WO2015151907A1 - 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板 - Google Patents

成形性と焼付け塗装硬化性とに優れたアルミニウム合金板 Download PDF

Info

Publication number
WO2015151907A1
WO2015151907A1 PCT/JP2015/058794 JP2015058794W WO2015151907A1 WO 2015151907 A1 WO2015151907 A1 WO 2015151907A1 JP 2015058794 W JP2015058794 W JP 2015058794W WO 2015151907 A1 WO2015151907 A1 WO 2015151907A1
Authority
WO
WIPO (PCT)
Prior art keywords
atoms
aluminum alloy
less
strength
alloy plate
Prior art date
Application number
PCT/JP2015/058794
Other languages
English (en)
French (fr)
Inventor
久郎 宍戸
松本 克史
有賀 康博
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014074046A external-priority patent/JP6190308B2/ja
Priority claimed from JP2014074045A external-priority patent/JP6301175B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CA2941988A priority Critical patent/CA2941988A1/en
Priority to CN201580012219.6A priority patent/CN106103763A/zh
Priority to US15/129,587 priority patent/US20170175231A1/en
Priority to KR1020167026865A priority patent/KR101850234B1/ko
Priority to MX2016012707A priority patent/MX2016012707A/es
Publication of WO2015151907A1 publication Critical patent/WO2015151907A1/ja
Priority to US16/029,976 priority patent/US20190010581A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention relates to an Al—Mg—Si aluminum alloy sheet.
  • the aluminum alloy sheet referred to in the present invention is a rolled sheet such as a hot-rolled sheet or a cold-rolled sheet, and after being subjected to tempering such as a solution treatment and a quenching process, press forming or baking This refers to an aluminum alloy plate that has not been paint hardened.
  • aluminum is also referred to as aluminum or Al.
  • outer panels such as hoods, fenders, doors, roofs, trunk lids, etc. are also used as thin and high-strength aluminum alloy plates, such as Al-Mg-Si AA to
  • JIS 6000 series aluminum hereinafter also simply referred to as 6000 series
  • This 6000 series aluminum alloy plate contains Si and Mg as essential components.
  • the excess Si type 6000 series aluminum alloy has a composition in which these Si / Mg is 1 or more in mass ratio, and has excellent age hardening ability. Have. For this reason, at the time of press molding or bending to the outer panel of an automobile, formability is ensured by reducing the strength.
  • the outer panel of an automobile is manufactured by combining an aluminum alloy plate with a forming process such as an extension forming in a press forming or a bending forming.
  • a forming process such as an extension forming in a press forming or a bending forming.
  • a large outer panel such as a hood or a door is formed into a molded product shape as an outer panel by press molding such as overhanging, and then an inner panel is formed by processing a hem heel such as a flat hem on the outer peripheral edge of the outer panel.
  • a hem heel such as a flat hem on the outer peripheral edge of the outer panel.
  • the 6000 series aluminum alloy has the advantage of having excellent BH properties, but has aging property at room temperature, and is age-hardened by holding at room temperature after solution hardening treatment, thereby increasing the strength.
  • the moldability, especially the bending workability was reduced.
  • a 6000 series aluminum alloy plate is used for an automotive panel application, after being solution-quenched by an aluminum manufacturer (after manufacture), it is left at room temperature for about one month before being molded into a panel by the automobile manufacturer. (Left at room temperature) During this time, it is considerably age hardened (room temperature aging).
  • Patent Documents 1 to 3 an attempt to directly measure and control a cluster (aggregate of atoms) affecting BH properties and room temperature aging of a 6000 series aluminum alloy plate has been proposed (Patent Documents 1 to 3).
  • clusters (aggregates of atoms) that affect BH properties and room temperature aging are observed by directly analyzing the structure of a plate as it is with a transmission electron microscope of 1 million times.
  • the average number density of clusters having a circle equivalent diameter in the range of 1 to 5 nm is defined within a certain range, and is excellent in BH property and suppressed room temperature aging.
  • Patent Documents 2 and 3 instead of directly observing clusters (aggregates of atoms) as in Patent Document 1, ionization (electric field) is once performed under a high electric field by a three-dimensional atom probe field ion microscope.
  • a set of atoms defined in the atomic structure of the plate reconstructed by analysis is defined from the positional information of the atoms of the evaporated plate. More specifically, it includes at least 10 Mg atoms and / or Si atoms in total, and even if any of the Mg atoms or Si atoms contained therein is used as a reference, it is adjacent to the reference atom.
  • An aggregate of atoms that satisfies the condition that the mutual distance to any one of the other matching atoms is 0.75 nm or less is controlled. That is, it defines the average number density, size distribution, or ratio of the aggregate of atoms that satisfies this condition.
  • Patent Document 4 proposes a method of combining room temperature aging suppression and BH properties by adding an appropriate amount of Sn and applying preliminary aging after solution treatment.
  • Patent Document 5 proposes a method for improving formability, BH property, and corrosion resistance by adding Sn and Cu for improving formability.
  • Japanese Unexamined Patent Publication No. 2009-242904 Japanese Unexamined Patent Publication No. 2012-193399 Japanese Unexamined Patent Publication No. 2013-60627 Japanese Unexamined Patent Publication No. 09-249950 Japanese Unexamined Patent Publication No. 10-226894
  • one of the factors that make it difficult to apply a high-strength aluminum alloy sheet to such an outer panel is the problem of the shape unique to the outer panel.
  • On the outer panel there are partial recesses (projections and embossed parts) with a predetermined depth, such as handle seats, lamp seats, and license plates (license plate) seats, etc. Provided.
  • the problem of such surface distortion is not only the problem of the above-mentioned recess (overhanging portion), but also the shape of the door outer panel, the vertical wall of the front fender, the wind corner of the rear fender, the trunk lid and the hood outer.
  • This is a problem common to automobile panels, such as the disappearance part of the character line and the base part of the rear fender pillar, which have a part of the concave part (overhanging part) that causes surface distortion.
  • the 0.2% proof stress of the plate during press molding should be lowered to less than 110 MPa. Is desired.
  • the 0.2% yield strength after baking coating hardening (hereinafter also referred to as after bake hard and BH) is 200 MPa or more, and the 0.2% yield strength increase by baking coating hardening. It becomes difficult to make the amount 100 MPa or more. In the conventional organization control by DSC, it is difficult to solve the problem.
  • the first embodiment of the present invention was made to solve the above-described conventional problems, and the 0.2% proof stress at the time of molding an automobile panel was lowered to 110 MPa or less, and the 0.1% after BH was reduced.
  • An object of the present invention is to provide an aluminum alloy plate (hereinafter also referred to as a first object) having both formability and bake-coating curability capable of having a 2% proof stress of 200 MPa or more.
  • the 0.2% proof stress of the plate during press molding (room temperature aging after manufacture) is lowered to 110 MPa or less.
  • the yield ratio which is the ratio of the tensile strength to the yield strength (0.2% proof stress / tensile strength).
  • bake hard BH
  • the 0.2% yield strength after baking coating hardening treatment (hereinafter also referred to as bake hard, BH) is 190 MPa or more, and the 0.2% yield strength by baking coating hardening. It is difficult to increase the amount to 100 MPa or more.
  • the second embodiment of the present invention has been made in order to solve the above-described conventional problems.
  • the 0.2% yield strength at the time of automobile panel molding is lowered to 110 MPa or less, and the yield ratio is 0.50. It is possible to increase the 0.2% proof stress after BH to 190 MPa or more, and to achieve both high BH property and low yield ratio. It is an object to provide an aluminum alloy plate (hereinafter also referred to as a second object).
  • the gist of the aluminum alloy plate excellent in formability and bake-coating curability according to the first embodiment of the present invention is expressed by mass%, and Mg: 0.2-2
  • the endothermic peak corresponding to the dissolution of the Mg—Si cluster has an endothermic peak height in the temperature range of 150 to 230 ° C.
  • the peak height of the exothermic peak in the temperature range of 240 to 255 ° C. is 20 ⁇ W / mg or more.
  • test equipment DSC220G manufactured by Seiko Instruments
  • standard material aluminum
  • sample container aluminum
  • temperature rising condition 15 ° C./min
  • atmosphere argon (50 ml / Min)
  • sample weight each performed under the same conditions of 24.5 to 26.5 mg
  • the obtained differential thermal analysis profile ( ⁇ W) was divided by the sample weight and normalized ( ⁇ W / mg).
  • the region where the profile of differential thermal analysis becomes horizontal is set as a reference level of 0, and the exothermic peak height from this reference level is measured.
  • the gist of the aluminum alloy plate excellent in formability and bake coating curability according to the second embodiment of the present invention is mass%, and Mg: 0.3
  • the solid solution amount of Mg + Si in the solution separated by the residue extraction method using hot phenol is 1.0% by mass or more and 2.0% by mass or less,
  • it contains a total of 10 or more of either Mg atoms or Si atoms, or any of Mg atoms or Si atoms contained in them.
  • the range the average volume fraction occupied by the volume V Al ( ⁇ Vi / V Al) ⁇ 100 is 0.3 to 1.5% the aluminum alloy plate was measured by the three-dimensional atom probe field ion microscope Rutotomoni, Of the total volume ⁇ Vi of the atomic aggregate, the average volume fraction ( ⁇ Vi 1.5 or higher ) occupied by the total volume ⁇ Vi 1.5 or higher of the total volume V 1.5 or higher of the atomic aggregate having a Guinier radius r G of 1.5 nm or higher. / ⁇ Vi) ⁇ 100 is 20 to 70%, I will do it.
  • Sn captures (captures and traps) atomic vacancies at room temperature in the structure of an Al—Mg—Si-based aluminum alloy plate, so that Mg or Suppresses the diffusion of Si, suppresses the increase in strength at room temperature, and press formability such as hem workability, drawing and overhanging when forming plates into panels (hereinafter referred to as hem (Also called processability).
  • hem Also called processability
  • Sn can be said to be a side effect of Sn addition.
  • the significance of the addition itself may be lost.
  • the manufacturing conditions such as preliminary aging treatment (reheating treatment) after the solution hardening treatment are devised, and Sn is added.
  • preliminary aging treatment reheating treatment
  • Sn is added.
  • the reduction of the Mg—Si clusters contributing to the strength and the amount of precipitates deposited after the bake coating hardening treatment were prevented.
  • the DSC Differential difference of this plate is used as a measure of the structure to increase or secure the amount of precipitates deposited after baking coating hardening treatment. It was also found that a scanning thermal analysis curve) can be applied. That is, in this embodiment, the DSC regulates an endothermic peak corresponding to dissolution of a relatively small Mg—Si cluster that does not contribute to strength, while generating a relatively large Mg—Si cluster that contributes to strength. Increase the corresponding exothermic peak. As a result, the Mg—Si clusters that do not contribute to the strength are suppressed, and the Mg—Si clusters that contribute to the strength are increased to obtain a desired BH property.
  • the 0.2% yield strength at the time of automobile panel molding is lowered to 110 MPa or less, and the 0.2% yield strength after BH is set to 200 MPa or more. It is possible to provide an aluminum alloy plate having both formability and baking coating curability.
  • this press formability is also referred to as hem workability.
  • the objective is to lower the 0.2% yield strength of the plate at the time of forming to 110 MPa or less and to lower the yield ratio to less than 0.50.
  • the solid solution amount of Mg and Si is controlled together with the alloy composition such as Mg and Si. Further, Sn is added to enhance the BH property while ensuring the moldability. As will be described later, Sn is important to achieve both high BH properties and low yield ratio by lowering the volume fraction of atomic aggregates that hinder lower yield ratio even if the solid solution amount of Mg + Si is increased. There is a great effect.
  • three-dimensional control is performed in addition to such means so that the yield ratio at the time of forming the plate can be surely lowered to less than 0.50.
  • the size distribution of a collection of atoms as measured by an atom probe field ion microscope.
  • the aggregate of atoms measured by the three-dimensional atom probe field ion microscope referred to in the present embodiment is a known aggregate of atoms including the measurement methods described in Patent Documents 2 and 3,
  • the size and existence form in the structure of the plate is not an atomic assembly (cluster) directly observed in the state of the structure of the plate as it is with a high-magnification TEM.
  • the time of flight of the atoms of the plate once ionized (field evaporation) under a high electric field by a three-dimensional atom probe field ion microscope as in Patent Documents 2 and 3, as described later in detail.
  • the atomic aggregate is defined as satisfying a certain condition defined in claim 1 (considered as an atomic aggregate).
  • the size distribution of the atomic aggregate measured by a three-dimensional atom probe field ion microscope includes the Mg atom or the Si atom,
  • the ratio of the aggregate of atoms satisfying the condition that the mutual distance is 0.75 nm or less is restricted to a certain range as the volume fraction.
  • the proportion of relatively large aggregates of atoms having the Guinier radius r G of 1.5 nm or more is increased in a certain range as a volume fraction. To do.
  • the 0.2% yield strength at the time of automobile panel molding is lowered to 110 MPa or less, and the yield ratio is lowered to less than 0.50, and after BH It is possible to provide an aluminum alloy plate having both formability and bake hardenability that can make the 0.2% yield strength of 190 MPa or more.
  • FIG. 1 is an explanatory diagram showing DSCs of examples in the example according to the first embodiment.
  • the chemical component composition of the Al—Mg—Si (hereinafter also referred to as 6000) aluminum alloy plate of the present embodiment will be described below.
  • the 6000 series aluminum alloy plate targeted by this embodiment is required to have excellent properties such as formability, BH properties, strength, weldability, corrosion resistance, etc. as a plate for an outer plate of an automobile described above. These requirements are also satisfied from the viewpoint of composition.
  • Sn is added to suppress the room temperature aging of the manufactured plate, and the 0.2% proof stress at the time of forming the panel is lowered to 110 MPa or less. In particular, it improves the formability of automobile panels and the like where surface distortion becomes a problem.
  • the 0.2% proof stress after baking coating is hardened to 200 MPa or more from the viewpoint of composition.
  • the composition of the aluminum alloy plate of the present embodiment is, by mass, Mg: 0.2 to 2.0%, Si: 0.3 to 2.0%, Sn: 0 0.005 to 0.3% is included, and the balance is made of Al and inevitable impurities.
  • % display of content of each element means the mass% altogether.
  • the percentage (mass%) based on mass is the same as the percentage (wt%) based on weight.
  • the content of each chemical component may be expressed as “X% or less (excluding 0%)” as “over 0% and X% or less”.
  • other elements other than Mg, Si, and Sn are impurities or elements that may be included, and the content level (allowable amount) at each element level in accordance with AA or JIS standards.
  • the following elements are allowed to be contained in the range below the upper limit amount in accordance with AA or JIS standard specified below.
  • the aluminum alloy plate further comprises Fe: 1.0% or less (excluding 0%), Mn: 1.0% or less (excluding 0%), Cr: 0 .3% or less (excluding 0%), Zr: 0.3% or less (excluding 0%), V: 0.3% or less (excluding 0%), Ti: 0.1% or less (excluding 0%), Cu: 1.0% or less (excluding 0%), Ag: 0.2% or less (excluding 0%), and Zn: 1.0% or less (however, not including 0%), one or more selected from the group consisting of 0% or less may be further included within this range in addition to the basic composition described above.
  • the Cu content is preferably 0.7% or less, more preferably 0.3% or less.
  • Mn, Fe, Cr, Zr, and V are contained in a large amount, a relatively coarse compound is likely to be generated, and the hem workability (hem bendability) that is a problem in the present embodiment is likely to be deteriorated. Therefore, the Mn content is preferably 0.6% or less, more preferably 0.3% or less, and the Cr, Zr, V content is preferably 0.2% or less, more preferably 0.1% or less. And each.
  • Si 0.3 to 2.0% Si, together with Mg, forms aging precipitates that contribute to strength improvement during artificial aging treatment such as paint baking treatment, and exhibits age-hardening ability to obtain the strength (proof strength) required for automobile panels Is an essential element. If the amount of Si added is too small, the amount of precipitation after artificial aging is too small, and the amount of increase in strength during baking is too low. On the other hand, if the Si content is too large, coarse crystallized substances are formed with impurities such as Fe, and formability such as bending workability is remarkably lowered.
  • the Si content is in the range of 0.3 to 2.0%.
  • the excess Si type is generally referred to as Si / Mg being 1.0 or more in mass ratio. Furthermore, it is preferable to have a 6000 series aluminum alloy composition containing Si in excess relative to Mg.
  • Mg 0.2-2.0% Mg is also an important element for cluster formation defined in this embodiment together with Si, and at the time of artificial aging treatment such as paint baking treatment, it forms an aging precipitate that contributes to strength improvement together with Si, and has age hardening ability. It is an indispensable element for exerting the necessary proof strength as a panel. If the Mg content is too small, the amount of precipitation after artificial aging will be too small, and the strength after baking will be too low. On the other hand, if the Mg content is excessively large, coarse crystallized substances are formed with impurities such as Fe, and the formability such as bending workability is remarkably lowered.
  • the Mg content is in the range of 0.2 to 2.0%.
  • Sn 0.005 to 0.3% Sn captures (captures and traps) atomic vacancies at room temperature, thereby suppressing diffusion of Mg and Si at room temperature, suppressing an increase in strength at room temperature. This has the effect of improving workability, press formability such as drawing and overhanging (hereinafter, this press formability is also referred to as hem workability). And since the vacancies captured during the artificial aging treatment such as the paint baking treatment of the panel are released, the diffusion of Mg and Si can be promoted and the BH property can be increased. If the Sn content is less than 0.005%, the holes cannot be sufficiently trapped and the effect cannot be exhibited.
  • the preferable lower limit of Sn content is 0.01%.
  • the upper limit with preferable Sn content is 0.2%, Furthermore, 0.1%, More preferably, it is 0.06%.
  • the amount of precipitates deposited after baking coating hardening treatment is set in the present embodiment.
  • the endothermic peak and the exothermic peak in a specific temperature range which are particularly related to the strength before baking coating and the strength increase during baking coating, are controlled.
  • the DSC of this plate is used before baking coating so that the Mg—Si clusters contributing to the strength are not reduced and the amount of precipitates deposited after baking coating hardening is not insufficient. Controls endothermic and exothermic peaks in specific temperature ranges that are particularly relevant for strength and strength increase during baking.
  • the DSC regulates an endothermic peak corresponding to the dissolution of a relatively small Mg—Si cluster that does not contribute to the strength, while the relatively large Mg—Si cluster that contributes to the strength.
  • the exothermic peak corresponding to the formation of is increased.
  • the Mg—Si clusters that do not contribute to the strength are suppressed, and the Mg—Si clusters that contribute to the strength are increased to obtain a desired BH property.
  • the differential scanning calorimetry curve refers to the thermal change in the melting process of the aluminum alloy sheet after the tempering treatment from the solid phase obtained by measuring by differential thermal analysis under the conditions described later. It is a heating curve.
  • test equipment DSC220G manufactured by Seiko Instruments Inc.
  • standard material aluminum
  • sample container aluminum
  • temperature rising condition 15 ° C./min
  • atmosphere After performing under the same conditions of argon (50 ml / min) and sample weight: 24.5 to 26.5 mg, respectively, and normalizing the obtained differential thermal analysis profile ( ⁇ W) by dividing by the sample weight ( ⁇ W / mg)
  • the region where the profile of the differential thermal analysis becomes horizontal is set as a reference level of 0, and the exothermic peak height from this reference level is measured.
  • the number (number density) of Mg—Si clusters which are recognized as Mg—Si clusters that do not contribute to the strength and are relatively small in size and easily dissolved in the temperature rising process of DSC, is suppressed.
  • BH when the number of Mg-Si clusters that are easily dissolved in the DSC temperature rising process increases, conversely, it is recognized that it contributes to the strength.
  • the number (number density) of Mg—Si clusters that are difficult to decrease decreases even after artificial age hardening, and the strength after BH does not increase. Specifically, although it depends on the BH condition, a post-BH strength (0.2% proof stress) of 200 MPa or more cannot be obtained with a 0.2% proof stress increase of 100 MPa or more.
  • the peak height of the endothermic peak A in the temperature range of 150 to 230 ° C. is assumed as an endothermic peak that does not contribute to the strength and corresponds to the dissolution of the Mg—Si cluster that is easily dissolved in the DSC temperature rising process.
  • the peak height of the endothermic peak in the temperature range of 150 to 230 ° C. is 8 ⁇ W / mg, which is an acceptable limit for the adverse effect on the strength of the relatively small size Mg—Si cluster that does not contribute to the strength. Number density is shown.
  • This embodiment does not include the case where there is no Mg—Si cluster having a relatively small size that does not contribute to the strength (when the number density is 0) because of the limitation of the production of the plate. Yes. Therefore, the definition that the endothermic peak A has a peak height of 8 ⁇ W / mg or less includes the case of 0 ⁇ W / mg in which there is no Mg—Si cluster having a relatively small size that does not contribute to such strength.
  • the BH property is improved by generating a large number of Mg—Si clusters that contribute to strength, are relatively large in size, and are difficult to dissolve in the DSC temperature rising process.
  • the peak height of the exothermic peak B in the temperature range of 240 to 255 ° C. corresponding to the generation of Mg—Si clusters contributing to the strength is increased (increased) to 20 ⁇ W / mg or more. Therefore, the peak height of the exothermic peak in the temperature range of 240 to 255 ° C. is 20 ⁇ W / mg, although it depends on the BH condition, the target improvement in BH property (0.2% proof stress of 100 MPa or more).
  • the minimum number density of Mg—Si clusters having a relatively large size contributing to strength is shown. Therefore, the higher the number density, the better, and the higher (higher) the peak height of the exothermic peak in the temperature range of 240 to 255 ° C. is better, but the upper limit is about 80 ⁇ W / mg from the limit of the production of the plate. .
  • Invention Example 8 is a thick solid line and Comparative Example 9 is a dotted line as DSCs of three types of aluminum alloy plates of Invention Example 8 in Table 2, Comparative Example 9 and Comparative Example 25 in Table 3 in Examples described later. Comparative Example 25 is indicated by a dashed line.
  • the DSC of Comparative Example 9 has a high (large) peak height of the endothermic peak A in the temperature range of 150 to 230 ° C. exceeding 8 ⁇ W / mg as shown in Table 2 described later, and does not contribute to the strength.
  • the number density of Mg-Si clusters having a relatively small size is too large.
  • the peak height of the exothermic peak B in the temperature range of 240 to 255 ° C. is as high as 20 ⁇ W / mg or more (large), and the number density of Mg—Si clusters having a relatively large size contributing to strength is also large.
  • the DSC of Comparative Example 25 in FIG. 1 has a peak height of endothermic peak A in the temperature range of 150 to 230 ° C. as low (small) as 8 ⁇ W / mg or less as shown in Table 2 described later, and does not contribute to strength.
  • the number density of relatively small Mg—Si clusters is low.
  • the peak height of the exothermic peak B in the temperature range of 240 to 255 ° C. is also low (small) less than 20 ⁇ W / mg, and the number density of the relatively large size Mg—Si clusters contributing to the strength is too small. .
  • the target BH property (0.2% yield strength after BH of 200 MPa or more with an increase of 0.2% yield strength of 100 MPa or more) is not obtained.
  • the DSC of Invention Example 8 in FIG. 1 shows that the peak height of the endothermic peak A in the temperature range of 150 to 230 ° C. is as low as 8 ⁇ W / mg or less (small) as shown in Table 2 described later. The number density of relatively small Mg—Si clusters that do not contribute is low.
  • the peak height of the exothermic peak B in the temperature range of 240 to 255 ° C. is as high (large) as 20 ⁇ W / mg or more, and the number density of Mg—Si clusters having a relatively large size contributing to the strength is large. For this reason, the target BH property (0.2% yield strength after 100 MPa and 0.2% yield strength after 200 MPa or more) is obtained.
  • the aluminum alloy sheet of the present embodiment is a conventional process or a known process, and the aluminum alloy ingot having the above-described 6000 series component composition is subjected to homogenization heat treatment after casting and subjected to hot rolling and cold rolling. Thus, it is manufactured to a predetermined plate thickness and further subjected to a tempering treatment such as solution hardening.
  • an ordinary molten casting method such as a continuous casting method and a semi-continuous casting method (DC casting method) is appropriately selected for the molten aluminum alloy adjusted to be dissolved within the above-mentioned 6000 series component composition range.
  • DC casting method semi-continuous casting method
  • the average cooling rate during casting is as large (fast) as possible from the liquidus temperature to the solidus temperature of 30 ° C./min.
  • homogenization heat treatment Next, the cast aluminum alloy ingot is subjected to a homogenization heat treatment prior to hot rolling.
  • the purpose of this homogenization heat treatment (soaking) is to homogenize the structure, that is, eliminate segregation in crystal grains in the ingot structure.
  • the conditions are not particularly limited as long as the object is achieved, and normal one-stage or one-stage processing may be performed.
  • the homogenization heat treatment temperature is appropriately selected from the range of 500 ° C. or more and less than the melting point, and the homogenization time is 4 hours or more.
  • this homogenization temperature is low, segregation within the crystal grains cannot be sufficiently eliminated, and this acts as a starting point of fracture, so that stretch flangeability and bending workability are deteriorated.
  • the hot rolling may be started immediately, or the hot rolling may be started after cooling to an appropriate temperature.
  • Hot rolling is composed of an ingot (slab) rough rolling process and a finish rolling process according to the thickness of the rolled sheet.
  • a reverse or tandem rolling mill is appropriately used.
  • the hot rolling start temperature is preferably 350 ° C. to the solidus temperature, more preferably 400 ° C. to the solidus temperature.
  • Hot rolled sheet annealing (Hot rolled sheet annealing) Annealing (roughening) of the hot-rolled sheet before cold rolling is not always necessary, but it can be performed to further improve properties such as formability by refining crystal grains and optimizing the texture. good.
  • Cold rolling In cold rolling, the hot-rolled sheet is rolled to produce a cold-rolled sheet (including a coil) having a desired final thickness. However, in order to further refine the crystal grains, the total cold rolling rate is desirably 60% or more regardless of the number of passes.
  • the solution hardening treatment may be performed by heating and cooling using a normal continuous heat treatment line, and is not particularly limited. However, since it is desirable to obtain a sufficient solid solution amount of each element and, as described above, it is desirable that the crystal grains are finer, a heating rate of 5 ° C. is applied to a solution treatment temperature of 520 ° C. or higher and a melting temperature or lower. It is desirable that the heating be performed at a rate of 0.1 second / second or more and maintained for 0.1 to 10 seconds.
  • the average cooling rate from the solution treatment temperature to the quenching stop temperature at room temperature is preferably 3 ° C./s or more. . If the cooling rate of the quenching treatment to room temperature after the solution treatment is low, coarse Mg—Si and simple substance Si are generated during cooling, and the formability deteriorates. Moreover, the amount of solid solution after solution forming falls, and BH property will fall. In order to ensure this cooling rate, the quenching treatment to room temperature is performed by selecting water cooling means and conditions such as air cooling such as a fan, mist, spray, and immersion.
  • Preliminary aging treatment reheating treatment
  • the steel sheet is quenched and cooled to room temperature, and then the cold-rolled sheet is subjected to preliminary aging treatment (reheating treatment) within one hour.
  • preliminary aging treatment reheating treatment
  • the room temperature holding time from the completion of the quenching treatment to room temperature until the start of the pre-aging treatment (heating start) is too long, many small Mg-Si clusters that do not contribute to the above strength are generated as clusters that are easily dissolved by room temperature aging. Therefore, it becomes difficult to suppress the peak height of the endothermic peak in the temperature range of 150 to 230 ° C. to 8 ⁇ W / mg or less. Accordingly, the shorter the room temperature holding time is better, the solution treatment and quenching treatment and the reheating treatment may be continued so that there is almost no time difference, and the lower limit time is not particularly set.
  • the temperature rising rate up to the preliminary aging temperature and the holding time in the preliminary aging temperature range are controlled.
  • the heating rate is as high as possible (fast) heating rate of 1 ° C./s or more, preferably 5 ° C./s or more, in order to suppress the formation of small Mg—Si clusters that do not contribute to the strength. It is preferable to do.
  • the rate of temperature increase is less than 1 ° C / s, many Mg-Si clusters that do not contribute to strength and easily dissolve during DSC temperature increase process are generated, and the endothermic peak in the temperature range of 150 to 230 ° C It becomes difficult to suppress the height to 8 ⁇ W / mg or less.
  • the temperature and holding time of the preliminary aging treatment shall be held for 10 hours or more and 40 hours or less in the temperature range of 60 to 120 ° C.
  • the temperature holding at 60 to 120 ° C. may be a heat treatment in which the temperature is sequentially changed within this temperature range by a constant temperature or by raising and lowering the temperature. In short, even if the temperature continuously changes due to slow cooling, temperature rise or the like, it may be held in the temperature range of 60 to 120 ° C. for 10 hours or more and 40 hours or less.
  • the BH property decreases.
  • the amount of precipitation nuclei generated in the preliminary aging treatment is excessively increased.
  • relatively large Mg—Si clusters contributing to the strength are reduced, and the peak height of the exothermic peak B in the temperature range of 240 to 255 ° C. in DSC is as high as 20 ⁇ W / mg or more ( BH properties are also reduced.
  • molding also becomes high too much.
  • the 0.2% yield strength at the time of molding an automobile panel is lowered to 110 MPa or less, and the 0.2% yield strength after BH is set to 200 MPa or more. Becomes difficult.
  • the chemical component composition of the Al—Mg—Si (hereinafter also referred to as 6000) aluminum alloy plate of the present embodiment will be described below.
  • the 6000 series aluminum alloy plate targeted by this embodiment is required to have excellent properties such as formability, BH properties, strength, weldability, corrosion resistance, etc. as a plate for an outer plate of an automobile described above. These requirements are also satisfied from the viewpoint of composition.
  • Sn is contained to suppress room temperature aging of the manufactured plate, lower the 0.2% proof stress during panel forming to 110 MPa or less, and the yield ratio to 0.50. By lowering to less than the range, the formability of the automobile panel structure, such as an automobile panel in which surface distortion becomes a problem, is improved.
  • the 0.2% proof stress after baking finish is set to 190 MPa or more from the viewpoint of composition.
  • the composition of the aluminum alloy plate of the present embodiment is, by mass, Mg: 0.3 to 1.0%, Si: 0.5 to 1.5%, Sn: 0 0.005 to 0.3% is included, and the balance is made of Al and inevitable impurities.
  • % display of content of each element means the mass% altogether.
  • the percentage (mass%) based on mass is the same as the percentage (wt%) based on weight.
  • the content of each chemical component may be expressed as “X% or less (excluding 0%)” as “over 0% and X% or less”.
  • other elements other than Mg, Si, and Sn are impurities or elements that may be included, and the content level (allowable amount) at each element level in accordance with AA or JIS standards.
  • the following other elements are allowed to be contained in the range of the upper limit amount or less in accordance with the AA to JIS ⁇ standards defined below. To do.
  • the aluminum alloy plate further comprises Fe: 1.0% or less (excluding 0%), Mn: 0.4% or less (excluding 0%), Cr: 0 .3% or less (excluding 0%), Zr: 0.3% or less (excluding 0%), V: 0.3% or less (excluding 0%), Ti: 0.1% or less (excluding 0%), Cu: 0.4% or less (excluding 0%), Ag: 0.2% or less (excluding 0%), and Zn: 1.0% or less (however, not including 0%), one or more selected from the group consisting of 0% or less may be further included within this range in addition to the basic composition described above.
  • the Cu content tends to deteriorate the corrosion resistance, so the Cu content is preferably 0.3% or less.
  • the Mn content is preferably 0.35% or less, and the Cr, Zr, V content is preferably 0.2% or less, more preferably 0.1% or less.
  • Si 0.5 to 1.5% Si, together with Mg, forms aging precipitates that contribute to strength improvement during artificial aging treatment such as paint baking treatment, and exhibits age-hardening ability to obtain the strength (proof strength) required for automobile panels Is an essential element.
  • Solid solution Si is an element that improves work hardening ability, and when dissolved, the yield ratio, which is the ratio of tensile strength to yield strength (0.2% proof stress / tensile strength), is reduced to less than 0.50. effective.
  • the Si content is too small, the amount of precipitates after the artificial age hardening treatment will be too small, the amount of increase in strength during baking coating will be low, and the amount of dissolved Si will also be small, resulting in a yield ratio exceeding 0.50. It becomes too big.
  • the Si content is too large, coarse crystallized substances are formed with impurities such as Fe, and formability such as bending workability is remarkably lowered.
  • the Si content is too high, not only the strength immediately after the production of the plate, but also the room temperature aging amount after the production becomes high, the strength before molding becomes too high, and particularly the surface distortion of the panel structure of an automobile. However, the moldability of automobile panels and the like that would cause a problem is reduced. Therefore, the Si content is in the range of 0.5 to 1.5%.
  • Si / Mg is set to 1.0 or more in mass ratio, and generally called excess Si type Furthermore, it is preferable to have a 6000 series aluminum alloy composition containing Si in excess relative to Mg.
  • Mg 0.3 to 1.0% Mg, together with Si, is an important element for forming an aggregate of atoms as defined in the present embodiment.
  • aging precipitates that contribute to strength improvement are formed together with Si. It is an indispensable element for exhibiting the curing ability and obtaining the necessary proof strength as a panel.
  • solid solution Mg is an element that improves work hardening ability, and when dissolved, the yield ratio, which is the ratio of tensile strength to yield strength (0.2% proof stress / tensile strength), is 0.50. There is an effect of lowering below.
  • the Mg content is in the range of 0.3 to 1.0%.
  • the Sn content is less than 0.005%, even if the solid solution amount of Mg + Si described above is increased, the volume fraction of the atomic aggregate that inhibits the low yield ratio is lowered, and the high BH property and the low content are reduced. The effect of achieving both yield ratio and the effect of suppressing the above-described room temperature age hardening cannot be exhibited.
  • the Sn content is more than 0.3%, Sn is segregated at the grain boundaries and easily causes grain boundary cracking.
  • the preferable lower limit of Sn content is 0.01%.
  • the upper limit with preferable Sn content is 0.2%, Furthermore, 0.1%, More preferably, it is 0.06%.
  • the total solid solution amount of Mg and Si contained in the plate (Mg + Si solid solution amount) is increased in the present embodiment. It is secured within a certain range of 0.0 mass% or more and 2.0 mass% or less. If the solid solution amount of Mg + Si is less than 1.0% by mass, the BH property cannot be secured even with the above composition. The higher the solid solution amount of Mg + Si, the better the BH property. However, the Mg and Si content and the solid solution amount have the above-described composition and manufacturing restrictions. There is also a problem that the volume fraction of the atomic aggregate is increased and the yield strength and yield ratio of the panel are increased, and the upper limit is set to 2.0% by mass.
  • Measurement of the solid solution amount of Mg + Si on the plate is a solution obtained by dissolving the sample of the plate to be measured by hot phenol residue extraction method, and filtering and separating the solid and liquid using a filter with a mesh of 0.1 ⁇ m.
  • the total content of Mg and Si is regarded as the solid solution amount of Mg + Si.
  • the residue extraction method using hot phenol is specifically performed as follows. First, after putting phenol into a decomposition flask and heating, each sample plate sample to be measured is transferred to this decomposition flask and thermally decomposed. Next, after adding benzyl alcohol, it is filtered by suction through the filter, the solid-liquid is separated by filtration, and the total content of Mg and Si in the separated solution is quantitatively analyzed. For this quantitative analysis, atomic absorption spectrometry (AAS), inductively coupled plasma emission spectrometry (ICPOES), or the like is appropriately used. As described above, a membrane filter having a mesh (collected particle diameter) of 0.1 ⁇ m and a diameter of 47 mm is used for the suction filtration. This measurement and calculation were performed on three samples taken from a total of three locations, one central portion in the plate width direction of the test plate and two end portions in the plate width direction from this central portion. The solid solution amount (mass%) of Mg + Si is averaged.
  • AAS
  • the structure of the 6000 series aluminum alloy sheet is further reduced to a yield ratio of less than 0.50 and three-dimensional to guarantee the BH property. Controls the size distribution of the aggregate of atoms of Mg and Si measured by an atom probe field ion microscope. As a result, not only the above-described effect of Sn but also an atomic assembly (cluster) in the structure of the plate is controlled to achieve both a high BH property and a low yield ratio.
  • the aggregate of atoms defined in the present embodiment is measured by directly observing the structure of the plate as it is with a high-magnification TEM (Transmission Electron Microscope) as in Patent Document 1. It is not a cluster (cluster) of real atoms in the 6000 series aluminum alloy plate. However, it is deeply correlated with the state of existence of actual atomic aggregates (clusters) in the 6000 series aluminum alloy plate as directly observed by the high magnification TEM. For this reason, even if the measurement of the atomic aggregate in the present embodiment is indirect or simulated, the actual atomic aggregate (cluster) that greatly influences the low yield ratio and the high BH property. ) Is well correlated, and serves as a standard for guaranteeing a low yield ratio and a high BH property from the viewpoint of the structure (atom assembly).
  • TEM Transmission Electron Microscope
  • the plate to be measured is a 6000 series aluminum alloy plate after tempering such as solution treatment and quenching treatment and before press forming or baking coating hardening treatment, and this plate
  • board thickness center parts is measured with a three-dimensional atom probe field ion microscope.
  • the conditions to be satisfied as an atomic aggregate in the present embodiment are the same as those in Patent Documents 2 and 3.
  • a total of 10 or more of either Mg atoms or Si atoms or both are assumed to be included.
  • the upper limit of the number of Mg atoms and Si atoms contained in the aggregate of atoms is not particularly specified, but from the production limit, the upper limit of the number of Mg atoms and Si atoms contained in the aggregate of atoms is approximately 10,000. About one.
  • the mutual distance between the reference atom and any of the other atoms adjacent to each other is What is 0.75 nm or less is defined as an aggregate of atoms. This mutual distance of 0.75 nm has not been fully clarified in technical terms, but the distance between atoms of Mg and Si is close to each other, which greatly affects low yield ratio and high BH properties. This is an experimentally determined value for prescribing the aggregate of atoms of a certain size and its volume fraction with good reproducibility.
  • the aggregate of atoms defined in the present embodiment most often includes both Mg atoms and Si atoms, but includes Mg atoms but does not include Si atoms, or includes Si atoms but does not include Mg atoms. Including cases. Moreover, it is not necessarily comprised only by Mg atom or Si atom, In addition to these, Al atom is included with very high probability.
  • atoms such as Fe, Mn, Cu, Cr, Zr, V, Ti, Zn, or Ag contained as alloy elements or impurities are included in the aggregate of atoms. It inevitably occurs when a number of atoms are counted by 3DAP analysis. However, even if these other atoms (from alloy elements and impurities) are included in the aggregate of atoms, the level is smaller than the total number of Mg atoms and Si atoms. Therefore, even when such other atoms are included in the aggregate of atoms, those satisfying the above definition (conditions) are atoms composed only of Mg atoms and Si atoms as the aggregate of atoms of the present embodiment. Functions in the same way as Therefore, the aggregate of atoms defined in the present embodiment may include any other atom as long as the above-described definition is satisfied.
  • the reference is based on any of the Mg atoms and Si atoms contained therein, the mutual distance between the reference atom and any one of the other adjacent atoms is 0. .75 nm or less "means that all Mg atoms and Si atoms present in the aggregate of atoms have at least one Mg atom or Si atom having a distance of 0.75 nm or less around each other. It means that
  • the definition of the distance between atoms is based on any one of Mg atoms or Si atoms contained therein, among other atoms adjacent to the reference atom.
  • the distances of all the atoms may not all be 0.75 nm or less, and conversely, all may be all 0.75 nm or less.
  • other Mg atoms or Si atoms having a distance exceeding 0.75 nm may be adjacent to each other, and the specified distance (interval) is satisfied around a specific (reference) Mg atom or Si atom.
  • the number of Mg atoms or Si atoms that satisfy the distance condition is specified (reference) Mg.
  • the number of Mg atoms or Si atoms that satisfy the distance condition is specified (reference) Mg.
  • the number of Mg atoms or Si atoms to be counted that satisfy the distance condition is a specific (reference) Mg
  • the number is 3 including atoms or Si atoms.
  • each aggregate of atoms is regarded as a sphere as the total volume of the atomic aggregate that satisfies certain conditions such as the number of Mg atoms and Si atoms and the distance between atoms described above.
  • the Guinier radius r G of the total volume ⁇ Vi of the atomic aggregate among the atomic aggregates that satisfy the above condition is used.
  • the average volume fraction ( ⁇ Vi 1.5 or more / ⁇ Vi) occupying the total volume ⁇ Vi 1.5 or more of the aggregate of atoms having a diameter of 1.5 nm or more is controlled in the range of 20 to 70%.
  • the aggregate of the satisfying individual atoms is divided by Guinier radius r G 1.5nm, Guinier radius r G is the sum of the volume Vi 1.5 or more sets of individual atoms is 1.5nm or more
  • the average volume fraction ( ⁇ Vi 1.5 or more / ⁇ Vi) ⁇ 100 of the total volume ⁇ Vi 1.5 or more in the total volume V of the atomic assembly is controlled in the range of 20 to 70%.
  • the Guinier radius r G is a rotation of an aggregate of atoms when the aggregate of atoms satisfying the above condition is regarded as a sphere.
  • the definition of this Guinier radius and the calculation method mentioned later are well-known by the said patent documents 2.
  • the 0.2% proof stress during molding of automobile panels of 6000 series aluminum alloy sheets is lowered to 110 MPa or less, and the yield ratio is lowered to less than 0.50.
  • the 0.2% yield strength after BH can be 190 MPa or more.
  • the average volume fraction ( ⁇ Vi / V Al ) ⁇ 100 of the aggregate of atoms satisfying the above conditions is less than 0.3%, it is effective for high BH property and low yield ratio, and the Guinier radius r G is 1.5 nm. The absolute number of these relatively large aggregates of atoms is insufficient. For this reason, even if the composition is satisfied, the high BH property and the low yield ratio cannot be achieved. On the other hand, even if the average volume fraction ( ⁇ Vi / V Al ) ⁇ 100 exceeds 1.5%, the number of atomic aggregates that satisfy the condition that the distance from each other is 0.75 nm or less Therefore, it is impossible to reduce the 0.2% yield strength and lower the yield ratio when forming the panel.
  • the average volume fraction ( ⁇ Vi 1.5 or more / ⁇ Vi) ⁇ 100 of an aggregate of relatively large atoms having a Guinier radius r G of 1.5 nm or more is less than 20%.
  • the yield ratio can be reduced. Cannot be achieved.
  • the yield ratio can be reduced, but the average volume fraction ( ⁇ Vi 1.5 or more / ⁇ Vi) ⁇ 100 , Exceeding 70% is difficult in manufacturing, and the upper limit is made 70% from the manufacturing limit.
  • 3DAP three-dimensional atom probe
  • FIM field ion microscope
  • the local analyzer is capable of observing individual atoms on a metal surface with a field ion microscope and identifying these atoms by time-of-flight mass spectrometry.
  • 3DAP is a very effective means for structural analysis of atomic aggregates because it can simultaneously analyze the type and position of atoms emitted from a sample.
  • This 3DAP uses an ionization phenomenon of sample atoms under a high electric field called field evaporation.
  • field evaporation When a high voltage necessary for the field evaporation of sample atoms is applied to the sample, the atoms are ionized from the sample surface and pass through the probe hole to reach the detector.
  • This detector is a position-sensitive detector, and it is detected by measuring the time of flight to the individual ion detector along with mass analysis of individual ions (identification of elements that are atomic species).
  • the determined position (atomic structure position) can be determined simultaneously. Therefore, 3DAP has the feature that the atomic structure at the tip of the sample can be reconstructed and observed three-dimensionally because the position and atomic species of the atom at the tip of the sample can be measured simultaneously. Further, since field evaporation occurs sequentially from the tip surface of the sample, the distribution of atoms in the depth direction from the sample tip can be examined with atomic level resolution.
  • the sample to be analyzed must be highly conductive, such as metal, and the shape of the sample is generally very fine with a tip diameter of around 100 nm ⁇ or less. Need to be needle-shaped. For this reason, a sample is taken from the central part of the thickness of the aluminum alloy plate to be measured, and this sample is cut and electropolished with a precision cutting device to obtain a sample having an ultra-fine needle tip for analysis. Make it.
  • a measuring method for example, using “LEAP3000” manufactured by Imago Scientific Instruments Inc., a high pulse voltage of 1 kV order is applied to an aluminum alloy plate sample whose tip is shaped like a needle, and several millions from the sample tip.
  • the analysis of the atomic aggregate is further performed on this three-dimensional atom map using the Maximum-Separation-Method, which is a method for defining the atoms belonging to precipitates and atomic aggregates.
  • the number of Mg atoms or Si atoms or both total of 10 or more
  • the distance (interval) between adjacent Mg atoms or Si atoms and the specific narrow interval
  • the number of Mg atoms or Si atoms having (0.75 nm or less) is given as a parameter.
  • Mg atoms and Si atoms in total of 10 or more, even if any atom of Mg atoms or Si atoms contained in these is used as a reference, other atoms adjacent to the reference atom
  • a group of atoms having a distance of 0.75 nm or less and satisfying these conditions is defined as a group of atoms of the present embodiment. Then, the dispersion state of the atomic aggregates that meet this definition is evaluated, and the number density of the atomic aggregates is averaged over three or more measurement samples to obtain an average density per 1 m 3 (number / piece m 3 ) Measure and quantify.
  • Equation (1 ) lg is a radius of rotation automatically calculated by software unique to the three-dimensional atom probe field ion microscope.
  • x, y, and z are invariant x, y, and z axes in the measurement layout of the three-dimensional atom probe field ion microscope.
  • x i , y i , and z i are the lengths of the x, y, and z axes, and are the spatial coordinates of the Mg and Si atoms that constitute the aggregate of atoms. “X”, etc.
  • n is the number of Mg and Si atoms constituting the aggregate of atoms.
  • the volume of the needle-shaped sample evaporated (disappeared by field evaporation) is defined as the volume V Al of the aluminum alloy plate measured by a three-dimensional atom probe field ion microscope, and the total of the aggregate of the atoms occupying this volume
  • the volume average volume fraction ( ⁇ Vi / V Al ) ⁇ 100 is determined.
  • the average volume fraction ( ⁇ Vi 1.5 or more / ⁇ Vi) ⁇ 100 of the total volume ⁇ Vi 1.5 or more of the aggregate of atoms having a Guinier radius r G of 1.5 nm or more in the total volume V of the aggregate of atoms ⁇ 100 also ask.
  • the measurement of the average volume fraction of the aggregate of atoms by these 3DAP is carried out at 10 locations in the central part of the arbitrary thickness of the 6000 series aluminum alloy sheet after the tempering. (Calculated value) is averaged.
  • the detection efficiency of these atoms by 3DAP is currently limited to about 50% of the ionized atoms, and the remaining atoms cannot be detected. If the detection efficiency of atoms by this 3DAP changes greatly, such as in the future, the measurement result by 3DAP of the average number density (pieces / ⁇ m 3 ) of the aggregate of atoms of each size specified by this embodiment will change. There is a possibility of coming. Therefore, in order to have reproducibility in this measurement, it is preferable that the detection efficiency of atoms by 3DAP is substantially constant at about 50%.
  • the aluminum alloy sheet of the present embodiment is a conventional process or a known process, and the aluminum alloy ingot having the above-described 6000 series component composition is subjected to homogenization heat treatment after casting and subjected to hot rolling and cold rolling. Thus, it is manufactured to a predetermined plate thickness and further subjected to a tempering treatment such as solution hardening.
  • the preliminary aging treatment conditions after the quenching treatment are set in a preferable range.
  • an ordinary molten casting method such as a continuous casting method and a semi-continuous casting method (DC casting method) is appropriately selected for the molten aluminum alloy adjusted to be dissolved within the above-mentioned 6000 series component composition range.
  • DC casting method semi-continuous casting method
  • the average cooling rate during casting is as large (fast) as possible from the liquidus temperature to the solidus temperature of 30 ° C./min.
  • Preliminary aging treatment reheating treatment
  • the steel sheet is quenched and cooled to room temperature, and then the cold-rolled sheet is subjected to a pre-aging treatment (reheating treatment) within as short a time as possible within 1 hour (60 minutes).
  • a set of atoms that satisfy the conditions of the number of Mg atoms and the number of Si atoms and the interatomic distance if the room temperature holding time until the start of pre-aging treatment (heating start) exceeds 1 hour after the quenching treatment to room temperature is too long The total volume of the body cannot be restricted to an average volume fraction of 1.5% or less.
  • the average volume fraction of the aggregates of atoms having a Guinier radius r G of 1.5 nm or more is set to 20% or more. You can't do much.
  • the BH property is lowered and it is difficult to reduce the yield ratio. Accordingly, the shorter the room temperature holding time is better, the solution treatment and quenching treatment and the reheating treatment may be continued so that there is almost no time difference, and the lower limit time is not particularly set.
  • the temperature increase rate up to the preliminary aging temperature and the holding time in the preliminary aging temperature range are controlled.
  • the heating rate is as high as possible (fast) heating rate of 1 ° C./s or more, preferably 5 ° C./s or more, in order to suppress the formation of small atomic aggregates that do not contribute to the above-described strength. It is preferable to do.
  • the rate of temperature increase is less than 1 ° C./s, many small atomic aggregates that do not contribute to the strength are generated, and among the atomic aggregates that satisfy the above conditions, the Guinier radius r G is 1.5 nm or more. It becomes impossible to increase the average volume fraction of the aggregate of atoms as 20% or more. As a result, the BH property decreases, and the low yield ratio becomes difficult.
  • the temperature and holding time of the preliminary aging treatment shall be held for 10 hours or more and 40 hours or less in the temperature range of 60 to 120 ° C.
  • the temperature holding at 60 to 120 ° C. may be a heat treatment in which the temperature is sequentially changed within this temperature range by a constant temperature or by raising and lowering the temperature. In short, even if the temperature continuously changes due to slow cooling, temperature rise or the like, it may be held in the temperature range of 60 to 120 ° C. for 10 hours or more and 40 hours or less.
  • the preliminary aging temperature is less than 60 ° C. or the holding time is less than 10 hr, the formation of precipitation nuclei is insufficient, and among the aggregate of atoms satisfying the above conditions, the Guinier radius r G is 1.5 nm or more. The average volume fraction of an aggregate of atoms cannot be increased to more than 20%. As a result, the BH property decreases.
  • the amount of precipitation nuclei generated in the preliminary aging treatment is excessively increased. For this reason, the aggregate of relatively large atoms contributing to the strength is decreased, and the average volume fraction of the aggregate of atoms satisfying the above condition exceeds 1.5% and is increased during molding. The yield ratio of the plate cannot be lowered to less than 0.50.
  • the 0.2% proof stress of the plate at the time of molding the automobile panel is lowered to 110 MPa or less, and the yield ratio is also lowered to less than 0.50, It becomes difficult to set the 0.2% yield strength after BH to 190 MPa or more.
  • 6000 series aluminum alloy plates having different structures defined by DSC were produced by changing the conditions of the pre-aging treatment after solution treatment and quenching treatment. Then, after maintaining the plate at room temperature for 30 days, BH properties (coating bake hardenability), As yield strength as an index of press formability, and hemmability as bending workability were measured and evaluated.
  • the 6000 series aluminum alloy plate having the composition shown in Table 1 is prepared as shown in Tables 2 and 3, and the average cooling rate of the quenching treatment after the solution treatment and the subsequent pre-aging.
  • Various conditions such as processing temperature and holding time were changed.
  • the display of the content of each element in Table 1 the display in which the numerical value of each element is blank indicates that the content is below the detection limit.
  • the specific production conditions for the aluminum alloy plate were as follows.
  • Aluminum alloy ingots having respective compositions shown in Table 1 were commonly melted by DC casting.
  • the average cooling rate during casting was set to 50 ° C./min from the liquidus temperature to the solidus temperature.
  • the ingot was subjected to only one-step soaking at 540 ° C. for 6 hours in common with each example, and then hot rough rolling was started at that temperature.
  • it was hot rolled to a thickness of 3.5 mm in the subsequent finish rolling to obtain a hot rolled sheet.
  • the aluminum alloy sheet after hot rolling is commonly used in each example, and after subjecting to 500 ° C. ⁇ 1 minute of rough annealing, cold rolling is performed at a processing rate of 70% without intermediate annealing in the middle of the cold rolling pass, A cold-rolled plate having a thickness of 1.0 mm was used.
  • each cold-rolled sheet was tempered continuously (T4) while being rewound and wound up in a continuous heat treatment facility in common with each example.
  • the solution treatment is performed by setting the average heating rate up to 500 ° C. to 10 ° C./second and holding it for 10 seconds after reaching the target temperature of 560 ° C.
  • each average cooling shown in Tables 2 and 3 is performed. It cooled to room temperature by performing water cooling or air cooling so that it might become speed.
  • preliminary aging treatment was performed using the atmospheric furnace and oil bath at the rate of temperature rise, ultimate temperature, average cooling rate, and holding time shown in Tables 2 and 3. It was.
  • the cooling after the preliminary aging treatment was performed by water cooling or slow cooling (cooling) in order to change the average cooling rate.
  • each test plate was blanked from each final product plate after being left at room temperature for 30 days, and the DSC and characteristics of each test plate were measured and evaluated. These results are shown in Table 3.
  • DSC Differential scanning calorimetry curve
  • test equipment DSC220G manufactured by Seiko Instruments Inc.
  • standard material aluminum
  • sample container aluminum
  • temperature rising condition 15 ° C./min
  • atmosphere argon (50 ml / Min)
  • sample weight each performed under the same conditions of 24.5 to 26.5 mg
  • ⁇ W differential thermal analysis profile
  • the region where the differential thermal analysis profile was horizontal was defined as a reference level of 0, and the exothermic peak height from this reference level was measured.
  • JISZ2201 No. 5 test pieces 25 mm ⁇ 50 mmGL ⁇ plate thickness
  • the tensile direction of the test piece at this time was the direction perpendicular to the rolling direction.
  • the tensile speed was 5 mm / min up to 0.2% proof stress and 20 mm / min after proof stress.
  • the N number for the measurement of mechanical properties was 5, and each was calculated as an average value.
  • the test piece for measuring the yield strength after the BH was subjected to the BH treatment after giving a pre-strain of 2% simulating press forming of the plate to the test piece by the tensile tester.
  • Hem workability Hem workability was measured only for each test plate after standing at room temperature for 30 days after the tempering treatment.
  • a strip-shaped test piece with a width of 30 mm was used, and after bending 90 ° with an internal bend R of 1.0 mm by a down flange, a 1.0 mm thick inner was sandwiched, and the bent portion was further bent inwardly to about 130 degrees.
  • Pre-hem processing was performed, and flat hem processing was performed in which the end was closely attached to the inner by bending 180 degrees.
  • the surface state of the flat hem bent portion (edge curved portion) such as rough skin, minute cracks, and large cracks was visually observed and visually evaluated according to the following criteria. Based on the following criteria, 0 to 2 are acceptable lines, and 3 or more are unacceptable. 0: No cracking, rough skin, 1: Mild rough skin, 2: Deep rough skin, 3: Small surface crack, 4;
  • Inventive numbers 0 to 1, 8, 13 in Table 2 and 16 to 24 in Table 3 using alloy numbers 0 to 12 in Table 1 are within the component composition range of this embodiment and are in a preferable condition range.
  • a tempering process including a solution hardening process and a pre-aging process is also performed under preferable conditions.
  • these invention examples satisfy the DSC conditions defined in the present embodiment. That is, in the DSC of this plate, as the endothermic peak corresponding to the dissolution of Mg—Si clusters not contributing to the strength, the peak height of the endothermic peak in the temperature range of 150 to 230 ° C. is 8 ⁇ W / mg or less. As the exothermic peak corresponding to the formation of Mg—Si clusters contributing to the peak temperature, the exothermic peak in the temperature range of 240 to 255 ° C. has a peak height of 20 ⁇ W / mg or more.
  • each invention example is excellent in BH property even after the tempering treatment at room temperature after aging and at the low temperature and short time.
  • Table 3 even after room temperature aging after the tempering treatment, the As yield strength is relatively low, so that it is excellent in press formability to an automobile panel and the like, and is excellent in hem workability. That is, according to the example of the present invention, even when the body paint baking treatment is performed after aging at room temperature, a high BH having a 0.2% proof stress difference of 100 MPa or more and a 0.2% proof stress after BH of 170 MPa or more. And a press formability of 110 MPa or less and an excellent bending workability with an As 0.2% proof stress.
  • Comparative Examples 2 to 7, 9 to 13, 14, and 15 in Table 2 use the same alloy examples 1, 2, and 3 as the invention examples in Table 1.
  • the pre-aging treatment conditions are not preferable.
  • the DSC deviates from the range defined in the present embodiment, and the room temperature aging is larger than that of the invention example having the same alloy composition. It is inferior in press formability and hem workability, and inferior in BH property.
  • the average cooling rate in the quenching treatment to room temperature after the solution treatment is too small. Therefore, although the peak height of the endothermic peak A in the temperature range of 150 to 230 ° C. is 8 ⁇ W / mg or less, the peak height of the exothermic peak B in the temperature range of 240 to 255 ° C. is as low as less than 20 ⁇ W / mg ( Small), and the number density of Mg—Si clusters having a relatively large size contributing to strength is small. This is because the cooling rate of the quenching treatment to room temperature is small, and coarse Mg 2 Si and simple substance Si are generated during cooling, and the press formability of 110 MPa or less with the target As 0.2% proof stress and Good bending workability is not obtained. Moreover, BH property is also low.
  • the retention time in the range of 60 to 120 ° C. in the preliminary aging treatment is too long as 48 hours.
  • the peak height of the exothermic peak B in the temperature range of 240 to 255 ° C. is as low (small) as less than 20 ⁇ W / mg, and the number density of Mg—Si clusters having a relatively large size contributing to strength is small.
  • the target As0.2% yield strength of 110 MPa or less and good bending workability are not obtained.
  • BH property is also low.
  • the reached temperature in the pre-aging treatment is 130 ° C., which is too high, exceeding the upper limit of 120 ° C.
  • the relatively large size Mg—Si clusters that contribute to the strength are reduced, and the peak height of the exothermic peak B in the temperature range of 240 to 255 ° C. is low (small), less than 20 ⁇ W / mg.
  • the number density of Mg—Si clusters with relatively large contributing size is small.
  • the As 0.2% yield strength is too high exceeding 110 MPa, and neither press formability nor good bending workability is obtained.
  • Comparative Examples 25 to 34 in Table 3 are manufactured within a preferable range including the pre-aging treatment conditions, but use Alloy Nos. 13 to 22 in Table 1 and contain Mg and Si as essential elements. Each amount is out of the range of the present embodiment, or the amount of impurity elements is too large. For this reason, as shown in Table 3, these Comparative Examples 24 to 33 have a relatively high As yield strength after holding at room temperature for 30 days, as compared with each invention example. It is inferior in workability or BH property.
  • the comparative example 25 is the alloy 13 of Table 1, and there is too little Si.
  • the comparative example 26 is the alloy 14 of Table 1, and there is too much Si.
  • the comparative example 276 is the alloy 15 of Table 1, and there is too little Sn.
  • Comparative example 28 is alloy 16 of Table 1, and there was too much Sn, the crack was produced at the time of hot rolling, and the board was not able to be manufactured.
  • the comparative example 29 is the alloy 17 of Table 1, and there is too much Fe.
  • the comparative example 30 is the alloy 18 of Table 1, and there is too much Mn.
  • the comparative example 31 is the alloy 19 of Table 1, and there are too many Cr and Ti.
  • the comparative example 32 is the alloy 20 of Table 1, and there is too much Cu.
  • the comparative example 33 is the alloy 21 of Table 1, and there is too much Zn.
  • Comparative example 34 is alloy 22 of Table 1 with too much Zr and V.
  • 6000 series aluminum alloy plates having different structures defined in the present embodiment were manufactured separately by changing the conditions of the pre-aging treatment after solution treatment and quenching treatment. Then, after maintaining the plate at room temperature for 30 days, BH properties (coating bake hardenability), As yield strength as an index of press formability, and hemmability as bending workability were measured and evaluated.
  • the specific production conditions for the aluminum alloy plate were as follows.
  • Aluminum alloy ingots having respective compositions shown in Table 4 were commonly melted by DC casting.
  • the average cooling rate during casting was set to 50 ° C./min from the liquidus temperature to the solidus temperature.
  • the ingot was subjected to only one-step soaking at 540 ° C. for 6 hours in common with each example, and then reheated to 500 ° C. to start hot rough rolling. And in each example, it was hot rolled to a thickness of 3.5 mm in the subsequent finish rolling to obtain a hot rolled sheet.
  • the aluminum alloy sheet after hot rolling is commonly used in each example, and after subjecting to 500 ° C. ⁇ 1 minute of rough annealing, cold rolling is performed at a processing rate of 70% without intermediate annealing in the middle of the cold rolling pass, A cold-rolled plate having a thickness of 1.0 mm was used.
  • each cold-rolled sheet was tempered continuously (T4) while being rewound and wound up in a continuous heat treatment facility in common with each example.
  • the solution treatment is performed by setting the average heating rate up to 500 ° C. to 10 ° C./second and holding it for 10 seconds after reaching the target temperature of 560 ° C.
  • each average cooling shown in Tables 5 and 6 is performed. It cooled to room temperature by performing water cooling or air cooling so that it might become speed. After this cooling, after the required time shown in Table 2 at room temperature, using an atmospheric furnace and an oil bath, preliminary aging treatment was performed at the rate of temperature rise, ultimate temperature, average cooling rate, and holding time shown in Tables 5 and 6 It was.
  • the cooling after the preliminary aging treatment was performed by water cooling or slow cooling (cooling) in order to change the average cooling rate.
  • test plate candy (blank) candy was cut out from each final product plate after being left at room temperature for 30 days, and the structure and properties of each test plate were measured and evaluated. These results are shown in Tables 5 and 6.
  • the average volume fraction ( ⁇ Vi 1.5 or more / ⁇ Vi) ⁇ 100 of the total volume ⁇ Vi 1.5 or more of the aggregate of atoms having a Guinier radius r G of 1.5 nm or more in the total volume ⁇ Vi of the atomic assembly (It was described as ⁇ Vi 1.5 or more / ⁇ Vi ⁇ 100 in Tables 5 and 6).
  • JISZ2201 No. 5 test pieces 25 mm ⁇ 50 mmGL ⁇ plate thickness
  • the tensile direction of the test piece at this time was the direction perpendicular to the rolling direction.
  • the tensile speed was 5 mm / min up to 0.2% proof stress and 20 mm / min after proof stress.
  • the N number for the measurement of mechanical properties was 5, and each was calculated as an average value.
  • the test piece for measuring the yield strength after the BH was subjected to the BH treatment after giving a pre-strain of 2% simulating press forming of the plate to the test piece by the tensile tester.
  • Hem workability Hem workability was measured only for each test plate after standing at room temperature for 7 days or 100 days after the tempering treatment.
  • a strip-shaped test piece with a width of 30 mm was used, and after bending 90 ° with an internal bend R of 1.0 mm by a down flange, a 1.0 mm thick inner was sandwiched, and the bent portion was further bent inwardly to about 130 degrees.
  • Pre-hem processing was performed, and flat hem processing was performed in which the end was closely attached to the inner by bending 180 degrees.
  • the surface state of the flat hem bent portion (edge curved portion) such as rough skin, minute cracks, and large cracks was visually observed and visually evaluated according to the following criteria. Based on the following criteria, 0 to 2 are acceptable lines, and 3 or more are unacceptable. 0: No cracking, rough skin, 1: Mild rough skin, 2: Deep rough skin, 3: Small surface crack, 4;
  • Inventive examples Nos. 35, 36, 43 and 48 in Table 5, and Nos. 51 to 58 in Table 6 using alloy Nos. 23 to 34 in Table 4 are within the component composition range of the present embodiment and are in a preferable condition range.
  • a tempering process including a solution hardening process and a pre-aging process is also performed under preferable conditions.
  • each of these inventive examples satisfies the organizational conditions defined in this embodiment. That is, the electric field evaporation of the total volume ⁇ Vi of the aggregate of atoms having a solid solution amount of the Mg + Si of 1.0% by mass or more and 2.0% by mass or less and satisfying the conditions defined in the embodiment.
  • the average volume fraction ( ⁇ Vi / V Al ) ⁇ 100 occupying the volume V Al of the needle-shaped sample is in the range of 0.3 to 1.5%, and occupying the total volume ⁇ Vi of the aggregate of atoms.
  • the average volume fraction ( ⁇ Vi 1.5 or more / ⁇ Vi) ⁇ 100 of the total volume ⁇ Vi 1.5 or more of the aggregate of atoms having a radius r G of 1.5 nm or more is 20 to 70%.
  • each invention example is excellent in BH property even after the tempering treatment at room temperature after aging and at the low temperature and short time.
  • Table 6 even after room temperature aging after the tempering treatment, the As yield strength is relatively low and the yield ratio is low, so it is excellent in press formability to automobile panels and the like. Also, heme workability is excellent.
  • a low yield ratio press formability of 110 MPa or less and an As 0.2% yield strength of less than 0.50, and good bending workability can be exhibited. Therefore, it has both formability and baking coating curability, and can achieve both high BH property and low yield ratio.
  • Comparative Examples 37 to 42, 44 to 47, 49 and 50 in Table 5 use the same alloy examples 24, 25 and 26 as the invention examples in Table 4. However, in each of these comparative examples, as shown in Table 5, the pre-aging treatment conditions are not preferable. As a result, the solid solution amount of Mg + Si, the average volume fraction ( ⁇ Vi / V Al ) ⁇ 100, or the average volume fraction ( ⁇ Vi 1.5 or more / ⁇ Vi) ⁇ 100 is within the range specified in this embodiment. It is off. As a result, compared with the invention example having the same alloy composition, the room temperature aging is large, and particularly the As yield strength after holding at room temperature for 30 days is relatively high or the yield ratio is high and low. It is inferior in press formability and hem workability, or inferior in BH property. Therefore, the moldability and the bake coating curability cannot be achieved, and the high BH property and the low yield ratio cannot be achieved at the same time.
  • the temperature reached in the preliminary aging treatment is 130 ° C., which is too high, exceeding the upper limit of 120 ° C. For this reason, the amount of precipitation nuclei generated in the preliminary aging treatment is excessively increased, and the aggregate of relatively large size atoms contributing to the strength decreases, and the average volume fraction ( ⁇ Vi / V Al ) ⁇ 100 exceeds 1.5%, As proof strength is too high, and the yield ratio of the plate during forming cannot be lowered to less than 0.50.
  • Comparative Examples 59 to 67 in Table 6 are manufactured within a preferable range including the pre-aging treatment conditions, but use Alloy Nos. 35 to 43 in Table 4, and contain Mg and Si as essential elements. Each amount is out of the range of the present embodiment, or the amount of impurity elements is too large. For this reason, as shown in Table 6, these comparative examples 59 to 67 have a too high As yield strength and yield ratio after being kept at room temperature for 30 days, as compared with the examples of the invention. Inferior to heme workability or BH property.
  • the comparative example 59 is the alloy 35 of Table 4, and there is too little Si.
  • the comparative example 60 is the alloy 36 of Table 4, and there is too much Si.
  • Comparative example 61 is alloy 37 of Table 4, and there is too little Sn.
  • the comparative example 62 is the alloy 38 of Table 4, and there was too much Sn, the crack was produced at the time of hot rolling, and the board was not able to be manufactured.
  • the comparative example 63 is the alloy 39 of Table 4, and there is too much Fe.
  • the comparative example 64 is the alloy 40 of Table 4, and there is too much Mn.
  • the comparative example 65 is the alloy 41 of Table 4, and there are too many Cr and Ti.
  • the comparative example 66 is the alloy 42 of Table 4, and there is too much Zn.
  • Comparative example 67 is alloy 43 of Table 4, and there is too much Zr and V.
  • the present invention it is possible to provide a 6000 series aluminum alloy plate having both BH properties and formability after aging at room temperature.
  • the application of the 6000 series aluminum alloy plate can be expanded to automobile panels, in particular, outer panels where design properties such as beautiful curved surface configurations and character lines are problematic.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Body Structure For Vehicles (AREA)
  • Laminated Bodies (AREA)

Abstract

 本発明は、長期室温時効後のBH性や成形性を兼備する6000系アルミニウム合金板を提供することを目的とする。一実施形態においては、Snを含有する特定組成の6000系アルミニウム合金板の、強度に寄与しない、比較的小さなMg-Siクラスタを抑制するとともに、強度に寄与する比較的大きなMg-Siクラスタをできるだけ増やして、Snの原子空孔の捕獲や放出効果を十分に発揮させ、長期間の室温時効を抑制してヘム加工性を向上させるとともに、BH性も向上させる。他の実施形態においては、特定組成の6000系アルミニウム合金板にSnを含有して、Mg+Siの固溶量を確保した上で、降伏比を0.50未満に低くするために、3次元アトムプローブ電界イオン顕微鏡により測定された原子の集合体のサイズ分布を制御して、高BH性化と低降伏比化とを両立させる。

Description

成形性と焼付け塗装硬化性とに優れたアルミニウム合金板
 本発明はAl-Mg-Si系アルミニウム合金板に関するものである。本発明で言うアルミニウム合金板とは、熱間圧延板や冷間圧延板などの圧延板であって、溶体化処理および焼入れ処理などの調質が施された後であって、プレス成形や焼付け塗装硬化処理される前のアルミニウム合金板を言う。また、以下の記載ではアルミニウムをアルミやAlとも言う。
 近年、地球環境などへの配慮から、自動車等の車両の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車の大型ボディパネル構造体(アウタパネル、インナパネル)の材料として、鋼板等の鉄鋼材料にかえて、成形性や焼付け塗装硬化性に優れた、より軽量なアルミニウム合金材の適用が増加しつつある。
 この自動車の大型ボディパネル構造体の内、フード、フェンダー、ドア、ルーフ、トランクリッドなどのアウタパネル(外板) にも、薄肉でかつ高強度アルミニウム合金板として、Al-Mg-Si系のAA乃至JIS 6000系 (以下、単に6000系とも言う)アルミニウム合金板の使用が検討されている。
 この6000系アルミニウム合金板は、Si、Mgを必須として含み、特に過剰Si型の6000系アルミニウム合金は、これらSi/Mgが質量比で1以上である組成を有し、優れた時効硬化能を有している。このため、自動車の前記アウタパネルへのプレス成形や曲げ加工時には、低耐力化により成形性を確保する。そして、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効(硬化) 処理時の加熱により時効硬化して耐力が向上し、パネルとしての必要な強度を確保できる、焼付け塗装硬化性(以下、ベークハード性=BH性、焼付硬化性とも言う) がある。
 一方、自動車の前記アウタパネルは、周知の通り、アルミニウム合金板に対し、プレス成形における張出成形時や曲げ成形などの成形加工が複合して行われて製作される。例えば、フードやドアなどの大型のアウタパネルでは、張出などのプレス成形によって、アウタパネルとしての成形品形状となされ、次いで、このアウタパネル周縁部のフラットヘムなどのヘム (ヘミング) 加工によって、インナパネルとの接合が行われ、パネル構造体とされる。
 ここで、6000系アルミニウム合金は、優れたBH性を有するという利点がある反面で、室温時効性を有し、溶体化焼入れ処理後の室温保持で時効硬化して強度が増加することにより、パネルへの成形性、特に曲げ加工性が低下する課題があった。例えば、6000系アルミニウム合金板を自動車パネル用途に用いる場合、アルミメーカーで溶体化焼入れ処理された後(製造後)、自動車メーカーでパネルに成形加工されるまでに、1ヶ月間程度室温におかれ(室温放置され)、この間で、かなり時効硬化(室温時効)することとなる。特に、厳しい曲げ加工が入るアウタパネルにおいては、製造直後では、問題無く成形可能であっても、1ヶ月経過後では、ヘム加工時に割れが生じるなどの問題が有った。したがって、自動車パネル用、特にアウタパネル用の6000系アルミニウム合金板では、1ヶ月間程度の比較的長期に亙る室温時効を抑制する必要がある。
 更に、このような室温時効が大きい場合には、BH性が低下して、前記した成形後のパネルの塗装焼付処理などの、比較的低温の人工時効(硬化) 処理時の加熱によっては、パネルとしての必要な強度までに、耐力が向上しなくなるという問題も生じる。
 従来から、6000系アルミニウム合金板の組織、特に含有元素が形成する化合物(晶出物、析出物)の観点から、成形性やBH性の向上、あるいは室温時効の抑制を図るなどの特性向上について、種々の提案がなされている。最近では、特に、6000系アルミニウム合金板のBH性や室温時効性に影響するクラスタ(原子の集合体)を直接測定して制御する試みも提案されている(特許文献1~3)。
 このうち、特許文献1では、BH性や室温時効性に影響するクラスタ(原子の集合体)を、板の組織をそのまま直接的に、100万倍の透過型電子顕微鏡によって分析し、観察されるクラスタ(原子の集合体)の内、円等価直径が1~5nmの範囲のクラスタの平均数密度を一定の範囲で規定して、BH性に優れ、室温時効を抑制したものとしている。
 これに対して、特許文献2、3では、特許文献1のように直接クラスタ(原子の集合体)を観察するのではなく、3次元アトムプローブ電界イオン顕微鏡により、高電界下で一旦イオン化(電界蒸発)させた板の原子の位置情報から、解析によって再構築された板の原子構造において定義される原子の集合体を規定している。より具体的には、Mg原子かSi原子かのいずれか又は両方を合計で10個以上含み、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下である条件を満たす原子の集合体を制御している。すなわち、この条件を満たす原子の集合体の、平均数密度や、大きさの分布あるいは割合を規定している。
 また、本発明におけるSnの添加に関係する先行特許としても、6000系アルミニウム合金板にSnを積極的に添加し、室温時効を抑制し、BH性(焼付け塗装硬化性)を向上させる方法も多数提案されている。例えば、特許文献4ではSnを適量添加し、溶体化処理後に予備時効を施すことで、室温時効抑制とBH性を兼備する方法が提案されている。また、特許文献5ではSnと成形性を向上させるCuを添加して、成形性、BH性、耐食性を向上させる方法が提案されている。
日本国特開2009-242904号公報 日本国特開2012-193399号公報 日本国特開2013-60627号公報 日本国特開平09-249950号公報 日本国特開平10-226894号公報
 しかし、これら従来のAl-Mg-Si系アルミニウム合金板でも、長時間の室温時効後の良好な成形性と高いBH性とを兼備するためには、未だ改善の余地があった。
 自動車の前記各種のアウタパネルは、デザイン性の点で、ひずみのない美しい曲面構成とキャラクターラインを実現させることが必要である。このような要求は、軽量化のために、成形が難しくなる高強度アルミニウム合金板素材の採用に伴って、年々厳しくなっている。このため、近年益々、より成形性に優れたアルミニウム合金板が求められている。しかし、前記した従来の組織制御では、このような要求に応えることができなくなっている。
 例えば、このようなアウタパネルへの高強度アルミニウム合金板の適用を難しくしている一因として、アウタパネル独特の形状の問題がある。アウタパネルには、把手座やランプ座、ライセンス (ナンバープレート) 座などの、器具や部材を装着したり、ホイールアーチを描くような、所定深さの凹部(張出部、エンボス部)が部分的に設けられる。
 このような凹部を、その凹部形状周囲の連続した曲面を含めてプレス成形した場合には、面歪み(面ひずみ)が発生しやすく、前記したひずみのない美しい曲面構成とキャラクターラインを実現させることが難しい。したがって、前記アウタパネルには、素材板の成形時に、この面歪みの発生を抑制することが必須となる。
 なお、このような面歪みの問題は、前記した凹部(張出部)だけの問題ではなく、ドアアウタパネルのくら型部、フロントフェンダの縦壁部、リアフェンダのウインドコーナー部、トランクリッドやフードアウタのキャラクターラインの消滅部、リアフェンダピラーの付け根部など、面歪みを生じるような凹部 (張出部) を一部に有するような、自動車パネルに共通する課題である。
 前記従来の課題に対して、前記面歪みの発生を抑制した成形性向上のためには、プレス成形される際の(製造後に室温時効)板の0.2%耐力を110MPa未満と低くすることが望まれる。しかし、このように成形時の耐力を低下させると、焼付け塗装硬化後(以下、ベークハード後、BH後とも言う)の0.2%耐力を200MPa以上、焼付け塗装硬化による0.2%耐力増加量で100MPa以上とすることが難しくなる。前記した従来のDSCによる組織制御では、前記課題を解決することが難しい。
 本発明の第1の実施形態は、前記従来の課題を解決するためになされたものであって、自動車パネル成形時の0.2%耐力を110MPa以下に低くした上で、BH後の0.2%耐力を200MPa以上とすることが可能な、成形性と焼付け塗装硬化性を兼備したアルミニウム合金板を提供することを目的(以下、第1の目的ともいう)とする。
 また、前記従来の課題に対して、前記面歪みの発生を抑制した成形性向上のためには、プレス成形される際の(製造後に室温時効)板の0.2%耐力を110MPa以下に低くするとともに、引張強度と降伏強度の比(0.2%耐力/引張強度)である降伏比を低くすることが望まれる。しかし、このように成形時の耐力を低下させると、焼付け塗装硬化処理(以下、ベークハード、BHとも言う)された後の0.2%耐力を190MPa以上、焼付け塗装硬化による0.2%耐力増加量で100MPa以上とすることが難しくなる。
 本発明の第2の実施形態は、前記従来の課題を解決するためになされたものであって、自動車パネル成形時の0.2%耐力を110MPa以下に低くするとともに、降伏比を0.50未満に低くした上で、BH後の0.2%耐力を190MPa以上とすることが可能な、成形性と焼付け塗装硬化性を兼備し、高BH性化と低降伏比化とを両立させたアルミニウム合金板を提供することを目的(以下、第2の目的ともいう)とする。
 前記第1の目的を達成するための、本発明の第1の実施形態に係る成形性と焼付け塗装硬化性とに優れたアルミニウム合金板の要旨は、質量%で、Mg:0.2~2.0%、Si:0.3~2.0%、Sn:0.005~0.3%を各々含み、残部がAlおよび不可避的不純物からなるAl-Mg-Si系アルミニウム合金板であって、前記アルミニウム合金板の示差走査熱分析曲線において、Mg-Siクラスタの溶解に相当する吸熱ピークとして、150~230℃の温度範囲の吸熱ピークのピーク高さが8μW/mg以下(但し、0μW/mgを含む)である一方で、Mg-Siクラスタの生成に相当する発熱ピークとして、240~255℃の温度範囲の発熱ピークのピーク高さが20μW/mg以上であることとする。
 但し、前記アルミニウム合金板の各測定箇所における示差熱分析においては、試験装置:セイコ-インスツルメンツ製DSC220G、標準物質:アルミニウム、試料容器:アルミニウム、昇温条件:15℃/min、雰囲気:アルゴン(50ml/min)、試料重量:24.5~26.5mgの同一条件で各々行い、得られた示差熱分析のプロファイル(μW)を試料重量で割って規格化した(μW/mg)後に、前記示差熱分析プロファイルでの0~100℃の区間において、示差熱分析のプロファイルが水平になる領域を0の基準レベルとし、この基準レベルからの発熱ピーク高さを測定する。
 また、前記第2の目的を達成するために、本発明の第2の実施形態に係る成形性と焼付け塗装硬化性とに優れたアルミニウム合金板の要旨は、質量%で、Mg:0.3~1.0%、Si:0.5~1.5%、Sn:0.005~0.3%を各々含み、残部がAlおよび不可避的不純物からなるAl-Mg-Si系アルミニウム合金板であって、熱フェノールによる残渣抽出法により分離された溶液中のMg+Siの固溶量が、1.0質量%以上、2.0質量%以下であり、
 かつ、3次元アトムプローブ電界イオン顕微鏡により測定された原子の集合体として、Mg原子かSi原子かのいずれか又は両方を合計で10個以上含み、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下である条件を満たす原子の集合体について、これらの原子集合体の総体積として、個々の原子の集合体を各々球と見なした際のギニエ半径rから算出される個々の原子の集合体の体積Vi(=4/3πr 3)を合計した総体積ΣViの、前記3次元アトムプローブ電界イオン顕微鏡により測定された前記アルミニウム合金板の体積VAlに占める平均体積分率(ΣVi/VAl)×100が0.3~1.5%の範囲であるとともに、
 前記原子集合体の総体積ΣViのうち、前記ギニエ半径rが1.5nm以上である原子の集合体の体積V1.5以上を合計した総体積ΣVi1.5以上の占める平均体積分率(ΣVi1.5以上/ΣVi)×100が20~70%である、
こととする。
 前記第1の実施形態に関連して、Snは、Al-Mg-Si系アルミニウム合金板の組織において、室温においては、原子空孔を捕獲(捕捉、トラップ)することで、室温でのMgやSiの拡散を抑制し、室温における強度増加を抑制し、板のパネルへの成形時に、ヘム加工性や絞り加工や張出加工などのプレス成形性(以下、このプレス成形性を代表してヘム加工性とも言う)を向上させる効果がある。そして、パネルの塗装焼き付け処理などの人工時効処理時には捕獲していた空孔を放出するため、逆にMgやSiの拡散を促進し、BH性を高くすることができる。
 ただ、本発明者らの知見によれば、このようなSnの添加には、Sn特有の特性からくる、新たな問題が発生する。すなわち、Snを添加して常法により板を製造した場合、その製造条件によっては、Snの添加が、却って強度に寄与するMg-Siクラスタを減少させることにつながる。このため、Snの添加によって、焼付け塗装硬化処理後において析出する析出物の量が不足して、前記した、自動車パネルとして必要な強度が得られない場合が生じる。
 この理由は、前記したSnの原子空孔の捕獲や放出効果が、Snのマトリックスへの固溶量がごく少ない(常法ではSnの添加量を理論固溶量以下に抑えたとしてもその多くが固溶せずに化合物として晶出あるいは析出してしまう)ことと関係している、と推考されるが、定かでは無い。
 いずれにしても、このようなSn添加の副作用とも言える、強度に寄与するMg-Siクラスタの減少や、焼付け塗装硬化処理後において析出する析出物量が不足するなどの問題を解決しない限り、Snを添加する意義自体が無くなりかねない。
 このため、本実施形態では、板の製造方法も敢えて見直した上で、後述する通り、溶体化焼入れ処理後の予備時効処理(再加熱処理)などの製造条件を工夫して、Snを添加しても、強度に寄与するMg-Siクラスタの減少や、焼付け塗装硬化処理後において析出する析出物量が不足しないようにした。
 そして、Snを添加しても、強度に寄与するMg-Siクラスタの減少を防止して、焼付け塗装硬化処理後において析出する析出物量を増加あるいは確保する組織の目安として、この板のDSC(示差走査熱分析曲線)が適用できることも知見した。すなわち、本実施形態では、このDSCによって、強度に寄与しない、比較的小さなMg-Siクラスタの溶解に相当する吸熱ピークを規制する一方で、強度に寄与する比較的大きなMg-Siクラスタの生成に相当する発熱ピークを高める。これによって、強度に寄与しないMg-Siクラスタを抑制した上で、強度に寄与するMg-Siクラスタを増加させて、所望のBH性を得る。
 この結果、本実施形態によれば、Snを添加した上で、自動車パネル成形時の0.2%耐力を110MPa以下に低くした上で、BH後の0.2%耐力を200MPa以上とすることが可能な、成形性と焼付け塗装硬化性を兼備したアルミニウム合金板を提供することができる。
 また、前記第2の実施形態では、先ず、Al-Mg-Si系アルミニウム合金板の前記したアウタパネルへの成形性(以下、このプレス成形性を代表してヘム加工性とも言う)を確保するために、この成形時の板の0.2%耐力を110MPa以下に低くするとともに、降伏比を0.50未満に低くすることを狙いとしている。
 このために、本実施形態では、Mg、Siなどの合金組成とともに、MgとSiの固溶量も制御している。また、Snを添加して、前記成形性を確保しつつ、BH性を高めている。Snは、後述する通り、Mg+Siの固溶量を増しても、低降伏比化を阻害する原子集合体の体積分率を低くして、高BH性化と低降伏比化とを両立させる重要な効果がある。
 また、本実施形態では、更に、板の成形時の降伏比を確実に0.50未満に低くできるように、このような手段に加えて、Mg-Si原子の集合体の制御として、3次元アトムプローブ電界イオン顕微鏡により測定された、原子の集合体のサイズ分布を規定する。
 ここで、本実施形態で言う3次元アトムプローブ電界イオン顕微鏡により測定された原子の集合体とは、前記特許文献2、3に記載の測定方法を含めて公知の原子の集合体であり、前記特許文献1のように、高倍率のTEMによって、板の組織中でのサイズや存在形態を、板の組織そのままの状態で、直接観察した原子の集合体(クラスタ)ではない。言い換えると、測定方法の詳細を後述する通り、前記特許文献2、3と同じく、3次元アトムプローブ電界イオン顕微鏡により、高電界下で一旦イオン化(電界蒸発)された板の原子の、飛行時間と位置から解析されて再構築された、3次元の原子構造(3次元アトムマップ)における、原子の集合体である。そして、この3次元の原子構造において、請求項1で規定する一定の条件を満たすものとして定義された(原子集合体であると見なされた)原子の集合体である。
 本実施形態では、降伏比を0.50未満に低くするために、3次元アトムプローブ電界イオン顕微鏡により測定された、原子の集合体のサイズ分布として、前記Mg原子かSi原子かを含み原子の互いの距離が0.75nm以下である条件を満たす原子の集合体の割合を、体積分率として一定の範囲に規制する。その上で、更に、これらの原子の集合体のうちの、前記ギニエ半径rが1.5nm以上である、比較的大きな原子の集合体の割合を、体積分率として、一定の範囲に多くする。
 この結果、本実施形態によれば、Snを添加した上で、自動車パネル成形時の0.2%耐力を110MPa以下に低くするとともに、降伏比を0.50未満に低くした上で、BH後の0.2%耐力を190MPa以上とすることが可能な、成形性と焼付け塗装硬化性を兼備したアルミニウム合金板を提供することができる。
図1は、第1の実施形態に係る実施例における各例のDSCを示す説明図である。
(第1の実施形態)
 以下に、本発明の第1の実施の形態につき、要件ごとに具体的に説明する。
(化学成分組成)
 先ず、本実施形態のAl-Mg-Si系(以下、6000系とも言う)アルミニウム合金板の化学成分組成について、以下に説明する。本実施形態が対象とする6000系アルミニウム合金板は、前記した自動車の外板用の板などとして、優れた成形性やBH性、強度、溶接性、耐食性などの諸特性が要求されるので、組成の面からもこれらの要求を満たすようにする。その上で、本実施形態では、Snを含有させて、製造後の板の室温時効を抑制して、パネル成形時の0.2%耐力を110MPa以下に低くして、自動車のパネル構造体の、特に面歪が問題となるような自動車パネルなどへの成形性を向上させる。それとともに、焼付け塗装硬化後の0.2%耐力を200MPa以上とすることを、組成の面から可能とする。
 このような要求を満足するために、本実施形態のアルミニウム合金板の組成は、質量%で、Mg:0.2~2.0%、Si:0.3~2.0%、Sn:0.005~0.3%を各々含み、残部がAlおよび不可避的不純物からなるものとする。なお、各元素の含有量の%表示は全て質量%の意味である。また、本明細書においては、質量を基準とした百分率(質量%)は、重量を基準とした百分率(重量%)と同じである。また、各化学成分の含有量について、「X%以下(但し、0%を含まず)」であることを、「0%超X%以下」と表すことがある。
 本実施形態では、これらMg、Si、Sn以外のその他の元素は不純物あるいは含まれても良い元素であり、AA乃至JIS規格などに沿った各元素レベルの含有量 (許容量) とする。
 すなわち、資源リサイクルの観点から、本実施形態でも、合金の溶解原料として、高純度Al地金だけではなく、Mg、Si以外のその他の元素を添加元素(合金元素)として多く含む6000系合金やその他のアルミニウム合金スクラップ材、低純度Al地金などを多量に使用した場合には、下記のような他の元素が必然的に実質量混入される。そして、これらの元素を敢えて低減する精錬自体がコストアップとなり、ある程度の含有を許容することが必要となる。また、これらの元素を実質量含有しても、本実施形態の目的や効果を阻害しない有用な含有範囲がある。
 したがって、本実施形態では、このような下記元素を各々以下に規定するAA乃至JIS 規格などに沿った上限量以下の範囲での含有を許容する。
 具体的には、前記アルミニウム合金板が、更に、Fe:1.0%以下(但し、0%を含まず)、Mn:1.0%以下(但し、0%を含まず)、Cr:0.3%以下(但し、0%を含まず)、Zr:0.3%以下(但し、0%を含まず)、V:0.3%以下(但し、0%を含まず)、Ti:0.1%以下(但し、0%を含まず)、Cu:1.0%以下(但し、0%を含まず)、Ag:0.2%以下(但し、0%を含まず)、及び、Zn:1.0%以下(但し、0%を含まず)からなる群より選ばれる1種または2種以上を、この範囲で、上記した基本組成に加えて、更に含んでも良い。
 なお、これらの元素を含有する場合、Cuは含有量が多いと耐食性を劣化させやすいので、好ましくはCuの含有量を0.7%以下、より好ましくは0.3%以下とする。また、Mn、Fe、Cr、Zr、Vは、含有量が多いと比較的粗大な化合物を生成しやすく、本実施形態で課題とするヘム加工性(ヘム曲げ性)を劣化させやすい。このため、Mn含有量は、好ましくは0.6%以下、より好ましくは0.3%以下、Cr、Zr、V含有量は、好ましくは0.2%以下、より好ましくは0.1%以下と各々する。
 上記6000系アルミニウム合金における、各元素の含有範囲と意義、あるいは許容量について以下に順に説明する。
Si:0.3~2.0%
 Siは、SiはMgとともに、塗装焼き付け処理などの人工時効処理時に、強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、自動車パネルとして必要な強度(耐力)を得るための必須の元素である。Si添加量が少なすぎると、人工時効後の析出量が少なくなりすぎ、焼付け塗装時の強度増加量が低くなりすぎてしまう。一方Si含有量が多すぎると、不純物のFeなどと粗大な晶出物を形成してしまい、曲げ加工性などの成形性を著しく低下させてしまう。また、Si含有量が多すぎると、板の製造直後の強度だけでなく、製造後の室温時効量も高くなり、成形前の強度が高くなりすぎて、自動車のパネル構造体の、特に面歪が問題となるような自動車パネルなどへの成形性が低下してしまう。したがって、Siの含有量は0.3~2.0%の範囲とする。
 パネルへの成形後の、より低温、短時間での塗装焼き付け処理での優れた時効硬化能を発揮させるためには、Si/ Mgを質量比で1.0以上とし、一般に言われる過剰Si型よりも更にSiをMgに対し過剰に含有させた6000系アルミニウム合金組成とすることが好ましい。
Mg:0.2~2.0%
 Mgも、Siとともに本実施形態で規定する前記クラスタ形成の重要元素であり、塗装焼き付け処理などの前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、パネルとしての必要耐力を得るための必須の元素である。Mg含有量が少なすぎると、人工時効後の析出量が少なくなりすぎ焼付け塗装後の強度が低くなりすぎてしまう。一方、Mg含有量が多くなりすぎると、不純物のFeなどと粗大な晶出物を形成してしまい、曲げ加工性などの成形性を著しく低下させてしまう。また、Mg含有量が高すぎると、板の製造直後の強度だけでなく、製造後の室温時効量も高くなり、成形前の強度が高くなりすぎて、自動車のパネル構造体の、特に面歪が問題となるような自動車パネルなどへの成形性が低下してしまう。したがって、Mgの含有量は0.2~2.0%の範囲とする。
Sn:0.005~0.3%
 Snは、室温においては、原子空孔を捕獲(捕捉、トラップ)することで、室温でのMgやSiの拡散を抑制し、室温における強度増加を抑制し、板のパネルへの成形時に、ヘム加工性や絞り加工や張出加工などのプレス成形性(以下、このプレス成形性を代表してヘム加工性とも言う)を向上させる効果がある。そして、パネルの塗装焼き付け処理などの人工時効処理時には捕獲していた空孔を放出するため、逆にMgやSiの拡散を促進し、BH性を高くすることができる。Sn含有量が0.005%よりも少ないと、十分に空孔をトラップしきれずにその効果を発揮できない。一方、Sn含有量が0.3%よりも多いと、Snが粒界に偏析し、粒界割れの原因となりやすい。なお、Sn含有量の好ましい下限値は0.01%である。Sn含有量の好ましい上限値は0.2%、さらには0.1%、より好ましくは0.06%である。
(組織)
 以上のような組成とした上で、本実施形態では、6000系アルミニウム合金板の組織について、自動車パネルなどとしての高強度を保証するために、焼付け塗装硬化処理後において析出する析出物の量を保証する目安として、この板のDSCにおいて、焼付け塗装前の強度および焼付け塗装時の強度増加に特に関わる、特定の温度範囲における吸熱ピークおよび発熱ピークを制御する。言い換えると、Snを添加しても、強度に寄与するMg-Siクラスタの減少や、焼付け塗装硬化処理後において析出する析出物量が不足しないように、この板のDSCを用いて、焼付け塗装前の強度および焼付け塗装時の強度増加に特に関わる、特定の温度範囲における吸熱ピークおよび発熱ピークを制御する。
 より具体的に、本実施形態では、このDSCによって、強度に寄与しない、比較的小さなMg-Siクラスタの溶解に相当する吸熱ピークを規制する一方で、強度に寄与する比較的大きなMg-Siクラスタの生成に相当する発熱ピークを高める。これによって、強度に寄与しないMg-Siクラスタを抑制した上で、強度に寄与するMg-Siクラスタを増加させて、所望のBH性を得る。
 ここで、示差走査熱分析曲線(DSC)とは、前記調質処理後のアルミニウム合金板の融解過程における熱的変化を、後述する条件による示差熱分析により測定して得られた固相からの加熱曲線である。
 具体的には、前記アルミニウム合金板の各測定箇所における示差熱分析においては、試験装置:セイコ-インスツルメンツ製DSC220G、標準物質:アルミニウム、試料容器:アルミニウム、昇温条件:15℃/min、雰囲気:アルゴン(50ml/min)、試料重量:24.5~26.5mgの同一条件で各々行い、得られた示差熱分析のプロファイル(μW)を試料重量で割って規格化した(μW/mg)後に、前記示差熱分析プロファイルでの0~100℃の区間において、示差熱分析のプロファイルが水平になる領域を0の基準レベルとし、この基準レベルからの発熱ピーク高さを測定する。
 本実施形態では、先ず、強度に寄与しないMg-Siクラスタと認識している、サイズが比較的小さく、DSCの昇温過程で溶解しやすいMg-Siクラスタの数(数密度)を抑制する。BHにおいて、このようなDSCの昇温過程で溶解しやすいMg-Siクラスタの数が増加すると、逆に、強度に寄与すると認識している、サイズが比較的大きく、DSCの昇温過程で溶解しにくいMg-Siクラスタの数(数密度)が、人工時効硬化処理しても減少して、BH後の強度が高くならない。具体的には、BH条件にもよるが、100MPa以上の0.2%耐力増加量で、200MPa以上のBH後強度(0.2%耐力)を得ることができない。
 このために、本実施形態では、強度に寄与しない、DSCの昇温過程で溶解しやすいMg-Siクラスタの溶解に相当する吸熱ピークとして、150~230℃の温度範囲の吸熱ピークAのピーク高さを8μW/mg以下(但し、0μW/mgを含む)に抑制する(低く、小さくする)。したがって、この150~230℃の温度範囲の吸熱ピークのピーク高さが8μW/mgとは、強度に寄与しないサイズが比較的小さなMg-Siクラスタの強度への悪影響に対して、許容できる限界の数密度を示している。板の製造の限界からして、このような強度に寄与しないサイズが比較的小さなMg-Siクラスタが存在しない場合(その数密度が0の場合)は製造しにくいものの、本実施形態は含んでいる。このため、前記吸熱ピークAのピーク高さが8μW/mg以下の規定では、このような強度に寄与しないサイズが比較的小さなMg-Siクラスタが存在しない、0μW/mgの場合を含んでいる。
 この一方で、本実施形態では、強度に寄与する、サイズが比較的大きく、DSCの昇温過程で溶解しにくいMg-Siクラスタを多く生成させてBH性を向上させる。このために、強度に寄与するMg-Siクラスタの生成に相当する240~255℃の温度範囲の発熱ピークBのピーク高さを20μW/mg以上と高く(大きく)する。したがって、この240~255℃の温度範囲の発熱ピークのピーク高さを20μW/mgとは、BH条件にもよるが、本実施形態で狙いとするBH性向上(100MPa以上の0.2%耐力増加量で、200MPa以上のBH後の0.2%耐力)を得るために、強度に寄与するサイズが比較的大きなMg-Siクラスタの、最低限必要な数密度を示している。したがって、この数密度は多いほどよく、この240~255℃の温度範囲の発熱ピークのピーク高さも大きい(高い)ほど良いが、板の製造の限界からすると、その上限は80μW/mg程度である。
 図1に、後述する実施例の、表2における発明例8、比較例9、表3における比較例25の3種類のアルミニウム合金板のDSCとして、発明例8を太い実線、比較例9を点線、比較例25を一点鎖線で各々示す。
 この図1において、比較例9のDSCは、後述する表2の通り、150~230℃の温度範囲の吸熱ピークAのピーク高さが8μW/mgを超えて高く(大きく)、強度に寄与しないサイズが比較的小さなMg-Siクラスタの数密度が多すぎる。その一方で、240~255℃の温度範囲の発熱ピークBのピーク高さも20μW/mg以上と高く(大きく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度も多い。しかし、前記強度に寄与しないサイズが比較的小さなMg-Siクラスタの数密度が多すぎるために、この悪影響の方が強すぎて、目的とするBH性(100MPa以上の0.2%耐力増加量で、200MPa以上のBH後の0.2%耐力)が得られていない。
 また、図1における比較例25のDSCは、後述する表2の通り、150~230℃の温度範囲の吸熱ピークAのピーク高さは8μW/mg以下と低く(小さく)、強度に寄与しないサイズが比較的小さなMg-Siクラスタの数密度は低い。しかし、その一方で、240~255℃の温度範囲の発熱ピークBのピーク高さも20μW/mg未満と低く(小さく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度も少なすぎる。このため、やはり目的とするBH性(100MPa以上の0.2%耐力増加量で、200MPa以上のBH後の0.2%耐力)が得られていない。
 これに対して、図1における発明例8のDSCは、後述する表2の通り、150~230℃の温度範囲の吸熱ピークAのピーク高さは8μW/mg以下と低く(小さく)、強度に寄与しないサイズが比較的小さなMg-Siクラスタの数密度は低い。そして、その一方で、240~255℃の温度範囲の発熱ピークBのピーク高さも20μW/mg以上と高く(大きく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度が多い。このため、目的とするBH性(100MPa以上の0.2%耐力増加量で、200MPa以上のBH後の0.2%耐力)が得られている。
(製造方法)
 次に、本実施形態のアルミニウム合金板の製造方法について以下に説明する。本実施形態のアルミニウム合金板は、製造工程自体は常法あるいは公知の方法であり、上記6000系成分組成のアルミニウム合金鋳塊を鋳造後に均質化熱処理し、熱間圧延、冷間圧延が施されて所定の板厚とされ、更に溶体化焼入れなどの調質処理が施されて製造される。
 但し、これらの製造工程中で、本実施形態のDSCで規定する組織を得るためには、後述する通り、溶体化後の焼入れ処理の平均冷却速度の制御に加えて、焼入れ処理後の予備時効処理条件を、好ましい範囲とする。なお、他の工程においても、本実施形態のDSCで規定する組織を得るための好ましい条件もある。このような好ましい条件としなければ、本実施形態のDSCで規定する組織を得ることが難しくなる。
(溶解、鋳造冷却速度)
 先ず、溶解、鋳造工程では、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。ここで、鋳造時の平均冷却速度について、液相線温度から固相線温度までを30℃/分以上と、できるだけ大きく(速く)することが好ましい。
 このような、鋳造時の高温領域での温度(冷却速度)制御を行わない場合、この高温領域での冷却速度は必然的に遅くなる。このように高温領域での平均冷却速度が遅くなった場合、この高温領域での温度範囲で粗大に生成する晶出物の量が多くなって、鋳塊の板幅方向,厚さ方向での晶出物のサイズや量のばらつきも大きくなる。この結果、前提として必要な、6000系アルミニウム合金板の、強度や伸びなどの基本的な機械的性質を低下させる。
(均質化熱処理)
 次いで、前記鋳造されたアルミニウム合金鋳塊に、熱間圧延に先立って、均質化熱処理を施す。この均質化熱処理(均熱処理)は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくすことを目的とする。この目的を達成する条件であれば、特に限定されるものではなく、通常の1回または1段の処理でも良い。
 均質化熱処理温度は、500℃以上で融点未満、均質化時間は4時間以上の範囲から適宜選択される。この均質化温度が低いと結晶粒内の偏析を十分に無くすことができず、これが破壊の起点として作用するために、伸びフランジ性や曲げ加工性が低下する。この後、直ちに熱間圧延を開始又は、適当な温度まで冷却保持した後に熱間圧延を開始しても良い。
 この均質化熱処理を行った後、300℃~500℃の間を20~100℃/hrの平均冷却速度で室温まで冷却し、次いで20~100℃/hrの平均加熱速度で350℃~450℃まで再加熱し、この温度域で熱間圧延を開始することもできる。
 この均質化熱処理後の平均冷却速度および、その後の再加熱速度の条件を外れると、粗大なMg-Si化合物が形成される可能性が高くなり、Snの効果発揮以前に、前提として必要な、6000系アルミニウム合金板の、強度や伸びなどの基本的な機械的性質が低下する。
(熱間圧延)
 熱間圧延は、圧延する板厚に応じて、鋳塊 (スラブ) の粗圧延工程と、仕上げ圧延工程とから構成される。これら粗圧延工程や仕上げ圧延工程では、リバース式あるいはタンデム式などの圧延機が適宜用いられる。
 この際、熱延(粗圧延)開始温度が固相線温度を超える条件では、バーニングが起こるため熱延自体が困難となる。また、熱延開始温度が350℃未満では熱延時の荷重が高くなりすぎ、熱延自体が困難となる。したがって、熱延開始温度は好ましくは350℃~固相線温度、更に好ましくは400℃~固相線温度の範囲とする。
(熱延板の焼鈍)
 この熱延板の冷間圧延前の焼鈍 (荒鈍) は必ずしも必要ではないが、結晶粒の微細化や集合組織の適正化によって、成形性などの特性を更に向上させる為に実施しても良い。
(冷間圧延)
 冷間圧延では、上記熱延板を圧延して、所望の最終板厚の冷延板 (コイルも含む) に製作する。但し、結晶粒をより微細化させるためには、パス数に関わらず、合計の冷間圧延率は60%以上であることが望ましい。
(溶体化および焼入れ処理)
 冷間圧延後、溶体化処理と、これに続く、室温までの焼入れ処理を行う。この溶体化焼入れ処理については、通常の連続熱処理ラインによる加熱,冷却でよく、特に限定はされない。ただ、各元素の十分な固溶量を得ること、および前記した通り、結晶粒はより微細であることが望ましいことから、520℃以上、溶融温度以下の溶体化処理温度に、加熱速度5℃/秒以上で加熱して、0.1~10秒保持する条件で行うことが望ましい。
 また、成形性やヘム加工性を低下させる粗大な粒界化合物形成を抑制する観点から、溶体化処理温度から、室温の焼入れ停止温度までの平均冷却速度を3℃/s以上とすることが望ましい。溶体化処理後の室温までの焼入れ処理の冷却速度が小さいと、冷却中に粗大なMg-Siおよび単体Siが生成してしまい、成形性が劣化してしまう。また溶体化後の固溶量が低下し、BH性が低下してしまう。この冷却速度を確保するために、室温までの焼入れ処理は、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用いる。
(予備時効処理:再加熱処理)
 このような溶体化処理後に焼入れ処理して室温まで冷却した後、1時間以内に冷延板を予備時効処理(再加熱処理)する。室温までの焼入れ処理終了後、予備時効処理開始(加熱開始)までの室温保持時間が長すぎると、室温時効により溶解しやすいクラスタとして、前記した強度に寄与しない小さなMg-Siクラスタが多く生成してしまい、150~230℃の温度範囲の吸熱ピークのピーク高さを8μW/mg以下に抑制することが難しくなる。したがって、この室温保持時間は短いほど良く、溶体化および焼入れ処理と再加熱処理とが、時間差が殆ど無いように連続していても良く、下限の時間は特に設定しない。
 この予備時効処理では、予備時効温度までの昇温速度と予備時効温度範囲での保持時間を制御する。このうち、昇温速度は、前記した強度に寄与しない小さなMg-Siクラスタの生成を抑制するために、1℃/s以上、好ましくは5℃/s以上のできるだけ大きな(速い)昇温速度とすることが好ましい。昇温速度が1℃/sよりも小さいと、強度に寄与しない、DSCの昇温過程で溶解しやすいMg-Siクラスタが多く生成してしまい、150~230℃の温度範囲の吸熱ピークのピーク高さを8μW/mg以下に抑制することが難しくなる。
 また、予備時効処理の温度と保持時間は、60~120℃の温度範囲で、10hr以上、40hr以下保持するものとする。この時、この60~120℃での温度保持を、この温度範囲で、一定の温度あるいは昇温、除冷により温度を順次変えた熱処理としても良い。要は、徐冷や昇温などで連続的に温度が変化しても、60~120℃の温度域に、前記10hr以上、40hr以下保持されていれば良い。
 予備時効温度が60℃未満、または保持時間が10hr未満であると、析出核の生成が不十分であり、DSCにおいて、240~255℃の温度範囲の発熱ピークBの範囲における発熱ピークのピーク温度が255℃よりも高温になりやすい。これは、強度に寄与する、サイズが比較的大きいMg-Siクラスタが減少することを意味し、240~255℃の温度範囲の発熱ピークBのピーク高さを20μW/mg以上と高く(大きく)できなくなる。この結果、BH性が低下する。
 一方、予備時効温度が120℃を超えるか、または、保持時間が40hrを超えると、この予備時効処理での析出核の生成量を多くしすぎることになる。このため、却って、強度に寄与する、サイズが比較的大きいMg-Siクラスタが減少して、DSCにおける、240~255℃の温度範囲の発熱ピークBのピーク高さを20μW/mg以上と高く(大きく)できなくなるので、やはりBH性が低下する。そして、成形時の強度も高くなりすぎる。
 すなわち、予備時効処理を、これらの好ましい条件範囲内としないと、自動車パネル成形時の0.2%耐力を110MPa以下に低くした上で、BH後の0.2%耐力を200MPa以上とすることが難しくなる。
 以下に、本発明の第2の実施の形態につき、要件ごとに具体的に説明する。
(化学成分組成)
 先ず、本実施形態のAl-Mg-Si系(以下、6000系とも言う)アルミニウム合金板の化学成分組成について、以下に説明する。本実施形態が対象とする6000系アルミニウム合金板は、前記した自動車の外板用の板などとして、優れた成形性やBH性、強度、溶接性、耐食性などの諸特性が要求されるので、組成の面からもこれらの要求を満たすようにする。その上で、本実施形態では、Snを含有させて、製造後の板の室温時効を抑制して、パネル成形時の0.2%耐力を110MPa以下に低くするとともに、降伏比を0.50未満に低くして、自動車のパネル構造体の、特に面歪が問題となるような自動車パネルなどへの成形性を向上させる。それとともに、焼付け塗装硬化後の0.2%耐力を190MPa以上とすることを、組成の面から可能とする。
 このような要求を満足するために、本実施形態のアルミニウム合金板の組成は、質量%で、Mg:0.3~1.0%、Si:0.5~1.5%、Sn:0.005~0.3%を各々含み、残部がAlおよび不可避的不純物からなるものとする。なお、各元素の含有量の%表示は全て質量%の意味である。また、本明細書においては、質量を基準とした百分率(質量%)は、重量を基準とした百分率(重量%)と同じである。また、各化学成分の含有量について、「X%以下(但し、0%を含まず)」であることを、「0%超X%以下」と表すことがある。
 本実施形態では、これらMg、Si、Sn以外のその他の元素は不純物あるいは含まれても良い元素であり、AA乃至JIS規格などに沿った各元素レベルの含有量 (許容量) とする。
 すなわち、前記第1の実施形態と同様の理由により、本実施形態では、下記のような他の元素を各々以下に規定するAA乃至JIS 規格などに沿った上限量以下の範囲での含有を許容する。
 具体的には、前記アルミニウム合金板が、更に、Fe:1.0%以下(但し、0%を含まず)、Mn:0.4%以下(但し、0%を含まず)、Cr:0.3%以下(但し、0%を含まず)、Zr:0.3%以下(但し、0%を含まず)、V:0.3%以下(但し、0%を含まず)、Ti:0.1%以下(但し、0%を含まず)、Cu:0.4%以下(但し、0%を含まず)、Ag:0.2%以下(但し、0%を含まず)、及び、Zn:1.0%以下(但し、0%を含まず)からなる群より選ばれる1種または2種以上を、この範囲で、上記した基本組成に加えて、更に含んでも良い。
 なお、これらの元素を含有する場合、Cuは含有量が多いと耐食性を劣化させやすいので、好ましくはCuの含有量を0.3%以下とする。また、Mn、Fe、Cr、Zr、Vは、含有量が多いと比較的粗大な化合物を生成しやすく、本実施形態で課題とするヘム加工性(ヘム曲げ性)を劣化させやすい。このため、Mn含有量は、好ましくは0.35%以下、Cr、Zr、V含有量は、好ましくは0.2%以下、より好ましくは0.1%以下と各々する。
 上記6000系アルミニウム合金における、各元素の含有範囲と意義、あるいは許容量について以下に順に説明する。
Si:0.5~1.5%
 Siは、SiはMgとともに、塗装焼き付け処理などの人工時効処理時に、強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、自動車パネルとして必要な強度(耐力)を得るための必須の元素である。また、固溶Siは加工硬化能を向上させる元素であり、固溶することで引張強度と降伏強度の比(0.2%耐力/引張強度)である降伏比を0.50未満に低下させる効果がある。
 Si含有量が少なすぎると、人工時効硬化処理後の析出物量が少なくなりすぎ、焼付け塗装時の強度増加量が低くなるとともに、固溶Si量も少なくなって、降伏比が0.50を超えて大きくなりすぎてしまう。一方Si含有量が多すぎると、不純物のFeなどと粗大な晶出物を形成してしまい、曲げ加工性などの成形性を著しく低下させてしまう。また、Si含有量が多すぎると、板の製造直後の強度だけでなく、製造後の室温時効量も高くなり、成形前の強度が高くなりすぎて、自動車のパネル構造体の、特に面歪が問題となるような自動車パネルなどへの成形性が低下してしまう。したがって、Siの含有量は0.5~1.5%の範囲とする。
 パネルへの成形後の、より低温、短時間での塗装焼き付け処理での優れた時効硬化能を発揮させるためには、Si/Mgを質量比で1.0以上とし、一般に言われる過剰Si型よりも更にSiをMgに対し過剰に含有させた6000系アルミニウム合金組成とすることが好ましい。
Mg:0.3~1.0%
 Mgも、Siとともに本実施形態で規定する前記原子の集合体形成の重要元素であり、塗装焼き付け処理などの前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、パネルとしての必要耐力を得るための必須の元素である。また、Siと同じく、固溶Mgは加工硬化能を向上させる元素であり、固溶することで引張強度と降伏強度の比(0.2%耐力/引張強度)である降伏比を0.50未満に低下させる効果がある。
 Mg含有量が少なすぎると、人工時効硬化処理後の析出物量が少なくなりすぎ、焼付け塗装時の強度増加量が低くなるとともに、固溶Mg量も少なくなって、降伏比が0.50を超えて大きくなりすぎてしまう。一方、Mg含有量が多くなりすぎると、不純物のFeなどと粗大な晶出物を形成してしまい、曲げ加工性などの成形性を著しく低下させてしまう。また、Mg含有量が高すぎると、板の製造直後の強度だけでなく、製造後の室温時効量も高くなり、成形前の強度が高くなりすぎて、自動車のパネル構造体の、特に面歪が問題となるような自動車パネルなどへの成形性が低下してしまう。したがって、Mgの含有量は0.3~1.0%の範囲とする。
Sn:0.005~0.3%
 Snは、後述するMg+Siの固溶量を増しても、パネル成形時の0.2%耐力を増加させる原子集合体の体積分率を低くして、高BH性化と低降伏比化とを両立させる重要な効果がある。一般的に、Mg+Siの固溶量を増すためには、板に含有させるMgなりSiなりの量を増加させることが有効である。しかし、これらMgやSiの板の含有量を増加させると、パネル成形時の0.2%耐力を増加させ、かつ低降伏比化を阻害する原子集合体の体積分率も増加してしまうため、高BH性化と低耐力化と低降伏比化の両立は、従来の組成や製法では難しかった。これに対して、本実施形態は、Snを前記範囲で含有させることで、Mg+Siの固溶量を増してBH性を高めても、低降伏比化を阻害する原子集合体を抑制でき、高BH性化と低耐力化と低降伏比化とを両立させることができる。
 また、Snは、室温においては、原子空孔を捕獲(捕捉、トラップ)することで、室温でのMgやSiの拡散を抑制し、室温における強度増加(室温時効硬化)を抑制し、板のパネルへの成形時に、ヘム加工性や絞り加工や張出加工などのプレス成形性(以下、このプレス成形性を代表してヘム加工性とも言う)を向上させる効果がある。そして、パネルの塗装焼き付け処理などの人工時効処理時には捕獲していた空孔を放出するため、逆にMgやSiの拡散を促進し、BH性を高くすることができる。
 Sn含有量が0.005%よりも少ないと、前記したMg+Siの固溶量を増しても、低降伏比化を阻害する原子集合体の体積分率を低くして、高BH性化と低降伏比化とを両立させる効果や、前記した室温時効硬化の抑制効果を発揮できない。一方で、Sn含有量が0.3%よりも多いと、Snが粒界に偏析し、粒界割れの原因となりやすい。なお、Sn含有量の好ましい下限値は0.01%である。Sn含有量の好ましい上限値は0.2%、さらには0.1%、より好ましくは0.06%である。
(Mg+Siの固溶量)
 以上のような組成とした上で、本実施形態では、BH性を高めるために、更に、板が含有するMgとSiとの合計の固溶量(Mg+Siの固溶量)を増加させ、1.0質量%以上、2.0質量%以下の一定の範囲で確保する。Mg+Siの固溶量が1.0質量%未満では、前記組成としてもBH性を確保できない。このMg+Siの固溶量が多いほどBH性が向上するが、MgとSiと含有量と固溶量には前記した組成や製造上の制約もあり、また固溶量が多すぎると、前記した原子集合体の体積分率が増加し、パネル製経時の耐力および降伏比が大きくなる問題もあり、上限は2.0質量%とする。
 板のMg+Siの固溶量の測定は、熱フェノールによる残渣抽出法により、測定対象となる板の試料を溶解し、メッシュを0.1μmとしたフィルターにより固液をろ過分離し、分離された溶液中のMgとSiとの合計含有量を、Mg+Siの固溶量とみなす。
 熱フェノールによる残渣抽出法は、具体的に次のように行う。先ず、分解フラスコにフェノールを入れて加熱した後、測定対象となる各供試板試料を、この分解フラスコに移し入れて加熱分解する。次に、ベンジルアルコールを加えた後、前記フィルターにより吸引ろ過して、固液をろ過分離し、分離された溶液中のMgとSiとの合計含有量を定量分析する。この定量分析には、原子吸光分析法(AAS)や誘導結合プラズマ発光分析法(ICPOES)などを適宜用いる。前記吸引ろ過には、前記した通り、メッシュ(捕集粒子径)が0.1μmでφ47mmのメンブレンフィルターを用いる。この測定と計算は、供試板の板幅方向の中央部1箇所と、この中央部からの板幅方向の両端部2箇所の計3箇所から採取した各試料3個について行い、これら各試料のMg+Siの固溶量(質量%)を平均化する。
(原子の集合体)
 以上のような組成、組織とした上で、本実施形態では、更に、6000系アルミニウム合金板の組織について、降伏比を0.50未満に低くし、またBH性も保証するために、3次元アトムプローブ電界イオン顕微鏡により測定された、MgとSiとの原子の集合体のサイズ分布を制御する。これによって、前記したSnの効果だけでなく、板の組織中における原子集合体(クラスタ)を制御して、高BH性化と低降伏比化とを両立させる。
(原子の集合体の定義)
 但し、効果の欄で記載した通り、本実施形態では、3次元アトムプローブ電界イオン顕微鏡の原理に基づく測定および解析によって規定される幾つかの条件(要件)を満たすものを、原子の集合体と定義している。すなわち、3次元アトムプローブ電界イオン顕微鏡により、高電界下で一旦イオン化(電界蒸発)された板の原子の、飛行時間と位置から解析されて再構築された、3次元の原子構造(3次元アトムマップ)において、本実施形態で規定する幾つかの条件(要件)を満たすものを、原子の集合体と定義している。
 したがって、本実施形態で規定する原子の集合体は、前記特許文献1のように、高倍率のTEM(透過型電子顕微鏡)にて、板の組織をそのままの状態で直接観察して測定されるような、6000系アルミニウム合金板における実在の原子の集合体(クラスタ)ではない。しかし、前記高倍率のTEMにて直接観察されるような、6000系アルミニウム合金板における実在の原子の集合体(クラスタ)の存在状態とは深く相関している。このため、本実施形態における原子の集合体の測定は、いわば間接的あるいは模擬的であったとしても、低降伏比化や高BH性化に大きく影響する、これら実在の原子の集合体(クラスタ)の存在形態とは良く相関し、低降伏比化や高BH性化を組織(原子集合体)の面から保証する目安となるものである。
 ここで、測定の対象となる板は、溶体化処理および焼入れ処理などの調質が施された後であって、プレス成形や焼付け塗装硬化処理される前の6000系アルミニウム合金板とし、この板の任意の板厚中央部における組織を、3次元アトムプローブ電界イオン顕微鏡により測定する。
(原子の集合体としての満たすべき条件)
 本実施形態において原子の集合体であると定義される(みなされる)ための条件(前提条件)を以下に説明する。
 本実施形態における原子の集合体としての満たすべき条件は、前記特許文献2、3と同じである。先ず、Mg原子かSi原子かのいずれか又は両方を合計で10個以上含むものとする。なお、この原子の集合体に含まれるMg原子やSi原子の個数の上限は特に規定しないが、製造限界からすると、この原子の集合体に含まれるMg原子やSi原子の個数の上限は概ね10000個程度である。
 そして、さらに、これら原子の集合体に含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下であるものを原子の集合体とする。この互いの距離0.75nmは、技術的意味合いは十分には明らかになっていないが、MgやSiの互いの原子間の距離が近接して、低降伏比化や高BH性化に大きく影響するサイズの原子の集合体や、その体積分率を再現性良く規定するために、実験的に定めた値である。
 本実施形態で規定する原子の集合体は、Mg原子とSi原子とを両方含む場合が最も多いものの、Mg原子を含むがSi原子を含まない場合や、Si原子を含むがMg原子を含まない場合を含む。また、Mg原子やSi原子だけで構成されるとは限らず、これらに加えて、非常に高い確率でAl原子を含む。
 更に、アルミニウム合金板の成分組成によっては、合金元素や不純物として含む、Fe、Mn、Cu、Cr、Zr、V、Ti、ZnあるいはAgなどの原子が原子の集合体中に含まれ、これらその他の原子が3DAP分析によりカウントされる場合が必然的に生じる。しかし、これらその他の原子(合金元素や不純物由来)が原子の集合体に含まれるとしても、Mg原子やSi原子の総数に比べると少ないレベルである。それゆえ、このような、その他の原子を原子の集合体中に含む場合でも、前記規定(条件)を満たすものは、本実施形態の原子の集合体として、Mg原子やSi原子のみからなる原子の集合体と同様に機能する。したがって、本実施形態で規定する原子の集合体は、前記した規定さえ満足すれば、他にどんな原子を含んでも良い。
 また、本実施形態の「これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下である」とは、原子の集合体に存在する全てのMg原子やSi原子が、その周囲に互いの距離が0.75nm以下であるMg原子やSi原子を少なくとも1つ有しているという意味である。
 本実施形態の原子の集合体における、原子同士の距離の規定は、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちの全ての原子の距離が各々全て0.75nm以下にならなくてもよく、反対に、各々全て0.75nm以下になっていてもよい。言い換えると、距離が0.75nmを超える他のMg原子やSi原子が隣り合っていても良く、特定の(基準となる)Mg原子かSi原子の周りに、この規定距離(間隔)を満たす、他のMg原子かSi原子が最低1個あればいい。
 そして、この規定距離を満たす隣り合う他のMg原子かSi原子が1個ある場合には、距離の条件を満たす、カウントすべきMg原子かSi原子の数は、特定の(基準となる)Mg原子かSi原子を含めて2個となる。また、この規定距離を満たす隣り合う他のMg原子かSi原子が2個ある場合には、距離の条件を満たす、カウントすべきMg原子かSi原子の数は、特定の(基準となる)Mg原子かSi原子を含めて3個となる。
(原子の集合体の制御)
 先ず、本実施形態では、以上説明した、Mg原子、Si原子の個数や原子間距離などの一定の条件を満たす原子集合体の総体積として、個々の原子の集合体を各々球と見なした際のギニエ半径rから算出される個々の原子の集合体の体積Vi(=4/3πr 3)を合計した総体積ΣViを求める。そして、この総体積ΣViの、前記3次元アトムプローブ電界イオン顕微鏡により測定された前記アルミニウム合金板の体積VAlに占める平均体分率(ΣVi/VAl)×100を0.3~1.5%の範囲に制御する。
 更に、本実施形態では、前記原子の集合体の体積分率の制御に加えて、前記条件を満たす原子の集合体のうちの、前記原子集合体の総体積ΣViのうち、前記ギニエ半径rが1.5nm以上である原子の集合体の総体積ΣVi1.5以上の占める平均体積分率(ΣVi1.5以上/ΣVi)を20~70%の範囲に制御する。すなわち、前記条件を満たす個々の原子の集合体をギニエ半径r1.5nmにて区分けし、ギニエ半径rが1.5nm以上である個々の原子の集合体の体積Vi1.5以上を合計した総体積ΣVi1.5以上の、前記原子集合体の総体積Vに占める平均体積分率(ΣVi1.5以上/ΣVi)×100を20~70%の範囲に制御する。
 ここで、また、ギニエ半径(Guinier radius)rは、前記条件を満たす原子の集合体の、個々の原子の集合体を各々球と見なした際の、個々の原子の集合体が有する回転半径lのうちで最大となるものを、その原子の集合体の回転半径lとし、この回転半lから後述する式により換算される半径である。そして、このギニエ半径の定義や後述する算出方法は、前記特許文献2、3によって公知である。
 これらの組織制御によって、前記組成の制御と合わせて、6000系アルミニウム合金板の自動車パネル成形時の0.2%耐力を110MPa以下に低くするとともに、降伏比を0.50未満に低くした上で、BH後の0.2%耐力を190MPa以上とすることが可能となる。
 前記条件を満たす原子の集合体の前記平均体積分率(ΣVi/VAl)×100が0.3%未満では、高BH性化や低降伏比化に効く、ギニエ半径rが1.5nm以上の比較的大きな原子の集合体の絶対数が不足する。このため、前記組成を満足しても、前記高BH性化や低降伏比化が達成できない。一方、前記平均体積分率(ΣVi/VAl)×100が1.5%を超えても、前記原子との互いの距離が0.75nm以下であるなどの条件を満たす原子の集合体の数が多すぎて、パネル成形時の0.2%耐力の低減および低降伏比化が図れなくなる。
 また、高BH性化や低降伏比化に効く、ギニエ半径rが1.5nm以上である比較的大きな原子の集合体の平均体積分率(ΣVi1.5以上/ΣVi)×100が20%未満でも、これら原子の集合体の絶対数が不足し、前記組成を満足しても、また、前記条件を満たす原子の集合体の平均体積分率が前記規定を満たしても、低降伏比化が達成できない。一方、ギニエ半径rが1.5nm以上である比較的大きな原子の集合体の個数や割合は多いほど、低降伏比化が図れるが、平均体積分率(ΣVi1.5以上/ΣVi)×100を、70%を超えて大きくすることは製造上困難であり、製造限界からこの70%を上限とする。
(3DAPの測定原理と測定方法)
 3DAPの測定原理と測定方法も前記特許文献1~3によって公知である。すなわち、3DAP(3次元アトムプローブ)は、電界イオン顕微鏡(FIM)に、飛行時間型質量分析器を取り付けたものである。このような構成により、電界イオン顕微鏡で金属表面の個々の原子を観察し、飛行時間質量分析により、これらの原子を同定することのできる局所分析装置である。また、3DAPは、試料から放出される原子の種類と位置とを同時に分析可能であるため、原子の集合体の構造解析上、非常に有効な手段となる。このため、公知技術として、前記した通り、磁気記録膜や電子デバイスあるいは鋼材の組織分析などに使用されている。また、最近では、前記した通り、アルミニウム合金板の組織の原子の集合体の判別などにも使用されている。
 この3DAPでは、電界蒸発とよばれる高電界下における試料原子そのもののイオン化現象を利用する。試料原子が電界蒸発するために必要な高電圧を試料に印加すると、試料表面から原子がイオン化されこれがプローブホールを通りぬけて検出器に到達する。
 この検出器は、位置敏感型検出器であり、個々のイオンの質量分析(原子種である元素の同定)とともに、個々のイオンの検出器に至るまでの飛行時間を測定することによって、その検出された位置(原子構造位置)を同時に決定できるようにしたものである。したがって、3DAPは、試料先端の原子の位置及び原子種を同時に測定できるため、試料先端の原子構造を、3次元的に再構成、観察できる特長を有する。また、電界蒸発は、試料の先端面から順次起こっていくため、試料先端からの原子の深さ方向分布を原子レベルの分解能で調べることができる。
 この3DAPは高電界を利用するため、分析する試料は、金属等の導電性が高いことが必要で、しかも、試料の形状は、一般的には、先端径が100nmφ前後あるいはそれ以下の極細の針状にする必要がある。このため、測定対象となるアルミニウム合金板の板厚中央部などから試料を採取して、この試料を精密切削装置で切削および電解研磨して、分析用の極細の針状先端部を有する試料を作製する。測定方法としては、例えば、Imago Scientific Instruments 社製の「LEAP3000」を用いて、この先端を針状に成形したアルミニウム合金板試料に、1kVオーダーの高パルス電圧を印加し、試料先端から数百万個の原子を継続的にイオン化して行う。イオンは、位置敏感型検出器によって検出し、パルス電圧を印加されて、試料先端から個々のイオンが飛び出してから、検出器に到達するまでの飛行時間から、イオンの質量分析(原子種である元素の同定)を行う。
 更に、電界蒸発が、試料の先端面から順次規則的に起こっていく性質を利用して、イオンの到達場所を示す、2次元マップに適宜深さ方向の座標を与え、解析ソフトウエア「IVAS」を用いて、3次元マッピング(3次元での原子構造:アトムマップの構築)を行う。これによって、試料先端の3次元アトムマップが得られる。
 この3次元アトムマップを、更に、析出物や原子の集合体に属する原子を定義する方法であるMaximum Separation Methodを用いて、原子の集合体(原子の集合体)の解析を行う。この解析に際しては、Mg原子かSi原子かのいずれか又は両方の数(合計で10個以上)と、互いに隣り合うMg原子かSi原子か同士の距離(間隔)、そして、前記特定の狭い間隔(0.75nm以下)を有するMg原子かSi原子かの数をパラメータとして与える。
 そして、Mg原子かSi原子かのいずれか又は両方を合計で10個以上含み、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下であり、これらの条件を満たす原子の集合体を、本実施形態の原子の集合体と定義する。その上で、この定義に当てはまる原子の集合体の分散状態を評価して、原子の集合体の数密度を、測定試料数が3個以上で平均化して、1m3当たりの平均密度(個/m3)として計測し、定量化する。
 すなわち、前記3DAPが元々有する固有の解析ソフトによって、測定対象となった前記原子の集合体を球と見なした際の、最大となる回転半径lを下記数1の式により求める。
Figure JPOXMLDOC01-appb-M000001
 この数1の式において、lは3次元アトムプローブ電界イオン顕微鏡の固有のソフトウエアにより自動的に算出される回転半径である。x、y、zは3次元アトムプローブ電界イオン顕微鏡の測定レイアウトにおいて不変のx、y、z軸である。x、y、zは、このx、y、z軸の長さで、前記原子の集合体を構成するMg、Si原子の空間座標である。「x」「y」「z」の上に各々「-」が乗った「エックスバー」なども、このx、y、z軸の長さだが、前記原子の集合体の重心座標である。nは前記原子の集合体を構成するMg、Si原子の数である。
 次に、個々の原子の集合体が有する回転半径lのうちで最大となるものを、その原子の集合体の回転半径lとして、ギニエ半径rに、下記数2の式、r=√(5/3)・lの関係により換算する。そして、この換算されたギニエ半径rを原子の集合体の半径とみなす。
Figure JPOXMLDOC01-appb-M000002
 これに基づいて、前記条件を満たす個々の原子の集合体の体積Vi(=4/3πr 3)を合計して総体積ΣViを求める。そして、前記電界蒸発した(電界蒸発により消失した)針状試料の体積を、3次元アトムプローブ電界イオン顕微鏡により測定されたアルミニウム合金板の体積VAlとして、これに占める前記原子の集合体の総体積の平均体積分率(ΣVi/VAl)×100を求める。また、前記原子の集合体の総体積Vに占める、ギニエ半径rが1.5nm以上である原子の集合体の総体積ΣVi1.5以上の、平均体積分率(ΣVi1.5以上/ΣVi)×100も求める。これら3DAPによる原子の集合体の平均体積分率の測定は、前記調質が施された後の6000系アルミニウム合金板の任意の板厚中央部の部位10箇所について行い、これらの前記各測定値(算出値)を平均化する。
 前記した原子の集合体の半径の算出式、回転半径lからギニエ半径rまでの測定および換算方法は、M. K. Miller: Atom Probe Tomography, (Kluwer Academic/Plenum Publishers, New York, 2000)、 184頁 を引用した。ちなみに、原子の集合体の半径の算出式は、これ以外にも、多くの文献に記載されている。例えば「イオン照射された低合金鋼のミクロ組織変化」(藤井克彦、福谷耕司、大久保忠勝、宝野和博ら)の140頁「(2)3次元アトムプローブ分析」には、前記数1の式やギニエ半径rへの換算式を含めて記載されている(但し回転半径lの記号はrと記載されている)。
(3DAPによる原子の検出効率)
 これら3DAPによる原子の検出効率は、現在のところ、イオン化した原子のうちの50%程度が限界であり、残りの原子は検出できない。この3DAPによる原子の検出効率が、将来的に向上するなど、大きく変動すると、本実施形態が規定する各サイズの原子の集合体の平均個数密度(個/μm3)の3DAPによる測定結果が変動してくる可能性がある。したがって、この測定に再現性を持たせるためには、3DAPによる原子の検出効率は約50%と略一定にすることが好ましい。
(製造方法)
 次に、本実施形態のアルミニウム合金板の製造方法について以下に説明する。本実施形態のアルミニウム合金板は、製造工程自体は常法あるいは公知の方法であり、上記6000系成分組成のアルミニウム合金鋳塊を鋳造後に均質化熱処理し、熱間圧延、冷間圧延が施されて所定の板厚とされ、更に溶体化焼入れなどの調質処理が施されて製造される。
 但し、これらの製造工程中で、本実施形態の3DAPで規定する原子の集合体などの組織を得るためには、後述する通り、溶体化後の焼入れ処理の平均冷却速度の制御に加えて、焼入れ処理後の予備時効処理条件を、好ましい範囲とする。なお、他の工程においても、本実施形態で規定する組織を得るための好ましい条件もある。このような好ましい条件としなければ、本実施形態の組織を得ることが難しくなる。
(溶解、鋳造冷却速度)
 先ず、溶解、鋳造工程では、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。ここで、鋳造時の平均冷却速度について、液相線温度から固相線温度までを30℃/分以上と、できるだけ大きく(速く)することが好ましい。
 このような、鋳造時の高温領域での温度(冷却速度)制御を行わない場合、この高温領域での冷却速度は必然的に遅くなる。このように高温領域での平均冷却速度が遅くなった場合、この高温領域での温度範囲で粗大に生成する晶出物の量が多くなって、鋳塊の板幅方向,厚さ方向での晶出物のサイズや量のばらつきも大きくなり、前提として必要な、6000系アルミニウム合金板の、強度や伸びなどの基本的な機械的性質を低下させる。
(均質化熱処理、熱間圧延、熱延板の焼鈍、冷間圧延、及び、溶体化および焼入れ処理)
 次いで、前記鋳造されたアルミニウム合金鋳塊に、前記第1の実施形態の場合と同様に、均質化熱処理、熱間圧延、(必要に応じて)熱延板の焼鈍、冷間圧延、及び、溶体化および焼入れ処理の各処理を施す。なお、これら各処理の諸条件については前記第1の実施形態と同様であるため、ここでは説明を省略する。
(予備時効処理:再加熱処理)
 このような溶体化処理後に焼入れ処理して室温まで冷却した後、1時間(60分)以内のできるだけ短時間内に、冷延板を予備時効処理(再加熱処理)する。
 室温までの焼入れ処理終了後、予備時効処理開始(加熱開始)までの室温保持時間が1時間を超えて長すぎると、前記Mg原子、Si原子の個数や原子間距離の条件を満たす原子の集合体の総体積を平均体積分率で、1.5%以下に規制できなくなる。また、同時に、比較的大きいクラスタも生成しにくく、前記条件を満たす原子の集合体のうちで、ギニエ半径rが1.5nm以上である原子の集合体の平均体積分率を20%以上に多くできなくなる。この結果、BH性が低下し、低降伏比化も難しくなる。したがって、この室温保持時間は短いほど良く、溶体化および焼入れ処理と再加熱処理とが、時間差が殆ど無いように連続していても良く、下限の時間は特に設定しない。
 この予備時効処理では、予備時効温度までの昇温速度と予備時効温度範囲での保持時間を制御する。このうち、昇温速度は、前記した強度に寄与しない小さな原子の集合体の生成を抑制するために、1℃/s以上、好ましくは5℃/s以上のできるだけ大きな(速い)昇温速度とすることが好ましい。昇温速度が1℃/sよりも小さいと、強度に寄与しない小さな原子の集合体が多く生成してしまい、前記条件を満たす原子の集合体のうちで、ギニエ半径rが1.5nm以上である原子の集合体の平均体積分率を20%以上に多くできなくなる。この結果、BH性が低下し、低降伏比も難しくなる。
 また、予備時効処理の温度と保持時間は、60~120℃の温度範囲で、10hr以上、40hr以下保持するものとする。この時、この60~120℃での温度保持を、この温度範囲で、一定の温度あるいは昇温、除冷により温度を順次変えた熱処理としても良い。要は、徐冷や昇温などで連続的に温度が変化しても、60~120℃の温度域に、前記10hr以上、40hr以下保持されていれば良い。
 予備時効温度が60℃未満、または保持時間が10hr未満であると、析出核の生成が不十分であり、前記条件を満たす原子の集合体のうちで、ギニエ半径rが1.5nm以上である原子の集合体の平均体積分率を20%以上に多くできなくなる。この結果、BH性が低下する。
 一方、予備時効温度が120℃を超えるか、または、保持時間が40hrを超えると、この予備時効処理での析出核の生成量を多くしすぎることになる。このため、却って、強度に寄与する、サイズが比較的大きい原子の集合体が減少して、前記条件を満たす原子の集合体の平均体積分率が1.5%を超えて多くなり、成形時の板の降伏比を0.50未満に低くできなくなる。
 すなわち、予備時効処理を、これらの好ましい条件範囲内としないと、自動車パネル成形時の板の0.2%耐力を110MPa以下に低くするとともに、降伏比も0.50未満に低くする一方で、BH後の0.2%耐力を190MPa以上とすることが難しくなる。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
(第1の実施形態に係る実施例)
 次に本発明の第1の実施形態に係る実施例を説明する。本実施形態でDSCで規定の組織が異なる6000系アルミニウム合金板を、溶体化および焼入れ処理後の予備時効処理の条件を変えて作り分けて製造した。そして、板製造後室温に30日間保持後の、BH性(塗装焼付け硬化性)、プレス成形性の指標としてのAs耐力や、曲げ加工性としてのヘム加工性を各々測定、評価した。
 前記DSCで規定の組織の作り分けは、表1に示す組成の6000系アルミニウム合金板を、表2、3に示すように、溶体化処理後の焼入れ処理の平均冷却速度や、その後の予備時効処理の温度や保持時間などの条件を種々変えて行った。ここで、表1中の各元素の含有量の表示において、各元素における数値をブランクとしている表示は、その含有量が検出限界以下であることを示す。
 アルミニウム合金板の具体的な製造条件は以下の通りとした。表1に示す各組成のアルミニウム合金鋳塊を、DC鋳造法により共通して溶製した。この際、各例とも共通して、鋳造時の平均冷却速度について、液相線温度から固相線温度までを50℃/分とした。続いて、鋳塊を、各例とも共通して、540℃×6時間の1段のみの均熱処理をした後、その温度で熱間粗圧延を開始した。そして、各例とも共通して、続く仕上げ圧延にて、厚さ3.5mmまで熱延し、熱間圧延板とした。熱間圧延後のアルミニウム合金板を、各例とも共通して、500℃×1分の荒焼鈍を施した後、冷延パス途中の中間焼鈍無しで加工率70%の冷間圧延を行い、厚さ1.0mmの冷延板とした。
 更に、この各冷延板を、各例とも共通して、連続式の熱処理設備で巻き戻し、巻き取りながら、連続的に調質処理(T4)した。具体的には、溶体化処理を、500℃までの平均加熱速度を10℃/秒として、560℃の目標温度に到達後10秒保持して行い、その後、表2、3に示す各平均冷却速度となるように水冷あるいは空冷を行うことで室温まで冷却した。この冷却後、室温にて表2に示す所要時間後に、大気炉およびオイルバスを用い、表2、3に示す、昇温速度、到達温度、平均冷却速度、保持時間にて予備時効処理を行った。なお、この予備時効処理後の冷却は、平均冷却速度を変えるために、水冷あるいは徐冷(放冷)を行った。
 これら調質処理後30日間室温放置した後の各最終製品板から供試板 (ブランク) を切り出し、各供試板の前記DSCや特性を測定、評価した。これらの結果を表3に示す。
(DSC)
 前記供試板の板厚中央部の10箇所における組織の前記DSCを測定し、これら10箇所の平均値にて、この板のDSC(示差走査熱分析曲線)において、強度に寄与しないMg-Siクラスタの溶解に相当する吸熱ピークとして、150~230℃の温度範囲の吸熱ピークのピーク高さ(W/mg)、強度に寄与するMg-Siクラスタの生成に相当する発熱ピークとして、240~255℃の温度範囲の発熱ピークのピーク高さ(μW/mg)を各々求めた。
 但し、前記供試板の各測定箇所における示差熱分析においては、試験装置:セイコ-インスツルメンツ製DSC220G、標準物質:アルミニウム、試料容器:アルミニウム、昇温条件:15℃/min、雰囲気:アルゴン(50ml/min)、試料重量:24.5~26.5mgの同一条件で各々行い、得られた示差熱分析のプロファイル(μW)を試料重量で割って規格化した(μW/mg)後に、前記示差熱分析プロファイルでの0~100℃の区間において、示差熱分析のプロファイルが水平になる領域を0の基準レベルとし、この基準レベルからの発熱ピーク高さを測定した。これらの結果を表2、3に示す。
(塗装焼付硬化性)
 前記調質処理後30日間室温放置した後の各供試板の機械的特性として、0.2%耐力(As耐力)を引張試験により求めた。また、これらの各供試板を各々共通して、30日間の室温時効させた後に、170℃×20分の人工時効硬化処理した後(BH後)の、供試板の0.2%耐力(BH後耐力)を引張試験により求めた。そして、これら0.2%耐力同士の差(耐力の増加量)から各供試板のBH性を評価した。
 前記引張試験は、前記各供試板から、各々JISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温にて引張り試験を行った。このときの試験片の引張り方向を圧延方向の直角方向とした。引張り速度は、0.2%耐力までは5mm/分、耐力以降は20mm/分とした。機械的特性測定のN数は5とし、各々平均値で算出した。なお、前記BH後の耐力測定用の試験片には、この試験片に、板のプレス成形を模擬した2%の予歪をこの引張試験機により与えた後に、前記BH処理を行った。
(ヘム加工性)
 ヘム加工性は、前記調質処理後30日間室温放置後の各供試板についてのみ行った。試験は、30mm幅の短冊状試験片を用い、ダウンフランジによる内曲げR1.0mmの90°曲げ加工後、1.0mm厚のインナを挟み、折り曲げ部を更に内側に、順に約130度に折り曲げるプリヘム加工、180度折り曲げて端部をインナに密着させるフラットヘム加工を行った。
 このフラットヘムの曲げ部(縁曲部)の、肌荒れ、微小な割れ、大きな割れの発生などの表面状態を目視観察し、以下の基準にて目視評価した。下記の基準で、0~2までが合格ライン、3以上が不合格である。
 0;割れ、肌荒れ無し、1;軽度の肌荒れ、2;深い肌荒れ、3;微小表面割れ、4;線状に連続した表面割れ
 表1の合金番号0~12を用いた、表2の番号0、1、8、13、表3の16~24の各発明例は、本実施形態の成分組成範囲内で、かつ好ましい条件範囲で製造されるとともに、溶体化焼き入れ処理や予備時効処理を含めた調質処理も好ましい条件で行なわれている。このため、これら各発明例は、表2、3に示す通り、本実施形態で規定するDSC条件を満たしている。すなわち、この板のDSCにおいて、強度に寄与しないMg-Siクラスタの溶解に相当する吸熱ピークとして、150~230℃の温度範囲の吸熱ピークのピーク高さが8μW/mg以下である一方で、強度に寄与するMg-Siクラスタの生成に相当する発熱ピークとして、240~255℃の温度範囲の発熱ピークのピーク高さが20μW/mg以上である。
 この結果、各発明例は、前記調質処理後の室温時効後であって、かつ低温短時間での塗装焼付け硬化であっても、BH性に優れている。また、表3に示す通り、前記調質処理後の室温時効後であっても、As耐力が比較的低いために自動車パネルなどへのプレス成形性に優れ、ヘム加工性にも優れている。すなわち、本発明例によれば、室温時効した後に車体塗装焼付け処理された場合であっても、0.2%耐力差が100MPa以上で、BH後の0.2%耐力が170MPa以上の高いBH性や、As0.2%耐力で110MPa以下のプレス成形性や良好な曲げ加工性が発揮できている。
 これに対して、表2の比較例2~7、9~13、14、15は、表1の発明例と同じ合金例1、2、3を用いている。しかし、これら各比較例は、表2に示す通り、予備時効処理条件が好ましい条件を外れている。この結果、DSCが本実施形態で規定する範囲から外れ、同じ合金組成である発明例に比して、室温時効が大きく、特に30日間室温保持後のAs耐力が比較的高いために自動車パネルなどへのプレス成形性やヘム加工性に劣り、かつBH性も劣っている。
 比較例2は、溶体化処理後の室温までの焼き入れ処理における平均冷却速度が小さすぎる。このため、150~230℃の温度範囲の吸熱ピークAのピーク高さは8μW/mg以下であるものの、240~255℃の温度範囲の発熱ピークBのピーク高さが20μW/mg未満と低く(小さく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度が少ない。これは、室温までの焼入れ処理の冷却速度が小さく、冷却中に粗大なMg2Siおよび単体Siが生成してしまったためであり、目的とするAs0.2%耐力で110MPa以下のプレス成形性や良好な曲げ加工性が得られていない。また、BH性も低い。
 比較例3、9は、溶体化後の室温までの焼き入れ処理後から、予備時効処理(加熱開始)までの時間がかかりすぎている。このため、強度に寄与しない、DSCの昇温過程で溶解しやすいMg-Siクラスタが多く生成してしまい、前記図1の通り、150~230℃の温度範囲の吸熱ピークAのピーク高さが8μW/mgを超えて高く(大きく)なる。その一方で、240~255℃の温度範囲の発熱ピークBのピーク高さも20μW/mg以上と高く(大きく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度も多い。しかし、前記強度に寄与しないサイズが比較的小さなMg-Siクラスタの数密度が多すぎるために、この悪影響の方が強すぎて、目的とするAs0.2%耐力で110MPa以下のプレス成形性や良好な曲げ加工性が得られていない。また、BH性も低い。
 比較例4、10は、予備時効処理の昇温速度が遅すぎる。このため、強度に寄与しない、DSCの昇温過程で溶解しやすいMg-Siクラスタが多く生成してしまい、前記図1の通り、150~230℃の温度範囲の吸熱ピークAのピーク高さが8μW/mgを超えて高く(大きく)なる。その一方で、240~255℃の温度範囲の発熱ピークBのピーク高さも20μW/mg以上と高く(大きく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度も多い。しかし、前記強度に寄与しないサイズが比較的小さなMg-Siクラスタの数密度が多すぎるために、この悪影響の方が強すぎて、目的とするAs0.2%耐力で110MPa以下のプレス成形性や良好な曲げ加工性が得られていない。また、BH性も低い。
 比較例5、11、14は、予備時効処理における60~120℃の範囲での保持時間が1時間と短かすぎる。このため、強度に寄与しない、DSCの昇温過程で溶解しやすいMg-Siクラスタが多く生成してしまい、前記図1の通り、150~230℃の温度範囲の吸熱ピークAのピーク高さが8μW/mgを超えて高く(大きく)なる。その一方で、240~255℃の温度範囲の発熱ピークBのピーク高さも20μW/mg以上と高く(大きく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度も多い。しかし、前記強度に寄与しないサイズが比較的小さなMg-Siクラスタの数密度が多すぎるために、この悪影響の方が強すぎて、目的とするAs0.2%耐力で110MPa以下のプレス成形性や良好な曲げ加工性が得られていない。また、BH性も低い。
 比較例6、12、15は、予備時効処理における60~120℃の範囲での保持時間が48時間と長すぎる。このため、240~255℃の温度範囲の発熱ピークBのピーク高さは20μW/mg未満と低く(小さく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度が少ない。この結果、目的とするAs0.2%耐力で110MPa以下のプレス成形性や良好な曲げ加工性が得られていない。また、BH性も低い。
 比較例7は、予備時効処理における到達温度が130℃と、上限の120℃を超えて高すぎる。このため、強度に寄与する、サイズが比較的大きいMg-Siクラスタが減少して、240~255℃の温度範囲の発熱ピークBのピーク高さが20μW/mg未満と低く(小さく)、強度に寄与するサイズが比較的大きなMg-Siクラスタの数密度が少ない。この結果、BH性が低くなっている一方で、As0.2%耐力は110MPaを超えて高くなり過ぎており、プレス成形性や良好な曲げ加工性も得られていない。
 また、表3の比較例25~34は、前記予備時効処理条件を含めて好ましい範囲で製造しているものの、表1の合金番号13~22を用いており、必須元素のMg、Siの含有量が各々本実施形態の範囲を外れているか、あるいは不純物元素量が多すぎる。このため、これら比較例24~33は、表3に示す通り、各発明例に比して、特に30日間室温保持後のAs耐力が比較的高すぎて自動車パネルなどへのプレス成形性やヘム加工性に劣るか、BH性が劣っている。
 比較例25は表1の合金13であり、Siが少なすぎる。
 比較例26は表1の合金14であり、Siが多すぎる。
 比較例276は表1の合金15であり、Snが少なすぎる。
 比較例28は表1の合金16であり、Snが多すぎ、熱延時に割れが生じて板の製造ができなかった。
 比較例29は表1の合金17であり、Feが多すぎる。
 比較例30は表1の合金18であり、Mnが多すぎる。
 比較例31は表1の合金19であり、CrおよびTiが多すぎる。
 比較例32は表1の合金20であり、Cuが多すぎる。
 比較例33は表1の合金21であり、Znが多すぎる。
 比較例34は表1の合金22であり、ZrおよびVが多すぎる。
 以上の実施例の結果から、室温時効後の成形性とBH性向上に対して、前記本実施形態で規定する組成やDSCの各条件を全て満たす必要性があることが裏付けられる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 次に本発明の第2の実施形態に係る実施例を説明する。本実施形態で規定する組織が異なる6000系アルミニウム合金板を、溶体化および焼入れ処理後の予備時効処理の条件を変えて作り分けて製造した。そして、板製造後室温に30日間保持後の、BH性(塗装焼付け硬化性)、プレス成形性の指標としてのAs耐力や、曲げ加工性としてのヘム加工性を各々測定、評価した。
 前記組織の作り分けは、表4に示す組成の6000系アルミニウム合金板を、表5、6に示すように、溶体化処理後の焼入れ処理の平均冷却速度や、その後の予備時効処理の温度や保持時間などの条件を種々変えて行った。ここで、表4中の各元素の含有量の表示において、各元素における数値をブランクとしている表示は、その含有量が検出限界以下であることを示す。
 アルミニウム合金板の具体的な製造条件は以下の通りとした。表4に示す各組成のアルミニウム合金鋳塊を、DC鋳造法により共通して溶製した。この際、各例とも共通して、鋳造時の平均冷却速度について、液相線温度から固相線温度までを50℃/分とした。続いて、鋳塊を、各例とも共通して、540℃×6時間の1段のみの均熱処理をした後、500℃に再加熱して熱間粗圧延を開始した。そして、各例とも共通して、続く仕上げ圧延にて、厚さ3.5mmまで熱延し、熱間圧延板とした。熱間圧延後のアルミニウム合金板を、各例とも共通して、500℃×1分の荒焼鈍を施した後、冷延パス途中の中間焼鈍無しで加工率70%の冷間圧延を行い、厚さ1.0mmの冷延板とした。
 更に、この各冷延板を、各例とも共通して、連続式の熱処理設備で巻き戻し、巻き取りながら、連続的に調質処理(T4)した。具体的には、溶体化処理を、500℃までの平均加熱速度を10℃/秒として、560℃の目標温度に到達後10秒保持して行い、その後、表5、6に示す各平均冷却速度となるように水冷あるいは空冷を行うことで室温まで冷却した。この冷却後、室温にて表2に示す所要時間後に、大気炉およびオイルバスを用い、表5、6に示す、昇温速度、到達温度、平均冷却速度、保持時間にて予備時効処理を行った。なお、この予備時効処理後の冷却は、平均冷却速度を変えるために、水冷あるいは徐冷(放冷)を行った。
 これら調質処理後30日間室温放置した後の各最終製品板から供試板 (ブランク) を切り出し、各供試板の前記組織や特性を測定、評価した。これらの結果を表5、6に示す。
(組織)
 前記した測定方法により、板のMg+Siの固溶量や3次元アトムプローブ電界イオン顕微鏡により測定された原子の集合体の各体積分率などを測定および解析して求めた。なお、表5、6では、3次元アトムプローブ電界イオン顕微鏡により測定された各原子の集合体の平均体積分率(%)を「3DAP測定原子の集合体の平均体積分率(%)と略記している。
 また、表5、6では、この欄に記載の「原子の集合体の平均体積分率」のうち、前記本実施形態で規定する条件を満たす原子の集合体の総体積ΣViの、前記電界蒸発した針状試料の体積VAlに占める、平均体積分率(ΣVi/VAl)×100を求めた(表2、3ではΣVi/VAl×100と記載)。また、前記原子の集合体の総体積ΣViに占める、ギニエ半径rが1.5nm以上である原子の集合体の総体積ΣVi1.5以上の平均体積分率(ΣVi1.5以上/ΣVi)×100も求めた(表5、6ではΣVi1.5以上/ΣVi×100と記載)。
(塗装焼付硬化性)
 前記調質処理後30日間室温放置した後の各供試板の機械的特性として、0.2%耐力(As耐力)を引張試験により求めた。また、これらの各供試板を各々共通して、30日間の室温時効させた後に、170℃×20分の人工時効硬化処理した後(BH後)の、供試板の0.2%耐力(BH後耐力)を引張試験により求めた。そして、これら0.2%耐力同士の差(耐力の増加量)から各供試板のBH性を評価した。
 前記引張試験は、前記各供試板から、各々JISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温にて引張り試験を行った。このときの試験片の引張り方向を圧延方向の直角方向とした。引張り速度は、0.2%耐力までは5mm/分、耐力以降は20mm/分とした。機械的特性測定のN数は5とし、各々平均値で算出した。なお、前記BH後の耐力測定用の試験片には、この試験片に、板のプレス成形を模擬した2%の予歪をこの引張試験機により与えた後に、前記BH処理を行った。
(ヘム加工性)
 ヘム加工性は、前記調質処理後7日間または100日間室温放置後の各供試板についてのみ行った。試験は、30mm幅の短冊状試験片を用い、ダウンフランジによる内曲げR1.0mmの90°曲げ加工後、1.0mm厚のインナを挟み、折り曲げ部を更に内側に、順に約130度に折り曲げるプリヘム加工、180度折り曲げて端部をインナに密着させるフラットヘム加工を行った。
 このフラットヘムの曲げ部(縁曲部)の、肌荒れ、微小な割れ、大きな割れの発生などの表面状態を目視観察し、以下の基準にて目視評価した。下記の基準で、0~2までが合格ライン、3以上が不合格である。
 0;割れ、肌荒れ無し、1;軽度の肌荒れ、2;深い肌荒れ、3;微小表面割れ、4;線状に連続した表面割れ
 表4の合金番号23~34を用いた、表5の番号35、36、43、48、表6の51~58の各発明例は、本実施形態の成分組成範囲内で、かつ好ましい条件範囲で製造されるとともに、溶体化焼き入れ処理や予備時効処理を含めた調質処理も好ましい条件で行なわれている。このため、これら各発明例は、表5、6に示す通り、本実施形態で規定する組織条件を満たしている。すなわち、前記Mg+Siの固溶量が1.0質量%以上、2.0質量%以下であり、かつ前記本実施形態で規定する条件を満たす原子の集合体の総体積ΣViの、前記電界蒸発した針状試料の体積VAlに占める、平均体積分率(ΣVi/VAl)×100が0.3~1.5%の範囲であるとともに、前記原子の集合体の総体積ΣViに占める、ギニエ半径rが1.5nm以上である原子の集合体の総体積ΣVi1.5以上の平均体積分率(ΣVi1.5以上/ΣVi)×100が20~70%である。
 この結果、各発明例は、前記調質処理後の室温時効後であって、かつ低温短時間での塗装焼付け硬化であっても、BH性に優れている。また、表6に示す通り、前記調質処理後の室温時効後であっても、As耐力が比較的低く、更に低降伏比となっているために、自動車パネルなどへのプレス成形性に優れ、ヘム加工性にも優れている。
 すなわち、本発明例によれば、室温時効した後に車体塗装焼付け処理された場合であっても、0.2%耐力差が100MPa以上で、BH後の0.2%耐力が190MPa以上の高いBH性や、As0.2%耐力で110MPa以下、0.50未満の低降伏比のプレス成形性や、良好な曲げ加工性が発揮できている。したがって、成形性と焼付け塗装硬化性を兼備し、高BH性化と低降伏比化とを両立させることができている。
 これに対して、表5の比較例37~42、44~47、49、50は、表4の発明例と同じ合金例24、25、26を用いている。しかし、これら各比較例は、表5に示す通り、予備時効処理条件が好ましい条件を外れている。この結果、前記Mg+Siの固溶量か、前記平均体積分率(ΣVi/VAl)×100か、前記平均体積分率(ΣVi1.5以上/ΣVi)×100が、本実施形態で規定する範囲から外れている。この結果、同じ合金組成である発明例に比して、室温時効が大きく、特に30日間室温保持後のAs耐力が比較的高いか、高低降伏比となっているために、自動車パネルなどへのプレス成形性やヘム加工性に劣るか、BH性が劣っている。したがって、成形性と焼付け塗装硬化性を兼備できておらず、高BH性化と低降伏比化とを両立させることができていない。
 比較例37は、溶体化処理後の室温までの焼き入れ処理における平均冷却速度が小さすぎる。このため、冷却中に粗大なMg―Siおよび単体Siが生成して、成形性が低い。また溶体化後の固溶量が低下し、前記平均体積分率(ΣVi1.5以上/ΣVi)×100も20%未満で、BH性も低い。
 比較例38、44は、溶体化後の室温までの焼き入れ処理後から、予備時効処理(加熱開始)までの時間がかかりすぎている。このため、前記平均体積分率(ΣVi1.5以上/ΣVi)×100が20%未満であり、BH性が低下し、低降伏比も達成できていない。
 比較例39、45は、予備時効処理の昇温速度が遅すぎる。このため、前記平均体積分率(ΣVi1.5以上/ΣVi)×100を20%以上に多くできず、BH性が低い。
 比較例40、46、49は、予備時効処理における60~120℃の範囲での保持時間が1時間と短かすぎる。このため、析出核の生成が不十分であり、前記平均体積分率(ΣVi1.5以上/ΣVi)×100を20%以上に多くできず、BH性が低い。
 比較例41、47、50は、予備時効処理における60~120℃の範囲での保持時間が48~45時間と長すぎる。このため、この予備時効処理での析出核の生成量を多くしすぎることになり、強度に寄与する、サイズが比較的大きい原子の集合体が減少して、前記平均体積分率(ΣVi/VAl)×100が1.5%を超えて多くなり、成形時の板の降伏比を0.50未満に低くできない。
 比較例42は、予備時効処理における到達温度が130℃と、上限の120℃を超えて高すぎる。このため、この予備時効処理での析出核の生成量を多くしすぎることになり、強度に寄与する、サイズが比較的大きい原子の集合体が減少して、前記平均体積分率(ΣVi/VAl)×100が1.5%を超えて多くなり、As耐力が高すぎて、成形時の板の降伏比を0.50未満に低くできない。
 また、表6の比較例59~67は、前記予備時効処理条件を含めて好ましい範囲で製造しているものの、表4の合金番号35~43を用いており、必須元素のMg、Siの含有量が各々本実施形態の範囲を外れているか、あるいは不純物元素量が多すぎる。このため、これら比較例59~67は、表6に示す通り、各発明例に比して、特に30日間室温保持後のAs耐力や降伏比が高すぎて、自動車パネルなどへのプレス成形性やヘム加工性に劣るか、BH性が劣っている。
 比較例59は表4の合金35であり、Siが少なすぎる。
 比較例60は表4の合金36であり、Siが多すぎる。
 比較例61は表4の合金37であり、Snが少なすぎる。
 比較例62は表4の合金38であり、Snが多すぎ、熱延時に割れが生じて板の製造ができなかった。
 比較例63は表4の合金39であり、Feが多すぎる。
 比較例64は表4の合金40であり、Mnが多すぎる。
 比較例65は表4の合金41であり、CrおよびTiが多すぎる。
 比較例66は表4の合金42であり、Znが多すぎる。
 比較例67は表4の合金43であり、ZrおよびVが多すぎる。
 以上の実施例の結果から、室温時効後の成形性とBH性向上に対して、前記本実施形態で規定する組成や組織の各条件を全て満たす必要性があることが裏付けられる。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2014年3月31日付けで出願された日本特許出願(特願2014-074045)及び2014年3月31日付けで出願された日本特許出願(特願2014-074046)に基づいており、その全体が引用により援用される。
 本発明によれば、室温時効後のBH性や成形性をも兼備する6000系アルミニウム合金板を提供できる。この結果、自動車のパネル、特に、美しい曲面構成やキャラクターラインなどの意匠性が問題となるアウタパネルに、6000系アルミニウム合金板の適用を拡大できる。

Claims (4)

  1.  質量%で、Mg:0.2~2.0%、Si:0.3~2.0%、Sn:0.005~0.3%を各々含み、残部がAlおよび不可避的不純物からなるAl-Mg-Si系アルミニウム合金板であって、前記アルミニウム合金板の示差走査熱分析曲線において、Mg-Siクラスタの溶解に相当する吸熱ピークとして、150~230℃の温度範囲の吸熱ピークのピーク高さが8μW/mg以下(但し、0μW/mgを含む)である一方で、Mg-Siクラスタの生成に相当する発熱ピークとして、240~255℃の温度範囲の発熱ピークのピーク高さが20μW/mg以上であることを特徴とする成形性と焼付け塗装硬化性とに優れたアルミニウム合金板。
  2.  前記アルミニウム合金板が、更に、Fe:0%超1.0%以下、Mn:0%超1.0%以下、Cr:0%超0.3%以下、Zr:0%超0.3%以下、V:0%超0.3%以下、Ti:0%超0.1%以下、Cu:0%超1.0%以下、Ag:0%超0.2%以下、及び、Zn:0%超1.0%以下からなる群より選ばれる1種または2種以上を含む請求項1に記載の成形性と焼付け塗装硬化性とに優れたアルミニウム合金板。
  3.  質量%で、Mg:0.3~1.0%、Si:0.5~1.5%、Sn:0.005~0.3%を各々含み、残部がAlおよび不可避的不純物からなるAl-Mg-Si系アルミニウム合金板であって、熱フェノールによる残渣抽出法により分離された溶液中のMg+Siの固溶量が、1.0質量%以上、2.0質量%以下であり、
     かつ、3次元アトムプローブ電界イオン顕微鏡により測定された原子の集合体として、Mg原子かSi原子かのいずれか又は両方を合計で10個以上含み、これらに含まれるMg原子かSi原子のいずれの原子を基準としても、その基準となる原子と隣り合う他の原子のうちのいずれかの原子との互いの距離が0.75nm以下である条件を満たす原子の集合体について、
     これらの原子集合体の総体積として、個々の原子の集合体を各々球と見なした際のギニエ半径rから算出される個々の原子の集合体の体積Vi(=4/3πr 3)を合計した総体積ΣViの、前記3次元アトムプローブ電界イオン顕微鏡により測定された前記アルミニウム合金板の体積VAlに占める平均体積分率(ΣVi/VAl)×100が0.3~1.5%の範囲であるとともに、
     前記原子集合体の総体積ΣViのうち、前記ギニエ半径rが1.5nm以上である原子の集合体の体積V1.5以上を合計した総体積ΣVi1.5以上の占める平均体積分率(ΣVi1.5以上/ΣVi)×100が20~70%である、
    ことを特徴とする成形性と焼付け塗装硬化性とに優れたアルミニウム合金板。
  4.  前記アルミニウム合金板が、更に、Fe:0%超1.0%以下、Mn:0%超0.4%以下、Cr:0%超0.3%以下、Zr:0%超0.3%以下、V:0%超0.3%以下、Ti:0%超0.1%以下、Cu:0%超0.4%以下、Ag:0%超0.2%以下、及び、Zn:0%超1.0%以下からなる群より選ばれる1種または2種以上を含む請求項3に記載の成形性と焼付け塗装硬化性とに優れたアルミニウム合金板。
PCT/JP2015/058794 2014-03-31 2015-03-23 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板 WO2015151907A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2941988A CA2941988A1 (en) 2014-03-31 2015-03-23 Aluminum alloy plate having excellent moldability and bake finish hardening properties
CN201580012219.6A CN106103763A (zh) 2014-03-31 2015-03-23 成形性和烘烤涂装硬化性优异的铝合金板
US15/129,587 US20170175231A1 (en) 2014-03-31 2015-03-23 Aluminum alloy plate having excellent moldability and bake finish hardening properties
KR1020167026865A KR101850234B1 (ko) 2014-03-31 2015-03-23 성형성과 베이킹 도장 경화성이 우수한 알루미늄 합금판
MX2016012707A MX2016012707A (es) 2014-03-31 2015-03-23 Plancha de aleacion de aluminio que tiene excelentes propiedades de moldeabilidad y capacidad de endurecimiento de acabado al horno.
US16/029,976 US20190010581A1 (en) 2014-03-31 2018-07-09 Aluminum alloy plate having excellent moldability and bake finish hardening properties

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014074046A JP6190308B2 (ja) 2014-03-31 2014-03-31 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板
JP2014-074045 2014-03-31
JP2014-074046 2014-03-31
JP2014074045A JP6301175B2 (ja) 2014-03-31 2014-03-31 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/129,587 A-371-Of-International US20170175231A1 (en) 2014-03-31 2015-03-23 Aluminum alloy plate having excellent moldability and bake finish hardening properties
US16/029,976 Continuation US20190010581A1 (en) 2014-03-31 2018-07-09 Aluminum alloy plate having excellent moldability and bake finish hardening properties

Publications (1)

Publication Number Publication Date
WO2015151907A1 true WO2015151907A1 (ja) 2015-10-08

Family

ID=54240234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058794 WO2015151907A1 (ja) 2014-03-31 2015-03-23 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板

Country Status (6)

Country Link
US (2) US20170175231A1 (ja)
KR (1) KR101850234B1 (ja)
CN (1) CN106103763A (ja)
CA (1) CA2941988A1 (ja)
MX (1) MX2016012707A (ja)
WO (1) WO2015151907A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
US11932928B2 (en) 2018-05-15 2024-03-19 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018183721A1 (en) * 2017-03-30 2018-10-04 NanoAL LLC High-performance 6000-series aluminum alloy structures
WO2020185920A1 (en) 2019-03-13 2020-09-17 Novelis Inc. Age-hardenable and highly formable aluminum alloys, monolithic sheet made therof and clad aluminum alloy product comprising it
CN110835686B (zh) * 2019-11-29 2021-03-19 北京科技大学 一种铂族金属捕集剂及铂族金属回收方法
CN112941378B (zh) * 2021-01-25 2022-06-07 广东澳美铝业有限公司 一种慢速自然时效6系铝合金
CN114921697B (zh) * 2022-07-20 2022-09-30 中铝材料应用研究院有限公司 发动机盖内板用6xxx系铝合金板材、其制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340940A (ja) * 1993-06-02 1994-12-13 Kobe Steel Ltd プレス成形性、焼付硬化性に優れたアルミニウム合金板及びその製造方法
JPH10219382A (ja) * 1997-02-04 1998-08-18 Nippon Steel Corp 成形加工性および塗装焼付け硬化性に優れたアルミニウム合金板およびその製造方法
JP2003027170A (ja) * 2001-07-10 2003-01-29 Kobe Steel Ltd 室温時効抑制と低温時効硬化能に優れたアルミニウム合金材
JP2005139537A (ja) * 2003-11-10 2005-06-02 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
JP2008174797A (ja) * 2007-01-18 2008-07-31 Kobe Steel Ltd アルミニウム合金板
JP2008303449A (ja) * 2007-06-11 2008-12-18 Furukawa Sky Kk 成形加工用アルミニウム合金板および成形加工用アルミニウム合金板の製造方法
WO2014046010A1 (ja) * 2012-09-19 2014-03-27 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09249950A (ja) 1996-03-15 1997-09-22 Nippon Steel Corp 成形性および塗装焼付硬化性に優れたアルミニウム合金板の製造方法
JPH10226894A (ja) 1997-02-17 1998-08-25 Nippon Steel Corp 成形加工性、塗装焼付硬化性、化成性、および耐食性に優れたアルミニウム合金板の製造方法
JP4045326B2 (ja) * 1999-11-09 2008-02-13 株式会社神戸製鋼所 プレス成形性に優れたAl−Mg−Si系Al合金板
JP2002235158A (ja) * 2001-02-05 2002-08-23 Nippon Steel Corp 曲げ加工性に優れた高強度アルミニウム合金押出形材の製造方法
JP2007169740A (ja) * 2005-12-22 2007-07-05 Kobe Steel Ltd 成形性に優れたアルミニウム合金板およびその製造方法
JP5203772B2 (ja) 2008-03-31 2013-06-05 株式会社神戸製鋼所 塗装焼付け硬化性に優れ、室温時効を抑制したアルミニウム合金板およびその製造方法
JP5746528B2 (ja) 2011-03-15 2015-07-08 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
JP5985165B2 (ja) 2011-09-13 2016-09-06 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板
JP2013163835A (ja) * 2012-02-09 2013-08-22 Kobe Steel Ltd Di缶胴用アルミニウム合金板

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06340940A (ja) * 1993-06-02 1994-12-13 Kobe Steel Ltd プレス成形性、焼付硬化性に優れたアルミニウム合金板及びその製造方法
JPH10219382A (ja) * 1997-02-04 1998-08-18 Nippon Steel Corp 成形加工性および塗装焼付け硬化性に優れたアルミニウム合金板およびその製造方法
JP2003027170A (ja) * 2001-07-10 2003-01-29 Kobe Steel Ltd 室温時効抑制と低温時効硬化能に優れたアルミニウム合金材
JP2005139537A (ja) * 2003-11-10 2005-06-02 Kobe Steel Ltd 焼付け塗装硬化性に優れたアルミニウム合金板
JP2008174797A (ja) * 2007-01-18 2008-07-31 Kobe Steel Ltd アルミニウム合金板
JP2008303449A (ja) * 2007-06-11 2008-12-18 Furukawa Sky Kk 成形加工用アルミニウム合金板および成形加工用アルミニウム合金板の製造方法
WO2014046010A1 (ja) * 2012-09-19 2014-03-27 株式会社神戸製鋼所 焼付け塗装硬化性に優れたアルミニウム合金板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10513766B2 (en) 2015-12-18 2019-12-24 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US10538834B2 (en) 2015-12-18 2020-01-21 Novelis Inc. High-strength 6XXX aluminum alloys and methods of making the same
US11920229B2 (en) 2015-12-18 2024-03-05 Novelis Inc. High strength 6XXX aluminum alloys and methods of making the same
US11932928B2 (en) 2018-05-15 2024-03-19 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same

Also Published As

Publication number Publication date
KR20160127112A (ko) 2016-11-02
MX2016012707A (es) 2016-12-16
US20170175231A1 (en) 2017-06-22
US20190010581A1 (en) 2019-01-10
CA2941988A1 (en) 2015-10-08
CN106103763A (zh) 2016-11-09
KR101850234B1 (ko) 2018-04-18

Similar Documents

Publication Publication Date Title
JP5746528B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP6005544B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
WO2015151907A1 (ja) 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板
JP5852534B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP5203772B2 (ja) 塗装焼付け硬化性に優れ、室温時効を抑制したアルミニウム合金板およびその製造方法
JP5985165B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP5820315B2 (ja) 室温時効後のヘム加工性と焼付け塗装硬化性に優れたアルミニウム合金板
KR101802677B1 (ko) 베이킹 도장 경화성이 우수한 알루미늄 합금판
JP2017078211A (ja) 高成形性アルミニウム合金板
JP6190308B2 (ja) 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板
JP2018070947A (ja) アルミニウム合金板
CN106661680B (zh) 铝合金板
JP5723245B2 (ja) アルミニウム合金板
JP2018154869A (ja) プレス成形性、リジングマーク性、bh性に優れたアルミニウム合金板
JP5918187B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP6005613B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板
JP6301175B2 (ja) 成形性と焼付け塗装硬化性とに優れたアルミニウム合金板
JP2019007038A (ja) プレス成形性および耐デント性に優れた自動車パネル用アルミニウム合金板
JP5918186B2 (ja) 焼付け塗装硬化性に優れたアルミニウム合金板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15773290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2941988

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15129587

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/012707

Country of ref document: MX

Ref document number: 1020167026865

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15773290

Country of ref document: EP

Kind code of ref document: A1