WO2015147438A1 - 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법 - Google Patents

접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법 Download PDF

Info

Publication number
WO2015147438A1
WO2015147438A1 PCT/KR2015/000779 KR2015000779W WO2015147438A1 WO 2015147438 A1 WO2015147438 A1 WO 2015147438A1 KR 2015000779 W KR2015000779 W KR 2015000779W WO 2015147438 A1 WO2015147438 A1 WO 2015147438A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal thin
manufacturing
semiconductor test
adhesive
test pad
Prior art date
Application number
PCT/KR2015/000779
Other languages
English (en)
French (fr)
Inventor
윤경섭
Original Assignee
실리콘밸리(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 실리콘밸리(주) filed Critical 실리콘밸리(주)
Priority to CN201580000546.XA priority Critical patent/CN105122437A/zh
Priority to JP2016513891A priority patent/JP2016536567A/ja
Publication of WO2015147438A1 publication Critical patent/WO2015147438A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0441Details
    • G01R1/0466Details concerning contact pieces or mechanical details, e.g. hinges or cams; Shielding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips

Definitions

  • the present invention relates to a semiconductor test pad and a manufacturing method in which a thin metal sheet is laminated using an adhesive, and more particularly, to prepare a primary sheet by attaching a film to the thin metal sheet, and to etch the thin metal sheet of the primary sheet.
  • the present invention relates to a semiconductor test pad and a manufacturing method in which a metal thin plate is laminated using an adhesive, which is manufactured by vertical cutting after lamination.
  • the electrical performance is checked to check whether there is an abnormality in semiconductor manufacturing.
  • a semiconductor test socket formed to be in electrical contact with a terminal of a semiconductor device is inserted between a semiconductor device and an inspection circuit board. The inspection is performed.
  • the semiconductor test socket is used in the burn-in test process of the semiconductor device manufacturing process in addition to the inspection of the semiconductor device.
  • a technique for forming a conductive pattern by forming a perforated pattern in a vertical direction on a silicon body made of an elastic silicone material and then filling conductive powder inside the perforated pattern is disclosed. It is widely used.
  • the method of filling the conductive powder has a problem in that the durability of the semiconductor test pad is reduced, so that the powder constituting the conductor is detached and the number of times of repeated use decreases.
  • An object of the present invention is to provide a semiconductor test pad in which a metal thin plate is laminated using an adhesive having improved durability without using conductive powder.
  • Another object of the present invention is to provide a semiconductor test pad in which a thin metal sheet is laminated using an adhesive having a fine pitch of several tens of micrometers between each conductor.
  • Still another object of the present invention is to provide a method for manufacturing a semiconductor test pad in which a thin metal sheet is laminated using an adhesive prepared by a simple process as compared with a conventional manufacturing method through a lamination method.
  • a semiconductor test pad in which a metal thin plate is laminated using an adhesive according to the present invention and a method of manufacturing the sheet are manufactured by attaching a conductive metal thin plate to one surface of an insulating film to prepare a primary sheet (S1). And etching the metal thin plate of the primary sheet so that a plurality of lines are formed, thereby forming a secondary sheet in which conductors on each line are separated by a predetermined distance, and stacking a plurality of secondary sheets. It is characterized in that it comprises a stacking step (S3) that the stack of is manufactured and a cutting step (S4) for vertically cutting the stacked stack to a predetermined thickness.
  • the film is characterized in that it comprises at least one of silicone, urethane, PI, PET, PEN, PE, PP, PT, rubber.
  • the laminating step is characterized in that the adhesive is applied to the upper portion of the secondary sheet on which the line-shaped conductor is formed, and a plurality of secondary sheets are laminated using the adhesive layer composed of the adhesive.
  • the adhesive layer is characterized in that it comprises at least one of silicone, urethane, PI, PET, PEN, PE, PP, PT, rubber.
  • the cutting step is characterized in that it further comprises a plating step to prevent the oxidation of the conductor by electroless plating on the surface of the test pad.
  • the metal thin plate is characterized in that it comprises at least any one of Cu, Au, Ag, Pt, Fe, Al, Ni, Mg, Pb, Zn, Sn, Co, Cr, Mn, C.
  • a first layer composed of an insulator having a predetermined length in the Y-axis direction and a square cross-section insulator having the same height in the Y-axis direction and the same height in the Z-axis direction at regular intervals.
  • a second layer consisting of a plurality of rectangular conductors penetrating in the Z-axis direction and the first layer and the second layer are cross-laminated in the X-axis direction to form a rectangular pad as a whole. Characterized in that the floor is located.
  • the upper and lower surfaces of the conductor is characterized in that it further comprises a plating layer.
  • the semiconductor test pad in which the metal thin plates are laminated using the adhesive according to the present invention has an effect that the conductor has high durability by using the lamination of the metal thin plates.
  • a semiconductor test pad in which a metal thin plate is laminated using an adhesive according to the present invention may have a fine pitch of several tens of micrometers between the conductors, and thus may be applied to a semiconductor that is being more directly applied.
  • the method of manufacturing a semiconductor test pad laminated with a metal thin plate using the adhesive according to the present invention can be manufactured in a simple process compared to the manufacturing method through the conventional lamination method, there is an effect that the productivity and quality is improved.
  • FIG. 1 is a flowchart illustrating a method of manufacturing a semiconductor test pad laminated with a metal thin plate using an adhesive according to the present invention.
  • Figure 2 is a perspective view showing a sheet manufacturing step of the manufacturing method of a semiconductor test pad laminated a metal thin plate using the adhesive according to the present invention.
  • Figure 3 is a perspective view showing an etching step of the manufacturing method of a semiconductor test pad laminated a metal thin plate using an adhesive according to the present invention.
  • Figure 4 is a view showing the adhesive coating in the lamination step of the manufacturing method of the semiconductor test pad laminated a metal thin plate using the adhesive according to the present invention.
  • Figure 5 is a perspective view showing the lamination of the lamination step in the method for manufacturing a semiconductor test pad laminated a metal thin plate using the adhesive according to the present invention.
  • Figure 6 is a perspective view showing a cutting step of the manufacturing method of a semiconductor test pad laminated a metal thin plate using the adhesive according to the present invention.
  • FIG. 7 is a perspective view illustrating a semiconductor test pad in which a metal thin plate is laminated using an adhesive according to the present invention.
  • FIG. 1 is a flowchart illustrating a method for manufacturing a semiconductor test pad laminated with a metal thin plate using an adhesive according to the present invention
  • FIG. 2 is a method for manufacturing a semiconductor test pad laminated with a metal thin plate using an adhesive according to the present invention
  • Figure 3 is a perspective view showing a sheet manufacturing step
  • Figure 3 is a perspective view showing an etching step of the manufacturing method of a semiconductor test pad laminated a metal thin plate using the adhesive according to the present invention
  • FIG. 5 is a lamination step in a manufacturing method of semiconductor test pads in which a metal thin film is laminated using an adhesive according to the present invention.
  • Fig. 6 is a perspective view showing lamination of the semiconductor thin film by laminating a metal thin plate using an adhesive according to the present invention. It is a perspective view showing a single stage,
  • Figure 7 is a perspective view showing a semiconductor inspection pad by using an adhesive laminating a thin metal plate according to the present invention.
  • the method for manufacturing a semiconductor test pad laminated a metal thin plate using the adhesive according to the present invention is a sheet manufacturing step (S1), etching step (S2), lamination step (S3), cutting step ( S4), a sheet manufacturing step (S1) of attaching a conductive metal thin plate to an insulating film to prepare a primary sheet, and etching the metal thin plate of the primary sheet to form a plurality of lines on each line.
  • An etching step (S2) of manufacturing a secondary sheet spaced apart by a predetermined distance from a conductor, a stacking step (S3) of manufacturing a stack by stacking a plurality of secondary sheets, and stacking the stacked stack It characterized in that it comprises a cutting step (S4) for vertical cutting in thickness.
  • the cutting step (S4) may further include a plating step (not shown) for performing a plating process on the exposed surface of the conductor.
  • the lamination in the attachment and lamination step (S3) in the sheet manufacturing step (S1) is attached and laminated through the adhesive or primer
  • the upper adhesive or primer is not particularly limited as long as it exhibits insulation after curing.
  • the sheet manufacturing step (S1) of the method for manufacturing a semiconductor test pad laminated a metal thin plate using the adhesive according to the present invention the adhesive 10 or primer (hereinafter referred to as one side of the film 2) After spraying the adhesive, the metal thin plate 1 is attached to one surface of the film 2 through the adhesive.
  • the coating method of the adhesive 10 may be applied by any one of coating, painting, and spraying, and the coating amount is preferably applied so as to have a thickness of 1 to 50 ⁇ m.
  • the adhesive should be selected to have an insulating property after curing, and further comprises any one of silicone, urethane, PI, PET, PEN, PE, PP, PT, rubber, or silicone, Any one of urethane, PI, PET, PEN, PE, PP, PT, and rubber may be applied in a liquid phase as an adhesive.
  • the film 2 may be any one of silicon, urethane, PI, PET, PEN, PE, PP, PT, rubber, and the metal thin plate (1) is Cu, Au, Ag, Pt, One containing Fe, Al, Ni, Mg, Pb, Zn, Sn, Co, Cr, Mn, and C may be used.
  • the film 2 and the metal thin plate 1 as described above are made of one primary sheet 60 through an adhesive, and control the thickness of the primary sheet 60, or the film 2 and the metal thin plate In order to raise the adhesive force between (1), you may press the upper and lower surfaces of the primary sheet 60 using the rolling roller 30 or a press (not shown).
  • the film 2 is preferably used having a thickness of 1 ⁇ 100 ⁇ m in order to obtain a distance between thinner conductors, but 1 ⁇ 5000 ⁇ m depending on the need (use purpose and terminal distance to be tested) A film 2 having a thickness of may be used.
  • the metal thin plate 1 is preferably used having a thickness of 1 ⁇ 100 ⁇ m in order to obtain a finer conductor, the thickness of 1 ⁇ 5000 ⁇ m depending on the need (use purpose and thickness of the terminal to be tested)
  • a metal thin plate 1 having a may be used.
  • the film in order to attach the thin metal plate 1 to one surface of the film 2 in addition to the adhesive using the adhesive as described above, the film is deposited through a deposition method such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition). It is also possible to deposit and attach the thin metal plate 1 to one surface of (2).
  • a deposition method such as PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition). It is also possible to deposit and attach the thin metal plate 1 to one surface of (2).
  • the etching step S2 may include a film 2 and a metal thin plate constituting the primary sheet 60.
  • the metal thin plate 1 is etched and processed into a secondary sheet. More specifically, the metal thin plate 1 located on one surface of the primary sheet is etched to form a plurality of line-shaped conductors ( 11), a plurality of conductors 11 having a line shape are spaced apart from each other at a predetermined interval.
  • the thin metal plate 1 it is preferable to etch the thin metal plate 1 such that the distance between the conductors 11 is separated by a length of 1 to 50 ⁇ m, such as the thickness of the film 2. That is, the distance between the conductors 11 may vary depending on the thickness of the film 2 to be equal to the thickness of the film 2.
  • the thickness of the etching is etched by the thickness of the initial metal sheet (1) so that each conductor 11 does not contact, and the conductor 11 located at the end is a predetermined end and a predetermined end of the insulator 21 located at the bottom. It is preferable to etch all of the metal thin plates 1 positioned at the ends of the insulator 21 so as to be located at an inner side at intervals.
  • the etching method has been described as a method using a laser 50, but the chemical corrosion method of removing a portion other than the conductor 11 to be formed by coating the photoresist on the portion where the conductor 11 is to be formed. It is most preferable to use (etching) to obtain high productivity, and as shown, a method of removing portions other than the conductor 11 to be formed using the laser 50 may be used.
  • the pitch between the conductors 11 may be adjusted by adjusting the etching interval, and when etching using a laser, a conductor having a trapezoid, a parallelogram, and a triangle cross section in addition to the rectangle depending on the incident angle of the laser. (11) may be formed, and a wider range may be quickly etched by the plurality of lasers 50.
  • the laminating step in the method of manufacturing a semiconductor test pad in which a metal thin plate is laminated using an adhesive according to the present invention is formed by applying an adhesive to form an adhesive layer and laminating it. .
  • the adhesive application of the lamination step (S3) is to apply the adhesive 10 to the upper surface of the conductor 11 located on one side of the secondary sheet 61 shown in 401 to form the adhesive layer (3)
  • the adhesive layer 3 may be formed in the shape of (A) or (B).
  • the method of applying the adhesive 10 may be applied by any one of coating, painting, and spraying.
  • the application amount of the adhesive 10 is a shape such as (A) of 402
  • the conductor The adhesive 10 is applied so as to have the same thickness as (11), and in the case of the same shape as (B), it is preferable to apply the adhesive 10 so as to have a thickness higher than that of the conductor 11.
  • the lamination step S3 may be performed by using the adhesive layer 3 so that the secondary sheet has a predetermined height.
  • the lamination step S3 may be performed by using a plurality of secondary sheets are stacked in parallel to the upper surface of the secondary sheet to form one stack 62.
  • the laminating step S3 is to laminate the plurality of secondary sheets 61 composed of the film 2 and the conductor 11 using the plurality of adhesive layers 3 composed of the adhesive, and from above,
  • the other film 2a is attached to the upper part of the adhesive layer 3 formed through application of an adhesive on one surface of the film 2 described with reference to FIG. 4, and the other adhesive layer 3a is formed on the other film 2a.
  • another film 2c is adhered to the uppermost layer to finish the lamination.
  • another film 2c may be adhered to finish lamination.
  • the adhesive layer may be pressed or dried.
  • an adhesive layer 3 is formed on an upper surface of one secondary sheet 61, another secondary sheet is placed and laminated, and then heated and pressed to cure, and another secondary sheet is laminated using an adhesive.
  • the drying can be carried out in a sequential manner.
  • an adhesive layer 3 is formed on an upper surface of one secondary sheet 61, another secondary sheet is placed and laminated, another adhesive layer is formed on an upper surface of another secondary sheet, and another secondary sheet is formed. It is also possible to produce a single stack 4 by laminating and then harden by heating and pressing.
  • heating and pressurization may be any one of heating and pressurization as one method for curing, or curing may be performed by natural drying.
  • the heating temperature is preferably a temperature of 30 ⁇ 120 °C, a temperature that can increase the curing rate to a temperature above room temperature, there is no particular limitation as long as the temperature is below the melting point of the film used.
  • the pressure to be pressed is different depending on the material of the insulator used, and it is preferable that the cross-sectional width of the stacked stack 4 is pressed within a change rate of 1 to 10% at the time of pressing.
  • the plurality of secondary sheets 61 are attached through the plurality of adhesive layers 3, 3a, 3b,... To be manufactured into one stack 62, and the stack 62 is provided in plurality.
  • the conductors 11 have a cross section of a shape arranged in a plurality of columns and rows at predetermined intervals.
  • the cutting step S4 may be performed by vertically cutting the stack 62 at a predetermined interval in the horizontal direction. A plurality of semiconductor test pads 5 are manufactured.
  • a vertical cut parallel to one surface at a predetermined distance from one surface on which the conductor 11 of the stack 62 is formed is any one of a cutting tool such as a wire or a blade. It is possible to cut using.
  • the vertical cutting may be a sequential cutting at a predetermined interval on one side of the stack 62 or a plurality of cutting at the same time.
  • the cutting interval is preferably cut so that the thickness of the semiconductor test pad 5 is 1 to 3 mm, but in consideration of the use conditions of the semiconductor test pad 5 and the like, the cutting gap is adjusted under various conditions. It can also manufacture.
  • a semiconductor test pad in which a metal thin plate is laminated using an adhesive according to the present invention is manufactured as one semiconductor test pad 5 after the cutting step S4, and the semiconductor test pad 5 ) May further proceed with an additional plating step (not shown).
  • a rectangular cross section having the same height in the Y-axis direction and the same height in the Z-axis direction with the first layer 21a composed of an insulator having a predetermined length in the Y-axis direction in the rectangular cross section.
  • the first layer 21a composed of an insulator having a predetermined length in the Y-axis direction in the rectangular cross section.
  • the semiconductor test pad 5 manufactured through the cutting step S4 has the same shape as the upper and lower surfaces thereof, and both side surfaces thereof are formed of an insulator.
  • first layer 21a having a rectangular cross section and a predetermined length in the Y-axis direction, such as A1, and made of an insulator (film), and the first layer 21 on the X-axis direction side surface of the first layer 21a.
  • a second layer 21b composed of an insulator (adhesive) having a square cross section having the same height as the Z-axis height of the layer 21a is formed, and the second layer 21b has a plurality of conductors having the same Z-axis height. (11) is regularly spaced apart in the Y-axis direction and penetrated in the Z-axis direction.
  • the second layer 21b and the first layer 21a are cross-laminated on the X-axis side surface of the first layer 21a, and the first layer 21a is formed at both ends of the X-axis.
  • the plurality of first layers 21a and the second layers 21b are stacked to form a rectangular semiconductor test pad 5.
  • the conductors 11 are not formed at both ends of the second layer 21b in the Y-axis direction, and the side portion is always formed of an insulator.
  • the conductor 11 formed in the second layer 21b may be oriented in the direction of the first layer 21a, which is the stacking step S3 during the manufacturing process of the semiconductor test pad 5. It is formed according to the adhesive coating method of, the insulator (adhesive) is coated to a height higher than the conductor (11).
  • each conductor 10-50 ⁇ m and a conductor thickness H1 of 5-30 ⁇ m, but may vary according to the thickness of the adhesive layer and the thickness of the metal sheet.
  • the upper surface of the conductor formed in the portion may be partially etched to form a conductor having a finer thickness.
  • the plating step S5 which may be performed after the cutting step S4, may be performed to prevent corrosion of the conductor 11 exposed to the upper and lower surfaces of the semiconductor test pad 5.
  • the upper and lower surfaces are plated, and the semiconductor test pad 5 having the plating step S5 further includes a plating layer on the upper and lower surfaces of the conductor 11.
  • the plating step (S5) is to plate the entire outer surface of each semiconductor test pad, but the insulator (film and adhesive) other than the conductor 11 is not plated because the plating material is not attached.
  • each conductor 11 exposed on the outer surface is plated.
  • the plating is performed by an electroless plating method in which metal ions in an aqueous metal salt solution are self-catalytically reduced by the force of a reducing agent to deposit metal on the surface of the workpiece without receiving electrical energy from the outside.
  • the process may be divided into primary plating and secondary plating.
  • the plating material of the primary plating and the secondary plating may be different, and the metal to be plated is determined by comparing the reactivity of the conductor 11 (the tendency of the metal atoms to oxidize and become cations).
  • the most reactive metal is used in the order of the most reactive metal, the first plating metal, the second plating metal.
  • plating is performed using a metal having a lower reactivity than Cu such as Au and Ag.
  • the first plating is performed first using a metal having a lower reactivity than Cu such as Ni and Ag.
  • the secondary plating is to be plated with a metal such as Pt, Au having a lower reactivity than the metal subjected to the primary plating.
  • the thickness to be plated is preferably 1 to 10 ⁇ m, and when the first and second plating are performed, the total thickness to be plated is preferably 1 to 15 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Laminated Bodies (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

본 발명은 반도체 검사에 사용되는 반도체 검사 패드에 관한 것으로, 보다 상세하게는 금속 박판에 필름을 부착하여 1차 시트를 제조하며, 상기 1차 시트의 금속 박판을 에칭하고 적층한 후 수직 절단하여 제조되는, 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법에 관한 것이다. 또한, 전도성 금속 박판에 절연성 필름을 부착하여 1차 시트가 제조되는 시트제조단계와 상기 1차 시트의 금속 박판을 복수 개의 라인이 형성되도록 에칭하여 각 라인상의 도전체가 소정의 거리만큼 이격된 2차 시트가 제조되는 에칭단계와 상기 2차 시트를 복수 개 적층하여 하나의 스택이 제조되는 적층단계와 상기 적층된 스택을 소정의 두께로 수직절단하는 절단단계를 포함하는 것을 특징으로 한다.

Description

접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법
본 발명은 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법에 관한 것으로, 보다 상세하게는 금속 박판에 필름을 부착하여 1차 시트를 제조하며, 상기 1차 시트의 금속 박판을 에칭하고 적층한 후 수직 절단하여 제조되는, 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법에 관한 것이다.
일반적으로 반도체의 제조에 있어서 전기적 성능을 검사하여 반도체 제조의 이상 유무를 확인하게 되는데, 반도체 소자의 단자와 전기적으로 접촉될 수 있도록 형성된 반도체 테스트 소켓을 반도체 소자와 검사 회로기판 사이에 삽입한 상태에서 검사가 수행된다. 또한, 반도체 테스트 소켓은 반도체 소자의 검사 외에도 반도체 소자의 제조 과정 중 번-인(Burn-In) 테스트 과정에서도 사용되고 있다.
반도체 소자의 집적화 기술의 발달과 소형화 추세에 따라 반도체 소자의 단자 즉, 리드의 크기 및 간격도 미세화되는 추세이며, 그에 따라 테스트 소켓의 도전 패턴 상호간의 간격도 미세하게 형성하는 방법이 요구되고 있다. 따라서, 기존의 포고(Pogo) 타입의 반도체 테스트 소켓으로는 집적화되는 반도체 소자를 테스트하는데 한계가 있었다.
더욱이, 반도체 테스트 소켓의 전기적 접속을 위한 단자 또는 프로브가 반도체에 직접적으로 접촉하면서, 미세화되고 얇아진 반도체가 물리적으로 손상되는 문제점이 있으며, 현재까지 사용화된 전극간 최소 피치는 250㎛로 보다 축소화된 피치의 필요성이 있었다.
상기의 문제점을 해결하기 위하여 제안된 기술로서 탄성 재질의 실리콘 소재로 제작되는 실리콘 본체 상에 수직 방향으로 타공 패턴을 형성한 후, 타공된 패턴 내부에 도전성 분말을 충진하여 도전 패턴을 형성하는 기술이 널리 사용되고 있다.
*그러나, 도전성 분말을 충진하는 방법은 반도체 검사 패드의 내구성이 떨어져 도전체를 이루는 분말이 이탈되어 반복 사용 가능 횟수가 저하되는 문제점이 있었다.
또한, 반도체 검사 패드의 미세한 피치를 제작하기 위해 전도성 시트와 절연성 시트를 교차 적층한 후 수십 마이크로미터의 미세한 두께로 수직 절단하고, 다시 적층하여 수직 절단하는 방법이 고안되었으나, 미세한 두께로 수직 절단하면 얇은 두께로 인해 도전체가 원래 있어야할 자리에서 이탈되는 문제와, 미세한 두께로 절단하기가 어려운 문제점이 있었다.
본 발명의 목적은 상술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 도전성 분말을 이용하지 않아 내구성이 향상된 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드를 제공하는 것이다.
본 발명의 다른 목적은 각 도전체 사이 거리가 수십 마이크로미터의 미세한 피치를 가지는 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드를 제공하는 것이다.
본 발명의 또 다른 목적은 기존의 적층방법을 통한 제조 방법에 비해 간단한 공정으로 제조되는 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조방법을 제공하는 것이다.
상기 목적을 달성하기 위해 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 그 제조방법은 절연성 필름의 일면에 전도성 금속 박판을 부착하여 1차 시트가 제조되는 시트제조단계(S1)와 상기 1차 시트의 금속 박판을 복수 개의 라인이 형성되도록 에칭하여 각 라인상의 도전체가 소정의 거리만큼 이격된 2차 시트가 제조되는 에칭단계(S2)와 상기 2차 시트를 복수 개 적층하여 하나의 스택이 제조되는 적층단계(S3)와 상기 적층된 스택을 소정의 두께로 수직절단하는 절단단계(S4)를 포함하는 것을 특징으로 한다.
또한, 상기 필름은 실리콘, 우레탄, PI, PET, PEN, PE, PP, PT, 고무 중 적어도 어느 하나를 포함하는 것을 특징으로 한다.
또한, 상기 적층단계는 라인상의 도전체가 형성된 2차 시트의 상부에 접착제를 도포하며, 상기 접착제로 구성된 접착층을 이용하여 복수 개의 2차 시트를 적층하는 것을 특징으로 한다.
또한, 상기 접착층은 실리콘, 우레탄, PI, PET, PEN, PE, PP, PT, 고무 중 적어도 어느 하나를 포함하는 것을 특징으로 한다.
또한, 상기 절단단계 이후에 검사 패드의 표면에 무전해 도금을 하여 도전체의 산화를 방지하는 도금단계를 더 포함한 것을 특징으로 한다.
또한, 상기 금속 박판은 Cu, Au, Ag, Pt, Fe, Al, Ni, Mg, Pb, Zn, Sn, Co, Cr, Mn, C 중 적어도 어느 하나를 포함하는 것을 특징으로 한다.
또한, 사각형의 단면에 Y축 방향으로 소정의 길이를 가지는 절연체로 구성된 제 1층과 상기 제 1층과 Z축 방향으로 동일한 높이와 Y축 방향으로 동일한 길이를 가지는 사각형 단면의 절연체를 일정한 간격마다 Z축 방향으로 관통하는 복수 개의 사각형 도전체로 구성된 제 2층과 상기 제 1층과 제 2층이 X축 방향으로 교차 적층되어 전체적으로 사각형의 패드를 이루며, 상기 패드의 X축 양 끝단부에는 제 1층이 위치하는 것을 특징으로 한다.
또한, 상기 도전체의 상면과 하면에 도금층을 더 포함한 것을 특징으로 한다.
상술한 바와 같이, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드는 금속 박판의 적층을 이용하여 도전체가 높은 내구성을 가지는 효과가 있다.
또한, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드는 각 도전체 사이 거리가 수십 마이크로미터의 미세한 피치를 가질 수 있어, 보다 직접화되고 있는 반도체에 적용이 가능한 효과가 있다.
또한, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조방법은 기존의 적층방법을 통한 제조 방법에 비해 간단한 공정으로 제조가 가능하여, 생산성 및 품질이 향상되는 효과가 있다.
1 : 금속 박판
2 : 필름
3 : 접착층
5 : 반도체 검사 패드
10 : 접착제
11 : 도전체
30 : 압연 롤러
50 : 레이저
60 : 1차 시트
61 : 2차 시트
62 : 스택
도 1은 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법을 도시한 순서도.
도 2는 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 시트제조단계를 도시한 사시도.
도 3은 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 에칭단계를 도시한 사시도.
도 4는 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 적층단계의 접착제 도포를 도시한 도면.
도 5는 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 적층단계의 적층을 도시한 사시도.
도 6은 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 절단단계를 도시한 사시도.
도 7은 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드를 도시한 사시도.
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.
도 1은 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법을 도시한 순서도이며, 도 2는 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 시트제조단계를 도시한 사시도이고, 도 3은 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 에칭단계를 도시한 사시도이며, 도 4는 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 적층단계의 접착제 도포를 도시한 도면이고, 도 5는 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 적층단계의 적층을 도시한 사시도이며, 도 6은 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 절단단계를 도시한 사시도이고, 도 7은 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드를 도시한 사시도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조방법은 시트제조단계(S1), 에칭단계(S2), 적층단계(S3), 절단단계(S4)로 진행되며, 절연성의 필름에 전도성의 금속 박판을 부착하여 1차 시트가 제조되는 시트제조단계(S1)와, 상기 1차 시트의 금속 박판을 복수 개의 라인이 형성되도록 에칭하여 각 라인상의 도전체가 소정의 거리만큼 이격된 2차 시트가 제조되는 에칭단계(S2)와, 상기 2차 시트를 복수 개 적층하여 하나의 스택이 제조되는 적층단계(S3)와, 상기 적층된 스택을 소정의 두께로 수직절단하는 절단단계(S4)를 포함하는 것을 특징으로 한다.
또한, 절단단계(S4) 이후에 도전체의 노출면에 도금처리를 진행하는 도금단계(미도시)를 더 포함하여 진행될 수도 있다.
또한, 상기 시트제조단계(S1)에서의 부착 및 적층단계(S3)에서 적층은 접착제 또는 프라이머를 통해 부착 및 적층이 이루어지며, 상지 접착제 또는 프라이머는 경화 후 절연성을 띄는 것이라면 특별한 제약이 없다.
도 2에 도시된 바와 같이, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 시트제조단계(S1)는 필름(2)의 일면에 접착제(10) 또는 프라이머(이하, 접착제)를 분사한 후 상기 접착제를 통해 필름(2)의 일면에 금속 박판(1)을 부착하게 된다.
바람직한 실시예로서 상기 접착제(10)의 도포 방법으로는 코팅, 페인팅, 스프레이 중 어느 하나의 방법으로 도포될 수도 있으며, 도포량은 1~50㎛의 두께가 되도록 도포하는 것이 바람직하다.
또한, 상기 접착제는 경화된 후 절연성을 띄는 것으로 선택되어야 하며, 보다 높은 절연성을 위해 접착제에 실리콘, 우레탄, PI, PET, PEN, PE, PP, PT, 고무 중 어느 하나를 더 포함하거나, 실리콘, 우레탄, PI, PET, PEN, PE, PP, PT, 고무 중 어느 하나를 접착제의 용도로서 액상으로 도포할 수도 있다.
또한, 상기 필름(2)은 실리콘, 우레탄, PI, PET, PEN, PE, PP, PT, 고무 중 어느 하나를 포함한 것을 사용할 수도 있으며, 상기 금속 박판(1)은 Cu, Au, Ag, Pt, Fe, Al, Ni, Mg, Pb, Zn, Sn, Co, Cr, Mn, C 중 적어도 어느 하나를 포함하는 것을 사용할 수도 있다.
상기와 같은 필름(2) 및 금속 박판(1)은 접착제를 통해 하나의 1차 시트(60)로 제조되며, 상기 1차 시트(60)의 두께를 조절하거나, 상기 필름(2)과 금속 박판(1) 사이의 접착력을 높이기 위해 압연 롤러(30) 또는 프레스(미도시)를 이용하여 1차 시트(60)의 상,하면을 가압할 수도 있다.
바람직한 실시예로 상기 필름(2)은 보다 얇은 도전체간 사이 거리를 얻기 위해 1~100㎛의 두께를 가지는 것을 사용하는 것이 바람직하나, 필요(사용 용도 및 테스트할 단자 거리)에 따라 1~5000㎛의 두께를 가지는 필름(2)이 사용될 수도 있다.
또한, 상기 금속 박판(1)은 보다 미세한 도전체를 얻기 위해 1~100㎛의 두께를 가지는 것을 사용하는 것이 바람직하나, 필요(사용 용도 및 테스트할 단자의 두께)에 따라 1~5000㎛의 두께를 가지는 금속 박판(1)이 사용될 수도 있다.
또한, 다른 실시예로서 상기와 같은 접착제를 이용한 부착 이외에 필름(2)의 일면에 금속 박판(1)을 부착하기 위해 PVD(Physical Vapor Deposition)와 CVD(Chemical Vapor Deposition)와 같은 증착방법을 통해 필름(2)의 일면에 금속 박판(1)을 증착하여 부착할 수도 있다.
도 3에 도시된 바와 같이, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 에칭단계(S2)는 1차 시트(60)를 구성하는 필름(2)과 금속 박판(1) 중 금속 박판(1)을 에칭하여 2차 시트로 가공하는 것으로서, 보다 상세하게는 1차 시트의 일면에 위치한 금속 박판(1)을 에칭하여 복수 개의 라인(Line) 형상의 도전체(11)를 만드는 것으로서, 라인 형상을 가지는 복수 개의 도전체(11)는 소정의 간격을 두고 이격되어 있다.
바람직한 실시예로 상기 도전체(11) 사이의 거리는 필름(2)의 두께와 같이 1~50㎛의 길이로 이격되도록 금속 박판(1)을 에칭하는 것이 바람직하다. 즉, 상기 도전체(11) 사이의 거리는 필름(2)의 두께와 동일하도록 필름(2)의 두께에 따라 변할 수도 있다.
또한, 상기 에칭의 두께는 각 도전체(11)가 접하지 않도록 초기 금속 박판(1)의 두께만큼 에칭하고, 끝단에 위치한 도전체(11)는 하부에 위치한 절연체(21)의 끝단과 소정의 간격을 두고 내측에 위치하도록 절연체(21)의 끝단에 위치한 금속 박판(1)은 A와 같이 전부 에칭하는 것이 바람직하다.
바람직한 실시예로서 에칭방법은 레이저(50)를 이용하는 방법으로 설명하였으나, 도전체(11)가 형성될 부분에 포토 레지스트를 피복하여 도전체(11)가 형성될 이외의 부분을 제거하는 화학적 부식방법(에칭)을 이용하는 것이 높은 생산성을 얻기 위해 가장 바람직하며, 도시된 바와 같이 레이저(50)를 이용하여 도전체(11)가 형성될 이외의 부분을 제거하는 방법을 이용할 수도 있다.
또한, 에칭 간격을 조절하여 도전체(11) 사이의 피치(Pitch)를 조절할 수도 있으며, 레이저를 이용하여 에칭할 경우 레이저의 입사 각도에 따라 사각형 이외에 사다리꼴, 평행사변형, 삼각형의 단면을 가지는 도전체(11)를 형성할 수도 있으며, 복수 개의 레이저(50)로 보다 넓은 범위를 빠르게 에칭할 수도 있다.
도 4 또는 도 5에 도시된 바와 같이, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 적층단계는 접착제를 도포하여 접착층을 형성하고, 적층하는 순서로 구성되어 있다.
보다 상세하게는, 적층단계(S3)의 접착제 도포는 401에 도시된 2차 시트(61)의 일면에 위치한 도전체(11)의 상면에 접착제(10)를 도포하여 접착층(3)을 형성하게 되며, 보다 상세하게는 402에 도시된 바와 같이, (A) 또는 (B)의 형상으로 접착층(3)이 형성될 수 있다.
바람직한 실시예로서 상기 접착제(10)의 도포 방법으로는 코팅, 페인팅, 스프레이 중 어느 하나의 방법으로 도포될 수도 있으며, 접착제(10)의 도포량은 402의 (A)와 같은 형상일 경우, 도전체(11)와 동일한 두께가 되도록 접착제(10)를 도포하며, (B)와 같은 형상일 경우, 도전체(11)보다 높은 두께가 되도록 접착제(10)를 도포하는 것이 바람직하다.
도 5에 도시된 바와 같이, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 적층단계(S3)의 적층은 2차 시트를 소정의 높이가 되도록 접착층(3)을 이용하여 상기 2차 시트의 상면에 평행하게 복수 개의 2차 시트를 적층하여 하나의 스택(62)을 형성하게 된다.
보다 상세하게는, 적층단계(S3)는 필름(2)과 도전체(11)로 구성된 복수 개의 2차 시트(61)를 접착제로 구성된 복수 개의 접착층(3)을 이용하여 적층하는 것으로서, 상기 위에서 도 4와 함께 설명한 필름(2)의 일면에 접착제의 도포를 통해 형성된 접착층(3)의 상부에 다른 필름(2a)를 부착하며, 다른 필름(2a)의 상부에 다른 접착층(3a)를 형성하는 방법을 반복(2a, 3a, 2b, 3b, ...)하여 적층한 후, 최상층에 또 하나의 필름(2c)을 접착하여 적층을 마무리하게 된다.
또한, 상기 위에서 도 4와 함께 설명한 접착층(3)이 형성된 2차 시트(61)를 복수 개 적층한 후, 또 하나의 필름(2c)을 접착하여 적층을 마무리할 수도 있다.
또한, 상기 적층 단계 중 또는 적층 단계 이후에 접착층의 가압 또는 건조를 진행할 수도 있다.
예를 들면, 하나의 2차 시트(61) 상면에 접착층(3)을 형성하고, 다른 2차 시트를 올려 적층한 후 가열, 가압하여 경화시키고, 또 다른 2차 시트를 접착제를 이용하여 적층 하는 순차적인 방법으로 건조를 진행할 수 있다.
다른 예를 들면, 하나의 2차 시트(61) 상면에 접착층(3)을 형성하고, 다른 2차 시트를 올려 적층하며, 다른 2차 시트의 상면에 다른 접착층을 형성하고, 또 다른 2차 시트를 올려 적층 하는 방식으로 하나의 스택(4)을 제조한 후 가열, 가압하여 경화시킬 수도 있다.
또한, 가열, 가압은 경화시키기 위한 하나의 방법으로서 가열, 가압 중 어느 하나만 진행되거나, 자연건조에 의한 경화가 진행될 수도 있다.
또한, 상기 가열온도는 30~120℃의 온도가 바람직 하나, 상온 이상의 온도로 경화속도를 높여 줄 수 있는 온도이고, 사용되는 필름의 용융점 이하의 온도이면 특별한 제약은 없다.
또한, 가압되는 압력은 사용되는 절연체의 재질에 따라 상이하며, 적층된 스택(4)의 단면 폭이 가압시 1~10%의 변화율 내에서 가압하는 것이 바람직하다.
따라서, 상기 적층 방법에 의해 복수 개의 2차 시트(61)는 복수 개의 접착층(3, 3a, 3b, ...)을 통해 부착되어 하나의 스택(62)으로 제조되며, 스택(62)은 복수 개의 도전체(11)가 소정의 간격을 가지고 복수 개의 열과 행으로 배열된 형상의 단면을 가지게 된다.
도 6에 도시된 바와 같이, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법 중 절단단계(S4)는 스택(62)을 횡방향으로 소정의 간격을 두고 수직 절단하여 복수 개의 반도체 검사패드(5)를 제조하게 된다.
보다 상세하게는 스택(62)의 도전체(11)가 형성된 일면으로부터 소정의 간격을 두고 일면에 평행하게 수직 절단하는 것으로서, 절단 방법은 레이저를 이용하거나, 와이어, 칼날과 같은 절단도구 중 어느 하나를 이용한 절단이 가능하다.
또한, 상기 수직 절단은 스택(62)의 일측에서 소정의 간격으로 순차적인 절단이 이루어지거나 복수 위치의 절단이 동시에 이루어질 수도 있다.
바람직한 실시예로서 상기 절단 간격은 반도체 검사 패드(5)의 두께가 1~3㎜가 되도록 절단하는 것이 바람직하나 반도체 검사 패드(5)의 사용 조건 등을 감안하여, 다양한 조건으로 절단 간격을 조절하여 제조할 수도 있다.
도 7에 도시된 바와 같이, 본 발명에 따른 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드는 절단단계(S4) 이후에 하나의 반도체 검사 패드(5)로 제조되며, 상기 반도체 검사 패드(5)는 추가적인 도금단계(미도시)가 더 진행될 수도 있다.
또한, 사각형의 단면에 Y축 방향으로 소정의 길이를 가지는 절연체로 구성된 제 1층(21a)과 상기 제 1층(21a)과 Z축 방향으로 동일한 높이와 Y축 방향으로 동일한 길이를 가지는 사각형 단면의 절연체(접착제로 구성된 접착층)를 일정한 간격마다 Z축 방향으로 관통하는 복수 개의 사각형 도전체(11)로 구성된 제 2층(21b)과 상기 제 1층(21a)과 제 2층(21b)이 X축 방향으로 교차 적층되어 전체적으로 사각형의 패드를 이루며, 상기 패드의 X축 양 끝단부에는 제 1층(21a)이 위치하는 것을 특징으로 한다.
상기와 같이, 절단단계(S4)를 통해 제조된 반도체 검사 패드(5)는 상면과 하면의 형상이 동일하며, 측면부는 모두 절연체로 형성되어 있다.
또한, A1과 같이 사각형의 단면을 가지고 Y축 방향으로 소정의 길이를 가지며, 절연체(필름)로 구성된 제 1층(21a)과, 상기 제 1층(21a)의 X축 방향 측면에 상기 제 1층(21a)의 Z축 높이와 같은 높이를 가지는 사각형 단면의 절연체(접착제)로 구성된 제 2층(21b)이 형성되며, 상기 제 2층(21b)은 동일한 Z축 높이를 가지는 복수 개의 도전체(11)가 Y축 방향으로 일정하게 이격되어 Z축 방향으로 관통되어 있다.
상기 제 1층(21a)의 X축 방향 측면으로 제 2층(21b)과 제 1층(21a)이 교차 적층되며, X축 양 끝단부에는 제 1층(21a)이 형성되어 있다.
상기와 같이 복수 개의 제 1층(21a)과 제 2층(21b)이 교차 적층되어 사각형의 반도체 검사 패드(5)를 이루게 된다.
또한, 상기 제 2층(21b)의 Y축 방향 양 끝단부에는 도전체(11)가 형성되지 않으며, 측면부는 항상 절연체로 구성된 형태가 된다.
또한, B3과 같이 제 2층(21b)에 형성된 도전체(11)가 제 1층(21a)방향으로 치우쳐진 형상일 수도 있으며, 이는 반도체 검사 패드(5)의 제조 과정 중 적층단계(S3)의 접착제 도포방법에 따라 형성되는 것으로서, 도전체(11)보다 높은 높이로 절연체(접착제)가 코팅된 것이다.
또한, B3가 적층되어, B2와 같이 하나의 시트형상을 이루게 되면, A2에 비해 X축 방향 도전체(11) 사이 간격에 비해 넓으며, 이는 도전체(11)의 두께(H1)는 같으나, 접착제로 구성된 접착층의 높이(H2) 차이로 인한 것이다.
바람직한 실시예로서, 10~50㎛의 각 도전체 간의 사이 간격과 5~30㎛의 도전체 두께(H1)를 가지는 것이 바람직하나, 접착층의 두께와 금속 박판의 두께에 따라 변동될 수도 있으며, 에칭시에 형성되는 도전체의 상면을 일부 에칭하여 보다 미세한 두께의 도전체가 되도록 할 수도 있다.
또한, 절단단계(S4) 이후에 진행될 수도 있는 도금단계(S5)는 반도체 검사 패드(5)의 상면 및 하면에 노출되어 있는 도전체(11)의 부식을 방지하기 위해 각 도전체(11)의 상,하면을 도금하는 것으로, 도금단계(S5)를 진행한 반도체 검사 패드(5)는 도전체(11)의 상면과 하면에 도금층을 더 포함한 것을 특징으로 한다.
또한, 상기 도금단계(S5)는 각 반도체 검사 패드의 외면 전체를 도금하게 되지만, 도전체(11) 이외의 절연체(필름 및 접착제)는 도금재료가 부착되지 않아 도금이 이루어지지 않는다.
따라서, 외면에 노출되어 있는 각 도전체(11)의 상,하면만 도금된다.
바람직한 실시예로서 외부로부터 전기에너지를 공급받지 않고 금속염 수용액 중의 금속이온을 환원제의 힘에 의해 자기 촉매적으로 환원시켜 피처리물의 표면 위에 금속을 석출시키는 무전해 도금방법으로 도금을 진행하는 것이 바람직하며, 보다 높은 도금품질을 위해서 1차 도금과 2차 도금으로 나누어 진행할 수도 있다.
또한, 1차 도금과 2차 도금의 도금재료가 상이할 수도 있으며, 도전체(11)의 반응성(금속 원자가 산화되어 양이온이 되려는 경향)을 비교하여 도금할 금속을 정하게 되며, 도전체(11)가 반응성이 가장 높고, 1차 도금 금속, 2차 도금 금속 순으로 반응성이 낮은 금속을 사용하게 된다.
따라서, 금속의 반응성에 따라 도금 후 도전체(11)의 표면이 부식되는 것을 방지되는 효과가 발생하게 된다.
예를 들면, 도전체(11)로 Cu를 사용하고, 1차 도금만 진행할 경우 Au, Ag 등의 Cu보다 낮은 반응성을 가지는 금속을 사용하여 도금을 진행하게 된다.
또한, 도전체(11)로 Cu를 사용하고, 1차 도금과 2차 도금을 진행하게 되는 경우, 1차로 Ni, Ag 등의 Cu보다 낮은 반응성을 가지는 금속을 사용하여 1차 도금을 진행한 후, 2차 도금은 1차 도금을 진행한 금속보다 낮은 반응성을 가지는 Pt, Au 등의 금속으로 도금을 진행하게 된다.
바람직한 실시예로서 1차 도금만 진행할 경우 도금되는 두께는 1~10㎛가 바람직하며, 1차 도금과 2차 도금을 진행하게 되는 경우 도금되는 총 두께가 1~15㎛이 되도록 함이 바람직하다.
이상과 같이 본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양한 자명한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형의 예들을 포함하도록 기술된 청구범위에 의해서 해석되어져야 한다.

Claims (8)

  1. 절연성 필름의 일면에 전도성 금속 박판을 부착하여 1차 시트가 제조되는 시트제조단계(S1)와;
    상기 1차 시트의 금속 박판을 복수 개의 라인이 형성되도록 에칭하여 각 라인상의 도전체가 소정의 거리만큼 이격된 2차 시트가 제조되는 에칭단계(S2)와;
    상기 2차 시트를 복수 개 적층하여 하나의 스택이 제조되는 적층단계(S3)와;
    상기 적층된 스택을 소정의 두께로 수직절단하는 절단단계(S4)를 포함하는 것을 특징으로 하는
    접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법.
  2. 제 1항에 있어서,
    상기 필름은 실리콘, 우레탄, PI, PET, PEN, PE, PP, PT, 고무 중 적어도 어느 하나를 포함하는 것을 특징으로 하는
    접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법.
  3. 제 1항에 있어서,
    상기 적층단계는 라인상의 도전체가 형성된 2차 시트의 상부에 접착제를 도포하며,
    상기 접착제로 구성된 접착층을 이용하여 복수 개의 2차 시트를 적층하는 것을 특징으로 하는
    접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법.
  4. 제 3항에 있어서,
    상기 접착층은 실리콘, 우레탄, PI, PET, PEN, PE, PP, PT, 고무 중 적어도 어느 하나를 포함하는 것을 특징으로 하는
    접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법.
  5. 제 1항에 있어서,
    상기 절단단계 이후에 검사 패드의 표면에 무전해 도금을 하여 도전체의 산화를 방지하는 도금단계를 더 포함한 것을 특징으로 하는
    접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법.
  6. 제 1항에 있어서,
    상기 금속 박판은 Cu, Au, Ag, Pt, Fe, Al, Ni, Mg, Pb, Zn, Sn, Co, Cr, Mn, C 중 적어도 어느 하나를 포함하는 것을 특징으로 하는
    접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드의 제조 방법.
  7. 사각형의 단면에 Y축 방향으로 소정의 길이를 가지는 절연체로 구성된 제 1층과;
    상기 제 1층과 Z축 방향으로 동일한 높이와 Y축 방향으로 동일한 길이를 가지는 사각형 단면의 절연체를 일정한 간격마다 Z축 방향으로 관통하는 복수 개의 사각형 도전체로 구성된 제 2층과;
    상기 제 1층과 제 2층이 X축 방향으로 교차 적층되어 전체적으로 사각형의 패드를 이루며,
    상기 패드의 X축 양 끝단부에는 제 1층이 위치하는 것을 특징으로 하는
    접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드.
  8. 제 7항에 있어서,
    상기 사각형 도전체는 상면과 하면에 부식방지를 위한 도금층을 더 포함한 것을 특징으로 하는
    접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드.
PCT/KR2015/000779 2014-03-26 2015-01-26 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법 WO2015147438A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580000546.XA CN105122437A (zh) 2014-03-26 2015-01-26 利用粘合剂层叠金属薄板的半导体检测板及其制造方法
JP2016513891A JP2016536567A (ja) 2014-03-26 2015-01-26 接着剤を用いて金属薄板を積層した半導体検査パッド及び製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140035410A KR101435459B1 (ko) 2014-03-26 2014-03-26 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법
KR10-2014-0035410 2014-03-26

Publications (1)

Publication Number Publication Date
WO2015147438A1 true WO2015147438A1 (ko) 2015-10-01

Family

ID=51751553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/000779 WO2015147438A1 (ko) 2014-03-26 2015-01-26 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법

Country Status (5)

Country Link
JP (1) JP2016536567A (ko)
KR (1) KR101435459B1 (ko)
CN (1) CN105122437A (ko)
TW (2) TWI570825B (ko)
WO (1) WO2015147438A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536566A (ja) * 2013-11-22 2016-11-24 シリコーン バリー カンパニー,リミテッド 金属薄板を積層した半導体検査パッド及び製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101435459B1 (ko) * 2014-03-26 2014-08-28 실리콘밸리(주) 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법
CN114934290B (zh) * 2022-03-09 2024-01-30 氢克新能源技术(上海)有限公司 一种气体扩散层及其加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243486A (ja) * 1999-02-17 2000-09-08 Jsr Corp 異方導電性シート
KR20050005421A (ko) * 2002-03-20 2005-01-13 니혼앗짜쿠단시세이소 가부시키가이샤 이방 도전 시트 및 그 제조 방법
KR20070104742A (ko) * 2006-04-24 2007-10-29 엘지전자 주식회사 이방성 도전 필름 및 그 제조방법
KR20100060272A (ko) * 2008-11-27 2010-06-07 (주)보람하이테크 단방향 도전성 시트 및 그 제조 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61240511A (ja) * 1985-04-18 1986-10-25 松下電器産業株式会社 異方導電性接着剤シ−トの製造方法
JP3558298B2 (ja) * 1991-03-15 2004-08-25 ソニー株式会社 電極集合体、icソケット、icテスター、および電極集合体の製造方法
JPH06174750A (ja) * 1992-12-09 1994-06-24 Sharp Corp 液晶パネル検査用プローバー
JP2001144414A (ja) * 1999-11-11 2001-05-25 Mitsui Mining & Smelting Co Ltd プリントサーキットボードの製造方法
US6581276B2 (en) * 2000-04-04 2003-06-24 Amerasia International Technology, Inc. Fine-pitch flexible connector, and method for making same
JPWO2003079494A1 (ja) * 2002-03-20 2005-07-21 日本圧着端子製造株式会社 異方導電シートおよびその製造方法
EP1487058B1 (en) * 2002-03-20 2008-07-16 J.S.T. Mfg. Co., Ltd. Anisotropic conductive sheet
KR100775742B1 (ko) * 2005-08-29 2007-11-09 김용욱 키탑패드의 제조방법 및 키탑패드
US20090201038A1 (en) * 2008-02-11 2009-08-13 Knickerbocker John U Test head for functional wafer level testing, system and method therefor
TWI377624B (en) * 2008-05-13 2012-11-21 Ind Tech Res Inst Conducting film structure, fabrication method thereof, and conducting film type probe device for ic
CN101383256B (zh) * 2008-10-23 2011-09-28 上海交通大学 大长径比侧壁电极及其制造方法
KR101055502B1 (ko) * 2009-12-24 2011-08-08 삼성전기주식회사 금속회로기판 및 그 제조방법
KR101150762B1 (ko) * 2011-10-19 2012-06-08 실리콘밸리(주) 반도체소자 테스트용 콘텍트 제조방법
JPWO2013133015A1 (ja) * 2012-03-07 2015-07-30 東レ株式会社 半導体装置の製造方法および半導体装置の製造装置
EP2947685A4 (en) * 2013-11-22 2016-04-27 Silicone Valley Co Ltd SEMICONDUCTOR TEST RANGE HAVING STACKED METALLIC SHEETS AND METHOD FOR MANUFACTURING THE SAME
KR101374770B1 (ko) * 2013-11-22 2014-03-17 실리콘밸리(주) 금속 박판의 적층을 이용한 반도체 검사 패드 및 제조방법
KR101435459B1 (ko) * 2014-03-26 2014-08-28 실리콘밸리(주) 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243486A (ja) * 1999-02-17 2000-09-08 Jsr Corp 異方導電性シート
KR20050005421A (ko) * 2002-03-20 2005-01-13 니혼앗짜쿠단시세이소 가부시키가이샤 이방 도전 시트 및 그 제조 방법
KR20070104742A (ko) * 2006-04-24 2007-10-29 엘지전자 주식회사 이방성 도전 필름 및 그 제조방법
KR20100060272A (ko) * 2008-11-27 2010-06-07 (주)보람하이테크 단방향 도전성 시트 및 그 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016536566A (ja) * 2013-11-22 2016-11-24 シリコーン バリー カンパニー,リミテッド 金属薄板を積層した半導体検査パッド及び製造方法

Also Published As

Publication number Publication date
KR101435459B1 (ko) 2014-08-28
TWI570825B (zh) 2017-02-11
CN105122437A (zh) 2015-12-02
TW201639056A (zh) 2016-11-01
JP2016536567A (ja) 2016-11-24
TW201546923A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
WO2015072775A1 (ko) 연성인쇄회로기판과 그 제조 방법
WO2019004609A1 (ko) 다층 세라믹 기판 및 그의 제조 방법
WO2009131346A2 (ko) Mems 프로브 카드 및 그의 제조 방법
KR100721435B1 (ko) 전자부품 실장용 필름 캐리어 테이프 및 플렉서블 기판
WO2015147438A1 (ko) 접착제를 이용하여 금속 박판을 적층한 반도체 검사 패드 및 제조방법
US6426639B2 (en) Method and apparatus for capacitively testing a semiconductor die
WO2020036360A1 (ko) 프레임 일체형 마스크의 제조 방법 및 프레임
EP2474212A1 (en) Method and apparatus to detect the alignment of a substrate
EP2820927A1 (en) The printed circuit board and the method for manufacturing the same
WO2010027145A1 (ko) Mems 프로브용 카드 및 그의 제조 방법
WO2020091341A1 (ko) 소자 간격 제어가 가능한 시트 및 이를 이용한 소자 간격 제어방법
US3762040A (en) Method of forming circuit crossovers
CN110612452A (zh) 用于电子器件的测试设备的探针卡多层结构的制造方法
WO2024085554A1 (ko) 집적회로 칩 제조를 위한 도금 장치, 집적회로 칩 제조를 위한 도금 방법 및 이를 이용한 집적회로 칩의 제조 방법
WO2013133560A1 (en) Printed circuit board and method of manufacturing the same
WO2015076465A1 (ko) 금속 박판을 적층한 반도체 검사 패드 및 제조방법
WO2017061656A1 (ko) 켈빈 테스트용 프로브, 켈빈 테스트용 프로브 모듈 및 그 제조방법
WO2020045900A1 (ko) 마스크의 제조 방법, 마스크 및 프레임 일체형 마스크
WO2016204404A1 (en) Strain inspection device and attaching method thereof
WO2013141611A1 (en) Semiconductor memory card, printed circuit board for memory card and method of fabricating the same
WO2022080755A1 (ko) 전기 전도성 접촉핀, 이의 제조방법, 검사장치 및 성형물의 제조방법 및 그 성형물
ITUD20090150A1 (it) Procedimento per l'allineamento di una traccia di stampa
JP2005338060A (ja) 検査品の電気的検査のための検査装置及び検査装置の製造方法
WO2017039129A1 (ko) 배선전극을 가지는 투명전극의 제조방법
WO2020032513A1 (ko) 마스크 지지 템플릿과 그의 제조 방법 및 프레임 일체형 마스크의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000546.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2016513891

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770391

Country of ref document: EP

Kind code of ref document: A1