WO2015147058A1 - 圧力検出装置 - Google Patents

圧力検出装置 Download PDF

Info

Publication number
WO2015147058A1
WO2015147058A1 PCT/JP2015/059134 JP2015059134W WO2015147058A1 WO 2015147058 A1 WO2015147058 A1 WO 2015147058A1 JP 2015059134 W JP2015059134 W JP 2015059134W WO 2015147058 A1 WO2015147058 A1 WO 2015147058A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
pressure
input
detection device
reference voltage
Prior art date
Application number
PCT/JP2015/059134
Other languages
English (en)
French (fr)
Inventor
中村里克
四方山正徳
薩田等志
Original Assignee
シチズンファインテックミヨタ株式会社
シチズンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シチズンファインテックミヨタ株式会社, シチズンホールディングス株式会社 filed Critical シチズンファインテックミヨタ株式会社
Priority to US15/129,659 priority Critical patent/US10054509B2/en
Priority to JP2016510425A priority patent/JP6305522B2/ja
Priority to CN201580016303.5A priority patent/CN106415228B/zh
Priority to EP15768975.3A priority patent/EP3124933B1/en
Publication of WO2015147058A1 publication Critical patent/WO2015147058A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/08Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically
    • G01L23/10Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid operated electrically by pressure-sensitive members of the piezoelectric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • G01L23/22Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines
    • G01L23/221Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines
    • G01L23/225Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid for detecting or indicating knocks in internal-combustion engines; Units comprising pressure-sensitive members combined with ignitors for firing internal-combustion engines for detecting or indicating knocks in internal combustion engines circuit arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/08Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of piezoelectric devices, i.e. electric circuits therefor

Definitions

  • the present invention relates to a pressure detection device suitable for use in detecting pressure such as engine combustion pressure.
  • FIG. 8 shows an example of a processing circuit of a pressure detection device that detects the combustion pressure of the engine as a physical quantity.
  • the processing circuit 100 includes two operational amplifiers A1 and A2 that are an integration circuit that integrates the detection signal and an amplification circuit that amplifies the integrated output signal. Then, one terminal of the piezoelectric element 101 that detects pressure passes through the conductive member 102 and is connected to the inverting input terminal of the operational amplifier A1 through the input capacitor C1 of the processing circuit 100. The other terminal of the piezoelectric element 101 passes through the conductive member 102 and is connected to the GND of the processing circuit 100. As a result, the charge signal Qi from the piezoelectric element 101 is applied to the inverting input terminal of the operational amplifier A1.
  • the reference voltage Vr from the reference power supply Rg1 by the regulator is applied to the non-inverting input terminal of the operational amplifier A1.
  • the reference power supply Rg1 outputs a reference voltage Vr that is stabilized by the input of an external power supply Vdd.
  • a charge capacitor C2 and a discharge resistor R1 are connected between the inverting input terminal of the operational amplifier A1 and the output terminal of the operational amplifier A1.
  • An output signal A1out obtained by integrating the charge signal Qi and converting it into a voltage is obtained from the output terminal of the operational amplifier A1.
  • the output signal A1out is given to the non-inverting input terminal of the operational amplifier A2 that is an amplifier circuit.
  • This non-inverting input terminal is connected to the reference voltage Vr via a resistor R4.
  • the inverting input terminal of the operational amplifier A2 is connected to the reference voltage Vr through the resistor R5 and is connected to the output terminal through the resistor R6.
  • an amplified output signal Vout is obtained from the output terminal of the operational amplifier A2.
  • the piezoelectric element 101 is housed in a casing 110 of the detection device.
  • the casing 110 is grounded (grounded) in common with the engine (not shown).
  • Vdd a single power supply drive
  • FIG. 9A schematically shows a differential waveform of the charge signal Qi with respect to time t when the piezoelectric element 101 detects a change in combustion pressure at the period T0.
  • the charge signal Qi passes through the input capacitor C1 shown in FIG. 8 and is given to the inverting input terminal of the operational amplifier A1 of the processing circuit 100.
  • FIG. 9B shows an example of the voltage waveform of the output signal A1out output from the output terminal of the operational amplifier A1. Since the operational amplifier A1 operates based on the reference voltage Vr, the charge signal Qi is converted into a voltage by integration, and an output signal A1out similar to a pressure change is obtained from the output terminal of the operational amplifier A1. Note that since the operational amplifier A1 uses the reference voltage Vr as an operation reference, for example, when the charge signal Qi is no signal as at time t1, the voltage level of the output signal A1out is set to the reference voltage Vr (illustration is DC1V). Almost equal.
  • FIG. 9C shows an example of the voltage waveform of the output signal Vout output from the output terminal of the operational amplifier A2.
  • the operational amplifier A2 operates as a non-inverting amplifier circuit using the reference voltage Vr as an operation reference, and the output signal Vout is in phase with the input output signal A1out, and the amplitude thereof is amplified by a predetermined amplification factor. It becomes. Since the operational amplifier A2 also uses the reference voltage Vr as an operation reference, when the output signal A1out to be input is no signal as at time t1, the voltage level of the output signal Vout is set to the reference voltage Vr (illustrated is DC1V). Almost equal.
  • the piezoelectric element 101 as the pressure detection element since the piezoelectric element 101 as the pressure detection element has a very high DC impedance and the charge amount of the charge signal Qi that is a detection signal is small, the operational amplifier A1 to which the charge signal Qi is applied has an extremely high input impedance. An operational amplifier with high performance is required, and the charge capacitor C2 and the discharge resistor R1 also need to have high impedance.
  • the input circuit of the operational amplifier A1 that is, the circuit including the inverting input terminal of the operational amplifier A1, the input capacitor C1, the charge capacitor C2, and the discharge resistor R1 has a higher impedance than the peripheral circuit, and is induced from the outside. It has characteristics that are easily affected by noise and leakage current.
  • the noise component When externally induced noise is mixed in the input circuit of the operational amplifier A1, the noise component is also integrated with the charge signal Qi, so that a large error occurs in the output signal A1out.
  • a leak current flows from the input circuit of the operational amplifier A1 to the nearby power supply Vdd or GND, a direct current offset voltage is generated in the output signal A1out of the operational amplifier A1, and in the worst case, the potential of the output signal A1out is the power supply Vdd. Or there is a risk of being swung over to GND. Therefore, in order to integrate the charge signal Qi with high accuracy and convert it into a voltage waveform, it is extremely important that the input circuit of the operational amplifier A1 reduce the influence of inductive noise and leakage current as much as possible.
  • Patent Document 1 discloses a semiconductor device provided with a shielding means for wiring of a multi-pin LSI.
  • This shield means in particular, guard rings so as to surround high-speed signal lines that are susceptible to noise, reduces the number of power supply terminals connected to the guard ring from that of the high-speed signal terminals, and further distances from the power supply terminals.
  • the wiring width of the card ring is changed according to the path and the uniformity of the current flowing in the guard ring is improved.
  • Patent Document 2 discloses a probe card using a multilayer substrate.
  • This probe card uses a multilayer substrate to cover a signal line with a guard line having the same potential as that of the signal line in both the planar direction and the vertical direction of the multilayer substrate, and further, a GND line is disposed outside the signal line. It is what I did.
  • the guard line is supplied with a signal having the same potential with the signal line having a low impedance by an amplifier, so that the generation of a leakage current is suppressed by the guard line, and the shielding effect by the GND line is obtained. It is.
  • the shield means provided in the semiconductor device disclosed in Patent Document 1 is a shield means for multi-pin LSI wiring, and the application range is narrowed.
  • the effect of noise cannot be reduced by the uniformity of the current that flows in the shield line.
  • the effect cannot be expected as a noise reduction means of a high impedance circuit.
  • a leak current flows from the signal line to the shield line, and an error occurs in the signal waveform of the signal line, so that accurate signal detection cannot be performed.
  • the probe card disclosed in Patent Document 2 has a double shield structure in which the signal line of the probe is covered with a guard line and the outer side thereof is covered with a GND line. Since a signal having the same potential as the impedance signal line is supplied, when a detected voltage waveform is generated in the signal line, a voltage waveform of the same level is also generated in the guard line. At this time, since the signal line has a high impedance and the guard line has a low impedance, the signal line is subjected to positive feedback due to the influence of the guard line. As a result, distortion and linking occur in the signal waveform, and in the worst case, there is a risk of oscillation. Therefore, there is a risk that the guard line may have a large negative side effect, that is, distortion of the signal waveform, linking, oscillation, etc., rather than the effect of eliminating the leakage current.
  • An object of the present invention is to provide a pressure detection device that solves such problems in the background art.
  • the present invention processes the pressure detection element 21 that outputs the detection signal Qi corresponding to the pressure P by receiving the pressure P, and the detection signal Qi output from the pressure detection element 21.
  • the pressure detection device 10 includes a processing circuit 30 for outputting, and converts a detection signal Qi into a voltage waveform on a circuit board 40 on which a conductor pattern is formed, using a reference voltage Vr set to a predetermined voltage value as an operation reference.
  • the integrated circuit IC1 having the analog circuit to be mounted is mounted, the input circuit 50 is applied to the integrated circuit IC1 with the detection signal Qi, and at least a part of the input circuit 50 is surrounded and the reference voltage Vr is applied.
  • the processing circuit 30 having the shield pattern SHP1 is provided.
  • At least the input terminal LA-IN for inputting the detection signal Qi and the shield terminal L-SH1... Adjacent to the input terminal LA-IN can be provided in the integrated circuit IC1.
  • the shield pattern SHP1 can be formed in a frame shape that is electrically connected to the shield terminals L-SH1,... And surrounds at least a partial region of the input circuit 50 including the input terminal LA-IN.
  • the shield pattern SHP1 can be disposed in a gap between lands on which components included in the input circuit 50 are mounted.
  • the reference voltage Vr can be set to an intermediate value of the power supply Vdd, and the reference voltage Vr can be applied to the shield pattern SHP1 via the protective resistor R3.
  • SHP4 can be formed on the circuit board 40.
  • the circuit board 40 is formed of a multilayer board, and the reference voltage Vr is applied to the inner surface layers 42 and 43 of the circuit board 40 and to the inner surface region facing at least a partial region of the input circuit 50.
  • Shield patterns SHP2 and SHP3 can be formed.
  • the analog circuit can be provided with an integration circuit that integrates the detection signal Qi, and this integration circuit can be constituted by an operational amplifier circuit A1 that operates with a single power source.
  • the pressure detection device 10 is suitable for use when detecting the combustion pressure P of the engine 1 mounted on the automobile.
  • a detection signal is applied to a circuit board 40 on which a conductor pattern is formed using a reference voltage Vr set to a predetermined voltage value as an operation reference.
  • An integrated circuit IC1 having an analog circuit for converting Qi into a voltage waveform is mounted, and has an input circuit 50 for applying a detection signal Qi to the integrated circuit IC1, and surrounds at least a part of the input circuit 50,
  • the processing circuit 30 having the shield pattern SHP1 to which the reference voltage Vr is applied is provided, the high impedance input circuit 50 is a shield to which the reference voltage Vr serving as an operation reference when the detection signal Qi is converted is applied.
  • FIG. 4 is a cross-sectional view of the circuit board of the processing circuit along the cutting line AA ′ shown in FIG.
  • the engine 1 is an engine (internal combustion engine) mounted on an automobile, and a pressure detection device 10 attached to the engine has a function of detecting the combustion pressure of the engine 1.
  • the engine 1 includes a cylinder block 2 having a cylinder 2a, a piston 3 that reciprocates in the cylinder 2a, and a cylinder head 4 that is coupled to the cylinder block 2 and constitutes a combustion chamber C together with the cylinder 2a, the piston 3, and the like. ing.
  • the cylinder head 4 is provided with a communication hole 4a and attached with a spark plug 5 that performs ignition for causing the air-fuel mixture in the combustion chamber C to explode. Furthermore, the communication hole 4b is provided in the other position of the cylinder head 4, and the pressure detection apparatus 10 which concerns on this embodiment is mounted
  • the pressure detection device 10 has a cylindrical shape, the pressure detection device 10 mounted in the communication hole 4b penetrates the cylinder head 4, the tip detection unit 20 faces the inside of the combustion chamber C, and the internal pressure ( Combustion pressure: arrow P) is detected.
  • the pressure detection device 10 incorporates a processing circuit 30 that processes and outputs a detection signal from the detection unit 20, and the output signal Vout from the processing circuit 30 is given to an external engine control unit (not shown).
  • the pressure detection device 10 has a cylindrical shape with a thin tip located in the upper part of the drawing, and includes a detection unit 20 that detects the combustion pressure at the tip.
  • a processing circuit 30 is incorporated near the lower end of the pressure detection device 10 located at the lower part of the drawing, and the processing circuit 30 and the detection unit 20 are connected by a conductive member 11 that transmits a detection signal from the detection unit 20. To do.
  • the processing circuit 30 is provided with an adjacent connector part 39.
  • the connector part 39 has connector terminals not shown in the figure for outputting the output signal Vout (see FIG. 1) from the processing circuit 30 to the outside. Prepare.
  • FIG. 2 is an enlarged cross-sectional view in which the detection unit 20 disposed at the tip of the pressure detection device 10 is cut in the length direction.
  • a diaphragm 22 is provided at the foremost part of the detection unit 20, and a pedestal 23 is in close contact with the diaphragm 22, and a piezoelectric element 21 as a pressure detection element is in close contact with the pedestal 23.
  • the detection unit 20 and the processing circuit 30 are integrated, and the pressure detection device 10 is mounted on the engine 1 as an independent pressure detection device 10. It has the feature that it is excellent in maintainability.
  • the processing circuit 30 includes a detection circuit IC1 that is an analog integrated circuit and a plurality of capacitors, resistors, and the like.
  • the same elements are denoted by the same reference numerals, and a part of overlapping description is omitted.
  • the processing circuit 30 includes terminals for a power supply Vdd and a ground GND supplied from the outside. Further, it is connected to one terminal of the piezoelectric element 21 and has an input IN for inputting a charge signal Qi as a detection signal, and the other terminal of the piezoelectric element 21 is connected to GND.
  • the conductive member 11 described above between the piezoelectric element 21 and the processing circuit 30 is not shown. Further, the processing circuit 30 includes a terminal OUT that outputs an output signal Vout.
  • the detection circuit IC1 includes two operational amplifiers (operational amplifier circuits) A1 and A2 that are analog circuits that operate from a power supply Vdd serving as a single power supply, and a reference power supply Rg1 that is provided by a regulator.
  • the operational amplifier A1 functions as an integration circuit that inputs and integrates the charge signal Qi, which is a detection signal, and converts it into a voltage waveform.
  • the operational amplifier A2 functions as an amplifier circuit that gives and amplifies the output signal A1out of the operational amplifier A1.
  • the reference power supply Rg1 outputs a reference voltage Vr having a predetermined voltage value when the power supply Vdd is applied.
  • the input terminal AIN of the detection circuit IC1 is connected to the inverting input terminal of the operational amplifier A1 inside the detection circuit IC1.
  • the input terminal AIN is connected to one terminal of the input capacitor C1 outside the detection circuit IC1, and the other terminal of the input capacitor C1 is connected to the input IN of the processing circuit 30.
  • the input terminal AIN of the detection circuit IC1 is connected to one of the terminals of the charge capacitor C2 and the discharge resistor R1 outside the detection circuit IC1, and the other terminals of the charge capacitor C2 and the discharge resistor R1 are connected to the operational amplifier A1. To the output terminal A1OUT.
  • the non-inverting input terminal of the operational amplifier A1 is connected to the reference voltage Vr serving as the output of the reference power supply Rg1.
  • the operational amplifier A1 of the detection circuit IC1 operates as an integration circuit that integrates the charge signal Qi applied from the input IN and converts it into a voltage waveform.
  • the charge capacitor C2 and the discharge resistor R1 set a capacitance value and a resistance value at which the output signal A1out of the operational amplifier A1 has an appropriate magnitude when a predetermined combustion pressure P is applied to the piezoelectric element 21. . Since the charge capacitor C2 and the discharge resistor R1 constitute a high-pass filter, it is necessary to select a value that makes the time constant RC sufficiently longer than the frequency range of the detected combustion pressure P.
  • the discharge resistor R1 selects a very high resistance value, and the input impedance of the operational amplifier A1 is also a high value as described above. Therefore, the input terminal AIN of the detection circuit IC1 and the input terminal AIN
  • the wiring to the input capacitor C1, the charge capacitor C2, and the discharge resistor R1 to be connected has high impedance as in the processing circuit 100 shown in FIG.
  • a circuit including an input terminal AIN, an input capacitor C1, a charge capacitor C2, a discharge resistor R1, and a wiring (conductor pattern) connecting these electronic components is referred to as a high impedance input circuit (HI input circuit). (Abbreviation) defined as 50. Note that when the term HI input circuit (or input circuit) 50 is simply used, it is a concept including all or part of it.
  • the detection circuit IC1 includes two shield terminals SH1 and SH2 adjacent to the input terminal AIN. That is, the shield terminals SH1 and SH2 are arranged with the input terminal AIN interposed therebetween, and the shield terminals SH1 and SH2 are connected to the reference voltage Vr through the protective resistor R3 in the detection circuit IC1.
  • the reason why the shield terminals SH1 and SH2 are connected to the reference voltage Vr via the protective resistor R3 is to prevent and protect the reference power supply Rg1 from being destroyed by electrostatic discharge (ESD) via the shield terminals SH1 and SH2. It is.
  • the resistance value of the protective resistor R3 is too large, a shield effect against noise described later is weakened, and if the resistance value is too small, the ESD protective effect is weakened. Therefore, about 10K ohm is desirable as an example. .
  • the shield terminals SH1 and SH2 are connected to the shield pattern SHP1 (thick line on the drawing) formed on the surface layer of the circuit board outside the detection circuit IC1, thereby making the shield pattern SHP1 the HI input described above. It arrange
  • non-inverting external input terminal A2IN of the operational amplifier A2 is connected to the output terminal A1OUT of the operational amplifier A1 outside the detection circuit IC1, thereby applying the output signal A1out of the operational amplifier A1 to the non-inverting input terminal of the operational amplifier A2.
  • the non-inverting input terminal of the operational amplifier A2 is connected to the reference voltage Vr via the resistor R4, and the inverting input terminal of the operational amplifier A2 is connected to the reference voltage Vr via the resistor R5.
  • the inverting input terminal and the output terminal of the operational amplifier A2 are connected through a resistor R6.
  • the operational amplifier A2 functions as a non-inverting amplifier circuit, amplifies the output signal A1out given from the operational amplifier A1 with a predetermined amplification factor, and outputs the output signal Vout from the output terminal.
  • the output signal Vout is output from the output OUT of the processing circuit 30 and transmitted to an engine control unit of the engine 1 (not shown).
  • the amplification factor of the operational amplifier A2 is determined by the ratio of the resistance values of the resistors R5 and R6.
  • the operation of the processing circuit 30 will be described with reference to FIG. Note that the basic operation of the processing circuit 30 is the same as the operation of the processing circuit 100 of the pressure detection device shown in FIG. 9, and thus redundant description of the output waveform and the like is omitted, which is a characteristic part of the present invention.
  • the function and effect of the shield pattern SHP1 surrounding the HI input circuit 50 will be mainly described.
  • the input terminal AIN of the integrating circuit by the operational amplifier A1 of the detection circuit IC1 and its peripheral circuit, that is, the HI input circuit 50 are surrounded by a shield pattern SHP1 formed on the surface layer of the circuit board.
  • the HI input circuit 50 has characteristics that are easily affected by externally induced noise and leakage current, while the non-inverting input terminal of the operational amplifier A1 is connected to the reference voltage Vr.
  • the operational amplifier A1 operates with reference to the reference voltage Vr.
  • the charge signal Qi is not a signal, as shown at time t1 in FIG. 9A
  • the DC potential of the HI input circuit 50 centered on the inverting input terminal of the operational amplifier A1, that is, the input terminal AIN is , Approximately equal to the reference voltage Vr (for example, DC1V).
  • the shield pattern SHP1 is connected to the reference voltage Vr that is the operation reference of the operational amplifier A1, the HI input circuit 50 of the operational amplifier A1 surrounded by the shield pattern SHP1 is connected to the reference voltage Vr having the same potential.
  • the shield pattern SHP1 is surrounded.
  • the HI input circuit 50 is surrounded by the shield pattern SHP1 having the same potential.
  • the route through which the leak current flows from the HI input circuit 50 is guarded by the shield pattern SHP1.
  • the reference voltage Vr is generated by the reference power supply Rg1 by the regulator as described above, its output impedance is low impedance.
  • the HI input circuit 50 is surrounded by the shield pattern SHP1 to which the low-impedance reference voltage Vr is applied, and even if inductive noise or the like comes from outside, the HI input circuit 50 is guarded by the low-impedance shield pattern SHP1. , Noise contamination to the HI input circuit 50 can be reduced.
  • the integrating circuit by the operational amplifier A1 is composed of the input circuit 50 having the characteristics of high impedance.
  • the shield pattern SHP1 to which the reference voltage Vr is applied. Since the influence of leakage current and the influence of external noise can be reduced and a highly accurate integration operation with little error can be realized, a pressure detection device with excellent detection accuracy can be provided.
  • the shield pattern is also formed on the other layer of the circuit board and covers the HI input circuit 50. Details of the configuration of the shield pattern will be described later.
  • FIG. 3 is referred to for the circuit configuration of the processing circuit 30.
  • reference numeral 40 denotes a circuit board on which electronic components of the processing circuit 30 are mounted.
  • the circuit board 40 shown as an example is a four-layer board.
  • a conductor pattern is formed on a surface layer 41 on which electronic components are mounted using a copper foil or the like.
  • FIG. 4 mainly shows the conductor pattern around the HI input circuit 50 of the detection circuit IC1, and the other portions are not directly related to the present invention, and are not shown.
  • a detection circuit IC1 indicated by a broken line has a surface-mount package, and a plurality of lands L are formed by conductive patterns at positions of the surface layer 41 corresponding to input / output terminals (not shown). Is mounted with solder or the like (not shown).
  • L-AIN represents a land corresponding to the input terminal AIN of the detection circuit IC1
  • L-SH1 represents a land corresponding to the shield terminal SH1 of the detection circuit IC1
  • L-SH2 represents the land of the detection circuit IC1.
  • a land corresponding to the shield terminal SH2 is shown.
  • the land L-AIN is continuously formed on the land for one of the electrodes in each of the input capacitor C1, the charge capacitor C2, and the discharge resistor R1 via the wiring of the conductor pattern.
  • the conductor pattern wiring from the land L-AIN becomes the input line INL.
  • the land for the other electrode of the input capacitor C1 is continuously formed in a conductor pattern surrounding the through hole S1. This through hole S 1 becomes an input IN of the processing circuit 30. Therefore, although not shown, one signal line of the conductive member 11 shown in FIG. 3 is connected to the input IN, and the charge signal Qi from the piezoelectric element 21 is input.
  • the land for the other electrode of the charge capacitor C2 and the discharge resistor R1 is continuously formed on the land L-A1OUT through the conductor pattern shown in the figure.
  • This land L-A1OUT is a land corresponding to the output terminal A1OUT of the operational amplifier A1 of the detection circuit IC1, and as a result, the charge capacitor C2 and the discharge resistor R1 are connected to the output terminal A1OUT of the operational amplifier A1 and integrated by the operational amplifier A1. Configure the circuit.
  • the lands L-SH1 and L-SH2 are continuously formed on both ends of a frame-shaped (ring-shaped) conductor pattern as shown in the figure. Thereby, it forms so that the conductor pattern of the input line INL may be enclosed.
  • the conductor pattern continuously formed on the lands L-SH1 and L-SH2 is the shield pattern SHP1 shown in FIG. 3, and passes through the gaps between the lands of the input capacitor C1, the charge capacitor C2, and the discharge resistor R1, and the HI input circuit 50
  • the input line INL is surrounded by a ring.
  • the shield pattern SHP1 is formed in a frame shape surrounding the HI input circuit 50 on the surface layer 41 of the circuit board 40, so that the influence of leakage current and external noise can be reduced.
  • the through hole S2 is formed continuously with lands L-SH1 and L-SH2 and a conductor pattern, and is electrically connected to the shield pattern of the other layer of the circuit board 40 through the through hole S2, as will be described later.
  • the through hole S3 is the GND of the processing circuit 30 and is connected to the other signal line of the conductive member 11.
  • the through hole S3 is connected to a land L-GND connected to the GND terminal of the detection circuit IC1 by a conductor pattern.
  • the through hole S3 is electrically connected to the GND pattern of the other layer of the circuit board 40, as will be described later.
  • the conductor pattern on the back layer of the circuit board 40 of the processing circuit 30 will be described with reference to FIG. 5 and FIG. 6 to be described later are views seen through from the surface layer 41 side of the circuit board 40.
  • the back surface layer 44 facing the front surface layer 41 of the circuit board 40 is formed so as to be substantially covered with a planar GND pattern GP4 formed of a conductor pattern and a planar shield pattern SHP4.
  • the shield pattern SHP4 covers the same area as the area (see FIG. 4) formed in a frame shape surrounding the HI input circuit 50 by the shield pattern SHP1 of the surface layer 41 of the circuit board 40.
  • the region immediately under the surface layer 41 where the HI input circuit 50 is located is covered with the shield pattern SHP4 of the back surface layer 44.
  • the shield pattern SHP4 is electrically connected to the lands L-SH1 and L-SH2 of the surface layer 41 through the through holes S2.
  • the reference voltage Vr of the detection circuit IC1 is applied to the shield pattern SHP4, and the input line INL having a high impedance, that is, the region directly under the HI input circuit 50 is covered with the reference voltage Vr.
  • the detection circuit IC1, the input capacitor C1, the charge capacitor C2, and the discharge resistor R1 indicated by broken lines indicate the positions where they are mounted on the surface layer 41.
  • the GND pattern GP4 where the through hole S1 of the input IN that inputs the charge signal Qi is connected to the conductive member 11 is formed. Therefore, the insulation between the input IN and the GND is maintained. Further, the GND pattern GP4 is electrically connected to the GND of the surface layer 41 through the through hole S3.
  • FIG. 6 shows the conductor pattern of the first inner surface layer 42 close to the surface layer 41, and the first inner surface layer 42 is almost covered with the planar GND pattern GP2 by the conductor pattern and the planar shield pattern SHP2.
  • the shield pattern SHP2 covers the same area as the area (see FIG. 4) formed in a frame shape surrounding the HI input circuit 50 by the shield pattern SHP1 of the surface layer 41 of the circuit board 40.
  • the region immediately below the surface layer 41 where the HI input circuit 50 is located is covered with the shield pattern SHP2 of the first inner surface layer 42.
  • the shield pattern SHP2 is electrically connected to the lands L-SH1 and L-SH2 of the surface layer 41 through the through holes S2.
  • the reference voltage Vr of the detection circuit IC1 is applied to the shield pattern SHP2, and the input line INL having a high impedance, that is, the region directly under the HI input circuit 50 is covered with the reference voltage Vr.
  • the detection circuit IC1, the input capacitor C1, the charge capacitor C2, and the discharge resistor R1 indicated by broken lines indicate the positions where they are mounted on the surface layer 41.
  • the GND pattern GP4 where the through hole S1 of the input IN that inputs the charge signal Qi is connected to the conductive member 11 is formed. Therefore, the insulation between the input IN and the GND is maintained. Further, the GND pattern GP2 is electrically connected to the GND of the surface layer 41 through the through hole S3.
  • the second inner surface layer 43 is formed on the back surface layer 44 side of the circuit board 40, and is formed so as to be substantially covered with the planar GND pattern GP3 by the conductor pattern and the planar shield pattern SHP3. Since the shape of the conductor pattern of the second inner surface layer 43 is formed in the same manner as the conductor pattern of the first inner surface layer 42 described above, description thereof is omitted.
  • FIG. 7 is a cross-sectional view of the circuit board 40 taken along section line AA ′ shown in FIG.
  • the circuit board 40 shown in FIG. 7 is a four-layer multilayer board as described above.
  • the circuit board 40 is not limited to a four-layer board.
  • the circuit board 40 may be a two-layer board having a front layer and a back layer, or a multilayer board having four or more layers. Also good.
  • the input capacitor C1 and the discharge resistor R1 are mounted on the surface layer 41 of the circuit board 40, and the two components are connected by the conductive pattern that connects the input terminal AIN, that is, the input line INL.
  • the charge capacitor C2 is similarly connected to the input line INL (see FIG. 4).
  • a shield pattern SHP1 passes immediately below the input capacitor C1 and the discharge resistor R1.
  • the shield pattern SHP1 has a shape surrounding the input line INL, which is the HI input circuit 50, in the plane direction of the circuit board 40.
  • the first inner surface layer 42 forms a shield pattern SHP2 immediately below the region so as to cover the region of the HI input circuit 50.
  • the second inner surface layer 43 forms a shield pattern SHP3 directly under the region so as to cover the region of the HI input circuit 50.
  • the back surface layer 44 forms a shield pattern SHP4 directly under the region so as to cover the region of the HI input circuit 50.
  • the through hole S1 penetrates the circuit board 40, and connects the input IN which is the conductive pattern of the back surface layer 44 and the input side terminal of the input capacitor C1 of the surface layer 41 by a conductor pattern.
  • the conductive member 11 (not shown) is connected to the input IN of the back surface layer 44 by soldering or the like, the charge signal Qi from the conductive member 11 is transmitted to the input capacitor C1 mounted on the front surface layer 41.
  • the method for connecting the conductive member 11 to the circuit board 40 is not limited to the example, and for example, a small connector or the like may be used.
  • the input circuit IN of the processing circuit 30 having high impedance that is, the periphery of the input line INL of the HI input circuit 50 is covered by the planar direction of the circuit board 40 being surrounded by the shield pattern SHP1.
  • the vertical direction of the circuit board 40 is covered with the shield patterns SHP2, SHP3, and SHP4 many times.
  • the low impedance reference voltage Vr is applied to the shield patterns SHP1 to SHP4 as described above, it is possible to prevent externally induced noise and the like from being mixed into the HI input circuit 50. Further, since the HI input circuit 50 is covered in the plane direction and the vertical direction by the reference voltage Vr that is the operation reference of the operational amplifier A1, the shield patterns SHP1 to SHP4 having the same potential as the potential of the HI input circuit 50 serve as guards. It is possible to prevent leakage current from flowing from the HI input circuit 50 to the power supply Vdd and GND. As a result, it is possible to provide a pressure detection device that reduces the influence of external noise and leakage current and enables highly accurate pressure detection with little error.
  • the present invention is not limited to such an embodiment, and the detailed configuration, shape, material, quantity, technique, and the like do not depart from the gist of the present invention. It can be changed, added, or deleted arbitrarily.
  • each circuit diagram and conductor pattern diagram shown in the embodiment is not limited to this, and can be arbitrarily changed as long as it satisfies the gist of the present invention.
  • the form in which the pressure detection device is independently attached to the engine has been described, but the pressure detection device of the present invention is not limited to the above form, and is attached to the engine in any form.
  • the present invention can be applied.
  • the pressure detection device according to the present invention can be widely used for pressure detection in various applications including detection of engine combustion pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

 圧力Pを受けることにより当該圧力Pに対応した検出信号Qiを出力する圧力検出素子21とこの圧力検出素子21から出力する検出信号Qiを処理して出力する処理回路30とを備えてなる圧力検出装置10であって、導体パターンを形成した回路基板40に、所定の電圧値に設定した基準電圧Vrを動作基準として検出信号Qiを電圧波形に変換するアナログ回路を有する集積回路IC1を実装し、かつ検出信号Qiを当該集積回路IC1に付与する入力回路50を有するとともに、この入力回路50の少なくとも一部の領域を囲み、かつ基準電圧Vrが印加されるシールドパターンSHP1を有する処理回路30を備える。

Description

圧力検出装置
 本発明は、エンジンの燃焼圧等の圧力を検出する際に用いて好適な圧力検出装置に関する。
 一般に、圧力や磁気等の物理量を検出して電気信号に変換する様々な検出装置が提案されている。このような検出装置は、通常、センサが物理量の変化を微分値として出力するため、そのセンサからの検出信号を、積分回路による積分により物理量の変化に相似した波形の電圧に変換するための処理回路を備えている。
 図8に、物理量としてエンジンの燃焼圧を検出する圧力検出装置の処理回路の一例を示す。図8において、処理回路100は、検出信号を積分する積分回路と、積分した出力信号を増幅する増幅回路との二つのオペアンプA1、A2で構成されている。そして、圧力を検出する圧電素子101の片方の端子は、導電部材102を通り、処理回路100の入力コンデンサC1を介してオペアンプA1の反転入力端子に接続される。また、圧電素子101の他方の端子は、導電部材102を通り、処理回路100のGNDに接続される。これにより、オペアンプA1の反転入力端子には圧電素子101からの電荷信号Qiが付与される。
 一方、オペアンプA1の非反転入力端子には、レギュレータによる基準電源Rg1からの基準電圧Vrが付与される。この基準電源Rg1は、外部からの電源Vddが入力して安定化した基準電圧Vrを出力する。また、オペアンプA1の反転入力端子とオペアンプA1の出力端子間には、チャージコンデンサC2と放電抵抗R1が接続されている。そして、オペアンプA1の出力端子からは、電荷信号Qiを積分して電圧に変換した出力信号A1outが得られる。
 この出力信号A1outは、増幅回路であるオペアンプA2の非反転入力端子に付与される。この非反転入力端子は、抵抗R4を介して基準電圧Vrに接続される。また、オペアンプA2の反転入力端子は、抵抗R5を介して基準電圧Vrに接続されるとともに、抵抗R6を介して出力端子に接続される。これにより、オペアンプA2の出力端子からは増幅された出力信号Voutが得られる。
 他方、圧電素子101は、検出装置の筐体110に収容されており、エンジンの燃焼圧を検出する燃焼圧センサの場合、この筐体110はエンジン(図示せず)と共通に接地(アース)されている。なお、オペアンプA1による積分回路とオペアンプA2による増幅回路のそれぞれの入力が基準電圧Vrに接続されている理由は、処理回路100の電源を簡素化するために単電源駆動(電源Vdd)を採用しており、このために、オペアンプA1、A2が動作する基準として、電源VddとGNDの間の中間電圧を必要とするためである。例示の場合、電源Vdd=DC+5V、基準電圧Vr=DC+1Vである。
 次に、圧力検出装置の基本動作を図9を用いて説明する。図9(a)は、圧電素子101が周期T0で燃焼圧の変化を検出した場合の時間tに対する電荷信号Qiの微分波形を模式的に示している。この電荷信号Qiは、図8に示す入力コンデンサC1を通過して、処理回路100のオペアンプA1の反転入力端子に付与される。
 図9(b)は、オペアンプA1の出力端子から出力される出力信号A1outの電圧波形の一例を示している。オペアンプA1は、基準電圧Vrを基準として動作するため、電荷信号Qiは積分により電圧に変換され、オペアンプA1の出力端子からは圧力変化に相似した出力信号A1outが得られる。なお、オペアンプA1は基準電圧Vrを動作基準としているため、例えば、t1時点のように、電荷信号Qiが無信号のとき、出力信号A1outの電圧レベルは、基準電圧Vr(例示は、DC1V)にほぼ等しい。
 図9(c)は、オペアンプA2の出力端子から出力される出力信号Voutの電圧波形の一例を示している。ここで、オペアンプA2は、基準電圧Vrを動作基準とする非反転増幅回路として動作し、その出力信号Voutは、入力する出力信号A1outと同相となり、その振幅は所定の増幅率により増幅された大きさとなる。なお、オペアンプA2も基準電圧Vrを動作基準としているため、t1時点のように、入力する出力信号A1outが無信号のとき、出力信号Voutの電圧レベルは、基準電圧Vr(例示は、DC1V)にほぼ等しい。
 この場合、圧力検出素子としての圧電素子101は、直流インピーダンスがきわめて高く、また、検出信号である電荷信号Qiの電荷量は小さいため、電荷信号Qiが付与されるオペアンプA1は、入力インピーダンスがきわめて高い性能を備えたオペアンプが必要になるとともに、チャージコンデンサC2と放電抵抗R1も、ハイ・インピーダンスにする必要がある。これにより、オペアンプA1の入力回路、即ち、オペアンプA1の反転入力端子、入力コンデンサC1、チャージコンデンサC2、放電抵抗R1を含む回路は、周辺回路と比較して、ハイ・インピーダンスとなり、外部からの誘導ノイズやリーク電流の影響を受けやすい特性を有している。
 なお、外部からの誘導ノイズがオペアンプA1の入力回路に混入した場合、そのノイズ成分も電荷信号Qiと共に積分されるため、出力信号A1outに大きな誤差が生じてしまう。また、オペアンプA1の入力回路から近傍の電源VddやGNDにリーク電流が流れた場合、オペアンプA1の出力信号A1outには直流のオフセット電圧が生じ、最悪の場合、出力信号A1outの電位は、電源VddまたはGNDに振り切れてしまう危険性がある。したがって、電荷信号Qiを高精度に積分し、電圧波形に変換するためには、オペアンプA1の入力回路が誘導ノイズやリーク電流の影響をできる限り低減させることがきわめて重要な課題となる。
 以上の背景により、ハイ・インピーダンス回路や高速信号回路等では、誘導ノイズやリーク電流の影響を低減するための対策が必要となり、従来より、様々なノイズ低減手段が提案されている。
 例えば、特許文献1には、多ピンのLSIの配線に対するシールド手段を備える半導体装置が開示されている。このシールド手段は、特に、ノイズの影響を受けやすい高速信号線を囲むようにガードリングし、そのガードリングに接続する電源端子数を高速信号端子よりも少なくするとともに、さらに、電源端子からの距離や経路に応じてカードリングの配線幅を変え、ガードリングに流れる電流の均一性を改善しようとしたものである。
 また、特許文献2には、多層基板を用いたプローブカードが開示されている。このプローブカードは、多層基板を用いることにより、信号線に対してその信号線と同電位のガード線を多層基板の平面方向と縦方向の両方で覆い、さらに、その外側にGND線を配置するようにしたものである。これにより、ガード線には、信号線をアンプによって低インピーダンスとした同電位の信号が供給されるため、ガード線によってリーク電流の発生が抑制され、GND線によるシールド効果が得られるようにしたものである。
特開2010-135555号公報 特開2003-307527号公報
 しかし、上述した特許文献1及び2に開示される従来のノイズ低減手段は次のような問題点があった。
 特許文献1に開示される半導体装置に備えるシールド手段は、多ピンのLSIの配線に対するシールド手段であり、応用範囲が狭くなる。また、シールド線の距離に応じて配線幅を変えることにより、シールド線に流れる電流の均一性を改善しようとするが、シールド線に流れる電流の均一性によってノイズの影響が低減できることにはならず、特に、ハイ・インピーダンス回路のノイズ低減手段としては効果を期待できない。しかも、信号線とシールド線に電位差がある場合は、信号線からシールド線にリーク電流が流れ、信号線の信号波形に誤差が生じてしまうため、正確な信号検出ができない。
 一方、特許文献2に開示されるプローブカードは、プローブの信号線をガード線で覆い、その外側をGND線で覆う2重構造のシールド形態となるが、ガード線には信号線をアンプで低インピーダンス化した信号線と同電位の信号を供給しているため、信号線に、検出された電圧波形が生じた際には、ガード線にも同レベルの電圧波形が生じる。このとき、信号線はハイ・インピーダンスであり、かつガード線は低インピーダンスであるため、信号線はガード線の影響を受けて正帰還がかかった状態となる。この結果、信号波形にゆがみやリンキングが生じ、最悪の場合、発振する危険性も想定される。したがって、ガード線には、リーク電流を無くす効果よりも、むしろ大きな負の副作用、即ち、信号波形のゆがみ、リンキング、発振等が現れる危険性がある。
 本発明は、このような背景技術に存在する課題を解決した圧力検出装置の提供を目的とするものである。
 本発明は、上述した課題を解決するため、圧力Pを受けることにより当該圧力Pに対応した検出信号Qiを出力する圧力検出素子21とこの圧力検出素子21から出力する検出信号Qiを処理して出力する処理回路30とを備えてなる圧力検出装置10であって、導体パターンを形成した回路基板40に、所定の電圧値に設定した基準電圧Vrを動作基準として検出信号Qiを電圧波形に変換するアナログ回路を有する集積回路IC1を実装し、かつ検出信号Qiを当該集積回路IC1に付与する入力回路50を有するとともに、この入力回路50の少なくとも一部の領域を囲み、かつ基準電圧Vrが印加されるシールドパターンSHP1を有する処理回路30を備えることを特徴とする。
 この場合、発明の好適な態様により、集積回路IC1には、少なくとも、検出信号Qiを入力する入力端子LA-INとこの入力端子LA-INに隣接したシールド端子L-SH1…を設けることができる。また、シールドパターンSHP1は、シールド端子L-SH1…に対して電気的に接続し、入力端子LA-INを含む入力回路50の少なくとも一部の領域を囲む枠状に形成することができる。この際、シールドパターンSHP1は、入力回路50に備える部品を実装するランド間の隙間に配することができる。さらに、基準電圧Vrは、電源Vddの中間値に設定することができるとともに、基準電圧Vrは、保護抵抗R3を介してシールドパターンSHP1に印加することができる。一方、回路基板40には、集積回路IC1が実装された表面層41に対する裏面層44であって、入力回路50の少なくとも一部の領域に対向する裏面領域に、基準電圧Vrを印加するシールドパターンSHP4を形成することができる。また、回路基板40には、多層基板により構成するとともに、回路基板40における内面層42,43であって、入力回路50の少なくとも一部の領域に対向する内面領域に、基準電圧Vrを印加するシールドパターンSHP2,SHP3を形成することができる。他方、アナログ回路には、検出信号Qiを積分処理する積分回路を設けることができ、この積分回路は、単電源で動作する演算増幅回路A1により構成することができる。なお、圧力検出装置10は、自動車に搭載するエンジン1の燃焼圧Pを検出する際に用いて好適となる。
 このような構成を有する本発明に係る圧力検出装置10によれば、基本的な構成として、導体パターンを形成した回路基板40に、所定の電圧値に設定した基準電圧Vrを動作基準として検出信号Qiを電圧波形に変換するアナログ回路を有する集積回路IC1を実装し、かつ検出信号Qiを当該集積回路IC1に付与する入力回路50を有するとともに、この入力回路50の少なくとも一部の領域を囲み、かつ基準電圧Vrが印加されるシールドパターンSHP1を有する処理回路30を備えるため、ハイ・インピーダンスの入力回路50は、検出信号Qiを変換処理する際の動作基準となる基準電圧Vrが印加されるシールドパターンSHP1により囲まれる。この結果、物理量としての圧力Pを検出する圧力検出装置10の入力回路50のリーク電流を減少し、また、外来ノイズの影響を低減することにより、誤差の少ない高精度の圧力検出を実現することができる。
本発明の好適実施形態に係る圧力検出装置を装着したエンジンを示す概略構成図、 同圧力検出装置の全体構成を示す側面図及び検出部の拡大断面図、 同圧力検出装置の処理回路の概略回路図、 同処理回路の回路基板の表面層の一例を示す導体パターン図、 同処理回路の回路基板の裏面層の一例を示す導体パターン図、 同処理回路の回路基板の内面層の一例を示す導体パターン図、 同処理回路の回路基板の図4で示す切断線A-A′による断面図、 背景従来に係る圧力検出装置の処理回路の概略回路図、 同圧力検出装置の動作を説明する波形図、
 10:圧力検出装置,P:圧力(燃焼圧),21:圧力検出素子,30:処理回路,40:回路基板,41:表面層,42:内面層,43:内面層,44:裏面層,50:入力回路,Qi:検出信号,Vr:基準電圧,IC1:集積回路,SHP1:シールドパターン,SHP2:シールドパターン,SHP3:シールドパターン,SHP4:シールドパターン,LA-IN:入力端子,L-SH1:シールド端子,L-SH2:シールド端子,Vdd:電源,R3:保護抵抗,A1:演算増幅回路,1:エンジン
 次に、本発明に係る最良実施形態を挙げ、図面に基づき詳細に説明する。
 まず、本実施形態に係る圧力検出装置の理解を容易にするため、同圧力検出装置を装着したエンジン構成の一例について、図1を参照して説明する。
 図1に例示するエンジン1は、自動車に搭載されるエンジン(内燃機関)であり、このエンジンに装着する圧力検出装置10はエンジン1の燃焼圧を検出する機能を備える。エンジン1は、シリンダ2aを有するシリンダブロック2と、シリンダ2a内を往復動するピストン3と、シリンダブロック2に結合し、シリンダ2a及びピストン3等とともに燃焼室Cを構成するシリンダヘッド4とを備えている。
 シリンダヘッド4には、連通孔4aを設け、燃焼室C内の混合気を爆発させるための点火を行う点火プラグ5を装着する。さらに、シリンダヘッド4の他の位置には、連通孔4bを設け、本実施形態に係る圧力検出装置10を装着する。また、図示しないが、シリンダヘッド4には、燃焼室C内に燃料を噴射する燃料噴射装置を装着する。
 圧力検出装置10は円柱状であり、連通孔4bに装着した圧力検出装置10は、シリンダヘッド4を貫通し、先端の検出部20は燃焼室Cの内部に臨み、燃焼室C内の内圧(燃焼圧:矢印P)を検出する。また、圧力検出装置10には、検出部20からの検出信号に処理を施して出力する処理回路30を組込み、処理回路30から出力信号Voutは外部のエンジン制御部(図示せず)に付与される。
 次に、圧力検出装置10の機械的な概略構成について図2を参照して説明する。図2において、圧力検出装置10は、図面上の上部に位置する先端が細い円柱状であり、その先端には燃焼圧を検出する検出部20を備える。また、図面上の下部に位置する圧力検出装置10の下端付近には、処理回路30を組込み、この処理回路30と検出部20は、検出部20からの検出信号を伝達する導電部材11により接続する。
 なお、処理回路30には、透視図として示す複数の電子部品を搭載する。また、処理回路30には隣接したコネクタ部39を配し、このコネクタ部39には、処理回路30からの出力信号Vout(図1参照)を外部に出力するための図に現れないコネクタ端子を備える。
 また、図2に示す円内は、圧力検出装置10の先端に配置した検出部20を、長さ方向に切断した拡大断面図である。検出部20の最先端部にはダイヤフラム22を備え、このダイヤフラム22に台座23が密着するとともに、この台座23には圧力検出素子としての圧電素子21が密着する。これにより、図1に示す燃焼室C内において燃焼圧Pが発生すれば、燃焼圧Pを受けたダイヤフラム22の変位が台座23を介して圧電素子21に圧縮力として伝えられ、この圧縮力を受けた圧電素子21が電荷信号を生成し、電極24に接続された導電部材11を通して処理回路30に伝達される。
 このように、実施形態で示す圧力検出装置10は、検出部20と処理回路30が一体構成であり、かつ独立した圧力検出装置10としてエンジン1に装着されるため、エンジン1への装着が容易であり、メンテナンス性にも優れる特徴を備えている。
 次に、本実施形態に係る圧力検出装置10の処理回路30の回路構成について、図3を参照して説明する。図3において、処理回路30はアナログ集積回路である検出回路IC1と複数のコンデンサ、抵抗等により構成する。この場合、処理回路30の基本構成部分は、前述した図8の処理回路100と同様となるため、同一要素に同一番号を付し、重複する説明については一部省略する。
 処理回路30は、外部から供給される電源VddとグランドGNDの各端子を備えている。また、圧電素子21の片方の端子と接続し、検出信号としての電荷信号Qiを入力する入力INを有し、圧電素子21の他方の端子はGNDに接続する。なお、圧電素子21と処理回路30の間における前述した導電部材11は図示を省略する。さらに、処理回路30は出力信号Voutを出力する端子OUTを備える。
 検出回路IC1は、単電源となる電源Vddにより動作するアナログ回路である二つのオペアンプ(演算増幅回路)A1、A2と、レギュレータによる基準電源Rg1を内蔵する。オペアンプA1は、図8と同様、検出信号である電荷信号Qiを入力して積分し、電圧波形に変換する積分回路として機能する。また、オペアンプA2は、オペアンプA1の出力信号A1outを付与して増幅する増幅回路として機能する。さらに、基準電源Rg1は、電源Vddが付与されることにより所定の電圧値である基準電圧Vrを出力する。なお、検出回路IC1が基準電源Rg1を内蔵する理由は、図8で示した処理回路100と同様の理由による。例示の場合、電源Vdd=DC+5V、基準電圧Vr=DC+1Vである。
 検出回路IC1の入力端子AINは、検出回路IC1の内部において、オペアンプA1の反転入力端子に接続する。また、この入力端子AINは、検出回路IC1の外部において、入力コンデンサC1の片方の端子に接続するとともに、入力コンデンサC1の他方の端子は、処理回路30の入力INに接続する。さらに、検出回路IC1の入力端子AINは、検出回路IC1の外部において、チャージコンデンサC2と放電抵抗R1の片方の端子にそれぞれ接続するとともに、チャージコンデンサC2と放電抵抗R1の他方の端子は、オペアンプA1の出力端子A1OUTに接続する。一方、オペアンプA1の非反転入力端子は、基準電源Rg1の出力となる基準電圧Vrに接続する。以上の構成により、検出回路IC1のオペアンプA1は、入力INから付与される電荷信号Qiを積分し、電圧波形に変換する積分回路として動作する。
 この場合、チャージコンデンサC2と放電抵抗R1は、圧電素子21に所定の燃焼圧Pが加えられたときに、オペアンプA1の出力信号A1outが適切な大きさとなる容量値と抵抗値を設定している。なお、チャージコンデンサC2と放電抵抗R1は、ハイパスフィルタを構成するため、その時定数RCは、検出する燃焼圧Pの周波数範囲と比較して十分に長くなる値を選定する必要がある。
 これにより、特に、放電抵抗R1はきわめて高い抵抗値を選択し、また、前述したように、オペアンプA1の入力インピーダンスも高い値となるため、検出回路IC1の入力端子AINと、この入力端子AINに接続する入力コンデンサC1、チャージコンデンサC2、放電抵抗R1への配線は、図8に示した処理回路100と同様に、ハイ・インピーダンスとなる。以下、検出回路IC1の入力端子AIN、入力コンデンサC1、チャージコンデンサC2、放電抵抗R1、及び、これらの電子部品を結ぶ配線(導体パターン)を含む回路は、ハイ・インピーダンス入力回路(HI入力回路と略記)50と定義する。なお、単にHI入力回路(又は入力回路)50と記載した場合には、その全部又は一部の双方を含む概念である。
 検出回路IC1は、入力端子AINに隣接する二つのシールド端子SH1とSH2を備えている。即ち、シールド端子SH1、SH2は、入力端子AINを挟んで配置し、このシールド端子SH1、SH2は、検出回路IC1の内部において保護抵抗R3を介して基準電圧Vrに接続する。なお、シールド端子SH1、SH2を、保護抵抗R3を介して基準電圧Vrに接続する理由は、シールド端子SH1、SH2を経由した静電気放電(ESD)による基準電源Rg1の破壊を防止し、保護するためである。ここで、保護抵抗R3の抵抗値は、大きすぎる場合には、後述するノイズに対するシールド効果が弱まり、抵抗値が小さすぎる場合には、ESD保護効果が弱まるため、一例として、10Kオーム程度が望ましい。
 一方、このシールド端子SH1、SH2は、検出回路IC1の外部において回路基板の表面層に形成したシールドパターンSHP1(図面上の太いライン)に接続することにより、このシールドパターンSHP1を、前述したHI入力回路50を囲むように配置する。このシールドパターンSHP1の詳細は後述する。
 また、オペアンプA2の非反転外部入力端子A2INは、検出回路IC1の外部においてオペアンプA1の出力端子A1OUTに接続し、これにより、オペアンプA1の出力信号A1outをオペアンプA2の非反転入力端子に付与する。さらに、オペアンプA2の非反転入力端子は、抵抗R4を介して基準電圧にVrに接続するとともに、オペアンプA2の反転入力端子は、抵抗R5を介して基準電圧Vrに接続する。また、オペアンプA2の反転入力端子と出力端子は、抵抗R6を介して接続する。
 以上の構成により、オペアンプA2は非反転増幅回路として機能し、オペアンプA1から付与される出力信号A1outを所定の増幅率により増幅するとともに、出力端子から出力信号Voutを出力する。この出力信号Voutは、処理回路30の出力OUTから出力し、図示しないエンジン1のエンジン制御部に伝達される。この場合、オペアンプA2の増幅率は、抵抗R5と抵抗R6の抵抗値の比により決定される。なお、オペアンプA1の出力信号A1outの電圧レベルが十分な大きさの場合には、増幅回路としてのオペアンプA2を省略可能である。
 次に、処理回路30の動作について、図3を参照して説明する。なお、処理回路30の基本的な動作は、図9で示した圧力検出装置の処理回路100の動作と同様であるため、出力波形等の重複する説明は省略し、本発明の特徴部分となるHI入力回路50を囲うシールドパターンSHP1の機能及び効果を中心に説明する。
 図3において、検出回路IC1のオペアンプA1による積分回路の入力端子AINとその周辺回路、即ち、HI入力回路50は、回路基板の表面層に形成したシールドパターンSHP1により囲まれる。前述したように、HI入力回路50は、外部からの誘導ノイズやリーク電流の影響を受けやすい特性を有するとともに、一方、オペアンプA1の非反転入力端子は、基準電圧Vrが接続されているため、オペアンプA1は、基準電圧Vrを基準として動作する。これにより、電荷信号Qiは、図9(a)のt1時点のように、無信号のときは、オペアンプA1の反転入力端子、即ち、入力端子AINを中心としたHI入力回路50の直流電位は、基準電圧Vr(例えば、DC1V)にほぼ等しい。
 この場合、シールドパターンSHP1は、オペアンプA1の動作基準である基準電圧Vrに接続しているため、このシールドパターンSHP1に囲まれるオペアンプA1のHI入力回路50は、同電位となる基準電圧Vrが接続されたシールドパターンSHP1により囲まれることになる。この結果、ハイ・インピーダンスとなるHI入力回路50から電位差のある電源Vdd(5V)やGND(0V)にリーク電流が流れようとしても、HI入力回路50は同電位のシールドパターンSHP1により囲まれるため、HI入力回路50からリーク電流が流れるルートがシールドパターンSHP1によりガードされることになる。これにより、リーク電流は、ほとんど流れないことになり、オペアンプA1に対するリーク電流の影響を確実に減少させることができる。また、電荷信号Qiが無信号のときのオペアンプA1の出力信号A1outの電位は、図9(b)のt1時点のように、基準電圧Vrにほぼ等しくなるため、リーク電流の影響により出力信号A1outにオフセット電圧が生じ、圧力検出に誤差が発生する不具合を回避できる。
 さらに、基準電圧Vrは、前述したように、レギュレータによる基準電源Rg1によって生成されるため、その出力インピーダンスは低インピーダンスとなる。この結果、HI入力回路50は、低インピーダンスの基準電圧Vrが印加されたシールドパターンSHP1に囲まれることになり、外部から誘導ノイズ等が到来しても、低インピーダンスのシールドパターンSHP1によりガードするため、HI入力回路50に対するノイズの混入を低減できる。
 このようにして、オペアンプA1による積分回路は、ハイ・インピーダンスの特性を持った入力回路50により構成されるが、そのHI入力回路50を、基準電圧Vrが印加されたシールドパターンSHP1で囲うことにより、リーク電流の影響や外来ノイズの影響を低減し、誤差の少ない高精度な積分動作を実現できるため、検出精度に優れた圧力検出装置を提供できる。なお、シールドパターンは、回路基板の他の層にも形成され、HI入力回路50を覆うが、このシールドパターンの構成の詳細は後述する。
 次に、処理回路30の回路基板40の表面層における導体パターンについて、図4を参照して説明する。なお、処理回路30の回路構成については図3を参照する。図4において、符号40は、処理回路30の電子部品を実装する回路基板である。一例として示す回路基板40は、4層基板であり、例示は、電子部品を実装する表面層41に、銅箔等により導体パターンを形成したものである。なお、図4は、検出回路IC1のHI入力回路50周辺の導体パターンを中心に示しており、他の個所については本発明とは直接係わらないため、図示は省略した。
 破線で示す検出回路IC1は、表面実装のパッケージを有しており、図示を省略した各入出力端子に対応する表面層41の位置に、導電パターンによる複数のランドLを形成し、検出回路IC1をハンダ等(図示せず)により実装する。図中、L-AINは、検出回路IC1の入力端子AINに対応するランドを示し、L-SH1は、検出回路IC1のシールド端子SH1に対応するランドを示し、L-SH2は、検出回路IC1のシールド端子SH2に対応するランドを示している。
 ランドL-AINは、図4に示すように、導体パターンによる配線を介して、入力コンデンサC1、チャージコンデンサC2、放電抵抗R1のそれぞれにおける一方の各電極に対するランドに連続形成する。このランドL-AINからの導体パターンの配線は入力ラインINLとなる。また、入力コンデンサC1の他方の電極に対するランドは、スルホールS1を囲む導体パターンに連続形成する。このスルホールS1は処理回路30の入力INとなる。したがって、図示を省略したが、この入力INには、図3に示した導電部材11の片方の信号線が接続され、圧電素子21からの電荷信号Qiが入力する。
 一方、チャージコンデンサC2、放電抵抗R1の他方の電極に対するランドは、図示する導体パターンを介してランドL-A1OUTに連続形成する。このランドL-A1OUTは、検出回路IC1のオペアンプA1の出力端子A1OUTに対応するランドであり、これにより、チャージコンデンサC2、放電抵抗R1は、オペアンプA1の出力端子A1OUTに接続され、オペアンプA1による積分回路を構成する。
 また、ランドL-SH1、L-SH2は、図示のように、枠状(リング状)の導体パターンの両端にそれぞれ連続形成する。これにより、入力ラインINLの導体パターンを囲むように形成される。このランドL-SH1、L-SH2に連続形成する導体パターンが、図3で示したシールドパターンSHP1となり、入力コンデンサC1、チャージコンデンサC2、放電抵抗R1の各ランドの隙間を通り、HI入力回路50である入力ラインINLをリング状に囲む形状となる。このように、回路基板40の表面層41においてシールドパターンSHP1が、HI入力回路50を囲む枠状に形成することにより、リーク電流の影響や外来ノイズの影響を低減することができる。
 一方、スルホールS2は、ランドL-SH1、L-SH2と導体パターンにより連続形成し、後述するように、このスルホールS2により、回路基板40の他の層のシールドパターンに対して電気的に接続する。また、スルホールS3は、処理回路30のGNDであり、導電部材11の他方の信号線に接続する。このスルホールS3は、検出回路IC1のGND端子に接続するランドL-GNDと導体パターンにより接続する。さらに、スルホールS3は、後述するように、回路基板40の他の層のGNDパターンと電気的に接続する。
 次に、処理回路30の回路基板40の裏面層の導体パターンについて、図5を参照して説明する。なお、図5及び後述する図6は、回路基板40の表面層41側から透視して見た図となる。図5において、回路基板40の表面層41に対向する裏面層44は、導体パターンによる面状のGNDパターンGP4と、面状のシールドパターンSHP4によりほぼ覆うように形成する。この場合、シールドパターンSHP4は、回路基板40の表面層41のシールドパターンSHP1により、HI入力回路50を囲む枠状に形成した領域(図4参照)と同じ領域を面状に覆っている。
 この結果、HI入力回路50が位置する表面層41の領域直下が、裏面層44のシールドパターンSHP4により覆われる。このシールドパターンSHP4は、スルホールS2を介して、表面層41のランドL-SH1、L-SH2に対して電気的に接続する。これにより、シールドパターンSHP4には、検出回路IC1の基準電圧Vrが印加され、ハイ・インピーダンスとなる入力ラインINL、即ち、HI入力回路50の領域直下が基準電圧Vrにより覆われることになる。なお、破線で示す検出回路IC1、入力コンデンサC1、チャージコンデンサC2、放電抵抗R1は、表面層41に実装されるそれぞれの位置を示している。
 また、シールドパターンSHP4の領域以外の大部分は、GNDパターンGP4により覆うことになるが、導電部材11に接続し、電荷信号Qiを入力する入力INのスルホールS1を形成した個所のGNDパターンGP4は、円形に繰り抜かれるため、入力INとGNDの絶縁を保持している。さらに、このGNDパターンGP4は、スルホールS3を介して表面層41のGNDに対して電気的に接続する。
 次に、処理回路30の回路基板40の内面層の導体パターンについて、図6を参照して説明する。図6は、表面層41に近い第1内面層42の導体パターンを示しており、第1内面層42は、導体パターンによる面状のGNDパターンGP2と、面状のシールドパターンSHP2によりほぼ覆うように形成する。この場合、シールドパターンSHP2は、回路基板40の表面層41のシールドパターンSHP1により、HI入力回路50を囲む枠状に形成した領域(図4参照)と同じ領域を面状に覆っている。
 この結果、HI入力回路50が位置する表面層41の領域直下が、第1内面層42のシールドパターンSHP2により覆われる。このシールドパターンSHP2は、スルホールS2を介して、表面層41のランドL-SH1、L-SH2に対して電気的に接続する。これにより、シールドパターンSHP2には、検出回路IC1の基準電圧Vrが印加され、ハイ・インピーダンスとなる入力ラインINL、即ち、HI入力回路50の領域直下が基準電圧Vrにより覆われることになる。なお、破線で示す検出回路IC1、入力コンデンサC1、チャージコンデンサC2、放電抵抗R1は、表面層41に実装されるそれぞれの位置を示している。
 また、シールドパターンSHP4の領域以外の大部分は、GNDパターンGP4により覆うことになるが、導電部材11に接続し、電荷信号Qiを入力する入力INのスルホールS1を形成した個所のGNDパターンGP2は、円形に繰り抜かれるため、入力INとGNDの絶縁を保持している。さらに、このGNDパターンGP2は、スルホールS3を介して表面層41のGNDに対して電気的に接続する。
 さらに、回路基板40における、裏面層44側には、第2内面層43を形成し、導体パターンによる面状のGNDパターンGP3と、面状のシールドパターンSHP3によりほぼ覆うように形成する。この第2内面層43の導体パターンの形状は、前述した第1内面層42の導体パターンと同様に形成するため、説明は省略する。
 次に、処理回路30の回路基板40の断面構造について、図7を参照して説明する。図7は、図4に示した切断線A-A′による回路基板40の断面図である。図7に示す回路基板40は、前述したように4層の多層基板である。なお、回路基板40は4層基板に限定されるものではなく、例えば、配線上の問題がなければ、表面層と裏面層による2層基板でもよいし、或いは4層以上の多層基板であってもよい。
 この場合、回路基板40の表面層41には、入力コンデンサC1、放電抵抗R1を実装し、この二つの部品を入力端子AINに接続する導電パターン、即ち、入力ラインINLにより接続する。なお、図示を省略したが、チャージコンデンサC2も同様に入力ラインINLに接続される(図4参照)。また、入力コンデンサC1、放電抵抗R1の直下には、シールドパターンSHP1が通る。これにより、このシールドパターンSHP1は、HI入力回路50である入力ラインINLを、回路基板40の平面方向で囲む形状となる。
 さらに、第1内面層42は、HI入力回路50の領域を覆うように、その領域直下にシールドパターンSHP2を形成する。また、第2内面層43は、第1内面層42と同様に、HI入力回路50の領域を覆うように、その領域直下にシールドパターンSHP3を形成する。一方、裏面層44は、第1内面層42、第2内面層43と同様に、HI入力回路50の領域を覆うように、その領域直下にシールドパターンSHP4を形成する。これにより、表面層41のHI入力回路50の領域がシールドパターンSHP2、SHP3、SHP4により回路基板40の垂直方向から覆われることになる。
 また、スルホールS1は、図示のように、回路基板40を貫通し、裏面層44の導電パターンである入力INと表面層41の入力コンデンサC1の入力側端子を導体パターンにより接続する。これにより、裏面層44の入力INに、図示を省略した導電部材11がハンダ付け等により接続すれば、導電部材11からの電荷信号Qiが表面層41に実装された入力コンデンサC1に伝達される。なお、導電部材11を回路基板40に接続する方法は、例示に限定されるものではなく、例えば、小型のコネクタ等を用いてもよい。
 以上のように、ハイ・インピーダンスである処理回路30の入力回路、即ち、HI入力回路50の入力ラインINL周辺は、回路基板40の平面方向が、シールドパターンSHP1で囲まれることにより、覆われるとともに、回路基板40の垂直方向が、シールドパターンSHP2、SHP3、SHP4により何重にも覆われることになる。
 これにより、シールドパターンSHP1~SHP4には、前述のように、すべて低インピーダンスの基準電圧Vrが印加されるため、外部からの誘導ノイズ等がHI入力回路50に混入することを防止できる。また、オペアンプA1の動作基準である基準電圧Vrにより、HI入力回路50が、平面方向及び垂直方向において覆われるため、HI入力回路50の電位と同電位であるシールドパターンSHP1~SHP4がガードとなり、HI入力回路50から電源VddやGNDにリーク電流が流れることを防止できる。この結果、外来ノイズやリーク電流の影響を低減し、誤差の少ない高精度な圧力検出を可能にする圧力検出装置を提供できる。
 以上、最良実施形態について詳細に説明したが、本発明は、このような実施形態に限定されるものではなく、細部の構成,形状,素材,数量,手法等において、本発明の要旨を逸脱しない範囲で、任意に変更,追加,削除することができる。
 例えば、実施形態で示した各回路図や導体パターン図等は、これに限定されるものではなく、本発明の要旨を満たすものであれば、任意に変更することができる。また、実施形態では、圧力検出装置が独立してエンジンに装着される形態を記述したが、本発明の圧力検出装置は上記の形態に限定されるものではなく、どのような形態でエンジンに装着されても本発明は適応できる。
 本発明に係る圧力検出装置は、エンジンの燃焼圧の検出をはじめ、様々な用途の圧力検出に幅広く利用することができる。

Claims (11)

  1.  圧力を受けることにより当該圧力に対応した検出信号を出力する圧力検出素子とこの圧力検出素子から出力する検出信号を処理して出力する処理回路とを備えてなる圧力検出装置であって、導体パターンを形成した回路基板に、所定の電圧値に設定した基準電圧を動作基準として前記検出信号を電圧波形に変換するアナログ回路を有する集積回路を実装し、かつ前記検出信号を当該集積回路に付与する入力回路を有するとともに、前記入力回路の少なくとも一部の領域を囲み、かつ前記基準電圧が印加されるシールドパターンを有する前記処理回路を備えることを特徴とする圧力検出装置。
  2.  前記集積回路は、少なくとも、前記検出信号を入力する入力端子とこの入力端子に隣接したシールド端子を備えることを特徴とする請求項1記載の圧力検出装置。
  3.  前記シールドパターンは、前記シールド端子に対して電気的に接続し、前記入力端子を含む前記入力回路の少なくとも一部の領域を囲む枠状に形成することを特徴とする請求項2に記載の圧力検出装置。
  4.  前記シールドパターンは、前記入力回路に備える部品を実装するランド間の隙間に配することを特徴とする請求項1,2又は3に記載の圧力検出装置。
  5.  前記基準電圧は、電源の中間値に設定してなることを特徴とする請求項1記載の圧力検出装置。
  6.  前記基準電圧は、保護抵抗を介して前記シールドパターンに印加することを特徴とする請求項1又は5に記載の圧力検出装置。
  7.  前記回路基板は、前記集積回路が実装された表面層に対する裏面層であって、前記入力回路の少なくとも一部の領域に対向する裏面領域に、前記基準電圧を印加するシールドパターンを形成してなることを特徴とする請求項1記載の圧力検出装置。
  8.  前記回路基板は、多層基板により構成するとともに、前記回路基板における内面層であって、前記入力回路の少なくとも一部の領域に対向する内面領域に、前記基準電圧を印加するシールドパターンを形成してなることを特徴とする請求項1記載の圧力検出装置。
  9.  前記アナログ回路は、前記検出信号を積分処理する積分回路を備えてなることを特徴とする請求項1記載の圧力検出装置。
  10.  前記積分回路は、単電源で動作する演算増幅回路により構成することを特徴とする請求項9記載の圧力検出装置。
  11.  自動車に搭載するエンジンの燃焼圧を検出する圧力検出装置に適用してなることを特徴とする請求項1記載の圧力検出装置。
PCT/JP2015/059134 2014-03-27 2015-03-25 圧力検出装置 WO2015147058A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/129,659 US10054509B2 (en) 2014-03-27 2015-03-25 Pressure detection device
JP2016510425A JP6305522B2 (ja) 2014-03-27 2015-03-25 圧力検出装置
CN201580016303.5A CN106415228B (zh) 2014-03-27 2015-03-25 压力检测装置
EP15768975.3A EP3124933B1 (en) 2014-03-27 2015-03-25 Pressure-detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-067063 2014-03-27
JP2014067063 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015147058A1 true WO2015147058A1 (ja) 2015-10-01

Family

ID=54195569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059134 WO2015147058A1 (ja) 2014-03-27 2015-03-25 圧力検出装置

Country Status (5)

Country Link
US (1) US10054509B2 (ja)
EP (1) EP3124933B1 (ja)
JP (1) JP6305522B2 (ja)
CN (1) CN106415228B (ja)
WO (1) WO2015147058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018165672A (ja) * 2017-03-28 2018-10-25 シチズンファインデバイス株式会社 検出装置および回路基板
US11506555B2 (en) * 2016-03-24 2022-11-22 Citizen Finedevice Co., Ltd. Piezoelectric sensor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3124932B1 (en) * 2014-03-27 2021-04-28 Citizen Finedevice Co., Ltd. Pressure-detecting device
JP6718855B2 (ja) * 2017-11-30 2020-07-08 株式会社鷺宮製作所 圧力センサのシールド構造、および、それを備える圧力センサ
JP6409148B1 (ja) * 2018-08-28 2018-10-17 シチズンファインデバイス株式会社 圧力検出装置、処理回路
JP2020084804A (ja) * 2018-11-19 2020-06-04 株式会社ミクニ 圧力検出信号処理装置、エンジン制御システム、および、プログラム
CN110868193B (zh) * 2019-11-13 2022-06-10 宁波大学 一种压电执行器输出位移与输出力的自感知方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272304A (ja) * 1988-04-25 1989-10-31 Kayaba Ind Co Ltd 圧力センサの増幅回路

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148137A (ja) * 1986-12-10 1988-06-21 Nippon Denso Co Ltd 圧電型圧力検出装置
US4775816A (en) * 1987-11-09 1988-10-04 Stanadyne, Inc. Piezoelectric sensor
JP3233791B2 (ja) * 1994-08-25 2001-11-26 株式会社山武 差動容量反転積分器及びこれを用いた静電容量変化量検出装置
JPH10197377A (ja) * 1996-12-27 1998-07-31 Hokuriku Electric Ind Co Ltd 圧力センサモジュール
JP2000205983A (ja) * 1999-01-07 2000-07-28 Hokuriku Electric Ind Co Ltd 静電容量型圧力センサユニット
US6427539B1 (en) * 2000-07-31 2002-08-06 Motorola, Inc. Strain gauge
JP3926202B2 (ja) * 2002-05-14 2007-06-06 アルプス電気株式会社 検出装置
JP4045841B2 (ja) 2002-04-17 2008-02-13 株式会社デンソー プローブカード
WO2005032212A1 (en) * 2003-09-29 2005-04-07 Bang & Olufsen Medicom A/S A microphone component and a method for its manufacture
CN100451586C (zh) * 2006-08-21 2009-01-14 昆山双桥传感器测控技术有限公司 用于压阻式动态压力传感器的高频宽带放大电路
JP2008282971A (ja) * 2007-05-10 2008-11-20 Yamaha Corp 半導体装置及び半導体装置の実装構造
JP5223635B2 (ja) 2008-12-04 2013-06-26 富士通セミコンダクター株式会社 半導体装置
CN201429478Y (zh) * 2009-06-10 2010-03-24 北京钢研新冶电气股份有限公司 一种在线压力检测装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01272304A (ja) * 1988-04-25 1989-10-31 Kayaba Ind Co Ltd 圧力センサの増幅回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506555B2 (en) * 2016-03-24 2022-11-22 Citizen Finedevice Co., Ltd. Piezoelectric sensor
JP2018165672A (ja) * 2017-03-28 2018-10-25 シチズンファインデバイス株式会社 検出装置および回路基板

Also Published As

Publication number Publication date
EP3124933B1 (en) 2021-04-28
JP6305522B2 (ja) 2018-04-04
CN106415228A (zh) 2017-02-15
JPWO2015147058A1 (ja) 2017-04-13
CN106415228B (zh) 2019-11-12
US20170146421A1 (en) 2017-05-25
EP3124933A1 (en) 2017-02-01
US10054509B2 (en) 2018-08-21
EP3124933A4 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6305522B2 (ja) 圧力検出装置
CN108061581B (zh) 电磁流量计
US7325455B2 (en) High-temperature piezoelectric vibration sensor assembly
JP6348573B2 (ja) 圧力検出装置
JPWO2006033269A1 (ja) 信号増幅回路及びこれを備えた加速度センサ
JP2005257442A (ja) 圧力センサ
KR101884739B1 (ko) 용량성으로 커플링된 소스 전극을 갖는 압력 트랜스듀서
JP6521682B2 (ja) 回路部品間の干渉を防止し得る回路基板、及び当該回路基板備える電子装置
US10519033B2 (en) Transducer apparatus and methods
EP3118598A1 (en) Pressure sensor
AU2003200979B8 (en) Underwater antenna
JP2014011433A (ja) 電子回路
JP6827866B2 (ja) 検出装置および回路基板
JPWO2011162005A1 (ja) プリント回路板
KR101001863B1 (ko) 비접촉식 센서 회로
US20180314360A1 (en) Proximity sensor
JP6069329B2 (ja) 圧力検出装置
JP2021184376A (ja) 保護装置
JP2019134028A (ja) 電子装置
JP2017101994A (ja) グロープラグ一体型燃焼圧センサ
JP6422769B2 (ja) 静電容量検出装置及び携帯情報端末
JP2006078310A (ja) 半導体センサ装置
JP2019022165A (ja) ノイズ抑制回路
JP2019020344A (ja) ノイズ抑制回路
JP2006162421A (ja) 半導体物理量センサ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768975

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15129659

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015768975

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768975

Country of ref document: EP