WO2015133210A1 - 車両用電力授受制御装置 - Google Patents

車両用電力授受制御装置 Download PDF

Info

Publication number
WO2015133210A1
WO2015133210A1 PCT/JP2015/052567 JP2015052567W WO2015133210A1 WO 2015133210 A1 WO2015133210 A1 WO 2015133210A1 JP 2015052567 W JP2015052567 W JP 2015052567W WO 2015133210 A1 WO2015133210 A1 WO 2015133210A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
logic
signal
power supply
supply device
Prior art date
Application number
PCT/JP2015/052567
Other languages
English (en)
French (fr)
Inventor
信之 中川
亮 田中
Original Assignee
トヨタ自動車 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車 株式会社 filed Critical トヨタ自動車 株式会社
Priority to US15/119,597 priority Critical patent/US10131231B2/en
Priority to RU2016138317A priority patent/RU2657014C2/ru
Priority to CN201580011712.6A priority patent/CN106104961B/zh
Priority to EP15757650.5A priority patent/EP3116092B1/en
Priority to BR112016020108-6A priority patent/BR112016020108B1/pt
Priority to KR1020167027033A priority patent/KR101940387B1/ko
Publication of WO2015133210A1 publication Critical patent/WO2015133210A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/53Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells in combination with an external power supply, e.g. from overhead contact lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • H02J7/0021
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a vehicle power transfer control device applied to a vehicle including an in-vehicle power storage device that transfers power to and from an external power supply device, and a communication unit that performs bidirectional communication for power transfer.
  • a vehicle power transfer control device applied to a vehicle including an in-vehicle power storage device that transfers power to and from an external power supply device, and a communication unit that performs bidirectional communication for power transfer.
  • the charging cable In order to allow charging of the battery in the vehicle from the outside, not only the charging cable but also a communication line used for transmission of a control pilot signal (CPLT signal) used for charging control between the vehicle and the external power supply device.
  • CPLT signal control pilot signal
  • the upper limit value of the current that can be supplied from the external power supply device is expressed by the time ratio of the logic H time to the logic H and logic L periods of the CPLT signal to notify the vehicle side of the upper limit value.
  • the charging control is performed so that the charging current value is equal to or less than the upper limit value.
  • Patent Document 1 it has also been proposed to perform inband communication for transmitting and receiving more information than information included in the CPLT signal by superimposing a high-frequency signal having a higher frequency than the CPLT signal on the CPLT signal.
  • Patent Document 1 it has been proposed that the Inband communication is performed in a state where the time ratio of the CPLT signal is fixed to “5%”. That is, when the time ratio of the CPLT signal is “5%”, the time ratio does not represent the upper limit value of the current that can be supplied, but is a value that is specifically set to execute Inband communication.
  • Patent Document 1 does not disclose fail-safe processing when an abnormality occurs in Inband communication. For this reason, when an abnormality occurs in the Inband communication, there is a concern that the Inband communication may be prevented from being continued or a charging process or the like cannot be started.
  • the present invention has been made in view of such a situation, and an object thereof is an in-vehicle power storage device that transmits and receives power to and from an external power supply device, and communication that performs bidirectional communication for power transmission and reception.
  • the present invention is to provide a vehicular power transmission / reception control device that can be applied to a vehicle including a unit and can quickly overcome a situation caused by the abnormality when the abnormality occurs in bidirectional communication.
  • a vehicle power transfer control device includes an in-vehicle power storage device that transfers power to and from an external power supply device, and a communication unit that performs bidirectional communication for power transfer.
  • the bidirectional communication includes communication for preparing for transmission / reception of the power prior to transmission / reception of the power, and the vehicle power transmission / reception control device is configured to perform the bidirectional communication performed prior to transmission / reception of the power.
  • a determination unit is provided that determines whether or not to continue the bidirectional communication according to the content of the abnormality.
  • the processing according to the content of communication is not always essential for power transfer.
  • bi-directional communication performed prior to power transfer is interrupted, there is a high probability that power cannot be transferred. For this reason, if communication is uniformly terminated due to an abnormality, power may be exchanged even though power can actually be exchanged, but it may not be possible to exchange power by terminating communication. is there.
  • the said determination part determines continuing the said communication on the condition that the content of the said abnormality is what can give and receive the said electric power itself. If bi-directional communication is stopped until an abnormality that can be performed by power transmission / reception itself occurs, power cannot be transmitted / received based on bi-directional communication. In this regard, in the above-described apparatus, it is possible to increase the probability that power can be exchanged by continuing bi-directional communication on condition that it is possible to exchange power.
  • the vehicle power transfer control device executes the power transfer within a range subject to service restrictions according to the content of the communication abnormality when the determination unit determines to continue the communication.
  • An execution unit is provided.
  • the said determination part determines not to continue the said communication, when the content of the said abnormality becomes what cannot perform transmission / reception of the said electric power. If an abnormality that makes it impossible to transfer power occurs, bidirectional communication cannot be continued and power transfer cannot be started based on bidirectional communication. In this regard, in the above apparatus, when an abnormality that makes it impossible to transfer power occurs, it is determined not to continue bi-directional communication, so power is not transferred based on bi-directional communication. For this reason, the fall of the reliability of the apparatus in connection with transmission / reception of electric power can be suppressed suitably.
  • the vehicle power transfer control device outputs information on a current value when power is supplied from the external power supply device to the in-vehicle power storage device.
  • the current value information is transmitted from the external power supply device to the acquisition unit via a communication line, and the bidirectional communication is performed via the communication line. Is called.
  • the vehicle power transmission / reception control device further does not continue the communication by the determination unit when the bidirectional communication is performed in order to charge the in-vehicle power storage device with power supplied from the external power supply device.
  • determining the current value information acquired by the acquisition unit after the processing by the processing unit and a termination processing unit that performs processing for terminating the bidirectional communication in the external power supply device.
  • a charging processing unit for charging the in-vehicle power storage device.
  • the bidirectional processing is terminated by the termination processing unit. Then, by charging the in-vehicle power storage device based on the current value acquired by the acquisition unit, it is possible to charge the in-vehicle power storage device based on the information acquired by the acquisition unit without using bidirectional communication.
  • a vehicle power transfer control device includes an in-vehicle power storage device that transfers power to and from an external power supply device, a communication unit that performs bidirectional communication for power transfer, An information acquisition unit configured to acquire information on a current value when power is supplied from the external power supply device to the in-vehicle power storage device.
  • the information on the current value is transmitted from the external power supply device to the acquisition unit via a communication line, and the bidirectional communication is performed via the communication line, and It includes communication for preparing for power transfer prior to power transfer.
  • the vehicle power transmission / reception control device further performs a process for causing the external power supply device to terminate the bidirectional communication on condition that an abnormality occurs in the bidirectional communication performed prior to the power transmission / reception.
  • a charge processing unit that charges the in-vehicle power storage device based on current value information acquired by the acquisition unit after the processing by the end processing unit is performed.
  • the bidirectional processing is terminated by the termination processing unit. Then, by charging the in-vehicle power storage device based on the current value acquired by the acquisition unit, it is possible to charge the in-vehicle power storage device based on the information acquired by the acquisition unit without using bidirectional communication. Therefore, it is possible to quickly overcome a situation where there is a possibility that the in-vehicle power storage device cannot be charged due to an abnormality in bidirectional communication.
  • the termination processing unit stops the voltage change operation after performing a voltage change operation for changing the voltage of the communication line to a voltage different from that when the two-way communication is normally performed. To do.
  • the external power supply determines that bidirectional communication is not possible and stops bidirectional communication. I think that. Then, after that, when the voltage of the communication line returns to a normal voltage, it is considered that the external power supply device starts communication again from the beginning.
  • the transition from the bidirectional communication to the state in which the current value information is output is easier before the bidirectional communication is started than in the middle of the bidirectional communication. For this reason, in the said apparatus, it can transfer to the state in which the information of an electric current value is output easily by making it transfer to the process before the start of bidirectional
  • the information on the current value is the time of a logic H with respect to a period of one cycle composed of a period of logic H and a period of logic L in a logic signal in which logic H and logic L appear alternately.
  • the bidirectional communication is performed by superimposing a high-frequency signal on the logic signal when the time ratio becomes a predetermined ratio.
  • the vehicle power transfer control device is further configured such that, after the voltage changing operation is stopped by the end processing unit, the logic signal is transmitted from the external power supply device, and the time ratio of the logic signal is the predetermined ratio.
  • a standby processing unit that waits without performing the bidirectional communication.
  • the logic signal When the duty ratio becomes the predetermined ratio, the logic signal does not include information on the current value, and the charging processing unit receives the current value from the external power supply device as a result of standby by the standby processing unit.
  • the charging of the in-vehicle power storage device is started on condition that information is transmitted.
  • the state where the time ratio of logic signals in which logic H and logic L appear alternately is a predetermined ratio is originally a state in which bidirectional communication is promoted.
  • bi-directional communication by not starting bi-directional communication in this case, it is possible to make the external power supply device recognize that bi-directional communication is not performed. It is possible to prompt the user to change the signal to represent the current value information.
  • the information on the current value is the time of a logic H with respect to a period of one cycle composed of a period of logic H and a period of logic L in a logic signal in which logic H and logic L appear alternately.
  • the bidirectional communication is performed by superimposing a high-frequency signal on the logic signal when the time ratio becomes a predetermined ratio.
  • the vehicle power transmission / reception control device further includes a prompting unit that prompts to transmit the logic signal when the logic signal is not transmitted after the voltage changing operation is stopped by the end processing unit.
  • the termination processing unit executes a process of notifying the external power supply device that the bidirectional communication is terminated by the bidirectional communication, as the termination process.
  • the above apparatus notifies the external power supply apparatus that bi-directional communication is terminated using bi-directional communication.
  • the external power supply apparatus can quickly terminate bidirectional communication.
  • the bidirectional communication is such that a response signal is transmitted from the external power supply device by transmitting a request signal from the communication unit. Executes processing to stop sending request signals.
  • the external power supply device by stopping the transmission of the request signal, the external power supply device can determine that an abnormality has occurred in communication. As a result, the two-way communication can be directed to the external power supply apparatus.
  • the bidirectional communication is such that a response signal is transmitted from the external power supply device by transmitting a request signal from the communication unit. A process of transmitting an abnormal signal as a request signal is executed.
  • the external power supply device it is possible to cause the external power supply device to determine that an abnormality has occurred in communication by transmitting an abnormal signal as a request signal. As a result, the two-way communication can be directed to the external power supply apparatus.
  • the information on the current value is the time of a logic H with respect to a period of one cycle composed of a period of logic H and a period of logic L in a logic signal in which logic H and logic L appear alternately.
  • the bidirectional communication is performed by superimposing a high-frequency signal on the logic signal when the time ratio becomes a predetermined ratio.
  • the vehicle power transmission / reception control device further urges to transmit the logic signal on condition that the logic signal is not transmitted to the communication line after the termination processing is performed by the termination processing unit.
  • the above device prompts the transmission by stopping the transmission of the logic signal after terminating the two-way communication. For this reason, when transmission of a logic signal is resumed, it can be in a state before the start of bidirectional communication. For this reason, it becomes easy to make it transfer to the state which expresses the information of electric current value by the said time ratio.
  • the information on the current value is the time of a logic H with respect to a period of one cycle composed of a period of logic H and a period of logic L in a logic signal in which logic H and logic L appear alternately.
  • the two-way communication is performed by superimposing a high-frequency signal on the logic signal when the time ratio is a predetermined ratio, and the time ratio is expressed by a time ratio.
  • the predetermined ratio is reached, the logic signal does not include the current value information.
  • the vehicle power transfer control device further waits without performing bidirectional communication when the logic signal is transmitted from the external power supply device and the time ratio of the logic signal is the predetermined time ratio.
  • a processing unit is provided.
  • the state where the time ratio of the logic signal is a predetermined ratio is originally a state in which bidirectional communication is promoted.
  • bi-directional communication by not starting bi-directional communication in this case, it is possible to make the external power supply device recognize that bi-directional communication is not performed. It is possible to prompt the user to change the signal to represent the current value information.
  • FIG. 1 is a system configuration diagram according to a first embodiment.
  • the figure which shows Inband communication. 6 is a flowchart showing a procedure of Inband communication processing according to the first embodiment.
  • 14 is a flowchart showing a procedure of Inband communication processing according to the sixth embodiment.
  • FIG. 1 shows a system configuration according to the first embodiment.
  • the vehicle 10 includes a battery 12 as an in-vehicle power storage device.
  • the battery 12 is a secondary battery such as a lithium ion secondary battery.
  • Connected to the battery 12 is a converter 14 that is a power conversion circuit used for charging the battery 12 with electric power supplied from the outside or outputting the stored charge of the battery 12 to the outside.
  • the external power supply device 40 includes a power supply unit 42 that exchanges power with the converter 14 of the vehicle 10.
  • Converter 14 of vehicle 10 and power supply unit 42 of external power supply device 40 are connectable via power transmission lines L1 and L2.
  • the vehicle 10 includes terminals T1 and T2, and power transmission lines L1 and L2 are connected to the terminals T1 and T2.
  • the vehicle 10 includes a CPLT receiving circuit 22 as a circuit that performs communication for transmitting and receiving electric power to and from the external power supply device 40.
  • the external power supply device 40 includes a CPLT oscillation circuit 44 for transmitting a CPLT signal.
  • the CPLT oscillation circuit 44 can be connected to the CPLT reception circuit 22 via communication lines L3 and L4.
  • the vehicle 10 includes terminals T3 and T4, and communication lines L3 and L4 are connected to the terminals T3 and T4.
  • the communication lines L3 and L4 are connected to the terminals T3 and T4, so that a CPLT signal in which logic H and logic L are periodically repeated can be transmitted from the CPLT oscillation circuit 44 to the CPLT reception circuit 22.
  • the communication line L4 is for determining a reference potential. For this reason, the logic H and logic L of the CPLT signal are defined by the potential difference between the communication line L3 and the communication line L4 (hereinafter, the voltage of the communication line L3).
  • the CPLT receiving circuit 22 is a circuit that changes the voltage of the communication line L3 according to the progress of processing for power transfer.
  • the CPLT reception circuit 22 includes a resistor 22a that connects the communication line L3 and the communication line L4, and a series connection body of the resistor 22b and the switching element 22c.
  • the switching element 22c is in an open state in principle.
  • in-band communication using a high-frequency signal superimposed on the CPLT signal is performed in addition to communication using the CPLT signal.
  • the vehicle 10 includes an inband communication ECU 32 as a communication unit
  • the external power supply device 40 includes an inband communication circuit 46. Both the Inband communication ECU 32 and the Inband communication circuit 46 are connected to the communication lines L3 and L4.
  • the vehicle 10 includes a microcomputer 24 that operates the CPLT receiving circuit 22 and the converter 14.
  • an input unit 26 for inputting an instruction from the user and transmitting it to the microcomputer 24 is provided.
  • a signal detection ECU 30 is provided that detects a time ratio D of the logic H to the logic H and logic L periods of the CPLT signal based on the voltage of the communication line L3.
  • the CPLT receiving circuit 22 and the microcomputer 24 are formed as a charge control ECU 20 on a single substrate.
  • the external power supply device 40 includes a control circuit 48 that operates the CPLT oscillation circuit 44 and the Inband communication circuit 46.
  • a process for changing the voltage of the communication line L3 according to the progress of the charging process by the microcomputer 24 will be described with reference to FIG.
  • FIG. 2 shows a state in which the communication lines L3 and L4 are not connected to the terminals T3 and T4 before the time t1.
  • the voltage of the communication line L3 is set to 12V which is the maximum value.
  • the voltages of the communication lines L3 and L4 are reduced to “9V” which is an intermediate value.
  • the communication line L3 and the communication line L4 are in a high impedance state.
  • the voltage of the communication line L3 becomes a divided value between the resistor 22a and the internal resistance of the CPLT oscillation circuit 44. Therefore, after time t1, the voltage value of the communication line L3 decreases.
  • control circuit 48 of the external power supply device 40 detects that the communication lines L3 and L4 are connected due to a decrease in the voltage of the communication line L3, the control circuit 48 sets the logic H voltage to “9V” in the CPLT oscillation circuit 44.
  • a CPLT signal for setting the voltage of L to “ ⁇ 12V” is output (time t2).
  • the microcomputer 24 closes the switching element 22c of the CPLT reception circuit 22 when the vehicle 10 is ready for charging the battery 12 at time t3.
  • the logic “H” of the CPLT signal becomes the minimum value “6V”. This is because the voltage of the communication line L3 is a divided value of the resistance in the parallel connection body of the resistor 22a and the resistor 22b and the internal resistance of the CPLT oscillation circuit 44 during the period when the CPLT signal is logic “H”. Because.
  • Preparation for charging is performed according to Inband communication using a high-frequency signal superimposed on the CPLT signal.
  • the inband communication is executed when the ratio of the logic H time to the one cycle of the logic H and the logic L (duty ratio D) of the CPLT signal is “5%”.
  • the communication line L3, L4 is connected so that the time ratio of the CPLT signal is initially set to “5%”.
  • the inband communication is performed by transmitting a request signal from the inband communication ECU 32 of the vehicle 10 to the inband communication circuit 46 of the external power supply device 40, so that the inband communication circuit 46 of the external power supply device 40 transmits a response signal. .
  • the Inband communication ECU 32 that performs the Inband communication
  • the microcomputer 24 operates the CPLT reception circuit 22 to change the logic “H” voltage of the CPLT signal to “6 V”. This is realized by performing processing such as demodulation on the signal received by the Inband communication ECU 32, and then transmitting the processed signal to the microcomputer 24 so that the microcomputer 24 can grasp the contents of the Inband communication. be able to.
  • FIG. 4 shows an Inband communication processing procedure according to the first embodiment. This process is repeatedly executed by the Inband communication ECU 32, for example, at a predetermined cycle.
  • the Inband communication ECU 32 first determines whether Inband communication is being performed and before the battery 12 is charged or the reverse power flow is started (S10). If the inband communication ECU 32 makes a positive determination in step S10, the inband communication ECU 32 determines whether or not an abnormality has occurred in the inband communication data (S12). When the Inband communication ECU 32 determines that an abnormality has occurred in the Inband communication data (S12: YES), the Inband communication ECU 32 determines whether the abnormality is a critical data abnormality (S14).
  • the critical data abnormality is an abnormality that makes it impossible to perform the charging process or reverse power flow process of the battery 12 for the purpose of performing the inband communication.
  • the critical data abnormality for example, there is an abnormality in which the values of physical quantities (applied voltage V, current I, etc.) for specifying the received power are excessively large.
  • the data is abnormal because the applied voltage supplied from the external power supply device 40 is not actually suitable for the converter 14 and noise is mixed in the data transmitted from the external power supply device 40 by Inband communication.
  • a critical data abnormality there is an abnormality in data indicating whether or not the external power supply device 40 supports reverse power flow, or data indicating whether charging or reverse power flow is currently possible. Some cannot be identified.
  • a critical abnormality can occur only when Inband communication is performed to perform reverse power flow.
  • Other critical data anomalies include, for example, when the converter 14 only supports either AC or DC, indicating that the external power supply 40 does not support either There are cases where the data indicating that the external power supply 40 can handle either AC or DC is not normal.
  • a non-critical abnormality is an abnormality in which it is possible to perform the charging process or reverse power flow process of the battery 12 for the purpose of inband communication.
  • an abnormality that is not critical for example, there is an abnormality in communication data regarding whether or not the Internet can be used by Inband communication. Whether or not the Internet can be used by in-band communication is not essential for charging the battery 12 or performing reverse power flow.
  • Non-critical abnormalities include, for example, data abnormalities related to power rate information according to time zones. However, this abnormality becomes a critical abnormality when the user has instructed via the input unit 26 to charge the battery 12 only when the power charge is low.
  • an abnormality in the identification code (ID) of the external power supply device 40 for example, there is an abnormality in the identification code (ID) of the external power supply device 40.
  • ID identification code
  • the Inband communication ECU 32 determines whether the communication process before charging or reverse power flow has been completed (S18). Inband communication ECU32 returns to the process of step S14, when it is judged that the communication process before charge or reverse power flow is not completed (S18: NO). On the other hand, if the Inband communication ECU 32 determines that the communication process before charging or reverse power flow has been completed (S18: YES), it permits charging or reverse power flow processing (S20).
  • the Inband communication ECU 32 determines that a critical data abnormality has occurred (S14: YES)
  • the Inband communication ECU 32 ends the Inband communication (S22).
  • the Inband communication ECU 32 once ends the series of processes when the processes of steps S20 and S22 are completed or when a negative determination is made in step S10.
  • the Inband communication ECU 32 functions as a determination unit that determines whether to continue Inband communication.
  • FIG. 5 shows a procedure of charging and reverse power flow processing according to the first embodiment. This process is repeatedly executed, for example, at a predetermined cycle by the Inband communication ECU 32 during the charging and reverse power flow execution periods when the charge and reverse power flow processes are permitted by the process of step S20 of FIG. Note that the execution period of charging and reverse flow is determined by the microcomputer 24 based on Inband communication. That is, the microcomputer 24 sets a period for performing the charging process of the battery 12 and the discharging process of the power of the battery 12 based on information such as the relationship information between the time zone and the power charge obtained by Inband communication.
  • the charging control ECU 20 when the start point of the set period greatly deviates from the time at which the process of step S20 is completed, the charging control ECU 20, the Inband communication ECU 32, and the signal detection ECU 30 are in a state where the power consumption is reduced. Wait until the starting point of.
  • the Inband communication ECU 32 first determines whether there is a history of occurrence of non-critical data abnormality, in other words, there is a history of negative determination in step S ⁇ b> 14 of FIG. 4. Whether or not (S30).
  • the Inband communication ECU 32 executes the charging of the battery 12 or the reverse power flow process within the range of the service restricted by the data abnormality (S32).
  • the Internet using Inband communication cannot be used due to data abnormality, the user cannot use the Internet in the vehicle 10 during the charging or reverse power flow processing period.
  • the charging process aiming at the time zone where the power charge is low cannot be performed.
  • the Inband communication ECU 32 executes the charging process and the reverse power flow process of the battery 12 while enjoying the service by the Inband communication freely (S34).
  • the Inband communication ECU 32 once ends the series of processes when the processes of steps S32 and S34 are completed.
  • the Inband communication ECU 32 determines whether to continue Inband communication according to the content of the abnormality (FIG. 4). As a result, even though charging or reverse power flow of the battery 12 can be performed, a situation in which charging or reverse power flow cannot be performed by uniformly terminating Inband communication due to data abnormality in Inband communication. It can be avoided.
  • the inband communication ECU 32 determines to continue the communication on the condition that the data abnormality is possible for the charging or the reverse power flow processing itself (S14). Thereby, the probability that electric power can be exchanged can be improved.
  • the time ratio D of the logic H time for one cycle of the logic H and the logic L of the CPLT signal is larger than “5%”
  • the time ratio D is output from the external power supply device 40 to the power transmission lines L1 and L2.
  • the information on the upper limit of the current that can be performed is shown.
  • Inband communication cannot be used in the state where the duty ratio D of the CPLT signal is greater than “5%”, but the external power supply 40 is a predetermined applied voltage and the power of the current below the upper limit value of the current determined by the duty ratio D. Can be supplied.
  • the applied voltage of the external power supply apparatus 40 is determined when charging using the CPLT signal, and is not necessarily the same as the applied voltage notified to the vehicle 10 by the external power supply apparatus 40 by Inband communication. .
  • the applied voltage notified to the vehicle 10 by the external power supply device 40 through Inband communication can be higher than the applied voltage when charging using the CPLT signal. For this reason, even if data abnormality occurs in Inband communication, charging using the CPLT signal can be performed if switching to charging of the battery 12 using the CPLT signal is possible. However, when the inband communication is being performed, the vehicle 10 may not be able to notify the external power supply device 40 to perform charging using the CPLT signal through the inband communication.
  • the vehicle 10 does not output the signal by Inband communication even once.
  • the external power supply device 40 changes the time ratio D of the CPLT signal to a value indicating the upper limit value of the charging current as time elapses.
  • the ISO 15118-3 standard changes the time ratio D to a value indicating the upper limit value of the charging current when the in-band communication is not established within a predetermined time from the output start of the CPLT signal with the time ratio D of “5%”.
  • the idea is that charging using the CPLT signal can be executed. The problem here is that the data abnormality occurs after Inband communication is established.
  • the communication line L3 is intentionally shorted to the ground, and the external power supply device 40 terminates the inband communication. Thereafter, by canceling the short-circuited state, it is possible to return to the state before starting the Inband communication.
  • FIG. 6 shows a system configuration according to the second embodiment.
  • a relay 50 is provided between the communication line L3 and the communication line L4.
  • the relay 50 can be opened and closed by the Inband communication ECU 32.
  • the Inband communication ECU 32 changes the voltage of the communication line L3 to a voltage different from the voltage when the Inband communication is normally performed (9 V in this example). Change the voltage.
  • FIG. 7 shows the procedure of fail-safe processing when data is abnormal according to the second embodiment. This process is repeatedly executed by the Inband communication ECU 32, for example, at a predetermined cycle.
  • the Inband communication ECU 32 first determines whether or not Inband communication is performed and the content of the communication is before the start of charging of the battery 12 (S40). When the inband communication ECU 32 determines that it is before the start of charging (S40: YES), the inband communication ECU 32 determines whether a data abnormality has occurred in the inband communication (S42). When the inband communication ECU 32 determines that a data abnormality has occurred (S42: YES), the inband communication is terminated and the relay 50 is closed to perform the L3 grounding process for shorting the communication line L3 to the communication line L4 ( S44).
  • the Inband communication ECU 32 waits for a certain time in a shorted state (S46: NO).
  • the fixed time is set to be longer than the time required for the external power supply device 40 to determine that an abnormality has occurred in which the communication line L3 is short-circuited to the ground and to terminate Inband communication.
  • this time is preferably set to a time as short as possible, which is equal to or longer than the time required for the external power supply device 40 to terminate the Inband communication.
  • the Inband communication ECU 32 When the predetermined time has elapsed (S46: YES), the Inband communication ECU 32 opens the relay 50 to stop the grounding process and cancel the state where the communication line L3 is shorted to the ground (S48: grounding cancellation). . Next, the Inband communication ECU 32 determines whether or not the CPLT signal is output to the communication line L3 and the time ratio D is “10 to 96%” (S50). This process is for determining whether or not the battery 12 can be charged using the CPLT signal. When the inband communication ECU 32 determines that the duty ratio D is “10 to 96%” (S50: YES), the Inband communication ECU 32 executes the charging process of the battery 12 (S52).
  • the charging process is executed while the upper limit value of the charging current of the battery 12 is set to a value defined by the time ratio D. Specifically, the charging current is controlled so that the amount of current drawn from the power supply unit 42 is not more than the upper limit value defined by the time ratio D by the operation of the converter 14.
  • the Inband communication ECU 32 determines whether or not the duty ratio D is “5%” (S54). This process is for determining whether or not the external power supply device 40 prompts to perform Inband communication.
  • the inband communication ECU 32 determines that the duty ratio D is “5%” (S54: YES)
  • the inband communication ECU 32 proceeds to step S50 to wait until the duty ratio D becomes “10 to 96%” without performing inband communication.
  • it is determined that the duty ratio D is not “5%” (S54: NO) it is determined whether or not the voltage of the communication line L3 is fixed at 9V (S56).
  • This process is for determining whether or not the external power supply device 40 has terminated the Inband communication due to an abnormality in the Inband communication and has stopped the output of the CPLT signal itself.
  • the Inband communication ECU 32 determines that the voltage of the communication line L3 is fixed at 9 V (S56: YES)
  • the Inband communication ECU 32 executes a toggle process that instructs the external power supply device 40 to start outputting the CPLT signal ( S58). Specifically, after the switching element 22c is once closed and then returned to the open state, the voltage of the communication line L3 is once reduced to 6V and then restored to 9V.
  • the inband communication ECU 32 executes the toggle process, the process returns to the process of step S50.
  • the Inband communication ECU 32 determines that the voltage of the communication line L3 is not fixed to 9V (S56: NO), it determines that the external power supply device 40 is abnormal (S60).
  • the Inband communication ECU 32 once ends the series of processes when the processes of steps S52 and S60 are completed or when a negative determination is made in steps S40 and S42.
  • the Inband communication ECU 32 intentionally shorts the communication line L3 to the ground (S44), and cancels the state after a certain period of time (S48). .
  • S44 the communication line L3 to the ground
  • S48 cancels the state after a certain period of time
  • the Inband communication ECU 32 After canceling the state in which the communication line L3 is shorted to the ground, when the time ratio D of the CPLT signal output to the communication line L3 is “5%”, the Inband communication ECU 32 performs Inband communication. It waits without (S54). Thereby, it can be made to shift to the state which enables the external power supply device 40 to charge using a CPLT signal.
  • the Inband communication ECU 32 performs a toggle process for prompting the output of the CPLT signal (S58). Thereby, the output of the CPLT signal can be restarted.
  • the Inband communication ECU 32 sets an abnormal state in which the communication cannot be intentionally performed in the external power supply device 40 in order to end the Inband communication.
  • the Inband communication ECU 32 causes the external power supply device 40 to terminate Inband communication by not transmitting a request signal. Since this process does not require any special hardware means, the system configuration of the third embodiment is as shown in FIG.
  • FIG. 8 shows the procedure of fail-safe processing when data is abnormal according to the third embodiment. This process is repeatedly executed by the Inband communication ECU 32, for example, at a predetermined cycle.
  • processes corresponding to the processes shown in FIG. 7 are given the same step numbers for convenience.
  • the inband communication ECU 32 executes a process for terminating the inband communication (S70). Specifically, the transmission of the request signal is stopped. This may be performed by shutting off the power supply of the modem for Inband communication in the Inband communication ECU 32. Of course, the transmission of the request signal may be stopped without shutting off the power supply of the modem. Then, the Inband communication ECU 32 waits until the output of the CPLT signal is stopped (S72: NO). When the output of the CPLT signal is stopped (S72: YES), the Inband communication ECU 32 performs a toggle process as in the process of step S58 in FIG.
  • the Inband communication ECU 32 determines whether or not the time ratio D of the CPLT signal is “10 to 96%” (S76). When the inband communication ECU 32 determines that the duty ratio D is “10 to 96%” (S76: YES), the process proceeds to step S52.
  • the Inband communication ECU 32 determines whether or not the duty ratio D is “5%” (S78). If the Inband communication ECU 32 determines that the duty ratio D is “5%” (S78: YES), the Inband communication ECU 32 should wait until the state shifts to a state where charging using the CPLT signal is possible without performing Inband communication. The process returns to step S76. In contrast, when the Inband communication ECU 32 determines that the duty ratio D is not “5%” (S78: NO), the Inband communication ECU 32 determines that the external power supply device 40 is abnormal (S60).
  • the Inband communication ECU 32 once ends the series of processes when the processes of steps S52 and S60 are completed or when a negative determination is made in steps S40 and S42.
  • the Inband communication ECU 32 stops transmitting the request signal (S70). Thereby, it is possible to direct the external power supply device 40 to terminate the inband communication because the inband communication cannot be performed.
  • FIG. 9 shows a procedure of fail-safe processing when data is abnormal according to the fourth embodiment. This process is repeatedly executed by the Inband communication ECU 32, for example, at a predetermined cycle.
  • processes corresponding to the processes shown in FIG. 8 are given the same step numbers for convenience.
  • step S42 the Inband communication ECU 32 notifies the external power supply device 40 to end the Inband communication using Inband communication (S70a). That is, information indicating that the inband communication is terminated is included in the high-frequency signal to be superimposed on the CPLT signal. Then, the Inband communication ECU 32 waits until the output of the CPLT signal is stopped, similarly to the process of FIG. 8 (S72).
  • the Inband communication ECU 32 notifies the external power supply device 40 to terminate the Inband communication through Inband communication (S70a). Thereby, the inband communication can be terminated in the external power supply device 40.
  • FIG. 10 shows a procedure of fail-safe processing when data is abnormal according to the fifth embodiment. This process is repeatedly executed by the Inband communication ECU 32, for example, at a predetermined cycle.
  • processes corresponding to the processes shown in FIG. 8 are given the same step numbers for convenience.
  • the inband communication ECU 32 makes an affirmative determination in step S ⁇ b> 42, it replaces the request signal and is a signal that is different from the signal that should be transmitted and is an abnormal signal in the external power supply device 40.
  • An error signal determined to be intentionally transmitted. This process is for directing the external power supply device 40 to terminate Inband communication when an abnormality occurs in Inband communication. Then, the Inband communication ECU 32 waits until the output of the CPLT signal is stopped, similarly to the process of FIG. 8 (S72).
  • the following effects can be obtained in addition to the effects (9) and (10) of the third embodiment.
  • the Inband communication ECU 32 intentionally transmits a request signal as an error signal (S70b), thereby terminating the Inband communication because the Inband communication cannot be performed with the external power supply device 40. Can be directed.
  • the inband communication ECU 32 determines that the data abnormality is a critical abnormality, the inband communication is terminated and the charging process is abandoned.
  • the battery 12 can be charged using the CPLT signal in the manner exemplified in the second to fifth embodiments. That is, in the charging process using the CPLT signal, the Inband communication ECU 32 can obtain information on the upper limit value of the charging current based on the time ratio D of the CPLT signal. Further, in the charging process using the CPLT signal, an applied voltage supplied from the external power supply device 40 to the vehicle 10 is determined in advance.
  • CPLT It may be possible to perform charging using signals.
  • Inband communication is started to charge the battery 12, when a critical abnormality occurs, charging using the CPLT signal is performed.
  • FIG. 11 shows a procedure of fail-safe processing when data is abnormal according to the sixth embodiment. This process is repeatedly executed by the Inband communication ECU 32, for example, at a predetermined cycle. Note that, in FIG. 11, the same step numbers are assigned for the sake of convenience for those corresponding to the processing shown in FIG.
  • the Inband communication ECU 32 determines whether the Inband communication has been performed to charge the battery 12 ( S80). This process is for determining whether or not to shift to the charging process using the CPLT signal.
  • the Inband communication ECU 32 determines that the Inband communication is being performed for charging (S80: YES)
  • the Inband communication ECU 32 performs a charging process using the CPLT signal by any one of the processes in FIGS. 7 to 10 (S82). ). If the Inband communication ECU 32 is performing Inband communication to perform reverse power flow (S80: NO), the reverse power flow processing cannot be performed using the CPLT signal, and the process proceeds to step S22. To do.
  • External power supply device ... 40 in-vehicle power storage device ... 12, communication unit ... 32, determination unit ... 32, bidirectional communication ... Inband communication, execution unit ... 32, current value information ... information included in time ratio D, acquisition unit ... 30, communication lines ... L3, L4, termination processing unit ... 32, charging processing unit ... 32, logic signal ... CPLT signal, prompting unit ... 32.
  • the inband communication ECU 32 when an abnormality occurs in the inband communication, sets the voltage of the communication line L3 to the voltage when the inband communication (two-way communication) is normally performed (9V in this example). ) was changed to change the voltage to a different voltage. Specifically, the Inband communication ECU 32 fixed the voltage of the communication line L3 to 0V.
  • the Inband communication ECU 32 may fix the voltage of the communication line L3 to “ ⁇ 12V”.
  • the voltage of the communication line L3 is fixed to “ ⁇ 12V”, so that the external power supply 40 can generate the voltage source of the logic L of the CPLT oscillation circuit 44.
  • the inband communication is terminated by determining that an abnormality has occurred that causes a short between the communication line L3 and the communication line L3.
  • the Inband communication ECU 32 can restore the voltage of the communication line L3 to the normal voltage “9 V”, thereby allowing the external power supply device 40 to start over from the oscillation start process of the CPLT signal.
  • the value of the voltage to be fixed in order to generate a state in which an abnormality has occurred in the communication line L3 is not limited to “0V” or “ ⁇ 12V”.
  • the voltage is not limited to the voltage of the communication line L3.
  • the voltage of the communication line L3 may be periodically set to “0 V” over a period that is shorter than one cycle of the CPLT signal and includes the logic H of the CPLT signal. In this case, since the voltage of the communication line L3 is periodically switched between “ ⁇ 12V” and “0V”, the external power supply device 40 determines that an abnormality has occurred in communication.
  • the Inband communication ECU 32 functions as an end processing unit that performs a process for terminating Inband communication.
  • the microcomputer 24 may function as an end processing unit.
  • a switching element is provided in series with the resistor 22a between the terminals T3 and T4 in FIG. 1, and the microcomputer 24 closes the switching element when it is detected that the communication lines L3 and L4 are connected, and the Inband communication is performed.
  • the switching element is opened when an abnormality occurs.
  • the external power supply device 40 determines that the connection of the communication lines L3 and L4 has been released. Therefore, after that, by closing the switching element, the external power supply device 40 determines that the communication lines L3 and L4 have been newly reconnected.
  • the external power supply device 40 can be restarted from the CPLT signal oscillation start process.
  • the process for terminating the Inband communication is not limited to being executed while the communication lines L3 and L4 are maintained. For example, after disconnecting the communication lines L3 and L4 once, a process of notifying the user to connect again may be executed. In this case, when a CPLT signal with a time ratio D of “5%” is oscillated when the user actually disconnects the communication lines L3 and L4 and then reconnects, the Inband communication signal is transmitted to the Inband communication. What is necessary is just to wait for the time ratio D to be changed by waiting without ECU32 transmitting.
  • the process after the Inband communication ECU 32 (or the microcomputer 24) as the end processing unit performs the process of terminating the Inband communication is not limited to the processes described in the above embodiments.
  • the external power supply device 40 transmits the CPLT signal while terminating the Inband communication.
  • the processing after step S70a may be changed to the processing of steps S50 to S60 in FIG.
  • the Inband communication ECU 32 functions as a determination unit that determines whether or not to continue Inband communication. For example, in the first embodiment, when the applied voltage V to the power transmission line L1 or the current I supplied via the power transmission line L1 is excessively large, the Inband communication ECU 32 is assumed to have a critical abnormality. , Inband communication is terminated. However, for example, when the applied voltage V or the current I is excessively small, the Inband communication ECU 32 may determine that the signal output from the external power supply device 40 has low reliability and is a critical abnormality.
  • the Inband communication ECU 32 causes a critical abnormality to occur. Inband communication may be terminated. As a result, despite the occurrence of a critical abnormality, the Inband communication is continued and the charging process is started by operating the converter 14, and then the process of forcibly stopping the power supply from the external power supply device 40 is performed. Can be avoided.
  • Communication for power transfer is not limited to Inband communication. Even if the communication is other than this, for example, if an abnormality occurs in communication related to an additional service, the charging process of the battery 12 and the supply of the electric power of the battery 12 to the outside are within the limits of not enjoying the service. It is effective to execute the processing (reverse power flow processing).
  • the second communication mode can be used. It is not essential that the communication mode signal is superimposed on the first communication mode signal. That is, even if not superimposed, it is effective to perform processing for shifting to the second communication mode when the first communication mode is abnormal in the manner of the second to sixth embodiments.
  • a part or all of the processes shown in FIGS. 4 to 11 may be executed by the charge control ECU 20.
  • the CPLT receiving circuit 22 may be formed on a substrate different from the charging control ECU 20.
  • the CPLT receiving circuit 22 may be formed on the same substrate as the signal detection ECU 30 and the Inband communication ECU 32.
  • the charging control ECU 20, the signal detection ECU 30, and the Inband communication ECU 32 may be formed on a single board. At this time, by sharing a microcomputer or the like, communication between functional units realized by the charge control ECU 20, functional units realized by the signal detection ECU 30, and functional units realized by the Inband communication ECU 32 (CAN communication or the like) ) Becomes unnecessary.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

 Inband通信ECU(32)は、外部電源装置(40)から通信線(L3)に出力されるCPLT信号に高周波信号を重畳することで、Inband通信を実行する。Inband通信の実行中であって、未だバッテリ(12)の充電や逆潮流処理が開始される以前において、Inband通信にデータ異常が生じる場合、データ異常が充電や逆潮流を行うことができないものでない限り、Inband通信を継続して、データ異常によってうける制約の範囲で充電や逆潮流処理を実行する。

Description

車両用電力授受制御装置
 本発明は、外部電源装置との間で電力の授受を行う車載蓄電装置と、前記電力の授受のための双方向の通信を行う通信部とを備える車両に適用される車両用電力授受制御装置に関する。
 車両内のバッテリに対し、外部から充電を可能とすべく、車両と外部の電源装置とを充電ケーブルのみならず、充電制御に用いるコントロールパイロット信号(CPLT信号)の伝送に用いられる通信線を介して接続することが実用化されている。具体的には、CPLT信号の論理Hおよび論理Lの周期に対する論理Hの時間の時比率によって外部の電源装置から供給可能な電流の上限値を表現することによりこの上限値を車両側に通知することで、車両では、充電電流値が上記上限値以下となるように充電制御を行う。
 また、上記CPLT信号に、CPLT信号よりも周波数が高い高周波信号を重畳することで、CPLT信号に含まれる情報よりも多くの情報を送受信するInband通信を行うことも提案されている(特許文献1)。また、上記Inband通信は、CPLT信号の時比率を「5%」に固定した状態で行うことが提案されている。すなわち、CPLT信号の時比率が「5%」である場合、時比率は、供給可能な電流の上限値を表現するものではなく、Inband通信を実行するために特に設定された値である。
国際公開第2013/129038号
 上記特許文献1には、Inband通信に異常が生じた場合のフェールセーフ処理については開示がない。このため、Inband通信に異常が生じた場合に、Inband通信を継続することが妨げられたり、充電処理等を開始することができなくなったりする事態となることが懸念される。
 本発明は、そうした実情に鑑みてなされたものであり、その目的は、外部電源装置との間で電力の授受を行う車載蓄電装置と、前記電力の授受のための双方向の通信を行う通信部とを備える車両に適用され、双方向の通信に異常が生じる場合に、異常によって生じた事態を迅速に打開することのできる車両用電力授受制御装置を提供することにある。
 本発明の一態様による車両用電力授受制御装置は、外部電源装置との間で電力の授受を行う車載蓄電装置と、前記電力の授受のための双方向の通信を行う通信部とを備える。前記双方向の通信は、前記電力の授受に先立って該電力の授受の準備をするための通信を含み、前記車両用電力授受制御装置は、前記電力の授受に先立ってなされる前記双方向の通信に異常が生じる場合、該異常の内容に応じて前記双方向の通信を継続するか否かを決定する決定部を備える。
 通信の内容に応じた処理は、必ずしも電力の授受を行ううえで必須のものばかりではない。一方、電力の授受に先立ってなされる双方向の通信を中断する場合、電力の授受を行うことができない蓋然性が高い。このため、異常が生じることで通信を一律終了してしまうと、実際には電力の授受を行うことができるにもかかわらず、通信を終了することで電力の授受を行うことができなくなるおそれがある。これに対し、上記装置では、異常の内容に応じて通信を継続するか否かを決定することで、電力の授受を行うことができる蓋然性を高めることができる。このため、双方向の通信に異常が生じる場合に、異常によって生じた事態を迅速に打開することが可能となる。
 一形態において、前記決定部は、前記異常の内容が、前記電力の授受を行うこと自体は可能なものであることを条件に、前記通信を継続することを決定する。
 電力の授受を行うこと自体は可能な異常が生じた場合にまで、双方向の通信を停止すると、双方向の通信に基づく電力の授受を行うこともできなくなる。この点、上記装置では、電力の授受を行うこと自体は可能な異常であることを条件に、双方向の通信を継続することで、電力の授受を行うことができる蓋然性を高めることができる。
 一形態において、前記車両用電力授受制御装置は、前記決定部により前記通信を継続することが決定された場合、前記通信の異常の内容に応じたサービス制約を受ける範囲で前記電力の授受を実行する実行部を備える。
 一形態において、前記決定部は、前記異常の内容が、前記電力の授受を行うことができなくなるものである場合、前記通信を継続しないことを決定する。
 電力の授受を行うことができなくなる異常が生じる場合、双方向の通信を継続し、双方向の通信に基づき電力の授受を開始するわけにはいかない。この点、上記装置では、電力の授受を行うことができなくなる異常が生じる場合、双方向の通信を継続しないことを決定するため、双方向の通信に基づく電力の授受を行わないこととなる。このため、電力の授受に関わる機器の信頼性の低下を好適に抑制することができる。
 一形態において、前記車両用電力授受制御装置は、前記外部電源装置から前記車載蓄電装置へ電力を供給する際の電流値の情報が前記外部電源装置から出力されることで、その電流値の情報を取得する取得部を備え、前記電流値の情報は、通信線を介して前記外部電源装置から前記取得部に送信されるものであり、前記双方向の通信は、前記通信線を介して行われる。前記車両用電力授受制御装置はさらに、前記外部電源装置から供給される電力を前記車載蓄電装置に充電するために前記双方向の通信を行っている際に前記決定部により前記通信を継続しないことを決定する場合、前記外部電源装置に前記双方向の通信を終了させるための処理を行う終了処理部と、前記処理部による処理がなされた後、前記取得部によって取得される電流値の情報に基づき前記車載蓄電装置の充電を行う充電処理部とを備える。
 車載蓄電装置に充電するために双方向の通信を行っているときに通信に異常が生じる場合、双方向の通信に基づくことなく上記電流値の情報によって充電を行うことができる可能性がある。一方、上記電流値の情報を取得できる状況に迅速に移行する上では、双方向の通信を終了することが望ましい。そこで上記装置では、終了処理部によって双方向の通信を終了させる。そして、取得部によって取得される電流値に基づき車載蓄電装置を充電することにより、双方向の通信によらず、取得部によって取得された情報に基づき車載蓄電装置を充電することができる。
 本発明の他の態様による車両用電力授受制御装置は、外部電源装置との間で電力の授受を行う車載蓄電装置と、前記電力の授受のための双方向の通信を行う通信部と、前記外部電源装置から前記車載蓄電装置へ電力を供給する際の電流値の情報が前記外部電源装置から出力されることで、その電流値の情報を取得する取得部とを備える。前記電流値の情報は、通信線を介して前記外部電源装置から前記取得部に送信されるものであり、前記双方向の通信は、前記通信線を介して行われるものであって且つ、前記電力の授受に先立って該電力の授受の準備をするための通信を含む。前記車両用電力授受制御装置はさらに、前記電力の授受に先立ってなされる前記双方向の通信に異常が生じることを条件に、前記外部電源装置に前記双方向の通信を終了させるための処理を行う終了処理部と、前記終了処理部による処理がなされた後、前記取得部によって取得される電流値の情報に基づき前記車載蓄電装置の充電を行う充電処理部とを備える。
 双方向の通信に異常が生じる場合であっても、双方向の通信に基づくことなく上記電流値の情報によって充電を行うことができる可能性がある。一方、上記電流値の情報を取得できる状況に迅速に移行する上では、双方向の通信を終了することが望ましい。そこで上記装置では、終了処理部によって双方向の通信を終了させる。そして、取得部によって取得される電流値に基づき車載蓄電装置を充電することにより、双方向の通信によらず、取得部によって取得された情報に基づき車載蓄電装置を充電することができる。したがって、双方向の通信に異常が生じることで車載蓄電装置の充電ができなくなるおそれのある事態を迅速に打開することが可能となる。
 一形態において、前記終了処理部は、前記通信線の電圧を前記双方向の通信が正常になされているときとは相違する電圧に変更する電圧変更操作を行った後、該電圧変更操作を停止する。
 通信線の電圧が双方向の通信が正常になされているときとは相違する電圧に変更された場合、外部電源装置は双方向の通信を行うことができないと判断し、双方向の通信を停止すると考えられる。そしてその後、通信線の電圧が正常なものに復帰すると、外部電源装置は、通信を最初からやり直すと考えられる。ここで、双方向の通信の途中と比較して、双方向の通信の開始前の方が、双方向の通信から、電流値の情報が出力される状態への移行が容易と考えられる。このため、上記装置では、電圧変更操作によって、双方向の通信の開始前の工程に移行させることで、電流値の情報が出力される状態への移行を容易に行うことができる。
 一形態において、前記電流値の情報は、論理Hおよび論理Lが交互に出現する論理信号における、論理Hとなる期間と論理Lとなる期間とからなる一周期の時間に対する論理Hとなる時間の時比率によって表現されるものであり、前記双方向の通信は、前記時比率が所定の比率となる場合に、前記論理信号に高周波信号を重畳させることで行われるものである。前記車両用電力授受制御装置はさらに、前記終了処理部によって前記電圧変更操作が停止された後、前記外部電源装置から前記論理信号が送信されて該論理信号の時比率が前記所定の比率である場合、前記双方向の通信を行うことなく待機する待機処理部を備える。前記時比率が前記所定の比率となる場合、前記論理信号は、前記電流値の情報を含まず、前記充電処理部は、前記待機処理部による待機の結果、前記外部電源装置から前記電流値の情報が送信されることを条件に、前記車載蓄電装置の充電を開始する。
 論理Hおよび論理Lが交互に出現する論理信号の時比率が所定の比率となる状態は、本来は、双方向の通信を促す状態である。ここで、上記装置では、この場合に、双方向の通信を開始しないことで、外部電源装置に、双方向の通信をしないことを認知させることができ、ひいては、上記論理信号を、時比率によって電流値の情報を表現する信号に変更するように促すことができる。
 一形態において、前記電流値の情報は、論理Hおよび論理Lが交互に出現する論理信号における、論理Hとなる期間と論理Lとなる期間とからなる一周期の時間に対する論理Hとなる時間の時比率によって表現されるものであり、前記双方向の通信は、前記時比率が所定の比率となる場合に、前記論理信号に高周波信号を重畳させることで行われるものである。前記車両用電力授受制御装置はさらに、前記終了処理部によって前記電圧変更操作が停止された後、前記論理信号が送信されない場合、前記論理信号を送信するように促す催促部を備える。
 上記装置では、終了処理部の処理によって、上記論理信号の出力すら停止されてしまった場合に、同論理信号の出力を再開させることが可能となる。
 一形態において、前記終了処理部は、前記終了させる処理として、前記双方向の通信によって前記双方向の通信を終了することを前記外部電源装置に通知する処理を実行する。
 上記装置では、双方向の通信を用いて双方向の通信を終了することを外部電源装置に通知する。これにより、外部電源装置に双方向の通信を迅速に終了させることができる。
 一形態において、前記双方向の通信は、前記通信部からリクエスト信号を送信することで前記外部電源装置からレスポンス信号が送信されるものであり、前記終了処理部は、前記終了させる処理として、前記リクエスト信号の送信を停止する処理を実行する。
 上記装置では、リクエスト信号の送信を停止することで、外部電源装置に通信に異常が生じたと判断させることができる。そして、これにより、外部電源装置に双方向の通信を終了するようにし向けることができる。
 一形態において、前記双方向の通信は、前記通信部からリクエスト信号を送信することで前記外部電源装置からレスポンス信号が送信されるものであり、前記終了処理部は、前記終了させる処理として、前記リクエスト信号として異常な信号を送信する処理を実行する。
 上記装置では、リクエスト信号として異常な信号を送信することで、外部電源装置に通信に異常が生じたと判断させることができる。そして、これにより、外部電源装置に双方向の通信を終了するようにし向けることができる。
 一形態において、前記電流値の情報は、論理Hおよび論理Lが交互に出現する論理信号における、論理Hとなる期間と論理Lとなる期間とからなる一周期の時間に対する論理Hとなる時間の時比率によって表現されるものであり、前記双方向の通信は、前記時比率が所定の比率となる場合に、前記論理信号に高周波信号を重畳させることで行われるものである。前記車両用電力授受制御装置はさらに、前記終了処理部により前記終了させる処理がなされた後、前記通信線に前記論理信号が送信されなくなることを条件に、前記論理信号を送信するように促す催促部を備える。
 上記装置では、双方向の通信を終了させた後、論理信号が送信されなくなることで、その送信を促す。このため、論理信号の送信が再開される場合には、双方向の通信の開始前の状態とすることができる。このため、上記時比率によって電流値の情報を表現する状態に移行させることが容易となる。
 一形態において、前記電流値の情報は、論理Hおよび論理Lが交互に出現する論理信号における、論理Hとなる期間と論理Lとなる期間とからなる一周期の時間に対する論理Hとなる時間の時比率によって表現されるものであり、前記双方向の通信は、前記時比率が所定の比率となる場合に、前記論理信号に高周波信号を重畳させることで行われるものであり、前記時比率が前記所定の比率となる場合、前記論理信号は前記電流値の情報を含まない。前記車両用電力授受制御装置はさらに、前記外部電源装置から前記論理信号が送信されて該論理信号の時比率が前記所定の時比率である場合、前記双方向の通信を行うことなく待機する待機処理部を備える。
 上記論理信号の時比率が所定の比率である状態は、本来は、双方向の通信を促す状態である。ここで、上記装置では、この場合に、双方向の通信を開始しないことで、外部電源装置に、双方向の通信をしないことを認知させることができ、ひいては、上記論理信号を、時比率によって電流値の情報を表現する信号に変更するように促すことができる。
第1の実施形態にかかるシステム構成図。 CPLT信号を示すタイムチャート。 Inband通信を示す図。 第1の実施形態にかかるInband通信処理の手順を示す流れ図。 第1の実施形態にかかる充電、逆潮流処理の手順を示す流れ図。 第2の実施形態にかかるシステム構成図。 第2の実施形態にかかるフェールセーフ処理の手順を示す流れ図。 第3の実施形態にかかるフェールセーフ処理の手順を示す流れ図。 第4の実施形態にかかるフェールセーフ処理の手順を示す流れ図。 第5の実施形態にかかるフェールセーフ処理の手順を示す流れ図。 第6の実施形態にかかるInband通信処理の手順を示す流れ図。
 <第1の実施形態>
 以下、車両用電力授受制御装置の第1の実施形態について、図面を参照しつつ説明する。
 図1に、第1の実施形態にかかるシステム構成を示す。車両10は、車載蓄電装置としてのバッテリ12を備えている。バッテリ12は、たとえばリチウムイオン2次電池等の2次電池である。バッテリ12には、外部から供給される電力をバッテリ12に充電したり、バッテリ12の蓄電電荷を外部に出力したりするために用いられる電力変換回路であるコンバータ14が接続される。
 一方、外部電源装置40は、車両10のコンバータ14との間で電力を授受する電源部42を備えている。車両10のコンバータ14と外部電源装置40の電源部42とは、電力伝送線L1,L2を介して接続可能とされている。詳しくは、車両10は、端子T1,T2を備えており、端子T1,T2に電力伝送線L1,L2が接続される。
 車両10は、外部電源装置40との間で電力の授受を行うための通信を行う回路として、CPLT受信回路22を備えている。一方、外部電源装置40は、CPLT信号を送信するためのCPLT発振回路44を備えている。CPLT発振回路44は、通信線L3,L4を介してCPLT受信回路22に接続可能とされている。詳しくは、車両10は、端子T3,T4を備えており、端子T3,T4に通信線L3,L4が接続される。これにより、端子T3,T4に通信線L3,L4が接続されることで、CPLT発振回路44からCPLT受信回路22に、論理Hおよび論理Lが周期的に繰り返されるCPLT信号を送信可能となっている。なお、通信線L4は、基準電位を定めるためのものである。このため、CPLT信号の論理Hおよび論理Lは、通信線L4に対する通信線L3の電位差(以下、通信線L3の電圧)によって定義される。
 CPLT受信回路22は、通信線L3の電圧を、電力の授受のための処理の進行状況に応じて変更する回路である。具体的には、CPLT受信回路22は、通信線L3と通信線L4とを接続する抵抗体22aと、抵抗体22bおよびスイッチング素子22cの直列接続体とを備えている。なお、端子T3,T4に通信線L3,L4が接続される前には、スイッチング素子22cは、原則、開状態とされている。
 第1の実施形態では、車両10と外部電源装置40との間の通信として、CPLT信号による通信に加えて、CPLT信号に重畳される高周波信号を用いたInband通信を行う。Inband通信を行うべく、車両10は、通信部としてのInband通信ECU32を備えており、外部電源装置40は、Inband通信回路46を備えている。Inband通信ECU32とInband通信回路46とは、いずれも通信線L3,L4に接続される。
 なお、車両10は、CPLT受信回路22とコンバータ14とを操作するマイコン24を備えている。また、ユーザからの指示が入力されマイコン24に伝達するための入力部26を備えている。また、通信線L3の電圧に基づき、CPLT信号の論理Hおよび論理Lの周期に対する論理Hの時間の時比率Dを検出する信号検知ECU30を備えている。ちなみに、第1の実施形態において、CPLT受信回路22と、マイコン24とは、充電制御ECU20として、単一の基板に形成されている。
 一方、外部電源装置40は、CPLT発振回路44とInband通信回路46とを操作する制御回路48を備えている。
 次に、マイコン24による充電のための処理の進行状況に応じた通信線L3の電圧の変更処理について、図2を用いて説明する。
 図2では、時刻t1の前には、端子T3,T4に通信線L3,L4が接続されていない状態を示す。この場合、通信線L3の電圧は最高値である12Vとされる。時刻t1において、端子T3,T4に通信線L3,L4が接続されると、通信線L3,L4の電圧は、中間値である「9V」に低下する。ここで、通信線L3,L4が端子T3,T4に接続される時刻t1の前においては、通信線L3と通信線L4との間は、ハイインピーダンス状態となる。これに対し、時刻t1には、スイッチング素子22cが開状態とされているため、通信線L3の電圧は、抵抗体22aとCPLT発振回路44の内部抵抗との分圧値となる。したがって、時刻t1以降では、通信線L3の電圧値が低下する。
 外部電源装置40の制御回路48は、上記通信線L3の電圧の低下によって通信線L3,L4が接続されたことを検知すると、CPLT発振回路44に、論理Hの電圧を「9V」とし、論理Lの電圧を「-12V」とするCPLT信号を出力させる(時刻t2)。
 一方、時刻t3に、車両10側において、バッテリ12に対する充電の準備が整うことで、マイコン24は、CPLT受信回路22のスイッチング素子22cを閉操作する。これにより、CPLT信号の論理「H」は、最低値である「6V」となる。これは、CPLT信号が論理「H」となる期間において、通信線L3の電圧は、抵抗体22aおよび抵抗体22bの並列接続体における抵抗とCPLT発振回路44の内部抵抗との分圧値となるためである。
 充電の準備は、上記CPLT信号に重畳される高周波信号を利用したInband通信に従ってなされる。詳しくは、Inband通信は、図3に示すように、CPLT信号の論理Hおよび論理Lの一周期に対する論理Hの時間の比率(時比率D)が「5%」とされる際に実行されるものである。特に、Inband通信が可能な外部電源装置40では、通信線L3,L4が接続されることで、CPLT信号の時比率を始めに「5%」とする。また、Inband通信は、車両10のInband通信ECU32から外部電源装置40のInband通信回路46にリクエスト信号を送信することで、外部電源装置40のInband通信回路46がレスポンス信号を送信することで行われる。
 ちなみに、Inband通信を実行するのは、Inband通信ECU32である一方、CPLT受信回路22を操作して、CPLT信号の論理「H」の電圧を「6V」に変更するのはマイコン24である。これは、Inband通信ECU32において受信した信号に対し、復調等の処理を施すなどした後、処理の施された信号をマイコン24に送信し、マイコン24でInband通信の内容を把握することで実現することができる。
 ところで、Inband通信に異常が生じる場合、電力の授受を実行できなくなることが懸念される。以下では、Inband通信に異常が生じた場合に、電力の授受を極力実行するための第1の実施形態の処理について説明する。
 図4に、第1の実施形態にかかるInband通信の処理手順を示す。この処理は、Inband通信ECU32によって、たとえば所定周期で繰り返し実行される。
 図4に示す一連の処理において、Inband通信ECU32は、まず、Inband通信が行われていて且つ、バッテリ12の充電または逆潮流の開始前であるか否かを判断する(S10)。Inband通信ECU32は、ステップS10において肯定判断する場合、Inband通信データに異常が生じたか否かを判断する(S12)。そして、Inband通信ECU32は、Inband通信データに異常が生じたと判断する場合(S12:YES)、その異常がクリティカルなデータ異常であるか否かを判断する(S14)。
 ここで、クリティカルなデータ異常とは、Inband通信をする目的としてのバッテリ12の充電処理または逆潮流処理を行うことができなくなる異常のことである。クリティカルなデータ異常としては、たとえば、授受される電力を特定するための物理量(印加電圧V、電流I等)の値が過度に大きい異常がある。たとえば、バッテリ12を充電する場合の外部電源装置40から車両10への印加電圧が、車両10のコンバータ14の耐圧Vthを超えている場合、バッテリ12への充電を行うことができない異常が生じていることとなる。なお、こうした状況は、外部電源装置40から供給される印加電圧がコンバータ14に実際に適していない場合と、Inband通信によって外部電源装置40から送信されたデータにノイズが混入したために、データが異常となった場合に生じる。また、クリティカルなデータ異常としては、外部電源装置40が逆潮流に対応しているか否かを示すデータや、現在、充電および逆潮流のいずれが可能かを示すデータに異常が生じて、その情報を特定できないものがある。ここで、外部電源装置40が逆潮流に対応しているか否かについては、逆潮流をするためにInband通信をしている場合に限ってクリティカルな異常が生じ得る。クリティカルなデータ異常としては、他にも、たとえば、コンバータ14が交流および直流のいずれかにしか対応していない場合に、外部電源装置40が同いずれかに対応していないことを示す場合や、外部電源装置40が交流および直流のうち対応可能なものを示すデータが正常でない場合等がある。
 これに対し、クリティカルでない異常とは、Inband通信をする目的としてのバッテリ12の充電処理または逆潮流処理を行うこと自体は可能な異常のことである。クリティカルでない異常としては、たとえば、Inband通信によって、インターネットを利用可能か否かに関する通信データの異常がある。Inband通信によってインターネットを利用できるか否かは、バッテリ12の充電や逆潮流を行う上で必須ではない。また、クリティカルでない異常としては、たとえば、時間帯に応じた電力料金の情報に関するデータの異常がある。ただし、電力料金が安い場合に限ってバッテリ12を充電する旨が入力部26を介してユーザから指示されている場合には、この異常は、クリティカルな異常となる。さらに、クリティカルでない異常としては、たとえば、外部電源装置40の識別コード(ID)の異常がある。
 Inband通信ECU32は、クリティカルな異常が生じていないと判断する場合(S14:NO)、Inband通信を継続する(S16)。そして、Inband通信ECU32は、この場合や、ステップS12において否定判断する場合には、充電または逆潮流前の通信工程が完了したか否かを判断する(S18)。Inband通信ECU32は、充電または逆潮流前の通信工程が完了していないと判断する場合(S18:NO)、ステップS14の処理に戻る。一方、Inband通信ECU32は、充電または逆潮流前の通信工程が完了したと判断する場合(S18:YES)、充電または逆潮流処理を許可する(S20)。
 これに対し、Inband通信ECU32は、クリティカルなデータ異常が生じていると判断する場合(S14:YES)、Inband通信を終了する(S22)。なお、Inband通信ECU32は、ステップS20,S22の処理が完了する場合や、ステップS10において否定判断する場合には、この一連の処理を一旦終了する。このように、Inband通信ECU32は、Inband通信を継続するか否かを決定する決定部として機能する。
 図5に、第1の実施形態にかかる充電、逆潮流処理の手順を示す。この処理は、図4のステップS20の処理によって充電、逆潮流処理が許可されて且つ、充電、逆潮流の実行期間において、Inband通信ECU32によって、たとえば所定周期で繰り返し実行される。なお、充電、逆潮流の実行期間は、Inband通信に基づきマイコン24によって定められるものである。すなわち、マイコン24は、Inband通信によって得られる時間帯と電力料金との関係情報等の情報に基づき、バッテリ12の充電やバッテリ12の電力の放電処理を行う期間を設定する。ちなみに、設定された期間の始点がステップS20の処理が完了する時刻と大きく乖離する場合には、充電制御ECU20や、Inband通信ECU32、信号検知ECU30は、電力消費量を低減した状態にて、期間の始点となるまで待機する。
 図5に示す一連の処理において、Inband通信ECU32は、まず、クリティカルでないデータ異常が生じた旨の履歴があるか否かを、換言すれば、図4のステップS14において否定判断された履歴があるか否かを、判断する(S30)。Inband通信ECU32は、履歴があると判断する場合(S30:YES)、データ異常によって制約をうけたサービスの範囲で、バッテリ12の充電または逆潮流処理を実行する(S32)。たとえばデータ異常によってInband通信を用いたインターネットの利用ができない場合には、充電または逆潮流処理の期間において、ユーザは車両10内でインターネットを利用することができない。またたとえば、データ異常によって時間帯と電力料金との関係情報を取得できず、直ちにバッテリ12の充電を開始した場合には、電力料金が安い時間帯を狙っての充電処理を行うことはできない。
 一方、Inband通信ECU32は、履歴がないと判断する場合(S30:NO)、Inband通信によるサービスを自由に享受しつつ、バッテリ12の充電処理や逆潮流処理を実行する(S34)。なお、Inband通信ECU32は、ステップS32,S34の処理が完了する場合には、この一連の処理を一旦終了する。
 以上説明した第1の実施形態によれば、以下に記載する効果が得られるようになる。
 (1)Inband通信にデータ異常が生じる場合、Inband通信ECU32は、異常の内容に応じてInband通信を継続するか否かを判定する(図4)。これにより、バッテリ12の充電または逆潮流を実行することができるにもかかわらず、Inband通信にデータ異常が生じることでInband通信を一律終了してしまうことにより充電または逆潮流を実行できなくなる事態を回避することができる。
 (2)データ異常が、充電または逆潮流処理を行うこと自体については可能なものであることを条件に、Inband通信ECU32は、通信を継続することを決定する(S14)。これにより、電力の授受を行うことができる蓋然性を高めることができる。
 (3)データ異常が充電または逆潮流処理を行うことができなくなるものである場合、データ異常によって制約を受けない範囲で電力の授受が実行される(S32)。これにより、電力の授受を実行することができる蓋然性を向上させることができる。
 (4)データ異常がクリティカルな異常として、印加電圧V、電流Iの値が過度に大きい旨を示すデータである場合や、外部電源装置40が直流に対応するか交流に対応するかの情報を適切に受信できない異常等を含めた。これにより、電力の授受を実行することが適切でない場合に、Inband通信を終了することができる。
 <第2の実施形態>
 以下、第2の実施形態について、先の第1の実施形態との相違点を中心に、図面を参照しつつ説明する。
 CPLT信号の論理Hおよび論理Lの一周期に対する論理Hの時間の時比率Dが「5%」よりも大きい場合、時比率Dは、外部電源装置40から電力伝送線L1,L2に出力することのできる電流の上限値の情報を示す。CPLT信号の時比率Dが「5%」よりも大きい状態では、Inband通信を利用できないものの、外部電源装置40は定められた印加電圧で、時比率Dによって定まる電流の上限値以下の電流の電力を供給することができる。ここで、外部電源装置40の印加電圧は、CPLT信号を利用した充電をする際に定められたものであり、Inband通信によって外部電源装置40が車両10に通知する印加電圧と同じとは限らない。特に、CPLT信号を利用した充電をする際の印加電圧よりも、Inband通信によって外部電源装置40が車両10に通知する印加電圧の方が高くなり得る。このため、Inband通信にデータ異常が生じた場合であっても、CPLT信号を利用したバッテリ12の充電に切り替えることができるなら、CPLT信号を利用した充電を実行することが可能となる。ただし、Inband通信が実行されているときに、Inband通信によって、CPLT信号を用いた充電を行うように車両10から外部電源装置40に通知することができるとは限らない。
 ここで、第2の実施形態では、通信線L3,L4に時比率Dが「5%」のCPLT信号の出力が開始された後、車両10が一度もInband通信による信号を出力しない場合、所定時間が経過することで、外部電源装置40がCPLT信号の時比率Dを充電電流の上限値を示す値に変更すると考えられることに着目する。これは、ISO15118-3の規格では、時比率Dが「5%」のCPLT信号の出力開始から所定時間内にInband通信が確立しない場合、時比率Dを充電電流の上限値を示す値に変更し、CPLT信号を用いた充電を実行可能とするとされていることなどを根拠とする考えである。ここで問題となるのは、データ異常が生じるのは、Inband通信が確立した後であるということである。
 そこで第2の実施形態では、Inband通信にデータ異常が生じる場合、Inband通信の開始以前の状態に戻す処理を実行する。詳しくは、意図的に通信線L3がアースにショートした状態にして、外部電源装置40にInband通信を終了させる。その後、ショートした状態を解消することで、Inband通信を開始する前の状態に戻すことができる。
 図6に、第2の実施形態にかかるシステム構成を示す。なお、図6において、図1に示した部材に対応するものについては、便宜上同一の符号を付している。
 図示されるように、第2の実施形態では、通信線L3と通信線L4との間にリレー50を備える。リレー50は、Inband通信ECU32によって開閉操作が可能となっている。リレー50が閉状態とされることで、通信線L3がアースにショートした場合と同一の状態、すなわち通信線L3の電圧が0Vで固定された状態となる。このように、Inband通信に異常が生じた場合に、Inband通信ECU32は、通信線L3の電圧をInband通信が正常になされているときの電圧(本例では9V)とは相違する電圧に変更する電圧変更操作を行う。
 図7に、第2の実施形態にかかるデータ異常時のフェールセーフ処理の手順を示す。この処理は、Inband通信ECU32によって、たとえば所定周期で繰り返し実行される。
 図7に示す一連の処理において、Inband通信ECU32は、まず、Inband通信がなされて且つ、通信の内容がバッテリ12の充電開始前のものであるか否かを判断する(S40)。Inband通信ECU32は、充電開始前であると判断する場合(S40:YES)、Inband通信にデータ異常が生じたか否かを判断する(S42)。Inband通信ECU32は、データ異常が生じたと判断する場合(S42:YES)、Inband通信を終了し、リレー50を閉操作することで、通信線L3を通信線L4にショートさせるL3接地処理を行う(S44)。そしてInband通信ECU32は、ショートさせた状態で一定時間待機する(S46:NO)。ここで、一定時間は、外部電源装置40が、通信線L3がアースにショートした異常が生じたと判断し、Inband通信を終了するのに要する時間以上に設定される。なお、この時間は、外部電源装置40がInband通信を終了するのに要する時間以上であって極力短い時間に設定することが望ましい。
 Inband通信ECU32は、一定時間が経過すると(S46:YES)、リレー50を開操作することで、上記接地処理を停止して通信線L3がアースにショートした状態を解除する(S48:接地解除)。次に、Inband通信ECU32は、通信線L3にCPLT信号が出力されて且つ、その時比率Dが「10~96%」であるか否かを判断する(S50)。この処理は、CPLT信号を利用したバッテリ12の充電が可能であるか否かを判断するためのものである。そして、Inband通信ECU32は、時比率Dが「10~96%」であると判断する場合(S50:YES)、バッテリ12の充電処理を実行する(S52)。ここでは、バッテリ12の充電電流の上限値を時比率Dによって規定された値としつつ、充電処理が実行される。具体的には、コンバータ14の操作によって、電源部42から引き込む電流量が時比率Dによって規定された上限値以下となるように、充電電流を制御する。
 一方、Inband通信ECU32は、時比率Dが「10~96%」でない場合(S50:NO)、時比率Dが「5%」であるか否かを判断する(S54)。この処理は、外部電源装置40が、Inband通信を行うように促しているか否かを判断するためのものである。Inband通信ECU32は、時比率Dが「5%」であると判断する場合(S54:YES)、Inband通信を行うことなく時比率Dが「10~96%」となるまで待機すべくステップS50に戻る。一方、時比率Dが「5%」でもないと判断する場合(S54:NO)、通信線L3の電圧が9Vで固定された状態であるか否かを判断する(S56)。この処理は、外部電源装置40が、Inband通信の異常に起因してInband通信を終了し、さらに、CPLT信号の出力自体を停止してしまったか否かを判断するためのものである。そしてInband通信ECU32は、通信線L3の電圧が9Vで固定されていると判断する場合(S56:YES)、外部電源装置40にCPLT信号の出力を開始するように指示するトグル処理を実行する(S58)。具体的には、スイッチング素子22cを一旦閉状態とした後、開状態に戻すことで、通信線L3の電圧を一旦、6Vに低下させた後、9Vに回復させる処理を実行する。Inband通信ECU32は、トグル処理を実行すると、ステップS50の処理に戻る。
 Inband通信ECU32は、通信線L3の電圧が9Vに固定されているわけでもないと判断する場合(S56:NO)、外部電源装置40の異常と判定する(S60)。なお、Inband通信ECU32は、ステップS52,S60の処理が完了する場合や、ステップS40,S42において否定判断する場合には、この一連の処理を一旦終了する。
 以上説明した第2の実施形態によれば、以下の効果が得られるようになる。
 (5)Inband通信にデータ異常が生じる場合、Inband通信ECU32は、意図的に通信線L3をアースにショートした状態にし(S44)、一定時間が経過することで、その状態を解除する(S48)。これにより、外部電源装置40に、Inband通信が不可能となる異常が生じたとしてInband通信を終了するようにし向けることができる。このため、Inband通信の開始前の状態に迅速に移行させることができる。
 (6)通信線L3をアースにショートさせた状態を解除した後、通信線L3に出力されるCPLT信号の時比率Dが「5%」である場合、Inband通信ECU32は、Inband通信を行うことなく待機する(S54)。これにより、外部電源装置40にCPLT信号を利用した充電を可能とする状態に移行するようにし向けることができる。
 (7)通信線L3をアースにショートさせた状態を解除した後、通信線L3にCPLT信号が出力されなくなる場合、Inband通信ECU32は、CPLT信号の出力を促すトグル処理を行う(S58)。これにより、CPLT信号の出力を再開させることができる。
 <第3の実施形態>
 以下、第3の実施形態について、先の第2の実施形態との相違点を中心に、図面を参照しつつ説明する。
 上記第2の実施形態では、Inband通信ECU32は、外部電源装置40に、Inband通信を終了させるために、意図的に通信ができない異常な状態を設定した。これに対し、第3の実施形態では、Inband通信ECU32は、リクエスト信号を送信しないことで、外部電源装置40にInband通信を終了させる。この処理は、特別なハードウェア手段を必要としないため、第3の実施形態のシステム構成は、図1に示したものとする。
 図8に、第3の実施形態にかかるデータ異常時のフェールセーフ処理の手順を示す。この処理は、Inband通信ECU32によって、たとえば所定周期で繰り返し実行される。なお、図8において、図7に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
 図8に示す一連の処理において、Inband通信ECU32は、ステップS42において肯定判断する場合、Inband通信を終了する処理を実行する(S70)。具体的には、リクエスト信号の送信を停止する。これは、Inband通信ECU32内のInband通信のためのモデムの電源を遮断することで行えばよい。もっとも、モデムの電源を遮断することなく、リクエスト信号の送信を停止するのみでもよい。そして、Inband通信ECU32は、CPLT信号の出力が停止されるまで待機する(S72:NO)。Inband通信ECU32は、CPLT信号の出力が停止される場合(S72:YES)、図7のステップS58の処理と同様、トグル処理を行う(S74)。そして、通信線L3にCPLT信号が出力されることで、Inband通信ECU32は、CPLT信号の時比率Dが「10~96%」であるか否かを判断する(S76)。そしてInband通信ECU32は、時比率Dが「10~96%」であると判断する場合(S76:YES)、ステップS52に移行する。
 一方、Inband通信ECU32は、時比率Dが「10~96%」ではないと判断する場合(S76:NO)、時比率Dが「5%」であるか否かを判断する(S78)。そして、Inband通信ECU32は、時比率Dが「5%」であると判断する場合(S78:YES)、Inband通信を行うことなくCPLT信号を利用した充電が可能な状態に移行するまで待機すべく、ステップS76の処理に戻る。これに対し、Inband通信ECU32は、時比率Dが「5%」でもないと判断する場合(S78:NO)、外部電源装置40の異常と判定する(S60)。
 なお、Inband通信ECU32は、ステップS52,S60の処理が完了する場合や、ステップS40,S42において否定判断する場合には、この一連の処理を一旦終了する。
 以上説明した第3の実施形態によれば、以下の効果が得られるようになる。
 (8)データ異常が生じる場合、Inband通信ECU32はリクエスト信号の送信を停止する(S70)。これにより、外部電源装置40に、Inband通信を行うことができないとしてInband通信を終了させるようにし向けることができる。
 (9)通信線L3にCPLT信号が出力されないとき、Inband通信ECU32はトグル処理を実行する(S74)。これにより、外部電源装置40を、通信線L3にCPLT信号が送信される状態へと移行させることができる。
 (10)トグル処理の結果、出力が開始されたCPLT信号の時比率Dが「5%」である場合、Inband通信ECU32は、Inband通信を行うことなく待機する(S78:YES)。これにより、外部電源装置40に、Inband通信ができないとしてCPLT信号を利用した充電が可能となる状態に移行するようにし向けることができる。
 <第4の実施形態>
 以下、第4の実施形態について、先の第3の実施形態との相違点を中心に、図面を参照しつつ説明する。
 図9に、第4の実施形態にかかるデータ異常時のフェールセーフ処理の手順を示す。この処理は、Inband通信ECU32によって、たとえば所定周期で繰り返し実行される。なお、図9において、図8に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
 図9に示す一連の処理において、Inband通信ECU32は、ステップS42において肯定判断する場合、Inband通信を用いて、外部電源装置40にInband通信を終了するように通知する(S70a)。すなわち、CPLT信号に重畳させる高周波信号に、Inband通信を終了する旨の情報を含める。そして、Inband通信ECU32は、図8の処理と同様、CPLT信号の出力が停止するまで待機する(S72)。
 以上説明した第4の実施形態によれば、上記第3の実施形態の上記(9),(10)の効果に加えて、さらに以下の効果が得られるようになる。
 (11)データ異常が生じる場合、Inband通信ECU32は、Inband通信によって、外部電源装置40にInband通信を終了するように通知する(S70a)。これにより、外部電源装置40に、Inband通信を終了させることができる。
 <第5の実施形態>
 以下、第5の実施形態について、先の第3の実施形態との相違点を中心に、図面を参照しつつ説明する。
 図10に、第5の実施形態にかかるデータ異常時のフェールセーフ処理の手順を示す。この処理は、Inband通信ECU32によって、たとえば所定周期で繰り返し実行される。なお、図10において、図8に示した処理に対応する処理については、便宜上同一のステップ番号を付している。
 図10に示す一連の処理において、Inband通信ECU32は、ステップS42において肯定判断する場合、リクエスト信号に代えて、本来送信すべき信号とは相違する信号であって、外部電源装置40で異常な信号と判断されるエラー信号を意図的に送信する。この処理は、外部電源装置40に、Inband通信に異常が生じたとしてInband通信を終了するようにし向けるためのものである。そして、Inband通信ECU32は、図8の処理と同様、CPLT信号の出力が停止するまで待機する(S72)。
 以上説明した第5の実施形態によれば、上記第3の実施形態の上記(9),(10)の効果に加えて、さらに以下の効果が得られるようになる。
 (12)データ異常が生じる場合、Inband通信ECU32は、リクエスト信号を意図的にエラー信号として送信する(S70b)これにより、外部電源装置40に、Inband通信を行うことができないとしてInband通信を終了させるようにし向けることができる。
 <第6の実施形態>
 以下、第6の実施形態について、先の第1の実施形態との相違点を中心に、図面を参照しつつ説明する。
 上記第1の実施形態では、Inband通信ECU32は、データ異常がクリティカルな異常であると判断する場合、Inband通信を終了し、充電処理を断念した。しかし、Inband通信にクリティカルな異常が生じた場合であっても、第2~第5の実施形態において例示した要領で、CPLT信号を利用してバッテリ12を充電することはできると考えられる。すなわち、CPLT信号を利用した充電処理においては、Inband通信ECU32は、CPLT信号の時比率Dによって、充電電流の上限値の情報を得ることができる。また、CPLT信号を利用した充電処理においては、外部電源装置40から車両10へ供給される印加電圧が予め定められている。このため、たとえクリティカルな異常が、Inband通信を利用した充電処理において外部電源装置40から車両10へ供給される印加電圧がコンバータ14等の耐圧を超えていることを意味していたとしても、CPLT信号を利用した充電を行うことは可能となりうる。この点に鑑み、第6の実施形態では、バッテリ12を充電すべくInband通信を開始したところ、クリティカルな異常が生じた場合には、CPLT信号を利用した充電を実行する。
 図11に、第6の実施形態にかかるデータ異常時のフェールセーフ処理の手順を示す。この処理は、Inband通信ECU32によって、たとえば所定周期で繰り返し実行される。なお、図11において、図4に示した処理に対応するものについては、便宜上、同一のステップ番号を付している。
 図11に示す一連の処理において、Inband通信ECU32は、クリティカルな異常が生じたと判断する場合(S14:YES)、Inband通信を、バッテリ12の充電をするために行っていたか否かを判断する(S80)。この処理は、CPLT信号を利用した充電処理に移行するか否かを判断するためのものである。そしてInband通信ECU32は、Inband通信を、充電をするために行っていたと判断する場合(S80:YES)、図7~図10のいずれかの処理によって、CPLT信号を利用した充電処理を行う(S82)。なお、Inband通信ECU32は、逆潮流を行うためにInband通信を行っていた場合には(S80:NO)、CPLT信号を利用して逆潮流処理を行うことはできないため、ステップS22の処理に移行する。
 以下、上記「課題を解決するための手段」に記載された構成要件と、上記実施形態との対応関係を記載する。
 外部電源装置…40、車載蓄電装置…12、通信部…32、決定部…32、双方向の通信…Inband通信、実行部…32、電流値の情報…時比率Dに含まれる情報、取得部…30、通信線…L3,L4、終了処理部…32、充電処理部…32、論理信号…CPLT信号、催促部…32。
 <その他の実施形態>
 なお、上記各実施形態は、以下のように変更して実施してもよい。
 ・上記第2実施形態では、Inband通信に異常が生じた場合、Inband通信ECU32は、通信線L3の電圧を、Inband通信(双方向通信)が正常になされているときの電圧(本例では9V)とは相違する電圧に変更する電圧変更操作を行った。具体的に、Inband通信ECU32は、通信線L3の電圧を0Vに固定した。
 このような電圧変更操作において、Inband通信ECU32は、通信線L3の電圧を「-12V」に固定するものであってもよい。CPLT信号の論理Lが「-12V」であることに鑑みれば、通信線L3の電圧が「-12V」に固定されることで、外部電源装置40は、CPLT発振回路44の論理Lの電圧源と通信線L3とがショートする異常が生じたと判断してInband通信を終了すると考えられる。そして、その後、Inband通信ECU32は、通信線L3の電圧を正常時の電圧「9V」に復帰させることで、外部電源装置40にCPLT信号の発振開始処理からやり直させることができる。また、通信線L3に異常が生じた状態を生成するために、固定する電圧の値としては、「0V」や「-12V」にも限らない。
 さらに、通信線L3の電圧を固定するものに限らない。たとえば、CPLT信号の1周期よりも短い時間であって且つ、CPLT信号の論理Hを包含する期間にわたって、通信線L3の電圧を周期的に「0V」とするものであってもよい。この場合、通信線L3の電圧は、「-12V」と「0V」とに周期的に切り替わるものとなるため、外部電源装置40では、通信に異常が生じたと判断することとなる。
 ・上記各実施形態では、Inband通信ECU32が、Inband通信を終了するための処理を行う終了処理部として機能した。
 これに代えて、マイコン24が終了処理部として機能してもよい。たとえば図1の端子T3,T4間に、抵抗体22aに直列にスイッチング素子を備え、マイコン24は、通信線L3,L4が接続されたことが検知されたときスイッチング素子を閉操作し、Inband通信の異常時にスイッチング素子を開操作する。この場合、スイッチング素子の開操作によって通信線L3の電圧が「12V」に上昇するため、外部電源装置40では、通信線L3,L4の接続が解除されたと判断する。このため、その後、スイッチング素子を閉操作することで、外部電源装置40では、通信線L3,L4が新たに接続し直されたと判断する。そしてこれにより、外部電源装置40に、CPLT信号の発振開始処理からやり直させることができる。
 また、Inband通信を終了するための処理は、通信線L3,L4が維持されたまま実行されることに限らない。たとえば、通信線L3,L4の接続を一旦切断した後、再度接続するようにユーザに通知する処理を実行するものであってもよい。この場合、ユーザが実際に通信線L3,L4の接続を一旦切断した後、再度接続した際に、時比率Dが「5%」のCPLT信号が発振される場合、Inband通信の信号をInband通信ECU32が送信することなく待機することで、時比率Dが変更されるのを待機すればよい。
 ・終了処理部としてのInband通信ECU32(またはマイコン24)がInband通信を終了する処理を行った後の処理は、上記各実施形態で説明した処理のみに限定されない。
 たとえば、第4の実施形態(図9)において、Inband通信ECU32がInband通信を終了する旨を外部電源装置40に通知した後、外部電源装置40がInband通信を終了しつつもCPLT信号の送信を継続するために、ステップS70aの後の処理を、図7のステップS50~S60の処理に変更してもよい。
 ・上記各実施形態では、Inband通信ECU32は、Inband通信を継続するか否かを決定する決定部として機能する。
 例えば、上記第1の実施形態では、電力伝送線L1に対する印加電圧Vや電力伝送線L1を介して供給される電流Iが過度に大きい場合、Inband通信ECU32は、クリティカルな異常が生じているとして、Inband通信を終了する。しかしながら、Inband通信ECU32は、たとえば、印加電圧Vや電流Iが過度に小さい場合、外部電源装置40から出力された信号の信頼性が低いとして、クリティカルな異常であると判断してもよい。またたとえば、ユーザ認証に基づき、予め登録しておいた口座から電力使用量に応じた料金が引き落とされる場合において、ユーザ認証に関する通信に異常が生じる場合、Inband通信ECU32は、クリティカルな異常が生じているとしてInband通信を終了してもよい。これにより、クリティカルな異常が生じているにもかかわらずInband通信を継続し、コンバータ14を操作することで充電処理を開始した後に、外部電源装置40から電力供給を強制的に停止する処理がなされる事態を回避することができる。
 ・電力の授受のための通信は、Inband通信に限らない。これ以外の通信であっても、たとえば付加的なサービスに関する通信に異常が生じる場合には、そのサービスを享受しない制約の範囲で、バッテリ12の充電処理や、バッテリ12の電力の外部への供給処理(逆潮流処理)を実行することは有効である。
 また、たとえば同一の通信線において、付加的なサービスを含む第1の通信モードと、最小限の充電処理が可能な第2の通信モードとのいずれかを切替可能なものであるなら、第2の通信モードの信号は、第1の通信モードの信号に重畳されるものであることは必須ではない。すなわち、重畳されるものでなくても、第2~第6の実施形態の要領で、第1の通信モードの異常時に第2の通信モードに移行させるための処理を行うことは有効である。
 ・図4~図11に示す処理の一部または全部を充電制御ECU20によって実行するようにしてもよい。
 ・信号検知ECU30とInband通信ECU32とを同一の基板に形成してもよい。また、CPLT受信回路22を、充電制御ECU20とは別の基板に形成してもよい。この場合、CPLT受信回路22を、信号検知ECU30やInband通信ECU32と同一基板に形成してもよい。さらに、充電制御ECU20、信号検知ECU30およびInband通信ECU32を単一の基板に形成してもよい。この際、マイコンを共有化するなどすることで、充電制御ECU20によって実現される機能単位、信号検知ECU30によって実現される機能単位、およびInband通信ECU32によって実現される機能単位間の通信(CAN通信等)が不要となる。

Claims (14)

  1.  外部電源装置との間で電力の授受を行う車載蓄電装置と、前記電力の授受のための双方向の通信を行う通信部とを備える車両に適用される車両用電力授受制御装置において、
     前記双方向の通信は、前記電力の授受に先立って該電力の授受の準備をするための通信を含み、
     前記電力の授受に先立ってなされる前記双方向の通信に異常が生じる場合、該異常の内容に応じて前記双方向の通信を継続するか否かを決定する決定部を備えることを特徴とする車両用電力授受制御装置。
  2.  前記決定部は、前記異常の内容が、前記電力の授受を行うこと自体は可能なものであることを条件に、前記通信を継続することを決定する請求項1記載の車両用電力授受制御装置。
  3.  前記決定部により前記通信を継続することが決定された場合、前記通信の異常の内容に応じたサービス制約を受ける範囲で前記電力の授受を実行する実行部を備える請求項2記載の車両用電力授受制御装置。
  4.  前記決定部は、前記異常の内容が、前記電力の授受を行うことができなくなるものである場合、前記通信を継続しないことを決定する請求項1~3のいずれか1項に記載の車両用電力授受制御装置。
  5.  前記外部電源装置から前記車載蓄電装置へ電力を供給する際の電流値の情報が前記外部電源装置から出力されることで、その電流値の情報を取得する取得部を備え、
     前記電流値の情報は、通信線を介して前記外部電源装置から前記取得部に送信されるものであり、
     前記双方向の通信は、前記通信線を介して行われるものであり、
     前記外部電源装置から供給される電力を前記車載蓄電装置に充電するために前記双方向の通信を行っている際に前記決定部により前記通信を継続しないことを決定する場合、前記外部電源装置に前記双方向の通信を終了させるための処理を行う終了処理部と、
     前記終了処理部により前記終了させるための処理がなされた後、前記取得部によって取得される電流値の情報に基づき前記車載蓄電装置の充電を行う充電処理部とを備える請求項1~4のいずれか1項に記載の車両用電力授受制御装置。
  6.  外部電源装置との間で電力の授受を行う車載蓄電装置と、前記電力の授受のための双方向の通信を行う通信部とを備える車両に適用される車両用電力授受制御装置において、
     前記外部電源装置から前記車載蓄電装置へ電力を供給する際の電流値の情報が前記外部電源装置から出力されることで、その電流値の情報を取得する取得部を備え、
     前記電流値の情報は、通信線を介して前記外部電源装置から前記取得部に送信されるものであり、
     前記双方向の通信は、前記通信線を介して行われるものであって且つ、前記電力の授受に先立って該電力の授受の準備をするための通信を含み、
     前記電力の授受に先立ってなされる前記双方向の通信に異常が生じることを条件に、前記外部電源装置に前記双方向の通信を終了させるための処理を行う終了処理部と、
     前記終了処理部による処理がなされた後、前記取得部によって取得される電流値の情報に基づき前記車載蓄電装置の充電を行う充電処理部とを備えることを特徴とする車両用電力授受制御装置。
  7.  前記終了処理部は、前記終了させる処理として、前記通信線の電圧を前記双方向の通信が正常になされているときとは相違する電圧に変更する電圧変更操作を行った後、該電圧変更操作を停止する処理を実行する請求項5または6記載の車両用電力授受制御装置。
  8.  前記電流値の情報は、論理Hおよび論理Lが交互に出現する論理信号における、論理Hとなる期間と論理Lとなる期間とからなる一周期の時間に対する論理Hとなる時間の時比率によって表現されるものであり、
     前記双方向の通信は、前記時比率が所定の比率となる場合に、前記論理信号に高周波信号を重畳させることで行われるものであり、
     前記終了処理部によって前記電圧変更操作が停止された後、前記外部電源装置から前記論理信号が送信されて該論理信号の時比率が前記所定の比率である場合、前記双方向の通信を行うことなく待機する待機処理部を備え、
     前記時比率が前記所定の比率となる場合、前記論理信号は、前記電流値の情報を含まず、
     前記充電処理部は、前記待機処理部による待機の結果、前記外部電源装置から前記電流値の情報が送信されることを条件に、前記車載蓄電装置の充電を開始する請求項7記載の車両用電力授受制御装置。
  9.  前記電流値の情報は、論理Hおよび論理Lが交互に出現する論理信号における、論理Hとなる期間と論理Lとなる期間とからなる一周期の時間に対する論理Hとなる時間の時比率によって表現されるものであり、
     前記双方向の通信は、前記時比率が所定の比率となる場合に、前記論理信号に高周波信号を重畳させることで行われるものであり、
     前記終了処理部によって前記電圧変更操作が停止された後、前記論理信号が送信されない場合、前記論理信号を送信するように促す催促部を備える請求項7または8記載の車両用電力授受制御装置。
  10.  前記終了処理部は、前記終了させる処理として、前記双方向の通信によって前記双方向の通信を終了することを前記外部電源装置に通知する処理を実行する請求項5または6記載の車両用電力授受制御装置。
  11.  前記双方向の通信は、前記通信部からリクエスト信号を送信することで前記外部電源装置からレスポンス信号が送信されるものであり、
     前記終了処理部は、前記終了させる処理として、前記リクエスト信号の送信を停止する処理を実行する請求項5または6記載の車両用電力授受制御装置。
  12.  前記双方向の通信は、前記通信部からリクエスト信号を送信することで前記外部電源装置からレスポンス信号が送信されるものであり、
     前記終了処理部は、前記終了させる処理として、前記リクエスト信号として異常な信号を送信する処理を実行する請求項5または6記載の車両用電力授受制御装置。
  13.  前記電流値の情報は、論理Hおよび論理Lが交互に出現する論理信号における、論理Hとなる期間と論理Lとなる期間とからなる一周期の時間に対する論理Hとなる時間の時比率によって表現されるものであり、
     前記双方向の通信は、前記時比率が所定の比率となる場合に、前記論理信号に高周波信号を重畳させることで行われるものであり、
     前記終了処理部により前記終了させる処理がなされた後、前記通信線に前記論理信号が送信されなくなることを条件に、前記論理信号を送信するように促す催促部を備える請求項10~12のいずれか1項に記載の車両用電力授受制御装置。
  14.  前記電流値の情報は、論理Hおよび論理Lが交互に出現する論理信号における、論理Hとなる期間と論理Lとなる期間とからなる一周期の時間に対する論理Hとなる時間の時比率によって表現されるものであり、
     前記双方向の通信は、前記時比率が所定の比率となる場合に、前記論理信号に高周波信号を重畳させることで行われるものであり、
     前記時比率が前記所定の比率となる場合、前記論理信号は前記電流値の情報を含まず、
     前記外部電源装置から前記論理信号が送信されて該論理信号の時比率が前記所定の時比率である場合、前記双方向の通信を行うことなく待機する待機処理部を備える請求項10~13のいずれか1項に記載の車両用電力授受制御装置。
PCT/JP2015/052567 2014-03-07 2015-01-29 車両用電力授受制御装置 WO2015133210A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/119,597 US10131231B2 (en) 2014-03-07 2015-01-29 Vehicle power transmitting and receiving control device that performs abnormality determination of bidirectional communication
RU2016138317A RU2657014C2 (ru) 2014-03-07 2015-01-29 Устройство управления передачей и приемом энергии транспортного средства
CN201580011712.6A CN106104961B (zh) 2014-03-07 2015-01-29 车辆用电力授受控制装置
EP15757650.5A EP3116092B1 (en) 2014-03-07 2015-01-29 Vehicle power transmitting and receiving control device
BR112016020108-6A BR112016020108B1 (pt) 2014-03-07 2015-01-29 Dispositivo de controle de transmissão e recepção de energia de veículo
KR1020167027033A KR101940387B1 (ko) 2014-03-07 2015-01-29 차량용 전력 수수 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-045206 2014-03-07
JP2014045206A JP6024687B2 (ja) 2014-03-07 2014-03-07 車両用電力授受制御装置

Publications (1)

Publication Number Publication Date
WO2015133210A1 true WO2015133210A1 (ja) 2015-09-11

Family

ID=54055020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052567 WO2015133210A1 (ja) 2014-03-07 2015-01-29 車両用電力授受制御装置

Country Status (9)

Country Link
US (1) US10131231B2 (ja)
EP (1) EP3116092B1 (ja)
JP (1) JP6024687B2 (ja)
KR (1) KR101940387B1 (ja)
CN (1) CN106104961B (ja)
BR (1) BR112016020108B1 (ja)
MY (1) MY178084A (ja)
RU (1) RU2657014C2 (ja)
WO (1) WO2015133210A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6406074B2 (ja) * 2015-03-11 2018-10-17 株式会社デンソー 通信方法
JP6569122B2 (ja) * 2015-08-05 2019-09-04 株式会社オートネットワーク技術研究所 車載充電システム
DE102017110956A1 (de) * 2017-05-19 2018-11-22 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Übertragung von Energie und Information über ein Ladekabel für ein Elektrofahrzeug
JP2019018612A (ja) * 2019-02-05 2019-02-07 三菱自動車工業株式会社 内燃機関の制御装置
BE1029123B1 (de) * 2021-02-18 2022-09-12 Phoenix Contact E Mobility Gmbh Ladedose mit fahrzeuginternem Datenbusanschluss
JP2024002616A (ja) * 2022-06-24 2024-01-11 株式会社ジェイテクト 電源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222143A1 (en) * 2008-03-03 2009-09-03 University Of Delaware Methods and apparatus using hierarchical priority and control algorithms for grid-integrated vehicles
JP2013026953A (ja) * 2011-07-25 2013-02-04 Toyota Industries Corp 車両用充電システム
JP2013048518A (ja) * 2011-08-29 2013-03-07 Toyota Motor Corp 車両用充電装置、充電線通信システム
JP2013523058A (ja) * 2010-02-18 2013-06-13 ユニバーシティ オブ デラウェア グリッド統合された自動車のための電気自動車ステーション装置
JP2013187968A (ja) * 2012-03-07 2013-09-19 Toyota Motor Corp 車両の充電制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343202A (ja) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd 電気自動車の充電装置
JPH06343205A (ja) * 1993-06-01 1994-12-13 Nissan Motor Co Ltd 電気自動車の充電装置
JP2008285075A (ja) * 2007-05-18 2008-11-27 Toyota Motor Corp 車両および車両の故障診断方法
CA2598012C (en) * 2007-08-13 2013-01-08 Glenn Rosendahl Controlling power supply to vehicles through a series of electrical outlets
JP5560877B2 (ja) * 2010-04-27 2014-07-30 株式会社デンソー 車両用充電装置
US8988042B2 (en) * 2011-08-25 2015-03-24 Toyota Jidosha Kabushiki Kaisha Vehicle, charging system and control method for vehicle
JP5900603B2 (ja) 2012-02-28 2016-04-06 住友電気工業株式会社 通信システム、通信装置、給電装置及び車両
TWI450471B (zh) * 2012-03-02 2014-08-21 Ship & Ocean Ind R & D Ct 直流充電系統之多方通訊控制系統及其充電流程
WO2013190683A1 (ja) * 2012-06-21 2013-12-27 三菱電機株式会社 車載電力線通信システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090222143A1 (en) * 2008-03-03 2009-09-03 University Of Delaware Methods and apparatus using hierarchical priority and control algorithms for grid-integrated vehicles
JP2013523058A (ja) * 2010-02-18 2013-06-13 ユニバーシティ オブ デラウェア グリッド統合された自動車のための電気自動車ステーション装置
JP2013026953A (ja) * 2011-07-25 2013-02-04 Toyota Industries Corp 車両用充電システム
JP2013048518A (ja) * 2011-08-29 2013-03-07 Toyota Motor Corp 車両用充電装置、充電線通信システム
JP2013187968A (ja) * 2012-03-07 2013-09-19 Toyota Motor Corp 車両の充電制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3116092A4 *

Also Published As

Publication number Publication date
JP6024687B2 (ja) 2016-11-16
EP3116092B1 (en) 2019-09-25
BR112016020108A2 (ja) 2017-08-15
EP3116092A1 (en) 2017-01-11
BR112016020108B1 (pt) 2022-05-10
RU2016138317A (ru) 2018-04-09
JP2015171248A (ja) 2015-09-28
RU2657014C2 (ru) 2018-06-08
MY178084A (en) 2020-10-02
KR20160129041A (ko) 2016-11-08
KR101940387B1 (ko) 2019-01-18
US20170057358A1 (en) 2017-03-02
CN106104961A (zh) 2016-11-09
EP3116092A4 (en) 2017-05-17
CN106104961B (zh) 2019-08-06
US10131231B2 (en) 2018-11-20

Similar Documents

Publication Publication Date Title
WO2015133210A1 (ja) 車両用電力授受制御装置
JP4736862B2 (ja) 車両、電力授受方法および電気装置
WO2017022572A1 (ja) 車載充電システム
JP6003908B2 (ja) 充電装置および車載機
JP6308105B2 (ja) 中継機
WO2005043642A2 (en) System and methods for charging batteries
JP5547358B1 (ja) 充放電システムの制御方法、及び充放電システム
JP6551371B2 (ja) 自動車
JP2015164382A (ja) 車両用電力管理装置
JP6052228B2 (ja) 車載制御システム
JP5398866B2 (ja) 充放電制御装置
JP2013090496A (ja) 電気自動車用充電装置
JP5931694B2 (ja) 制御システム
JP6406074B2 (ja) 通信方法
JP6666865B2 (ja) 充電装置
US20080218122A1 (en) Battery charging method for an electric golf car
JP2013090423A (ja) 充電システム及び充電制御装置
JP2016005327A (ja) 非接触受電装置
JP2013090421A (ja) 充電システム及び通信装置
JP7070348B2 (ja) 車両
JP7372160B2 (ja) 移動体及び充電制御装置
JP2018038130A (ja) 電動車両
JP2020190476A (ja) 電力供給装置および溶着絶縁診断方法
JP5696640B2 (ja) 車両および外部電源装置
US20190265300A1 (en) Battery device and charging end detecting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757650

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15119597

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015757650

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015757650

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167027033

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201606740

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016138317

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016020108

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016020108

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160831