aromatic hydroxy carboxylic acid monomer is not limited thereto, but for example, 2-hydroxybenzoic acid, 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, 5- It may be hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, 4-(4-hydroxyphenyl)benzoic acid, or 4-(3-hydroxyphenyl)benzoic acid.
  • the aromatic dihydroxy monomer is not limited thereto, but for example, 1,4-dihydroxybenzene, 1,3-dihydroxybenzene, 2,6-dihydroxynaphthalene, 2,7-dihydroxy Naphthalene, 1,6-dihydroxynaphthalene, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4'-dihydroxybi It may be phenyl or 4,4'-dihydroxybiphenyl ether.
  • aromatic dicarboxylic acid monomer is not limited thereto, but for example, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-4,4'-dicarboxylic acid or 4,4'- It may be dicarboxydiphenyl ether, etc.
  • the monomer of the aromatic diamine monomer is not limited thereto, but may be, for example, 1,4-diaminobenzene, 1,3-diaminobenzene, 1,5-diaminonaphthalene, or 1,8-diaminonaphthalene. .
  • the aromatic hydroxy amine monomer is not limited thereto, but for example, 4-aminophenol, 3-aminophenol, 4-amino-1-naphthol, 5-amino-1-naphthol, 6-amino-2-naphthol or It may be 4-amino-4'-hydroxybiphenyl, etc.
  • the aromatic aminocarboxylic acid monomer is not limited thereto, but may be, for example, 4-aminobenzoic acid, 3-aminobenzoic acid, or 6-amino-2-naphthoic acid.
  • an alkyl, alkoxy or halogen substituent of the aromatic hydroxycarboxylic acid, aromatic dihydroxy, aromatic dicarboxylic acid, aromatic diamine, aromatic hydroxyamine, aromatic and/or aminocarboxylic acid compound and Ester-forming derivatives such as acylation can also be used as liquid crystal polymers.
  • the aromatic hydroxycarboxylic acid, aromatic dihydroxy, aromatic dicarboxylic acid, aromatic diamine, aromatic hydroxyamine and/or aromatic amino within the range that does not inhibit liquid crystallinity in the molten resin state.
  • a liquid crystal polymer obtained by copolymerizing a carboxylic acid compound with an aliphatic dihydroxy and/or an aliphatic dicarboxylic acid compound may be used.
  • the thermoplastic liquid crystal polyester may be, for example, Type I, consisting of 4-hydroxybenzoic acid, terephthalic acid, and 4,4'-dihydroxybiphenyl, 4-hydroxybenzoic acid, and 6-hydroxybiphenyl.
  • -It may be type II composed of 2-naphthoic acid, type III composed of 4-hydroxybenzoic acid, terephthalic acid, and ethylene glycol.
  • commercial products currently on the market may also be included in the liquid crystal polymer, with type I being Sumitomo Chemical's Sumica Super and Solvay's Zydar, type II being Vectra from Celanese, and type III being from Unitica. Products such as Road Run from Mitsubishi Engineering Plastics or Novacurate from Mitsubishi Engineering Plastics can be used.
  • the insulating film may include at least two types of liquid crystal polymer resin.
  • the liquid crystal polymer resin may include two types of liquid crystal polymer resins having different melting points.
  • the insulating film may include a high melting point liquid crystal polymer resin and a low melting point liquid crystal polymer resin.
  • the melting point temperature that distinguishes whether the liquid crystal polymer resin has a low melting point or a high melting point is 270 °C, 275 °C, 280 °C, 285 °C, 290 °C, 295 °C, 300 °C, 305 °C, 310 °C, 315 °C It may be °C, 320 °C, 325 °C, 330 °C, 335 °C, 340 °C, 345 °C or 350 °C.
  • the liquid crystal polymer resin may include a low melting point liquid crystal polymer resin having a melting point of 300°C or less and a high melting point liquid crystal polymer resin having a melting point exceeding 300°C.
  • the liquid crystal polymer resin may include a low melting point liquid crystal polymer resin having a melting point of 310°C or less and a high melting point liquid crystal polymer resin having a melting point exceeding 310°C.
  • the liquid crystal polymer resin may include a low melting point liquid crystal polymer resin having a melting point of 320°C or less and a high melting point liquid crystal polymer resin having a melting point exceeding 320°C.
  • the melting points of the high melting point liquid crystal polymer resin and the low melting point liquid crystal polymer resin included in the liquid crystal polymer resin are (270 °C, 275 °C, 280 °C, 285 °C, 290 °C, 295 °C, 300 °C , 305 °C, 310 °C, 315 °C, 320 °C, 325 °C, 330 °C, 335 °C, 340 °C, 345 °C and 350 °C) difference of at least 5 °C, difference of more than 10 °C, difference of 15 °C There may be a difference of more than 20°C, a difference of more than 25°C, a difference of more than 30°C, a difference of more than 35°C, a difference of more than 40°C, a difference of more than 45°C, or a difference of more than 50°C.
  • the liquid crystal polymer resin may include a low melting point resin with a melting point of 290°C or lower and a high melting point resin with a melting point of 310°C or higher (the melting point difference is 20°C or the liquid crystal polymer resin may have a melting point of, for example, 20°C or higher. It may include a low-melting point resin with a melting point of 280 °C or lower and a high-melting point resin with a melting point of 320 °C or higher (melting point difference is 40 °C).
  • low melting point liquid crystal polymer resin its low viscosity is advantageous in securing moldability or film forming properties, but is not sufficient in securing heat resistance of the film.
  • high melting point liquid crystal polymer resin it is not sufficient to secure moldability or film forming properties, but is advantageous in securing film heat resistance.
  • exemplary high melting point liquid crystal polymer resins include Vectra C950 (Celanese) or LF-31 (ENEOS) may be used, and as an exemplary low melting point liquid crystal polymer resin, Vectra A950 (Celanese) or CX-2199 (ENEOS) may be used.
  • the insulating film may include 1 to 15% by weight of polyarylate and 85 to 99% by weight of liquid crystal polymer resin.
  • the liquid crystal polymer film may include low melting point and high melting point liquid crystal polyester resin.
  • the insulating film is, for example, at least 2% by weight, at least 3% by weight, at least 4% by weight, at least 5% by weight, at least 6% by weight, at least 7% by weight, at least 8% by weight, at least 9% by weight, or It may contain 10% by weight or more of polyarylate.
  • the upper limit of the content of the polyarylate resin in the insulating film is, for example, 14% by weight or less, 13% by weight or less, 12% by weight or less, 11% by weight or less, 10% by weight or less, 9% by weight or less, 8% by weight. % or less, 7% by weight or less, 6% by weight or less, 5% by weight or less, 4% by weight or less, 3% by weight or less, or 2% by weight or less. At this time, the weight% is based on 100% by weight of the total content of the resin components forming the insulating film.
  • the insulating film may include 15 to 60% by weight of a low melting point liquid crystal polymer resin (low melting point liquid crystal polyester resin).
  • the insulating film is 20% by weight or more, 25% by weight or more, 30% by weight or more, 35% by weight or more, 40% by weight or more, 45% by weight, 50% by weight or more, or 55% by weight or more of low melting point liquid crystal. May contain polymer resin.
  • the upper limit of the content of the low melting point liquid crystal polymer resin is 55% by weight or less, 50% by weight or less, 45% by weight or less, 40% by weight or less, 35% by weight or less, 30% by weight or less, 25% by weight or less, or 20% by weight. It may be below.
  • the weight% is based on 100% by weight of the total content of the resin components forming the insulating film.
  • the insulating film may include 15 to 80% by weight of a high-melting point liquid crystal polymer resin (high-melting point polyester resin). Specifically, the insulating film is 20% by weight or more, 25% by weight or more, 30% by weight or more, 35% by weight or more, 40% by weight or more, 45% by weight or more, 50% by weight or more, 55% by weight or more, 60% by weight. It may contain a high melting point liquid crystal polymer resin in an amount of 65% by weight or more, 70% by weight or more, or 75% by weight or more.
  • a high-melting point liquid crystal polymer resin high-melting point polyester resin
  • the upper limit of the content of the high melting point liquid crystal polymer resin is 75% by weight or less, 70% by weight or less, 65% by weight or less, 60% by weight or less, 55% by weight or less, 50% by weight or less, 45% by weight or less, 40% by weight. It may be 35% by weight or less, 30% by weight or less, 25% by weight or less, or 20% by weight or less.
  • the weight% is based on 100% by weight of the total content of the resin components forming the insulating film.
  • the insulating film having the above configuration can have excellent heat resistance.
  • the insulating film may have an elastic modulus of 150 MPa or more at 280°C.
  • the elastic modulus refers to the elastic modulus at 280°C confirmed when the temperature is increased at a rate of 5°C min under the conditions of static strain of 0.15%, dynamic strain of 0.10%, and frequency of 1.0 Hz.
  • the insulating film has an elastic modulus of 150 to 600 MPa at 280°C, which is confirmed when the temperature is raised at a rate of 5°C min under the conditions of static strain 0.15%, dynamic strain 0.10%, and frequency 1.0 Hz. can be satisfied.
  • the above elastic modulus is related to heat resistance. Since the insulating film may be exposed to high temperatures or heat due to the nature of the purpose for which it is used, it must satisfy a predetermined elastic modulus.
  • the lower limit of the elastic modulus may be 200 MPa or more, 250 MPa or more, 300 MPa or more, 350 MPa or more, 400 MPa or more, 450 MPa or more, 500 MPa or more, or 550 MPa or more.
  • the upper limit may be, for example, 600 MPa or less, 550 MPa or less, 500 MPa or less, 450 MPa or less, 400 MPa or less, 350 MPa or less, 300 MPa or less, 250 MPa or less, or 200 MPa or less.
  • the insulating film may satisfy all of the surface roughness ratio, the film viscosity, and the elastic modulus according to the above relational equation.
  • the insulating film may satisfy a dielectric constant (Dk) of less than 3.4.
  • Dk dielectric constant
  • the insulating film may satisfy a dielectric constant of 3.3 or less, 3.2 or less, 3.1 or less, or 3.0 or less. If the range is satisfied, it is advantageous to reduce transmission loss.
  • the dielectric constant can be measured using the device described in the experiment described later.
  • the insulating film may satisfy a dielectric loss tangent (Df) of less than 0.005.
  • Df dielectric loss tangent
  • the insulating film may satisfy a dielectric loss tangent of 0.004 or less, 0.003 or less, 0.002 or less, or 0.001 or less. If the range is satisfied, it is advantageous to reduce transmission loss. Dielectric loss tangent can be measured using the device described in the experiment described later.
  • the insulating film has a peeling force (or adhesion force) measured while peeling the copper foil on a specimen in which a metal layer (e.g., copper foil), an insulating film, and a metal layer (e.g., copper foil) are sequentially laminated to 0.5 kN/m.
  • a peeling force or adhesion force measured while peeling the copper foil on a specimen in which a metal layer (e.g., copper foil), an insulating film, and a metal layer (e.g., copper foil) are sequentially laminated to 0.5 kN/m.
  • the peeling force of the insulating film measured using the above specimen may be 0.6 kN/m or more, 0.7 kN/m or more, 0.8 kN/m or more, or 0.9 kN/m or more. Measurement of such peel force or adhesion force can be performed using a peel force estimator (Chem Instrument, AR-1000), as described later.
  • FCCL Flexible Copper Clad Laminate
  • FCCL can be manufactured by lamination with a metal layer containing copper.
  • FCCL can be manufactured through the process of stacking a metal layer on an insulating film and forming a circuit pattern, and etching (or etching) may be performed during the circuit pattern formation process.
  • FCCL manufacturing when laminating a metal layer on an insulating film, a hot lamination process in which heat and pressure are applied may be applied.
  • the surface of the insulating film is melted by the heat applied in the above process, and the molten resin moves with flowability.
  • the lower the viscosity of the insulating film and the better it flows the closer it becomes to the shape of the surface of the metal layer, and the contact area between the metal layer and the insulating film can increase.
  • the degree can be confirmed through the surface roughness ratio in the above-mentioned relational equation.
  • the improved adhesion between the metal layer and the insulating film which has a similar surface shape, can be confirmed through the experimental results described later.
  • a known etching solution for example, ferric chloride (FeCl 3 ⁇ 6H 2 O, Iron(III) Chloride anhydrous), may be used to form a circuit pattern on the metal layer.
  • ferric chloride FeCl 3 ⁇ 6H 2 O, Iron(III) Chloride anhydrous
  • concentration of the ferric chloride solution used for etching i.e., the weight % of ferric chloride excluding the solvent in 100% by weight of the solution
  • the concentration of the ferric chloride solution used for etching i.e., the weight % of ferric chloride excluding the solvent in 100% by weight of the solution
  • the concentration of the ferric chloride solution used for etching i.e., the weight % of ferric chloride excluding the solvent in 100% by weight of the solution
  • metal layers that can be laminated with the insulating film of the present application include copper.
  • the metal layer is so-called copper foil, and may be, for example, rolled copper foil or electrolytic copper foil.
  • this metal layer may contain more than 90% by weight, more than 95% by weight, or more than 99% by weight of copper, and in some cases, it may contain a small amount of additives or impurities.
  • this application relates to a laminate including a metal layer and an insulating film.
  • the laminate may be, for example, FCCL or may be used to manufacture FCCL.
  • the laminate includes (A) a metal layer containing copper; and (B) an insulating film positioned on at least one surface of the metal layer.
  • the laminate includes an insulating film that satisfies the following characteristics so as to have excellent film forming properties as well as excellent adhesion between the metal layer and the insulating film.
  • the insulating film included in the laminate satisfies a surface roughness ratio of 78% or more calculated according to the relationship below.
  • S r1 may mean the arithmetic average roughness of one side of the metal layer forming FCCL together with the insulating film.
  • one side of the metal layer on which S r1 is measured may mean, for example, one side of the metal layer that faces the insulating film or is in contact with the insulating film in a laminate such as FCCL.
  • one side of the metal layer (e.g. copper foil) laminated together with the insulating film is generally 0.1 ⁇ m or more, 0.2 ⁇ m or more, 0.3 ⁇ m or more, 0.4 ⁇ m or more, or 0.5 ⁇ m or more, and 0.6 ⁇ m or less, 0.5 ⁇ m or less.
  • S r2 may mean the arithmetic average roughness of one side of the insulating film.
  • the one side of the insulating film on which S r2 is measured is, for example, a side of the insulating film that faces the metal layer (e.g., copper foil) or is in contact with the metal layer (e.g., copper foil) in a laminate such as FCCL. It can mean.
  • the S r2 is the insulating film or a laminate such as FCCL (formed by laminating an insulating film and a metal layer (copper foil)) with ferric chloride (FeCl 3 6H 2 O, Iron(III) Chloride anhydrous ) can be measured after immersion and washing in the solution for less than 1 hour.
  • the concentration of the ferric chloride solution i.e., the weight % of ferric chloride excluding the solvent in 100% by weight of the solution
  • the above arithmetic average roughness may be measured using 800 ⁇ m as a cut-off standard. And, although not particularly limited, such arithmetic average roughness can be measured using known equipment such as, for example, an optical surface roughness meter (3D Profiler).
  • the insulating film may include a liquid crystal polymer and a polyarylate, or better, it may include two types of liquid crystal polymer and a polyarylate having different melting points.
  • an insulating film that satisfies the above characteristics may have a film viscosity of 1,000 poise or less. This viscosity satisfies the above-mentioned surface roughness ratio and can prevent a decrease in the adhesion of the insulating film to the copper foil.
  • the specific viscosity values of the insulating film are the same as described above.
  • the insulating film satisfies an elastic modulus of 150 MPa or more at 280°C.
  • the elastic modulus refers to the elastic modulus at 280°C confirmed when the temperature is increased at a rate of 5°C min under the conditions of static strain of 0.15%, dynamic strain of 0.10%, and frequency of 1.0 Hz.
  • the description of the technical significance and specific values of the elastic modulus is the same as described above, so it is omitted.
  • the metal layer of the laminate may be a patterned metal layer. Specifically, with respect to a laminate in which a metal layer and an insulating film are laminated, a part of the metal layer may be removed through an etching process, thereby forming a metal layer having a predetermined pattern.
  • the use of the above laminate is not particularly limited, but for example, the laminate is suitable for FCCL (Flexible Copper Clad Laminate), a 5th generation mobile communication component.
  • FCCL Flexible Copper Clad Laminate
  • an insulating film that not only has excellent adhesion to metal layers laminated together but also has excellent heat resistance and film forming properties; And a laminate including the same is provided.
  • thermoplastic liquid crystal polyester pellet 1 (Vectra C950 from Celanese), and as a low-melting point liquid crystal polymer resin, liquid crystal polyester pellet 2 (Vectra A950 from Unitica) and polyarylate pellet 3 (U-Polymer) After mixing U-100), mixed pellets containing the above ingredients were produced using a twin-screw extruder (extruder temperature about 320°C).
  • the mixed pellet of Example 1 is a mixture of each component in a predetermined amount at a level that satisfies the viscosity and elastic modulus of the film of this application.
  • liquid crystal polyester pellet 1 (Vectra C950) 79 wt %, 20 wt % of liquid crystal polyester pellets 2 (Vectra A950) and 1 wt % of polyarylate pellets 3 (U-100) were used (see Table 1 below).
  • the mixed pellets prepared as above were put into a single-screw extruder (LE30-30/CV, manufactured by Labtech) to produce a film with a thickness of 50 ⁇ m.
  • the L/D of the extruder is 30 and the diameter is 30mm.
  • the die was a T-die, the slit spacing of the die was 0.5 mm, and the slit width was 300 mm. Additionally, the temperature of the extruder was set to 380°C, the die temperature was set to 350°C, and the screw speed in the extruder was set to 65 rpm.
  • a 50 ⁇ m thick film was produced using the same thermoplastic liquid crystal polyester pellets and polyarylate pellets as in Example 1 by varying only the content (input amount) as shown in Tables 1 and 2 below.
  • the mixed pellets were mixed with a predetermined amount of each component at a level that satisfies the viscosity of the film of this application (see Table 1-2 below).
  • thermoplastic liquid crystal polyester pellets 1 Vinyl C950 from Celanese
  • polyarylate pellets 3 U-Polymer U-100
  • mixed pellets containing the above ingredients were produced using a twin-screw extruder ( Extruder temperature approximately 320°C).
  • the mixed pellet of Comparative Example 1 is a mixture of each component in a predetermined amount at a level that does not satisfy the viscosity and/or elastic modulus of the film of this application.
  • liquid crystal polyester pellet 1 Vectra C950
  • 99 wt % and 1 wt % of polyarylate pellet 3 U-100 were used (see Table 3 below).
  • Comparative Example 1 The mixed pellets of Comparative Example 1 were put into a single-screw extruder (LE30-30/CV, manufactured by Labtech) to produce a film with a thickness of 50 ⁇ m. At this time, the film manufacturing conditions were the same as those described in Example 1.
  • Thermoplastic liquid crystal polyester pellets and polyarylate pellets were adjusted to the same content (input amount) as shown in Table 3 below, and mixed pellets for each comparative example were prepared. Similar to Comparative Example 1, the mixed pellets were mixed with a predetermined amount of each component at a level that does not satisfy the viscosity and/or elastic modulus of the present application film (see Table 3 below).
  • Example and Comparative Example films For the Example and Comparative Example films, the viscosity, dielectric constant, dielectric loss tangent, adhesion, heat resistance, copper foil surface roughness before etching, and surface roughness of the film surface after etching were confirmed and recorded in Tables 1 to 3.
  • the evaluation items and methods are as follows.
  • the dielectric constant and dielectric loss tangent of the Example and Comparative Example films were measured using a Microwave Molecular Orientation Analyzer (MOA-7015, manufactured by Oji Scientific Instruments). The frequency applied during measurement is 15 GHz.
  • MOA-7015 Microwave Molecular Orientation Analyzer
  • the melt viscosity of each Example and Comparative Example film was determined at 320°C.
  • the capillary rheometer had a spindle with a length of 20 mm and a diameter of 1 mm and a piston diameter of 12 mm, and the melt viscosity was determined at a shear rate of 500/sec.
  • Copper foil etching 12 ⁇ m thick copper foil (JX Metal Co., Ltd., JXEFL-V2) was prepared, and a copper foil/(each example or comparative example) film/copper foil laminate was prepared to evaluate adhesion. Then, the laminate was cut into 10 mm wide Washed away.
  • the arithmetic average roughness of the surface was measured using a 3D Optical Profiler (NPFLEX manufactured by Bruker) equipment. Specifically, in Vertical Scanning Interferometry (VSI) mode, the microscope's magnification was set to 50x, a surface image measuring 95 ⁇ m in length and 126 ⁇ m in width was measured, and then the arithmetic average roughness of the surface was obtained with a cut-off of 800 ⁇ m. That is, surface roughness is measured for irregularities having a wavelength less than the cut-off value.
  • the surface roughness of the film surface after etching refers to the surface roughness of the film surface on which copper foil was located before etching, but from which copper was removed through the etching process.
  • a liquid crystal polymer film was inserted between two sheets of copper foil to form a laminate using a hot press, and then the adhesion was determined from the force generated when the copper foil was peeled off.
  • the film was cut into 50 mm wide x 150 mm long, inserted between two sheets of 12 ⁇ m copper foil (JX Metal Co., Ltd., JXEFL-V2), and laminated using a hot press.
  • the press pressure during hot press lamination was 20 MPa, and the hot press temperature was 300°C.
  • the copper foil/film/copper foil laminate produced above was cut to 25 mm wide
  • the peeling force was expressed as adhesive force.
  • the elastic modulus (E') at 280°C was evaluated using a dynamic mechanical analyzer (DMA, DMA GABO EPLEXOR 100N, NETZSCH).
  • the elastic modulus at 280°C was evaluated while increasing the temperature at a rate of 5°C at a static strain of 0.15%, a dynamic strain of 0.10%, and a frequency of 1.0 Hz. During evaluation, if the evaluation sample was fractured and it was difficult to measure the elastic modulus, it was indicated as unmeasurable.
  • Examples 1 to 12 which use two or more types of liquid crystal polymer resins with different melting points, even if they contain a polyarylate resin, have a lower viscosity of the resin composition than Comparative Examples 1 to 5. It can be seen that the optimal film viscosity is suppressed to ensure excellent coating properties by suppressing the rise, and the adhesion with the copper foil is improved.
  • Examples 1 to 12 show the elastic modulus at 280 ° C. measured under the above-mentioned conditions. satisfied the range of 150 to 600 MPa.
  • Comparative Examples 1 to 5 did not satisfy the scope of the present application even if one type of low-melting point or high-melting point liquid crystal polymer was used or a mixture thereof, and the adhesion to copper foil was poor due to an increase in film viscosity or the elastic modulus was 600. MPa was exceeded or the elastic modulus could not be measured. Therefore, the elastic modulus is related to heat resistance, and in the case of Comparative Examples 1 to 5, heat resistance may be poor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

본 출원은 절연 필름 및 이를 포함하는 적층체에 관한 것이다. 상기 절연 필름은 함께 적층되는 금속층에 대한 접착력이 우수할 뿐 아니라 내열성과 제막성도 우수하다. 상기와 같은 절연 필름은 구리를 포함하는 금속층과 함께 FCCL과 같은 적층체 제조에 사용될 수 있고, 5세대 이동 통신용 부품에 적합하게 사용될 수 있다.

Description

절연 필름 및 이를 포함하는 적층체
관련 출원(들)과의 상호 인용
본 출원은 2022년 8월 24일자 한국 특허 출원 제10-2022-0106433호 및 2023년 8월 8일자 한국 특허 출원 제10-2023-0103406호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 출원은 절연 필름 및 이를 포함하는 적층체에 관한 것이다.
5세대 (5th Generation) 이동 통신을 가리키는 5G는, 기존 4세대 이동통신인 LTE (Long-Term Evolution)에 비해, 방대한 데이터를 초고속으로 전송하고, 실시간으로 (초저지연) 모든 것을 연결(초연결) 하는 4차 산업혁명의 핵심 인프라이다. 이러한 5G 이동 통신 기술의 가장 큰 난제는 전송 손실을 줄이는 것이다. 5G는 직진성이 높은 고주파수 영역(단파장 영역)을 이용하는데, 이 경우 전파가 이동하는 과정에서 물질에 흡수되는 비율(전송 손실 비율)이 높다. 따라서, 5G 이동통신용 반도체나 PCB(Printed Circuit Board) 등의 부품류에는 전송 손실을 줄일 수 있는 저유전율 특성이 요구되는데, 저유전율 특성 확보를 위해 액정 폴리머 수지를 이용한 절연체가 주로 검토되고 있다.
한편, 언급한 저유전 특성 외에도, 액정 폴리머 필름은 고강도, 고내열, 낮은 수분 흡수율 등 다양한 강점을 보유하고 있음에도 필름의 상용화가 쉽지 않은 문제가 있다. 이는 액정 폴리머 수지의 특성에서 기인한다. 구체적으로, 액정 폴리머 수지는 용융상태에서 액정 구조를 형성하기 때문에 유동 방향으로 높은 배향 특성을 갖기 때문에, 필름 제조 시 다이로부터의 토출 방향에서 필름이 찢어지고, 치수 안정성이 좋지 못한 것(치수 불균일)과 같이 제막성 확보가 어렵다.
상술한 액정 폴리머 필름의 단점을 개선하기 위해, 일본등록특허 제4091209호에서는 비정형(또는 비정질) 폴리머인 폴리아릴레이트(Polyarylate)를 적용하여 필름의 단열강도 및 버블의 좌우 진동(제막성)을 개선하는 시도를 하였다. 또한, 일본등록특허 제3896324호에서는 열가소성 수지(PEI, PES, PPS 및 폴리아릴레이트)를 적용하여 치수안정성을 개선하는 시도를 하고 있다. 이처럼, 상기 특허문헌에서와 같은 종래의 시도는 액정 폴리머 필름의 제막성 개선에 초점을 두고 있다.
그러나, 상기 특허문헌에서 언급된 비정형 폴리머나 열가소성 수지, 예를 들어, 폴리아릴레이트를 포함하는 수지를 적용할 경우, 용융 점도 상승으로 인해 접착력이 저하되기 때문에, FCCL(Flexible Copper Clad Laminate) 제조 과정에서 LCP (Liquid Crystal Polymer) 필름과 동박 간 접착 불량이 발생될 수 있다. 따라서, 이에 대한 개선이 추가적으로 필요하다.
본 출원의 일 목적은, 상술한 종래 기술의 문제점을 해소하는 것이다.
본 출원의 다른 목적은, 동박과의 접착성이 개선된 액정 폴리머 필름을 제공하는 것이다.
본 출원의 상기 목적 및 기타 목적은 아래 상세히 설명되는 본 출원 발명에 의해 모두 해결될 수 있다.
본 발명의 일 구현 예에 따르면, 구리 포함 금속층과 함께 적층되어 FCCL(Flexible Copper Clad Laminate)을 형성하기 위한 절연 필름으로서,
아래 관계식에 따라 계산되는 표면 조도 비율이 78% 이상을 만족하는, 절연 필름이 제공된다:
[관계식]
표면조도 비율(%) = (Sr2/Sr1) x 100
(상기 관계식에서,
Sr1 은 상기 절연 필름과 함께 FCCL을 형성하는 금속층 어느 일면의 산술평균 조도로서, 0.1 내지 0.6 ㎛ 범위이고,
Sr2 는 상기 절연필름 어느 일면의 산술평균 조도로서, 상기 절연 필름 또는 상기 FCCL을 염화제이철 (FeCl3·6H2O, Iron(Ⅲ) Chloride anhydrous) 용액에 1 시간 이내로 침지 및 세정한 후 측정된 것이며,
상기 산술 평균 조도는 800 ㎛를 컷-오프(Cut-off) 기준으로 하여 측정된 것이다.)
본 발명의 다른 구현예에 따르면, (A) 구리를 포함하는 금속층; 및 (B) 상기 금속층의 적어도 일면 상에 위치하는 절연필름을 포함하는 적층체이고, 상기 절연필름은 상기 관계식에 따라 계산되는 표면 조도 비율이 78% 이상을 만족하는, 적층체가 제공된다.
이하, 발명의 일 구현예에 따른 절연 필름 및 이를 포함하는 적층체에 대해 보다 상세히 설명한다.
본 명세서에서 명시적인 언급이 없는 한, 전문용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다.
본 명세서에서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다.
본 명세서에서 사용되는 '포함'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외시키는 것은 아니다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 상기 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 출원에 관한 구체예에 따르면, 상술한 종래 기술의 문제점을 해소하고, 동박에 대한 접착력이 개선된 절연 필름(또는 액정 필름) 및 이를 포함하는 적층체가 제공된다.
이와 관련하여, 본 출원의 발명자는, 폴리아릴레이트 수지를 적용하여 제조된 액정 폴리머 필름은 액정 폴리머 필름의 제막성 개선에는 어느 정도 효과를 보이나, 액정 폴리머 필름과 동박 간 접착력이 낮아짐을 확인하였다. 구체적으로, 본 출원의 발명자는, 종래 액정 폴리머 필름 제조 방법은, 폴리아릴레이트 수지 적용으로 인해 수지 조성물의 점도가 높아지고, 이로 인해 동박과의 접착 과정에서 젖음성(Wetting Ability)이 낮아져 동박과 절연 필름 사이에 충분한 접착이 이루어지지 않는 것에 기인하여, 상기와 같은 문제가 발생하는 것으로 판단하고, 이를 해소하기 위한 본 출원 발명을 완성하였다.
이에, 발명이 일 구현예에 따르면, 구리 포함 금속층과 함께 적층되어 FCCL(Flexible Copper Clad Laminate)을 형성하기 위한 절연 필름으로서,
아래 관계식에 따라 계산되는 표면 조도 비율이 78% 이상을 만족하는, 절연 필름이 제공될 수 있다:
[관계식]
표면조도 비율(%) = (Sr2/Sr1) x 100
(상기 관계식에서,
Sr1 은 상기 절연 필름과 함께 FCCL을 형성하는 금속층 어느 일면의 산술평균 조도로서, 0.1 내지 0.6 ㎛ 범위이고,
Sr2 는 상기 절연필름 어느 일면의 산술평균 조도로서, 상기 절연 필름 또는 상기 FCCL을 염화제이철 (FeCl3·6H2O, Iron(Ⅲ) Chloride anhydrous) 용액에 1 시간 이내로 침지 및 세정한 후 측정된 것이며,
상기 산술 평균 조도는 800 ㎛를 컷-오프(Cut-off) 기준으로 하여 측정된 것이다.)
본 출원에 관한 구체예에서, 본 출원은 절연 필름에 관한 것이다.
본 출원은 폴리아릴레이트 수지 및 적어도 2종의 액정 폴리에스테르를 포함한 수지 조성물을 이용하고, 또한 그 혼합비를 조절함으로써, 수지 조성물의 점도 상승을 억제하고 동박과의 접착력을 개선할 수 있다. 일 구현예에서, 상기 2종 이상의 액정 폴리에스테르는 서로 융점이 상이한 저융점 및 고융점 액정 폴리에스테르 수지를 포함할 수 있다. 따라서, 본 출원은 표면 조도 비율이 우수한 FCCL(Flexible Copper Clad Laminate)을 형성하기 위한 절연 필름과 이를 포함한 적층체를 제공할 수 있다.
즉, 상기 절연 필름은 구리 포함 금속층과 함께 적층되어 FCCL(Flexible Copper Clad Laminate)을 형성하기 위한 용도로 사용될 수 있고, 이러한 용도에 적합한 특성(예: 상술한 종래 기술의 문제점을 해소할 수 있는 특성)을 가질 수 있다. 구체적으로, 상기 절연 필름은 후술하는 표면 조도를 만족할 수 있고, 후술하는 성분으로부터 형성된다.
본 출원의 구체예에서, 상기 절연 필름은 아래 관계식에 따라 계산되는 표면 조도 비율이 78% 이상을 만족한다.
[관계식]
표면조도 비율(%) = (Sr2/Sr1) x 100
상기 관계식에서, Sr1 은 상기 절연 필름과 함께 FCCL을 형성하는 금속층 어느 일면의 산술평균 조도를 의미할 수 있다. 이때, 상기 Sr1 이 측정되는 금속층의 어느 일면이란, 예를 들어, FCCL을 제조하는 경우 절연 필름을 마주하거나 상기 절연 필름과 접하게 되는 금속층의 일면을 의미할 수 있다. FCCL 제조시 절연 필름과 함께 적층되는 금속층(동박)의 어느 일면은 일반적으로 0.1 ㎛ 이상, 0.2 ㎛ 이상, 0.3 ㎛ 이상, 0.4 ㎛ 이상 또는 0.5 ㎛ 이상, 그리고, 0.6 ㎛ 이하, 0.5 ㎛ 이하, 0.4 ㎛ 이하, 0.3 ㎛ 이하 또는 0.2 ㎛ 이하의 산술평균 조도(Sr1)를 가질 수 있다.
상기 관계식에서, Sr2 는 상기 절연 필름 어느 일면의 산술평균 조도를 의미할 수 있다. 이때, 상기 Sr2 가 측정되는 절연 필름의 어느 일면이란, 예를 들어, FCCL을 제조하는 경우 상기 금속층(예: 동박)을 마주하거나 상기 금속층(예: 동박)과 접하게 되는 절연 필름의 일면을 의미할 수 있다. 본 출원의 구체예예 따르면, 상기 Sr2 는 상기 절연 필름 또는 (절연 필름과 금속층이 적층되어 형성된) 상기 FCCL을 염화제이철 (FeCl3·6H2O, Iron(Ⅲ) Chloride anhydrous) 용액에 1 시간 이내로 침지 및 세정한 뒤에, 측정될 수 있다. 특별히 제한되지는 않으나, 상기 염화제이철 용액의 농도(즉, 용액 100 중량% 중 용매를 제외한 염화제이철이 차지하는 중량%)는 90 % 이상 또는 95 % 이상이고, 그리고 100 % 이하일 수 있다.
본 출원의 구체예에서, 상기와 같은 산술 평균 조도는 800 ㎛를 컷-오프(Cut-off) 기준으로 하여 측정된 것일 수 있다. 그리고, 특별히 제한되지 않으나, 이와 같은 산술 평균 조도는 예를 들어, 광학식 표면조도계 (3D Profiler)와 같은 공지된 장비를 이용하여 측정될 수 있다.
상술한 종래 기술의 문제점, 예를 들어, 절연 필름의 용융점도 상승에 따른 접착력 저하와 관련하여, 본 출원의 발명자는 절연 필름의 표면 조도가 금속층(예: 동박)의 표면 조도와 유사하도록 설계하는 경우, 접착력 저하를 방지할 수 있다는 것을 실험적으로 확인하였다. 구체적으로, 아래 실험에서 확인되는 것과 같이, FCCL을 형성한 금속층(예: 동박)과 절연 필름 간에 접착력이 충분하지 못한 경우는, 절연 필름의 표면 조도와 식각 전 동박의 표면 조도 간에 차이가 크다. 따라서, (식각 또는 에칭 후) 절연 필름의 표면 조도가 식각 전 동박의 표면 조도를 어느 정도 이상 추종할 수 있도록 절연 필름을 설계할 필요가 있다. 이러한 설계로는, 예를 들어, 후술하는 것과 같이 절연 필름의 점도(용융점도)를 1,000 poise 이하로 제어하는 것을 들 수 있다.
하나의 예시에서, 상기 관계식에 따라 계산되는 표면 조도 비율의 하한은 79 % 이상, 80 % 이상, 81 % 이상, 82 % 이상, 83 % 이상, 84 % 이상, 85 % 이상, 86 % 이상, 87 % 이상, 88 % 이상, 89 % 이상, 90 % 이상, 91 % 이상, 92 % 이상, 93 % 이상, 94 % 이상, 95 % 이상, 96 % 이상, 97 % 이상, 98 % 이상 또는 99 % 이상일 수 있다. 그리고, 그 상한은 예를 들어, 100 % 이하, 구체적으로는 99 % 이하, 98% 이하, 97% 이하, 96% 이하 또는 95% 이하일 수 있다.
하나의 예시에서, 상기 절연 필름은 1,000 poise 이하의 필름 점도를 가질 수 있다. 또한 다른 예시에서, 상기 절연 필름은 300 내지 1000 poise 이하의 필름 점도를 가질 수 있다. (단, 상기 필름 점도는 320 ℃ 및 500/sec 전단속도에서 측정된다). 이러한 점도는 상기 관계식에 따라 계산되는 표면 조도 비율을 만족하고, 절연 필름의 동박에 대한 접착력의 저하를 방지할 수 있다. 또한, 이러한 점도는 종래 기술에서 절연 필름의 일 성분으로 폴리아릴레이트를 사용할 때 기대되던 접착력 수준 보다 높은 접착력을 얻을 수 있게 한다.
예를 들어, 상기 절연 필름의 필름 점도 하한은 300 poise 이상, 350 poise 이상, 400 poise 이상, 450 poise 이상, 500 poise 이상, 550 poise 이상, 600 poise 이상, 650 poise 이상, 700 poise 이상, 750 poise 이상, 800 poise 이상, 850 poise 이상, 900 poise 이상 또는 950 poise 이상일 수 있다. 그리고, 그 상한은 예를 들어, 950 poise 이하, 900 poise 이하, 850 poise 이하, 800 poise 이하, 750 poise 이하, 700 poise 이하, 650 poise 이하, 600 poise 이하, 550 poise 이하, 500 poise 이하, 450 poise 이하, 400 poise 이하 또는 350 poise 이하일 수 있다.
상기 절연 필름은 적어도 상술한 표면 조도 비율 및/또는 필름 점도를 만족할 수 있도록 형성 또는 제조된 것일 수 있다.
이와 관련하여, 본 출원의 구체예에 따르면, 상기 절연 필름은 폴리아릴레이트 및 액정 폴리머 수지를 포함할 수 있다. 보다 구체적으로, 상기 절연 필름은 폴리아릴레이트 및 액정 폴리머 수지를 포함하는 조성물로부터 제조된 것일 수 있다. 더 구체적으로, 상기 절연 필름은 폴리아릴레이트 및 2종 이상의 액정 폴리머 수지(더 좋게는 융점이 서로 상이한 2종 이상의 액정 폴리에스테르 수지)를 포함하는 조성물로부터 제조될 수 있다.
예를 들어, 상기 절연 필름은 절연 필름 형성 성분을 포함하는 조성물을 용융성형하여 형성될 수 있다. 구체적으로, 폴리아릴레이트 및 액정 폴리머 수지를 포함하는 조성물을 압출기로 용융 혼련하고 다이의 슬릿을 통해 용융된 수지를 토출하는 과정을 거쳐, 상기 절연 필름을 얻을 수 있다. 이러한 과정에서 T형 다이 또는 원형 다이가 이용될 수 있다.
경우에 따라서, 압출한 절연 필름에 대한 연신이 이루어질 수 있다. 연신 방법으로는 1축 연신 또는 2 축 연신, 인플레이션 또는 라미네이트 적층 연신 등과 같은 공지된 기술이 고려될 수 있다.
또 다른 예시에 따르면, 다이 슬릿에서 절연 필름을 형성하는 것과 동시에, 이종의 열가소성 폴리머 필름을 접합하는 방식으로 절연 필름 적층체를 형성할 수도 있다. 이때 사용가능한 이종 열가소성 폴리머로는 폴리에틸렌, 폴리프로필렌, 에틸렌-α-올레핀 공중합체와 같은 폴리올레핀; 또는 폴리스티렌, 폴리카보네이트, 폴리에틸렌 테레프탈레이트나 폴리부틸렌 테레프탈레이트와 같은 폴리에스테르가 사용될 수 있고, 그 외에도, 폴리아세탈, 폴리아미드, 폴리페닐렌 에테르, 폴리에테르술폰, 에틸렌-초산비닐 공중합체, 폴리염화비닐, 폴리염화비닐리덴, 폴리페닐렌설파이드, 불소 수지 등이 사용될 수 있다.
절연 필름 형성에 사용되는 폴리아릴레이트는 방향족 디카르복실산(aromatic dicarboxylic acid)과 방향족 디올(aromatic diol)을 축중합시켜 제조된 방향족 폴리에스테르(aromatic polyester)로서, 상술한 필름 점도, 탄성계수 및/또는 관계식을 만족하는데 장애가 되지 않는다면, 구체적인 구조는 특별히 제한되지 않는다. 폴리아릴레이트는 절연 필름의 성형성 또는 제막성을 개선하는데 유리하게 기능한다.
한편, 상술한 것과 같이 절연 필름의 제막성 개선을 위해 비정질 폴리머인 폴리아릴레이트 성분이 사용될 수 있는데, 높은 수준의 점도를 갖는 폴리아릴레이트는 열 접착을 통한 절연 필름과 금속층(예: 동박)의 접착 과정에서 좋지 못한 흐름성을 보이고, 그에 따라 동박 표면으로 수지가 충분히 침투하지 못하여 절연 필름과 금속층간 접착력 저하를 가져올 수 있다. 따라서, 폴리아릴레이트 수지 사용에 따라 발생하는 접착력 저하를 방지할 수 있도록 액정 폴리머 수지가 선택되는 것이 바람직하다.
절연 필름 형성에 사용되는 액정 수지 또는 액정 폴리머는 융융 상태에서 결정 상태를 유지하고 액정성을 갖는 고분자를 의미한다. 상술한 관계식의 표면 점도 비율 및/또는 필름 점도를 만족하는데 장애가 되지 않는다면 액정성 폴리머의 그 화학적 조성이나 구조는 특별히 제한되지 않는다.
예를 들어, 상기 액정 폴리머는 열가소성 액정 폴리에스테르, 또는 이것에 아미드 결합이 도입된 열가소성 액정 폴리에스테르아미드 등과 같은 액정 폴리머를 1 이상 포함할 수 있다.
또는, 상기 액정 폴리머는, 방향족 폴리에스테르 또는 방향족 폴리에스테르아미드에, 추가로 이미드 결합, 카보네이트 결합, 카르보디이미드 결합이나 이소시아누레이트 결합 등의 이소시아네이트 유래의 결합 등이 도입된 폴리머를 1 이상 포함할 수 있다.
하나의 예시에서, 상기 열가소성 액정 폴리에스테르는 방향족 하이드록시카르복실산, 방향족 디하이드록시, 방향족 디카르복실산, 방향족 디아민, 방향족 하이드록시아민 및/또는 방향족 아미노카르복실산 단량체로부터 제조될 수 있다.
상기 방향족 하이드록시 카르복실산 단량체는 이로써 한정하는 것은 아니나, 예를 들어 2-하이드록시벤조산, 3-하이드록시벤조산, 4-하이드록시벤조산, 6-하이드록시-2-나프토에산, 5-하이드록시-2-나프토에산, 3-하이드록시-2-나프토에산, 4-(4-하이드록시페닐)벤조산 또는 4-(3-하이드록시페닐)벤조산 등일 수 있다.
상기 방향족 디하이드록시 단량체는 이로써 한정하는 것은 아니나, 예를 들어 1,4-디하이드록시벤젠, 1,3-디하이드록시벤젠, 2,6-디하이드록시나프탈렌, 2,7-디하이드록시나프탈렌, 1,6-디하이드록시나프탈렌, 2,6-나프탈렌디카르복실산, 1,6-나프탈렌디카르복실산, 2,6-나프탈렌디카르복실산, 4,4'-디하이드록시비페닐 또는 4,4'-디하이드록시비페닐에테르 등일 수 있다.
상기 방향족 디카르복실산 단량체는 이로써 한정하는 것은 아니나, 예를 들어 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산, 비페닐-4,4'-디카르복실산 또는 4,4'-디카르복시디페닐에테르 등일 수 있다.
상기 방향족 디아민 단량체의 단량체는 이로써 한정하는 것은 아니나, 예를 들어 1,4-디아미노벤젠, 1,3-디아미노벤젠, 1,5-디아미노나프탈렌 또는 1,8-디아미노나프탈렌 등일 수 있다.
상기 방향족 하이드록시 아민 단량체는 이로써 한정하는 것은 아니나, 예를 들어 4-아미노페놀, 3-아미노페놀, 4-아미노-1-나프톨, 5-아미노-1-나프톨, 6-아미노-2-나프톨 또는 4-아미노-4'-하이드록시비페닐 등일 수 있다.
상기 방향족 아미노카르복실산 단량체는 이로써 한정하는 것은 아니나, 예를 들어 4-아미노벤조산, 3-아미노벤조산 또는 6-아미노-2-나프토에산 등일 수 있다.
또 하나의 예시에서, 상기 방향족 하이드록시카르복실산, 방향족 디하이드록시, 방향족 디카르복실산, 방향족 디아민, 방향족 하이드록시아민, 방향족 및/또는 아미노카르복실산 화합물의 알킬, 알콕시 또는 할로겐 치환체 및 이들의 아실화 등의 에스테르 형성 유도체도 액정 폴리머로 사용될 수 있다.
또 하나의 예시에서, 수지 용융상태에서의 액정성을 저해하지 않는 범위에서 상기 방향족 하이드록시카르복실산, 방향족 디하이드록시, 방향족 디카르복실산, 방향족 디아민, 방향족 하이드록시아민 및/또는 방향족 아미노카르복실산 화합물에, 지방족 디하이드록시 및/또는 지방족 디카르복실산 화합물을 공중합한 액정 폴리머가 사용될 수도 있다.
비 제한적인 일례에서, 상기 열가소성 액정 폴리에스테르는, 예를 들어 4-하이드록시벤조산과 테레프탈산과 4,4'-디하이드록시비페닐로 구성되는 I형, 4-하이드록시벤조산과 6-하이드록시-2-나프토에산으로 구성되는 II형, 4-하이드록시벤조산과 테레프탈산과 에틸렌글리콜로 구성되는 III형일 수 있다. 구체적으로, 현재 시판되고 있는 상용제품도 상기 액정 폴리머에 포함될 수 있는데, I형으로는 스미토모화학사의 수미카수퍼, 솔베이사의 자이다르, II 형으로는 셀라니즈사의 벡트라, III형으로는 유니티카사의 로드런 또는 미쓰비시엔지니어링플라스틱사의 노바쿠레이트와 같은 제품이 사용될 수 있다.
하나의 예시에서, 상기 절연 필름은 적어도 2 종의 액정 폴리머 수지를 포함할 수 있다. 이 경우, 상기 액정 폴리머 수지는 서로 융점이 상이한 2 종의 액정 폴리머 수지를 포함할 수 있다. 구체적으로, 상기 절연 필름은 고융점 액정 폴리머 수지와 저융점 액정 폴리머 수지를 포함할 수 있다.
특별히 제한되지는 않으나, 액정 폴리머 수지의 저융점 또는 고융점 여부를 구별하는 융점 온도는 270 ℃, 275 ℃, 280 ℃, 285 ℃, 290 ℃, 295 ℃, 300 ℃, 305 ℃, 310 ℃, 315 ℃, 320 ℃, 325 ℃, 330 ℃, 335 ℃, 340 ℃, 345 ℃ 또는 350 ℃일 수 있다.
비제한적인 구체예에서, 상기 액정 폴리머 수지는 융점이 300 ℃이하인 저융점 액정 폴리머 수지 및 융점이 300 ℃를 초과하는 고융점 액정 폴리머 수지를 포함할 수 있다. 다른 비제한적인 예시에서, 상기 액정 폴리머 수지는 융점이 310 ℃이하인 저융점 액정 폴리머 수지 및 융점이 310 ℃를 초과하는 고융점 액정 폴리머 수지를 포함할 수 있다. 또 다른 비제한적인 예시에서 상기 액정 폴리머 수지는 융점이 320 ℃이하인 저융점 액정 폴리머 수지 및 융점이 320 ℃를 초과하는 고융점 액정 폴리머 수지를 포함할 수 있다.
또 다른 비제한적인 예시에서, 상기 액정 폴리머 수지에 포함되는 고융점 액정 폴리머 수지와 저융점 액정 폴리머 수지의 융점은 (270 ℃, 275 ℃, 280 ℃, 285 ℃, 290 ℃, 295 ℃, 300 ℃, 305 ℃, 310 ℃, 315 ℃, 320 ℃, 325 ℃, 330 ℃, 335 ℃, 340 ℃, 345 ℃ 및 350 ℃ 중 어느 하나를 기준으로) 적어도 5 ℃이상의 차이, 10 ℃이상의 차이, 15 ℃이상의 차이, 20 ℃이상의 차이, 25 ℃이상의 차이, 30 ℃이상의 차이, 35 ℃이상의 차이, 40 ℃이상의 차이, 45 ℃이상의 차이 또는 50 ℃이상의 차이를 가질 수 있다. 예를 들어, 상기 액정 폴리머 수지는 융점이 290 ℃이하인 저융점 수지 및 융점이 310 ℃이상인 고융점 수지를 포함할 수 있다(융점 차이가 20 ℃ 또는 상기 액정 폴리머 수지는, 예를 들어, 융점이 280 ℃이하인 저융점 수지 및 융점이 320 ℃이상인 고융점 수지를 포함할 수 있다(융점 차이가 40 ℃).
저융점 액정 폴리머 수지의 경우 점도가 낮아 성형성 또는 제막성 확보에는 유리하지만 필름의 내열성 확보에는 충분치 못하다. 그리고 고융점 액정 폴리머 수지의 경우 성형성 또는 제막성 확보에는 충분하지 못하나 필름 내열성 확보에 유리하다. 제막성과 내열성을 모두 확보하기 위해서는 고융점 액정 폴리머 수지와 저융점 액정 폴리머 수지가 혼합되는 것이 바람직할 수 있다.
특별히 제한되지는 않으나, 상기와 같이 서로 융점이 상이한 고융점 및 저융점 액정 폴리머 수지가 절연 필름에 포함되는 경우, 예시적인 고융점 액정 폴리머 수지로는 Vectra C950 (Celanese社) 또는 LF-31 (ENEOS社)이 사용될 수 있고, 예시적인 저융점 액정 폴리머 수지로는 Vectra A950 (Celanese社) 또는 CX-2199 (ENEOS社)가 사용될 수 있다.
하나의 예시에서, 상기 절연 필름은 폴리아릴레이트 1 내지 15 중량% 및 액정 폴리머 수지 85 내지 99 중량%를 포함할 수 있다. 상기 액정 폴리머 필름은 저융점 및 고융점 액정 폴리에스테르 수지를 포함할 수 있다. 구체적으로 상기 절연 필름은 예를 들어, 2 중량% 이상, 3 중량% 이상, 4 중량% 이상, 5 중량% 이상, 6 중량% 이상, 7 중량% 이상, 8 중량% 이상, 9 중량% 이상 또는 10 중량% 이상의 폴리아릴레이트를 포함할 수 있다. 그리고, 절연 필름 중 상기 폴리아릴레이트 수지의 함량 상한은 예를 들어, 14 중량% 이하, 13 중량% 이하, 12 중량% 이하, 11 중량% 이하, 10 중량% 이하, 9 중량% 이하, 8 중량% 이하, 7 중량% 이하, 6 중량% 이하, 5 중량% 이하, 4 중량% 이하, 3 중량% 이하 또는 2 중량% 이하일 수 있다. 이때, 상기 중량%는 절연 필름을 형성하는 수지 성분의 합계 함량 100 중량%를 기준으로 한 함량이다.
하나의 예시에서, 상기 절연 필름은 저융점 액정 폴리머 수지(저융점 액정 폴리에스테르 수지)를 15 내지 60 중량% 포함할 수 있다. 구체적으로, 상기 절연 필름은 20 중량% 이상, 25 중량% 이상, 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 45 중량% 이상, 50 중량% 이상 또는 55 중량% 이상으로 저융점 액정 폴리머 수지를 포함할 수 있다. 그리고, 상기 저융점 액정 폴리머 수지의 함량 상한은 55 중량% 이하, 50 중량% 이하, 45 중량% 이하, 40 중량% 이하, 35 중량% 이하, 30 중량% 이하, 25 중량% 이하 또는 20 중량% 이하일 수 있다. 이때, 상기 중량%는 절연 필름을 형성하는 수지 성분의 합계 함량 100 중량%를 기준으로 한 함량이다.
하나의 예시에서, 상기 절연 필름은 고융점 액정 폴리머 수지(고융점 폴리에스테르 수지)를 15 내지 80 중량% 포함할 수 있다. 구체적으로, 상기 절연 필름은 20 중량% 이상, 25 중량% 이상, 30 중량% 이상, 35 중량% 이상, 40 중량% 이상, 45 중량% 이상, 50 중량% 이상, 55 중량% 이상, 60 중량% 이상, 65 중량% 이상, 70 중량% 이상 또는 75 중량% 이상으로 고융점 액정 폴리머 수지를 포함할 수 있다. 그리고, 상기 고융점 액정 폴리머 수지의 함량 상한은 75 중량% 이하, 70 중량% 이하, 65 중량% 이하, 60 중량% 이하, 55 중량% 이하, 50 중량% 이하, 45 중량% 이하, 40 중량% 이하, 35 중량% 이하, 30 중량% 이하, 25 중량% 이하 또는 20 중량% 이하일 수 있다. 이때, 상기 중량%는 절연 필름을 형성하는 수지 성분의 합계 함량 100 중량%를 기준으로 한 함량이다.
상기와 같은 함량 범위를 만족하는 경우, 상기 관계식에 따른 표면 경도 비율 및 필름 점도를 만족하고, 그에 따라 우수한 제막성, 내열성 및 접착성을 확보할 수 있다.
상기와 같은 구성의 절연 필름은 우수한 내열성을 가질 수 있다. 예를 들어, 상기 절연 필름은 280 ℃에서의 탄성계수가 150 MPa 이상을 만족할 수 있다. 이때, 상기 탄성계수는 정적 스트레인 0.15 %, 동적 스트레인 0.10 % 및 주파수 1.0 Hz 조건에서 5 ℃분 속도로 온도를 상승시켰을 때 확인되는 280 ℃에서의 탄성계수를 의미한다.
발명의 하나의 예시에서, 상기 절연 필름은, 정적 스트레인 0.15 %, 동적 스트레인 0.10 % 및 주파수 1.0 Hz 조건에서 5 ℃분 속도로 온도를 상승시켰을 때 확인되는 280 ℃에서의 탄성계수가 150 내지 600 MPa 를 만족할 수 있다.
구체적으로, 상기와 같은 탄성계수는 내열성과 관련된다. 절연 필름이 사용되는 용도의 특성상 고온 또는 열에 노출될 수 있기 때문에, 소정의 탄성 계수를 만족해야 한다.
예를 들어, 상기 탄성 계수의 하한은 200 MPa 이상, 250 MPa 이상, 300 MPa 이상, 350 MPa 이상, 400 MPa 이상, 450 MPa 이상, 500 MPa 이상 또는 550 MPa 이상일 수 있다. 그리고, 그 상한은 예를 들어, 600 MPa 이하, 550 MPa 이하, 500 MPa 이하, 450 MPa 이하, 400 MPa 이하, 350 MPa 이하, 300 MPa 이하, 250 MPa 이하 또는 200 MPa 이하일 수 있다.본 출원의 구체예에서, 상기 절연 필름은 상기 관계식에 따른 표면 조도 비율, 상기 필름 점도 및 상기 탄성계수 모두를 만족할 수 있다.
하나의 예시에서, 상기 절연 필름은 3.4 미만의 유전율(유전상수)(Dk)를 만족할 수 있다. 예를 들어, 상기 절연 필름은 3.3 이하, 3.2 이하, 3.1 이하 또는 3.0 이하의 유전율을 만족할 수 있다. 해당 범위를 만족하는 경우, 전송 손실을 감소시키는데 유리하다. 유전상수는 후술하는 실험에 기재된 장치를 이용하여 측정될 수 있다.
하나의 예시에서, 상기 절연 필름은 0.005 미만의 유전정접(Df)를 만족할 수 있다. 예를 들어, 상기 절연 필름은 0.004 이하, 0.003 이하, 0.002 이하 또는 0.001 이하의 유전정접을 만족할 수 있다. 해당범위를 만족하는 경우, 전송 손실을 감소시키는데 유리하다. 유전정접은 후술하는 실험에 기재된 장치를 이용하여 측정될 수 있다.
하나의 예시에서, 상기 절연 필름은 금속층(예: 동박), 절연 필름 및 금속층(예: 동박)이 순차로 적층된 시편에 대하여 동박을 박리하면서 측정된 박리력(또는 접착력)이 0.5 kN/m 이상을 만족할 수 있다. 구체적으로, 상기와 같은 시편을 이용하여 측정되는 절연 필름의 박리력은 0.6 kN/m 이상, 0.7 kN/m 이상, 0.8 kN/m 이상 또는 0.9 kN/m 이상 일 수 있다. 이러한 박리력 또는 접착력의 측정은, 후술하는 것과 같이, 박리력 평가기 (Chem Instrument社, AR-1000)를 이용하여 수행될 수 있다.
본 출원 절연 필름은 FCCL(Flexible Copper Clad Laminate)을 제조하는데 사용될 수 있다. 예를 들어, 구리를 포함하는 금속층과 함께 적층되어 FCCL이 제조될 수 있다. 구체적으로, FCCL은 절연 필름 상에 금속층을 적층하고, 회로 패턴을 형성하는 과정을 거쳐 제조될 수 있는데, 회로 패턴 형성 과정에서 에칭(또는 식각)이 진행될 수 있다.
FCCL 제조와 관련하여, 절연 필름 상에 금속층을 적층하는 경우, 열과 압력이 부여되는 핫 라미네이션(hot lamination) 공정이 적용될 수 있다. 상기 공정에서 적용되는 열에 의해 절연 필름의 표면이 녹게 되고, 용융된 수지가 흐름성을 갖고 이동하게 된다. 이때, 절연 필름의 점도가 낮고 잘 흐를수록 금속층 표면의 형상과 유사해지고, 금속층과 절연 필름 간 접촉 면적이 증가할 수 있다. 그 정도는 상술한 관계식의 표면 조도 비율을 통해 확인 가능하다. 표면 형상이 유사해진 금속층과 절연 필름 간의 개선된 접착력은 후술하는 실험 결과를 통해 확인 가능하다.
FCCL 제조와 관련하여, 금속층에 대한 회로 패턴 형성에는 공지된 에칭액, 예를 들어, 염화제이철(FeCl3·6H2O, Iron(Ⅲ) Chloride anhydrous) 등이 사용될 수 있다. 특별히 제한되지는 않으나, 에칭에 사용되는 염화제이철 용액의 농도(즉, 용액 100 중량% 중 용매를 제외한 염화제이철이 차지하는 중량%)는 90 % 이상 또는 95 % 이상이고, 그리고 100 % 이하일 수 있다.
FCCL 제조 용도에서, 본 출원의 절연 필름과 함께 적층될 수 있는 금속층은 구리를 포함한다. 금속층은 소위 동박이라고 불리는 것으로서, 예를 들어, 압연 동박이나 전해 동박 등일 수 있다. 이러한 금속층은 예를 들어, 구리를 90 중량% 이상, 95 중량% 이상 또는 99 중량% 이상 포함할 수 있고, 경우에 따라 소량의 첨가제나 불순물 등을 포함할 수 있다.
본 출원에 관한 다른 일례에서, 본 출원은 금속층과 절연 필름을 포함하는 적층체에 관한 것이다. 상기 적층체는 예를 들어, FCCL 이거나 FCCL 제조에 사용될 수 있다.
상기 적층체는 (A) 구리를 포함하는 금속층; 및 (B) 상기 금속층의 적어도 일면 상에 위치하는 절연 필름을 포함한다. 상기 적층체는 우수한 제막성 뿐 아니라, 금속층과 절연 필름 사이에 우수한 접착력을 가질 수 있도록, 아래와 같은 특성을 만족하는 절연 필름을 포함한다.
본 출원의 구체예예서, 상기 적층체에 포함된 상기 절연 필름은 아래 관계식에 따라 계산되는 표면 조도 비율이 78% 이상을 만족한다.
[관계식]
표면조도 비율(%) = (Sr2/Sr1) x 100
상기 관계식에서, Sr1 은 상기 절연 필름과 함께 FCCL을 형성하는 금속층 어느 일면의 산술평균 조도를 의미할 수 있다. 이때, 상기 Sr1 이 측정되는 금속층의 어느 일면이란, 예를 들어, FCCL과 같은 적층체에서, 절연 필름을 마주하거나 절연 필름과 접하게 되는 금속층의 일면을 의미할 수 있다. FCCL 제조시 절연 필름과 함께 적층되는 금속층(예: 동박)의 어느 일면은 일반적으로 0.1 ㎛ 이상, 0.2 ㎛ 이상, 0.3 ㎛ 이상, 0.4 ㎛ 이상 또는 0.5 ㎛ 이상, 그리고, 0.6 ㎛ 이하, 0.5 ㎛ 이하, 0.4 ㎛ 이하, 0.3 ㎛ 이하 또는 0.2 ㎛ 이하의 산술평균 조도(Sr1)를 가질 수 있다.
상기 관계식에서, Sr2 는 상기 절연 필름 어느 일면의 산술평균 조도를 의미할 수 있다. 이때, 상기 Sr2 가 측정되는 절연 필름의 어느 일면이란, 예를 들어, FCCL과 같은 적층체에서, 상기 금속층(예: 동박)을 마주하거나 상기 금속층(예: 동박)과 접하게 되는 절연 필름의 일면을 의미할 수 있다. 본 출원의 구체예예 따르면, 상기 Sr2 는 상기 절연 필름 또는 (절연 필름과 금속층(동박)이 적층되어 형성된) FCCL과 같은 적층체를 염화제이철 (FeCl3·6H2O, Iron(Ⅲ) Chloride anhydrous) 용액에 1 시간 이내로 침지 및 세정한 뒤에, 측정될 수 있다. 특별히 제한되지는 않으나, 상기 염화제이철 용액의 농도(즉, 용액 100 중량% 중 용매를 제외한 염화제이철이 차지하는 중량%)는 90 % 이상 또는 95 % 이상이고, 그리고 100 % 이하일 수 있다.
하나의 예시에서, 상기와 같은 산술 평균 조도는 800 ㎛를 컷-오프(Cut-off) 기준으로 하여 측정된 것일 수 있다. 그리고, 특별히 제한되지 않으나, 이와 같은 산술 평균 조도는 예를 들어, 광학식 표면조도계 (3D Profiler)와 같은 공지된 장비를 이용하여 측정될 수 있다.
표면 조도 비율에 관한 기술적 의의나 구체적인 수치 등에 관한 설명은 상술한 것과 같으므로, 이를 생략한다.
하나의 예시에서, 상기 절연 필름은 액정 폴리머 및 폴리아릴레이트를 포함하고, 더 좋게는 서로 융점이 다른 2종의 액정 폴리머와 폴리아릴레이트를 포함할 수 있다. 또한 상기와 같은 특성을 만족하는 절연 필름은 1,000 poise 이하의 필름 점도를 가질 수 있다. 이러한 점도는 상술한 표면 조도 비율을 만족하고, 절연 필름의 동박에 대한 접착력의 저하를 방지할 수 있다. 또한, 종래 기술에서 절연 필름의 일 성분으로 폴리아릴레이트를 사용할 때 기대되던 접착력 수준 보다 높은 접착력을 얻을 수 있게 한다. 구체적인 절연 필름의 점도 수치는 상술한 것과 같다.
하나의 예시에서, 상기 절연 필름은 280 ℃에서의 탄성계수가 150 MPa 이상을 만족한다. 이때, 상기 탄성계수는 정적 스트레인 0.15 %, 동적 스트레인 0.10 % 및 주파수 1.0 Hz 조건에서 5 ℃분 속도로 온도를 상승시켰을 때 확인되는 280 ℃에서의 탄성계수를 의미한다. 탄성계수에 관한 기술적 의의나 구체적인 수치 등에 관한 설명은 상술한 것과 같으므로, 이를 생략한다.
하나의 예시에서, 상기 적층체의 금속층은 패턴 금속층일 수 있다. 구체적으로, 금속층과 절연 필름이 적층된 적층체에 대하여, 에칭 과정을 통해 금속층의 일부가 제거되면서 소정의 패턴을 갖는 금속층이 형성될 수 있다.
본 출원 적층체와 관련하여 상술한 내용 외에, 적층체에 포함되는 구성 및 그 제조 등에 관한 설명은 상술한 것과 같으므로, 이를 생략한다.
상기와 같은 적층체의 용도는 특별히 제한되지 않으나, 예를 들어, 상기 적층체는 5세대 이동 통신용 부품인 FCCL(Flexible Copper Clad Laminate)에 적합하다.
본 출원에 따르면, 함께 적층되는 금속층에 대한 접착력이 우수할 뿐 아니라 내열성과 제막성도 우수한 절연 필름; 및 이를 포함하는 적층체가 제공된다.
이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.
액정 필름(또는 절연 필름)의 제조
실시예 1
고융점 액정 폴리머 수지로서 열가소성 액정 폴리에스테르 펠렛 1(셀라니즈社의 Vectra C950), 저융점 액정 폴리머 수지로서 액정 폴리에스테르 펠렛 2(유니티카社의 Vectra A950) 및 폴리아릴레이트 펠렛 3 (U-Polymer U-100)을 혼합한 후, 2축 압출기를 이용하여 상기 성분이 혼합된 혼합 펠렛을 제작하였다(압출기 온도 약 320 ℃).
실시예 1의 혼합 펠렛은 본 출원 필름 점도와 탄성계수를 만족할 수 있도록 하는 수준에서 각 성분들이 소정 함량 혼합된 것으로, 실시예 1의 혼합 펠렛 제조시에는 액정 폴리에스테르 펠렛 1(Vectra C950) 79 wt %, 액정 폴리에스테르 펠렛 2(Vectra A950) 20 wt % 및 폴리아릴레이트 펠렛 3(U-100) 1 wt % 가 사용되었다(아래 표 1 참조).
상기와 같이 제조된 혼합 펠렛을 1축 압출기(랩텍사제, LE30-30/CV)에 투입하여 두께 50 ㎛의 필름을 제작하였다. 이때, 압출기의 L/D는 30이며 직경은 30mm이다. 다이는 T-다이를 적용하였고, 다이의 슬릿 간격은 0.5 mm이며 슬릿 폭은 300 mm이다. 또한, 압출기의 온도는 380 ℃로, 그리고 다이 온도는 350 ℃로 설정하였으며, 압출기 내 스크류 속도는 65 rpm으로 하였다.
실시예 2 내지 12
실시예 1과 동일한 열가소성 액정 폴리에스테르 펠렛과 폴리아릴레이트 펠렛을 아래 표 1 및 2에서와 같이 그 함량(투입량)만을 달리하여 두께 50㎛ 필름을 제작하였다. 실시예 1과 마찬가지로, 상기 혼합 펠렛은 본 출원 필름 점도를 만족할 수 있도록 하는 수준에서 각 성분들이 소정 함량 혼합된 것이다(아래 표 1-2 참조).
비교예 1
열가소성 액정 폴리에스테르 펠렛 1(셀라니즈社의 Vectra C950) 및 폴리아릴레이트 펠렛 3 (U-Polymer U-100)을 혼합한 후, 2축 압출기를 이용하여 상기 성분이 혼합된 혼합 펠렛을 제작하였다(압출기 온도 약 320 ℃).
비교예 1의 혼합 펠렛은 본 출원 필름 점도 및/또는 탄성계수를 만족하지 않도록 하는 수준에서 각 성분들이 소정 함량 혼합된 것으로, 비교예 1의 혼합 펠렛 제조시에는 액정 폴리에스테르 펠렛 1(Vectra C950) 99 wt %와 폴리아릴레이트 펠렛 3(U-100) 1 wt % 가 사용되었다(아래 표 3 참조).
비교예 1의 혼합 펠렛을 1축 압출기(랩텍사제, LE30-30/CV)에 투입하여 두께 50 ㎛의 필름을 제작하였다. 이때, 필름 제조 조건은 실시예 1에 설명된 것과 동일하다.
비교예 2 내지 5
열가소성 액정 폴리에스테르 펠렛과 폴리아릴레이트 펠렛을 아래 표 3에서와 같은 함량(투입량)으로 조절하고, 각 비교예의 혼합 펠렛을 제조하였다. 비교예 1과 마찬가지로, 상기 혼합 펠렛은 본 출원 필름 점도 및/또는 탄성계수를 만족하지 않도록 하는 수준에서 각 성분들이 소정 함량 혼합된 것이다(아래 표 3 참조).
그리고, 각 비교예의 혼합 펠렛을 1축 압출기 (랩텍사제, LE30-30/CV)에 투입하여 두께 50 ㎛의 필름을 제작하였다. 이때, 필름 제조 조건은 실시예 1에 설명된 것과 동일하다.
필름의 특성 평가
실시예 및 비교예 필름에 대하여, 필름의 점도, 유전상수, 유전정접, 접착력, 내열성, 식각 전 동박 표면조도 및 식각 후 필름면의 표면조도를 확인하고, 이를 표 1 내지 3에 기록하였다. 평가 항목 및 그 방법은 아래와 같다.
* 유전상수 및 유전정접(단위 없음)
마이크로파 분자 배향계(Microwave Molecular Orientation Analyzer, 오지사이언티픽인스트루먼트사제 MOA-7015)를 이용하여, 실시예 및 비교예 필름의 유전상수 및 유전정접을 측정하였다. 측정 시 적용된 주파수는 15 GHz이다.
* 필름 점도(poise)
캐필러리 레오미터(모세관 점도계)를 이용하여, 320 ℃에서 각 실시예 및 비교예 필름의 용융점도를 구하였다. 캐필러리 레오미터는 길이 20 mm, 직경 1mm의 구금에 피스톤 직경이 12 mm이며, 500/초 전단속도에서의 용융점도를 구하였다.
* 식각 전후의 표면조도(㎛)
1) 동박 식각(에칭): 두께 12㎛ 동박 (JX금속주식회사, JXEFL-V2)을 준비하고, 접착력 평가를 위해 동박/(각 실시예 또는 비교예) 필름/동박 적층체를 제조하였다. 그리고 상기 적층체를 가로 10㎜ x 세로 20㎜ 로 절단한 후, 염화제이철 (FeCl3·6H2O, Iron(Ⅲ) Chloride anhydrous) 용액(약 97% 농도)에 30 분간 침지한 후, 흐르는 물로 씻어내었다.
2) 식각 전 동박의 표면 조도, 및 식각 후 필름면의 표면조도: 3D Optical Profiler (Bruker사제 NPFLEX) 장비를 이용하여 표면의 산술평균 조도를 측정하였다. 구체적으로는 Vertical Scanning Interferometry (VSI) 모드에서 현미경의 배율은 50배로 설정하여 세로 95㎛, 가로 126㎛ 사이즈의 표면 이미지를 측정한 후 Cut-off 800㎛로 표면의 산술평균조도를 구하였다. 즉, 상기 Cut-off 값 이하의 파장을 갖는 요철에 대하여 표면조도가 측정된다. 참고로, 식각 후 필름면의 표면 조도란, 필름면 중에서 식각 수행 전에는 동박이 위치하였으나 식각 공정을 통해 구리가 제거된 필름면이 갖는 표면 조도를 의미한다.
* 접착력(kN/m)
액정 폴리머 필름을 동박 2장 사이에 삽입하여 핫프레스를 이용하여 적층체를 형성한 후 동박을 박리하면서 발생하는 힘으로 접착력을 구하였다.
필름을 가로 50㎜ x 세로 150㎜ 로 절취한 후 12㎛ 동박 (JX금속주식회사, JXEFL-V2) 2장 사이에 삽입하여 핫프레스를 이용하여 적층하였다. 핫프레스 적층 시 프레스 압력은 20 MPa이며, 핫프레스 온도는 300℃에서 실시하였다.
상기 제작된 동박/필름/동박 적층체를 가로 25㎜ x 세로 150㎜ 로 절단하여 평가용 시편을 제작한 뒤, 박리력 평가기 (Chem Instrument社, AR-1000) 를 이용하여 동박을 박리하면서 발생하는 박리력을 접착력으로 나타내었다.
* 탄성계수(내열성)(MPa)
실시예 및 비교예에서 제조된 필름에 대하여, 동적 기계 분석기 (DMA, NETZSCH社 DMA GABO EPLEXOR 100N)를 이용하여 280℃에서의 탄성계수 (E')를 평가하였다. 정적 Strain 0.15%, 동적 Strain 0.10%, Frequency 1.0 Hz에서 온도를 5℃분 속도로 상승하면서 280℃에서의 탄성계수를 평가하였다. 평가 시, 평가샘플의 파단되어 탄성계수 측정이 어려울 경우, 측정불가로 나타내었다.
원료명 실시예 1 실시예 2 실시예 3 실시예 4 실시예 5 실시예 6
필름
조성
펠렛 1 Vectra C950 79 69 59 49 39 65
펠렛 2 Vectra A950 20 30 40 50 60 30
펠렛 3 U-100 1 1 1 1 1 5
유전상수 (Dk) 3.1 3.1 3.1 3.1 3.1 3.1
유전정접 (Df) 0.002 0.002 0.002 0.002 0.002 0.002
필름 점도 (MV@320℃) 760 602 501 420 360 860
식각 전 동박의 조도 (Sr1)(㎛) 0.51 0.51 0.51 0.51 0.51 0.51
식각 후 필름의 조도 (Sr2)(㎛) 0.42 0.44 0.46 0.47 0.49 0.41
△Sa (%) = 100 x (Sa,F/Sa,C) 82 86 90 92 96 80
접착력 (kN/m) 0.6 0.6 0.7 0.7 0.8 0.5
탄성계수(@280℃) (MPa) 312 271 231 187 166 270
원료명 실시예 7 실시예 8 실시예 9 실시예 10 실시예 11 실시예 12
필름
조성
펠렛 1 Vectra C950 55 45 35 50 40 30
펠렛 2 Vectra A950 40 50 60 45 50 60
펠렛 3 U-100 5 5 5 10 10 10
유전상수 (Dk) 3.1 3.1 3.1 3.1 3.1 3.1
유전정접 (Df) 0.002 0.002 0.002 0.002 0.002 0.002
필름 점도 (MV@320℃) 710 603 542 947 860 750
식각 전 동박의 조도 (Sr1)(㎛) 0.51 0.51 0.51 0.51 0.51 0.51
식각 후 필름의 조도 (Sr2)(㎛) 0.43 0.44 0.45 0.40 0.41 0.42
△Sa (%) = 100 x (Sa,F/Sa,C) 84 86 88 78 80 82
접착력 (kN/m) 0.6 0.6 0.7 0.5 0.5 0.6
탄성계수(@280℃) (MPa) 229 204 178 230 220 201
원료명 비교예 1 비교예 2 비교예 3 비교예 4 비교예 5
필름
조성
펠렛 1 Vectra C950 99 89 90 0 10
펠렛 2 Vectra A950 0 10 0 90 80
펠렛 3 U-100 1 1 10 10 10
유전상수 (Dk) 3.1 3.1 3.1 3.1 3.1
유전정접 (Df) 0.002 0.002 0.002 0.002 0.002
필름 점도 (MV@320℃) 1573 1060 2468 563 601
식각 전 동박의 조도 (Sr1)(㎛) 0.51 0.51 0.51 0.51 0.51
식각 후 필름의 조도 (Sr2)(㎛) 0.37 0.39 0.34 0.45 0.44
△Sa (%) = 100 x (Sa,F/Sa,C) 73 76 67 88 86
접착력 (kN/m) 0.2 0.3 0.1 0.7 0.6
탄성계수(@280℃) (MPa) 810 694 813 측정불가 측정불가
상기 표 1 내지 3의 결과를 통해, 폴리아릴레이트 수지를 포함하더라도, 서로 융점이 다른 2종 이상의 액정 폴리머 수지를 함께 사용하는 실시예 1 내지 12는, 비교예 1 내지 5에 비해 수지 조성물의 점도 상승을 억제하여 우수한 코팅성을 확보할 수 있는 최적의 필름 점도를 나타내고, 동박과의 접착력이 개선됨을 확인할 수 있다.또한 실시예 1 내지 12는, 상술한 조건에서 측정된 280 ℃에서의 탄성계수가 150 내지 600 MPa 범위를 만족하였다.
반면, 비교예 1 내지 5는 1종의 저융점 또는 고융점 액정 폴리머가 사용되거나 이들을 혼합하더라도 본원 범위를 만족하지 못함에 따라, 필름 점도 상승으로 인해 동박과의 접착력이 불량하거나 또는 탄성계수가 600 MPa 를 초과하거나 또는 탄성계수를 측정할 수 없었다. 따라서, 상기 탄성계수는 내열성과 관련되는 바, 비교예 1 내지 5의 경우 내열성이 불량해질 수 있다.

Claims (10)

  1. 구리 포함 금속층과 함께 적층되어 FCCL(Flexible Copper Clad Laminate)을 형성하기 위한 절연 필름으로서,
    아래 관계식에 따라 계산되는 표면 조도 비율이 78% 이상을 만족하는, 절연 필름:
    [관계식]
    표면조도 비율(%) = (Sr2/Sr1) x 100
    (상기 관계식에서,
    Sr1 은 상기 절연 필름과 함께 FCCL을 형성하는 금속층 어느 일면의 산술평균 조도로서, 0.1 내지 0.6 ㎛ 범위이고,
    Sr2 는 상기 절연필름 어느 일면의 산술평균 조도로서, 상기 절연 필름 또는 상기 FCCL을 염화제이철 (FeCl3·6H2O, Iron(Ⅲ) Chloride anhydrous) 용액에 1 시간 이내로 침지 및 세정한 후 측정된 것이며,
    상기 산술 평균 조도는 800 ㎛를 컷-오프(Cut-off) 기준으로 하여 측정된 것이다.)
  2. 제 1 항에 있어서,
    상기 절연필름은 1,000 poise 이하의 필름 점도를 갖는, 절연 필름(단, 상기 필름 점도는 320 ℃ 및 500/sec 전단속도에서 측정된다).
  3. 제 1 항에 있어서,
    300 내지 1000 poise 이하의 필름 점도를 갖는, 절연 필름(단, 상기 필름 점도는 320 ℃ 및 500/sec 전단속도에서 측정된다).
  4. 제 1 항에 있어서,
    상기 절연 필름은, 정적 스트레인 0.15 %, 동적 스트레인 0.10 % 및 주파수 1.0 Hz 조건에서 5 ℃분 속도로 온도를 상승시켰을 때 확인되는 280 ℃에서의 탄성계수가 150 내지 600 MPa를 만족하는, 절연 필름
  5. 제 1 항에 있어서,
    상기 절연 필름은 액정 폴리머 및 폴리아릴레이트를 포함하는, 절연 필름.
  6. (A) 구리를 포함하는 금속층; 및
    (B) 상기 금속층의 적어도 일면 상에 위치하는 절연필름을 포함하는 적층체이고,
    상기 절연필름은 아래 관계식에 따라 계산되는 표면 조도 비율이 78% 이상을 만족하는, 적층체:
    [관계식]
    표면조도 비율(%) = (Sr2/Sr1) x 100
    (상기 관계식에서,
    Sr1 은, 상기 절연 필름을 마주하거나 상기 절연 필름과 접하는 상기 금속층 일면의 산술평균 조도로서, 0.1 내지 0.6㎛ 범위이고,
    Sr2 는 상기 금속층을 마주하거나 상기 금속층과 접하는 상기 절연 필름 일면의 산술평균 조도로서, 상기 적층체를 염화제이철 (FeCl3·6H2O, Iron(Ⅲ) Chloride anhydrous) 용액에 1 시간 이내로 침지 및 세정한 후 측정된 것이며,
    상기 산술 평균 조도는 800 ㎛를 컷-오프(Cut-off) 기준으로 하여 측정된 것이다.)
  7. 제 6 항에 있어서,
    상기 절연 필름은 1000 poise 이하의 필름 점도를 갖는, 적층체(단, 상기 필름 점도는 320 ℃ 및 500/sec 전단속도에서 측정된다).
  8. 제 7 항에 있어서,
    상기 절연 필름은 300 내지 1000 poise 이하의 필름 점도를 갖는, 적층체(단, 상기 필름 점도는 320 ℃ 및 500/sec 전단속도에서 측정된다).
  9. 제 6 항에 있어서,
    상기 절연 필름은, 정적 스트레인 0.15 %, 동적 스트레인 0.10 % 및 주파수 1.0 Hz 조건에서 5 ℃분 속도로 온도를 상승시켰을 때 확인되는 280 ℃에서의 탄성계수가 150 내지 600 MPa를 만족하는, 적층체.
  10. 제 6 항에 있어서,
    상기 절연 필름은 액정 폴리머 및 폴리아릴레이트를 포함하는, 적층체.
PCT/KR2023/011704 2022-08-24 2023-08-08 절연 필름 및 이를 포함하는 적층체 WO2024043581A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220106433 2022-08-24
KR10-2022-0106433 2022-08-24
KR10-2023-0103406 2023-08-08
KR1020230103406A KR20240028296A (ko) 2022-08-24 2023-08-08 절연 필름 및 이를 포함하는 적층체

Publications (1)

Publication Number Publication Date
WO2024043581A1 true WO2024043581A1 (ko) 2024-02-29

Family

ID=90013492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/011704 WO2024043581A1 (ko) 2022-08-24 2023-08-08 절연 필름 및 이를 포함하는 적층체

Country Status (1)

Country Link
WO (1) WO2024043581A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124474A (zh) * 2006-04-25 2013-05-29 日立化成工业株式会社 带粘接层的导体箔、贴有导体的层叠板、印制线路板及多层线路板
CN106103082A (zh) * 2014-03-31 2016-11-09 三井金属矿业株式会社 带有载体箔的铜箔、覆铜层压板及印刷线路板
KR20200001348A (ko) * 2018-06-27 2020-01-06 주식회사 두산 그라운드 보강필름 및 이를 포함하는 전자파 차폐형 복합기판
KR20200049085A (ko) * 2018-10-31 2020-05-08 주식회사 두산 전자파 차폐 필름 및 이를 포함하는 전자파 차폐형 연성 인쇄회로기판
JP2021041609A (ja) * 2019-09-10 2021-03-18 尾池工業株式会社 積層フィルムおよび積層フィルムの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103124474A (zh) * 2006-04-25 2013-05-29 日立化成工业株式会社 带粘接层的导体箔、贴有导体的层叠板、印制线路板及多层线路板
CN106103082A (zh) * 2014-03-31 2016-11-09 三井金属矿业株式会社 带有载体箔的铜箔、覆铜层压板及印刷线路板
KR20200001348A (ko) * 2018-06-27 2020-01-06 주식회사 두산 그라운드 보강필름 및 이를 포함하는 전자파 차폐형 복합기판
KR20200049085A (ko) * 2018-10-31 2020-05-08 주식회사 두산 전자파 차폐 필름 및 이를 포함하는 전자파 차폐형 연성 인쇄회로기판
JP2021041609A (ja) * 2019-09-10 2021-03-18 尾池工業株式会社 積層フィルムおよび積層フィルムの製造方法

Similar Documents

Publication Publication Date Title
TWI616328B (zh) 熱塑性液晶聚合物薄膜及使用其之積層體及電路基板、積層體之製造方法、以及熱塑性液晶聚合物薄膜之製造方法
KR102233641B1 (ko) 액정 폴리머 막을 구비하는 연성 동박 적층판 제조방법
US20090035591A1 (en) Flexible laminate having thermoplastic polyimide layer and method for manufacturing the same
WO2021091014A1 (ko) 유전특성이 개선된 폴리이미드 필름 및 그 제조방법
WO2012153901A1 (ko) 전방향족 폴리에스테르 아미드 공중합체 수지, 상기 전방향족 폴리에스테르 아미드 공중합체 수지를 포함하는 고분자 필름, 상기 고분자 필름을 포함하는 연성 금속박 적층판, 및 상기 연성 금속박 적층판을 구비하는 연성 인쇄 회로기판
WO2021091011A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
JP6930046B1 (ja) 回路基板用lcpフィルムの製造方法、及び回路基板用tダイ溶融押出lcpフィルム
CN101410248A (zh) 具有热塑性聚酰亚胺层的挠性层压板及其制造方法
JP3896324B2 (ja) 液晶ポリマーブレンドフィルム
TW202128857A (zh) 電路基板用lcp樹脂組合物、電路基板用lcp膜及其製造方法
JP5119402B2 (ja) 積層用フィルム
WO2021066390A2 (ko) 전자기판용 필름 및 적층체, 및 이를 포함하는 전자기판
CN112477336B (zh) 一种液晶高分子膜及其制作方法
WO2024043581A1 (ko) 절연 필름 및 이를 포함하는 적층체
JP2011104789A (ja) 金属複合積層部品の製造方法
WO2010077015A2 (ko) 방향족 폴리에스테르 아미드 공중합체, 고분자 필름, 프리프레그, 프리프레그 적층체, 금속박 적층판 및 프린트 배선판
WO2021091013A1 (ko) 고내열 저유전 폴리이미드 필름 및 이의 제조방법
WO2012118262A9 (ko) 전방향족 폴리에스테르 아미드 공중합체 수지, 상기 수지를 포함하는 필름, 상기 필름을 포함하는 연성 금속박 적층판, 및 상기 연성 금속박 적층판을 구비하는 연성 인쇄 회로기판
US20230368948A1 (en) Insulating material for circuit substrate, and metal foil-clad laminate
JP2010126709A (ja) 耐熱フィルム
WO2021256491A1 (ja) 熱可塑性液晶ポリマー成形体、金属張積層体および回路基板
WO2010077014A2 (ko) 방향족 폴리에스테르 아미드 공중합체, 고분자 필름, 프리프레그, 프리프레그 적층체, 금속박 적층판 및 프린트 배선판
KR20240028296A (ko) 절연 필름 및 이를 포함하는 적층체
WO2022065804A1 (ko) 저유전 폴리이미드 필름 및 이의 제조방법
JP4184529B2 (ja) 熱可塑性液晶ポリマーフィルムとその改質方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857615

Country of ref document: EP

Kind code of ref document: A1