JP6519910B2 - 有機el素子および有機el素子の製造方法 - Google Patents

有機el素子および有機el素子の製造方法 Download PDF

Info

Publication number
JP6519910B2
JP6519910B2 JP2014251052A JP2014251052A JP6519910B2 JP 6519910 B2 JP6519910 B2 JP 6519910B2 JP 2014251052 A JP2014251052 A JP 2014251052A JP 2014251052 A JP2014251052 A JP 2014251052A JP 6519910 B2 JP6519910 B2 JP 6519910B2
Authority
JP
Japan
Prior art keywords
layer
metal
organic
film thickness
electron transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014251052A
Other languages
English (en)
Other versions
JP2016115717A (ja
Inventor
潤 橋本
潤 橋本
博之 安喰
博之 安喰
英幸 白波瀬
英幸 白波瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joled Inc
Original Assignee
Joled Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joled Inc filed Critical Joled Inc
Priority to JP2014251052A priority Critical patent/JP6519910B2/ja
Priority to US14/962,240 priority patent/US20160172620A1/en
Publication of JP2016115717A publication Critical patent/JP2016115717A/ja
Application granted granted Critical
Publication of JP6519910B2 publication Critical patent/JP6519910B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

本発明は、有機EL素子および有機EL素子の製造方法に関する。
有機EL素子は、自己発光を行うため視認性が高く、さらに完全固体素子であるため耐衝撃性に優れるなどの特徴を有し、近年、表示装置に有機EL素子を利用したものが普及しつつある。
有機EL素子は、一対の電極(陽極および陰極)間に、少なくとも発光層が挟まれた構成を有している。そして、有機EL素子は、多くの場合、発光層の他に、発光層に電子を供給するための機能層(電子輸送層、電子注入層等)が発光層と陰極の間にさらに挟まれた構成を有している。また、アルカリ金属やアルカリ土類金属は仕事関数が低いため、これらを含む層を機能層に用いると、良好な電子注入性が得られることが知られている。
しかし、アルカリ金属やアルカリ土類金属は、水分や酸素といった不純物と反応しやすい。そのため、アルカリ金属やアルカリ土類金属を含む機能層は、不純物が存在すると劣化が促進され、有機EL素子の発光効率の低下や発光寿命の短縮といった悪影響が発生するおそれがある。
機能層の劣化を防止するために、特許文献1には、発光層上に無機バリア層を設けた構成の有機EL素子が開示されている。このような無機バリア層によって不純物に対するブロック性が確保され、その無機バリア層よりも前に形成された発光層表面に吸着された不純物による、機能層の劣化を防止することができる。
ここで有機EL素子の発光効率は、内部量子効率および光取り出し効率の積によって決まる。内部量子効率とは、有機EL素子に注入された電子の数に対して有機EL素子内部で生じた光子の数の割合であり、光取り出し効率とは、有機EL素子内部で生じた光子の数に対して有機EL素子の外部に放射された光子の数の割合である。
特許第4882508号明細書
しかしながら、特許文献1の構成においては、無機バリア層が、絶縁体または半導体、もしくは仕事関数が4.0[eV]以上の金属から成り、電子注入性が低いため、発光層に十分な電子が供給されず、良好な内部量子効率が得られないおそれがある。
また、一般に金属の消衰係数が高いため、機能層にアルカリ金属またはアルカリ土類金属を含むことは、光取り出し効率の向上を阻害する要因となっている。
本発明は、上記の問題点に鑑みてなされたものであり、不純物に対する十分なブロック性を確保しつつ良好な内部量子効率を実現し、かつ、光取り出し効率を向上させた有機EL素子および当該有機EL素子の製造方法を提供することを目的とする。
上記目的を達成するために、本発明の一態様に係る有機EL素子は、光反射性の陽極と、前記陽極の上方に配された発光層と、前記発光層上に配された機能層と、前記機能層上に配され、金属層を含む光透過性の陰極と、を有し、前記機能層は、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層と、前記中間層上に配され、電子輸送性を有する電子輸送層と、を含み、前記電子輸送層は、電子輸送性を有する有機材料と、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有するアルカリ金属またはアルカリ土類金属である第2金属とを含み、前記中間層に接する前記電子輸送層の第1領域における前記第2金属の濃度は、前記第1領域より前記陰極に近い前記電子輸送層の第2領域における前記第2金属の濃度よりも高いことを特徴とする。
アルカリ金属、アルカリ土類に該当する第1金属のフッ化物は、不純物をブロックする性能が高いので、これを含む中間層は、発光層から電子輸送層に不純物が浸入するのをブロックして、電子輸送層の劣化を防止することができる。そのため、上記態様の有機EL素子においては、発光効率の低下や発光寿命の短縮といった悪影響の発生を抑えることができる。
また、中間層に接する電子輸送層の第1領域に含まれる第2金属は、中間層に含まれる第1金属のフッ化物における第1金属とフッ素との結合を切って第1金属を遊離させる。遊離した第1金属は、アルカリ金属またはアルカリ土類金属であり、仕事関数が小さく電子注入性が高い。そのため、上記態様の有機EL素子においては、電子輸送層から発光層への電子供給性が良好となり、良好な内部量子効率を実現することができる。
また、第2金属の濃度が電子輸送層全体で均一ではなく、電子輸送層の第1領域よりも第2領域で第2金属の濃度が低く抑えられている。そのため、上記態様の有機EL素子においては、第2金属が第1領域に含まれる濃度と同じ濃度で電子輸送層全体に第2金属が含まれる場合に比べて、電子輸送層全体での光の吸収を抑えることができ、光取り出し効率を向上させることができる。
従って、上記態様の有機EL素子においては、不純物に対する十分なブロック性を確保しつつ良好な内部量子効率を実現し、かつ、光取り出し効率を向上させることができる。
実施形態に係る有機EL素子の構成を模式的に示す断面図である。 (a)は、中間層の膜厚の違いによる輝度保持率の違いを示すグラフ、(b)は、中間層の膜厚の違いによる発光効率比の違いを示すグラフである。 有機EL素子に形成された光共振器構造における光の干渉について説明する図である。 機能層の光学膜厚を変化させて、青色発光素子から取り出される青色光の輝度/y値をシミュレーションで算出した結果を示すグラフである。 発光層〜機能層の合計膜厚を5nm〜200nmの範囲で変化させて、青色有機EL素子から取り出される青色光の輝度/y値をシミュレーションした結果を示すグラフである。 (a)は機能層の光学膜厚の違いによる青色光の輝度/y値の実効率の変化を示すグラフ、(b)は発光層〜機能層の合計膜厚を5nm〜200nmの範囲で変化させて、青色有機EL素子から取り出される青色光の輝度/y値をシミュレーションした結果と、各膜厚で実効率から推定される青色光の輝度/y値を示すグラフである。 実施形態に係る有機EL素子の製造過程の一部を模式的に示す部分断面図であって、(a)は、基板上にTFT層および層間絶縁層が形成された状態、(b)は、層間絶縁層上に画素電極が形成された状態、(c)は、層間絶縁層および画素電極上に隔壁材料層が形成された状態を示す。 図7の続きの有機EL素子の製造過程の一部を模式的に示す部分断面図であって、(a)は、隔壁層が形成された状態、(b)は、隔壁層の開口部内において画素電極上に正孔注入層が形成された状態、(c)は、隔壁層の開口部内において正孔注入層上に正孔輸送層が形成された状態を示す。 図8の続きの有機EL素子の製造過程の一部を模式的に示す部分断面図であって、(a)は、隔壁層の開口部内において正孔輸送層上に発光層が形成された状態、(b)は、発光層および隔壁層上に中間層が形成された状態、(c)は、中間層上に電子輸送層の金属ドープ領域が形成された状態を示す。 図9の続きの有機EL素子の製造過程の一部を模式的に示す部分断面図であって、(a)は、電子輸送層の金属ドープ領域上に電子輸送層の金属ノンドープ領域が形成された状態、(b)は、電子輸送層の金属ノンドープ領域上に電子注入層が形成された状態、(c)は、電子注入層上に対向電極が形成された状態、(d)は、対向電極上に封止層が形成された状態を示す。 実施形態に係る有機EL素子の製造過程を示す模式工程図である。 実施形態に係る有機EL素子を備えた有機EL表示装置の構成を示すブロック図である。
<発明の態様>
本発明の一態様に係る有機EL素子は、光反射性の陽極と、前記陽極の上方に配された発光層と、前記発光層上に配された機能層と、前記機能層上に配され、金属層を含む光透過性の陰極と、を有し、前記機能層は、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層と、前記中間層上に配され、電子輸送性を有する電子輸送層と、を含み、前記電子輸送層は、電子輸送性を有する有機材料と、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有するアルカリ金属またはアルカリ土類金属である第2金属とを含み、前記中間層に接する前記電子輸送層の第1領域における前記第2金属の濃度は、前記第1領域より前記陰極に近い前記電子輸送層の第2領域における前記第2金属の濃度よりも高いことを特徴とする。
ここで「金属層」は、Ag,Alをはじめとする金属元素の単体で形成された層であってもよいが、複数の金属元素の合金で形成された層であってもよい。
アルカリ金属、アルカリ土類に該当する第1金属のフッ化物は、不純物をブロックする性能が高いので、これを含む中間層は、発光層から電子輸送層に不純物が浸入するのをブロックして、電子輸送層の劣化を防止することができる。そのため、上記態様によれば、発光効率の低下や発光寿命の短縮といった悪影響の発生を抑えることができる。
また、中間層に接する電子輸送層の第1領域に含まれる第2金属は、中間層に含まれる第1金属のフッ化物における第1金属とフッ素との結合を切って第1金属を遊離させる。遊離した第1金属は、アルカリ金属またはアルカリ土類金属であり、仕事関数が小さく電子注入性が高い。そのため、上記態様によれば、電子輸送層から発光層への電子供給性が良好となり、良好な内部量子効率を実現することができる。
また、第2金属の濃度が電子輸送層全体で均一ではなく、電子輸送層の第1領域よりも第2領域で第2金属の濃度が低く抑えられているため、第2金属が第1領域に含まれる濃度と同じ濃度で電子輸送層全体に第2金属が含まれる場合に比べて、電子輸送層全体での光の吸収を抑えることができる。そのため、上記態様によれば、光取り出し効率を向上させることができる。
従って、上記態様によれば、不純物に対する十分なブロック性を確保しつつ良好な内部量子効率を実現し、かつ、光取り出し効率を向上させることができる。
また、前記第1領域は、前記有機材料に前記第2金属がドープされており、前記第2領域は、前記有機材料に前記第2金属がドープされていないとしてもよい。
上記態様によれば、第2領域での光の吸収を抑えることができ、光取り出し効率を向上させることができる。
第1金属として、ナトリウムを用いる。これによって、中間層は、吸湿性が低く、酸素との反応性が低いフッ化ナトリウムを含むため、不純物をブロックする性質に優れた層となる。また、ナトリウムは仕事関数が低いので、中間層から発光層に対する電子注入性が優れたものとなる。
第2金属として、バリウムを用いる。バリウムは汎用性のある材料なので、これを用いて機能層を形成することによって、コスト低減に資することができる。
また、前記発光層は、青色光を出射し、前記陽極と前記陰極との間には、光共振器構造が形成されており、前記機能層の膜厚は、前記光共振器構造が前記青色光に対して2次干渉を示す膜厚に設定されているとしてもよい。
ここで「光共振器構造が青色光に対して2次干渉を示す機能層の膜厚」とは、光共振器構造における光の干渉によって青色光の輝度とxy色度のy値との比(輝度/y値)が極大値を示す機能層の膜厚のうち2番目に小さい膜厚である。
陰極に金属層を含む場合、例えば、金属層の製造過程で金属元素が発光層内に拡散すると、発光層に不純物準位が生じて内部量子効率が低下するおそれがある。また、陰極に金属層を含む場合、青色光を出射する有機EL素子では、プラズモンロスにより内部量子効率が低下すると考えられる。
上記態様の有機EL素子においては、2次干渉を示す光共振器構造であるため、1次干渉を示す光共振器構造に比べて機能層の膜厚が厚い。そのため、上記態様によれば、発光層を陰極から遠ざけることができ、その結果、金属層の製造過程での元素拡散や、プラズモンロスを抑制し、良好な内部量子効率を実現することができる。
また、機能層の膜厚を、当該膜厚を変化させたときに取り出される青色光の輝度/y値が示す特性に関し、2次干渉に相当する膜厚の範囲内で、且つ輝度/y値が1次干渉の極大値以上となる膜厚に設定するとしてもよい。
これによって、青色発光素子から、輝度/y値の高い青色光が取り出されるので、色純度の良好な青色光を効率よく取り出すことができる。
また、機能層はさらに、電子輸送層上に配され、電子注入性を有する電子注入層を含むとしてもよい。これによって、陰極からの電子注入性が高まり、良好な内部量子効率を実現することができる。
本発明の一態様に係る有機EL素子の製造方法は、光反射性の陽極を形成し、前記陽極の上方に発光層を形成し、前記発光層上に、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層を形成し、前記中間層上に、電子輸送性を有する有機材料を用いて電子輸送層を形成し、前記電子輸送層の上方に、金属層を含む光透過性の陰極を形成し、前記電子輸送層を形成する際に、前記中間層に接する前記電子輸送層の第1領域に、前記第1領域の上方の前記電子輸送層の第2領域よりも高い濃度で、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する第2金属を含有させることを特徴とする。
この製造方法によって形成した有機EL素子においては、第1金属のフッ化物を含む中間層が、発光層から電子輸送層に不純物が浸入するのをブロックして、電子輸送層の劣化を防止することができる。そのため、上記製造方法によれば、発光効率の低下や発光寿命の短縮といった悪影響の発生を抑えた有機EL素子を形成することができる。
また、中間層に接する電子輸送層の第1領域含まれる第2金属は、中間層に含まれる第1金属のフッ化物における第1金属とフッ素との結合を切って第1金属を遊離させる。遊離した第1金属は、アルカリ金属またはアルカリ土類金属であり、仕事関数が小さく電子注入性が高い。そのため、上記製造方法によれば、電子輸送層から発光層への電子供給性が良好で、内部量子効率が高い有機EL素子を形成することができる。
また、第2金属の濃度が電子輸送層全体で均一ではなく、電子輸送層の第1領域よりも第2領域で第2金属の濃度が低く抑えられているため、第2金属が第1領域に含まれる濃度と同じ濃度で電子輸送層全体に第2金属が含まれる場合に比べて、電子輸送層全体での光の吸収を抑えることができる。そのため、上記製造方法によれば、光取り出し効率の高い有機EL素子を形成することができる。
<実施の形態>
以下、実施の形態にかかる有機EL素子について説明する。なお、以下の説明は、本発明の一態様に係る構成および作用・効果を説明するための例示であって、本発明の本質的部分以外は以下の形態に限定されない。
[1.有機EL素子の構成]
図1は、実施の形態に係る有機EL表示パネル100(図12参照)の部分断面図である。有機EL表示パネル100は、3つの色(赤色、緑色、青色)を発光する有機EL素子1(R)、1(G)、1(B)で構成される画素を複数備えている。図1では、その1つの青色の有機EL素子1(B)を中心としてその周辺の断面を示している。
有機EL表示パネル100において、各有機EL素子1は、前方(図1における紙面上方)に光を出射するいわゆるトップエミッション型である。
有機EL素子1(R)と、有機EL素子1(G)と、有機EL素子1(B)は、ほぼ同様の構成を有するので、以下では、まとめて有機EL素子1として説明する。
図1に示すように、有機EL素子1は、基板11、層間絶縁層12、画素電極13、隔壁層14、正孔注入層15、正孔輸送層16、発光層17、機能層31、対向電極22、および封止層23を備える。なお、基板11、層間絶縁層12、機能層31、対向電極22、および封止層23は、画素ごとに形成されているのではなく、有機EL表示パネル100が備える複数の有機EL素子1に共通して形成されている。
<基板>
基板11は、絶縁材料である基材111と、TFT(Thin Film Transistor)層112とを含む。TFT層112には、画素毎に駆動回路が形成されている。基材111は、例えばガラス材料からなる基板である。ガラス材料としては、無アルカリガラス、ソーダガラス、無蛍光ガラス、燐酸系ガラス、硼酸系ガラス、石英等のガラスなどが挙げられる。
<層間絶縁層>
層間絶縁層12は、基板11上に形成されている。層間絶縁層12は、樹脂材料からなり、TFT層112の上面の段差を平坦化するためのものである。樹脂材料としては、例えば、ポジ型の感光性材料が挙げられる。また、このような感光性材料として、アクリル系樹脂、ポリイミド系樹脂、シロキサン系樹脂、フェノール系樹脂が挙げられる。また、図1の断面図には示されていないが、層間絶縁層12には、画素毎にコンタクトホールが形成されている。
<画素電極>
画素電極13は、光反射性の金属材料からなる金属層を含み、層間絶縁層12上に形成されている。画素電極13は、画素毎に個々に設けられ、コンタクトホールを通じてTFT層112と電気的に接続されている。
本実施形態においては、画素電極13は、陽極として機能する。
光反射性を具備する金属材料の具体例としては、Ag(銀)、Al(アルミニウム)、アルミニウム合金、Mo(モリブデン)、APC(銀、パラジウム、銅の合金)、ARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、MoW(モリブデンとタングステンの合金)、NiCr(ニッケルとクロムの合金)などが挙げられる。
画素電極13は、金属層単独で構成してもよいが、金属層の上に、ITOやIZOのような金属酸化物からなる層を積層した積層構造としてもよい。
<隔壁層>
隔壁層14は、画素電極13の上面の一部の領域を露出させ、その周辺の領域を被覆した状態で画素電極13上に形成されている。画素電極13上面において隔壁層14で被覆されていない領域(以下、「開口部」という。)は、サブピクセルに対応している。即ち、隔壁層14は、サブピクセル毎に設けられた開口部14aを有する。
本実施形態においては、隔壁層14は、画素電極13が形成されていない部分においては、層間絶縁層12上に形成されている。即ち、画素電極13が形成されていない部分においては、隔壁層14の底面は層間絶縁層12の上面と接している。
隔壁層14は、例えば、絶縁性の有機材料(例えばアクリル系樹脂、ポリイミド系樹脂、ノボラック樹脂、フェノール樹脂等)からなる。隔壁層14は、発光層17を塗布法で形成する場合には塗布されたインクがあふれ出ないようにするための構造物として機能し、発光層17を蒸着法で形成する場合には蒸着マスクを載置するための構造物として機能する。本実施形態では、隔壁層14は、樹脂材料からなり、隔壁層14の材料としては、例えば、ポジ型の感光性材料が挙げられる。また、このような感光性材料として、アクリル系樹脂、ポリイミド系樹脂、シロキサン系樹脂、フェノール系樹脂が挙げられる。本実施形態においては、フェノール系樹脂が用いられている。
<正孔注入層>
正孔注入層15は、画素電極13から発光層17への正孔の注入を促進させる目的で、画素電極13上の開口部14a内に設けられている。正孔注入層15は、例えば、銀(Ag)、モリブデン(Mo)、クロム(Cr)、バナジウム(V)、タングステン(W)、ニッケル(Ni)、イリジウム(Ir)などの酸化物、あるいは、PEDOT(ポリチオフェンとポリスチレンスルホン酸との混合物)などの導電性ポリマー材料からなる層である。上記の内、酸化金属からなる正孔注入層15は、正孔(ホール)を安定的に、または正孔(ホール)の生成を補助して、発光層17に対し正孔(ホール)を注入する機能を有し、大きな仕事関数を有する。本実施の形態においては、正孔注入層15は、PEDOT(ポリチオフェンとポリスチレンスルホン酸との混合物)などの導電性ポリマー材料からなる。
ここで、正孔注入層15を遷移金属の酸化物で形成すると、複数の酸化数をとるため、複数の準位をとることができ、その結果、正孔注入が容易になり、駆動電圧の低減に寄与する。
<正孔輸送層>
正孔輸送層16は、親水基を備えない高分子化合物を用い開口部14a内に形成されている。例えば、ポリフルオレンやその誘導体、あるいはポリアリールアミンやその誘導体などの高分子化合物であって、親水基を備えないものなどを用いることができる。
正孔輸送層16は、正孔注入層15から注入された正孔を発光層17へ輸送する機能を有する。
<発光層>
発光層17は、開口部14a内に形成されている。発光層17は、正孔と電子の再結合によりR,G,Bの各色の光を出射する機能を有する。発光層17の材料としては公知の材料を利用することができる。例えば、オキシノイド化合物、ペリレン化合物、クマリン化合物、アザクマリン化合物、オキサゾール化合物、オキサジアゾール化合物、ペリノン化合物、ピロロピロール化合物、ナフタレン化合物、アントラセン化合物、フルオレン化合物、フルオランテン化合物、テトラセン化合物、ピレン化合物、コロネン化合物、キノロン化合物及びアザキノロン化合物、ピラゾリン誘導体及びピラゾロン誘導体、ローダミン化合物、クリセン化合物、フェナントレン化合物、シクロペンタジエン化合物、スチルベン化合物、ジフェニルキノン化合物、スチリル化合物、ブタジエン化合物、ジシアノメチレンピラン化合物、ジシアノメチレンチオピラン化合物、フルオレセイン化合物、ピリリウム化合物、チアピリリウム化合物、セレナピリリウム化合物、テルロピリリウム化合物、芳香族アルダジエン化合物、オリゴフェニレン化合物、チオキサンテン化合物、アンスラセン化合物、シアニン化合物、アクリジン化合物、8−ヒドロキシキノリン化合物の金属錯体、2−ビピリジン化合物の金属錯体、シッフ塩とIII族金属との錯体、オキシン金属錯体、希土類錯体等の蛍光物質や、トリス(2-フェニルピリジン)イリジウムなどの燐光を発光する金属錯体等の燐光物質を用いることができる。
<機能層>
機能層31は、中間層18、電子輸送層30、および電子注入層21で構成されている。
中間層18は、発光層17上に形成されており、アルカリ金属またはアルカリ土類金属から選択される第1金属のフッ化物で形成されている。
アルカリ金属に該当する金属は、リチウム,ナトリウム,カリウム,ルビジウム,セシウム,フランシウムであり、アルカリ土類金属の該当する金属は、カルシウム,ストロンチウム,バリウム,ラジウムである。これらのフッ化物で形成した膜は、不純物をブロックする働きをなす。
従って、中間層18は、発光層17、正孔輸送層16、正孔注入層15、隔壁層14の内部や表面に存在する不純物が、機能層31や対向電極22へと侵入するのを防止する働きをなす。
第1金属としては、特に、NaあるいはLiが好ましく、中間層18を、NaF(フッ化ナトリウム)あるいはLiF(フッ化リチウム)で形成することが好ましい。
電子輸送層30は、対向電極22から注入された電子を発光層17へと輸送する機能を有する有機材料と、アルカリ金属またはアルカリ土類金属から選択され、第1金属のフッ化物(NaF)の結合を切る性質を持つ第2金属とを含む層である。
電子輸送層30は、中間層18の上に形成され電子輸送性の有機材料からなり第2金属がドープされた金属ドープ領域19と、金属ドープ領域19の上に積層され電子輸送性の有機材料からなり第2金属がドープされていない金属ノンドープ領域20とで構成されている。本実施形態においては、金属ドープ領域19が電子輸送層30の第1領域となり、金属ノンドープ領域20が電子輸送層30の第2領域となる。
電子輸送層30に用いられる有機材料としては、例えば、オキサジアゾール誘導体(OXD)、トリアゾール誘導体(TAZ)、フェナンスロリン誘導体(BCP、Bphen)などのπ電子系低分子有機材料が挙げられる。
第2金属は、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウムなど)またはアルカリ土類金属(マグネシウム、カルシウム、ストロンチウム、バリウムなど)の中で、中間層18に含まれる第1金属のフッ化物における第1金属とフッ素との結合を切る性質を有する金属を用いる。
本実施形態においては、第2金属として、アルカリ土類金属に属するBa(バリウム)を選択することとする。このBaは、NaFにおけるNaとFの結合を切ってNaを遊離させる性質を有する元素である。
電子輸送層30の金属ノンドープ領域20の上には、対向電極22から金属ノンドープ領域20への電子注入性を高める目的で電子注入層21が設けられている。電子注入層21の材料としては、例えばフッ化リチウム(LiF)、NaF、キノリノールLi錯体(Liq)、Ba等の電子注入性材料が選択される。
<対向電極>
対向電極22は、各サブピクセル共通に設けられており、陰極として機能する。
この対向電極22には、金属材料で形成された金属層が含まれているが、金属層の膜厚は10nm〜30nm程度に薄く設定されて光透過性を有している。金属材料は光反射性の材料であるが、金属層の膜厚を30nm以下と薄くすることによって、光透過性を確保することができる。
従って、発光層17からの光の一部は対向電極22において反射されるが、残りの一部は対向電極22を透過する。
このように対向電極22に金属層が含まれることによって、そのシート抵抗値を低くすることができる。金属層の膜厚が10nm以上であれば、その表面抵抗(Rs)を10Ω/□以下の低抵抗にすることができる。
また対向電極22に金属層が含まれることによって、画素電極13と対向電極22との間に形成される光共振器構造においてそのキャビティ効果を高めることができる。
金属層を形成する金属材料としては、銀(Ag)、Agを主成分とする銀合金、アルミニウム(Al)、Alを主成分とするAl合金が挙げられる。Ag合金としては、マグネシウム−銀合金(MgAg)、インジウム−銀合金が挙げられる。Agは、基本的に低抵抗率を有し、Ag合金は、耐熱性、耐腐食性に優れ、長期にわたって良好な電気伝導性を維持できる点で好ましい。
Al合金としては、マグネシウム−アルミニウム合金(MgAl)、リチウム−アルミニウム合金(LiAl)が挙げられる。
その他の合金として、リチウム−マグネシウム合金、リチウム−インジウム合金、が挙げられる。
金属層は、例えばAg層あるいはMgAg合金層の単層で構成してもよいし、Mg層とAg層の積層構造(Mg/Ag)、あるいは、MgAg合金層とAg層の積層構造(MgAg/Ag)にしてもよい。
また、対向電極22は、金属層単独で構成してもよいが、金属層の上に、ITOやIZOのような金属酸化物からなる層を積層した積層構造としてもよい。
<封止層>
対向電極22の上には、発光層17が水分や酸素等に触れて劣化することを抑制する目的で封止層23が設けられている。有機EL表示パネル100はトップエミッション型であるため、封止層23の材料としては、例えばSiN(窒化シリコン)、SiON(酸窒化シリコン)等の光透過性材料が選択される。
<その他>
なお図1には示されないが、封止層23の上に、封止樹脂を介してカラーフィルタや上部基板を貼り合せてもよい。上部基板を貼り合せることによって、正孔輸送層16、発光層17、機能層31を水分および空気などから保護できる。
[2.不純物ブロック性と電子注入性]
正孔注入層15、正孔輸送層16、発光層17をウェットプロセスで形成する場合、これらの層の内部および表面に存在する不純物が電子輸送層30に到達すると、電子輸送層30の有機材料にドープされている金属と反応して、電子輸送層30の機能を低下させる。
また、不純物が有機材料と反応すると、有機材料が変質し、安定性を損なう虞もある。
隔壁層14をウェットプロセスで形成する場合にも、隔壁層14の内部および表面に存在する不純物が、同様に電子輸送層30の機能低下を引き起こす原因となる。
これに対して、本実施形態に係る有機EL素子1は、発光層17と電子輸送層30との間に、中間層18を備え、中間層18は、アルカリ金属のフッ化物中のアルカリ金属またはアルカリ土類金属のフッ化物を含んでいるので、このフッ化物が発光層17側から電子輸送層30側への不純物の侵入を防ぐ。
特にNaFは、吸湿性が低く、酸素との反応性が低いため、不純物をブロックする性能が優れ、発光層17側からの不純物の侵入を防ぐ。それによって電子輸送層30に含まれるアルカリ金属・アルカリ土類金属が不純物と反応するのを防ぎ、電子輸送層30の電子供給能の低下を抑制することができ、さらに、対向電極22が不純物によって劣化するのを防止する。
一方NaFは電気絶縁性が高いため、対向電極22および電子輸送層30から供給される電子の発光層17への移動を阻害し、発光効率を低下させる問題があるが、有機EL素子1の電子輸送層30には、中間層18に隣接して、第2金属としてのBaがドープされた金属ドープ領域19が設けられている。このBaは、中間層18中の第1金属であるNaのフッ化物(NaF)におけるNaとFとの結合を切る働きがあるので、中間層18中のNaFの一部が乖離して、Naが遊離する。
Naは仕事関数が低く、電子供給能が高いため、電子輸送層30から発光層17への電子の移動をアシストする。それによって、発光効率の低下を抑制し、駆動電圧を低減することができる。同時に中間層18中のNaFにより良好な不純物ブロック性を得ることができる。
電子輸送層30の金属ドープ領域19におけるBaのドープ濃度としては、良好な発光効率を得る上で5〜40wt%の範囲内に設定するのが好ましい。
ただし、中間層18におけるNaFの結合を切ってNaを遊離させるためには、電子輸送層30の金属ドープ領域19におけるBaのドープ濃度は5〜40wt%の範囲の中でも、比較的高い濃度に設定することが好ましく、20〜40wt%の範囲が好ましいと考えられる。
なお、第1金属のフッ化物における第1金属とフッ素との結合を分解する機構は、上記に限られない。発光層17、中間層18、電子輸送層30等の機能を損なわない限り、何れの機構によって第1金属とフッ素との結合が切れてもよい。
このように、中間層18が、高い不純物ブロック性を有する第1金属のフッ化物を含むことにより、発光層17側からの不純物の侵入をブロックして電子輸送層30(および対向電極22)の電子供給能の低下を抑制することができ、電子輸送層30の金属ドープ領域19が、第1金属とフッ素との結合を切る第2金属を含むことにより、第1金属が遊離し、絶縁性の高い中間層18を超えて電子輸送層30から発光層17へと電子が移動しやすくなり、良好な発光効率を得ることができる。
なお実際は、中間層18と電子輸送層30の金属ドープ領域19の境界は明確には分かれておらず、中間層18を形成する材料と、電子輸送層30の金属ドープ領域19を形成する材料とが、製造の過程で多少混ざり合って形成されている場合もある。即ち、中間層18の膜厚が、正確にD1〔nm〕というわけではなく、中間層18および電子輸送層30の境界がはっきりしていない場合もある。
ただしその場合でも、中間層18における第1金属の濃度は、電子輸送層30側よりも発光層17側で高く、第2金属の濃度は、発光層17側よりも電子輸送層30側で高いので、上述した効果を奏する。
ここでは、中間層18を形成する際に、膜厚がD1となるように意図した方法で形成した場合、形成された中間層18の膜厚がD1であるということとする。他の層の膜厚についても同様である。
[3.中間層の膜厚と保管安定性]
中間層18の膜厚D1が互いに異なる3種類の有機EL表示パネル100を試験体として保管安定性試験を行った。
試験体における中間層18の膜厚D1は、1nm,4nm,10nmである。
保管安定性試験においては、各試験体に通電して初期輝度を測定し、80℃の環境下に7日間保管した後、再び通電して高温保管後の輝度を測定した。そして各試験体について、輝度保持率(初期輝度に対する高温保管後の輝度の割合〔%〕)を算出した。
この高温保管後の輝度保持率で保管安定性を評価した。
図2(a)は、その結果を示すグラフである。
図2(a)に示すように、中間層18の膜厚D1が1nmの場合、輝度保持率が59〔%〕であって、保管安定性は低いが、膜厚D1が4nm以上の場合、輝度保持率が95%以上であり、良好な保管安定性を示している。
これより、中間層18の膜厚D1が4nm以上あれば、良好な保管安定性が得られ、有機EL素子の長寿命化を図れることがわかる。
なお、膜厚D1が10nmの試験体では、輝度保持率が100%を超える結果となっている。これは、高温保管前の状態において、正孔と電子とのバランスが最適な状態からずれていたのが、高温保管により、最適なバランス状態に近づいたためと考えられる。
[4.中間層の膜厚と発光効率比]
図2(b)は、中間層18の膜厚D1が互いに異なる3種類の有機EL表示パネル100についての発光効率比を示すグラフである。膜厚D1は、1,4,10〔nm〕の3種類である。この3種類の各試験体に対して、電流密度が10mA/cm2となるような電圧を印加した際の輝度を測定し、測定された輝度の値から発光効率を算出した。そして、基準となる有機EL表示パネルの発光効率の値を発光効率基準値として、発光効率基準値に対する比(発光効率比)をグラフにプロットした。
図2(b)に示すように、3種類の試験体うち、膜厚D1=4〔nm〕の試験体が、最も高い発光効比を示し、膜厚D1が1nmおよび10nmの試験体は、ほぼ同じ発光効率比を示した。
この結果から、中間層18の膜厚D1が、1nmよりも薄い場合および10nmよりも厚い場合には、さらに発光効率比が低くなると考えられる。これは、中間層18の膜厚D1が薄くなりすぎると、乖離する第1金属(本実施形態においてはNa)の絶対量が少なくなり、電子輸送層30から発光層17への電子の移動が促進されなくなり、一方、中間層18の膜厚D1が厚くなりすぎると、絶縁層としての機能が強くなって、発光効率が低下するためと考えられる。
従って、中間層18の膜厚D1は、1nm以上、10nm以下の範囲に設定することが好ましい。
[5.各層の光学膜厚と光共振器構造について]
図3は、本実施形態にかかる有機EL素子の光共振器構造における光の干渉を説明する図である。当図では青色発光の発光層17を有する有機EL素子1(B)について示し、ここでは特に有機EL素子1(B)について説明する。
この有機EL素子1(B)の光共振器構造において、発光層17における正孔輸送層16との界面近傍から青色光が出射されて各層を透過していく。この各層界面において光の一部が反射されることによって光の干渉が生じる。その主なものを例示すると以下のような干渉が挙げられる。
(1)発光層17から出射され対向電極22側に進行した光の一部が、対向電極22を透過して発光素子の外部に出射される第1光路C1と、発光層17から、画素電極13側に進行した光の一部が、画素電極13で反射された後、発光層17および対向電極22を透過して発光素子の外部に出射される第2光路C2とが形成される。そして、この直接光と反射光との干渉が生じる。
図3に示す光学膜厚L1は、第1光路C1と第2光路C2との光学距離の差に対応している。この光学膜厚L1は、発光層17と画素電極13との間に挟まれた正孔注入層15、正孔輸送層16の合計の光学距離(膜厚と屈折率との積、nm)である。
(2)発光層17から対向電極22側に進行した光の一部が、対向電極22で反射されて、さらに画素電極13で反射された後、発光素子の外部に出射される第3光路C3も形成される。
そして、この第3光路C3を経由する光と、上記第2光路C2を経由する光との干渉が生じる。
第2光路C2と第3光路C3との光学距離の差は図3に示す光学膜厚L2に対応する。この光学膜厚L2は、発光層17、機能層31の合計の光学距離である。
特に、有機EL素子1(B)においては、対向電極22に金属層が含まれているので、対向電極が金属酸化物だけで構成される場合よりも、対向電極22で反射されやすいので、このような干渉も生じやすい。
(3)第3光路C3を経由する光と、上記第1光路C1を経由する光との干渉も生じる。第1光路C1と第3光路C3との光学距離の差は、図3に示す光学膜厚L3に対応する。光学膜厚L3は、上記光学膜厚L1と光学膜厚L2の和である(L3=L1+L2)。
光学膜厚L3は、画素電極13と対向電極22との間に挟まれた正孔注入層15、正孔輸送層16、発光層17、機能層31の合計の光学距離である。
通常、共振器構造において、光取り出し効率が極大値を示す光学膜厚に調整される。上記の各光路を経由する光が、互いに干渉によって強め合って光取り出し効率が高まるように、発光層17と画素電極13との間の光学膜厚L1、発光層17と対向電極22との間の光学膜厚L2、そして、画素電極13と対向電極22との間の光学膜厚L3は設定される。
これらの基本的な光干渉については、赤色の有機EL素子1(R)、緑色の有機EL素子1(G)においても同様に生じる。
ただし本発明者の考察によると、青色発光素子に関しては、光取り出し効率が極大値となる光学膜厚に設定すると、取り出される青色光の色度が目標色度に近いとはいえず、むしろ光取り出し効率が極大値をとる光学膜厚からずらして、色度y値の小さい青色光を取り出す光学膜厚を選択する方が好ましいといえる。
すなわち、青色の有機EL素子1(B)の共振器構造において、発光層17と画素電極13との間の光学膜厚L1を変化させたり、発光層17と対向電極22との間の光学膜厚L2を変化させたりすると、取り出される青色光の光取り出し効率が変化すると共に色度も変化する。
そこで、以下に詳細に説明するように、青色発光素子については、輝度とxy色度のy値との比(輝度/y値)が高い値を示すような光学膜厚に調整することとする。
青色の有機EL素子1(B)から最終的に取り出す青色光の色度としては、xy色度のy値が0.08以下であることが一般的な色度目標とされている。
青色の有機EL素子1(B)から取り出される青色光の色度y値がこの目標色度から遠ければ、カラーフィルタ(CF)で大きく色度補正をする必要がある。その場合、光透過率の低いCFを用いざるを得ないので、もとの青色発光素子からの光取り出し効率が大きくても、CF通過後の光取り出し効率は大幅に低下してしまう。
従って、色度y値が0.08程度以下の青色光を効率よく取り出すには、光取り出し効率を大きくすることだけではなく、色度Y値を小さくすることも考慮することが必要である。すなわち、青色発光素子における各層の光学膜厚を設定するときに、光取り出し効率と色度y値の両方を考慮して、光学膜厚を設定することが必要である。
本発明者等は、さらに検討を行った結果、色度y値が0.08以下の青色光を効率よく取り出すには、輝度/y値が高い値を示すように各層の光学膜厚の設定を行えばよいことも見出した。
このような考察に基づいて、青色の有機EL素子1(B)については、輝度/y値を指標とし、この指標が高い値を示すように光学膜厚L1,L2を設定することとする。以下にその具体例を光学シミュレーションに基づいて説明する。
(光学シミュレーション)
本実施形態に基づく一実施例にかかる青色の有機EL素子1(B)において、正孔輸送層16の膜厚、及び発光層17から機能層31までの合計膜厚を、それぞれ変化させたときに、素子から取り出される青色光の輝度/y値がどのように変化するかをシミュレーションで算出した。
このシミュレーションは、マトリックス法を用いた光学シミュレーションとして知られている。
このシミュレーションにおいて、有機EL素子1(B)の各層の屈折率は、460nmの光に対する屈折率の値を用いた。また、このシミュレーションは、対向電極22の膜厚を30nmに固定し、正孔輸送層16の膜厚を5nm〜200nmの範囲で変え、発光層17から機能層31までの合計膜厚を10nm〜200nmの範囲で変えて行った。
図4のグラフにおいて、横軸は正孔輸送層16の膜厚を示し、縦軸は、発光層17〜機能層31の合計膜厚を示しており、各膜厚は5nm間隔で変化させている。
ここで、光学膜厚L1は、正孔輸送層16、正孔注入層15、画素電極13の金属酸化物層の光学膜厚の合計なので、正孔注入層15、画素電極13の金属酸化物層の膜厚を固定した場合、正孔輸送層16の膜厚を変化させるのに応じて、光学膜厚L1も変化する。図4の横軸にはその光学膜厚L1の値も表示している。
同様に、光学膜厚L2は、発光層17〜機能層31の合計光学膜厚であって、その発光層17〜機能層31の合計膜厚を変化させるのに応じて、光学膜厚L2も変化する。図4の縦軸にはその光学膜厚L2の値も表示している。
なお、光学膜厚L3は、光学膜厚L1と光学膜厚L2の和なので、図4中に矢印L3で示す斜め方向に光学膜厚L3が増加するということもできる。
輝度/y値の最高値を1としたときの輝度/y値の相対値を、数値範囲(0.2、0.3〜0.4、0.5〜0.6、0.7〜0.8、0.9〜1.0)に分けてグラフ内にマッピングした。
図4に示すグラフを見ると、正孔輸送層16の膜厚が20nm及び155nmを示す縦方向に伸長する破線と、発光層17〜機能層31の合計膜厚が、35nm及び160nmを示す横方向に伸長する破線とが交差する4つの箇所(a,b,c,d)に、輝度/y値のピーク(極大値)が明確に表れている。すなわち、正孔輸送層16の膜厚が20nmあるいは155nm、且つ、発光層17〜機能層31の合計膜厚が35nmあるいは160nmのときに、輝度/y値が極大値を示している。
本明細書では、有機EL素子1(B)の何れかの層の膜厚を変化させたときに取り出される青色光の輝度/y値が極大値を示すことを、膜厚が最少のものから順に1次干渉、2次干渉というように、次数を増やして表現する。
光学膜厚L1(正孔輸送層16の膜厚)に対する輝度/y値の関係を見ると、a点、b点は1次干渉ピーク、c点、d点は2次干渉ピークに相当し、1干渉ピークでは、2次干渉ピークと比べて輝度/y値が高い値を示している。一方、光学膜厚L2(発光層17〜機能層31の合計膜厚)に対する輝度/y値の関係を見ると、a点、c点は1次干渉ピーク、b点、d点は2次干渉ピークに相当し、1干渉ピークでは2次干渉ピークと比べて輝度/y値が高い値を示している。
ここで、1次干渉のピークは、輝度/y値が極大値を示すの光学膜厚の中で最小の光学膜厚に相当し、2次干渉のピークは、輝度/y値が極大値を示す2番目に小さい光学膜厚に相当する。
以上のことから、有機EL素子1(B)から輝度/y値の高い青色光を取り出すには、光学膜厚L1を干渉ピークに合せて設定するだけでなく、光学膜厚L2も干渉ピークに合せて設定することによって、より高い輝度/y値の青色光を取りせることがわかる。
また、特に、光学膜厚L1に関する1次干渉ピークと、光学膜厚L2に関する1次干渉ピークとが重なったa点においては、高い輝度/y値が得られること(高い光共振効果が得られること)がわかる。
ここで、光学膜厚L2に関する干渉ピークが大きくなっているのは、対向電極22に金属層が含まれていることが要因と考えられるので、対向電極22に金属層が含まれていることが、光共振効果を高めるのに寄与しているということもいえる。
光学膜厚L2と輝度/y値:
以下では、光学膜厚L2に着目し、光学膜厚L1を、1次干渉に相当する一定値に固定して、光学膜厚L2を変化させたときに、輝度/y値がどのように変化するかを考察する。
光学膜厚L1が1次干渉に相当するのは、図4に示すように、正孔輸送層16の膜厚20nm、光学膜厚L1が76nmのときである。
図5は、発光層17〜機能層31の合計膜厚を5nm〜200nmの範囲で変化させて、青色有機EL素子1(B)から取り出される青色光の輝度/y値をシミュレーションした結果を示すグラフである。光学膜厚L2は、横軸の発光層17〜機能層31の合計膜厚に屈折率1.9を掛けた値である。
図5のグラフに示されるように、光学膜厚L2が小さい方から順に、1次干渉のピーク,2次干渉のピークが存在する。そして、光学シミュレーションにおいて、1次干渉のピークaにおける輝度/y値の極大値は、2次干渉のピークbにおける輝度/y値の極大値よりも高い値である。
従って、光学シミュレーションの結果からは、青色有機EL素子において、機能層31の膜厚を、1次干渉のピークに相当する膜厚に設定すれば、素子から取り出される青色光の輝度/y値が高くなるので、色度が良好な青色光を効率よく取り出せると考えられる。
ただし、マトリックス法を用いた光学シミュレーションでは、対向電極22の製造過程でAgが発光層17の内部へ拡散し不純物準位が生じることに起因する内部量子効率の低下や、プラズモンロスによる内部量子効率の低下が反映されない。これらの理由による内部量子効率の低下は、青色発光の発光層17を有する有機EL素子1(B)において顕著である。また、機能層31の膜厚が大きく、発光層17が対向電極22から離れていれば、これらの理由による内部量子効率の低下は隠微になる。
そこで本発明者らは、実際に有機EL素子1(B)から色度が良好な青色光を効率よく取り出せる機能層31の膜厚と、光学シミュレーションの結果に基づいた機能層31の好適な膜厚とが相違するのではないかと考え、有機EL素子1(B)から出射した青色光の実測値と光学シミュレーションの結果とで輝度/y値を比較した。
その結果を、図6(a)に示す。
図6(a)は、機能層31の膜厚が互いに異なる4種類の有機EL素子1(B)についての光学シミュレーションの結果と実測値との比率を示すグラフである。4種類の有機EL素子1(B)試験体における機能層31の膜厚は、10nm,50nm,100nm,125nmである。なお、4種類の有機EL素子1(B)の試験体において、光学膜厚L1はいずれも1次干渉に相当する76nmとした。
この4種類の各試験体に対して、輝度およびy値を測定して輝度/y値の実測値を算出した。そして、各試験体で光学シミュレーションにより得た輝度/y値に対する比率(以下、「実効率」と表記する)を、グラフにプロットした。
図6(a)に示すように、機能層31の膜厚が10nmの場合、実効率が44%であって実測値とシミュレーション結果との差が大きい。しかし、機能層31の膜厚が厚くなるほど実効率が向上し、機能層31の膜厚が125nmの場合、実効率が89%であり、シミュレーション結果に近い性能を示している。
これは、機能層31の膜厚が小さい場合、対向電極22の製造過程でAgが発光層17の内部へ拡散しやすいことや、プラズモンロスが大きくなるために、光学シミュレーションの条件よりも実際の内部量子効率が低下したと考えられる。逆に、機能層31の膜厚が大きいほど、対向電極22の製造過程で発光層17へのAgの拡散が機能層31によって阻止され、さらに、発光層17の発光点が対向電極22から遠ざかりプラズモンロスが低減することにより、光学シミュレーションの条件と実際の内部量子効率との差が抑えられると考えられる。そのため、機能層31の膜厚が130nm以上の場合、実効率は90%以上になると推定される。
図6(b)は、機能層31の膜厚と青色有機EL素子1(B)から取り出される青色光の輝度/y値との関係を示すグラフである。太線は発光層17〜機能層31の合計膜厚を5nm〜200nmの範囲で変化させて、有機EL素子1(B)から取り出される青色光の輝度/y値を光学シミュレーションした結果を示す。細線は各膜厚で実効率から推定される青色光の輝度/y値を示す。なお、試験体において、発光層17の膜厚は50nmに固定している。
図6(b)のグラフに示されるように、実効率から推定される青色光の輝度/y値についても、1次干渉のピーク,2次干渉のピークが存在することは、光学シミュレーションの結果と同様である。
しかし、実効率から推定される青色光の輝度/y値では、2次干渉のピークaにおける極大値が、1次干渉のピークbにおける極大値よりも高い値である点で、光学シミュレーションの結果と相違している。
従って、実効率を考慮すると、有機EL素子1(B)において、発光層17〜機能層31の合計膜厚を、2次干渉のピークに相当する膜厚に設定すれば、素子から取り出される青色光の輝度/y値が高くなるので、色度が良好な青色光を効率よく取り出せることになる。
特に、図6(b)の細線で示すグラフにおいて、2次干渉のピークに相当する発光層17〜機能層31の合計膜厚範囲の中で、1次干渉のピークの極大輝度/y値以上の輝度/y値を示す範囲Aに設定することは、色度が良好な青色光を効率よく取り出す上で好ましい。
この範囲Aは、発光層17〜機能層31の合計膜厚が150nm〜170nmの範囲である。図6(b)に結果を示す光学シミュレーションでは発光層17の膜厚を50nmに固定しているので、範囲Aに相当する機能層31の膜厚の範囲は100nm〜120nmの範囲であって、機能層31の光学膜厚の範囲としては、100×1.9=190nmから120×1.9=228nmに相当する。
従って有機EL素子1(B)から色度の良好な青色光を効率よく取り出すには、光学膜厚L1を1次干渉に相当する76nm付近(例えば光学膜厚L1が60〜90nmの範囲)に設定し、機能層31の光学膜厚を190nm〜228nmの範囲に設定することが特に好ましい。
なお、図5および図6(b)には、光学膜厚L1が1次干渉ピークに相当するとき(正孔輸送層16の膜厚20nmのとき)について示したが、図4を参照すると、光学膜厚L1が2次干渉ピークに相当するとき(正孔輸送層16の膜厚155nm、光学膜厚L1が305.5nmのとき)も、輝度/Y値の値は全体的に低いものの図5および図6(b)と同様の形状のグラフが得られることがわかる。
従って有機EL素子1(B)から色度の良好な青色光を効率よく取り出す上で、光学膜厚L1を2次干渉ピークに相当する305.5nm付近(例えば光学膜厚L1が290〜320nmの範囲)に設定し、機能層31の光学膜厚を190nm〜228nmの範囲に設定することも好ましい。
このように、有機EL素子1(B)から色度の良好な青色光を効率よく取り出すには、光学膜厚L1を光学干渉に適した範囲に設定した上で、機能層31の光学膜厚を190nm〜228nmの範囲に設定することが好ましい。
以上のように、青色の有機EL素子1(B)については輝度/y値が高くなるように、光学膜厚L1および機能層31の光学膜厚を設定することが好ましいことを説明したが、赤色の有機EL素子1(R)および緑色の有機EL素子1(B)においても、同様にして、各色の発光輝度が高くなるように、光学膜厚L1および機能層31の光学膜厚を設定することが好ましい。
[6.電子輸送層の膜厚]
ここまでの説明で示したように、中間層18の膜厚D1は、1nm以上、10nm以下の範囲に設定することが好ましい。つまり、機能層31全体の好ましい膜厚(100nm以上、120nm以下の範囲)において中間層18が占める割合は小さく、機能層31を好ましい膜厚に設定するためには、電子輸送層30の膜厚を大きくする必要がある。例えば、中間層18の膜厚D1を4nmに設定した場合、機能層31の膜厚を100nm以上、120nm以下の範囲に収めるに、電子輸送層30の膜厚を96nm以上、116nm以下の範囲に設定することが好ましい。
このような電子輸送層30の厚膜化により、有機EL素子1からの光取り出し効率は、電子輸送層30の消衰係数に大きく影響される。特に、金属ドープ領域19において有機材料にBaを20%の濃度でドープした場合、金属ドープ領域19の消衰係数は、0.16と比較的高い値になる。
しかし、金属ノンドープ領域20では、有機材料にBaがドープされていないため、金属ノンドープ領域20の消衰係数は、0.034に抑えられる。そこで、電子輸送層30全体での消衰係数を低く抑えるには、金属ドープ領域19の膜厚を小さく形成し、金属ノンドープ領域20の膜厚を大きく形成することが好ましい。
ただし、金属ドープ領域19の膜厚を小さくしすぎると、隣接する中間層18のNaFを十分に乖離させることができないと考えられる。そこで金属ドープ領域19の膜厚を例えば10nm以上、30nm以下の範囲に設定した上で、機能層31の膜厚を好ましい膜厚の範囲に収める範囲で、金属ノンドープ領域20を厚膜化することが好ましい。
なお実際は、金属ドープ領域19と金属ノンドープ領域20との境界は明確には分かれておらず、金属ドープ領域19と金属ノンドープ領域20とが、製造の過程で多少混ざり合って形成されている場合もある。ただしその場合でも、電子輸送層30における第2金属の濃度は、電子注入層21側よりも中間層18側で高いので、中間層18のNaFを乖離させる機能を有しつつ、電子輸送層30全体での消衰係数を低く抑えることができる。
[7.有機EL素子の製造方法]
有機EL素子1の製造方法について、図7〜図10、図11を参照しながら説明する。なお、図7〜図10は、有機EL素子1の製造過程を模式的に示す断面図であり、図11は、有機EL素子1の製造過程を示す模式工程図である。
まず、図7(a)に示すように、基材111上にTFT層112を成膜して基板11を形成し(図11のステップS1)、基板11上に層間絶縁層12を成膜する(図11のステップS2)。層間絶縁層12の材料である層間絶縁層用樹脂には、本実施形態においては、ポジ型の感光性材料であるアクリル樹脂を用いる。層間絶縁層12は、層間絶縁層用樹脂であるアクリル樹脂を層間絶縁層用溶媒(例えば、PGMEA)に溶解させた層間絶縁層用溶液を基板11上に塗布し、その後、焼成することによって成膜する(図11のステップS3)。この焼成は、150℃以上210℃以下の温度で180分間行う。
なお、図7〜図10の断面図および図11の工程図には示されないが、層間絶縁層12を形成するときに、パターン露光と現像を行うことによってコンタクトホールを形成する。層間絶縁層12は焼成後には硬くなるので、コンタクトホールの形成は、層間絶縁層12の焼成前に行う方が容易である。
そして、サブピクセル毎に、金属材料を真空蒸着法またはスパッタ法で厚み150nm程度に成膜して、図7(b)に示すように、画素電極13を形成する(図11のステップS4)。
次に、画素電極13上に、隔壁層14の材料である隔壁層用樹脂を塗布し、隔壁材料層14bを形成する(図7(c))。隔壁層用樹脂には、例えば、ポジ型の感光性材料であるフェノール樹脂が用いられる。隔壁材料層14bは、隔壁層用樹脂であるフェノール樹脂を溶媒(例えば、乳酸エチルとGBLの混合溶媒)に溶解させた溶液を画素電極13上に一様に塗布することによって形成する。
次に、隔壁材料層14bに露光と現像を行うことで隔壁層14の形状にパターン形成し(図8(a)、図11のステップS5)、焼成することによって隔壁層14を形成する(図11のステップS6)。この焼成は、例えば、150℃以上210℃以下の温度で60分間行う。形成された隔壁層14によって、発光層17の形成領域となる開口部14aが規定される。
隔壁層14の形成工程においてさらに、隔壁層14の表面を所定のアルカリ性溶液や水、有機溶媒等によって表面処理したり、プラズマ処理を施してもよい。隔壁層14の表面処理は、開口部14aに塗布するインクに対する接触角を調節したり、隔壁層14の表面に撥液性を付与する目的で行われる。
そして、マスク蒸着法やインクジェットによる塗布法によって、正孔注入層15の材料を成膜し、焼成することによって、図8(b)に示すように正孔注入層15を形成する(図11のステップS7)。
次に、隔壁層14が規定する開口部14aに対し、正孔輸送層16の構成材料を含むインクを塗布し、焼成(乾燥)を経て、図8(c)に示すように正孔輸送層16を形成する(図11のステップS8)。
同様に、発光層17の材料を含むインクを塗布し、焼成(乾燥)することにより、図9(a)に示すように発光層17を形成する(図11のステップS9)。
続いて、図9(b)に示すように、発光層17の上に、真空蒸着法などにより、中間層18を膜厚D1で成膜する(図11のステップS10)。中間層18は隔壁層14の上にも形成される。
次に、中間層18の上に、第2金属をドープしながら電子輸送層30の有機材料を真空蒸着法で成膜することによって、図9(c)に示すように電子輸送層30の金属ドープ領域19を形成する(図11のステップS11)。さらに、金属ドープ領域19の上に、第2金属をドープすることなく電子輸送層30の有機材料を真空蒸着法で成膜することによって、図10(a)に示すように電子輸送層30の金属ノンドープ領域20を形成する(図11のステップS12)。
金属ドープ領域19および金属ノンドープ領域20の形成工程では、金属ドープ領域19および金属ノンドープ領域20を合わせた電子輸送層30の膜厚が、機能層31の好適な膜厚の範囲(100nm〜120nm)から中間層18の膜厚D1、および電子輸送層30の後に成膜する電子注入層21の膜厚(0.5nm〜1.0nm)を引いた膜厚の範囲に収まるように、真空蒸着法により有機材料および第2金属を堆積させる量を決定する。
次に、電子輸送層30の金属ノンドープ領域20の上に、電子注入層21の構成材料を真空蒸着法またはスパッタ法で厚み0.5nm〜1.0nmの範囲内で成膜して、図10(b)に示すように、電子注入層21を形成する(図11のステップS13)。
続いて、図10(c)に示すように、電子注入層21の上に、金属材料等を、真空蒸着法、スパッタ法等で成膜することにより、対向電極22を形成する(図11のステップS14)。
そして、対向電極22の上に、SiN、SiON等の光透過性材料を、スパッタ法、CVD法等で成膜することによって、図10(d)に示すように封止層23を形成する(図11のステップS15)。
以上の工程を経ることにより、有機EL素子1が完成すると共に、複数の有機EL素子1を備えた有機EL表示パネル100ができあがる。なお、封止層23の上にカラーフィルタや上部基板を貼り合せてもよい。
[8.有機EL表示装置の全体構成]
図12は、有機EL表示装置1000の構成を示す模式ブロック図である。当図に示すように、有機EL表示装置1000は、有機EL表示パネル100と、これに接続された駆動制御部200とを有している。駆動制御部200は、4つの駆動回路210〜240と制御回路250とから構成されている。
なお、実際の有機EL表示装置1000では、有機EL表示パネル100に対する駆動制御部200の配置については、これに限られない。
[実施の形態のまとめ]
本実施の形態に係る有機EL素子1によれば、中間層18によって、発光層17側から電子輸送層30に不純物が浸入するのを防止するので、発光効率の低下や発光寿命の短縮といった悪影響の発生を抑えることができる。
また、中間層18に接する金属ドープ領域19にBaが含まれるので、金属ドープ領域19の働きで中間層18における発光層17への電子注入性が確保され、高い内部量子効率を実現することができる。
また、電子輸送層30のうち金属ノンドープ領域20には、Baがドープされておらず、消衰係数が0.034に抑えられている。さらに、Baがドープされ消衰係数が大きい金属ドープ領域19の膜厚を10nm〜30nmの範囲に抑え、消衰係数が小さい金属ノンドープ領域20を厚膜化している。そのため、電子輸送層30全体での消衰係数を低く抑えて、良好な光取出し性を実現することができる。
また、青色光を出射する有機EL素子1(B)において機能層31の膜厚を、100nm〜120nmの範囲に設定している。この機能層31の膜厚の範囲は、青色光に対する2次干渉のピークに相当する膜厚範囲であり、1次干渉のピークに相当する膜厚範囲よりも膜厚が大きいため、対向電極22の製造過程でのAgの拡散やプラズモンロスが抑制され、内部量子効率が向上する。そのため、出射する青色光が1次干渉のピークの極大輝度/y値以上の輝度/y値を示し、色純度の良好な青色光を効率よく取り出すことができる。
また、対向電極22に、金属材料からなる金属層が含まれているので、対向電極22を、ITOのような金属酸化物の材料だけで形成する場合と比べると、Agのような金属材料層が含まれることによって、そのシート抵抗を低減することができる。そして、対向電極22の導電性が向上することによって、有機EL表示パネル100の中央部に存在する有機EL素子1に電力を供給する際の電圧降下を低減することができる。
また対向電極22に、金属材料の層が含まれることによって、対向電極22を金属酸化物材料だけで形成する場合と比べると、有機EL素子1における共振器構造のキャビティ効果を高めることができる。それによって、有機EL素子1における光取り出し効率を高めることができる。
なお、上記説明における膜厚の範囲や膜厚の割合についての条件は、必ずしも開口部14aで規定されるサブピクセルの全領域で満たさなくてもよく、サブピクセルの中央部での膜厚が、上記説明における膜厚の条件を満たしていればよい。
<変形例>
以上、実施の形態について説明したが、本発明はこれらの実施形態に限定されることはなく、例えば以下に示すような変形例を実施することも出来る。
(変形例1)上記実施形態における有機EL素子は、正孔注入層15、正孔輸送層16を備えていたが、これらのうち1つ以上の層を備えない構成の有機EL素子も同様に実施することができる。
(変形例2)上記実施形態においては、有機EL素子1の基材111は、絶縁材料としてガラスを用いた例について説明したが、これに限られない。基材111を構成する絶縁材料として、例えば、樹脂やセラミック等を用いてもよい。基材111に用いる樹脂としては、例えば、ポリイミド系樹脂、アクリル系樹脂、スチレン系樹脂、ポリカーボネート系樹脂、エポキシ系樹脂、ポリエーテルサルフォン、ポリエチレン、ポリエステル、シリコーン系樹脂等の絶縁性材料が挙げられる。基材111に用いるセラミックとしては、例えばアルミナが挙げられる。
(変形例3)上記実施形態においては、トップエミッション型であって、画素電極13が光反射性の陽極であり、対向電極22が光透過性の陰極であったが、逆に、画素電極が光透過性の陰極で、対向電極が光反射性の陽極であるボトムエミッション型も実施できる。
その場合、例えば、層間絶縁層12上に陰極としての画素電極13および隔壁層14を形成し、開口部14a内において、画素電極13の上に、電子注入層21、電子輸送層30の金属ノンドープ領域20、電子輸送層30の金属ドープ領域19、中間層18、発光層17を順に形成し、その上に、正孔輸送層16、正孔注入層15を形成し、その上に陽極としての対向電極22を形成する。
(変形例4)上記実施形態においては、電子輸送層30の金属ノンドープ領域20に第2金属を含まない例について説明したが、金属ノンドープ領域20に第2金属を含む構成とすることもできる。金属ノンドープ領域20に第2金属を含む場合は、電子輸送層30の金属ノンドープ領域20における第2金属の濃度を、金属ドープ領域19における第2金属の濃度よりも低く設定する。
例えば、電子輸送層30にBaをドープする場合、金属ドープ領域19におけるBaのドープ濃度は、中間層18におけるNaFの結合を切ってNaを遊離させるために20〜40wt%の範囲に設定し、金属ノンドープ領域20におけるBaのドープ濃度は、光の吸収を抑えるために5〜19wt%の範囲に設定することが好ましい。
また、金属ノンドープ領域20におけるBaのドープ濃度を5〜19wt%の範囲に設定する場合、金属ノンドープ領域20において対向電極22からの電子注入性を確保することができる。この場合には、電子注入層21を備えない構成とすることもできる。
本発明の有機EL素子、有機EL表示パネルは、家庭用、公共施設、あるいは業務用の各種表示装置、テレビジョン装置、携帯型電子機器用ディスプレイ等に利用可能である。
1 有機EL素子
13 画素電極(陽極)
17 発光層
18 中間層
19 金属ドープ領域(第1領域)
20 金属ノンドープ領域(第2領域)
21 電子注入層
22 対向電極(陰極)
30 電子輸送層
31 機能層

Claims (12)

  1. 光反射性の陽極と、
    前記陽極の上方に配された発光層と、
    前記発光層上に配された機能層と、
    前記機能層上に配され、金属層を含む光透過性の陰極と、
    を有し、
    前記機能層は、
    アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層と、
    前記中間層上に配され、電子輸送性を有する電子輸送層と、
    を含み、
    前記電子輸送層は、電子輸送性を有する有機材料と、アルカリ金属またはアルカリ土類金属である第2金属とを含み、
    前記中間層に接する前記電子輸送層の第1領域における前記第2金属の濃度は、前記第1領域より前記陰極に近い前記電子輸送層の第2領域における前記第2金属の濃度よりも高い
    有機EL素子。
  2. 前記第1領域は、前記有機材料に前記第2金属がドープされており、
    前記第2領域は、前記有機材料に前記第2金属がドープされていない
    請求項1に記載の有機EL素子。
  3. 前記第1金属はナトリウムである
    請求項2に記載の有機EL素子。
  4. 前記第2金属は、前記第1金属のフッ化物における前記第1金属とフッ素との結合を切る性質を有する
    請求項3に記載の有機EL素子。
  5. 前記第2金属はバリウムである
    請求項3に記載の有機EL素子。
  6. 前記発光層は、青色光を出射し、
    前記陽極と前記陰極との間には、光共振器構造が形成されており、
    前記機能層の膜厚は、前記光共振器構造が前記青色光に対して2次干渉を示す膜厚に設定されている
    請求項2に記載の有機EL素子。
  7. 前記機能層の膜厚は、
    当該膜厚を変化させたときに取り出される前記青色光の輝度/y値が示す特性において
    、2次干渉のピークに相当する膜厚の範囲内で、且つ輝度/y値が1次干渉のピークの極大値以上となる膜厚に設定されており、
    前記輝度/y値は、有機EL素子から取り出される前記青色光の輝度とxy色度のy値との比である
    請求項6に記載の有機EL素子。
  8. 前記中間層の膜厚は、1nm以上10nm以下であり、かつ、前記発光層は青色光を射出するものであって、前記発光層と前記機能層を合わせた膜厚は、150nm以上、170nm以下である
    請求項2に記載の有機EL素子
  9. 前記中間層の膜厚は、1nm以上10nm以下であり、かつ、前記発光層は青色光を射出するものであって、前記発光層と前記機能層を合わせた光学膜厚は、285nm以上、323nm以下である
    請求項2に記載の有機EL素子
  10. 前記電子輸送層のうち、前記第1領域となる部分の膜厚は、10nm以上、30nm以下である
    請求項4に記載の有機EL素子。
  11. 前記機能層はさらに、前記電子輸送層上に配され、電子注入性を有する電子注入層を含む
    請求項2に記載の有機EL素子。
  12. 光反射性の陽極を形成し、
    前記陽極の上方に発光層を形成し、
    前記発光層上に、アルカリ金属またはアルカリ土類金属である第1金属のフッ化物を含む中間層を形成し、
    前記中間層上に、電子輸送性を有する有機材料を用いて電子輸送層を形成し、
    前記電子輸送層の上方に、金属層を含む光透過性の陰極を形成し、
    前記電子輸送層を形成する際に、
    前記中間層に接する前記電子輸送層の第1領域に、前記第1領域の上方の前記電子輸送層の第2領域よりも高い濃度で、アルカリ金属またはアルカリ土類金属である第2金属を含有させる、
    有機EL素子の製造方法。
JP2014251052A 2014-12-11 2014-12-11 有機el素子および有機el素子の製造方法 Active JP6519910B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014251052A JP6519910B2 (ja) 2014-12-11 2014-12-11 有機el素子および有機el素子の製造方法
US14/962,240 US20160172620A1 (en) 2014-12-11 2015-12-08 Organic electroluminescence element and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014251052A JP6519910B2 (ja) 2014-12-11 2014-12-11 有機el素子および有機el素子の製造方法

Publications (2)

Publication Number Publication Date
JP2016115717A JP2016115717A (ja) 2016-06-23
JP6519910B2 true JP6519910B2 (ja) 2019-05-29

Family

ID=56112021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014251052A Active JP6519910B2 (ja) 2014-12-11 2014-12-11 有機el素子および有機el素子の製造方法

Country Status (2)

Country Link
US (1) US20160172620A1 (ja)
JP (1) JP6519910B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151415A1 (ja) 2014-03-31 2015-10-08 株式会社Joled 有機発光装置および有機発光装置の製造方法
JP6538339B2 (ja) 2014-12-12 2019-07-03 株式会社Joled 有機el素子および有機el素子の製造方法
JP2018139262A (ja) * 2017-02-24 2018-09-06 株式会社Joled 有機el表示素子、有機el表示パネル、および、有機el表示素子の製造方法
JP6754733B2 (ja) * 2017-07-10 2020-09-16 株式会社Joled 有機電界発光素子、有機電界発光パネル、有機電界発光装置および電子機器
JP6855362B2 (ja) * 2017-10-27 2021-04-07 株式会社Joled 有機電界発光素子、有機電界発光装置および電子機器
KR102539570B1 (ko) * 2017-12-08 2023-06-01 엘지디스플레이 주식회사 유기발광표시장치
KR102500612B1 (ko) * 2017-12-22 2023-02-15 엘지디스플레이 주식회사 유기발광표시장치
US12101997B2 (en) 2018-12-28 2024-09-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device including light-emitting layer and electron-transport layer
CN111697036A (zh) * 2019-03-15 2020-09-22 株式会社日本有机雷特显示器 自发光元件及其制造方法以及自发光显示装置、电子设备
JP2020155766A (ja) * 2019-03-15 2020-09-24 株式会社Joled 自発光素子及び自発光素子の製造方法、並びに自発光表示装置、電子機器
CN113748529A (zh) * 2019-04-26 2021-12-03 株式会社半导体能源研究所 发光器件、发光装置、电子设备及照明装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965197B2 (en) * 2002-10-01 2005-11-15 Eastman Kodak Company Organic light-emitting device having enhanced light extraction efficiency
JP2004247137A (ja) * 2003-02-13 2004-09-02 Seiko Epson Corp エレクトロルミネッセンス装置、エレクトロルミネッセンス装置の製造方法、電子機器
US6875320B2 (en) * 2003-05-05 2005-04-05 Eastman Kodak Company Highly transparent top electrode for OLED device
US7196835B2 (en) * 2004-06-01 2007-03-27 The Trustees Of Princeton University Aperiodic dielectric multilayer stack
KR100685414B1 (ko) * 2004-11-05 2007-02-22 삼성에스디아이 주식회사 유기 전계 발광 표시 소자 및 그의 제조방법
JP2007294901A (ja) * 2006-03-31 2007-11-08 Canon Inc 有機発光素子
US20070241663A1 (en) * 2006-04-12 2007-10-18 Toppoly Optoelectronics Corp. Organic electroluminescent device
JP2009087760A (ja) * 2007-09-28 2009-04-23 Dainippon Printing Co Ltd エレクトロルミネッセンス素子の製造方法
KR100922755B1 (ko) * 2007-12-28 2009-10-21 삼성모바일디스플레이주식회사 유기 발광 소자
JP5717944B2 (ja) * 2008-11-21 2015-05-13 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子及びその製造方法
JP2011040479A (ja) * 2009-08-07 2011-02-24 Panasonic Corp 有機エレクトロルミネッセンス素子及びその製造方法
JP5707058B2 (ja) * 2009-09-01 2015-04-22 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子、有機電界発光素子の製造方法、表示装置及び照明装置
KR101657222B1 (ko) * 2010-05-14 2016-09-19 삼성디스플레이 주식회사 유기 발광 소자
KR101330912B1 (ko) * 2010-08-10 2013-11-18 파나소닉 주식회사 유기 발광 소자, 유기 발광 장치, 유기 표시 패널, 유기 표시 장치 및 유기 발광 소자의 제조 방법
US9349964B2 (en) * 2010-12-24 2016-05-24 Lg Chem, Ltd. Organic light emitting diode and manufacturing method thereof
US9368734B2 (en) * 2011-06-21 2016-06-14 Council Of Scientific & Industrial Research Lithium metal quinolates and process for preparation thereof as good emitting, interface materials as well as N-type dopent for organic electronic devices
JP6060361B2 (ja) * 2011-08-03 2017-01-18 株式会社Joled 有機発光素子
JP2013033872A (ja) * 2011-08-03 2013-02-14 Sumitomo Chemical Co Ltd 有機エレクトロルミネッセンス素子
JP5990049B2 (ja) * 2012-07-05 2016-09-07 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
KR102084170B1 (ko) * 2013-07-25 2020-03-04 삼성디스플레이 주식회사 유기발광소자, 이를 포함하는 유기 발광 표시장치 및 그 제조방법

Also Published As

Publication number Publication date
JP2016115717A (ja) 2016-06-23
US20160172620A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
JP6519910B2 (ja) 有機el素子および有機el素子の製造方法
JP6510223B2 (ja) 有機el素子および有機el素子の製造方法
JP6387566B2 (ja) 有機el素子
JP6336042B2 (ja) 有機el素子および有機el素子の製造方法
JP6142213B2 (ja) 有機el素子および有機el素子の製造方法
JP6340616B2 (ja) 有機el素子、および有機el表示パネル
JP6082918B2 (ja) 有機発光装置、およびその製造方法
JP2018139262A (ja) 有機el表示素子、有機el表示パネル、および、有機el表示素子の製造方法
US10665806B2 (en) Organic EL element and organic EL display panel
JP6561281B2 (ja) 有機el素子および有機el素子の製造方法
WO2015151415A1 (ja) 有機発光装置および有機発光装置の製造方法
JP7031898B2 (ja) 発光素子、自発光パネル、および、発光素子の製造方法
US10581019B2 (en) Organic EL element having reduced electric power consumption by optimizing film thicknesses thereof and method of manufacturing same
JP7423238B2 (ja) 自発光素子を用いた表示パネル、および、その製造方法
JP6538339B2 (ja) 有機el素子および有機el素子の製造方法
JP7424830B2 (ja) 有機el素子、有機el表示パネルおよび有機el素子の製造方法
US20220045133A1 (en) Display panel and display device
JP2021048054A (ja) 自発光素子を用いた表示パネル、および、その製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190412

R150 Certificate of patent or registration of utility model

Ref document number: 6519910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250