WO2015151923A1 - 基材フィルム、触媒転写シート、膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法 - Google Patents

基材フィルム、触媒転写シート、膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法 Download PDF

Info

Publication number
WO2015151923A1
WO2015151923A1 PCT/JP2015/058858 JP2015058858W WO2015151923A1 WO 2015151923 A1 WO2015151923 A1 WO 2015151923A1 JP 2015058858 W JP2015058858 W JP 2015058858W WO 2015151923 A1 WO2015151923 A1 WO 2015151923A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
catalyst layer
transfer sheet
base film
electrolyte membrane
Prior art date
Application number
PCT/JP2015/058858
Other languages
English (en)
French (fr)
Inventor
足立眞哉
出原大輔
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to KR1020167028614A priority Critical patent/KR102313154B1/ko
Priority to CN201580016538.4A priority patent/CN106164147B/zh
Priority to CA2941675A priority patent/CA2941675C/en
Priority to JP2015516927A priority patent/JP6558244B2/ja
Priority to EP15773873.3A priority patent/EP3127947B1/en
Priority to US15/122,781 priority patent/US20170066892A1/en
Publication of WO2015151923A1 publication Critical patent/WO2015151923A1/ja
Priority to US15/962,960 priority patent/US20180244882A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2287After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • C08J5/2262Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/126Halogenation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8803Supports for the deposition of the catalytic active composition
    • H01M4/8814Temporary supports, e.g. decal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8817Treatment of supports before application of the catalytic active composition
    • H01M4/8821Wet proofing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a substrate film having a specific surface state, a catalyst transfer sheet, a method for producing a membrane electrode assembly, and a method for producing a catalyst layer-coated electrolyte membrane.
  • a fuel cell is a kind of power generation device that extracts electric energy by electrochemically oxidizing a fuel such as hydrogen or methanol, and has recently attracted attention as a clean energy supply source.
  • the polymer electrolyte fuel cell has a standard operating temperature as low as around 100 ° C. and a high energy density, so that it is a relatively small-scale distributed power generation facility, a mobile power generator such as an automobile or a ship.
  • a mobile power generator such as an automobile or a ship.
  • secondary batteries such as nickel metal hydride batteries and lithium ion batteries.
  • an anode electrode and a cathode electrode in which a reaction responsible for power generation occurs, and a polymer electrolyte membrane composed of a proton conductor between the anode and the cathode are sometimes abbreviated as a membrane electrode assembly (hereinafter referred to as MEA).
  • MEA membrane electrode assembly
  • a cell in which this MEA is sandwiched between separators is configured as a unit.
  • the fuel gas reacts in the catalyst layer to generate protons and electrons, the electrons are sent to the external circuit through the electrodes, and the protons are conducted to the electrolyte membrane through the electrode electrolyte.
  • the cathode electrode in the catalyst layer, the oxidizing gas, protons conducted from the electrolyte membrane, and electrons conducted from the external circuit react to generate water.
  • the electrode structure is devised to increase the reaction active point of the electrode reaction, and an electrolyte polymer is also blended into the electrode catalyst layer so that hydrogen ions can move quickly.
  • an electrolyte polymer is also blended into the electrode catalyst layer so that hydrogen ions can move quickly.
  • the film thickness be as thin as possible.
  • a MEA manufacturing method two catalyst transfer sheets in which a catalyst layer is formed on a base film by applying a printing method or a spray method on one side are used, and the catalyst layer side of the sheet is on both sides of the electrolyte membrane.
  • a decal method is known in which the catalyst layer is transferred by hot pressing or the like, the substrate film of the catalyst transfer sheet is removed, and the electrode substrate is placed in contact with the surface of each catalyst layer and heat pressed. ing.
  • the catalyst film and base material film have good peelability after application to the base film and transfer to the electrolyte membrane.
  • Fluororesin films such as polytetrafluoroethylene are known as base materials for catalyst transfer sheets (Patent Documents 1 and 3). Also known is a fluororesin film (Patent Document 2) in which the surface is treated with an acid solution and then treated with a hydrophilic surfactant.
  • a base film (Patent Document 3) is known in which a resin (preferably a fluororesin) such as a fluororesin, a melamine resin, or a silicone resin is coated on a base sheet according to a known method.
  • a support film having a very good releasability such as a fluororesin film described in Patent Documents 1 and 2 is poor in wetness of the catalyst coating solution and repels the catalyst coating solution.
  • the fluororesin film is expensive, and the mass production of MEA, including the disposal cost after use, has a problem from the viewpoint of cost reduction, and is a technology that has low feasibility for industrial use.
  • the support film in which the release layer is laminated on the general-purpose film described in Patent Document 3 may contaminate the catalyst layer with the release layer and adversely affect the power generation performance and durability of the MEA.
  • the present invention has good applicability of the catalyst coating liquid, and after the catalyst layer is transferred to the electrolyte membrane using the catalyst transfer sheet, the catalyst layer and the support film have good peelability and the catalyst. It is intended to provide a base film for a catalyst transfer sheet and a catalyst transfer sheet that do not contaminate the layers.
  • this invention is a manufacturing method of the membrane electrode assembly using the catalyst transfer sheet of this invention, and the manufacturing method of a catalyst layer covering electrolyte membrane.
  • a base film for a catalyst transfer sheet which is polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polysulfone, polyether ketone, polyether ether ketone, polyimide, polyether imide, polyamide Fluorine atoms are introduced on at least one surface of a base film formed from one or more polymers selected from the group consisting of polyamideimide, polybenzimidazole, polycarbonate, polyarylate, and polyvinyl chloride
  • the ratio of the number of fluorine atoms / number of carbon atoms measured by X-ray photoelectron spectroscopy of the surface into which the fluorine atom has been introduced (modified surface) is from 0.02 to 1.9.
  • the present invention also provides a catalyst transfer sheet having a catalyst layer formed on the modified surface of the substrate film, a method for
  • the base film of the present invention has a good coating property (wetting property) of a coating solution containing a catalyst metal, a carbon material, and an electrolyte polymer solution.
  • the catalyst layer is intentionally transferred to the electrolyte membrane using a catalyst transfer sheet.
  • the peelability when peeling the support film is good, and the catalyst layer is hardly contaminated. Therefore, it is suitable for manufacturing a membrane electrode assembly having high quality and low impurities.
  • a catalyst layer support film for a use having a step of contacting a catalyst layer on an electrolyte membrane such as a fuel cell, a water electrolysis device, a redox flow battery, and a metal-air battery, it has good coating properties, easy peelability, and low contamination. Any application that can be used effectively can be used.
  • the base film used as the base of the base film of the present invention can introduce fluorine atoms and is inexpensive, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polysulfone, Polyether ketone, polyether ether ketone, polyimide, polyether imide, polyamide, polyamide imide, polybenzimidazole, polycarbonate, polyarylate, or one formed from two or more polymers selected from polyvinyl chloride is used. Good.
  • the film may be formed from two or more kinds of blend polymers, or a laminate in which layers formed from the respective polymers are laminated. From the viewpoint of cost, it is preferable to use a single layer film made of one kind of polymer.
  • the base film of the present invention has fluorine atoms introduced on at least one surface of the base film.
  • the surface modification refers to replacing a part of hydrogen atoms bonded to carbon existing on the surface of the base film with fluorine atoms.
  • introduction of a hydroxyl group, a carboxylic acid group, a sulfonic acid group, or the like may be further accompanied.
  • a coating liquid catalyst coating liquid
  • the applicability can be controlled by the composition and properties of the polymer solution.
  • the surface into which this fluorine atom is introduced is sometimes simply referred to as “modified surface”.
  • the surface modification may be performed only on one side of the film or may be performed on both sides.
  • the ratio of the number of fluorine atoms / number of carbon atoms measured by X-ray photoelectron spectroscopy on the modified surface is 0.02 or more and 1.9 or less.
  • the ratio of the number of fluorine atoms / number of carbon atoms on the modified surface is 0.02 or more, the releasability when the catalyst layer is intentionally peeled off from the modified surface is improved, and the catalyst layer is missing in the peeling process.
  • a high-quality membrane electrode assembly can be produced, and an expensive catalyst metal can be brought into contact with the electrolyte membrane without waste.
  • the ratio of the number of fluorine atoms / the number of carbon atoms on the modified surface is 1.9 or less, the catalyst layer is less likely to fall off or chip in the membrane electrode assembly process, and the production yield of the membrane electrode assembly is reduced. The rate is improved. From such a viewpoint, the ratio of the number of fluorine atoms / number of carbon atoms on the modified surface is preferably 0.03 or more and 1.5 or less, and more preferably 0.04 or more and 1.0 or less.
  • the base film of the present invention preferably has a ratio of the number of oxygen atoms / number of carbon atoms measured by X-ray photoelectron spectroscopy of the modified surface of 0.10 or more and 1.0 or less.
  • the ratio of the number of oxygen atoms / number of carbon atoms on the modified surface is 0.10 or more, the coating property (wetting property) of the polymer solution on the modified surface tends to be good, and the catalyst is applied to the electrolyte membrane. It becomes difficult for the catalyst layer to slide off the electrolyte membrane after the step of transferring the layer or after the transfer.
  • the ratio of the number of oxygen atoms / number of carbon atoms is 1.0 or less, the releasability when the catalyst layer is intentionally peeled from the modified surface tends to be good.
  • the ratio of the number of oxygen atoms / the number of carbon atoms is more preferably 0.15 or more and 0.8 or less, and further preferably 0.20 or more and 0.7 or less.
  • X-ray photoelectron spectroscopy soft X-rays are irradiated on the surface of a sample placed in an ultra-high vacuum, and photoelectrons emitted from the surface are detected by an analyzer.
  • photoelectrons are emitted from the surface into the vacuum due to the photoelectric effect.
  • information on the elemental composition and chemical state of the surface can be obtained.
  • Equation 1 E b is the binding energy of bound electrons, h ⁇ is the soft X-ray energy, E kin is the kinetic energy of photoelectrons, and ⁇ is the work function of the spectrometer.
  • the binding energy (E b ) of the bound electrons determined by the above equation 1 is unique to the element. Therefore, by analyzing the energy spectrum of photoelectrons, it becomes possible to identify elements present on the surface of the material. Since the length (mean free path) that the photoelectron can travel through the substance is several nm, the detection depth in this analytical method is several nm.
  • the ratio of the number of fluorine atoms / the number of carbon atoms and the ratio of the number of oxygen atoms / the number of carbon atoms on the modified surface are those of a depth of several nm from the surface.
  • X-ray photoelectron spectroscopy surface atomic information is obtained from the binding energy value of bound electrons in a substance, and information on valence and bonding state is obtained from the energy shift of each peak. Furthermore, the ratio of the number of atoms can be obtained using the peak area ratio.
  • the measurement conditions of the X-ray photoelectron spectroscopy used in the present invention are as follows.
  • the modified surface preferably has a water contact angle ( ⁇ ) of 90 ° or less. If it is 90 degrees or less, when applying a coating solution containing a catalyst metal, carbon, and an electrolyte polymer solution, a coating layer with good surface quality is obtained with less coating unevenness. Contact angle is the most intuitive measure of wetting by a solid liquid.
  • a value measured by a droplet method is adopted. Specifically, it was carried out in accordance with JIS R3257. Water was dropped on the modified surface of the substrate film of the present invention instead of glass, and the angle formed between the tangent of the droplet at the contact point between the modified surface and the formed droplet and the modified surface was measured.
  • the thickness of the base film of the present invention can be appropriately determined depending on the thickness of the catalyst layer to be produced and the production apparatus, and is not particularly limited. 5 ⁇ m to 500 ⁇ m is preferable from the viewpoint of handling. In addition, a thickness of 50 ⁇ m to 200 ⁇ m is more preferable from the viewpoint of productivity, cost, and reduction effects such as deformation during drying.
  • the manufacturing method of the base film of the present invention is not particularly limited, and various known methods can be used.
  • various known methods can be used.
  • direct fluorination reaction with fluorine gas fluorination with high-valent metal fluoride, indirect fluorination mainly using halogen exchange reaction, fluorination by electrolysis method, etc. (Organic Synthetic Chemistry, Vol. 31, Vol. 31) 6 (1973) pp. 441-454).
  • direct fluorination reaction by bringing the base film into contact with fluorine gas can be preferably applied.
  • Control of the amount of fluorine atoms introduced by the fluorine gas includes the fluorine gas concentration in the gas containing the fluorine gas, the temperature and pressure of the gas containing the fluorine gas, the transport speed of the base film when the substrate film is continuously processed, etc.
  • FIG. 1 is a conceptual diagram showing an example of an apparatus for bringing a base film into contact with fluorine gas while continuously conveying it.
  • the surface modification is performed in the fluorine gas contact chamber 3 having the gas supply port 1 and the gas discharge port 2 while the film base 6 is continuously conveyed from the unwinding unit 4 to the winding unit 5.
  • the support roll 7 is configured to minimize leakage of fluorine gas.
  • temperature control in the fluorination reaction can be performed.
  • the catalyst transfer sheet of the present invention is used for transferring a catalyst layer to an electrolyte membrane or gas diffusion electrode for a fuel cell, and is formed by forming a catalyst layer on the modified surface of the base film of the present invention. It will be.
  • the catalyst layer is preferably a layer containing a catalyst metal, a carbon material, and an electrolyte polymer. If necessary, a polymer binder other than the electrolyte polymer may be added for the purpose of preventing the catalyst metal from falling off.
  • the composition, configuration and shape of the catalyst layer are not particularly limited.
  • the catalyst layer may be a single layer, a laminate of catalyst layers having different compositions, or a pattern coating.
  • the catalyst layer can be experimentally designed as appropriate according to the application used as a membrane electrode assembly, for example, a fuel cell, a water electrolysis apparatus, a redox flow battery, a metal-air battery, a hydrogen compression apparatus, and the like.
  • the thickness of the catalyst layer can be determined experimentally depending on the intended use, and is usually preferably 1 ⁇ m or more and 500 ⁇ m or less.
  • metals such as platinum, palladium, ruthenium, rhodium, iridium, manganese, cobalt, and gold are preferably used as the metal particles.
  • metals such as platinum, palladium, ruthenium, rhodium, iridium, manganese, cobalt, and gold are preferably used as the metal particles.
  • One of these may be used alone, or two or more of them, such as alloys and mixtures, may be used in combination.
  • the use efficiency of the metal catalyst can be improved by using the metal-supported particles, which may contribute to the power generation performance and durability of the membrane electrode assembly and the cost reduction.
  • a carbon material SiO 2 , TiO 2 , ZrO 2 , RuO 2 , zeolite, or the like can be used, but a carbon material is preferable from the viewpoint of electron conductivity.
  • Examples of the carbon material include amorphous and crystalline carbon materials.
  • carbon black such as channel black, thermal black, furnace black, and acetylene black is preferably used because of its electron conductivity and specific surface area.
  • Furnace Black includes “Vulcan XC-72” (R), “Vulcan P” (R), “Black Pearls 880” (R), “Black Pearls 1100” (R), “Black Pearls 1300” R), “Black Pearls 2000” (R), “Legal 400” (R), “Ketjen Black” EC (R), EC600JD, Mitsubishi Chemical Corporation # 3150, # 3250, etc.
  • Examples of acetylene black include “DENKA BLACK” (R) manufactured by Denki Kagaku Kogyo Co., Ltd.
  • artificial graphite or carbon obtained from organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, and furan resin can also be used.
  • these carbon materials fibers, scales, tubes, cones, megaphones as well as irregular particles can be used. Moreover, you may use what post-processed these carbon materials, such as heat processing and a chemical process. These may be used as the metal carrier, or may be used alone as an electron conductivity improver for the catalyst layer.
  • the electrolyte polymer solution is obtained by dissolving an electrolyte polymer in a solvent, and a dispersion in which the electrolyte polymer is not completely dissolved is also expressed as an electrolyte polymer solution in the present invention for convenience.
  • a generally known polymer containing an ionic group such as a hydrocarbon polymer or a fluorine polymer can be used.
  • Examples of the ionic group include a sulfonic acid group (—SO 2 (OH) 3), a sulfuric acid group (—OSO 2 (OH) 2 ), a sulfonimide group (—SO 2 NHSO 2 R (R represents an organic group)).
  • Phosphonic acid groups (—PO (OH) 2 ), phosphoric acid groups (—OPO (OH) 2 ), carboxylic acid groups (—CO (OH) 2), hydroxyl groups (—OH), and salts thereof.
  • two or more kinds of these ionic groups can be contained in the electrolyte polymer. The combination is appropriately determined depending on the structure of the polymer.
  • phosphonic acid groups and sulfonic acid groups are preferable from the viewpoints of proton conductivity and productivity, and these Na salts, Mg salts, Ca salts, ammonium salts, and the like may be included.
  • electrolyte polymer examples include polyphenylene oxide, polyether ketone, polyether ether ketone, polyether sulfone, polyether ether sulfone, polyether phosphine oxide, polyether ether phosphine oxide, polyphenylene sulfide, polyamide, polyimide, and polyether.
  • High (meth) acrylic copolymers such as imide, polyimidazole, polyoxazole, polyphenylene, polycarbonate, polyarylate, polyethylene, polypropylene, amorphous polyolefin, polystyrene, polystyrene maleimide copolymer, polymethyl acrylate, and polyurethane Hydrocarbon ion-conducting polymer with ionic groups introduced into molecular material, fluoroalkyl ether side chain and fluoroalkane Perfluorinated ion-conducting polymer and the like having an ionic group composed of the Le backbone.
  • the amount of the electrolyte polymer contained in the catalyst layer is not particularly limited.
  • the amount of the electrolyte polymer contained in the catalyst layer is preferably in the range of 0.1 wt% to 50 wt%, and more preferably in the range of 1 wt% to 30 wt%. If it is 0.1% by weight or more, it is easy to prevent the catalyst metal or the catalyst-supporting carbon material from slipping, and if it is less than 50% by weight, it is difficult to inhibit the permeation of fuel and gas permeability when the membrane electrode assembly is formed. The adverse effect on power generation performance is small.
  • the catalyst transfer sheet of the present invention is obtained by applying a coating liquid containing a catalyst metal, a carbon material and an electrolyte polymer solution to the modified surface of the base film of the present invention, and then removing the solvent from the coating liquid.
  • the electrolyte polymer solution is obtained by dissolving or dispersing an electrolyte polymer in a solvent.
  • the solvent that can be used is not particularly limited.
  • a generally known method can be applied. For example, an electrolyte polymer solution, catalyst metal particles and / or catalyst metal-supported carbon material particles are added, and a catalyst coating solution is prepared by stirring and kneading, and is applied to the modified surface of the substrate film of the present invention, and then dried. Depending on the case, a catalyst transfer sheet can be produced by pressing.
  • a coating method known methods can be adopted, knife coating, direct roll coating (comma coating), gravure coating, spray coating, brush coating, dip coating, die coating, vacuum die coating, curtain coating, flow coating, spin coating, reverse. Techniques such as coating and screen printing can be applied, and continuous coating is preferably die coating or comma coating.
  • the evaporation of the solvent from the catalyst coating film coated on the substrate film of the present invention can be selected from known methods such as heating, hot air, and an infrared heater.
  • the drying time, temperature, wind speed, and wind direction of the solvent can be determined experimentally as appropriate.
  • the catalyst transfer sheet of the present invention can be used in a method for producing a membrane electrode assembly having a step of peeling the substrate from the catalyst layer after the catalyst layer surface is attached to an electrolyte membrane. In this step, when the catalyst layer is peeled off or dropped from the base material of the catalyst transfer sheet, the catalyst layer of the membrane electrode assembly is detached or the surface quality is lowered.
  • the catalyst transfer sheet of the present invention it can be produced without peeling or dropping off of such a catalyst layer.
  • the adhesion between the base material and the catalyst layer is too high, the base material and the catalyst layer cannot be easily peeled off, and the surface of the catalyst layer may be defective or missing, resulting in poor transfer performance. Cause a drop.
  • the catalyst transfer sheet of the present invention the peelability when the substrate is intentionally peeled from the catalyst layer is improved, and a high-quality membrane electrode assembly can be produced.
  • electrolyte membrane used in the method for producing such a membrane electrode assembly.
  • examples include ionic group-containing polyphenylene oxide, ionic group-containing polyether ketone, ionic group-containing polyether ether ketone, ionic group-containing polyether sulfone, ionic group-containing polyether ether sulfone, ionic group-containing poly Ether phosphine oxide, ionic group containing polyether ether phosphine oxide, ionic group containing polyphenylene sulfide, ionic group containing polyamide, ionic group containing polyimide, ionic group containing polyetherimide, ionic group containing polyimidazole, ionic An aromatic hydrocarbon polymer having an ionic group, such as a group-containing polyoxazole or an ionic group-containing polyphenylene, or a perfume having an ionic group composed of a fluoroalkyl ether side chain and a fluoroalky
  • the ionic groups herein include a sulfonic acid group (—SO 2 (OH)), a sulfuric acid group (—OSO 2 (OH)), and a sulfonimide group (—SO 2 NHSO 2 R (R represents an organic group). ), A phosphonic acid group (—PO (OH) 2 ), a phosphoric acid group (—OPO (OH) 2 ), a carboxylic acid group (—CO (OH)), and a metal salt thereof. Can be preferably employed.
  • a sulfonic acid group it is more preferable to have at least one of a sulfonic acid group, a sulfonimide group, a sulfuric acid group and a phosphonic acid group from the viewpoint of high proton conductivity, and most preferable to have at least a sulfonic acid group from the viewpoint of hydrolysis resistance. preferable.
  • the catalyst layer-covered electrolyte membrane can be manufactured by attaching the catalyst layer and the electrolyte membrane by bringing the catalyst layer surface into contact with both or one side of the electrolyte membrane and heating and pressing together with the catalyst transfer sheet.
  • the pressing temperature can be appropriately determined depending on the heat resistance of the electrolyte membrane and the base film, and is preferably 20 to 200 ° C.
  • the press pressure can also be determined experimentally depending on the material used, and is preferably 1 to 100 MPa.
  • the press may be a batch type or a continuous roll press.
  • the method for peeling the substrate from the catalyst layer is not particularly limited.
  • the end of the substrate may be picked and peeled off, or the support film can be adsorbed and peeled off with a vacuum chuck or the like.
  • the method of peeling a base material and winding in roll shape, conveying continuously is also preferable from a viewpoint of productivity. Since the catalyst transfer sheet of the present invention has good releasability, the recovered substrate can be reused.
  • a membrane electrode assembly can be produced by disposing a gas diffusion electrode made of carbon paper or carbon fabric on the catalyst layer of the electrolyte membrane (catalyst layer-covered electrolyte membrane) to which the catalyst layer has been transferred.
  • the catalyst transfer sheet of the present invention can also be used for transferring a catalyst layer to a gas diffusion electrode made of carbon paper or carbon fabric. That is, the catalyst transfer sheet of the present invention can also be used in a method for producing a membrane electrode assembly having a step of peeling the substrate from the catalyst layer after the catalyst layer surface is attached to the gas diffusion layer.
  • the catalyst coating liquid is directly applied to the gas diffusion layer, unevenness in the thickness of the catalyst layer is likely to occur due to surface irregularities.
  • the catalyst transfer sheet of the present invention is used, the thickness of the catalyst layer becomes uniform, and the power generation performance and durability of the membrane electrode assembly may be improved.
  • a carbon layer made of carbon powder and a binder may be formed on the gas diffusion electrode. This can prevent the catalyst layer from entering between carbon fibers of carbon paper or carbon fabric and form it non-uniformly, and is a preferable gas diffusion electrode configuration that is preferable when the catalyst layer is transferred using a catalyst transfer sheet. It is.
  • the carbon powder includes amorphous and crystalline carbon materials.
  • carbon black such as channel black, thermal black, furnace black, and acetylene black is preferably used because of its electron conductivity and specific surface area.
  • Furnace Black includes “Vulcan XC-72” (R), “Vulcan P” (R), “Black Pearls 880” (R), “Black Pearls 1100” (R), “Black Pearls 1300” R), “Black Pearls 2000” (R), “Legal 400” (R), "Ketjen Black” EC (R), EC600JD, Mitsubishi Chemical Corporation # 3150, # 3250, etc.
  • Examples of acetylene black include “DENKA BLACK” (R) manufactured by Denki Kagaku Kogyo Co., Ltd.
  • artificial graphite or carbon obtained from organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, and furan resin can also be used.
  • organic compounds such as natural graphite, pitch, coke, polyacrylonitrile, phenol resin, and furan resin
  • fibers, scales, tubes, cones, and megaphones can also be used.
  • the binder is not particularly limited. Specifically, polyphenylene oxide, polyether ketone, polyether ether ketone, polyether sulfone, polyether ether sulfone, polyether phosphine oxide, polyether ether phosphine oxide, polyphenylene sulfide, polyamide, polyimide, polyetherimide, polyimidazole , (Meth) acrylic copolymers such as polyoxazole, polyphenylene, polycarbonate, polyarylate, polyethylene, polypropylene, amorphous polyolefin, polystyrene, polystyrene maleimide copolymer, polymethyl acrylate, and polyurethane, etc., and these Hydrocarbon polymers such as polymer materials into which ionic groups are introduced are mentioned, such as polyvinyl fluoride, polyvinylidene fluoride, Sa hexafluoropropylene, polytetrafluoroethylene, perfluoroalkyl vinyl
  • a base film having a polyethylene terephthalate film as a base The present invention is not limited to these.
  • Surface modification can also be produced according to this example.
  • the measurement conditions of each physical property are as follows.
  • Ratio of fluorine atoms / carbon atoms on the film surface F / C ratio
  • the catalyst transfer sheet was prepared by drying at 100 ° C. The catalyst transfer sheet was lightly flicked twice from the support film side with the middle finger, and the presence or absence of the catalyst layer was evaluated by visual observation.
  • a polymer solution consisting of a 20% by weight electrolyte membrane precursor of sulfonated polyetherketone (see JP-A-2006-561103, etc.) and N-methyl-2-pyrrolidone (NMP) is used as a PET film.
  • NMP N-methyl-2-pyrrolidone
  • Limirror registered trademark
  • -T60 manufactured by Toray Industries, Inc., thickness 125 ⁇ m
  • the both sides of the electrolyte membrane were brought into contact with the catalyst layer side of the catalyst transfer sheet after the early peel resistance evaluation, and heated and pressed at 150 ° C. and 4 MPa for 10 minutes.
  • the substrate film was manually peeled off from the catalyst transfer sheet, and the state of the catalyst layer adhering to the electrolyte membrane after peeling and the residue of the catalyst layer of the substrate film were evaluated by visual observation.
  • Table 1 summarizes the fluorine atom / carbon atom ratio, oxygen atom / carbon atom ratio, water contact angle and wettability, early peel resistance, and easy peelability of the treated surface of the base film A. .
  • Examples 2, 3, 4, 5 and Comparative Example 1 The substrate films B to E and G were produced by changing the ratio of the fluorine / air mixed gas or the blowing time in Example 1. These ratios of the number of fluorine atoms / the number of carbon atoms, the ratio of the number of oxygen atoms / the number of carbon atoms, water contact angle and wettability, early peel resistance, and easy peelability are summarized in Table 1.
  • Example 6 Continuous fluorine surface treatment apparatus having a roll-shaped film unwinding section capable of controlling the conveyance speed and a winding section, and having a contact chamber for fluorine gas provided with fluorine and air gas supply ports and exhaust ports therebetween.
  • PET film (“Lumirror” manufactured by Toray Industries, Inc. (Registered)
  • fluorine gas was carried out to obtain a continuous film of the base film F.
  • Table 1 summarizes the fluorine atom / carbon atom ratio, oxygen atom / carbon atom ratio, water contact angle and wettability, early peel resistance, and easy peelability of the treated surface of the base film F. .
  • Example 2 It implemented similarly to Example 6 except having used the polytetrafluoroethylene (PEFE) film instead of the base film F.
  • FIG. Table 1 summarizes the ratio of the number of fluorine atoms / the number of carbon atoms, the ratio of the number of oxygen atoms / the number of carbon atoms, the contact angle of water and wettability, early peel resistance, and easy peelability. Table 1 summarizes the ratio and contact angle of water, wettability, early peel resistance, and easy peelability.
  • PEFE polytetrafluoroethylene
  • a “Nafion (registered trademark) product number NRE211CS” (“Nafion (registered trademark)”) manufactured by DuPont is used, and the catalyst layer side of the catalyst transfer sheet is brought into contact with both surfaces thereof, and the temperature is 120 ° C., 2 MPa. Heat pressing was performed for 10 minutes under the conditions. Next, the base film was manually peeled off from the catalyst transfer sheet. Next, an electrode base material (carbon paper TGP-H-060 manufactured by Toray Industries, Inc.) was superimposed on the catalyst layers on both sides, and heated and pressed at 130 ° C. and 3 MPa for 10 minutes to obtain a membrane electrode assembly. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

 膜電極複合体製造時、触媒塗液の塗布性が良く、触媒転写シートを用い電解質膜へ触媒層を転写後、触媒層と支持フィルムの剥離性が良好で、かつ触媒層を汚染しない基材フィルム提供する。 触媒転写シート用の基材フィルムであって、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリベンズイミダゾール、ポリカーボネート、ポリアリレート、ポリ塩化ビニルからなる群より選択される1種または2種以上のポリマーから形成されたベースフィルムの少なくとも一方の表面にフッ素原子が導入されてなり、該フッ素原子を導入した表面、すなわち改質表面の、X線光電子分光法で測定したフッ素原子数/炭素原子数の比が、0.02以上1.9以下である基材フィルム。

Description

基材フィルム、触媒転写シート、膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法
 本発明は、特定の表面状態を有する基材フィルム、触媒転写シート、膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法に関するものである。
 燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって、電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子型燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、小型移動機器、携帯機器の電源としても注目されており、ニッケル水素電池やリチウムイオン電池などの二次電池に替わり、携帯電話やパソコンなどへの搭載が期待されている。
 燃料電池は通常、発電を担う反応の起こるアノードとカソードの電極と、アノードとカソード間のプロトン伝導体からなる高分子電解質膜とが、膜電極複合体(以降、MEAと略称することがある。)を構成し、このMEAがセパレータによって挟まれたセルをユニットとして構成されている。具体的には、アノード電極においては、触媒層で燃料ガスが反応してプロトン及び電子を生じ、電子は電極を経て外部回路に送られ、プロトンは電極電解質を介して電解質膜へと伝導する。一方、カソード電極では、触媒層で、酸化ガスと、電解質膜から伝導してきたプロトンと、外部回路から伝導してきた電子とが反応して水を生成する。
 固体高分子型燃料電池ではエネルギー効率の一層の向上が要求されている。そのためには電極構造を工夫し、電極反応の反応活性点を増加させるとともに、電解質ポリマーを電極触媒層にも配合し、速やかに水素イオンが移動できるようにしている。発生した水素イオンを速やかに対極まで移動できるようにするためには、電極触媒層と電解質膜との接触が良く、また電解質膜自体の膜抵抗を低くする必要がある。そのためには膜厚はできるだけ薄い方が好ましい。
 このようなMEAの製造方法としては、片面に印刷法又はスプレー法を適用して基材フィルムに触媒層を形成した2枚の触媒転写シートを用い、該シートの触媒層面が電解質膜の両面に接するように配置し、熱プレスなどで触媒層を転写後、触媒転写シートの基材フィルムを除去し、さらに各々の触媒層面に電極基材が接するように配置し熱プレスするデカール法が知られている。
 デカール法をMEA製造方法に採用する場合、基材フィルムへの触媒塗液の塗布性、電解質膜への転写後、触媒層と基材フィルムの剥離性が良好であることが望まれる。
 触媒転写シート用基材としては、ポリテトラフルオロエチレンなどのフッ素樹脂フィルムが知られている(特許文献1、3)。また、表面を酸溶液処理した後、親水性界面活性剤で処理を行なったフッ素樹脂フィルム(特許文献2)が知られている。また、ポリイミド、ポリエチレンテレフタレート、ポリパルバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート等の高分子フィルムに、離型層としてフッ素樹脂、メラミン樹脂、シリコーン樹脂等の樹脂(好ましくはフッ素樹脂)を公知の方法に従って基材シート上にコーティングした基材フィルム(特許文献3)が知られている。
米国特許5211984号 特開2004-031148号公報 特開2008-226540号公報
 しかし、特許文献1や2に記載されているフッ素樹脂フィルムのような非常に離型性のよい支持フィルムは、触媒塗液の濡れが悪く、触媒塗液をはじいてしまい、触媒塗液の塗工性に課題があった。そして、濡れ性を改良したとしても触媒層が転写工程で剥離してMEAの品質や発電性能が低下することがあった。さらに、フッ素樹脂フィルムは高価であり、使用後の廃棄コストも含め、MEAの量産にはコスト低減の観点から課題があり、産業用途として実現性が低い技術であった。
 また、特許文献3に記載の汎用フィルムに離型層を積層した支持フィルムは、触媒層を離型層が汚染しMEAの発電性能や耐久性に悪影響を及ぼすことがあった。
 本発明は、かかる従来技術の背景に鑑み、触媒塗液の塗布性が良く、触媒転写シートを用いて電解質膜へ触媒層を転写後、触媒層と支持フィルムの剥離性が良好で、かつ触媒層を汚染しない触媒転写シート用の基材フィルムおよび触媒転写シートを提供せんとするものである。また、本発明は、本発明の触媒転写シートを用いた膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法である。
 本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、触媒転写シート用の基材フィルムであって、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリベンズイミダゾール、ポリカーボネート、ポリアリレート、ポリ塩化ビニルからなる群より選択される1種または2種以上のポリマーから形成されたベースフィルムの少なくとも一方の表面にフッ素原子が導入されてなり、該フッ素原子を導入した表面(改質表面)の、X線光電子分光法で測定したフッ素原子数/炭素原子数の比が、0.02以上1.9以下であることを特徴とする。また、該基材フィルムの改質表面に触媒層を形成してなる触媒転写シート、ならびにそれを用いた膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法を提供する。
 本発明の基材フィルムは、触媒金属、炭素材料、電解質ポリマー溶液を含む塗液の塗布性(ぬれ性)が良く、触媒転写シートを用い電解質膜へ触媒層を転写後、意図的に触媒層と支持フィルムを剥離する際の剥離性が良好で、かつ触媒層が汚染されにくい。よって、高品位で不純物の少ない膜電極複合体の製造用に好適である。例えば、燃料電池、水電解装置、レドックスフロー電池、金属空気電池などの電解質膜上に触媒層接触させる工程を有する用途の触媒層支持フィルムとして、良塗工性、易剥離性、低汚染性を活かせる用途であれば好適に使用できる。
フッ素ガスと接触させて本発明の基材フィルムを得るための装置の概念図である。
 <基材フィルム>
 本発明の基材フィルムのベースとなるベースフィルムは、フッ素原子の導入が可能であり、かつ安価であることから、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリベンズイミダゾール、ポリカーボネート、ポリアリレート、ポリ塩化ビニルから選択される単独または2種以上のポリマーから形成されるものを用いるとよい。2種以上のポリマーからフィルムを形成する場合には、2種以上のブレンドポリマーからフィルムを形成してもよく、また各ポリマーから形成した層を積層した積層体としてもよい。コストの点からは1種のポリマーからなる単層フィルムを用いることが好ましい。
 本発明の基材フィルムは、上記ベースフィルムの少なくとも一方の表面にフッ素原子を導入したものである。本発明において、表面改質とは、ベースフィルムの表面に存在する炭素に結合した水素原子の一部をフッ素の原子に置き換えることを指すものとする。表面改質を行った際には、さらに水酸基やカルボン酸基、スルホン酸基などの導入が伴っていてもよい。水酸基やカルボン酸基、スルホン酸基の導入により、ベースフィルムの表面の接触角を下げることができ、触媒転写シート作製時の触媒金属、炭素材料、電解質ポリマー溶液を含む塗液(触媒塗液)の塗布性(濡れ性)をポリマー溶液の組成や性質により制御可能となる。なお、本明細書において、このフッ素原子を導入した表面を指して単に「改質表面」ということがある。
 表面改質は、フィルムの片面のみに行われていてもよいし両面とも行われていてもよい。触媒転写シートとして使用する場合には、コストの点からは片面のみ改質することが好ましい。また、触媒塗液を塗布する部分のみに、局所的にフッ素化されてなるものであってもよい。
 本発明の基材フィルムは、改質表面の、X線光電子分光法で測定したフッ素原子数/炭素原子数の比が、0.02以上1.9以下である。改質表面のフッ素原子数/炭素原子数の比が0.02以上であることで、改質表面から意図的に触媒層を剥離する際の剥離性が良好となり、剥離工程で触媒層が欠けたり転写不良が起こったりしにくく、高い表面品位の膜電極複合体が作製できると共に、高価な触媒金属を電解質膜に無駄なく接触させることが可能となる。また、改質表面のフッ素原子数/炭素原子数の比が1.9以下であることで、膜電極複合体工程において触媒層が脱落したり欠けたりしにくくなり、膜電極複合体の製造収率が向上する。こうした観点から、改質表面のフッ素原子数/炭素原子数の比は、0.03以上1.5以下であることが好ましく、0.04以上1.0以下であることがより好ましい。
 また、本発明の基材フィルムは、改質表面の、X線光電子分光法で測定した酸素原子数/炭素原子数の比が、0.10以上1.0以下が好ましい。改質表面の、酸素原子数/炭素原子数の比が0.10以上であることで、改質表面へのポリマー溶液の塗布性(ぬれ性)が良好となる傾向にあり、電解質膜へ触媒層を転写する工程や転写後に触媒層が電解質膜から滑落しにくくなる。また、酸素原子数/炭素原子数の比が1.0以下であることで、改質表面から意図的に触媒層を剥離する際の剥離性が良好となる傾向にある。こうした観点から、酸素原子数/炭素原子数の比が0.15以上0.8以下であることがより好ましく、0.20以上0.7以下であることがさらに好ましい。
 X線光電子分光法では、超高真空中においた試料表面に軟X線を照射し、表面から放出される光電子をアナライザーで検出する。超高真空下で試料表面にX線を照射すると、光電効果により表面から光電子が真空中に放出される。その光電子の運動エネルギーを観測すると、その表面の元素組成や化学状態に関する情報を得ることができる。
Eb=hν-Ekin-φsp(式1)
式1のEbは束縛電子の結合エネルギー、hνは軟X線のエネルギー、Ekinは光電子の運動エネルギー、φは分光器の仕事関数となる。ここで上記式1により求められる束縛電子の結合エネルギー(Eb)は元素固有のものとなる。よって光電子のエネルギースペクトルを解析すれば、物質表面に存在する元素の同定が可能となる。光電子が物質中を進むことができる長さ(平均自由行程)が数nmであることから、本分析手法における検出深さは数nmとなる。すなわち、本発明において、改質表面のフッ素原子数/炭素原子数の比および酸素原子数/炭素原子数の比は表面より数nmの深さの原子数比である。
 X線光電子分光法では物質中の束縛電子の結合エネルギー値から表面の原子情報が、また各ピークのエネルギーシフトから価数や結合状態に関する情報が得られる。さらにピーク面積比を用いて原子数の比を求めることができる。本発明で用いたX線光電子分光法の測定条件は下記のとおりである。
 装置:Quantera SXM(米国PHI 社製)
 励起X 線:monochromatic Al Kα1,2 線(1486.6 eV)
 X 線径:100μm(分析領域:100μmφ)
 光電子脱出角度:45 °(試料表面に対する検出器の傾き)
 スムージング:9 points smoothing
 横軸補正:C1s ピークメインピークを284.6 eV に合わせた。
 また、改質表面は、水の接触角(θ)が90°以下であることが好ましい。90°以下であれば、触媒金属、カーボン、電解質ポリマー溶液を含む塗液を塗布する際に、塗布ムラが発生しにくく表面品位の良好な触媒層被膜が得られる。接触角は固体の液体による濡れを表す最も直感的な尺度である。本発明では液滴法で測定した値を採用した。具体的には、JIS R3257に準拠して実施した。ガラスの代わりに本発明の基材フィルムの改質表面に水を滴下し、改質表面と形成した液滴との接触点における液滴の接線と、改質表面とのなす角度を測定した。
 本発明の基材フィルムの厚みは製造する触媒層の厚みや製造装置により適宜決定でき、特に制限はない。5μm~500μmがハンドリングの観点から好ましい。また、生産性、コストや乾燥時の変形などの低減効果より50μm~200μmの厚みがより好ましい。
 <基材フィルムの製造方法>
 本発明の基材フィルムの製造方法は特に限定されず、公知の様々な方法を用いることができる。例えば、フッ素ガスによる直接フッ素化反応のほか、高原子価金属フッ化物によるフッ素化、ハロゲン交換反応を主体とした間接フッ素化、電解法によるフッ素化などが挙げられる(有機合成化学 第31巻 第6号(1973)441頁~454頁)。これらの中でも、量産性、導入量の制御性の観点から、ベースフィルムをフッ素ガスと接触させることによる直接フッ素化反応が好ましく適用できる。
 フッ素ガスによるフッ素原子の導入量の制御は、フッ素ガスを含む気体中のフッ素ガス濃度、フッ素ガスを含む気体の温度や圧力、基材フィルムを連続的に処理する場合におけるベースフィルムの搬送速度などを調整することにより、使用する機器や設備に応じて当業者は適宜実験的に決定することができる。連続的に触媒転写シートを作製するために使用するなど、基材フィルムの量産性が必要な用途には、コスト、品質安定性の観点から、ベースフィルムを連続的に搬送しながらフッ素ガスと接触させることにより表面改質を行うことが好ましい。
 図1に、ベースフィルムを連続的に搬送しながらフッ素ガスと接触させる装置の一例を概念図として示す。フィルム基材6を巻出し部4から巻き取り部5に連続的に搬送しながら、ガス供給口1とガス排出口2を備えたフッ素ガス接触室3で表面改質を実施する。支持ロール7はフッ素ガスの漏洩を最小限にとどめるよう構成される。また、支持ロール7にヒーターやクーラントを内蔵することで、フッ素化反応における温調が可能となる。
 <触媒転写シート>
 本発明の触媒転写シートは、燃料電池用の電解質膜またはガス拡散電極に触媒層を転写するために用いられるものであり、上記本発明の基材フィルムの改質表面に触媒層を形成してなるものである。触媒層は、触媒金属、炭素材料および電解質ポリマーを含む層であることが好ましい。必要よっては、触媒金属の脱落を防ぐ目的で電解質ポリマー以外の高分子結着剤を加えてもよい。触媒層の組成や構成や形状は特に制限ない。触媒層は一層であってもよいし、異なる組成の触媒層の積層体であってもよいし、パターン塗工されていてもよい。触媒層は、膜電極複合体として使用する用途、例えば、燃料電池、水電解装置、レドックスフロー電池、金属空気電池、水素圧縮装置などの用途に合わせ適宜実験的に設計できる。触媒層の厚みは使用する用途によって実験的に決定でき、通常1μm以上500μm以下が好ましい。
 触媒層に含まれる触媒金属としては、公知のものが使用できる。例えば、金属粒子として、白金、パラジウム、ルテニウム、ロジウム、イリジウム、マンガン、コバルト、金などの金属が好ましく用いられる。これらの内の1種類を単独で用いてもよいし、合金、混合物など、2種類以上を併用してもよい。
 また、上記金属を担持した粒子を使用することで、金属触媒の利用効率が向上し、膜電極複合体の発電性能、耐久性の向上および低コスト化に寄与できることがある。担持体としては、炭素材料、SiO、TiO、ZrO、RuO、ゼオライトなどが使用できるが電子伝導性の観点からは炭素材料が好ましい。
 炭素材料としては、非晶質、結晶質の炭素材料が挙げられる。例えば、チャネルブラック、サーマルブラック、ファーネスブラック、アセチレンブラックなどのカーボンブラックが電子伝導性と比表面積の大きさから好ましく用いられる。ファーネスブラックとしては、キャボット社製“バルカンXC-72”(R)、“バルカンP”(R)、“ブラックパールズ880”(R)、“ブラックパールズ1100”(R)、“ブラックパールズ1300”(R)、“ブラックパールズ2000”(R)、“リーガル400”(R)、ケッチェンブラック・インターナショナル社製“ケッチェンブラック”EC(R)、EC600JD、三菱化学社製#3150、#3250などが挙げられ、アセチレンブラックとしては電気化学工業社製“デンカブラック”(R)などが挙げられる。またカーボンブラックのほか、天然の黒鉛、ピッチ、コークス、ポリアクリロニトリル、フェノール樹脂、フラン樹脂などの有機化合物から得られる人工黒鉛や炭素なども使用することができる。
 これらの炭素材料の形態としては、不定形粒子状のほか繊維状、鱗片状、チューブ状、円錐状、メガホン状のものも用いることができる。また、これら炭素材料を熱処理や化学処理などの後処理加工したものを用いてもよい。これらは、前記、金属の担持体として使用しても、触媒層の電子伝導向上剤として単独で使用してもよい。
 電解質ポリマー溶液とは電解質ポリマーを溶媒に溶解させたものであり、完全に電解質ポリマーが溶けていない分散液も本発明では、便宜上、電解質ポリマー溶液として表現する。電解質ポリマーとしては炭化水素系ポリマーやフッ素系ポリマーなど、イオン性基を含む一般公知のポリマーが使用できる。
 該イオン性基としては、スルホン酸基( -SO(OH) )、硫酸基( -OSO(OH) )、スルホンイミド基( -SONHSOR(Rは有機基を表す。) )、ホスホン酸基( -PO(OH) )、リン酸基( -OPO(OH) )、カルボン酸基( -CO(OH) )、水酸基(-OH)およびこれらの塩等が挙げられる。また、これらのイオン性基は電解質ポリマー中に2種類以上含むことができる。組み合わせはポリマーの構造などにより適宜決められる。これらのイオン性基のなかでもプロトン伝導性と生産性の観点からホスホン酸基、スルホン酸基が好ましく、これらのNa塩、Mg塩、Ca塩、アンモニウム塩などが含まれていてもよい。
 電解質ポリマーとしては、具体的にはポリフェニレンオキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルホスフィンオキシド、ポリエーテルエーテルホスフィンオキシド、ポリフェニレンスルフィド、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミダゾール、ポリオキサゾール、ポリフェニレン、ポリカーボネート、ポリアリレート、ポリエチレン、ポリプロピレン、非晶性ポリオレフィン、ポリスチレン、ポリスチレンマレイミド共重合体、ポリメチルアクリレート等の(メタ)アクリル系共重合体およびポリウレタン等の高分子材料にイオン性基を導入した炭化水素系イオン伝導性ポリマー、フルオロアルキルエーテル側鎖とフルオロアルキル主鎖とから構成されるイオン性基を有するパーフルオロ系イオン伝導性ポリマーが挙げられる。
 また触媒層に含まれる電解質ポリマーの量としては、特に限定されるものではない。触媒層に含まれる電解質ポリマーの量は、0.1重量%以上50重量%以下の範囲が好ましく、1重量%以上30重量%以下の範囲がさらに好ましい。0.1重量%以上であれば、触媒金属または触媒担持炭素材料の滑落が防ぎやすく、50重量%未満であれば、膜電極複合体としたときの燃料やガス透過性の透過を阻害しにくく、発電性能に対する悪影響が小さい。
 本発明の触媒転写シートは、触媒金属、炭素材料および電解質ポリマー溶液を含む塗液を本発明の基材フィルムの改質表面に塗布した後、塗液から溶媒を除去することにより得られる。
 電解質ポリマー溶液は、電解質ポリマーを溶媒に溶解または分散したものである。使用できる溶媒としては特に制限はなく、例えば、水、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ-ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロパノール、n-プロパノール、エタノール、メタノールなどのアルコール系溶媒、トルエン、キシレン等の芳香族系溶媒などが挙げられる。なお、電解質ポリマーには、後の処理によって電解質となる電解質前駆体ポリマーも含まれるものとする。
 本発明の触媒金属、炭素材料、電解質ポリマー溶液を含む塗液の作製方法としては、通常公知の方法が適用できる。例えば、電解質ポリマー溶液、触媒金属粒子および/または触媒金属担持炭素材料粒子を加え、撹拌混練することで触媒塗液を作製し、本発明の基材フィルムの改質表面に塗布し、乾燥、必要によってはプレスを行うことで触媒転写シートが製造できる。塗工方法としては公知の方法が採用でき、ナイフコート、ダイレクトロールコート(コンマコート)、グラビアコート、スプレーコート、刷毛塗り、ディップコート、ダイコート、バキュームダイコート、カーテンコート、フローコート、スピンコート、リバースコート、スクリーン印刷などの手法が適用でき、連続塗工はダイコートや、コンマコートが好適である。
 本発明の基材フィルム上に塗布された触媒塗液被膜からの溶媒の蒸発は、加熱、熱風、赤外線ヒーター等の公知の方法が選択できる。溶媒の乾燥時間や温度、風速、風向など適宜実験的に決めることができる。
 <膜電極複合体の製造方法>
 本発明の触媒転写シートは、触媒層面を電解質膜に接触させて貼り付けた後、前記基材を触媒層から剥離する工程を有する膜電極複合体の製造方法に用いることができる。当該工程では、触媒転写シートの基材から触媒層が剥離・脱落すると、膜電極複合体の触媒層に抜けがでたり表面品位が低下したりする。本発明の触媒転写シートを使用すると、このような触媒層の剥離・脱落することなく製造可能となる。また、基材と触媒層の密着性が高すぎると基材と触媒層が容易に剥離できず、触媒層表面に欠陥、抜けがでたり、転写不良となったりして膜電極複合体の性能が低下する原因となる。本発明の触媒転写シートを使用すると、触媒層から基材を意図的に剥離する場合の剥離性が良好となり、高品位な膜電極複合体が製造可能となる。
 このような膜電極複合体の製造方法に用いられる電解質膜は特に制限がない。例としては、イオン性基含有ポリフェニレンオキシド、イオン性基含有ポリエーテルケトン、イオン性基含有ポリエーテルエーテルケトン、イオン性基含有ポリエーテルスルホン、イオン性基含有ポリエーテルエーテルスルホン、イオン性基含有ポリエーテルホスフィンオキシド、イオン性基含有ポリエーテルエーテルホスフィンオキシド、イオン性基含有ポリフェニレンスルフィド、イオン性基含有ポリアミド、イオン性基含有ポリイミド、イオン性基含有ポリエーテルイミド、イオン性基含有ポリイミダゾール、イオン性基含有ポリオキサゾール、イオン性基含有ポリフェニレンなどの、イオン性基を有する芳香族炭化水素系ポリマー、フルオロアルキルエーテル側鎖とフルオロアルキル主鎖とから構成されるイオン性基を有するパーフルオロ系イオン伝導性ポリマーが挙げられる。
 ここでのイオン性基は、スルホン酸基(-SO2(OH))、硫酸基(-OSO2(OH))、スルホンイミド基(-SO2NHSO2R(Rは有機基を表す。))、ホスホン酸基(-PO(OH)2)、リン酸基(-OPO(OH)2)、カルボン酸基(-CO(OH))およびこれらの金属塩からなる群より選択される一種以上を好ましく採用することができる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基のいずれかを有することがより好ましく、耐加水分解性の点から少なくともスルホン酸基を有することが最も好ましい。
 触媒転写シートの触媒層面を電解質膜に接触させて貼り付ける方法は、公知の技術を適用できる。例えば触媒層面を電解質膜の両面または片方に接触させ、触媒転写シートごと加熱プレスすることで触媒層と電解質膜を貼り付け、触媒層被覆電解質膜を製造する事ができる。プレス温度は電解質膜や基材フィルムの耐熱性で適宜決定でき、20~200℃が好ましい。プレス圧力も使用する材料により実験的に適宜決定でき、1~100MPaが好ましい。プレスはバッチ式でもよいし、連続ロールプレスでもよい。
 基材を触媒層から剥離する方法は特に限定されない。基材の端部をつまみ引きはがしてもよいし、真空チャックなどで支持フィルムを吸着させ引きはがしたりできる。また連続的に搬送しながら基材を剥離しロール状に巻き取る方法も生産性の観点から好ましい。本発明の触媒転写シートは剥離性が良好なことから、回収した基材の再利用も可能となる。
 こうして触媒層が転写された電解質膜(触媒層被覆電解質膜)の触媒層上にカーボンペーパーやカーボン織物からなるガス拡散電極を配置し、膜電極複合体が製造できる。
 以上、本発明の触媒転写シートを電解質膜へ転写する方法について説明したが、本発明の触媒転写シートは、カーボンペーパーやカーボン織物からなるガス拡散電極への触媒層転写にも使用できる。すなわち、本発明の触媒転写シートは、触媒層面をガス拡散層に接触させて貼り付けた後、基材を触媒層から剥離する工程を有する膜電極複合体の製造方法にも用いることができる。ガス拡散層に触媒塗液を直接塗工する場合、表面の凹凸で触媒層の厚みムラが発生しやすい。本発明の触媒転写シートを使用すると触媒層の厚みが均一となり、膜電極複合体の発電性能、耐久性が向上する場合がある。
 また、ガス拡散電極には炭素粉末と結着剤からなるカーボン層が形成されていてもよい。これは、カーボンペーパーやカーボン織物の炭素繊維間に触媒層が入り込んで不均一に形成されるのを防止でき、触媒転写シートを用いて触媒層を転写する場合に好ましい好適なガス拡散電極の形態である。
 この炭素粉末としては、非晶質、結晶質の炭素材料が挙げられる。例えば、チャネルブラック、サーマルブラック、ファーネスブラック、アセチレンブラックなどのカーボンブラックが電子伝導性と比表面積の大きさから好ましく用いられる。ファーネスブラックとしては、キャボット社製“バルカンXC-72”(R)、“バルカンP”(R)、“ブラックパールズ880”(R)、“ブラックパールズ1100”(R)、“ブラックパールズ1300”(R)、“ブラックパールズ2000”(R)、“リーガル400”(R)、ケッチェンブラック・インターナショナル社製“ケッチェンブラック”EC(R)、EC600JD、三菱化学社製#3150、#3250などが挙げられ、アセチレンブラックとしては電気化学工業社製“デンカブラック”(R)などが挙げられる。またカーボンブラックのほか、天然の黒鉛、ピッチ、コークス、ポリアクリロニトリル、フェノール樹脂、フラン樹脂などの有機化合物から得られる人工黒鉛や炭素なども使用することができる。これらの炭素材料の形態としては、不定形粒子状のほか繊維状、鱗片状、チューブ状、円錐状、メガホン状のものも用いることができる。
 結着剤は特に限定されない。具体的には、ポリフェニレンオキシド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリエーテルエーテルスルホン、ポリエーテルホスフィンオキシド、ポリエーテルエーテルホスフィンオキシド、ポリフェニレンスルフィド、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミダゾール、ポリオキサゾール、ポリフェニレン、ポリカーボネート、ポリアリレート、ポリエチレン、ポリプロピレン、非晶性ポリオレフィン、ポリスチレン、ポリスチレンマレイミド共重合体、ポリメチルアクリレート等の(メタ)アクリル系共重合体およびポリウレタン等の高分子材料やこれらにイオン性基を導入した高分子材料などの炭化水素系高分子が挙げられ、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリヘキサフルオロプロピレン、ポリテトラフルオロエチレン、ポリパーフルオロアルキルビニルエーテル、フッ素系ポリアクリレート、フッ素系ポリメタクリレートなどのフッ素原子を含むポリマーを使用することもできる。
 以下、実施例によりポリエチレンテレフタレートフィルムを基材とした基材フィルムについて実施例により本発明をさらに詳しく説明する。本発明はこれらに限定されるものではない。ポリエチレン、ポリプロピレン、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリベンズイミダゾール、ポリカーボネート、ポリアリレート、ポリ塩化ビニルの表面改質も本実施例に準じて作製できる。なお、各物性の測定条件は次の通りである。
 (1)フィルム表面のフッ素原子数/炭素原子数の比(F/C比)
 本発明では、X線光電子分光法で測定した値を採用する。光電子が物質中を進むことができる長さ(平均自由行程)が数nm であることから、本分析手法における検出深さは数nm となり、本発明のフッ素原子数/炭素原子数の比は表面より数nmの深さの原子比であり、炭素原子基準で(C/C=1)表した。X線光電子分光法の測定条件の一例を下記する。なお、酸素原子数/炭素原子数の比(O/C比)も同方法で取得できる。
 装置:Quantera SXM(米国PHI 社製)
 励起X 線:monochromatic Al Kα1,2 線(1486.6 eV)
 X 線径:100μm(分析領域:100μmφ)
 光電子脱出角度:45 °(試料表面に対する検出器の傾き)
 スムージング:9 points smoothing
 横軸補正:C1s ピークメインピークを284.6 eV に合わせた。
 (2)水の接触角
 水に対する接触角は、JIS-R3257(1999)に準拠した方法で測定した。 
 (3)濡れ性評価
 基材フィルム上に、田中貴金属工業社製Pt担持カーボン触媒TEC10V50E、デュポン(DuPont)社製20%“ナフィオン(登録商標)”(“Nafion(登録商標)”)溶液およびn-プロパノールからなる触媒塗液を塗工した。白金重量換算で0.5mg/cmとなるように触媒付着量を調整した。濡れ性は塗布してから乾燥前の触媒層の表面品位を目視観察で評価した。
 (4)耐早期剥離性評価
 上記の濡れ性を評価後、100℃で乾燥し触媒転写シートを作製した。該触媒転写シートを、支持フィルム側から軽く中指で2回はじいて触媒層の脱落の有無を目視観察で評価した。
 (5)易剥離性評価
 電解質膜20重量%のスルホン化ポリエーテルケトンの前駆体(特開2006-561103号公報等参考)とN-メチル-2-ピロリドン(NMP)からなるポリマー溶液をPETフィルム(東レ株式会社製“ルミラー”(登録商標)-T60、厚み125μm)に流延塗布し、100℃で乾燥後、60℃の10重量%硫酸水溶液に10分間浸漬し、ついで純水に30分浸漬し後、80℃で水分を乾燥し、PETフィルム上からポリマー皮膜を手動で剥離し、炭化水素系電解質膜を得た。
 この電解質膜の両面に上記の耐早期剥離性評価後の触媒転写シートの触媒層側を接触させ、150℃、4MPaの条件で10分間加熱プレスした。次に触媒転写シートから基材フィルムを手動で剥がしとり、はぎ取った後の電解質膜に付着した触媒層の状態および基材フィルムの触媒層の残渣を目視観察で評価した。
 [実施例1]
 PETフィルム (東レ株式会社製“ルミラー”(登録商標)-T60、厚み125μm)をフッ素ガスおよび空気供給口と排気口を備えた20Lのステンレス製圧力容器に入れ、窒素ガスを流速100ml/minで吹き込んで1時間パージした後、フッ素/ 空気=10/90(体積比)混合ガスを流速10ml/ m i nで吹き込み10分間反応させた。引き続き窒素ガスを流速100ml/minで吹き込んで1時間パージしてから容器を開封し、基材フィルムAを得た。
 基材フィルムAの処理面のフッ素原子数/炭素原子数の比、酸素原子数/炭素原子数の比と水の接触角および濡れ性、耐早期剥離性、易剥離性を表1にまとめた。
 [実施例2、3、4、5、比較例1]
 実施例1の、フッ素/ 空気混合ガスの比率または吹き込み時間を変えて製造し、基材フィルムB~EおよびGを得た。これらのフッ素原子数/炭素原子数の比、酸素原子数/炭素原子数の比と水の接触角および濡れ性、耐早期剥離性、易剥離性を表1にまとめた。
 [実施例6]
 搬送速度制御が可能なロール状のフィルムの巻出し部と、巻き取り部を有し、その間にフッ素および空気ガス供給口と排気口を備えたフッ素ガスとの接触室を有する連続フッ素表面処理装置を用い、搬送速度1m/minでフッ素ガスとの接触室にフッ素/空気=30/70(体積比)混合ガス10ml/minで吹き込みながら連続的にPETフィルム (東レ株式会社製“ルミラー”(登録商標)-T60、厚み125μm)の表面改質を実施し、基材フィルムFの連続処理膜を得た。基材フィルムFの処理面のフッ素原子数/炭素原子数の比、酸素原子数/炭素原子数の比と水の接触角および濡れ性、耐早期剥離性、易剥離性を表1にまとめた。
 [比較例2]
 基材フィルムFの代わりにポリテトラフルオロエチレン(PEFE)フィルムを用いた以外は実施例6と同様に実施した。フッ素原子数/炭素原子数の比、酸素原子数/炭素原子数の比と水の接触角および濡れ性、耐早期剥離性、易剥離性を表1にまとめた。の比と水の接触角および濡れ性、耐早期剥離性、易剥離性を表1にまとめた。
 [膜電極複合体の製造例]
 基材フィルムFの上に、田中貴金属工業社製Pt担持カーボン触媒TEC10V50E、デュポン(DuPont)社製20%“ナフィオン(登録商標)”(“Nafion(登録商標)”)溶液およびn-プロパノールからなる触媒塗液を塗工し、乾燥して触媒転写シートを作製した。触媒転写シートは白金重量換算で0.5mg/cmとなるように触媒付着量を調整した。
 電解質膜としてデュポン(DuPont)社製 “ナフィオン(登録商標)品番NRE211CS”(“Nafion(登録商標)”)を使用し、その両面に触媒転写シートの触媒層側を接触させ、120℃、2MPaの条件で10分間加熱プレスした。次に触媒転写シートから基材フィルムを手動で剥がしとった。次に、両面の触媒層上に、電極基材(東レ(株)製カーボンペーパーTGP-H-060)を重ねて130℃、3MPaの条件で10分間加熱プレスし、膜電極複合体を得た。
Figure JPOXMLDOC01-appb-T000001
1 ガス供給口
2 ガス排出口
3 フッ素ガス接触室
4 フィルム巻出し部
5 フィルム巻き取り部
6 フィルム基材
7 支持ロール
 

Claims (8)

  1. 触媒転写シート用の基材フィルムであって、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリベンズイミダゾール、ポリカーボネート、ポリアリレート、ポリ塩化ビニルからなる群より選択される1種または2種以上のポリマーから形成されたベースフィルムの少なくとも一方の表面にフッ素原子が導入されてなり、該フッ素原子を導入した表面、すなわち改質表面の、X線光電子分光法で測定したフッ素原子数/炭素原子数の比が、0.02以上1.9以下である基材フィルム。
  2. 前記改質表面における水の接触角が、90°以下である、請求項1に記載の基材フィルム。
  3. 前記フッ素原子の導入は、前記ベースフィルムをフッ素ガスと接触させることにより行われたものである、請求項1または請求項2に記載の基材フィルム。
  4. 前記改質表面のX線光電子分光法で測定した酸素原子数/炭素原子数の比が、0.10以上1.0以下である、請求項1~3のいずれかに記載の基材フィルム。
  5. 請求項1~4のいずれかに記載の基材フィルムの前記改質表面に触媒層を形成してなる触媒転写シート。
  6. 燃料電池用、水電解装置用、水素圧縮装置用、レドックスフロー電池用、金属空気電池用の膜電極複合体の製造に用いられる、請求項5に記載の触媒転写シート。
  7. 請求項5または6に記載の触媒転写シートの触媒層面を電解質膜またはガス拡散層に接触させて貼り付けた後、前記基材フィルムを触媒層から剥離する工程を有する膜電極複合体の製造方法。
  8. 請求項5または6に記載の触媒転写シートの触媒層面を電解質膜に接触させて貼り付けた後、前記基材フィルムを触媒層から剥離する工程を有する触媒層被覆電解質膜の製造方法。
     
PCT/JP2015/058858 2014-03-31 2015-03-24 基材フィルム、触媒転写シート、膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法 WO2015151923A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167028614A KR102313154B1 (ko) 2014-03-31 2015-03-24 기재 필름, 촉매 전사 시트, 막 전극 복합체의 제조 방법 및 촉매층 피복 전해질막의 제조 방법
CN201580016538.4A CN106164147B (zh) 2014-03-31 2015-03-24 基材膜、催化剂转印片材、膜电极复合体的制造方法及被覆有催化剂层的电解质膜的制造方法
CA2941675A CA2941675C (en) 2014-03-31 2015-03-24 Substrate film, catalyst transfer sheet, method for producing membrane electrode assembly, and method for producing catalyst layer-coated electrolyte membrane
JP2015516927A JP6558244B2 (ja) 2014-03-31 2015-03-24 触媒転写シート、膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法。
EP15773873.3A EP3127947B1 (en) 2014-03-31 2015-03-24 Catalyst transfer sheet, method for producing membrane electrode assembly, and method for producing catalyst layer-coated electrolyte membrane
US15/122,781 US20170066892A1 (en) 2014-03-31 2015-03-24 Substrate film, catalyst transfer sheet, method for producing membrane electrode assembly, and method for producing catalyst layer-coated electrolyte membrane
US15/962,960 US20180244882A1 (en) 2014-03-31 2018-04-25 Substrate film, catalyst transfer sheet, method for producing membrane electrode assembly, and method for producing catalyst layer-coated electrolyte membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-071764 2014-03-31
JP2014071764 2014-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/122,781 A-371-Of-International US20170066892A1 (en) 2014-03-31 2015-03-24 Substrate film, catalyst transfer sheet, method for producing membrane electrode assembly, and method for producing catalyst layer-coated electrolyte membrane
US15/962,960 Division US20180244882A1 (en) 2014-03-31 2018-04-25 Substrate film, catalyst transfer sheet, method for producing membrane electrode assembly, and method for producing catalyst layer-coated electrolyte membrane

Publications (1)

Publication Number Publication Date
WO2015151923A1 true WO2015151923A1 (ja) 2015-10-08

Family

ID=54240250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058858 WO2015151923A1 (ja) 2014-03-31 2015-03-24 基材フィルム、触媒転写シート、膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法

Country Status (8)

Country Link
US (2) US20170066892A1 (ja)
EP (1) EP3127947B1 (ja)
JP (1) JP6558244B2 (ja)
KR (1) KR102313154B1 (ja)
CN (1) CN106164147B (ja)
CA (1) CA2941675C (ja)
TW (1) TWI666242B (ja)
WO (1) WO2015151923A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023104110A (ja) * 2022-01-17 2023-07-28 株式会社Screenホールディングス 支持フィルム、積層基材、塗工装置、および塗工方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108461787B (zh) * 2017-02-17 2020-01-03 中国科学院金属研究所 一种全钒液流电池用一体化复合膜的制备方法
KR102230982B1 (ko) * 2018-01-26 2021-03-22 주식회사 엘지화학 촉매층의 제조방법, 촉매층 및 이를 포함하는 막-전극 접합체 및 연료전지
CN108642859A (zh) * 2018-05-04 2018-10-12 四川大学 超疏水聚醚醚酮的制备方法
CN112203855A (zh) * 2018-05-30 2021-01-08 日东电工株式会社 用于转印层的转印片和带有电极催化剂层的片
KR20210105360A (ko) * 2018-12-26 2021-08-26 도레이 카부시키가이샤 복합 반투막
CN110289420A (zh) * 2019-06-25 2019-09-27 一汽解放汽车有限公司 一种pem燃料电池膜电极的制备方法
CN113381045A (zh) * 2020-02-25 2021-09-10 山东魔方新能源科技有限公司 一种燃料电池膜电极及其制备方法
CN113242616B (zh) * 2020-07-07 2022-08-05 安徽宇航派蒙健康科技股份有限公司 一种基于lig法制备石墨烯高温电热膜的方法
CN114204001B (zh) * 2021-12-07 2023-08-29 电子科技大学 一种具有内嵌三维骨架结构的超薄富锂合金及其制备方法和应用
WO2024091623A1 (en) * 2022-10-28 2024-05-02 Applied Materials, Inc. Metallic lithium web coating via direct fluorinated pet film carriers and transfer lamination methods

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114305A (ja) * 2005-10-18 2007-05-10 Asahi Kasei Corp 転写用反射防止フィルム
JP2007242447A (ja) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd 触媒層−電解質膜積層体及びその製造方法
JP2010056004A (ja) * 2008-08-29 2010-03-11 Toyota Motor Corp 膜・電極接合体の製造方法
JP2010123438A (ja) * 2008-11-20 2010-06-03 Toyota Motor Corp 燃料電池用電解質膜の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62231798A (ja) * 1985-12-25 1987-10-12 三菱油化株式会社 筆記用スクリ−ン
US5211984A (en) 1991-02-19 1993-05-18 The Regents Of The University Of California Membrane catalyst layer for fuel cells
JPH06192451A (ja) * 1992-12-22 1994-07-12 Diafoil Co Ltd フッ素含有ポリエステル成形体およびその製造方法
KR0175677B1 (ko) * 1994-06-13 1999-05-15 가네꼬 히사시 불소 함유 폴리이미드 필름의 제조방법
JPH10101829A (ja) * 1996-10-01 1998-04-21 Matsushita Electric Ind Co Ltd プラスチック基材およびその製造方法、並びにインクジェットプリンタ用ヘッドおよびその製造方法
JP2004031148A (ja) 2002-06-26 2004-01-29 Nissan Motor Co Ltd 固体高分子型燃料電池の製造方法
CN101000963A (zh) * 2006-01-13 2007-07-18 上海清能燃料电池技术有限公司 一种燃料电池膜电极的制作方法
JP2008226540A (ja) 2007-03-09 2008-09-25 Dainippon Printing Co Ltd 触媒層保護フィルム及び触媒層転写シート
KR20110110600A (ko) * 2010-04-01 2011-10-07 한국과학기술연구원 연료전지용 막-전극 접합체의 제조방법
US20110240203A1 (en) * 2010-04-01 2011-10-06 Korea Institute Of Science & Technology Method for producing a membrane-electrode assembly for a fuel cell
CN102260877B (zh) * 2011-07-06 2013-07-31 山东赛克赛斯氢能源有限公司 一种纯水电解离子膜电极的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007114305A (ja) * 2005-10-18 2007-05-10 Asahi Kasei Corp 転写用反射防止フィルム
JP2007242447A (ja) * 2006-03-09 2007-09-20 Dainippon Printing Co Ltd 触媒層−電解質膜積層体及びその製造方法
JP2010056004A (ja) * 2008-08-29 2010-03-11 Toyota Motor Corp 膜・電極接合体の製造方法
JP2010123438A (ja) * 2008-11-20 2010-06-03 Toyota Motor Corp 燃料電池用電解質膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127947A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023104110A (ja) * 2022-01-17 2023-07-28 株式会社Screenホールディングス 支持フィルム、積層基材、塗工装置、および塗工方法

Also Published As

Publication number Publication date
JPWO2015151923A1 (ja) 2017-04-13
CN106164147A (zh) 2016-11-23
US20170066892A1 (en) 2017-03-09
KR20160140735A (ko) 2016-12-07
CN106164147B (zh) 2019-08-09
CA2941675A1 (en) 2015-10-08
EP3127947A4 (en) 2017-10-04
EP3127947A1 (en) 2017-02-08
JP6558244B2 (ja) 2019-08-14
TW201600546A (zh) 2016-01-01
EP3127947B1 (en) 2018-10-10
US20180244882A1 (en) 2018-08-30
KR102313154B1 (ko) 2021-10-15
CA2941675C (en) 2022-01-11
TWI666242B (zh) 2019-07-21

Similar Documents

Publication Publication Date Title
JP6558244B2 (ja) 触媒転写シート、膜電極複合体の製造方法および触媒層被覆電解質膜の製造方法。
JP5196988B2 (ja) インク組成物、その製造方法、そのインク組成物を用いて形成した電極触媒層及びこれらの用途
JP5426166B2 (ja) 膜電極接合体の電流密度の均一性を高める触媒層
WO2002005371A1 (fr) Procede pour produire un ensemble film-electrodes, et procede pour produire une pile a combustible du type polymere solide
JP2009193860A (ja) 固体高分子形燃料電池用膜電極接合体およびその製造方法
JP5195286B2 (ja) 固体高分子形燃料電池用膜電極接合体の製造方法
TW201806739A (zh) 氣體擴散電極基材、積層體及燃料電池
KR20110043908A (ko) 고분자 전해질 연료전지용 막전극접합체 제조 방법
KR102175009B1 (ko) 연료 전지용 막-전극 어셈블리, 이의 제조 방법, 그리고 이를 포함하는 연료 전지 시스템
US9825315B2 (en) Hydrophobized gas diffusion layers and method of making the same
JP6555124B2 (ja) 溶液製膜用支持フィルムおよびそれを用いた電解質膜の製造方法
WO2008041622A1 (fr) Ensemble membrane électrode et procédé de production de celui-ci
KR20090132214A (ko) 연료전지용 막전극 접합체, 그 제조방법 및 이를 포함하는연료전지
JP2008108723A (ja) 膜電極接合体およびその製造方法
JP2016201175A (ja) 燃料電池用触媒層シートの製造方法及び燃料電池用触媒層シート、膜電極接合体、固体高分子形燃料電池
JP2008204951A (ja) 固体電解質フィルム及びその製造方法、並びにこの固体電解質フィルムを用いた電極膜複合体、燃料電池
JP2013084427A (ja) 膜−触媒層接合体の製造方法及び膜電極接合体の製造方法
JP2009245932A (ja) 燃料電池用電極触媒インク、電極触媒層、膜電極接合体および固体高分子型燃料電池
JP5439947B2 (ja) 膜電極接合体、膜電極接合体製造用の転写基材、膜電極接合体製造用の電極触媒層の塗工転写基材及び固体高分子形燃料電池
JP2010062062A (ja) 膜電極接合体の製造方法、膜電極接合体、固体高分子型燃料電池
JP2005093167A (ja) 固体高分子型燃料電池用ガス拡散電極とその製造方法
JP2007149461A (ja) 固体高分子型燃料電池電極用インク
KR20090047781A (ko) 연료 전지용 막-전극 어셈블리의 제조방법
JP2016192376A (ja) ガス拡散層用離型部材及びそれを用いた離型部材付ガス拡散層、並びにガス拡散層用離型部材、離型部材付ガス拡散層及びガス拡散層の製造方法
JP2009064723A (ja) 燃料電池用触媒層及び/又は拡散層の製造方法、製造された燃料電池用触媒層及び/又は拡散層、並びに燃料電池用膜電極接合体の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015516927

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15122781

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2941675

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167028614

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015773873

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015773873

Country of ref document: EP