WO2015141144A1 - 有機el素子および有機el素子の製造方法 - Google Patents

有機el素子および有機el素子の製造方法 Download PDF

Info

Publication number
WO2015141144A1
WO2015141144A1 PCT/JP2015/000927 JP2015000927W WO2015141144A1 WO 2015141144 A1 WO2015141144 A1 WO 2015141144A1 JP 2015000927 W JP2015000927 W JP 2015000927W WO 2015141144 A1 WO2015141144 A1 WO 2015141144A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
layer
organic
intermediate layer
cathode
Prior art date
Application number
PCT/JP2015/000927
Other languages
English (en)
French (fr)
Inventor
哲征 松末
裕 片桐
Original Assignee
株式会社Joled
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Joled filed Critical 株式会社Joled
Priority to US15/124,476 priority Critical patent/US10181582B2/en
Priority to JP2016508490A priority patent/JP6336042B2/ja
Publication of WO2015141144A1 publication Critical patent/WO2015141144A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/824Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present invention relates to an organic EL (Electro-Luminescence) element and a method for producing the organic EL element, and particularly relates to storage stability and light emission characteristics.
  • organic EL Electro-Luminescence
  • organic EL elements have features such as high visibility due to self-emission and excellent impact resistance because they are completely solid elements, those using organic EL elements in display devices have recently become widespread. It's getting on.
  • the organic EL element has a configuration in which at least a light emitting layer is sandwiched between a pair of electrodes (anode and cathode).
  • the organic EL element includes a functional layer (electron transport layer, electron injection layer) for supplying electrons to the light emitting layer, a hole injection layer, a hole transport layer, and the like in addition to the light emitting layer.
  • the structure is further sandwiched between the light emitting layer and the cathode. Further, it is known that when a layer containing an alkali metal or alkaline earth metal having a low work function is used for the functional layer, good electron injecting property can be obtained.
  • Alkali metals and alkaline earth metals with low work functions are likely to react with impurities such as moisture and oxygen. Therefore, the functional layer containing an alkali metal or an alkaline earth metal is accelerated to deteriorate when impurities are present, and adverse effects such as a decrease in light emission efficiency and a decrease in light emission lifetime of the organic EL element occur, and storage stability decreases. Further, when impurities come into contact with the cathode made of metal, corrosion and deterioration may occur, and the same adverse effects as described above may be caused.
  • Patent Document 1 includes a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer (in Patent Document 1, these are referred to as “organic light emitting medium layer”).
  • organic light emitting medium layer Discloses a structure in which an inorganic barrier layer is provided.
  • the inorganic barrier layer is an organic light-emitting layer formed after the inorganic barrier layer due to impurities adsorbed on the surface of the organic light-emitting medium layer formed before the inorganic barrier layer (“degradation factor” in Patent Document 1). It is provided to prevent the deterioration of the medium layer.
  • the inorganic barrier layer is made of an insulator, a semiconductor, or a metal having a work function of 4.0 [eV] or more and has a low electron injection property, sufficient electrons are generated in the light emitting layer. There is a possibility that good light emission characteristics cannot be obtained without being supplied.
  • the present invention has been made in view of the above-mentioned problems, and ensures good storage stability by ensuring sufficient blockability against not only impurities from the layer formed before the barrier layer but also impurities from the outside.
  • An object of the present invention is to provide an organic EL element capable of realizing good light emission characteristics and a method for manufacturing the organic EL element while ensuring the properties.
  • An organic EL element which is one embodiment of the present invention includes an anode, a light emitting layer disposed above the anode, and a fluoride of a first metal which is disposed on the light emitting layer and is an alkali metal or an alkaline earth metal And a second intermediate layer including a second metal disposed on the first intermediate layer and having a property of breaking the bond between the first metal and fluorine in the fluoride of the first metal;
  • the organic EL device has a cathode disposed on the second intermediate layer, and an adsorption layer that is disposed above the cathode and includes a third metal that adsorbs moisture and oxygen.
  • the organic EL device includes a first intermediate layer and a second intermediate layer.
  • the first intermediate layer contains a fluoride of the first metal that is an alkali metal or an alkaline earth metal, and has a high impurity blocking property. Accordingly, it is possible to block the intrusion of impurities from the light emitting layer side, suppress the deterioration of the cathode, and maintain good light emission characteristics.
  • the second metal contained in the second intermediate layer breaks the bond between the first metal and fluorine in the fluoride of the first metal contained in the first intermediate layer, thereby liberating the first metal.
  • the liberated first metal is an alkali metal or an alkaline earth metal and has a small work function and a high electron injecting property, so that the electron can be sufficiently supplied to the light emitting layer.
  • the first metal that is liberated is small, electrons cannot be sufficiently supplied to the light emitting layer, and sufficient luminance cannot be obtained.
  • the amount of electrons supplied becomes excessive with respect to the amount of holes in the light emitting layer, and the light emission efficiency (luminance with respect to current) decreases.
  • the film thickness D1 of the first intermediate layer and the film thickness D2 of the second intermediate layer are within the range of 5 [%] ⁇ D2 / D1 ⁇ 25 [%]. Therefore, it is within a preferable range in the balance between the impurity blocking property and the electron supply property, and good light emission efficiency can be realized.
  • an adsorption layer containing a third metal having a property of adsorbing impurities is disposed above the cathode.
  • the adsorption layer can block impurities from entering from outside and suppress deterioration of the cathode, the first intermediate layer, and the second intermediate layer, thereby realizing good storage stability.
  • (A) is a graph which shows the change of the luminous efficiency ratio by the difference in the film thickness of an adsorption layer.
  • (B) is a graph which shows the change of the light extraction efficiency by the difference in the film thickness of an adsorption layer. It is a fragmentary sectional view which shows typically a part of manufacturing process of the organic EL element which concerns on embodiment of this invention.
  • (A) is a fragmentary sectional view which shows the state in which the TFT layer and the interlayer insulation layer were formed on the board
  • (B) is a fragmentary sectional view which shows the state in which the anode was formed on the interlayer insulation layer.
  • FIG. 8 is a partial cross-sectional view schematically showing a part of the manufacturing process of the organic EL element continued from FIG. 7.
  • (A) is a fragmentary sectional view which shows the state in which the partition layer was formed.
  • (B) is a partial cross-sectional view showing a state in which a hole injection layer is formed on the anode in the opening of the partition wall layer.
  • (C) is a partial cross-sectional view showing a state in which a hole transport layer is formed on the hole injection layer in the opening of the partition wall layer.
  • FIG. 9 is a partial cross-sectional view schematically showing a part of the manufacturing process of the organic EL element continued from FIG. 8.
  • A is a fragmentary sectional view which shows the state by which the light emitting layer was formed on the positive hole transport layer in the opening part of a partition layer.
  • B is a fragmentary sectional view showing a state in which the first intermediate layer is formed on the light emitting layer and the partition layer.
  • C is a fragmentary sectional view showing the state where the second intermediate layer is formed on the first intermediate layer.
  • FIG. 10 is a partial cross-sectional view schematically showing a part of the manufacturing process of the organic EL element continued from FIG. 9.
  • (A) is a fragmentary sectional view which shows the state by which the cathode thin film layer was formed on the 2nd intermediate
  • (B) is a fragmentary sectional view which shows the state by which the cathode auxiliary
  • (C) is a partial cross-sectional view showing a state in which an adsorption layer is formed on the cathode auxiliary layer.
  • (D) is a fragmentary sectional view showing the state where the sealing layer was formed on the adsorption layer.
  • It is a schematic process drawing which shows the manufacturing process of the organic EL element which concerns on embodiment of this invention. It is a schematic block diagram which shows the structure of the organic electroluminescence display provided with the organic electroluminescent element which concerns on embodiment of this invention.
  • An organic EL device includes an anode, a light emitting layer disposed above the anode, and a fluoride of a first metal that is disposed on the light emitting layer and is an alkali metal or an alkaline earth metal. And a second intermediate layer including a second metal disposed on the first intermediate layer and having a property of breaking the bond between the first metal and fluorine in the fluoride of the first metal;
  • the organic EL device has a cathode disposed on the second intermediate layer, and an adsorption layer that is disposed above the cathode and includes a third metal that adsorbs moisture and oxygen.
  • the ratio of the film thickness D1 of the first intermediate layer to the film thickness D2 of the second intermediate layer is such that the impurity blocking property from the light emitting layer side to the cathode side and the electron supply property from the cathode side to the light emitting layer side are Since the balance is within a preferable range, good light emission characteristics can be realized. Furthermore, since the adsorption layer adsorbs and blocks impurities from the outside, deterioration of the cathode, the first intermediate layer, and the second intermediate layer due to the impurities can be suppressed.
  • the third metal is an alkali metal or an alkaline earth metal.
  • the third metal is an alkali metal or alkaline earth metal having a relatively low work function, and has a high reactivity with impurities. Therefore, the third metal reacts with impurities entering from the outside and functions to trap the impurities in the adsorption layer. . Thereby, it is possible to block the entry of impurities from the outside to the cathode side, suppress the deterioration of the cathode, and maintain good light emission characteristics.
  • the film thickness D1 of the first intermediate layer is not less than 1 [nm] and not more than 10 [nm].
  • the film thickness D1 of the first intermediate layer can secure the film thickness necessary for obtaining a sufficient impurity blocking property and prevent the electron injection property from being deteriorated due to the film thickness becoming too thick. it can.
  • the film thickness D2 of the second intermediate layer is 0.2 [nm] or more and 1 [nm] or less.
  • the second intermediate layer can exhibit a suitable electron injecting ability that is not excessive and not excessively injected into the light emitting layer, and a good light emission efficiency can be realized.
  • the adsorption layer is 5 [nm] or more and 12 [nm] or less.
  • the adsorption layer contains a third metal, if it becomes too thick, light absorption occurs, and light emitted from the light emitting layer cannot be efficiently extracted outside. Therefore, by setting the thickness of the adsorption layer to 5 [nm] or more and 12 [nm] or less, it is possible to efficiently extract light while suppressing light absorption while sufficiently blocking impurities from the outside.
  • the cathode is disposed on the cathode thin film layer made of metal and the cathode thin film layer, and is at least one of electron transport properties and electron injection properties.
  • a cathode auxiliary layer having the following properties.
  • the cathode thin film layer When the cathode thin film layer is very thin, the electrical resistivity of the cathode thin film layer becomes high. For this reason, the voltage supplied to the peripheral portion of the cathode thin film layer is lowered due to the voltage drop in the central portion of the cathode thin film layer, causing uneven brightness.
  • the cathode auxiliary layer since the cathode auxiliary layer is disposed on the cathode thin film layer, the current supplied to the peripheral portion of the cathode thin film layer is added to the cathode thin film layer. It can flow in the cathode auxiliary layer. Thereby, the voltage drop in the center part of a cathode thin film layer can be reduced, and generation
  • the second metal is an alkali metal or an alkaline earth metal.
  • the third metal has a bond between the first metal and fluorine in the fluoride of the first metal contained in the first intermediate layer. It has a cutting property.
  • the third metal is an alkali metal or an alkaline earth metal like the second metal
  • the third metal is also a bond between the first metal and fluorine in the fluoride of the first metal contained in the first intermediate layer.
  • the third metal has the property of cutting off.
  • the third metal reaches the first intermediate layer and the second intermediate layer by diffusion from the adsorption layer, the metal that breaks the bond between the first metal and fluorine increases, and the impurity block by the first intermediate layer is increased. There is a possibility that the balance between the property and the electron supply property by the second intermediate layer is lost.
  • the diffusion of the third metal can be suppressed by the cathode.
  • the cathode has a two-layer structure of a cathode thin film layer and a cathode auxiliary layer, the effect of suppressing the diffusion of the third metal can be further obtained by the cathode auxiliary layer.
  • the third metal is a metal of the same type as the second metal.
  • the second intermediate layer and the adsorption layer can be formed using the same metal material, manufacture is easy.
  • the fact that the third metal is “the same kind of metal” as the second metal means that the metal as the material is the same.
  • the second metal is barium
  • the third metal is also barium.
  • the third metal is described as “the same metal” as the second metal
  • the third metal and the second metal are the same, the second intermediate layer and the adsorption layer are the same layer, which causes a contradiction in the configuration of the organic EL element.
  • it is described as “the same kind of metal”.
  • “the same kind of metal” is used in the same meaning.
  • the second metal and the third metal are barium.
  • the second intermediate layer and the adsorption layer can be formed using a versatile material called barium, which can contribute to cost reduction.
  • the first metal is sodium
  • the first intermediate layer contains sodium fluoride having low hygroscopicity and low reactivity with oxygen, it can have good impurity blocking properties.
  • sodium since sodium has a low work function and a high electron injection property, it can supply electrons to the light emitting layer effectively.
  • the cathode thin film layer is made of one metal material or an alloy of a plurality of metal materials.
  • the cathode thin film layer By using a metal material having good conductivity for the cathode thin film layer, it is possible to efficiently supply power to the organic EL element, and to realize good light emission efficiency. Furthermore, since the metal can be processed very thinly, it is possible to suppress the absorption of light by the cathode thin film layer and realize a good light extraction efficiency.
  • a method for manufacturing an organic EL device comprising: forming an anode; forming a light emitting layer above the anode; and a first alkali metal or alkaline earth metal on the light emitting layer.
  • a first intermediate layer containing a metal fluoride is formed with a film thickness D1
  • the second intermediate layer has a property of cutting the bond between the first metal and fluorine in the first metal fluoride on the first intermediate layer.
  • a second intermediate layer containing metal is formed with a film thickness D2, a cathode is formed on the second intermediate layer, and an adsorption layer containing a third metal having a property of adsorbing moisture and oxygen above the cathode.
  • the procedure of forming The film thickness D1 of the first intermediate layer and the film thickness D2 of the second intermediate layer satisfy a relationship of 5 [%] ⁇ D2 / D1 ⁇ 25 [%].
  • the ratio of the film thickness D1 of the first intermediate layer to the film thickness D2 of the second intermediate layer is such that the impurity blocking property from the light emitting layer side to the cathode side and the electron supply property from the cathode side to the light emitting layer side are
  • the first intermediate layer and the second intermediate layer can be formed so as to be within a preferable range in balance, and good light emission characteristics can be realized. Furthermore, since the adsorption layer adsorbs and blocks impurities from the outside, deterioration of the cathode, the first intermediate layer, and the second intermediate layer due to the impurities can be suppressed.
  • the third metal is an alkali metal or an alkaline earth metal.
  • the third metal is an alkali metal or alkaline earth metal having a relatively low work function, and has a high reactivity with impurities. Therefore, the third metal reacts with impurities entering from the outside and functions to trap the impurities in the adsorption layer. .
  • the adsorption layer containing the third metal above the cathode, it is possible to block the entry of impurities from the outside to the cathode side, suppress deterioration of the cathode, and maintain good light emission characteristics.
  • the film thickness D1 of the first intermediate layer is not less than 1 [nm] and not more than 10 [nm]. .
  • the first intermediate layer can be formed with a film thickness that does not deteriorate the electron injectability because it is too thick while ensuring the film thickness necessary to obtain sufficient impurity blocking properties. Characteristics can be realized.
  • the film thickness D2 of the second intermediate layer is 0.2 [nm] or more and 1 [nm] or less.
  • the second intermediate layer can be formed with a film thickness having a suitable electron injecting capability that does not become excessive and does not excessively inject electrons into the light emitting layer, and good light emission efficiency can be realized.
  • the thickness of the adsorption layer is 5 nm or more and 12 nm or less.
  • the adsorption layer contains a third metal, if it becomes too thick, light absorption occurs, and light emitted from the light emitting layer cannot be efficiently extracted outside. Therefore, by forming an adsorption layer with a film thickness that can suppress light absorption while sufficiently blocking impurities from the outside, good light extraction efficiency is achieved while suppressing deterioration of the cathode, and good Light emission characteristics can be obtained.
  • the cathode is formed by (A) forming a cathode thin film layer using a metal material (B) on the cathode thin film layer. And a cathode auxiliary layer having at least one of an electron transporting property and an electron injecting property.
  • the method for producing an organic EL element since the method includes a step of forming a cathode auxiliary layer on the cathode thin film layer, the current supplied to the peripheral portion of the cathode thin film layer is In addition to the cathode thin film layer, it can flow in the cathode auxiliary layer. Thereby, the voltage drop in the center part of a cathode thin film layer can be reduced, and generation
  • the second metal is an alkali metal or an alkaline earth metal.
  • the third metal includes the first metal and fluorine in the fluoride of the first metal contained in the first intermediate layer. It is characterized by having the property of breaking the bond.
  • the third metal is an alkali metal or an alkaline earth metal like the second metal
  • the third metal is also a bond between the first metal and fluorine in the fluoride of the first metal contained in the first intermediate layer.
  • the third metal has the property of cutting off.
  • the third metal reaches the first intermediate layer and the second intermediate layer by diffusion from the adsorption layer, the metal that breaks the bond between the first metal and fluorine increases, and the impurity block by the first intermediate layer is increased. There is a possibility that the balance between the property and the electron supply property by the second intermediate layer is lost.
  • the diffusion of the third metal can be suppressed by forming the cathode between the adsorption layer and the first intermediate layer and the second intermediate layer.
  • the formation of the cathode includes a procedure for forming the cathode thin film layer and a procedure for forming the cathode auxiliary layer on the cathode thin film, it is possible to further obtain the third metal diffusion suppressing effect by the cathode auxiliary layer. it can.
  • the third metal is a metal of the same type as the second metal.
  • the second intermediate layer and the adsorption layer can be formed using the same metal material, manufacture is easy.
  • the second metal and the third metal are barium.
  • the second intermediate layer and the adsorption layer can be formed using a versatile material called barium, which can contribute to cost reduction.
  • the first metal is sodium.
  • the first intermediate layer containing sodium fluoride having low hygroscopicity and low reactivity with oxygen impurities entering from the light emitting layer side to the cathode side can be effectively blocked. Further, by forming the first intermediate layer containing sodium as the first metal having a low work function and high electron injectability, electrons can be effectively supplied from the first intermediate layer side to the light emitting layer side. .
  • the cathode thin film layer is made of one metal material or an alloy of a plurality of metal materials.
  • the cathode thin film layer By forming the cathode thin film layer using a metal material having good conductivity, it is possible to efficiently supply power to the organic EL element and to realize good light emission efficiency. Furthermore, since metal can be processed very thinly, by forming the cathode thin film layer with a very thin film thickness, it is possible to suppress light absorption by the cathode thin film layer and realize good light extraction efficiency. it can.
  • FIG. 1 is a partially enlarged cross-sectional view of an organic EL display panel 100 (see FIG. 13) including a plurality of organic EL elements 1 according to this embodiment, and a section corresponding to one organic EL element 1 and its peripheral cross section FIG.
  • one organic EL element 1 corresponds to one pixel (subpixel).
  • the organic EL element 1 is a so-called top emission type in which the display surface is the upper side in FIG. 1 will be described.
  • the organic EL element 1 includes a substrate 11, an interlayer insulating layer 12, an anode 13, a partition layer 14, a hole injection layer 15, a hole transport layer 16, a light emitting layer 17, a first intermediate layer 18, A second intermediate layer 19, a cathode thin film layer 21, a cathode auxiliary layer 22, an adsorption layer 24, and a sealing layer 25 are provided.
  • the first intermediate layer 18 and the second intermediate layer 19 constitute an intermediate layer 20.
  • the cathode thin film layer 21 and the cathode auxiliary layer 22 constitute a cathode 23.
  • the substrate 11, the interlayer insulating layer 12, the first intermediate layer 18, the second intermediate layer 19, the cathode thin film layer 21, the cathode auxiliary layer 22, the adsorption layer 24, and the sealing layer 25 are formed for each pixel. Instead, it is formed in common with the plurality of organic EL elements 1 included in the organic EL display panel 100.
  • the substrate 11 includes a base material 111 that is an insulating material and a TFT (Thin Film Transistor) layer 112.
  • a drive circuit is formed for each pixel.
  • a material for forming the base material 111 for example, glass is used. Specific examples of the glass material include alkali-free glass, soda glass, non-fluorescent glass, phosphate glass, borate glass, quartz glass, and the like.
  • the interlayer insulating layer 12 is formed on the substrate 11.
  • the interlayer insulating layer 12 is made of a resin material, and is for flattening a step on the upper surface of the TFT layer 112.
  • the resin material include a positive photosensitive material.
  • photosensitive materials include acrylic resins, polyimide resins, siloxane resins, and phenol resins.
  • the interlayer insulating layer 12 has a contact hole for each pixel.
  • the anode 13 is made of a conductive material and is formed on the interlayer insulating layer 12.
  • the anode 13 is a pixel electrode provided for each pixel, and is electrically connected to the TFT layer 112 through a contact hole.
  • it since it is a top emission type, it may be formed of a conductive material having light reflectivity. Examples of the conductive material having light reflectivity include metals.
  • Ag silver
  • Al aluminum
  • aluminum alloy Mo (molybdenum)
  • APC silica
  • ARA silica
  • MoCr molybdenum and chromium Alloy
  • MoW alloy of molybdenum and tungsten
  • NiCr alloy of nickel and chromium
  • the anode 13 may have light transmittance.
  • the conductive material having optical transparency include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and ZnO (zinc oxide).
  • Partition wall layer is formed on the anode 13 in a state in which a part of the upper surface of the anode 13 is exposed and the surrounding area is covered.
  • a region (hereinafter referred to as “opening”) that is not covered with the partition wall layer 14 on the upper surface of the anode 13 corresponds to a sub-pixel. That is, the partition wall layer 14 has an opening 14a provided for each subpixel.
  • the partition wall layer 14 is formed on the interlayer insulating layer 12 in a portion where the anode 13 is not formed. That is, in the portion where the anode 13 is not formed, the bottom surface of the partition wall layer 14 is in contact with the top surface of the interlayer insulating layer 12.
  • the partition layer 14 is made of, for example, an insulating organic material (for example, acrylic resin, polyimide resin, novolac resin, phenol resin, or the like).
  • the partition layer 14 functions as a structure for preventing the applied ink from overflowing when the light emitting layer 17 is formed by a coating method, and when the light emitting layer 17 is formed by a vapor deposition method, the vapor deposition mask. It functions as a structure for mounting.
  • the partition wall layer 14 is made of a resin material, and examples of the material of the partition wall layer 14 include a positive photosensitive material. Examples of such photosensitive materials include acrylic resins, polyimide resins, siloxane resins, and phenol resins. In this embodiment, a phenolic resin is used.
  • the hole injection layer 15 is provided in the opening 14 a on the anode 13 for the purpose of promoting the injection of holes from the anode 13 to the light emitting layer 17.
  • the hole injection layer 15 may be, for example, an oxide such as silver (Ag), molybdenum (Mo), chromium (Cr), vanadium (V), tungsten (W), nickel (Ni), iridium (Ir), or It is a layer made of a conductive polymer material such as PEDOT (mixture of polythiophene and polystyrene sulfonic acid).
  • PEDOT mixture of polythiophene and polystyrene sulfonic acid
  • the hole injection layer 15 made of metal oxide injects holes into the light emitting layer 17 in a stable manner or by assisting the generation of holes. Have a large work function.
  • the hole injection layer 15 is made of a conductive polymer material such as PEDOT (a mixture of polythiophene and polystyrene sul
  • the hole injection layer 15 is composed of an oxide of a transition metal, a plurality of levels can be taken by taking a plurality of oxidation numbers. As a result, hole injection is facilitated. The driving voltage can be reduced.
  • the hole transport layer 16 is formed in the opening 14a.
  • compounds such as polyfluorene and derivatives thereof, or polyarylamine and derivatives thereof can be used.
  • the hole transport layer 16 has a function of transporting holes injected from the hole injection layer 15 to the light emitting layer 17.
  • the light emitting layer 17 is formed in the opening 14a.
  • the light emitting layer 17 has a function of emitting light of each color of R, G, and B by recombination of holes and electrons.
  • a known material can be used as the material of the light emitting layer 17.
  • oxinoid compounds perylene compounds, coumarin compounds, azacoumarin compounds, oxazole compounds, oxadiazole compounds, perinone compounds, pyrrolopyrrole compounds, naphthalene compounds, anthracene compounds, fluorene compounds, fluoranthene compounds, tetracene compounds, pyrene compounds, coronene compounds, Quinolone compounds and azaquinolone compounds, pyrazoline derivatives and pyrazolone derivatives, rhodamine compounds, chrysene compounds, phenanthrene compounds, cyclopentadiene compounds, stilbene compounds, diphenylquinone compounds, styryl compounds, butadiene compounds, dicyanomethylenepyran compounds, dicyanomethylenethiopyran compounds, fluorescein Compound, pyrylium compound, thiapyrylium compound, serenapyrylium Products, telluropyrylium compounds, aromatic ardad
  • the first intermediate layer 18 is formed on the light emitting layer 17, and impurities present inside or on the surface of the light emitting layer 17, the hole transport layer 16, the hole injection layer 15, and the partition wall layer 14 are added to the first intermediate layer. 18, a layer for preventing entry into the second intermediate layer and the cathode thin film layer 21. Therefore, the first intermediate layer 18 includes a material having an impurity blocking property.
  • the material having an impurity blocking property for forming the first intermediate layer 18 is, for example, an alkali metal fluoride or an alkaline earth metal fluoride. More specifically, in the present embodiment, NaF (fluoride) Sodium).
  • the alkaline earth metal in the alkaline metal fluoride or alkaline earth metal fluoride contained in the first intermediate layer 18 is defined as the first metal.
  • the first intermediate layer 18 is formed with a film thickness D1 [nm].
  • the second intermediate layer 19 is formed on the first intermediate layer 18 and is a metal that decomposes the bond between the first metal and fluorine in the fluoride of the first metal contained in the first intermediate layer (hereinafter referred to as “first” 2 metals ").
  • first 2 metals a metal that decomposes the bond between the first metal and fluorine in the fluoride of the first metal contained in the first intermediate layer
  • the second metal that decomposes the bond between the first metal and fluorine for example, an alkali metal or an alkaline earth metal is used.
  • the second metal is specifically Ba (barium).
  • the second intermediate layer 19 is formed with a film thickness D2 [nm].
  • the first intermediate layer 18 and the second intermediate layer 19 constitute an intermediate layer 20.
  • the first metal When the first metal is liberated by the decomposition of the bond between the first metal and fluorine in the fluoride of the first metal contained in the first intermediate layer 18 by the second metal contained in the second intermediate layer 19, the first metal is released. Since the metal is an alkali metal or alkaline earth metal having a low work function and a high electron-injecting property, electrons can be effectively supplied to the light-emitting layer.
  • the cathode thin film layer 21 is provided in common to each subpixel.
  • a thin film of a material made of a metal oxide having conductivity such as ITO (indium tin oxide) or IZO (indium zinc oxide), or aluminum It is formed of a thin film of a metal such as magnesium or silver or a thin film of an alloy thereof.
  • the cathode thin film layer 21 is an aluminum thin film.
  • the cathode auxiliary layer 22 is formed in common for each subpixel on the cathode thin film layer 21 using an organic material having an electron transporting property, and plays a role of assisting the function of the cathode thin film layer 21 as a cathode.
  • the role of the cathode auxiliary layer 22 to assist the cathode function of the cathode thin film layer 21 is as follows.
  • the thickness of the cathode thin film layer 21 is very thin and the electrical resistivity is high. For this reason, the voltage supplied from the wiring connected to the peripheral portion of the cathode thin film layer 21 becomes lower due to the voltage drop in the central portion of the cathode thin film layer 21, leading to uneven brightness.
  • the cathode auxiliary layer 22 is formed on the cathode thin film layer 21, and the cathode auxiliary layer 22 assists the supply of power from the peripheral part of the cathode thin film layer 21 to the center part. In addition, it is possible to suppress luminance unevenness by suppressing the voltage drop of the light source, and to suppress a decrease in light extraction efficiency.
  • the cathode auxiliary layer 22 is formed of the same organic material that is generally used for the electron transport layer.
  • the organic material used for the cathode auxiliary layer 22 include ⁇ -electron low molecular weight organic materials such as an oxadiazole derivative (OXD), a triazole derivative (TAZ), and a phenanthroline derivative (BCP, Bphen).
  • the cathode thin film layer 21 and the cathode auxiliary layer 22 constitute a cathode 23.
  • the adsorption layer 24 is formed on the cathode auxiliary layer 22 and has a function of adsorbing impurities (moisture, oxygen) from the outside. Impurities that have entered from the outside reach the cathode thin film layer 21 to reach the cathode thin film layer. 21 is prevented from deteriorating.
  • the adsorption layer 24 contains a third metal for adsorbing moisture and oxygen.
  • the metal used for the third metal an alkali metal or an alkaline earth metal is used. More specifically, for example, a low work function metal such as lithium, barium, calcium, potassium, cesium, sodium, or rubidium is used.
  • the third metal is Ba (barium), and the adsorption layer 24 is formed as a single layer of Ba.
  • the effect of the adsorption layer 24 is increased because the metal is easily oxidized and deteriorated by moisture or oxygen.
  • the “adsorption” of impurities means that the third metal reacts with impurities (moisture and oxygen) to generate oxides and the like, and the impurities are trapped in molecules such as oxides, thereby adsorbing the impurities.
  • the layer 24 is prevented from passing through the layer 24 and reaching the cathode thin film layer 21 and the like of the cathode 23. Therefore, the “adsorption layer” is a layer having a function of preventing the permeation and diffusion of impurities.
  • the adsorption layer 24 may be an organic film doped with the third metal.
  • an electron transporting material used for the cathode auxiliary layer 22 may be used for the organic film.
  • the adsorption layer 24 is formed with a film thickness D3 [nm].
  • a sealing layer 25 may be provided on the adsorption layer 24 in order to suppress moisture and oxygen from entering from the outside.
  • a light transmissive material such as SiN (silicon nitride) or SiON (silicon oxynitride) is selected.
  • a color filter or an upper substrate may be placed on the sealing layer 25 and bonded. Protection from moisture and oxygen is further achieved by placing and bonding the upper substrate.
  • the organic EL element 1 includes a first intermediate layer 18 and a second intermediate layer 19 between the light emitting layer 17 and the cathode thin film layer 21.
  • the first intermediate layer 18 contains NaF.
  • NaF has a good impurity blocking property because it is less reactive with oxygen than alkali metals and alkaline earth metals. Therefore, the first intermediate layer 18 prevents the entry of impurities from the light emitting layer 17 side. Thereby, when the cathode thin film layer 21 is formed from metals, such as Al and MgAg, deterioration by the impurity of the cathode thin film layer 21 can be prevented.
  • the second intermediate layer 19 is provided between the first intermediate layer 18 and the cathode thin film layer 21.
  • the second intermediate layer 19 contains Ba as the second metal. Ba decomposes the bond between Na and F (fluorine) in fluoride (NaF) of Na which is the first metal in the first intermediate layer 18. Thereby, a part of NaF in the first intermediate layer 18 may be separated. When a part of NaF is dissociated and Na is liberated, Na has a low work function and a high electron supply capability. Therefore, it assists the movement of electrons from the cathode thin film layer 21 to the light emitting layer 17 and suppresses the deterioration of the light emitting characteristics. can do. At the same time, good impurity blocking property can be obtained by NaF in the first intermediate layer 18. Therefore, Ba forming the second intermediate layer 19 reacts with NaF forming the first intermediate layer without deteriorating, and the bond between Na and F can be efficiently decomposed.
  • the mechanism for decomposing the bond between the first metal and fluorine in the fluoride of the first metal is not limited to the above. As long as the functions of the first intermediate layer 18, the second intermediate layer 19, the light emitting layer 17, the cathode thin film layer 21, and the like are not impaired, the bond between the first metal and fluorine may be decomposed by any mechanism.
  • the first intermediate layer 18 contains the fluoride of the first metal having a high impurity blocking property, thereby blocking the intrusion of impurities from the light emitting layer 17 side and the cathode thin film layer 21 (and the second intermediate layer). A decrease in the electron supply capability of the layer 19) can be suppressed.
  • the second intermediate layer 19 contains the second metal that decomposes the bond between the first metal and fluorine, so that the first metal is liberated and goes beyond the highly insulating first intermediate layer 18 to the cathode thin film layer. Electrons easily move from 21 to the light emitting layer 17, and good light emission characteristics can be obtained.
  • the boundary between the first intermediate layer 18 and the second intermediate layer 19 is not clearly separated, and the material forming the first intermediate layer 18 and the material forming the second intermediate layer 19
  • the film thicknesses of the first intermediate layer 18 and the second intermediate layer 19 are not exactly D1 and D2 [nm], respectively, and it is considered that the boundary may not be clear.
  • the first metal has a higher concentration on the light emitting layer 17 side than the cathode thin film layer 21 side
  • the second metal is on the cathode thin film layer 21 side than the light emitting layer 17 side. It can be said that the concentration is high.
  • the first intermediate layer 18 and the second intermediate layer 19 are formed by a method intended to have a film thickness of D1 and D2, respectively, the formed first intermediate layer 18 is formed.
  • the film thicknesses of the second intermediate layer 19 are D1 and D2, respectively. The same applies to the film thicknesses of the other layers. The same applies to the following modifications.
  • FIG. 2 is a graph showing the results of measuring the current density by applying a voltage to each test body using four types of organic EL display panels 100 having different thicknesses D2 of the second intermediate layer 19 as test bodies. is there.
  • the thickness D2 of the second intermediate layer 19 is four types of 0, 0.5, 1, 2 [nm].
  • the applied voltage was changed with respect to each test body, and the current density was measured for each of the plurality of cells (different organic EL elements 1).
  • the film thickness D2 of the second intermediate layer 19 is different, the other layers have the same configuration and film thickness, and the film thickness D1 of the first intermediate layer 18 is: Both are 4 [nm].
  • FIG. 3 is a graph showing the luminous efficiency ratio for the organic EL display panels 100 in which the film thickness D2 of the second intermediate layer 19 is different from each other.
  • the thickness D2 of the second intermediate layer 19 is four types of 0.1, 0.2, 0.5, and 1 [nm].
  • a voltage at a current density of 10 [mA / cm 2 ] was applied.
  • the luminance was measured, and the luminous efficiency was calculated from the measured luminance value.
  • FIG. 3 shows the ratio of the light emission efficiency reference value (light emission efficiency ratio) calculated as the light emission efficiency reference value, which is the light emission efficiency value of the reference organic EL display panel, and plotted on a graph.
  • the other layers have the same configuration and thickness except that the thickness D2 of the second intermediate layer 19 is different.
  • the film thickness D1 is 4 [nm] in all cases.
  • FIG. 4 is a graph showing the luminous efficiency ratios for five types of organic EL display panels 100 having different film thicknesses D1 of the first intermediate layer 18.
  • the film thickness D1 of the first intermediate layer 18 is 0, 1, 2, 4, 10 [nm].
  • the film thickness D2 of the second intermediate layer 19 is 0.5 [nm].
  • the luminous efficiency ratio was calculated in the same manner as the luminous efficiency ratio shown in FIG. That is, first, the luminance was measured when a voltage with a current density of 10 [mA / cm 2 ] was applied, and the luminous efficiency was calculated from the measured luminance value. Next, the ratio (luminous efficiency ratio) to the luminous efficiency reference value was calculated using the luminous efficiency value of the reference organic EL display panel as the luminous efficiency reference value. The calculated values are plotted on a graph in FIG.
  • the luminous efficiency ratio showed a very small value. This is considered to be because the amount of electrons supplied to the light emitting layer 17 is not sufficient because impurities from the light emitting layer 17 side cannot be blocked and the second intermediate layer 19 or the cathode thin film layer 21 deteriorates. .
  • a trend can be seen. This is presumably because if the thickness D1 of the first intermediate layer 18 becomes too thick, the function as an insulating layer works strongly, and the injection of electrons into the light emitting layer 17 decreases. Accordingly, the range of the film thickness D1 of the first intermediate layer 18 is effectively in the range of 1 [nm] to 10 [nm].
  • the film thickness D1 of the first intermediate layer 18 needs a minimum film thickness for ensuring the impurity blocking property.
  • D1 becomes too thick, the property as an insulating layer is strengthened, and electrons are hardly injected into the light emitting layer 17, and sufficient luminance cannot be obtained.
  • the second metal contained in the second intermediate layer 19 (Ba in the present embodiment) is converted into the first metal contained in the first intermediate layer 18 (this embodiment).
  • Na In the form, Na
  • D2 becomes too thick excessive electrons are supplied to the light emitting layer 17 with respect to the amount of holes supplied to the light emitting layer 17, and the light emission efficiency is lowered.
  • the second metal liberates the first metal excessively, and the fluoride of the first metal becomes As a result, the impurity blocking property of the first intermediate layer 18 may not be sufficient.
  • the inventors of the present application not only have a range of suitable values for the first intermediate layer 18 and the second intermediate layer 19 but also the film thickness D1 and the film thickness D2. It was thought that there was a range of suitable values for the ratio. Therefore, the inventors of the present application investigated how the luminous efficiency ratio differs by changing the ratio of the film thickness D2 to the film thickness D1. The result is shown in FIG.
  • the boundary between the first intermediate layer 18 and the second intermediate layer 19 is not clearly separated, and the material forming the first intermediate layer 18 and the second intermediate layer 18 It may be considered that the material forming the layer 19 may be mixed somewhat in the manufacturing process. In such a case, if the component ratio (molar ratio) between the first metal and the second metal in the intermediate layer 20 is 2 [%] ⁇ second metal / first metal ⁇ 10 [%], it is satisfactory. It is considered that a high luminous efficiency can be obtained.
  • FIG. 6A is a graph showing luminous efficiency ratios for three types of organic EL display panels 100 having different thicknesses D3 of the adsorption layer 24 (Ba layer in the present embodiment). There are three types of film thickness D3: 2, 5, 10 [nm].
  • the luminous efficiency ratio was calculated in the same manner as the luminous efficiency ratio shown in FIG. That is, first, the luminance was measured when a voltage with a current density of 10 [mA / cm 2 ] was applied, and the luminous efficiency was calculated from the measured luminance value. Next, the ratio (luminous efficiency ratio) to the luminous efficiency reference value was calculated using the luminous efficiency value of the reference organic EL display panel as the luminous efficiency reference value.
  • FIG. 6A shows the calculated values plotted on a graph. Note that the film thickness D1 of the first intermediate layer 18 in the specimen here is 4 [nm], and the film thickness D2 of the second intermediate layer 19 is 0.5 [nm].
  • FIG. 6B shows a result of an optical simulation representing a change in light extraction efficiency due to a difference in the film thickness D3 of the adsorption layer 24.
  • FIG. As shown in the figure, as the film thickness D3 increases, the light extraction efficiency decreases.
  • the film thickness D3 of the adsorption layer 24 is 5 [nm] ⁇ D3 ⁇ 12 [nm], it adsorbs impurities that have entered from the outside.
  • good light emission efficiency can be realized, and at the same time, good light extraction efficiency can be realized.
  • the organic EL element 1 has an adsorption layer 24.
  • the adsorption layer 24 includes a third metal, and the third metal is an alkali metal or an alkaline earth metal.
  • the third metal contained in the adsorption layer 24 may diffuse beyond the cathode thin film layer 21 and reach the intermediate layer 20.
  • the second metal contained in the second intermediate layer 19 of the intermediate layer 20 is an alkali metal or an alkaline earth metal like the third metal
  • the third metal diffused from the adsorption layer 24 is also the first metal.
  • the intermediate layer 18 has a function of decomposing the bond between Na and F (fluorine) in sodium fluoride (NaF).
  • Na and F fluorine
  • NaF sodium fluoride
  • the balance between the impurity blocking property of the first intermediate layer 18 and the decomposition capability of NaF by the second intermediate layer 19 is lost, and as a result, the decomposition capability of NaF is further increased.
  • the same Ba is used for the second metal and the third metal, and it is considered that such an imbalance of balance occurs remarkably.
  • the cathode auxiliary layer 22 is provided between the adsorption layer 24 and the intermediate layer 20, and accordingly, the distance between the adsorption layer 24 and the intermediate layer 20. And the time for the third metal to reach the intermediate layer 20 by diffusion increases. Thereby, shortening of lifetime can be suppressed.
  • the density of the cathode auxiliary layer 22 is increased, and the third metal is more difficult to diffuse. it can.
  • FIGS. 7 to 10 are sectional views schematically showing the manufacturing process of the organic EL element 1
  • FIG. 11 is a schematic process diagram showing the manufacturing process of the organic EL element 1.
  • a TFT layer 112 is formed on a base material 111 to form a substrate 11 (step S1 in FIG. 11), and an interlayer insulating layer 12 is formed on the substrate 11. (Step S2 in FIG. 11).
  • an acrylic resin that is a positive photosensitive material is used as the interlayer insulating layer resin that is a material of the interlayer insulating layer 12.
  • the interlayer insulating layer 12 is formed by applying an interlayer insulating layer solution in which an acrylic resin, which is an interlayer insulating layer resin, is dissolved in an interlayer insulating layer solvent (for example, PGMEA) onto the substrate 11. Then, baking is performed (step S3 in FIG. 11). Firing is performed at a temperature of 150 ° C. or higher and 210 ° C. or lower for 180 minutes.
  • the corresponding positions between the respective openings 14a are formed in The contact hole.
  • the contact hole is formed by performing pattern exposure and development. Since the interlayer insulating layer 12 is hardened by firing, it is easier to form the contact holes before firing the interlayer insulating layer 12.
  • the anode 13 made of a metal material having a thickness of about 150 [nm] is formed for each sub-pixel based on the vacuum deposition method or the sputtering method (step S4 in FIG. 11).
  • a partition wall layer resin which is a material of the partition wall layer 14, is applied on the anode 13 to form a partition wall material layer 14b (FIG. 7C).
  • a partition layer resin for example, a phenol resin, which is a positive photosensitive material, is used.
  • the partition wall material layer 14b is uniformly coated on the anode 13 using a spin coat method or the like, by dissolving a phenol resin, which is a partition wall resin, in a solvent (for example, a mixed solvent of ethyl lactate and GBL), It is formed.
  • the barrier rib layer 14 is formed by performing pattern exposure and development on the barrier rib material layer 14b (FIG. 8A, step S5 in FIG. 11), and the barrier rib layer 14 is baked (step S6 in FIG. 11).
  • the opening part 14a used as the formation area of the light emitting layer 17 is prescribed
  • the partition layer 14 is baked, for example, at a temperature of 150 ° C. or higher and 210 ° C. or lower for 60 minutes.
  • the surface of the partition layer 14 may be further surface-treated with a predetermined alkaline solution, water, organic solvent, or the like, or may be subjected to plasma treatment. This is performed for the purpose of adjusting the contact angle of the partition layer 14 with respect to the ink (solution) applied to the opening 14a, or for the purpose of imparting water repellency to the surface.
  • the positive hole injection layer 15 is formed into a film by the mask vapor deposition method or the apply
  • the ink 14 containing the constituent material of the hole transport layer 16 is applied to the opening 14a defined by the partition layer 14 and baked (dried).
  • the hole transport layer 16 is formed (step S8 in FIG. 11).
  • the light emitting layer 17 is formed by applying and baking (drying) ink containing the constituent material of the light emitting layer 17 (step S9 in FIG. 11).
  • the first intermediate layer 18 is formed with a film thickness D1 on the light emitting layer 17 and the partition wall layer 14 (step S10 in FIG. 11).
  • the second intermediate layer 19 is formed with a film thickness D2 on the first intermediate layer 18 by vacuum deposition or the like (step S11 in FIG. 11).
  • the first intermediate layer 18 and the second intermediate layer 19 complete the intermediate layer 20.
  • the cathode thin film layer 21 is formed on the second intermediate layer 19 by using a material constituting the cathode thin film layer 21 by a vacuum deposition method, a sputtering method, or the like (FIG. 11). Step S12).
  • the cathode auxiliary layer 22 is formed on the cathode thin film layer 21 by using a material constituting the cathode auxiliary layer 22 by vacuum deposition, sputtering, or the like (FIG. 11). Step S13). The cathode 23 is completed by the cathode thin film layer 21 and the cathode auxiliary layer 22.
  • the adsorbing layer 24 is formed on the auxiliary cathode layer 22 by a vacuum vapor deposition method, a sputtering method, or the like (step S14 in FIG. 11). ).
  • a light-transmitting material such as SiN or SiON is formed on the adsorption layer 24 by a sputtering method, a CVD method, or the like to form a sealing layer 25 (FIG. 10D). 11 step S15).
  • the organic EL element 1 and the organic EL display panel 100 including the organic EL element 1 are completed.
  • a color filter or an upper substrate may be placed on the sealing layer 25 and bonded.
  • FIG. 12 is a schematic block diagram showing a configuration of an organic EL display device 1000 including an organic EL display panel 100 having a plurality of organic EL elements 1.
  • the organic EL display device 1000 includes an organic EL display panel 100 and a drive control unit 200 connected thereto.
  • the organic EL display panel 100 is a display panel using an electroluminescent phenomenon of an organic material, and a plurality of organic EL elements 1 are arranged in a matrix, for example.
  • the drive controller 200 includes four drive circuits 210 to 240 and a control circuit 250.
  • the arrangement of the drive control unit 200 with respect to the organic EL display panel 100 is not limited to this.
  • the first intermediate layer 18 prevents impurities from entering the second intermediate layer 19 and the cathode thin film layer 21 from the light emitting layer 17 side.
  • the second intermediate layer 19 promotes electron injection from the cathode 23 side to the light emitting layer 17, thereby realizing good light emission characteristics.
  • the adsorbing layer 24 inhibits the intrusion of impurities from the sealing layer 25 side to the second intermediate layer 19 and the cathode thin film layer 21, thereby realizing good light emission characteristics.
  • the film thickness D1 of the first intermediate layer 18 and the film thickness D2 of the second intermediate layer 19 satisfy the relationship of 5 [%] ⁇ D2 / D1 ⁇ 25 [%], good light emission efficiency is realized. be able to.
  • the thickness of the adsorption layer 24 is 12 [nm] or less, even in the case of the top emission type, the light absorption amount in the adsorption layer 24 can be kept low, and a good light extraction property can be realized. Can do.
  • the conditions regarding the film thickness range and the film thickness ratio do not necessarily satisfy the conditions in the entire area of the subpixel defined by the opening 14a. It suffices that at least the film thickness at the center of the subpixel in plan view satisfies the film thickness condition in the above description. In a partial region of the sub-pixel (for example, a region close to the partition wall layer 14 or a region formed partially on the partition wall layer 14), there may be a portion that does not satisfy the film thickness condition.
  • the diffusion of the third metal from the adsorption layer 24 can be suppressed to some extent by the cathode thin film layer 21.
  • Modification 3 Furthermore, it can also be set as the structure which further contains other layers, such as an electron injection layer, an electron carrying layer, and a transparent conductive layer.
  • Modification 4 In the said embodiment, although the example which used glass as an insulating material which comprises the base material 111 of the organic EL element 1 was demonstrated, it is not restricted to this.
  • a resin, ceramic, or the like may be used as an insulating material constituting the substrate 111.
  • the resin used for the base material 111 include insulating materials such as polyimide resins, acrylic resins, styrene resins, polycarbonate resins, epoxy resins, polyethersulfone, polyethylene, polyester, and silicone resins. Can be mentioned.
  • the ceramic used for the substrate 111 include alumina.
  • the organic EL element and the like of the present invention is, for example, a method for producing an organic EL element and an organic EL display panel that are used as various display devices for home use or public facilities, or for business use, television devices, displays for portable electronic devices, etc. Etc. can be suitably used.

Abstract

 陽極と、陽極の上方に配された発光層と、発光層上に配され、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む第1中間層と、第1中間層上に配され、第1金属のフッ化物における第1金属とフッ素との結合を切る性質を有する第2金属を含む第2中間層と、第2中間層上に配された陰極と、陰極の上方に配され、水分および酸素を吸着する性質を有する第3金属を含む吸着層とを有する有機EL素子である。第1中間層の膜厚をD1、第2中間層の膜厚をD2とするとき、D1およびD2は、5〔%〕≦D2/D1≦25〔%〕の関係を満たす。

Description

有機EL素子および有機EL素子の製造方法
 本発明は、有機EL(Electro-Luminescence)素子および有機EL素子の製造方法に関し、特に、保管安定性と発光特性に関する。
 有機EL素子は、自己発光を行うため視認性が高く、さらに完全固体素子であるため耐衝撃性に優れるなどの特徴を有することから、近年、表示装置に有機EL素子を利用したものが普及しつつある。
 有機EL素子は、一対の電極(陽極および陰極)間に、少なくとも発光層が挟まれた構成を有している。そして、有機EL素子は、多くの場合、発光層の他に、発光層に電子を供給するための機能層(電子輸送層、電子注入層)や、正孔注入層、正孔輸送層等が発光層と陰極との間にさらに挟まれた構成を有している。また、機能層に仕事関数の低いアルカリ金属やアルカリ土類金属を含む層を用いると、良好な電子注入性が得られることが知られている。
 仕事関数が低いアルカリ金属やアルカリ土類金属は、水分や酸素といった不純物と反応しやすい。そのため、アルカリ金属やアルカリ土類金属を含む機能層は、不純物が存在すると劣化が促進され、有機EL素子の発光効率の低下や発光寿命の短縮といった悪影響が発生し、保管安定性が低下する。また、金属から成る陰極に不純物が接触すると、腐食や劣化を引き起こし、上記と同様の悪影響が引き起こされる虞がある。
 そこで、特許文献1には、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層(特許文献1では、これらを「有機発光媒体層」と呼んでいる。)の間に無機バリア層を設けた構成が開示されている。無機バリア層は、無機バリア層よりも前に形成された有機発光媒体層表面に吸着された不純物(特許文献1では、「劣化要因因子」)による、無機バリア層よりも後に形成された有機発光媒体層の劣化を防止するために設けられている。
特許第4882508号公報
 しかしながら、特許文献1の構成においては、無機バリア層が、絶縁体または半導体、もしくは仕事関数が4.0[eV]以上の金属から成り、電子注入性が低いため、発光層に十分な電子が供給されず、良好な発光特性が得られない虞がある。
 さらに、バリア層よりも後に形成される有機発光媒体層や陰極層が外部からの不純物で劣化し、良好な発光特性が得られない虞がある。
 本発明は、上記の問題点に鑑みてなされたものであり、バリア層の前に形成された層からの不純物のみならず、外部からの不純物に対する十分なブロック性を確保して良好な保管安定性を確保しつつ、良好な発光特性を実現することができる有機EL素子および当該有機EL素子の製造方法を提供することを目的とする。
 本発明の一態様である有機EL素子は、陽極と、前記陽極の上方に配された発光層と、前記発光層上に配され、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む第1中間層と、前記第1中間層上に配され、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属を含む第2中間層と、前記第2中間層上に配された陰極と、前記陰極の上方に配され、水分および酸素を吸着する性質を有する第3金属を含む吸着層と、を有する有機EL素子である。そして、前記第1中間層の膜厚をD1、前記第2中間層の膜厚をD2とするとき、D1およびD2は、5〔%〕≦D2/D1≦25〔%〕の関係を満たすことを特徴とする。
 本発明の一態様に係る有機EL素子においては、第1中間層および第2中間層を備える。第1中間層は、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含んでおり、高い不純物ブロック性を有する。これにより、発光層側からの不純物の浸入をブロックして陰極の劣化を抑制し、良好な発光特性を維持することができる。また、第2中間層に含まれる第2金属は、第1中間層に含まれる第1金属のフッ化物における第1金属とフッ素との結合を切って第1金属を遊離させる。そして、遊離した第1金属は、アルカリ金属またはアルカリ土類金属であり、仕事関数が小さく電子注入性が高いため、発光層への電子供給を十分に行うことができる。
 ここで、遊離する第1金属が少ないと、発光層に対して電子を十分に供給することができず、十分な輝度が得られない。一方、遊離する第1金属が多すぎると、発光層内の正孔の量に対して、供給される電子の量が過剰になり、発光効率(電流に対する輝度)が低下する。
 本発明の一態様に係る有機EL素子においては、第1中間層の膜厚D1と第2中間層の膜厚D2とが、5〔%〕≦D2/D1≦25〔%〕の範囲内であるため、不純物ブロック性と電子供給性とのバランスにおいて好適な範囲内にあり、良好な発光効率を実現することができる。
 さらに、本発明の一態様に係る有機EL素子においては、不純物(水分および酸素)を吸着する性質を有する第3金属を含む吸着層が陰極の上方に配されている。吸着層は外部からの不純物の侵入をブロックして陰極および第1中間層,第2中間層の劣化を抑制し、良好な保管安定性を実現することができる。
 本発明の別の一態様に係る有機EL素子の製造方法においても、上記と同様の効果を得ることができる。
本発明の実施形態に係る有機EL素子1の構成を模式的に示す断面図である。 第2中間層の膜厚の違いによる電流密度の変化を示すグラフである。 第2中間層の膜厚の違いによる、発光効率比の変化を示すグラフである。 第1中間層の膜厚の違いによる発光効率比の変化を示すグラフである。 第1中間層の膜厚に対する第2中間層の膜厚の割合の違いによる発光効率比の変化を示すグラフである。 (a)は、吸着層の膜厚の違いによる、発光効率比の変化を示すグラフである。(b)は、吸着層の膜厚の違いによる光取出し効率の変化を示すグラフである。 本発明の実施形態に係る有機EL素子の製造過程の一部を模式的に示す部分断面図である。(a)は、基板上にTFT層および層間絶縁層が形成された状態を示す部分断面図である。(b)は、層間絶縁層上に陽極が形成された状態を示す部分断面図である。(c)は、層間絶縁層および陽極上に隔壁材料層が形成された状態を示す部分断面図である。 図7の続きの有機EL素子の製造過程の一部を模式的に示す部分断面図である。(a)は、隔壁層が形成された状態を示す部分断面図である。(b)は、隔壁層の開口部内において陽極上に正孔注入層が形成された状態を示す部分断面図である。(c)は、隔壁層の開口部内において正孔注入層上に正孔輸送層が形成された状態を示す部分断面図である。 図8の続きの有機EL素子の製造過程の一部を模式的に示す部分断面図である。(a)は、隔壁層の開口部内において正孔輸送層上に発光層が形成された状態を示す部分断面図である。(b)は、発光層および隔壁層上に第1中間層が形成された状態を示す部分断面図である。(c)は、第1中間層上に第2中間層が形成された状態を示す部分断面図である。 図9の続きの有機EL素子の製造過程の一部を模式的に示す部分断面図である。(a)は、第2中間層上に陰極薄膜層が形成された状態を示す部分断面図である。(b)は、陰極薄膜層上に陰極補助層が形成された状態を示す部分断面図である。(c)は、陰極補助層上に吸着層が形成された状態を示す部分断面図である。(d)は、吸着層上に封止層が形成された状態を示す部分断面図である。 本発明の実施形態に係る有機EL素子の製造過程を示す模式工程図である。 本発明の実施形態に係る有機EL素子を備えた有機EL表示装置の構成を示す模式ブロック図である。
 ≪本発明の一態様の概要≫
 本発明の一態様に係る有機EL素子は、陽極と、前記陽極の上方に配された発光層と、前記発光層上に配され、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む第1中間層と、前記第1中間層上に配され、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属を含む第2中間層と、前記第2中間層上に配された陰極と、前記陰極の上方に配され、水分および酸素を吸着する性質を有する第3金属を含む吸着層と、を有する有機EL素子である。そして、前記第1中間層の膜厚をD1、前記第2中間層の膜厚をD2とするとき、D1およびD2は、5〔%〕≦D2/D1≦25〔%〕の関係を満たすことを特徴とする。
 これにより、第1中間層の膜厚D1と第2中間層の膜厚D2との割合が、発光層側から陰極側への不純物ブロック性と陰極側から発光層側への電子供給性とのバランスにおいて好適な範囲内にあるため、良好な発光特性を実現することができる。さらに、吸着層が外部からの不純物を吸着してブロックすることにより、不純物による陰極や第1中間層,第2中間層の劣化を抑制することができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記第3金属は、アルカリ金属またはアルカリ土類金属であることを特徴とする。
 第3金属は、比較的仕事関数が低いアルカリ金属またはアルカリ土類金属であり、不純物との反応性が高いので、外部から侵入してきた不純物と反応し、吸着層内に不純物を捕える働きをする。これにより、外部からの不純物の陰極側への侵入をブロックして陰極の劣化を抑制し、良好な発光特性を維持することができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記第1中間層の膜厚D1は、1〔nm〕以上、10〔nm〕以下であることを特徴とする。
 これにより、第1中間層の膜厚D1が、十分な不純物ブロック性を得るのに必要な膜厚は確保しつつ、膜厚が厚くなりすぎて電子注入性が低下するのを防止することができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記第2中間層の膜厚D2は、0.2〔nm〕以上、1〔nm〕以下であることを特徴とする。
 これにより、発光層へ注入される電子が少なすぎず、過剰にもならない好適な電子注入能を第2中間層が発揮することができ、良好な発光効率を実現することができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、吸着層は5〔nm〕以上、12〔nm〕以下であることを特徴とする。
 吸着層は第3金属を含むため、厚くなりすぎると光の吸収が起こり、発光層から発せられた光を効率良く外に取り出せなくなる。従って、吸着層の膜厚を5〔nm〕以上、12〔nm〕以下とすることで、外部からの不純物を十分にブロックしつつ、光の吸収を抑え効率よく光を取り出すことができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記陰極は、金属から成る陰極薄膜層と、前記陰極薄膜層上に配され、電子輸送性および電子注入性のうち少なくとも一方の性質を有する陰極補助層とから成ることを特徴とする。
 陰極薄膜層が非常に薄い場合、陰極薄膜層の電気抵抗率が高くなる。そのため、陰極薄膜層の周辺部分に供給された電圧が、陰極薄膜層の中央部分では電圧降下により低下して輝度むらを引き起こす原因となる。本発明の一態様に係る有機EL素子の特定の局面では、陰極薄膜層上に陰極補助層が配されているため、陰極薄膜層の周辺部分に供給された電流は、陰極薄膜層に加えて陰極補助層中を流れることができる。これにより、陰極薄膜層の中央部分における電圧降下を低減して輝度むらの発生を抑制することができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記第2金属は、アルカリ金属またはアルカリ土類金属であることを特徴とする。
 第2金属に比較的仕事関数が低く電子供給能の高いアルカリ金属またはアルカリ土類金属が用いられているため、フッ素との反応性が比較的高く、第1金属とフッ素との結合を切りやすい。これにより、第1中間層側から発光層側への電子注入性をより効率よく促進することができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記第3金属は、前記第1中間層に含まれる前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有することを特徴とする。
 第3金属が、第2金属と同様にアルカリ金属またはアルカリ土類金属である場合、第3金属もまた、第1中間層に含まれる第1金属のフッ化物における第1金属とフッ素との結合を切る性質を有することが当然考えられる。この場合、第3金属が、吸着層から拡散により第1中間層および第2中間層に達すると、第1金属とフッ素との結合を切る金属が増加することとなり、第1中間層による不純物ブロック性と第2中間層による電子供給性とのバランスが崩れる虞がある。しかし、この場合においても、陰極により、第3金属の拡散を抑制することができる。また、陰極が陰極薄膜層と陰極補助層との2層構造を有する場合には、陰極補助層によりさらに第3金属の拡散抑制効果を得ることができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記第3金属は、前記第2金属と同じ種類の金属であることを特徴とする。
 これにより、同じ金属材料を用いて第2中間層と吸着層とを形成することができるため、製造が容易である。
 ここで、第3金属が第2金属と「同じ種類の金属」であるとは、材料としての金属が同じであるという意味である。例えば、第2金属がバリウムである場合、第3金属もバリウムである。第3金属が第2金属と「同じ金属」であると表記した場合、第3金属と第2金属とが同一物である、即ち、第2金属が第3金属を兼ねているとの誤解を招く虞がある。第3金属と第2金属とが同一物である場合、第2中間層と吸着層とが同一の層となって有機EL素子の構成に矛盾が生じることとなる。このような誤解を排除する目的で「同じ種類の金属」と表記している。以下、本明細書においては、「同じ種類の金属」とは同様の意味で用いている。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記第2金属および第3金属は、バリウムであることを特徴とする。
 これにより、バリウムという汎用性のある材料を用いて第2中間層および吸着層を形成することができるため、コスト抑制に資することができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記第1金属は、ナトリウムであることを特徴とする。
 これにより、第1中間層は、吸湿性が低く、酸素との反応性が低いフッ化ナトリウムを含むため、良好な不純物ブロック性を有することができる。また、ナトリウムは仕事関数が低く、電子注入性が高いため、発光層へと効果的に電子を供給することができる。
 また、本発明の一態様に係る有機EL素子の特定の局面では、前記陰極薄膜層は、1の金属材料もしくは複数の金属材料の合金からなることを特徴とする。
 陰極薄膜層に良好な導電性を有する金属材料を用いることにより、有機EL素子に効率よく電力を供給することができ、良好な発光効率を実現することができる。さらに、金属は非常に薄く加工することができるため、陰極薄膜層による光の吸収を抑制して良好な光取出し効率を実現することができる。
 本発明の別の一態様に係る有機EL素子の製造方法は、陽極を形成し、前記陽極の上方に発光層を形成し、前記発光層上に、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む第1中間層を膜厚D1で形成し、前記第1中間層上に、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属を含む第2中間層を膜厚D2で形成し、前記第2中間層上に、陰極を形成し、前記陰極の上方に、水分および酸素を吸着する性質を有する第3金属を含む吸着層を形成する手順を有する。そして、前記第1中間層の膜厚D1および前記第2中間層の膜厚D2は、5〔%〕≦D2/D1≦25〔%〕の関係を満たすことを特徴とする。
 これにより、第1中間層の膜厚D1と第2中間層の膜厚D2との割合が、発光層側から陰極側への不純物ブロック性と陰極側から発光層側への電子供給性とのバランスにおいて好適な範囲内となるように第1中間層と第2中間層とを形成することができ、良好な発光特性を実現することができる。さらに、吸着層が外部からの不純物を吸着してブロックすることにより、不純物による陰極や第1中間層,第2中間層の劣化を抑制することができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記第3金属は、アルカリ金属またはアルカリ土類金属であることを特徴とする。
 第3金属は、比較的仕事関数が低いアルカリ金属またはアルカリ土類金属であり、不純物との反応性が高いので、外部から侵入してきた不純物と反応し、吸着層内に不純物を捕える働きをする。第3金属を含む吸着層を陰極の上方に形成することにより、外部からの不純物の陰極側への侵入をブロックして陰極の劣化を抑制し、良好な発光特性を維持することができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記第1中間層の膜厚D1は、1〔nm〕以上、10〔nm〕以下であることを特徴とする。
 これにより、十分な不純物ブロック性を得るのに必要な膜厚は確保しつつ、厚くなりすぎて電子注入性が低下しない程度の膜厚で第1中間層を形成することができ、良好な発光特性を実現することができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2中間層の膜厚D2は、0.2〔nm〕以上、1〔nm〕以下であることを特徴とする。
 これにより、発光層へ注入される電子が少なすぎず、過剰にもならない好適な電子注入能を有する膜厚で第2中間層を形成することができ、良好な発光効率を実現することができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記吸着層の膜厚は、5〔nm〕以上、12〔nm〕以下であることを特徴とする。
 吸着層は第3金属を含むため、厚くなりすぎると光の吸収が起こり、発光層から発せられた光を効率良く外に取り出せなくなる。従って、外部からの不純物を十分にブロックしつつ、光の吸収を抑えることができる膜厚で吸着層を形成することにより、陰極の劣化を抑制しつつ良好な光取出し効率を実現して、良好な発光特性を得ることができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記陰極の形成は、(A)金属材料を用いて陰極薄膜層を形成する(B)前記陰極薄膜層上に、電子輸送性および電子注入性のうち少なくとも一方の性質を有する陰極補助層を形成する、の2つの手順を含むことを特徴とする。
 陰極薄膜層が非常に薄い場合、陰極薄膜層の電気抵抗率が高くなる。そのため、陰極薄膜層の周辺部分から供給された電圧が、陰極薄膜層の中央部分では電圧降下により低下して輝度むらを引き起こす原因となる。本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、陰極薄膜層上に陰極補助層を形成する手順を含むため、陰極薄膜層の周辺部分に供給された電流は、陰極薄膜層に加えて陰極補助層中を流れることができる。これにより、陰極薄膜層の中央部分における電圧降下を低減して輝度むらの発生を抑制することができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2金属は、アルカリ金属またはアルカリ土類金属であることを特徴とする。
 第2金属に比較的仕事関数が低く電子供給能の高いアルカリ金属またはアルカリ土類金属が用いられているため、フッ素との反応性が比較的高く、第1金属とフッ素との結合を切りやすい。このような第2金属を含む第2中間層を形成することにより、第1中間層側から発光層側への電子注入性をより効率よく促進することができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記第3金属は、前記第1中間層に含まれる前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有することを特徴とする。
 第3金属が、第2金属と同様にアルカリ金属またはアルカリ土類金属である場合、第3金属もまた、第1中間層に含まれる第1金属のフッ化物における第1金属とフッ素との結合を切る性質を有することが当然考えられる。この場合、第3金属が、吸着層から拡散により第1中間層および第2中間層に達すると、第1金属とフッ素との結合を切る金属が増加することとなり、第1中間層による不純物ブロック性と第2中間層による電子供給性とのバランスが崩れる虞がある。しかし、この場合においても、吸着層と第1中間層および第2中間層との間に陰極が形成されることにより、第3金属の拡散を抑制することができる。また、陰極の形成が、陰極薄膜層を形成する手順と、陰極薄膜上に陰極補助層を形成する手順とを含む場合には、陰極補助層によりさらに第3金属の拡散抑制効果を得ることができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記第3金属は、前記第2金属と同じ種類の金属であることを特徴とする。
 これにより、同じ金属材料を用いて第2中間層と吸着層とを形成することができるため、製造が容易である。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記第2金属および前記第3金属は、バリウムであることを特徴とする。
 これにより、バリウムという汎用性のある材料を用いて第2中間層および吸着層を形成することができるため、コスト抑制に資することができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記第1金属は、ナトリウムであることを特徴とする。
 吸湿性が低く、酸素との反応性が低いフッ化ナトリウムを含む第1中間層を形成することにより、発光層側から陰極側へと侵入する不純物を効果的にブロックすることができる。また、仕事関数が低く、電子注入性が高いナトリウムを第1金属として含む第1中間層を形成することにより、第1中間層側から発光層側へと効果的に電子を供給することができる。
 本発明の別の一態様に係る有機EL素子の製造方法の特定の局面では、前記陰極薄膜層は、1の金属材料もしくは複数の金属材料の合金からなることを特徴とする。
 良好な導電性を有する金属材料を用いて陰極薄膜層を形成することにより、有機EL素子に効率よく電力を供給することができ、良好な発光効率を実現することができる。さらに、金属は非常に薄く加工することができるため、陰極薄膜層を非常に薄い膜厚で形成することにより、陰極薄膜層による光の吸収を抑制して良好な光取出し効率を実現することができる。
 以下、具体例を示し、構成および作用・効果を説明する。
 なお、以下の説明で用いる実施形態は、本発明の一態様に係る構成および作用・効果を分かりやすく説明するために用いる例示であって、本発明は、その本質的部分以外に何ら以下の形態に限定を受けるものではない。
 ≪実施形態≫
 [1.有機EL素子の構成]
 本発明の一態様である実施形態に係る有機EL素子の構成について、図1を用い説明する。
 図1は、本実施形態に係る有機EL素子1を複数備える有機EL表示パネル100(図13参照)の一部拡大断面図であり、1つの有機EL素子1に相当する部分およびその周辺の断面図である。本実施形態においては、1つの有機EL素子1は、1つの画素(サブピクセル)に対応している。本実施形態においては、有機EL素子1は、図1における紙面上側を表示面とする、いわゆるトップエミッション型である場合について説明する。
 図1に示すように、有機EL素子1は、基板11、層間絶縁層12、陽極13、隔壁層14、正孔注入層15、正孔輸送層16、発光層17、第1中間層18、第2中間層19、陰極薄膜層21、陰極補助層22、吸着層24、および封止層25を備える。第1中間層18と第2中間層19とで、中間層20を構成している。陰極薄膜層21と陰極補助層22とで陰極23を構成している。
 なお、基板11、層間絶縁層12、第1中間層18、第2中間層19、陰極薄膜層21、陰極補助層22、吸着層24、および封止層25は、画素ごとに形成されているのではなく、有機EL表示パネル100が備える複数の有機EL素子1に共通して形成されている。
 <基板>
 基板11は、絶縁材料である基材111と、TFT(Thin Film Transistor)層112とを含む。TFT層112には、画素毎に駆動回路が形成されている。基材111が形成される材料としては、例えば、ガラスが用いられる。ガラス材料としては、具体的には例えば、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英等のガラスなどが挙げられる。
 <層間絶縁層>
 層間絶縁層12は、基板11上に形成されている。層間絶縁層12は、樹脂材料からなり、TFT層112の上面の段差を平坦化するためのものである。樹脂材料としては、例えば、ポジ型の感光性材料が挙げられる。また、このような感光性材料として、アクリル系樹脂、ポリイミド系樹脂、シロキサン系樹脂、フェノール系樹脂が挙げられる。また、図1の断面図には示されていないが、層間絶縁層12には、画素毎にコンタクトホールが形成されている。
 <陽極>
 陽極13は、導電材料からなり、層間絶縁層12上に形成されている。陽極13は、画素毎に個々に設けられた画素電極であり、コンタクトホールを通じてTFT層112と電気的に接続されている。本実施形態においては、トップエミッション型であるので、光反射性を具備した導電材料により形成されるとよい。光反射性を具備する導電材料としては、金属が挙げられる。具体的には、Ag(銀)、Al(アルミニウム)、アルミニウム合金、Mo(モリブデン)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、MoW(モリブデンとタングステンの合金)、NiCr(ニッケルとクロムの合金)などがある。
 また、ボトムエミッション型の場合には、陽極13は、光透過性を具備するとよい。光透過性を具備する導電材料としては、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、ZnO(酸化亜鉛)などがある。
 <隔壁層>
 隔壁層14は、陽極13の上面の一部の領域を露出させ、その周辺の領域を被覆した状態で陽極13上に形成されている。陽極13上面において隔壁層14で被覆されていない領域(以下、「開口部」という。)は、サブピクセルに対応している。即ち、隔壁層14は、サブピクセル毎に設けられた開口部14aを有する。
 本実施形態においては、隔壁層14は、陽極13が形成されていない部分においては、層間絶縁層12上に形成されている。即ち、陽極13が形成されていない部分においては、隔壁層14の底面は層間絶縁層12の上面と接している。
 隔壁層14は、例えば、絶縁性の有機材料(例えばアクリル系樹脂、ポリイミド系樹脂、ノボラック樹脂、フェノール樹脂等)からなる。隔壁層14は、発光層17を塗布法で形成する場合には塗布されたインクがあふれ出ないようにするための構造物として機能し、発光層17を蒸着法で形成する場合には蒸着マスクを載置するための構造物として機能する。本実施形態では、隔壁層14は、樹脂材料からなり、隔壁層14の材料としては、例えば、ポジ型の感光性材料が挙げられる。また、このような感光性材料として、アクリル系樹脂、ポリイミド系樹脂、シロキサン系樹脂、フェノール系樹脂が挙げられる。本実施形態においては、フェノール系樹脂が用いられている。
 <正孔注入層>
 正孔注入層15は、陽極13から発光層17への正孔の注入を促進させる目的で、陽極13上の開口部14a内に設けられている。正孔注入層15は、例えば、銀(Ag)、モリブデン(Mo)、クロム(Cr)、バナジウム(V)、タングステン(W)、ニッケル(Ni)、イリジウム(Ir)などの酸化物、あるいは、PEDOT(ポリチオフェンとポリスチレンスルホン酸との混合物)などの導電性ポリマー材料からなる層である。上記の内、酸化金属からなる正孔注入層15は、正孔(ホール)を安定的に、または正孔(ホール)の生成を補助して、発光層17に対し正孔(ホール)を注入する機能を有し、大きな仕事関数を有する。本実施の形態においては、正孔注入層15は、PEDOT(ポリチオフェンとポリスチレンスルホン酸との混合物)などの導電性ポリマー材料からなる。
 ここで、正孔注入層15を遷移金属の酸化物から構成する場合には、複数の酸化数をとるためこれにより複数の準位をとることができ、その結果、正孔注入が容易になり駆動電圧を低減することができる。
 <正孔輸送層>
 正孔輸送層16は、開口部14a内に形成されている。例えば、ポリフルオレンやその誘導体、あるいはポリアリールアミンやその誘導体などの化合物を用いることができる。
 正孔輸送層16は、正孔注入層15から注入された正孔を発光層17へ輸送する機能を有する。
 <発光層>
 発光層17は、開口部14a内に形成されている。発光層17は、正孔と電子の再結合によりR、G、Bの各色の光を出射する機能を有する。発光層17の材料としては公知の材料を利用することができる。例えば、オキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、シアニン化合物、アクリジン化合物、8-ヒドロキシキノリン化合物の金属鎖体、2-ビピリジン化合物の金属鎖体、シッフ塩とIII族金属との鎖体、オキシン金属鎖体、希土類鎖体等の蛍光物質や、トリス(2-フェニルピリジン)イリジウムなどの燐光を発光する金属錯体等の公知の燐光物質を用いることができる。
 <第1中間層>
 第1中間層18は、発光層17上に形成されており、発光層17、正孔輸送層16、正孔注入層15、隔壁層14の内部や表面に存在する不純物が、第1中間層18や第2中間層や陰極薄膜層21へと侵入するのを防止するための層である。従って、第1中間層18は、不純物ブロック性を有する材料を含む。第1中間層18が形成される不純物ブロック性を有する材料は、例えば、アルカリ金属のフッ化物またはアルカリ土類金属のフッ化物であり、より具体的には、本実施形態においてはNaF(フッ化ナトリウム)である。第1中間層18に含まれるアルカリ金属のフッ化物中のアルカリ金属またはアルカリ土類金属のフッ化物中のアルカリ土類金属を、第1金属とする。
 第1中間層18は、膜厚D1〔nm〕で形成されている。
 <第2中間層>
 第2中間層19は、第1中間層18上に形成されており、第1中間層に含まれる第1金属のフッ化物における第1金属とフッ素との結合を分解する金属(以下、「第2金属」という。)を含む。第1金属とフッ素との結合を分解する第2金属として、例えば、アルカリ金属またはアルカリ土類金属が用いられる。本実施形態においては、第2金属は、具体的には、Ba(バリウム)である。
 第2中間層19は、膜厚D2〔nm〕で形成されている。
 <中間層>
 第1中間層18と第2中間層19とで、中間層20が構成される。
 なお、第2中間層19に含まれる第2金属により第1中間層18に含まれる第1金属のフッ化物における第1金属とフッ素との結合が分解されて第1金属が遊離すると、第1金属は仕事関数が低く電子注入性が高いアルカリ金属またはアルカリ土類金属であるため、発光層へと効果的に電子を供給することができる。
 <陰極薄膜層>
 陰極薄膜層21は、各サブピクセル共通に設けられており、例えば、ITO(酸化インジウムスズ)、IZO(酸化インジウム亜鉛)等の導電性を有する金属酸化物からなる材料の薄膜、または、アルミニウム、マグネシウム、銀などの金属の薄膜もしくはそれらの合金の薄膜で形成されている。本実施形態においては、陰極薄膜層21は、アルミニウム薄膜である。
 <陰極補助層>
 陰極補助層22は、電子輸送性を有する有機材料を用いて陰極薄膜層21上に各サブピクセル共通に形成されており、陰極薄膜層21の陰極としての機能を補助する役割を果たす。陰極補助層22の陰極薄膜層21の陰極としての機能を補助する役割は、次の通りである。陰極薄膜層21の膜厚は非常に薄く、電気抵抗率が高い。そのため、陰極薄膜層21の周辺部分に接続された配線から供給される電圧は、陰極薄膜層21の中央部分では電圧降下により低くなり、輝度むらの発生に繋がる。ここで、陰極薄膜層21の膜厚を厚くすると、金属は光を通しにくいため光透過性が低下し、光取出し効率が低下する。そこで、陰極薄膜層21上に陰極補助層22を形成し、陰極薄膜層21の周辺部から中央部への電力の供給を陰極補助層22により補助することにより、陰極薄膜層21の中央部での電圧降下を抑制して輝度ムラ抑制するとともに、光取出し効率の低下も抑制することができる。
 陰極補助層22は、本実施形態においては、電子輸送層に一般的に用いられるのと同じ有機材料により形成されている。陰極補助層22に用いられる有機材料としては、例えば、オキサジアゾール誘導体(OXD)、トリアゾール誘導体(TAZ)、フェナンスロリン誘導体(BCP、Bphen)などのπ電子系低分子有機材料が挙げられる。
 <陰極層>
 本実施形態においては、陰極薄膜層21と陰極補助層22とで、陰極23が構成される。
 <吸着層>
 吸着層24は、陰極補助層22上に形成され、外部からの不純物(水分、酸素)を吸着する機能を有しており、外部から侵入した不純物が陰極薄膜層21に到達して陰極薄膜層21を劣化させるのを抑制する。吸着層24には、水分や酸素を吸着するための第3金属が含まれている。第3金属に用いられる金属としては、アルカリ金属またはアルカリ土類金属が用いられる。より具体的には、例えば、リチウム、バリウム、カルシウム、カリウム、セシウム、ナトリウム、ルビジウム等の低仕事関数金属が用いられる。本実施形態においては、第3金属は、Ba(バリウム)であって、吸着層24は、Baの単層として形成される。特に、本実施形態のように金属薄膜が陰極薄膜層として用いられる場合、金属は水分や酸素により酸化されて劣化しやすいため、吸着層24の効果は大きくなる。
 ここで、不純物の「吸着」とは、第3金属が不純物(水分や酸素)と反応して酸化物等が生成し、不純物が酸化物等の分子中に捕捉されることにより、不純物が吸着層24を通過して陰極23の陰極薄膜層21等に到達するのを妨げることを意味する。従って、「吸着層」とは、不純物の透過、拡散を妨げる機能を有する層である。
 なお、吸着層24は、前記第3金属がドープされた有機膜であっても良い。この場合の有機膜には、陰極補助層22に用いられる電子輸送性材料を用いてもよい。
 また、吸着層24は、膜厚D3〔nm〕で形成されている。
 <封止層>
 吸着層24の上には、外部からの水分や酸素の侵入を抑制するために封止層25を設けても良い。封止層25の材料としては、例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の光透過性材料が選択される。
 <その他>
 なお、図1には図示しないが、封止層25の上にカラーフィルターや上部基板を載置し、接合してもよい。上部基板の載置、接合により、水分および酸素などからの保護がさらに図られる。
 [2.不純物ブロック性と電子注入性]
 正孔注入層15、正孔輸送層16、発光層17をウェットプロセスで形成する場合、これらの層の内部および表面に存在する不純物が中間層20もしくは陰極薄膜層21に到達すると、陰極薄膜層21を形成している金属や中間層20と反応して、発光層17への電子注入機能を低下させる。隔壁層14をウェットプロセスで形成する場合にも、隔壁層14の内部および表面に存在する不純物が、上記と同様の問題を引き起こす原因となる。
 本実施形態に係る有機EL素子1は、発光層17と陰極薄膜層21との間に、第1中間層18および第2中間層19を備えている。第1中間層18は、NaFを含んでいる。NaFは、アルカリ金属やアルカリ土類金属と比較して酸素との反応性が低いため、良好な不純物ブロック性を有している。よって、第1中間層18により、発光層17側からの不純物の侵入が阻害される。これにより、陰極薄膜層21がAlやMgAg等の金属から形成されている場合には、陰極薄膜層21の不純物による劣化を防止することができる。
 その一方で、NaFは電気絶縁性が高いため、陰極薄膜層21から供給される電子の発光層17への移動を阻害し、発光特性を低下させるという問題がある。
 本実施形態に係る有機EL素子1においては、第1中間層18と陰極薄膜層21との間に、第2中間層19が設けられている。第2中間層19は、第2金属としてBaを含んでいる。Baは、第1中間層18中の第1金属であるNaのフッ化物(NaF)におけるNaとF(フッ素)との結合を分解する。これにより、第1中間層18中のNaFの一部が乖離していてもよい。NaFの一部が乖離してNaが遊離すると、Naは仕事関数が低く、電子供給能が高いため、陰極薄膜層21から発光層17への電子の移動をアシストし、発光特性の低下を抑制することができる。これと同時に第1中間層18中のNaFにより良好な不純物ブロック性を得ることができる。そのため第2中間層19を形成するBaが劣化することなく第1中間層を形成するNaFと反応し、効率よくNaとFの結合を分解できる。
 なお、第1金属のフッ化物における第1金属とフッ素との結合を分解する機構としては、上記に限られない。第1中間層18、第2中間層19、発光層17、陰極薄膜層21等の機能を損なわない限り、何れの機構により第1金属とフッ素との結合が分解されてもよい。
 このように、第1中間層18が、高い不純物ブロック性を有する第1金属のフッ化物を含むことにより、発光層17側からの不純物の侵入をブロックして陰極薄膜層21(および第2中間層19)の電子供給能の低下を抑制することができる。そして、第2中間層19が、第1金属とフッ素との結合を分解する第2金属を含むことにより、第1金属が遊離し、絶縁性の高い第1中間層18を超えて陰極薄膜層21から発光層17へと電子が移動しやすくなり、良好な発光特性を得ることができる。
 なお、このとき、実際は、第1中間層18と第2中間層19の境界は、明確には分かれておらず、第1中間層18を形成する材料と、第2中間層19を形成する材料とが、製造の過程で多少混ざり合って形成されている場合もあると考えられる。即ち、第1中間層18および第2中間層19の膜厚は、それぞれ正確にD1、D2〔nm〕というわけではなく、その境界ははっきりしていない場合もあると考えられる。そのような場合も含めて、中間層20において、第1金属は、陰極薄膜層21側よりも発光層17側で濃度が高く、第2金属は、発光層17側よりも陰極薄膜層21側で濃度が高いということができる。
 また、ここでは、第1中間層18および第2中間層19を形成する際に、それぞれ膜厚がD1およびD2となるように意図した方法により形成された場合、形成された第1中間層18および第2中間層19の膜厚は、それぞれD1およびD2であるとする。他の層の膜厚についても、同様である。以下、変形例においても、同様である。
 [3.第2中間層の効果]
 図2は、第2中間層19の膜厚D2が互いに異なる4種類の有機EL表示パネル100を試験体に用い、それぞれの試験体に電圧を印加して電流密度を測定した結果を示すグラフである。第2中間層19の膜厚D2は、0,0.5,1,2〔nm〕の4種類である。それぞれの試験体に対して印加電圧を変化させ、それぞれ複数セル(異なる複数の有機EL素子1)について電流密度の測定を行った。なお、上記4つの試験体においては、第2中間層19の膜厚D2が異なる以外は、何れも他の層の構成および膜厚は同じであり、第1中間層18の膜厚D1は、何れも4〔nm〕である。
 図2に示すように、膜厚D2=0〔nm〕の試験体(即ち、第2中間層19を備えない試験体)と比較して、膜厚D2=0.5,1,2〔nm〕の試験体は、何れも高い電流密度を示した。これは、即ち、第2中間層19を設けることで、有機EL素子1により多くの電流が流れることを示している。従って、第2中間層19を設けることにより、発光層17により多くの電流が流れ、有機EL素子の輝度向上の効果が得られることが確認された。
 [4.第2中間層の膜厚と発光効率比]
 図3は、第2中間層19の膜厚D2が互いに異なる有機EL表示パネル100についての発光効率比を示すグラフである。第2中間層19の膜厚D2は、0.1,0.2,0.5,1〔nm〕の4種類である。これら4種類の膜厚で形成された第2中間層19をそれぞれ有する4種類の有機EL表示パネルを試験体として、電流密度が10〔mA/cm2〕となるような電圧を印加した際の輝度を測定し、測定された輝度の値から発光効率を算出した。そして、基準となる有機EL表示パネルの発光効率の値を発光効率基準値として、発光効率基準値に対する比(発光効率比)を算出し、グラフにプロットしたのが図3である。
 なお、上記4種類の有機EL表示パネル試験体においては、第2中間層19の膜厚D2が異なる以外は、何れも他の層の構成および膜厚は同じであり、第1中間層18の膜厚D1は、何れも4〔nm〕である。
 図3に示すように、第2中間層の膜厚D2=0.5〔nm〕の試験体が、最も高い発光効率比を示した。そして、膜厚D2=1〔nm〕の試験体では、膜厚D2=0.5〔nm〕の試験体に比べて発光効率比が低下した。これは、正孔輸送層16から発光層17へと注入される正孔の量は一定であるため、それよりも過剰な電子が発光層17へと注入されても、電流の増加に対して輝度は増加せず、結果として発光効率が低下し、発光効率比も低下したためと考えられる。
 図3に示すように、最も高い発光効率比を示す膜厚D2=0.5〔nm〕の試験体の発光効率比を基準とした場合、それに対して80%以上の発光効率比を維持することが好適である。従って、0.2≦D2≦1〔nm〕が、効果的な膜厚D2の範囲と言うことができる。
 [5.第1中間層の膜厚と発光効率比]
 図4は、第1中間層18の膜厚D1が互いに異なる5種類の有機EL表示パネル100についての発光効率比を示すグラフである。第1中間層18の膜厚D1は、0、1、2、4、10〔nm〕である。なお、上記5種類の有機ELパネル試験においては、第2中間層19の膜厚D2=0.5〔nm〕である。
 発光効率比は、図3に示す発光効率比の場合と同様にして算出した。即ち、先ず、電流密度が10〔mA/cm2〕となるような電圧を印加した際の輝度を測定し、測定された輝度の値から発光効率を算出した。次に、基準となる有機EL表示パネルの発光効率の値を発光効率基準値として、発光効率基準値に対する比(発光効率比)を算出した。そして、算出した値をグラフにプロットしたのが図4である。
 図4に示すように、5種類の試験体うち、膜厚D1=0[nm]の試験体の場合、すなわち第1中間層18が無い場合、発光効率比は非常に小さい値を示した。これは、発光層17側からの不純物をブロックすることができず、第2中間層19もしくは陰極薄膜層21が劣化したため、発光層17への電子の供給量が十分ではなくなったためだと考えられる。
 また、膜厚D1=4〔nm〕の試験体が、最も高い発光効比を示し、膜厚D1=1〔nm〕および2〔nm〕の試験体も、ほぼ同じ発光効率比を示した。一方、膜厚D1=10[nm]の試験体では、比較的高い発光効率比を維持しているものの、膜厚D1が4[nm]を越えて厚くなるにつれて発光効率比が低下していく傾向が見て取れる。これは、第1中間層18の膜厚D1が厚くなりすぎると、絶縁層としての機能が強く働いてしまい、発光層17への電子の注入が低下するためと考えられる。従って、第1中間層18の膜厚D1の範囲としては、1〔nm〕以上、10〔nm〕以下の範囲が効果的である。
 [6.第1中間層の膜厚に対する第2中間層の膜厚の割合と発光効率比]
 以上説明したように、第1中間層18の膜厚D1については、不純物ブロック性を確保するための最低限の膜厚が必要である。一方で、D1が厚くなりすぎると、絶縁層としての性質が強くなって発光層17へと電子が注入されにくくなり、十分な輝度が得られなくなる。
 また、第2中間層19の膜厚D2が薄すぎると、第2中間層19に含まれる第2金属(本実施形態ではBa)が、第1中間層18に含まれる第1金属(本実施形態ではNa)を十分に遊離させることができず、発光層17に十分な電子を供給することができない。一方で、D2が厚くなりすぎると、発光層17に供給される正孔の量に対して過剰な電子を発光層17に供給することとなり、発光効率が低下する。
 さらには、第1中間層18の膜厚D1に対して第2中間層19の膜厚D2が厚すぎると、第2金属が第1金属を過剰に遊離させて、第1金属のフッ化物が減少する結果、第1中間層18の不純物ブロック性が十分でなくなる虞がある。
 以上の結果から、本願発明者らは、第1中間層18および第2中間層19は、それぞれの膜厚の好適な値の範囲が存在するのみならず、膜厚D1と膜厚D2との割合にも好適な値の範囲が存在するのではないかと考えた。そこで、本願発明者らは、膜厚D1に対する膜厚D2の比を変えて、発光効率比がどのように異なるかを調べた。その結果を、図5に示す。
 図5は、膜厚比D2/D1=2.5,5,12.5,25〔%〕の4種類の試験体について発光効率比をプロットしたグラフである。図5に示すように、膜厚比D2/D1=12.5〔%〕の場合に、最も高い発光効率比を示した。また、膜厚比D2/D1=5〔%〕では、膜厚比D2/D1=12.5〔%〕とほぼ同等の発光効率を示したが、膜厚比D2/D1=2.5〔%〕になると、発光効率比は急激に低下した。膜厚比D2/D1=25〔%〕では、膜厚比D2/D1=5〔%〕の場合よりは低いものの、最も高い膜厚比D2/D1=12.5〔%〕の場合の発光効率比を基準として、その80%以内の比較的良好な発光効率比を示した。
 以上の結果から、膜厚比が、5〔%〕≦D2/D1≦25〔%〕であれば、良好な発光効率が得られることがわかった。
 なお、先に述べたように、実際には、第1中間層18と第2中間層19の境界は、明確には分かれておらず、第1中間層18を形成する材料と、第2中間層19を形成する材料とが、製造の過程で多少混ざり合って形成されている場合もあると考えられる。そのような場合には、中間層20において、第1金属と第2金属の成分比(モル比)が、2〔%〕≦第2金属/第1金属≦10〔%〕であれば、良好な発光効率が得られると考えられる。
 [7.吸着層の膜厚と発光効率比]
 図6(a)は、吸着層24(本実施形態ではBaの層)の膜厚D3が互いに異なる3種類の有機EL表示パネル100についての発光効率比を示すグラフである。膜厚D3は、2,5,10〔nm〕の3種類である。発光効率比は、図3に示す発光効率比の場合と同様にして算出した。即ち、先ず、電流密度が10〔mA/cm2〕となるような電圧を印加した際の輝度を測定し、測定された輝度の値から発光効率を算出した。次に、基準となる有機EL表示パネルの発光効率の値を発光効率基準値として、発光効率基準値に対する比(発光効率比)を算出した。そして、算出した値をグラフにプロットしたのが図6(a)である。なお、ここでの試験体における第1中間層18の膜厚D1=4〔nm〕であり、第2中間層19の膜厚D2=0.5〔nm〕である。
 図6(a)に示すように、吸着層24の膜厚D3=10〔nm〕の試験体が最も高い発光効率比を示した。膜厚D3=5〔nm〕の試験体では、膜厚D3=10〔nm〕の場合よりは低いものの比較的高い発光効率比を示した。
 しかし、膜厚D3=2〔nm〕の試験体では、非常に低い発光効率比となった。これは、吸着層24が薄いため、外部からの不純物を十分に吸着することができず、吸着できなかった水分や酸素が陰極薄膜層21(および第2中間層19)を劣化させ、発光層17に電子が十分に供給されなくなったためであると考えられる。従って、図6(a)のグラフから、吸着層24の膜厚D3は、5〔nm〕以上であれば良好な発光効率が得られると言える。
 一方、吸着層24が厚い場合、吸着層24の光透過率が低下し、有機EL素子1の光取出し効率が低下してしまう。図6(b)に、吸着層24の膜厚D3の違いによる光取出し効率の変化を表す光学シミュレーションの結果を示す。同図に示すように、膜厚D3が厚くなるにつれて光取出し効率が低下し、吸着層24が無い場合(D3=0〔nm〕)の光取出し効率を1.0とした場合、吸着層24の膜厚D3=12〔nm〕のときの光取出し効率は、0.9であった。光取出し効率は、0.9以上が望ましいので、図6(b)のグラフより、吸着層24の膜厚D3は、12〔nm〕以下が望ましい。
 図6(a)に示す発光効率比の結果と合わせて考えると、吸着層24の膜厚D3は、5〔nm〕≦D3≦12〔nm〕であれば、外部からの侵入した不純物を吸着して良好な発光効率を実現可能であると同時に良好な光取出し効率を実現することができる。
 [8.吸着層および陰極補助層と中間層との関係]
 本実施の形態に係る有機EL素子1は、吸着層24を有している。吸着層24は、第3金属を含んでおり、第3金属は、アルカリ金属またはアルカリ土類金属である。ここで、吸着層24に含まれる第3金属が、陰極薄膜層21を超えて拡散し、中間層20に達する場合がある。すると、中間層20の第2中間層19に含まれる第2金属は、第3金属と同じくアルカリ金属またはアルカリ土類金属であるため、吸着層24から拡散してきた第3金属もまた、第1中間層18のフッ化ナトリウム(NaF)におけるNaとF(フッ素)との結合を分解する機能を有すると考えられる。すると、第1中間層18による不純物ブロック性と第2中間層19によるNaFの分解能力とのバランスが崩れ、NaFの分解能力がより大きくなる結果、不純物ブロック性が低下して、発光効率が低下して短寿命化を引き起こす虞がある。特に、本実施形態の場合は、第2金属も第3金属も同じBaが用いられているため、このようなバランスの崩れは顕著に発生すると考えられる。
 しかしながら、本実施形態に係る有機EL素子1の場合、吸着層24と中間層20との間に陰極補助層22が設けられているため、その分吸着層24と中間層20との間の距離が長くなり、拡散により第3金属が中間層20にまで到達する時間が長くなる。これにより、短寿命化を抑制することができる。
 なお、陰極補助層22に高分子の有機材料を用いれば、陰極補助層22の密度が高くなり、その分第3金属が拡散しづらくなるため、短寿命化抑制効果をより一層期待することができる。
 [9.有機EL素子の製造方法]
 本実施形態に係る有機EL素子1の製造方法について図7~図11を用いて以下に説明する。なお、図7~図10は、有機EL素子1の製造過程を模式的に示す断面図であり、図11は、有機EL素子1の製造過程を示す模式工程図である。
 まず、図7(a)に示すように、基材111上にTFT層112を成膜して基板11を形成し(図11のステップS1)、基板11上に層間絶縁層12を成膜する(図11のステップS2)。層間絶縁層12の材料である層間絶縁層用樹脂には、本実施形態においては、ポジ型の感光性材料であるアクリル樹脂を用いる。層間絶縁層12は、層間絶縁層用樹脂であるアクリル樹脂を層間絶縁層用溶媒(例えば、PGMEA)に溶解させた層間絶縁層用溶液を基板11上へ塗布し、成膜する。そしてその後、焼成を行う(図11のステップS3)。焼成は、150℃以上、210℃以下の温度で180分間行う。
 なお、図7~図10に示す断面図および図11の工程図には現れないが、このとき、層間絶縁層12の各開口部14a(が形成される予定の領域)の間に該当する位置にコンタクトホールを形成する。コンタクトホールは、パターン露光と現像を行うことにより形成する。層間絶縁層12は焼成により硬くなるため、コンタクトホールの形成は、層間絶縁層12の焼成前に行う方が容易である。
 そして、図7(b)に示すように、真空蒸着法またはスパッタ法に基づき、厚み150〔nm〕程度の金属材料からなる陽極13を、サブピクセル毎に形成する(図11のステップS4)。
 次に、陽極13上に、隔壁層14の材料である隔壁層用樹脂を塗布し、隔壁材料層14bを形成する(図7(c))。隔壁層用樹脂には、例えば、ポジ型の感光性材料であるフェノール樹脂が用いられる。隔壁材料層14bは、隔壁層用樹脂であるフェノール樹脂を溶媒(例えば、乳酸エチルとGBLの混合溶媒)に溶解させた溶液を陽極13上にスピンコート法などを用いて一様に塗布し、形成される。
 次に、隔壁材料層14bにパターン露光と現像を行うことで隔壁層14を形成し(図8(a)、図11のステップS5)、隔壁層14を焼成する(図11のステップS6)。これにより、発光層17の形成領域となる開口部14aが規定される。隔壁層14の焼成は、例えば、150℃以上、210℃以下の温度で60分間行う。
 また、隔壁層14の形成工程においては、さらに、隔壁層14の表面を所定のアルカリ性溶液や水、有機溶媒等によって表面処理するか、プラズマ処理を施すこととしてもよい。これは、開口部14aに塗布するインク(溶液)に対する隔壁層14の接触角を調節する目的で、もしくは、表面に撥水性を付与する目的で行われる。
 そして、図8(b)に示すように、マスク蒸着法やインクジェットによる塗布法により、正孔注入層15を製膜し、焼成する(図11のステップS7)。
 次に、図8(c)に示すように、隔壁層14が規定する開口部14aに対し、正孔輸送層16の構成材料を含むインク塗布と、これの焼成(乾燥)とを経て、正孔輸送層16を形成する(図11のステップS8)。
 同様に、図9(a)に示すように、発光層17の構成材料を含むインクの塗布および焼成(乾燥)により発光層17を形成する(図11のステップS9)。
 続いて、図9(b)に示すように、発光層17および隔壁層14の上に、第1中間層18を膜厚D1で成膜する(図11のステップS10)。
 続いて、図9(c)に示すように、第1中間層18の上に、真空蒸着法などにより、第2中間層19を膜厚D2で成膜する(図11のステップS11)。第1中間層18と第2中間層19とで、中間層20が完成する。
 次に、図10(a)に示すように、第2中間層19の上に、陰極薄膜層21を構成する材料を真空蒸着法、パッタ法等により、陰極薄膜層21を形成する(図11のステップS12)。
 続いて、図10(b)に示すように、陰極薄膜層21上に、陰極補助層22を構成する材料を真空蒸着法、スパッタ法等により、陰極補助層22を成膜する(図11のステップS13)。陰極薄膜層21と陰極補助層22とで、陰極23が完成する。
 続いて、図10(c)に示すように、陰極補助層22上に、吸着層24を構成する材料を真空蒸着法、スパッタ法等により、吸着層24を製膜する(図11のステップS14)。
 そして、図10(d)に示すように、吸着層24の上に、SiN、SiON等の光透過性材料をスパッタ法、CVD法等で成膜して、封止層25を形成する(図11のステップS15)。
 以上の工程を経ることにより有機EL素子1および有機EL素子1を備えた有機EL表示パネル100が完成する。なお、封止層25の上にカラーフィルターや上部基板を載置し、接合してもよい。
 [10.有機EL表示装置の全体構成]
 図12は、有機EL素子1を複数有する有機EL表示パネル100を備えた有機EL表示装置1000の構成を示す模式ブロック図である。図12に示すように、有機EL表示装置1000は、有機EL表示パネル100と、これに接続された駆動制御部200とを有し構成されている。有機EL表示パネル100は、有機材料の電界発光現象を利用した表示パネルであり、複数の有機EL素子1が、例えば、マトリクス状に配列されて構成されている。駆動制御部200は、4つの駆動回路210~240と制御回路250とから構成されている。
 なお、実際の有機EL表示装置1000では、有機EL表示パネル100に対する駆動制御部200の配置については、これに限られない。
 [実施形態のまとめ]
 以上説明したように、本発明の実施形態に係る有機EL素子1の構成によれば、発光層17側からの第2中間層19や陰極薄膜層21への不純物の侵入を第1中間層18によりブロックし、且つ、第2中間層19により陰極23側から発光層17への電子注入を促進して、良好な発光特性を実現することができる。さらに、吸着層24により封止層25側からの第2中間層19や陰極薄膜層21への不純物の侵入を阻害し、良好な発光特性を実現することができる。
 また、第1中間層18の膜厚D1と第2中間層19の膜厚D2とが、5〔%〕≦D2/D1≦25〔%〕の関係を満たすため、良好な発光効率を実現することができる。
 さらに、吸着層24の膜厚が、12〔nm〕以下であるため、トップエミッション型の場合においても、吸着層24における光吸収量を低く抑えることができ、良好な光取出し性を実現することができる。
 なお、上記説明における、膜厚の範囲や膜厚の割合についての条件は、必ずしも開口部14aで規定されるサブピクセルの全領域において条件を満たしていなくてもよい。少なくとも平面視でのサブピクセルの中央部における膜厚が、上記説明における膜厚の条件を満たしていればよい。サブピクセルの一部領域(例えば、隔壁層14に近接した領域や、隔壁層14に一部乗り上げて形成されている領域)において、上記膜厚条件を満たさない部分があってもよい。
 [変形例]
 以上、本発明を実施形態に基づいて説明してきたが、本発明が上述の実施形態に限定されないのは勿論であり、以下のような変形例を実施することが出来る。
 (変形例1)
 上記実施形態においては、有機EL素子1が、陰極補助層22を備えた構成について説明したが、これに限られない。陰極補助層22を備えない構成としてもよい。その場合であっても、封止層25側から侵入した不純物が吸着層24により吸着されるため、吸着層24を備えない場合と比較して不純物による陰極薄膜層21の劣化を抑制することができる。
 また、陰極補助層22を備えない場合であっても、吸着層24からの第3金属の拡散は、陰極薄膜層21によりある程度抑えることができる。
 (変形例2)
 上記実施形態においては、有機EL素子1が、正孔注入層15、正孔輸送層16を備えた構成について説明したが、これに限られない。例えば、これらのうちいずれか1つ以上の層、または全部を備えない構成としてもよい。
 (変形例3)
 さらには、電子注入層や電子輸送層、透明導電層などの他の層をさらに含む構成とすることもできる。
 (変形例4)
 上記実施形態においては、有機EL素子1の基材111を構成する絶縁材料としてガラスを用いた例について説明したが、これに限られない。基材111を構成する絶縁材料として、例えば、樹脂やセラミック等を用いてもよい。基材111に用いられる樹脂としては、例えば、ポリイミド系樹脂、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエーテルサルフォン、ポリエチレン、ポリエステル、シリコーン系樹脂等の絶縁性材料が挙げられる。基材111に用いられるセラミックとしては、例えば、アルミナ等が挙げられる。
 本発明の有機EL素子等は、例えば、家庭用もしくは公共施設、あるいは業務用の各種表示装置、テレビジョン装置、携帯型電子機器用ディスプレイ等として用いられる有機EL素子および有機EL表示パネルの製造方等に好適に利用可能である。
 1 有機EL素子
 13 陽極
 17 発光層
 18 第1中間層
 19 第2中間層
 21 陰極薄膜層
 22 陰極補助層
 23 陰極
 24 吸着層

Claims (24)

  1.  陽極と、
     前記陽極の上方に配された発光層と、
     前記発光層上に配され、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む第1中間層と、
     前記第1中間層上に配され、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属を含む第2中間層と、
     前記第2中間層上に配された陰極と、
     前記陰極の上方に配され、水分および酸素のうち少なくとも一方を吸着する性質を有する第3金属を含む吸着層と、を有し、
     前記第1中間層の膜厚をD1、前記第2中間層の膜厚をD2とするとき、D1およびD2は、5〔%〕≦D2/D1≦25〔%〕の関係を満たす
     有機EL素子。
  2.  前記第3金属は、アルカリ金属またはアルカリ土類金属である
     請求項1に記載の有機EL素子。
  3.  前記第1中間層の膜厚D1は、1〔nm〕以上、10〔nm〕以下である
     請求項1または2に記載の有機EL素子。
  4.  前記第2中間層の膜厚D2は、0.2〔nm〕以上、1〔nm〕以下である
     請求項1から3の何れか1項に記載の有機EL素子。
  5.  前記吸着層の膜厚は、5〔nm〕以上、12〔nm〕以下である
     請求項1から4の何れか1項に記載の有機EL素子。
  6.  前記陰極は、金属から成る陰極薄膜層と、前記陰極薄膜層上に配され、電子輸送性および電子注入性のうち少なくとも一方の性質を有する陰極補助層とから成る
     請求項1から5の何れか1項に記載の有機EL素子。
  7.  前記第2金属は、アルカリ金属またはアルカリ土類金属である
     請求項1から6の何れか1項に記載の有機EL素子。
  8.  前記第3金属は、前記第1中間層に含まれる前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する
     請求項1から7の何れか1項に記載の有機EL素子。
  9.  前記第3金属は、前記第2金属と同じ種類の金属である
     請求項1から8の何れか1項に記載の有機EL素子。
  10.  前記第2金属および前記第3金属は、バリウムである
     請求項9に記載の有機EL素子。
  11.  前記第1金属は、ナトリウムである
     請求項1から10の何れか1項に記載の有機EL素子。
  12.  前記陰極薄膜層は、1の金属材料もしくは複数の金属材料の合金からなる
     請求項1から11の何れか1項に記載の有機EL素子。
  13.  陽極を形成し、
     前記陽極の上方に発光層を形成し、
     前記発光層上に、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む第1中間層を膜厚D1で形成し、
     前記第1中間層上に、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属を含む第2中間層を膜厚D2で形成し、
     前記第2中間層上に、陰極を形成し、
     前記陰極の上方に、水分および酸素を吸着する性質を有する第3金属を含む吸着層を形成し、
     前記第1中間層の膜厚D1および前記第2中間層の膜厚D2は、5〔%〕≦D2/D1≦25〔%〕の関係を満たす
     有機EL素子の製造方法。
  14.  前記第3金属は、アルカリ金属またはアルカリ土類金属である
     請求項13に記載の有機EL素子の製造方法。
  15.  前記第1中間層の膜厚D1は、1〔nm〕以上、10〔nm〕以下である
     請求項13または14に記載の有機EL素子の製造方法。
  16.  前記第2中間層の膜厚D2は、0.2〔nm〕以上、1〔nm〕以下である
     請求項13から15の何れか1項に記載の有機EL素子の製造方法。
  17.  前記吸着層の膜厚は、5〔nm〕以上、12〔nm〕以下である
     請求項13から16の何れか1項に記載の有機EL素子の製造方法。
  18.  前記陰極の形成は、以下の手順を含む
     (A)金属材料を用いて陰極薄膜層を形成する
     (B)前記陰極薄膜層上に、電子輸送性および電子注入性のうち少なくとも一方の性質を有する陰極補助層を形成する
     請求項13から17の何れか1項に記載の有機EL素子の製造方法。
  19.  前記第2金属は、アルカリ金属またはアルカリ土類金属である
     請求項13から18の何れか1項に記載の有機EL素子の製造方法。
  20.  前記第3金属は、前記第1中間層に含まれる前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する
     請求項13から19の何れか1項に記載の有機EL素子の製造方法。
  21.  前記第3金属は、前記第2金属と同じ種類の金属である
     請求項13から20の何れか1項に記載の有機EL素子の製造方法。
  22.  前記第2金属および前記第3金属は、バリウムである
     請求項13から21の何れか1項に記載の有機EL素子の製造方法。
  23.  前記第1金属は、ナトリウムである
     請求項13から22の何れか1項に記載の有機EL素子の製造方法。
  24.  前記陰極薄膜層は、1の金属材料もしくは複数の金属材料の合金からなる
     請求項13から23の何れか1項に記載の有機EL素子の製造方法。
PCT/JP2015/000927 2014-03-18 2015-02-24 有機el素子および有機el素子の製造方法 WO2015141144A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/124,476 US10181582B2 (en) 2014-03-18 2015-02-24 Organic EL element comprising first and second interlayers of specified materials and thicknesses, and method for manufacturing thereof
JP2016508490A JP6336042B2 (ja) 2014-03-18 2015-02-24 有機el素子および有機el素子の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-055259 2014-03-18
JP2014055259 2014-03-18

Publications (1)

Publication Number Publication Date
WO2015141144A1 true WO2015141144A1 (ja) 2015-09-24

Family

ID=54144135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000927 WO2015141144A1 (ja) 2014-03-18 2015-02-24 有機el素子および有機el素子の製造方法

Country Status (3)

Country Link
US (1) US10181582B2 (ja)
JP (1) JP6336042B2 (ja)
WO (1) WO2015141144A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784387A (zh) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 一种有机发光二极管、显示基板及显示装置
JP2018060953A (ja) * 2016-10-06 2018-04-12 住友化学株式会社 有機elデバイス、表示素子及び有機elデバイスの製造方法
CN108630829A (zh) * 2017-03-17 2018-10-09 京东方科技集团股份有限公司 显示面板的制作方法、显示面板及显示装置
CN111384087A (zh) * 2018-12-28 2020-07-07 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板
US11508928B2 (en) 2019-11-29 2022-11-22 Joled Inc. Self-luminous element and self-luminous display panel

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9793436B2 (en) * 2015-01-16 2017-10-17 Epistar Corporation Semiconductor light-emitting device
JP6685675B2 (ja) * 2015-09-07 2020-04-22 株式会社Joled 有機el素子、それを用いた有機el表示パネル、及び有機el表示パネルの製造方法
CN107611164B (zh) * 2017-09-25 2021-01-15 京东方科技集团股份有限公司 一种oled面板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063834A (ja) * 2003-08-13 2005-03-10 Seiko Epson Corp 有機el装置、有機el装置の製造方法および電子機器
JP2005183013A (ja) * 2003-12-16 2005-07-07 Casio Comput Co Ltd 表示素子及び表示装置ならびに表示素子の製造方法
JP2006066553A (ja) * 2004-08-25 2006-03-09 Fuji Electric Holdings Co Ltd 有機el素子およびその製造方法
JP2006135337A (ja) * 2004-11-05 2006-05-25 Samsung Sdi Co Ltd 有機電界発光表示素子及びその製造方法
JP2007036175A (ja) * 2005-07-25 2007-02-08 Lg Electronics Inc 有機el素子及びその製造方法
JP2008004637A (ja) * 2006-06-20 2008-01-10 Fuji Xerox Co Ltd 有機電界発光素子
WO2013035136A1 (ja) * 2011-09-08 2013-03-14 パナソニック株式会社 発光装置およびその製造方法
JP2013161673A (ja) * 2012-02-06 2013-08-19 Panasonic Corp 有機el素子の製造方法、および有機el素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6635989B1 (en) * 1998-08-03 2003-10-21 E. I. Du Pont De Nemours And Company Encapsulation of polymer-based solid state devices with inorganic materials
US6483236B1 (en) * 2000-05-24 2002-11-19 Eastman Kodak Company Low-voltage organic light-emitting device
US7012364B2 (en) * 2002-10-01 2006-03-14 Dai Nippon Printing Co., Ltd. Organic electroluminescent display
JP2006012428A (ja) 2004-06-22 2006-01-12 Hitachi Metals Ltd 有機el用電極
US20070210705A1 (en) 2006-03-09 2007-09-13 Hajime Yokoi Organic electroluminescent element and manufacturing method of an organic electroluminescent element and a display
JP4882508B2 (ja) 2006-05-23 2012-02-22 凸版印刷株式会社 有機エレクトロルミネッセンス素子の製造方法
US20070292681A1 (en) 2006-06-20 2007-12-20 Fuji Xerox Co., Ltd Organic electroluminescence device
JP2013025976A (ja) * 2011-07-20 2013-02-04 Panasonic Corp 有機elパネルおよびその製造方法
JPWO2013118462A1 (ja) * 2012-02-06 2015-05-11 株式会社Joled El表示装置およびその製造方法
US10840468B2 (en) 2013-07-11 2020-11-17 Joled Inc. Organic EL element and method for manufacturing organic EL element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005063834A (ja) * 2003-08-13 2005-03-10 Seiko Epson Corp 有機el装置、有機el装置の製造方法および電子機器
JP2005183013A (ja) * 2003-12-16 2005-07-07 Casio Comput Co Ltd 表示素子及び表示装置ならびに表示素子の製造方法
JP2006066553A (ja) * 2004-08-25 2006-03-09 Fuji Electric Holdings Co Ltd 有機el素子およびその製造方法
JP2006135337A (ja) * 2004-11-05 2006-05-25 Samsung Sdi Co Ltd 有機電界発光表示素子及びその製造方法
JP2007036175A (ja) * 2005-07-25 2007-02-08 Lg Electronics Inc 有機el素子及びその製造方法
JP2008004637A (ja) * 2006-06-20 2008-01-10 Fuji Xerox Co Ltd 有機電界発光素子
WO2013035136A1 (ja) * 2011-09-08 2013-03-14 パナソニック株式会社 発光装置およびその製造方法
JP2013161673A (ja) * 2012-02-06 2013-08-19 Panasonic Corp 有機el素子の製造方法、および有機el素子

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018060953A (ja) * 2016-10-06 2018-04-12 住友化学株式会社 有機elデバイス、表示素子及び有機elデバイスの製造方法
CN107919441A (zh) * 2016-10-06 2018-04-17 住友化学株式会社 有机el器件、显示元件和有机el器件的制造方法
CN106784387A (zh) * 2017-01-16 2017-05-31 京东方科技集团股份有限公司 一种有机发光二极管、显示基板及显示装置
CN108630829A (zh) * 2017-03-17 2018-10-09 京东方科技集团股份有限公司 显示面板的制作方法、显示面板及显示装置
CN111384087A (zh) * 2018-12-28 2020-07-07 武汉华星光电半导体显示技术有限公司 有机发光二极管显示面板
US11508928B2 (en) 2019-11-29 2022-11-22 Joled Inc. Self-luminous element and self-luminous display panel

Also Published As

Publication number Publication date
JPWO2015141144A1 (ja) 2017-04-06
US20170033314A1 (en) 2017-02-02
US10181582B2 (en) 2019-01-15
JP6336042B2 (ja) 2018-06-06

Similar Documents

Publication Publication Date Title
JP6336042B2 (ja) 有機el素子および有機el素子の製造方法
JP6519910B2 (ja) 有機el素子および有機el素子の製造方法
US9130187B2 (en) Organic EL element, display device, and light-emitting device
JP6232655B2 (ja) 有機el表示パネルおよびその製造方法
JP6233888B2 (ja) 有機発光デバイスとその製造方法
US9171894B2 (en) Organic EL element, organic EL panel, organic EL light-emitting apparatus and organic EL display apparatus
JP6510223B2 (ja) 有機el素子および有機el素子の製造方法
JP6142213B2 (ja) 有機el素子および有機el素子の製造方法
JP2018139262A (ja) 有機el表示素子、有機el表示パネル、および、有機el表示素子の製造方法
JP6340616B2 (ja) 有機el素子、および有機el表示パネル
JP6561281B2 (ja) 有機el素子および有機el素子の製造方法
JP6358447B2 (ja) 有機発光装置および有機発光装置の製造方法
JP5861961B2 (ja) 有機el素子とその製造方法
US10581019B2 (en) Organic EL element having reduced electric power consumption by optimizing film thicknesses thereof and method of manufacturing same
JP6111483B2 (ja) 有機el素子とその製造方法、有機elパネル、有機el発光装置、および有機el表示装置
JP6538339B2 (ja) 有機el素子および有機el素子の製造方法
JP2021057296A (ja) 自発光素子を用いた表示パネル、および、その製造方法
JP2013235777A (ja) 有機el素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508490

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124476

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764435

Country of ref document: EP

Kind code of ref document: A1