WO2015146932A1 - イリジウム又はイリジウム合金からなる金属線材 - Google Patents

イリジウム又はイリジウム合金からなる金属線材 Download PDF

Info

Publication number
WO2015146932A1
WO2015146932A1 PCT/JP2015/058786 JP2015058786W WO2015146932A1 WO 2015146932 A1 WO2015146932 A1 WO 2015146932A1 JP 2015058786 W JP2015058786 W JP 2015058786W WO 2015146932 A1 WO2015146932 A1 WO 2015146932A1
Authority
WO
WIPO (PCT)
Prior art keywords
iridium
wire
temperature
metal wire
crystal grains
Prior art date
Application number
PCT/JP2015/058786
Other languages
English (en)
French (fr)
Inventor
吉川 彰
有為 横田
宗樹 中村
邦弘 田中
達也 仲沢
弘一 坂入
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to EP15769690.7A priority Critical patent/EP3124136B1/en
Priority to KR1020167027884A priority patent/KR101841868B1/ko
Priority to CN201580016317.7A priority patent/CN106132589B/zh
Priority to US15/125,491 priority patent/US10137496B2/en
Publication of WO2015146932A1 publication Critical patent/WO2015146932A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/005Continuous casting of metals, i.e. casting in indefinite lengths of wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/005Castings of light metals with high melting point, e.g. Be 1280 degrees C, Ti 1725 degrees C
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/08Downward pulling
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Definitions

  • the present invention relates to a metal wire made of iridium or an iridium alloy, which is used in applications such as spark plug electrodes and sensor electrodes and used in a high temperature atmosphere.
  • Metal wires made of iridium or iridium alloys are known as metal wires used for spark plug electrodes (center electrode, ground electrode) and various sensor electrodes. Since the spark plug electrode is exposed to a high-temperature oxidation environment in the combustion chamber, there is a concern about consumption due to high-temperature oxidation. Iridium belongs to a noble metal and has a high melting point and good oxidation resistance, so it can be used for a long time even at high temperatures. In these applications, further improvement is required for durability in a high-temperature atmosphere.
  • the improvement of the high-temperature properties of metal wires by controlling the material structure is not yet considered complete.
  • the above-mentioned iridium wire by the applicant of the present application has also been observed to reduce the amount of oxidation consumption in a high-temperature oxidizing atmosphere, and a temporary effect has been confirmed.
  • there is a demand for further improvement of the high temperature characteristics and there is a demand for an iridium wire that is more excellent in high temperature characteristics.
  • a spark plug electrode is required to have a longer endurance life and to further improve durability in accordance with an improvement in engine performance. According to the inventors, there is room for improvement in the conventional iridium wire.
  • the present invention aims to provide a metal wire made of iridium or an iridium alloy that has excellent characteristics such as oxidation resistance and wear resistance under high temperature atmosphere and mechanical characteristics, and a method for producing the same. Is.
  • the damage mode in a high-temperature atmosphere of a metal mainly composed of iridium often starts from a crystal grain boundary. That is, iridium is preferentially oxidized (corrosion) at the grain boundary in a high temperature atmosphere and consumed, and there is a tendency for the strength to drop at the grain boundary and thus break from the grain boundary.
  • Patent Document 1 the material structure (orientation) of the iridium wire immediately after production is specified, but it is not clarified whether the material structure is maintained when exposed to high temperatures.
  • the iridium wire is scheduled to be used at a considerably high temperature exceeding its recrystallization temperature, it should be assumed that the structure changes due to recrystallization.
  • the present inventors in order to improve the durability of the iridium wire in a high temperature atmosphere, are presumed that the grain boundary area is small, but it is exposed not only at the time of production (room temperature) but also at a high temperature. In other words, it is necessary to maintain the structure, that is, it is difficult for the structure to change due to heating. Then, the inventors of the present invention conducted intensive studies on such iridium wires, including a fundamental review of the production method, and found suitable iridium wires.
  • the present invention is a metal wire made of iridium or an iridium-containing alloy, wherein the number of crystal grains in an arbitrary cross section in the longitudinal direction is 2 to 20 per 0.25 mm 2 , and the Vickers hardness of an arbitrary portion is 200 Hv This is a metal wire that is less than 400 Hv.
  • the present invention regulates the grain boundary area by defining the number of crystals in an arbitrary region of the longitudinal section.
  • the crystal grain boundary is a starting point of high temperature deterioration damage for a material containing iridium, and is intended to limit this.
  • this regulation of hardness is a structure relevant to the residual strain in material.
  • a melt-cast ingot is manufactured by combining processing (hot processing, cold processing) and heat treatment.
  • the introduction and relaxation (removal) of processing strain occur alternately, but residual strain is included in the material processed at a high processing rate until it becomes a wire state.
  • the processing strain acts as a driving force for recrystallization when the wire is heated to a temperature higher than the recrystallization temperature, and changes the material structure (recrystallization structure). Increase in grain boundary area due to the recrystallized structure accelerates high-temperature consumption and fracture.
  • the iridium wire according to the present invention is made of iridium or an iridium alloy.
  • the iridium alloy is preferably an iridium alloy containing 1 to 50% by mass in total of at least one of platinum, ruthenium, rhodium and nickel.
  • platinum, ruthenium, rhodium and nickel When these additive elements are added appropriately, the high temperature oxidation characteristics and mechanical characteristics of iridium may be further improved.
  • the iridium wire according to the present invention requires that the number of crystals per cross-sectional area of 0.25 mm 2 is 2 or more and 20 or less for an arbitrary cross section in the longitudinal direction.
  • the reason for the regulation of the number of crystals is as described above, but when it exceeds 20, the area of the grain boundary that becomes the starting point of deterioration at high temperature increases, and the risk of an increase in the amount of oxidation consumption and material breakage increases.
  • the upper limit was set.
  • setting the number of crystals to one indicates the state of a single crystal, and this is desirable, but it is realistic to require a single crystal as a condition when industrial production of iridium wire is required. is not.
  • the “longitudinal direction” is a direction parallel to the central axis of the wire.
  • the number of crystal grains in the cross section in the longitudinal direction is defined, but the number of crystal grains in the cross section in the radial direction is not limited.
  • the preferable shape of the crystal grains is a columnar crystal extending in the longitudinal direction, and a shape in which a material structure in which the columnar crystals are bundled in an arbitrary cross section is preferred.
  • a material structure having few equiaxed crystals is preferable.
  • the number of crystal grains having an aspect ratio (y / x) of 1.5 or more based on the longitudinal direction (x) and the direction (y) perpendicular thereto is 20 It is preferable that there are no more.
  • the reason for limiting the ratio of equiaxed crystals is to suppress a decrease in mechanical strength due to an increase in grain boundary area.
  • the iridium wire according to the present invention is required to have a material hardness of not less than 200 Hv and less than 400 Hv in terms of Vickers hardness.
  • the significance of defining the material hardness is described above.
  • the wire strain of 400 Hv or more has an excessive residual strain, and when exposed to a high temperature higher than the recrystallization temperature, the amount of oxidation consumption increases due to the increase of the grain interface area due to recrystallization. May occur. Further, although the material is softened by recrystallization, the material fracture starting from the grain boundary is likely to occur due to the combined decrease in hardness and strength and the increase in grain boundary area.
  • an iridium wire less than 200 Hv does not have the strength required in the normal temperature range, and therefore is inherently not preferred for use.
  • this invention is a wire which consists of iridium or an iridium alloy
  • the "wire" in this invention intends the fine wire material of diameter 0.1mm or more and diameter 3.0mm or less.
  • the iridium wire according to the present invention limits the number of crystals at room temperature and is less likely to cause structural changes due to recrystallization even when heated at high temperatures. Therefore, the iridium wire according to the present invention has little variation in the number of crystal grains when heated to a temperature higher than the recrystallization temperature (which varies depending on the material composition but is in the range of 1200 ° C. to 1500 ° C.). Further, the change in hardness due to high-temperature heating is also suppressed. Specifically, when the heating conditions are a heating temperature of 1200 ° C. and a heating time of 20 hours, the hardness change rate before and after heating (100 (%) ⁇ (hardness after heating) / Altitude before heating ⁇ 100)) is 15% or less.
  • the iridium wire according to the present invention needs to limit the number of crystal grains and the material hardness for reducing residual strain. These limitations are difficult to achieve with conventional wire manufacturing processes.
  • the melted and cast ingot is formed into fine wires by rolling (groove roll rolling), drawing, etc.
  • the number of crystal grains is controlled. I can't.
  • residual strain exists because processing is performed at a considerably high processing rate. Residual strain can be reduced by hot processing, but there is still considerable residual strain due to repeated processing. Therefore, the present inventors, as a wire manufacturing process that can achieve both the limitation of the number of crystal grains and the suppression of residual strain required in the present invention, are the micro-pulling-down method (hereinafter referred to as ⁇ ) -PD method).
  • the ⁇ -PD method is a method in which a molten metal as a raw material is accommodated in a crucible having a nozzle at the bottom, and the crystal solidified through a growth crystal is pulled down while passing through the nozzle, and crystal growth is performed.
  • the method according to the present invention is to obtain a wire rod by continuously performing crystal growth.
  • the ⁇ -PD method is a material having a small number of crystal grains according to a single crystal while controlling the shape of the crystal grains. It is because it can manufacture.
  • the wire produced by this method since the crystal is grown while the cross-sectional area is limited to a very small size by a nozzle, the wire produced by this method has a thin wire diameter, and does not require subsequent processing, or a small number of times. A wire rod having a desired wire diameter can be obtained by processing. Therefore, the crystal grown by the ⁇ -PD method is in a state with little distortion, so that no additional processing is required.
  • the production of the wire by the ⁇ -PD method is efficient in that the desired wire can be produced with a near net shape.
  • a high melting point material such as iridium or an alloy thereof is handled. Therefore, a constituent material of the crucible that is difficult to dissolve and volatilize at a high temperature is required. Specifically, ceramics such as magnesia, zirconia, and alumina, carbon (graphite), and the like are used.
  • the crucible in the ⁇ -PD method is provided with a nozzle at the bottom. The nozzle has both a function of cooling and solidifying the molten metal passing from the bottom, and a function of constraining and forming the metal solidified as a jig (die).
  • the nozzle material is also preferably made of a material that is difficult to melt and volatilize at a high temperature like the crucible. Since the nozzle inner wall causes friction with the solidified metal, the surface of the nozzle inner wall is preferably smooth. .
  • An important factor in producing the iridium wire having the limited number of crystal grains according to the present invention by the ⁇ -PD method is the position (level) of the solid-liquid interface between the molten metal and the solidified metal.
  • the position of the solid-liquid interface is preferably near the center of the nozzle in the vertical direction. If the position of the solid-liquid interface is on the upper side (the crucible side), the movement distance of the solidified metal will increase, and the resistance to lowering will increase accordingly, resulting in nozzle wear and damage, making it difficult to control the shape and dimensions of the wire. It becomes. On the other hand, if the solid-liquid interface is on the lower side (nozzle outlet side), the molten metal may be discharged from the nozzle and the wire diameter of the wire may be increased.
  • the position of the solid-liquid interface is controlled by appropriately adjusting the length (thickness) of the nozzle and the pulling speed.
  • the length (thickness) of the nozzle is preferably 5 to 30 mm, and the pulling-down speed is preferably 0.5 to 200 mm / min.
  • the wire discharged from the nozzle is in the solid phase region, when it is rapidly cooled, there is a possibility that a fine crystal (equal axis crystal) is generated. Therefore, it is preferable that the wire discharged from the nozzle is gradually cooled at a moderate cooling rate in a section until the temperature becomes equal to or lower than the recrystallization temperature.
  • the cooling rate is preferably 120 ° C./sec to 1 ° C./sec until the wire becomes at least 1200 ° C. or less. In the temperature range below 1200 ° C, the wire may be cooled at the above moderate cooling rate.
  • the cooling rate is set higher than the above rate in consideration of production efficiency. You may do it.
  • a cylinder (after heater) made of a heat conductive material such as ceramics may be connected to the crucible at the lower part of the crucible, and the heat of the crucible (molten metal) may be used.
  • the treatment of the molten metal with the crucible and the pulling down of the wire are preferably performed in an inert gas (nitrogen, argon, helium, etc.) atmosphere to prevent oxidation.
  • the wire diameter may be adjusted by additional processing.
  • the processing temperature is 1500 ° C. or higher, and the processing rate per one time (one pass) is less than 12%.
  • the processing temperature is low or the processing rate is high, residual strain remains, and a structural change due to recrystallization occurs at the time of use at a high temperature.
  • the iridium wire according to the present invention manufactured by the ⁇ -PD method described above can be used by being appropriately cut according to its use.
  • the iridium wire according to the present invention can be manufactured based on a single crystal manufacturing process other than the ⁇ -PD method such as the CZ method (Czochralski method).
  • these single crystal growth methods are suitable for the production of a single crystal having a relatively large diameter than the ⁇ -PD method.
  • a continuous wire having a CZ method (Czochralski method) ⁇ 3 mm or less in a near net shape is used. It cannot be made.
  • a thin wire having a diameter of 3 mm or less is manufactured as a final product by applying the CZ method or the like, a plurality of processes must be performed after the CZ method.
  • a plurality of times of machining has a high possibility of residual strain remaining, and the hardness after finishing becomes Hv400 or more.
  • this processed wire is adjusted to less than Hv400 by heat treatment or the like, a recrystallized structure composed of equiaxed crystals is formed, so that mechanical properties, particularly toughness, are extremely lowered.
  • the metal wire made of iridium or an iridium alloy according to the present invention suppresses residual amount damage starting from the grain boundary by reducing the grain boundary area.
  • the wire according to the present invention is less likely to cause a change in structure due to recrystallization and an increase in grain boundaries as starting points of damage even when used at a high temperature due to restriction of residual strain. Thereby, it becomes a wire excellent in various characteristics, such as oxidation-resistance consumption and mechanical characteristics.
  • wires made of iridium and various iridium alloys were produced by the ⁇ -PD method (Examples 1 to 10).
  • iridium wires having the same composition as the examples were manufactured in a manufacturing process in which processing and heat treatment described in Patent Document 1 were combined (Comparative Examples 1 to 10).
  • an ingot produced by the CZ method was processed and heat treated to produce a wire.
  • the manufacturing process of each iridium wire of an Example, a comparative example, and a reference example is demonstrated.
  • FIG. 1 shows an apparatus for producing an iridium wire based on the ⁇ -PD method applied in this embodiment.
  • an iridium raw material in a molten state is accommodated in a crucible.
  • a die having a through hole is embedded in the bottom of the crucible.
  • the grown crystal is brought into contact with the raw material in the crucible from the bottom, and then the grown crystal is pulled down (moved downward) at a constant speed.
  • iridium or an iridium alloy prepared in advance (both having a purity of 99% or more) was placed in a zirconia crucible (container dimensions 40 ⁇ 30 ⁇ 50).
  • a grown crystal ( ⁇ 0.8 mm seed crystal) was inserted from below a nozzle (size: inner diameter 1 mm, length 5 mm) installed at the bottom of the crucible.
  • the raw material was melted by high frequency induction heating. Thereafter, the film was pulled down at a pulling speed of 5 mm / min. At this time, nitrogen gas (1 L / min) is flowing from the upper part of the crucible toward the lower part.
  • the cooling rate is 50 ° C./sec and the wire temperature is gradually cooled to 1200 ° C. or lower.
  • 150 mm of wire rods with a wire diameter of 1 mm were manufactured.
  • Comparative Examples 1 to 10 An ingot made of iridium or an iridium alloy was manufactured by a nitrogen arc melting method (diameter: 12 mm), and this ingot was processed into a wire through the process shown in FIG. This processing step is repeatedly performed until the target dimensions are obtained in each step of biaxially pressurized hot forging and hot groove roll rolling. The repetition of the biaxial pressurization in this comparative example is for providing the wire with high orientation.
  • the hot working temperature and the heat treatment temperature are both set to be lower than the recrystallization temperature. Thereby, the fracture
  • Reference Example 1 and Reference Example 2 An iridium and iridium alloy ingot having a diameter of 5 mm was produced by a CZ method from a iridium melt melted at high frequency using a water-cooled copper mold (pickup speed 10 mm / min). And this wire rod was hot-drawn into a thin wire.
  • the processing conditions at this time were a processing temperature of 1000 ° C. to 1200 ° C. and a processing rate per pass of 10%. And it was set as the wire with a wire diameter of 1 mm.
  • pure iridium (corresponding to Example 1) and an iridium-rhodium alloy (corresponding to Example 5) were produced.
  • the number of crystal grains and the hardness were measured by observing the material structure.
  • the manufactured wire was cut to a length of 1 mm, and further cut in the longitudinal direction into halves.
  • the number of crystal grains was measured by observing under a microscope and arbitrarily setting an observation visual field having an area of 0.25 mm 2 . Further, the presence / absence / number of equiaxed crystals having an aspect ratio of 1.5 or more was measured. Thereafter, the Vickers hardness was measured with a Vickers hardness tester. The results are shown in Table 1.
  • the number of crystal grains in the longitudinal section is within a specified range, and the hardness is relatively low.
  • the comparative example is not too large in number of crystal grains, but more than in the example.
  • the hardness is high.
  • the CZ method is applied by ingot manufacture, there are few crystal grains.
  • the hardness is relatively high. It seems to be due to subsequent processing conditions (processing temperature is less than 1400 ° C.).
  • FIG. 3 shows the cross-sectional structures of the wire materials of Example 8 and Comparative Example 8.
  • the wire of Example 8 is composed of a small number of columnar crystals.
  • the wire of Comparative Example 8 exhibits a material structure in which a large number of crystals extending in the longitudinal direction are concentrated in a fibrous form.
  • each sample in Table 1 was subjected to high-temperature oxidation heating, and the changes in structure and hardness after heating were examined. Further, the oxidation consumption after heating was measured to evaluate the high temperature oxidation characteristics. Moreover, the wire material (10 mm in length) of the same composition as Table 1 was made easy, and it heated similarly, and the presence or absence of the breakage by a bending test was also evaluated about the heated wire. In this bending test, when the wire was bent by 90 °, the wire was broken or the surface was cracked. The above evaluation results are shown in Tables 2 and 3.
  • the iridium wire according to each example is superior in oxidation consumption and high temperature strength to the wire having the same composition of the comparative example.
  • the breakage that occurred in the comparative example was a grain boundary crack when the fracture portion was observed.
  • the corrosion near the grain boundary was also intense with respect to oxidation consumption.
  • Table 2 shows that the iridium wire of each example has little change in the number of crystal grains and also suppressed change in hardness. In the case of the comparative example, recrystallization proceeds due to high-temperature heating, and significant softening occurs while the number of crystal grains increases.
  • FIG. 4 shows the material structures of Example 8 and Comparative Example 8 after high-temperature heating (1200 ° C., 1500 ° C.).
  • Example 8 has very little change in the material structure.
  • FIG. 5 is an appearance photograph of a bending test performed on the wires of Example 2 and Comparative Example 2 after heating at 1500 ° C. for 20 hours.
  • the comparative example clear breakage was observed.
  • the comparative example showed rough surface morphology.
  • the wire of the example was bent without breaking, and the surface also remained glossy.
  • Reference Examples 1 and 2 are superior to Comparative Examples 1 and 5 having the same composition in high temperature characteristics, it can be said that they are inferior to Examples 1 and 5.
  • the reference example to which the CZ method is applied is superior to the comparative example in terms of material structure control.
  • the processing temperature is low and the plastic processing rate is high, residual strain exists, which is considered to cause a slight recrystallization. .
  • the present invention is a material that has good high-temperature oxidation resistance and can be used for a long time in a high-temperature oxidizing atmosphere.
  • the present invention is suitable as a material used in a high-temperature oxidizing atmosphere such as a spark plug electrode, various sensor electrodes, and lead wire.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Metal Extraction Processes (AREA)
  • Continuous Casting (AREA)

Abstract

 本発明は、イリジウム又はイリジウム含有合金からなる金属線材であって、長手方向の任意断面における結晶粒数が0.25mm当たり2~20個であり、更に、任意部分のビッカース硬度が200Hv以上400Hv未満である金属線材である。このイリジウム線材は、μ-PD法により製造され残留応力の少ない状態にあり、再結晶温度(1200℃~1500℃)以上に加熱されても、結晶粒数や硬度の変化が少ない材料である。本発明に係る金属線材は、高温雰囲気下での耐酸化消耗性、機械的特性に優れる。

Description

イリジウム又はイリジウム合金からなる金属線材
 本発明は、点火プラグ電極、センサー電極等の用途で使用され、高温雰囲気中で使用されるイリジウム又はイリジウム合金からなる金属線材に関する。
 点火プラグの電極(中心電極、接地電極)や、各種センサー電極等で使用される金属線材として、イリジウム又はイリジウム合金からなる金属線材(以下、イリジウム線材と称することがある)が知られている。点火プラグ用電極は、燃焼室内で高温酸化環境に曝されることから、高温酸化による消耗が懸念される。イリジウムは、貴金属に属し高融点、耐酸化性が良好であることから、高温下でも長期間使用が可能である。そして、これらの用途では高温雰囲気中での耐久性について、更なる改善も求められている。従来、イリジウム線材の耐久性改善の方法としては、材料組成の調整としてロジウム、白金、ニッケル等の添加元素を適宜合金化するのが一般的であった。しかし、合金化による組成調整に基づく改善だけでは、その他の特性低下が認められる為、組成調整以外の方法で耐高温酸化特性の改善をすることも必要であった。
 材料の高温特性の改善手法としては、組成(構成元素)の調整の他、材料組織の調整からのアプローチも試みられている。例えば、本願出願人は、イリジウム又はイリジウム合金からなる金属線材について、線材を構成する金属結晶の配向性に着目し、線材加工時に優先方位として現れる<100>方向に配向する結晶について、その存在比率を意図的に高めたものを開示している(特許文献1)。
特開2012-136733号公報
 材料組織の制御による金属線材の高温特性の改良は、未だ完成したものとは考えられていない。本願出願人による上記のイリジウム線材も、従来の線材加工により製造されたイリジウム線材に比べると高温酸化雰囲気中における酸化消耗量の低減が観測されており一応の効果が確認されている。しかし、高温特性の更なる改善が要求されていることもあり、より高温特性に優れたイリジウム線材が要求されている。例えば、点火プラグ電極では、耐久寿命の長期化の要求や、エンジン性能の向上に応じた耐久性の更なる改善が要求されている。そして、本発明者等によれば、上記従来のイリジウム線材にも改良の余地があるとしている。
 そこで本発明は、イリジウム又はイリジウム合金からなる金属線材について、高温雰囲気下での耐酸化消耗性、機械的特性等の諸特性に優れたもの、及び、その製造方法を提供することを目的とするものである。
 本発明者等の検討によれば、イリジウムを主体とする金属(純イリジウム又はイリジウム合金)の高温雰囲気における損傷モードは、結晶粒界を起点とすることが多い。つまり、イリジウムは高温雰囲気中、粒界における酸化(腐食)が優先的に生じて消耗し、また、粒界における強度低下が大きいため粒界から破断する傾向がある。
 このようなイリジウムの粒界優先の劣化機構は、上記特許文献1でも指摘している事項である。特許文献1におけるイリジウム線材では、粒界の優先的な劣化は、隣接する結晶間での方位差により拡大するという見解のもと、配向性の向上によって粒界の劣化を抑制している。特許文献1における考察・対策について、その有効性は否定されるものではない。しかし、劣化の要因となる粒界の面積を規制することがより有効な方策といえる。
 また、本発明者等は、高温雰囲気中の材料特性を検討するためには、高温加熱前後における材料組織の変化の有無を検討すべきであると考えた。上記特許文献1では、製造直後のイリジウム線材の材料組織(配向性)は規定するが、その材料組織が高温に曝されたときに維持されるかは明らかにしていない。ここで、イリジウム線材は、その再結晶温度を超えたかなり高温で使用されることが予定されていることから、再結晶による組織変化を想定すべきである。
 以上の検討から本発明者等は、高温雰囲気におけるイリジウム線材の耐久性を向上させるためには、粒界面積が少ないことを前提としつつ、それが製造時(常温)のみならず高温に曝されたときも維持されていること、つまり、加熱による組織変化が生じ難いことが必要であるとした。そして、本発明者等は、このようなイリジウム線材について、製造方法の根本的な見直しを含めて鋭意検討し、好適なイリジウム線材を見出した。
 即ち、本発明は、イリジウム又はイリジウム含有合金からなる金属線材であって、長手方向の任意断面における結晶粒数が0.25mm当たり2~20個であり、更に、任意部分のビッカース硬度が200Hv以上400Hv未満である金属線材である。
 本発明は、長手方向断面の任意の領域における結晶数を規定することで粒界面積を規制する。上記のとおり、イリジウムを含む材料にとって結晶粒界は高温劣化損傷の起点であり、これを制限するためである。
 そして、本発明では、イリジウム線材の硬度を規定するが、この硬度の規定は、材料中の残留歪に関連する構成である。通常、イリジウム線材の製造では、溶解鋳造されたインゴットについて加工(熱間加工、冷間加工)と熱処理とを組み合わせて製造する。この加工熱処理においては、加工歪の導入と緩和(除去)が交互に生じるが、線材の状態になるまでの高い加工率で加工された材料には相応に残留歪が内包されている。加工歪は、線材が再結晶温度以上に加熱されたとき再結晶の駆動力として作用し、材料組織を変化させる(再結晶組織)。再結晶組織により粒界面積が増大することで、高温消耗、破断が加速されることとなる。
 従って、使用温度が再結晶温度以上になることが想定されているイリジウム線材については、初期状態(高温雰囲気での使用前)における結晶粒数の制限に加え、高温下での組織変化を抑えるために残留歪が低減されているものが好適である。本発明は、これらの観点からなされたものであり、以下、より詳細に説明する。
 本発明に係るイリジウム線材は、イリジウム又はイリジウム合金からなる。ここで、イリジウム合金としては、白金、ルテニウム、ロジウム、ニッケルの少なくともいずれかを合計で1~50質量%含有するイリジウム合金が好ましい。これらの添加元素は、適宜に添加することでイリジウムの高温酸化特性や機械的特性を更に改善することができることがある。
 本発明に係るイリジウム線材は、長手方向における任意断面について、断面積0.25mm当たりの結晶数が2個以上20個以下であることを要する。結晶数規定の理由は上記の通りであるが、20個を越える場合高温での劣化の起点となる粒界の面積が増大し、酸化消耗量の増加や材料破断のおそれが高くなることから20個を上限とした。また、結晶数を1個とすることは単結晶の状態を示すことであり、これが望ましいことはいうまでもないが、イリジウム線材の工業的製造を要求すると単結晶を条件とすることは現実的ではない。尚、「長手方向」とは、線材の中心軸と平行な方向である。また、本発明では長手方向における断面の結晶粒数は規定されるが、径方向の断面における結晶粒数には制限はない。
 本発明において、結晶粒の好ましい形状は、長手方向に延伸する柱状結晶であり、任意断面で柱状結晶が束になった材料組織を挺したものが好ましい。そして、等軸晶の少ない材料組織が好ましい。具体的には、任意の断面積0.25mmにおいて、長手方向(x)とこれに垂直な方向(y)に基づくアスペクト比(y/x)が1.5以上となる結晶粒数が20個以下であることが好ましい。等軸晶の割合を制限するのは、粒界面積の増大に起因する機械的強度低下を抑制するためである。
 そして、本発明に係るイリジウム線材は、材料硬度がビッカース硬さで200Hv以上400Hv未満であることを要する。材料硬度を規定した意義は上記した。本発明者等の検討では、400Hv以上の線材は、残留歪が過剰な状態にあり、再結晶温度以上の高温に曝されたとき、再結晶による粒界面積の増加から酸化消耗量の増大が生じるおそれがある。また、再結晶により材料は軟化するが、この硬度・強度低下と粒界面積増加とが相俟って粒界を起点とする材料破断も生じる可能性が高くなる。一方、200Hv未満のイリジウム線材は、常温域で求められる強度を有さないので、本来的に使用が好ましくない。
 尚、このような材料硬度が制限された線材を得るためには、歪を残留させないために加工条件を制限しながら、必要な線径となるよう加工製造する必要があるが、この製造プロセスについては後述する。また、本発明はイリジウム又はイリジウム合金からなる線材であるが、本発明における「線材」とは、線径直径0.1mm以上直径3.0mm以下の細線材料を意図するものである。
 以上の通り、本発明に係るイリジウム線材は、常温での結晶数を制限すると共に、高温加熱されても再結晶による組織変動が生じにくいようになっている。従って、本発明に係るイリジウム線材は、再結晶温度(材料組成により変動するが1200℃~1500℃の範囲である)以上に加熱されたときの結晶粒数の変動も少ない。また、高温加熱による硬度変化も抑制されており、具体的には、加熱条件として加熱温度1200℃、加熱時間20時間としたとき、加熱前後の硬度変化率(100(%)-(加熱後硬度/加熱前高度×100))が15%以下となる。
 次に、本発明に係るイリジウム線材の製造方法について説明する。これまで述べたように本発明に係るイリジウム線材は、結晶粒数の制限と残留歪低減のための材料硬度の制限が必要である。これらの制限事項は、従来の線材製造プロセスでは達成するのが困難である。従来の線材製造プロセスでは、溶解鋳造されたインゴットについて、圧延加工(溝ロール圧延加工)、線引き加工等を行って細線に成形加工するが、これらの製造工程では、結晶粒の数を制御することはできない。また、インゴットから線材までに成形される過程では相当に高い加工率での加工がなされることから残留歪が存在する。残留歪については、加工を熱間で行うことで軽減できるが、それでも繰り返される加工により残留歪は相当に存在する。そこで、本発明者等は、本発明で要求される結晶粒数の制限と残留歪の抑制の双方を達成できる線材製造プロセスとして、単結晶製造プロセスの一態様であるマイクロ引き下げ法(以下、μ-PD法と称する)を適用することとした。
 μ-PD法は、底部にノズルが設置された坩堝内に原料となる溶融金属を収容し、育成結晶を介して凝固した金属をノズルに通過させつつ引き下げて結晶育成を行う方法であり、この結晶育成を連続に行うことで線材を得るのが本発明に係る方法である。
 本発明に係るイリジウム線材の製造にμ-PD法が好適に適用される理由としては、まず、μ-PD法は結晶粒の形状制御を行いつつ、単結晶に準じた結晶粒数の少ない材料を製造できるからである。そして、μ-PD法では、ノズルにより断面積を微小に限定しつつ結晶育成を行うことから、この方法により製造される線材は線径が細く、その後の加工を要しない、或いは、少ない回数の加工で所望の線径の線材を得ることができる。従って、μ-PD法により育成される結晶は、歪の少ない状態であるため追加的な加工を要しない。これにより残留歪を大幅に低減することができ、本発明が要求する低硬度のイリジウム線材とすることができる。このように、μ-PD法による線材製造は、ニアネットシェイプで目的とする線材を製造できる効率的なものである。
 μ-PD法に基づく、本発明に係るイリジウム線材の製造方法では、イリジウム又はその合金という高融点材料を取り扱うことから、坩堝の構成材料としては、高温で溶解・揮発し難いものが必要であり、具体的には、マグネシア、ジルコニア、アルミナ等のセラミックやカーボン(グラファイト)等が用いられる。μ-PD法における坩堝は、その底部にノズルを備える。ノズルは、底部より通過する溶融金属を冷却して凝固させる機能と、冶具(ダイ)として凝固する金属を拘束して成形する機能の双方を有する。ノズルの材質も坩堝と同様に高温で溶解・揮発し難い材料で形成されていることが好ましい、ノズル内壁は凝固した金属との摩擦を生じるため、ノズル内壁表面は表面が平滑であることが好ましい。
 μ-PD法により本発明に係る結晶粒数が制限されたイリジウム線材を製造する場合の重要な要素として、溶融金属と凝固金属との固液界面の位置(レベル)がある。この固液界面の位置は、ノズル上下方向の中央付近にあることが好ましい。固液界面の位置が上側(坩堝側)にあると、凝固した金属の移動距離が大きくなり、その分引き下げの抵抗が大きくなりノズルの摩耗・損傷が生じて線材の形状・寸法の制御が困難となる。一方、固液界面が下側(ノズル出口側)にあると、溶湯がノズルから排出されて線材の線径が太くなるおそれがある。この固液界面の位の制御は、ノズルの長さ(厚さ)、引き下げ速度を適宜に調整して行う。本発明で想定される線径の線材を製造するにあたり、ノズルの長さ(厚さ)は5~30mmが好ましく、これに対する引き下げ速度は0.5~200mm/minとするのが好ましい。
 また、μ-PD法によるイリジウム線材の製造にあたっては、ノズルから排出される線材の冷却速度の調整も必要である。ノズルから排出される線材は、固相領域にはあるが急冷すると微細結晶(等軸晶)が生じるおそれがある。そのため、ノズルから排出された線材については、再結晶温度以下になるまでの区間において緩やかな冷却速度で徐冷するのが好ましい。具体的には、線材が少なくとも1200℃以下になるまで、冷却速度を120℃/sec~1℃/secとするのが好ましい。尚、線材温度1200℃以下の温度域においても、前記の緩やかな冷却速度で冷却しても差し支えないが、線材が1000℃以下であれば、製造効率を考慮して上記速度より冷却速度を高くしても良い。また、冷却速度の調整のためには、例えば、坩堝の下部にセラミックス等の熱伝導材からなる筒体(アフターヒーター)を坩堝に連結し、坩堝(溶融金属)の熱を利用することがある。坩堝による溶融金属の処理、及び、線材の引き下げは、酸化防止のため不活性ガス(窒素、アルゴン、ヘリウム等)雰囲気中で行うのが好ましい。
 μ-PD法により製造したイリジウム線材については、追加的な加工により線径の調整を行っても良い。但し、その場合、残留歪を残さないようにするため、加工温度と加工率について留意が必要となる。具体的には、加工温度を1500℃以上とし、1回(1パス)辺りの加工率は12%未満とする必要がある。加工温度が低い場合や加工率が高い場合、残留歪を残すこととなり、高温での使用の際に再結晶による組織変化が生じることとなる。以上説明したμ―PD法により製造された本発明に係るイリジウム線材は、その用途に応じて適宜に切断して使用可能である。
 尚、本発明に係るイリジウム線材は、CZ法(チョクラルスキー法)等のμ-PD法以外の単結晶製造プロセスを基にしても製造可能である。但し、これらの単結晶育成法は、μ-PD法よりも比較的大径の単結晶製造には好適ではあるが、CZ法(チョクラルスキー法)φ3mm以下の連続した線材をニアネットシェイプで作製することはできない。そして、CZ法等を適用して、最終製品として3mm以下の細径の線材を製造する場合には、CZ法の後に複数回の加工を行わなければならない。複数回の加工は、残留歪が残る可能性が高く、加工上がりの硬さはHv400以上となる。また、この加工上がりの線材を熱処理等でHv400未満に調整すると、等軸晶で構成される再結晶組織を形成する為、機械的特性、特に靭性が極端に低下する。
 本発明に係るイリジウム又はイリジウム合金からなる金属線材は、粒界面積を低減することで、粒界を起点とする残量損傷を抑制する。また、本発明に係る線材は、残留歪の制限により高温の使用によっても再結晶による組織変化、損傷の起点となる粒界の増加が生じ難くなっている。これにより、耐酸化消耗性、機械的特性等の諸特性に優れた線材となる。
μ-PD法に基づくイリジウム線材の製造装置の構成を概略説明する図。 比較例のイリジウム線材の製造工程を説明する図。 実施例8、比較例8の線材の断面組織を示す写真。 実施例8、比較例8の線材を高温加熱した後の材料組織を示す写真。 実施例2、比較例2の線材について、高温加熱及び曲げ試験後の外観写真。
 以下、本発明の好適な実施例を説明する。本実施形態では、μ-PD法によりイリジウム及び各種のイリジウム合金からなる線材を製造した(実施例1~実施例10)。また、従来のイリジウム線材として特許文献1記載の加工と熱処理とを組み合わせた製造工程にて実施例と同じ組成のイリジウム線材を製造した(比較例1~比較例10)。更に、参考例として、CZ法により製造したインゴットを加工・熱処理して線材を製造した。以下、実施例、比較例、参考例の各イリジウム線材の製造工程を説明する。
実施例1~実施例10:図1に本実施形態で適用したμ-PD法に基づくイリジウム線材の製造装置を示す。図1の通り、イリジウム線材製造装置では、坩堝内に溶融状態でのイリジウム原料を収容する。坩堝の底部には貫通孔を有するダイが埋め込まれている。μ-PD法による線材製造にあたっては、まず、育成結晶を底部から坩堝内の原料に接触させ、その後一定速度で育成結晶を引き下げ(下方向に移動)させる。
 本実施形態では、予め用意したイリジウム又はイリジウム合金(いずれも純度99%以上)をジルコニア製の坩堝(容器寸法40×30×50)に入れた。その一方で、坩堝底部に設置されたノズル(寸法:内径1mm、長さ5mm)の下方から育成結晶(φ0.8mmの種結晶)を挿入した。そして、原料を高周波誘導加熱して溶解させた。その後、引き下げ速度5mm/minで引き下げを行った。このとき、坩堝上部から下部方向へ窒素ガス(1L/min)をフローしている。本実施形態では、ノズル出口から30mmの区間において、冷却速度を50℃/secとして線材温度が1200℃以下になるまで徐冷している。そして、線径1mmの線材150mmを製造した。
比較例1~比較例10:窒素アーク溶解法でイリジウム又はイリジウム合金からなるインゴットを製造し(直径12mm)、このインゴットについて、図2に示す工程を経て線材へと加工した。この加工工程は、2軸加圧の熱間鍛造、熱間溝ロール圧延の各工程で目的寸法となるまで繰り返し加工を行っている。この比較例における2軸加圧の繰返しは、線材に高い配向性を具備させるためである。また、この比較例の加工工程においては、熱間加工温度、熱処理温度の設定について、いずれも再結晶温度以下となるように設定している。これにより、加工途中の再結晶により生じた粒界からの破断を防止している。
参考例1、参考例2:水冷銅鋳型を用いて高周波溶解したイリジウム溶湯から、CZ法により直径5mmのイリジウム、イリジウム合金インゴットを製造した(引き上げ速度10mm/min)。そして、この線材を熱間線引き加工して細線とした。このときの加工条件は、加工温度1000℃~1200℃、1パス当たりの加工率を10%とした。そして、線径1mmの線材とした。尚、この参考例は、純イリジウム(実施例1に対応)、イリジウム-ロジウム合金(実施例5に対応)の2種の材料について製造した。
 以上で製造したイリジウム線材について、まず、材料組織の観察により結晶粒数の測定、硬度測定を行った。これらの測定は、製造した線材を1mmの長さに切断し、更に、長手方向に切断して半割りにした。そして、顕微鏡観察を行い面積0.25mmの観察視野を任意に設定して結晶粒数の測定を行った。また、アスペクト比1.5以上の等軸晶の有無・数を測定した。その後、ビッカース硬度計によりビッカース硬度を測定した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本実施形態で製造した各試料についてみると、実施例1~10は、長手方向断面における結晶粒数が規定範囲内にあり、硬度も比較的低いものである。比較例も多すぎる結晶粒数というわけではないが、実施例よりは多くなる。また、硬度も高い。そして、参考例に関しては、インゴット製造でCZ法を適用していることから結晶粒数は少ない。但し、硬度は比較的高くなっている。その後の加工条件(加工温度1400℃未満である)によるものと思われる。
 また、図3は、実施例8、比較例8の線材の断面組織である。実施例8の線材は少数の柱状晶により構成されている。一方、比較例8の線材は、長手方向に延びた結晶が多数繊維状に密集した材料組織を呈する。
 次に、表1の各試料について高温酸化加熱を行い、加熱後の組織変化及び硬度変化を検討した。更に、加熱後の酸化消耗量を測定して高温酸化特性を評価した。また、表1と同じ組成の線材(長さ10mm)を容易して同様に高温加熱を行い、加熱後の線材について曲げ試験による折損の有無も評価した。この曲げ試験では、線材を90°曲げたときの線材の破断や表面の割れが生じたとき折損有りとした。以上の各評価結果を表2、表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3から、各実施例に係るイリジウム線材は、酸化消耗及び高温強度が比較例の同一組成の線材より優れていることが確認できる。比較例について生じた折損は、破断部を観察すると粒界割れであった。また、酸化消耗についても、粒界付近の腐食が激しかった。この点、表2をみると、各実施例のイリジウム線材は、結晶粒数の変化も少なく、また、硬度変化も抑えられている。比較例の場合、高温加熱により再結晶が進行し、結晶粒数が増加しつつ大幅な軟化が生じている。
 図4は、高温加熱後(1200℃、1500℃)の実施例8、比較例8の材料組織を示す。比較例は高温加熱後の再結晶により結晶粒数の増大が見て取れる。特に、外周部における結晶粒数の増大が顕著である。これに対して、実施例8は材料組織の変化が極めて少ないといえる。
 また、図5は、実施例2、比較例2の線材について、1500℃で20時間加熱後に行った曲げ試験の外観写真である。比較例は、明確な破断が見られた。また、比較例は表面形態の荒れが見られた。一方、実施例の線材は、破断することなく曲がっており、表面も光沢を残していた。
 尚、参考例1、2は、同一組成の比較例1、比較例5よりは高温特性が優れるものの、実施例1、実施例5と対比すると劣っているといえる。CZ法を適用する参考例は、材料組織制御については比較例よりも優位にあるが、加工温度が低く塑性加工率が高いため残留歪が存在し、これがわずかながら再結晶を引き起こしたものと考える。
 本発明は、耐高温酸化特性が良好で、高温酸化雰囲気下で長期間使用可能な材料である。本発明は、点火プラグ電極、各種センサー電極、リード線ワイヤ等の高温酸化雰囲気下で使用される材料として好適である。
 

Claims (4)

  1.  イリジウム又はイリジウム含有合金からなる金属線材であって、
     長手方向の任意断面における結晶粒数が0.25mm当たり2~20個であり、
     更に、任意部分のビッカース硬度が200Hv以上400Hv未満である金属線材。
  2.  長手方向の任意断面において、長手方向(x)と長手方向に垂直な方向(y)とのアスペクト比(x/y)が1.5以上となる結晶粒が0.25mm当たり20個以下である請求項1記載の金属線材。
  3.  イリジウム合金は、白金、ルテニウム、ロジウム、ニッケルの少なくともいずれかを合計で1~50質量%含有するイリジウム合金である請求項1又は請求項2記載の金属線材。
  4.  請求項1~請求項3のいずれかに記載の金属線材の製造方法であって、
     坩堝に収容された溶融状態のイリジウム又はイリジウム含有合金からなる原料に、育成結晶を坩堝底部から接触させ、
     前記育成結晶を坩堝の下方に一定速度で引き下げて、前記原料を坩堝底部のダイを通過させて線材とする金属線材の製造方法。
     
PCT/JP2015/058786 2014-03-28 2015-03-23 イリジウム又はイリジウム合金からなる金属線材 WO2015146932A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15769690.7A EP3124136B1 (en) 2014-03-28 2015-03-23 Metal wire rod composed of iridium or iridium alloy
KR1020167027884A KR101841868B1 (ko) 2014-03-28 2015-03-23 이리듐 또는 이리듐 합금으로 이루어지는 금속 선재
CN201580016317.7A CN106132589B (zh) 2014-03-28 2015-03-23 包含铱或铱合金的金属线材
US15/125,491 US10137496B2 (en) 2014-03-28 2015-03-23 Metal wire rod composed of iridium or iridium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-068445 2014-03-28
JP2014068445A JP6243275B2 (ja) 2014-03-28 2014-03-28 イリジウム又はイリジウム合金からなる金属線材

Publications (1)

Publication Number Publication Date
WO2015146932A1 true WO2015146932A1 (ja) 2015-10-01

Family

ID=54195445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058786 WO2015146932A1 (ja) 2014-03-28 2015-03-23 イリジウム又はイリジウム合金からなる金属線材

Country Status (6)

Country Link
US (1) US10137496B2 (ja)
EP (1) EP3124136B1 (ja)
JP (1) JP6243275B2 (ja)
KR (1) KR101841868B1 (ja)
CN (1) CN106132589B (ja)
WO (1) WO2015146932A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632242B (zh) * 2016-03-07 2018-08-11 赫瑞斯德國有限兩合公司 銥鉑合金及其製造之加工物件

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6789548B2 (ja) * 2016-05-06 2020-11-25 株式会社C&A 金属部材製造方法
JP2018175127A (ja) * 2017-04-07 2018-11-15 東海電気株式会社 体内管導入物用マーカー及び体内管導入物,並びにそれらの製造方法
EP3666913A1 (en) 2017-06-27 2020-06-17 C & A Corporation Metal member
CN108018455A (zh) * 2017-12-15 2018-05-11 湖南科技大学 一种铱镍合金、制备方法及其应用
JP6674496B2 (ja) 2018-03-26 2020-04-01 日本特殊陶業株式会社 スパークプラグ及びその製造方法
CN111235536B (zh) * 2020-03-17 2021-11-12 贵研铂业股份有限公司 一种晶粒高定向取向的铱溅射靶材及其制备方法
JP2023173090A (ja) * 2022-05-25 2023-12-07 石福金属興業株式会社 耐熱性IrPt合金

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112262A (ja) * 1992-09-30 1994-04-22 Tanaka Denshi Kogyo Kk 自動ワイヤボンダ
JP2002045905A (ja) * 2000-08-07 2002-02-12 Tanaka Kikinzoku Kogyo Kk イリジウム又はイリジウム合金の加工方法及びその加工方法を用いる点火プラグ用電極部材の製造方法
JP2003053419A (ja) * 2001-08-22 2003-02-26 Tanaka Kikinzoku Kogyo Kk イリジウム又はイリジウム合金線材の引抜き加工方法
JP2005239535A (ja) * 2004-01-28 2005-09-08 Ngk Insulators Ltd 単結晶および単結晶の製造方法
JP2009035434A (ja) * 2007-07-31 2009-02-19 Nec Tokin Corp 単結晶育成方法
WO2009107289A1 (ja) * 2008-02-27 2009-09-03 田中貴金属工業株式会社 硬度、加工性、並びに、防汚特性に優れたイリジウム合金
JP2010241663A (ja) * 2009-04-10 2010-10-28 Tdk Corp 単結晶引下げ方法及び引下げ装置
JP2012036066A (ja) * 2010-08-11 2012-02-23 Tokuyama Corp フッ化物単結晶、真空紫外発光素子、シンチレーター及びフッ化物単結晶の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3856551B2 (ja) * 1997-11-19 2006-12-13 日本特殊陶業株式会社 スパークプラグ
JP4357993B2 (ja) * 2004-03-05 2009-11-04 日本特殊陶業株式会社 スパークプラグ
JP4216823B2 (ja) * 2005-03-04 2009-01-28 田中貴金属工業株式会社 プローブピン及び該ブロ−ブビンを備えたブロ−ブカ−ド
CN101483319B (zh) * 2009-02-24 2012-05-23 昆明富尔诺林科技发展有限公司 一种火花塞电极材料和制造方法以及使用该电极材料的火花塞
JP5273725B2 (ja) * 2009-03-13 2013-08-28 田中貴金属工業株式会社 内燃機関用プラグ電極材料
JP5325201B2 (ja) * 2010-12-27 2013-10-23 田中貴金属工業株式会社 イリジウム含有合金からなる金属線材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06112262A (ja) * 1992-09-30 1994-04-22 Tanaka Denshi Kogyo Kk 自動ワイヤボンダ
JP2002045905A (ja) * 2000-08-07 2002-02-12 Tanaka Kikinzoku Kogyo Kk イリジウム又はイリジウム合金の加工方法及びその加工方法を用いる点火プラグ用電極部材の製造方法
JP2003053419A (ja) * 2001-08-22 2003-02-26 Tanaka Kikinzoku Kogyo Kk イリジウム又はイリジウム合金線材の引抜き加工方法
JP2005239535A (ja) * 2004-01-28 2005-09-08 Ngk Insulators Ltd 単結晶および単結晶の製造方法
JP2009035434A (ja) * 2007-07-31 2009-02-19 Nec Tokin Corp 単結晶育成方法
WO2009107289A1 (ja) * 2008-02-27 2009-09-03 田中貴金属工業株式会社 硬度、加工性、並びに、防汚特性に優れたイリジウム合金
JP2010241663A (ja) * 2009-04-10 2010-10-28 Tdk Corp 単結晶引下げ方法及び引下げ装置
JP2012036066A (ja) * 2010-08-11 2012-02-23 Tokuyama Corp フッ化物単結晶、真空紫外発光素子、シンチレーター及びフッ化物単結晶の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124136A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632242B (zh) * 2016-03-07 2018-08-11 赫瑞斯德國有限兩合公司 銥鉑合金及其製造之加工物件

Also Published As

Publication number Publication date
KR20160131076A (ko) 2016-11-15
EP3124136B1 (en) 2021-05-05
EP3124136A1 (en) 2017-02-01
EP3124136A4 (en) 2017-12-20
CN106132589A (zh) 2016-11-16
US20170072458A1 (en) 2017-03-16
JP2015190012A (ja) 2015-11-02
US10137496B2 (en) 2018-11-27
CN106132589B (zh) 2018-05-04
JP6243275B2 (ja) 2017-12-06
KR101841868B1 (ko) 2018-03-23

Similar Documents

Publication Publication Date Title
JP6243275B2 (ja) イリジウム又はイリジウム合金からなる金属線材
TWI390046B (zh) 具有改良高溫特性的經摻雜銥
JP2008150704A (ja) マグネシウム合金材およびその製造方法
JP2010236071A (ja) 電子材料用Cu−Co−Si系銅合金及びその製造方法
JP7175477B2 (ja) 金属部材
JP2006241531A (ja) 連続鋳造アルミニウム合金鋳塊及びその製造方法
JP5325201B2 (ja) イリジウム含有合金からなる金属線材
KR101688358B1 (ko) 절삭성이 우수한 알루미늄 합금 압출재 및 그의 제조 방법
KR101293816B1 (ko) 마그네슘 장척재의 제조방법
JP4820572B2 (ja) 耐熱アルミニウム合金線の製造方法
JP5273725B2 (ja) 内燃機関用プラグ電極材料
JP2016204708A (ja) 銅合金
JP2011063884A (ja) 耐熱アルミニウム合金線
JP4145454B2 (ja) 耐摩耗性アルミニウム合金長尺体およびその製造方法
KR101963428B1 (ko) 타이타늄 합금 및 타이타늄 합금의 제조방법
JP2007021584A (ja) Zn−Al合金線及びその製造方法並びにZn−Al合金線材
JPH09227972A (ja) 超塑性を有するTiAl金属間化合物基合金材料とその製造方法
KR101782066B1 (ko) 단조가공에 의한 타이타늄 합금 빌렛의 제조방법
Ma et al. Microstructure and Texture Evolution in a Magnesium Alloy During Extrusion at Various Extrusion Speeds
JPH09316574A (ja) 高強度耐熱性導電用アルミニウム合金及びその製造方法
JPH0832939B2 (ja) Cu合金製連続鋳造鋳型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15769690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15125491

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015769690

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015769690

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167027884

Country of ref document: KR

Kind code of ref document: A