WO2015129519A1 - 海島複合繊維、複合極細繊維および繊維製品 - Google Patents

海島複合繊維、複合極細繊維および繊維製品 Download PDF

Info

Publication number
WO2015129519A1
WO2015129519A1 PCT/JP2015/054411 JP2015054411W WO2015129519A1 WO 2015129519 A1 WO2015129519 A1 WO 2015129519A1 JP 2015054411 W JP2015054411 W JP 2015054411W WO 2015129519 A1 WO2015129519 A1 WO 2015129519A1
Authority
WO
WIPO (PCT)
Prior art keywords
island
sea
fiber
composite
component
Prior art date
Application number
PCT/JP2015/054411
Other languages
English (en)
French (fr)
Inventor
増田正人
花輪達也
船越祥二
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580003502.2A priority Critical patent/CN105874111B/zh
Priority to EP15755549.1A priority patent/EP3112505B1/en
Priority to US15/121,171 priority patent/US10604866B2/en
Priority to JP2015511135A priority patent/JP6651849B2/ja
Priority to KR1020167010658A priority patent/KR102319779B1/ko
Publication of WO2015129519A1 publication Critical patent/WO2015129519A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/36Matrix structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5414Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres side-by-side
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5416Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sea-island
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/02Underwear
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2503/00Domestic or personal
    • D10B2503/02Curtains
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/04Filters
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/04Sutures
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/06Vascular grafts; stents

Definitions

  • the present invention relates to a sea-island composite fiber comprising an island component and a sea component disposed so as to surround the island component in a fiber cross section perpendicular to the fiber axis, wherein the island component is composed of two or more kinds of polymers.
  • the present invention also relates to a composite ultrafine fiber obtained by seawater-treating this sea-island composite fiber. Further, the present invention relates to a textile product in which these sea-island composite fibers or composite ultrafine fibers constitute at least a part.
  • thermoplastic polymers such as polyester and polyamide are excellent in mechanical properties and dimensional stability, so they are widely used not only for clothing but also for interiors, vehicle interiors, and industrial applications.
  • the required characteristics are also diversified, and a technique for imparting sensibility effects such as texture and bulkiness depending on the cross-sectional shape of the fiber has been proposed.
  • “fiber miniaturization” has a great effect on the properties of the fiber itself and the properties after being formed into a fabric, and is a mainstream technique from the viewpoint of controlling the cross-sectional shape of the fiber.
  • the method of manufacturing ultrafine fibers is often employed industrially by using a so-called sea-island composite fiber in which island components that become ultrafine fibers are coated with sea components. .
  • this method in the cross section of the fiber, a plurality of island components consisting of difficultly soluble components are arranged in the sea component consisting of easily soluble components, and after making the fiber or fiber product, the sea components are dissolved and removed, so that Can be generated.
  • This technique is widely used as a method for producing ultrafine fibers, particularly microfiber products, which are currently industrially produced. Recently, the fiber diameter has been further reduced by the advancement of this technology. Nanofiber production is also becoming possible.
  • the surface area (specific surface area) per weight is the square of the fiber diameter compared to normal fibers (fiber diameter: several tens of ⁇ m). Increases proportionately.
  • the rigidity (second moment of cross section) increases depending on the fiber diameter, it is known that the suppleness expresses a unique tactile sensation. For this reason, it expresses specific characteristics that cannot be obtained with ordinary fibers.For example, by utilizing the improved wiping performance by increasing the contact area, the gas adsorption performance by the super specific surface effect, and the unique flexible touch, It is being developed not only for clothing but also for various other purposes.
  • Patent Document 1 by defining the fiber diameter, the average diameter of the island components, and the arrangement of the sea-island type composite fibers, the (ultrafine) fiber toughness after dissolution of the sea components has high mechanical properties of 20 or more. It is possible to obtain ultrafine fibers (nanofibers).
  • Patent Document 1 discloses a cross section of a sea island for the purpose of preventing unnecessary processing of even ultrafine fibers made of island components when dissolving and removing sea components in a method for producing ultrafine fibers using sea-island composite fibers. The cross-sectional parameters are defined. In patent document 1, there exists description which can obtain a comparatively high mechanical characteristic, and there exists a possibility that the expansion
  • Patent Document 2 proposes that polytrimethylene terephthalate having relatively flexible characteristics be used as the island component.
  • Patent Document 2 there is a possibility that an ultrafine fiber bundle and a fiber product having improved softness and flexibility as compared with Patent Document 1 can be collected.
  • Patent Document 3 mainly two or more types of ultrafine fiber components of polyamide and polyester of 0.001 to 0.3 denier (corresponding to a fiber diameter of 300 nm to 6 ⁇ m) are dispersed and arranged substantially without forming a group.
  • the sea-island composite fiber that is an island component.
  • the sea components are removed from the above-mentioned sea-island composite fibers, and heat treatment is performed, so that the ultrafine fibers made of polyester and polyamide shrink independently, and the ultrafine fibers are utilized by utilizing the shrinkage difference of the ultrafine fibers.
  • the ultrafine fiber bundle in which the orientation of the ultrafine fibers is uniform, the ultrafine fiber bundle may be slightly flexible, but the soft and delicate texture woven by the ultrafine fibers is still sufficient. It is difficult to say that this is exhibited, and above all, the void ratio between the ultrafine fibers is very small, and the lack of bulkiness of the woven or knitted fabric composed of the ultrafine fibers has not been solved.
  • An object of the present invention is to provide a composite ultrafine fiber having various functions such as high-performance processing, form control, etc. in addition to mechanical properties, wear resistance and bulkiness while having a delicate feel derived from the ultrafine fiber. It is to provide sea-island composite fibers that can be manufactured with high productivity while using existing facilities.
  • the sea-island fiber of the present invention has the following configuration. That is, In the sea-island composite fiber arranged so that island components are scattered in the sea component in the fiber cross section, the island component has a composite form formed by joining two or more different polymers, and the island This is a sea-island composite fiber in which the ratio L / D between the length L of the joint portion of the component and the composite island component diameter D is 0.1 to 10.0.
  • the composite ultrafine fiber of the present invention has the following configuration. That is, A composite ultrafine fiber obtained by desealing the sea-island composite fiber.
  • the textile product of the present invention has the following configuration. That is, A fiber product in which the sea-island composite fiber or the composite ultrafine fiber constitutes at least a part.
  • the diameter of the island component in which two or more different polymers are joined is preferably 0.2 ⁇ m to 10.0 ⁇ m.
  • the sea-island fiber of the present invention preferably has an island component diameter variation of 1.0 to 20.0% in an island component in which two or more different polymers are joined.
  • the sea-island fiber of the present invention preferably has a composite ratio of 10/90 to 90/10 in the island component in a composite island component in which two or more different polymers are joined.
  • the sea-island fiber of the present invention preferably has a ratio S / I between the island component polymer viscosity I and the sea component polymer viscosity S of 0.1 to 2.0.
  • the island component polymer viscosity I means the viscosity of the island component polymer having the highest viscosity among two or more types of island component polymers.
  • the island component is bonded to a bimetal type.
  • the composite ultrafine fiber of the present invention is a bimetal type having a structure in which two types of polymers are bonded to each other in the fiber perpendicular direction to the fiber axis, the single yarn fineness is 0.001 to 0.970 dtex, and the bulkiness is 14 to It is preferably 79 cm 3 / g.
  • the composite ultrafine fiber of the present invention preferably has a stretch / extension ratio of 41 to 223%.
  • the ultrafine fiber obtained by removing sea components from the sea-island composite fiber of the present invention is a composite ultrafine fiber having characteristics of two or more kinds of polymers. For this reason, it becomes a composite ultrafine fiber with various functions such as high-performance processing, form control, etc. in addition to mechanical properties, abrasion resistance and bulkiness, while having a fine tactile feel derived from ultrafine fibers. This greatly expands the use of fiber.
  • the sea-island composite fiber of the present invention has a fiber diameter equivalent to that of a general fiber before the sea component is removed, and the composite-type island component is covered with the sea component. For this reason, it is possible to manufacture high-performance fiber materials with high productivity and excellent quality using existing equipment because higher-order processing is better than ordinary sea-island composite fibers. It also has a common advantage.
  • FIG.1 (a) is a core-sheath type cross section
  • FIG.1 (b) is A bimetal section
  • FIG. 1C is a split section
  • FIG. 1D is a sea-island section.
  • FIG.4 (a) is a front sectional view of the principal part which comprises a composite nozzle
  • 4 (b) is a partial cross-sectional view of the distribution plate, and
  • FIG. 4 (c) is a cross-sectional view of the discharge plate.
  • FIG. 5 (a), FIG. 5 (b), and FIG. 5 (c) are enlarged views of a part of the final distribution plate.
  • the sea-island composite fiber of the present invention is a fiber having a form in which island components are scattered in sea components in a fiber cross section perpendicular to the fiber axis.
  • the island component needs to have a composite cross section formed by joining two or more different polymers.
  • This composite type island component is one in which two or more types of polymers having different polymer properties are joined together without being substantially separated, and one component found in general composite fibers is replaced with the other component.
  • a core-sheath type coated with components FIG. 1A
  • a bimetal type in which two or more types of components are bonded together
  • any composite form in which two or more kinds of polymers are joined can be used.
  • the state where two or more types of polymers formed by the island component of the present invention are joined without substantially separating them is the polymer A for island component (Polymer A: 1 in FIG. 2) and the polymer B for island component (Polymer B). : 2) in FIG. 2 means that the bonded surface is bonded. For this reason, even after the sea component polymer to be coated (polymer C: 3 in FIG. 2) is removed, the polymer A and the polymer B are in an integrated state without being separated.
  • these island components it is not necessary that the respective components are arranged symmetrically in the vertical and horizontal directions.
  • a modified composite form in which the island components exist in an uneven manner in which the island components exist in an uneven manner.
  • these composite forms can hybridize two or more types of composite structures, and have a core-sheath / sea-island hybrid structure or bimetal with a sea-island cross-section and an increased thickness of the surface sea component layer. It is possible to variously select a hybrid structure of a core sheath and a bimetal provided with a sheath component on the cross section of the mold.
  • the ultrafine fibers it is possible to impart the characteristics of two or more types of polymers to the ultrafine fibers. For this reason, depending on the application to be used, for example, when it is desired to impart abrasion resistance to the ultrafine fiber, the molecular weight of the core component and the sheath component are made different so that a difference in the orientation of the fiber structure occurs, or the sheath What is necessary is just to make a core-sheath-type cross section using the polymer by which the 3rd component was copolymerized to the component.
  • an amorphous polymer such as polystyrene is placed in the sheath component for the purpose of imparting a functional agent to the ultrafine fiber, and the core component is responsible for the substantial mechanical properties of the ultrafine fiber such as polyester or polyamide as the core component. It is also possible. Such a configuration is one of the preferred modes of use because it can fully utilize the specific surface area of the ultrafine fibers.
  • the purpose is to impart a functional agent to such an ultrafine fiber, it is preferable to select a split type or a sea-island type that can aim at an increase in specific surface area or an anchor effect by a slit or the like.
  • a core-sheath type or sea-island type cross-section a structure in which an easily soluble polymer exists in the island component, and by dissolving and removing the easily soluble component in the ultrafine fiber, an ultrafine hollow fiber with light weight is obtained. It is also possible.
  • the sea-island type is used, a lotus root-like hollow structure is obtained, so that even when a force is applied in the compression direction, it is not easily crushed and is suitable for making an ultrafine hollow fiber.
  • the bimetallic structure in which two or more types of polymers with different polymer properties are bonded together makes it possible to produce ultrafine fibers and products made from them without complicating the formation of complex polymer flow and high-order processing described later. It is preferable from the viewpoint that the function can be greatly improved.
  • the composite fiber of the present invention is integrally stretched and deformed in a spinning process such as a spinning process or a drawing process. For this reason, according to the rigidity of the polymer, the stress generated by the extensional deformation becomes internal energy and is accumulated in the island component and the sea component. In the case of ordinary fibers that do not have a sea component, for example, in the case of unstretched fibers that do not have a sufficient fiber structure, the internal energy is dissipated by relaxing the deformation after winding the fibers. It was to be done. On the other hand, in the case of the present invention, since it has a sea component, the deformation is basically restricted according to the behavior of the sea component.
  • the state in which the internal energy is sufficiently accumulated in the composite island component is maintained. Therefore, when the sea component is removed, the island component develops crimp by releasing the accumulated internal energy.
  • the expression of the crimping property is different between the polymers. A three-dimensional spiral structure that can not be a conventional ultrafine fiber can be expressed.
  • the composite ultrafine fiber has a certain degree of bulkiness, and the bulkiness of the composite ultrafine fiber of the present invention is 14 to 79 cm 3 / It is preferable that it is g.
  • the inter-fiber gap formed by such a three-dimensional spiral structure exhibits its effect even when it is developed as a felt, a sheet-like material or the like for use in a filter.
  • the gap between the fibers is used to reduce pressure loss and prevent clogging, which has been a problem with conventional ultrafine fibers.
  • the service life can be extended and it can be used as a high-performance filter raw cotton. Considering the development of such a filter application, this bulky high performance effect works effectively.
  • the impregnation property of a functional agent or a binder for imparting the functional agent can be enhanced as compared with the prior art. That is, since the functional agent once taken in between the fibers is trapped in the fine voids formed by the ultrafine fibers, the durability is also excellent. Assuming that the resin or functional material having such a certain amount of particles is impregnated, the bulkiness is more preferably 20 to 79 cm 3 / g.
  • bulkiness refers to a composite ultrafine fiber obtained by dissolving and removing 99% by weight or more of sea components in a sea removal bath (bath ratio 1: 100) filled with a solvent that dissolves sea components in a fabric made of sea-island composite fibers.
  • the bulkiness which said fabric was evaluated according to JISL1096 (2010) is obtained. That is, from the measured thickness t (mm) per unit and mass per unit S m (g / m 2 ), the bulky Bu (cm 3 / g) of the fabric is obtained according to the following formula, and the third decimal place or less is obtained.
  • the value obtained by rounding off is defined as bulkiness in the present invention.
  • the stretch property due to the three-dimensional spiral structure that never appeared in the conventional ultrafine fiber is expressed, and this is combined with the soft and delicate tactile sensation derived from the ultrafine fiber.
  • This spiral structure produces stretchability not found in conventional ultrafine fibers.
  • the stretch / elongation rate is preferably 41 to 223%. Within such a range, the film has good stretch properties unique to the present invention, and has a good tactile sensation in combination with the fineness described later.
  • the expansion / contraction elongation referred to here means that 99 wt% or more of sea components are dissolved and removed from the sea-island composite fiber, a composite ultrafine fiber is obtained, and the collected composite ultrafine fiber is used as a casket, which is left at a temperature of 25 ° C. and a humidity of 55% RH for 1 day.
  • the case length initial sample length: L 0
  • the case length when a load of 1.8 ⁇ 10 ⁇ 3 cN / dtex was applied was measured, and then the load was set to 88.2 ⁇ 10 ⁇ 3 cN / dtex.
  • the casket length (L 1 ) after 60 seconds is measured, and the expansion / contraction elongation E (%) is calculated by the following formula. This operation is repeated 5 times per level, and the average value is obtained by rounding off to the second decimal place.
  • the bimetallic composite ultrafine fiber obtained from the sea-island composite fiber of the present invention has a single yarn fineness of 0.001 to 0.970 dtex. That is, the expression of stretch properties due to the bimetal structure is expressed depending on the fiber diameter. For this reason, in the case of a bimetallic fiber having a so-called normal fiber diameter (several tens of ⁇ m) as proposed in Japanese Patent Laid-Open Nos. 2001-131837 and 2003-213526, there is a limit to the adjustment of stretch properties. There was a case where it was felt as a feeling of tightening when excessively expressed.
  • the combination of polymers and the fiber diameter thereof can be controlled relatively freely, and the fiber diameter can be set to several ⁇ m (0.970 dtex) or less.
  • the moderate stretch property which an ultrafine fiber shows has a comfortable hold feeling, and also by the fine spiral structure, it contacts a human skin very softly and has a comfortable tactile sensation.
  • the single yarn fineness of the composite ultrafine fiber is more preferably 0.001 to 0.400 dtex. In such a range, although there is no feeling of tightening due to the low stretch property, friction with the human skin is ensured by the contact area of the ultrafine fibers, and the motion followability is excellent.
  • the single yarn fineness of the composite ultrafine fiber is particularly preferably in the range of 0.050 to 0.400 dtex, in view of securing a hold feeling. it can. Within such a range, depending on the composition of the fabric, heat retention and water absorption can be imparted by the air layer between the fibers.
  • the single yarn fineness means that 99% or more of sea components are removed from the sea-island composite fiber of the present invention as a yarn bundle, and the collected composite ultrafine fiber bundle has a unit length in an atmosphere of temperature 25 ° C. and humidity 55% RH.
  • the weight per hit is measured, and the weight corresponding to 10,000 m is calculated from the value.
  • the weight of the composite ultrafine fiber bundle is divided by the number of filaments (corresponding to the number of islands) present in the fiber bundle to calculate the single yarn fineness.
  • the same operation is repeated 10 times, and the value obtained by rounding off the fourth decimal place of the simple average value is defined as the single yarn fineness of the composite ultrafine fiber.
  • the cross-sectional shape of the characteristic composite island component of the present invention includes not only a round cross section, but also a flat cross section having a ratio of the short axis to the long axis (flat ratio) greater than 1.0, as well as a triangle, a square, Various cross-sectional shapes such as polygonal cross-sections such as rectangular and octagonal, dharma cross-sections with a part of recesses, Y-shaped cross-sections, and star-shaped cross-sections can be taken. Mechanical properties can be controlled.
  • the island component of the present invention is characterized in that two or more kinds of polymers are present as one body, and in addition to the manifestation of the characteristics of the ultrafine fiber, the yarn-forming property and the high-order processing passability are ensured in spinning and drawing. Is. For this reason, it is necessary to prevent separation and separation when the wound composite fiber and the composite fiber are processed in a higher order.
  • the length L (see FIG. 3) and the ratio L / D of the composite island component diameter D (5 in FIG. 3) needs to be 0.1 to 10.0.
  • the joint length L and the diameter D of the island component in which two or more kinds of polymers are combined are obtained as follows. That is, a multifilament made of sea-island composite fibers is embedded with an embedding agent such as an epoxy resin, and an image is taken at a magnification at which 100 or more island components can be observed with a transmission electron microscope (TEM). . At this time, if metal dyeing is performed, the contrast between the island component and the joint portion of the island component can be clarified using the dyeing difference between the polymers. A value obtained by measuring the circumscribed circle diameter of 100 island components randomly extracted from the captured images in the same image corresponds to the island component diameter D in the present invention.
  • TEM transmission electron microscope
  • the circumscribed circle diameter referred to here is the diameter of a perfect circle that circumscribes the section that is perpendicular to the fiber axis in a direction perpendicular to the fiber axis and is circumscribed most at two or more points on this section. Means. If it demonstrates using the island component of the bimetal structure shown in FIG. 3, the circle
  • island components were evaluated using an image obtained by measuring the island component diameter D.
  • a value obtained by measuring the length in which the polymer A and the polymer B are two-dimensionally bonded corresponds to the length L of the bonded portion referred to in the present invention. Specifically, it will be described in “D. Island component diameter and island component diameter variation (CV [%])” in the section of the examples.
  • L / D may be 10.0 or more. However, in order to facilitate the design of a base for achieving the present invention described later, the L / D is substantially reduced.
  • the upper limit is 10.0.
  • L / D needs to be 0.1 to 10.0 in the composite island component.
  • L / D of 0.1 to 10.0 means that “two or more types of polymers are united and bonded with a clear contact surface”. It is preferable that the length (L) of the joint portion has a certain length with respect to the island component diameter (D). In this regard, even when a strong external force is applied by bending or rubbing the composite fiber in the yarn making process or the high-order processing process, the composite island component can exist without peeling or separation. As the range, a range of L / D was determined.
  • the composite island component of the present invention is substantially composed of a core-sheath type (FIG. 1A) in which one polymer is coated with the other polymer, and a split type (FIG. 1C )) And sea-island type (FIG. 1 (d)),
  • L / D is preferably 1.0 or more and 10.0 or less, more preferably L / D is 1.0 or more and 5 or less. 0.0 or less.
  • L / D is preferably 1.0 or more and 10.0 or less, more preferably L / D is 1.0 or more and 5 or less. 0.0 or less.
  • L / D is preferably 1.0 or more and 10.0 or less, more preferably L / D is 1.0 or more and 5 or less. 0.0 or less.
  • the composite island component it means that the polymers are present with sufficient contact surfaces, and the sea portion of the island component formed relatively thin does not cause cracking or peeling. Can exist.
  • the value of L / D is preferably set to 0.1 or more and 5.0 or less from the viewpoint of suppression of peeling.
  • bimetallic island components are characterized by the appearance of a spiral structure corresponding to the difference in shrinkage of the polymer when the sea component is removed or by subsequent heat treatment.
  • L / D is more preferably 0.1 or more and 1.0 or less.
  • the sea-island composite fiber of the present invention has a composite-type island component that has a joining surface that requires two or more types of polymers that are not conventionally used, and removes the sea component.
  • ultrafine fibers having characteristics of two or more kinds of polymers that are not conventionally available can be collected.
  • the characteristics of this ultrafine fiber made of composite island components are excellent functional feel, in addition to mechanical properties, wear resistance and bulkiness, while having excellent tactile sensation depending on the fiber diameter, It is possible to provide functions necessary for application development such as form control. For this reason, in order to ensure this characteristic tactile sensation, the diameter of the composite island component (island component diameter: D) is preferably 0.2 ⁇ m to 10.0 ⁇ m.
  • the island component diameter is 10 ⁇ m or less in order to make the various functions woven by the fine tactile sensation and the fine interfiber gap that are the objects of the present invention superior to normal fibers. It is preferable.
  • the island component diameter of the present invention can be set as appropriate depending on the processing conditions and intended use in the range of 0.2 to 10.0 ⁇ m, but in order to make the characteristics unique to the ultrafine fibers described above more effective. More preferably, the island component diameter is in the range of 0.5 ⁇ m to 7.0 ⁇ m. Furthermore, considering the process passability in high-order machining, the ease of setting seawater removal conditions, and handling, it is particularly preferably 1.0 ⁇ m to 5.0 ⁇ m.
  • the island component of the present invention preferably has an ultrafine diameter of 10 ⁇ m or less, but from the viewpoint of improving the quality of the ultrafine fiber comprising the island component, the variation of the island component diameter is 1.0 to 20. It is preferably 0%. Within such a range, it means that there is no partially coarse island component or extremely small island component in the composite cross section, and that all island components are homogeneous. This is because the stress is not evenly distributed to some island components in the cross section of the composite fiber in the yarn making process and the high-order processing step, so that the island components are highly oriented and sufficient fibers are obtained. A structure is formed.
  • the macro is preferable from the viewpoint of suppressing the occurrence of yarn breakage or the like due to stress bias in the cross section of the composite fiber.
  • the island component diameter variation is preferably as small as possible, and more preferably 1.0 to 15.0%.
  • the bulkiness and stretchability largely depend on the accumulation of internal energy accompanying the history of stress, and the island component diameter variation is 1.0 to 10.0. % Is particularly preferred.
  • the stress is biased to a part of the island component, and there is no presence of ultrafine fibers having partially different degrees of spiral structure. For this reason, it is suitable for the case where it is used for a product that directly touches human skin, such as an inner layer, or a product that is subjected to abrasion as an outer layer.
  • the sea-island composite fibers and ultrafine fibers in the present invention preferably have a toughness of a certain level or more in consideration of process passability and substantial use in high-order processing, and use the strength and elongation of the fibers as indices. Can do.
  • the strength is a value obtained by obtaining a load-elongation curve of the fiber under the conditions shown in JIS L 1013 (1999), and dividing the load value at break by the initial fineness. It is the value obtained by dividing the time extension by the initial trial length.
  • the initial fineness means a value obtained by calculating the weight per 10,000 m from a simple average value obtained by measuring the weight of the unit length of the fiber a plurality of times.
  • the composite fiber of the present invention preferably has a strength of 0.5 to 10.0 cN / dtex and an elongation of 5 to 700%.
  • the upper limit value that can realize the strength is 10.0 cN / dtex
  • the upper limit value that can achieve the elongation is 700%.
  • the strength is 1.0 to 4.0 cN / dtex and the elongation is 20 to 40%.
  • the strength is preferably 3.0 to 5.0 cN / dtex and the elongation is preferably 10 to 40%.
  • the strength is 1.0 cN / dtex or more and the elongation is 10% or more, it is preferable that the ultrafine fibers are not cut off and fall off during wiping.
  • the fiber of the present invention it is preferable to adjust the strength and elongation by controlling the conditions of the production process according to the intended use and the like.
  • the sea-island composite fiber of the present invention can be used as a variety of intermediates such as fiber winding packages, tows, cut fibers, cotton, fiber balls, cords, piles, knitted fabrics, and non-woven fabrics. It is possible to make various textile products.
  • the sea-island composite fiber of the present invention can be made into a fiber product by partially removing sea components or carrying out a de-islanding process while leaving untreated.
  • the sea-island composite fiber of the present invention can be produced by spinning a sea-island composite fiber having an island component in which two or more kinds of polymers are formed with a joint surface.
  • sea-island composite spinning by melt spinning is preferable from the viewpoint of improving productivity.
  • the method for producing the sea-island composite spinning of the present invention is preferably a method using a sea-island composite die from the viewpoint of excellent control of the fiber diameter and cross-sectional shape.
  • the sea-island composite fiber of the present invention is very difficult to manufacture using a conventionally known pipe-type sea-island composite base in terms of controlling the cross-sectional shape of the island components. That is, in the composite island component of the present invention, two or more different types of polymers need to be in contact and joined. However, in the conventional pipe-type base, there is a limit to the distance that the pipe for forming the island component can be approached naturally from the thickness of the pipe itself. In addition, since it is necessary to weld the pipe by machining, it is necessary to process the pipes adjacent to each other to some extent (several hundreds ⁇ m) in consideration of prevention of distortion of the pipe during welding. For this reason, it is very difficult to substantially join two or more kinds of polymers, and the sea-island composite fiber of the present invention has not been achieved by the conventional die technology.
  • the amount of polymer to be controlled is on the order of 10 ⁇ 5 g / min / hole, which is a few orders of magnitude lower than the conditions used in the conventional technology. It is necessary to control the amount of polymer.
  • the conventional die technology that has been controlled to about 10 ⁇ 1 g / min / hole at most, it is very difficult to achieve a sea-island composite fiber having a composite-type island component such as the sea-island composite fiber of the present invention. It was difficult.
  • the present inventors have intensively studied and found that a method using a sea-island composite base as illustrated in FIG. 4 is suitable for achieving the object of the present invention.
  • FIG. 4 is an example using three types of polymers such as polymer A (island component 1), polymer B (island component 2), and polymer C (sea component).
  • polymer A island component 1
  • polymer B island component 2
  • polymer C silica component
  • the sea-island composite fiber of the present invention when the composite island component composed of the polymer A and the polymer B is made into an ultrafine fiber by dissolving the polymer C, the island component is a hardly soluble component, and the sea component is What is necessary is just to make it an easily soluble component.
  • the yarn may be produced using four or more kinds of polymers including polymers other than the hardly soluble component and the easily soluble component.
  • Such composite spinning utilizing four or more types of polymers is very difficult to achieve with a conventional pipe-type composite die, and is also a composite utilizing a fine channel as illustrated in FIG. It is preferable to use a die.
  • the measurement plate 6 measures and flows in each discharge hole and the amount of polymer per distribution hole of both sea and island components, and the distribution plate 7 causes the cross section of the single (sea-island composite) fiber. Controls the island-island composite cross-section and the cross-sectional shape of the island component.
  • the discharge plate 8 plays a role of compressing and discharging the composite polymer flow formed on the distribution plate 7.
  • a member having a flow path may be used in accordance with the spinning machine and the spinning pack.
  • the existing spinning pack and its members can be utilized as they are by designing the measuring plate 6 according to the existing flow path members. For this reason, it is not necessary to occupy a spinning machine especially for the composite die.
  • a plurality of flow path plates may be stacked between the flow path and the measurement plate or between the measurement plate 6 and the distribution plate 7.
  • the purpose of this is to provide a flow path through which the polymer is transferred efficiently and introduced into the distribution plate 7 in the cross-sectional direction of the die and the cross-sectional direction of the single fiber.
  • the composite polymer flow discharged from the discharge plate 8 is cooled and solidified in accordance with a conventional melt spinning method, and then an oil agent is applied to the composite polymer flow, and is taken up by a roller having a specified peripheral speed to form the sea-island composite fiber of the present invention.
  • the composite base illustrated in FIG. 4 is made into a composite polymer flow through the measuring plate 6 and the distribution plate 7, and this composite polymer flow is discharged from the discharge hole of the discharge plate 8 from the upstream to the downstream of the composite base. And will be described in order along the polymer flow.
  • polymer A, polymer B and polymer C are transferred to the measuring hole 9- (a) for polymer A, measuring hole 9- (b) for polymer B and measuring hole 9- (c) for polymer C. It flows in and is metered by a hole restrictor formed in the lower end, and then flows into the distribution plate 8.
  • each polymer is weighed by a pressure loss caused by a restriction provided in each metering hole.
  • a guideline for the design of this diaphragm is that the pressure loss is 0.1 MPa or more.
  • the design in order to prevent the pressure loss from becoming excessive and the member from being distorted, it is preferable that the design be 30.0 MPa or less.
  • This pressure loss is determined by the polymer flow rate and viscosity per metering hole.
  • a polymer having a viscosity of 100 to 200 Pa ⁇ s at a temperature of 280 ° C. and a strain rate of 1,000 s ⁇ 1 is used, a spinning temperature of 280 to 290 ° C., and a discharge amount per metering hole of 0.1 to 5.0 g /
  • the aperture of the metering hole is 0.01 to 1.00 mm in hole diameter and 0.1 to 5.0 L / D (discharge hole length / discharge hole diameter), it is discharged with good meterability. Is possible.
  • the pore diameter is reduced so as to approach the lower limit of the above range and / or the pore length is approached to the upper limit of the above range. You can extend it. Conversely, when the viscosity is high or the discharge rate is increased, the hole diameter and the hole length may be reversed.
  • the polymer discharged from each metering hole 9 flows separately into the distribution groove 10 of the distribution plate 7.
  • a distribution groove 10 for collecting the polymer flowing in from each metering hole 9 and a distribution hole 11 for flowing the polymer downstream are formed in the lower surface of the distribution groove.
  • the distribution groove 10 is preferably provided with a plurality of distribution holes 11 having two or more holes.
  • the distribution groove 10 is also great in that the polymer that has passed through various flow paths, that is, the polymer that has undergone the thermal history, joins a plurality of times to suppress viscosity variation.
  • the downstream distribution groove is arranged at an angle of 1 to 179 ° in the circumferential direction with respect to the upstream distribution groove. If the structure is such that polymers flowing in from different distribution grooves are merged, the polymers that have received different thermal histories and the like are merged multiple times, which is effective in controlling the sea-island composite cross section.
  • this merging and distributing mechanism is preferably adopted from the upstream side for the above-mentioned purpose, and is also preferably applied to the measuring plate 6 and its upstream members.
  • the composite die having such a structure is one in which the polymer flow is always stabilized as described above, and it is possible to produce a highly accurate sea-island composite fiber necessary for the present invention.
  • the number of islands per discharge hole can theoretically be made infinitely within the range allowed by one space.
  • a total number of islands of 2 to 10,000 is a preferable range.
  • the island packing density may be in the range of 0.1 to 20.0 islands / mm 2 .
  • the island-filling density mentioned here represents the number of islands per unit area, and the larger this value is, the more the island-island composite fiber can be produced.
  • the island filling density referred to here is a value obtained by dividing the number of islands discharged from one discharge hole by the area of the discharge introduction hole. This island filling density can be changed by each discharge hole.
  • the cross-sectional shape of the composite fiber and the cross-sectional shape (composite and shape) of the island component can be controlled by the arrangement of the distribution holes 9 in the final distribution plate immediately above the discharge plate 8.
  • the melt viscosity I of the island component polymer (polymer A or polymer B) and the sea component polymer melt viscosity S is preferably 0.1 to 2.0.
  • the melt viscosity here refers to a melt viscosity that can be measured with a capillary rheometer with a moisture content of 200 ppm or less using a vacuum dryer, and means a melt viscosity at the same shear rate at the spinning temperature.
  • the melt viscosity I of an island component polymer means the highest melt viscosity of two or more types of island component polymers.
  • the cross-sectional shape of the island component is basically controlled by the arrangement of the distribution holes, the respective polymers are merged to form a composite polymer flow, and then greatly reduced in the cross-sectional direction by the reduced holes 13. Become.
  • the melt viscosity ratio at that time that is, the rigidity ratio of the molten polymer may affect the formation of the cross section.
  • S / I shall be 0.1 to 1.0.
  • the rigidity of the polymer is high in the island component and low in the sea component, and stress is preferentially applied to the island component in the elongation deformation in the yarn making process and the higher-order processing step.
  • the island component becomes highly oriented and the fiber structure is firmly formed, it is possible to prevent the island component from being unnecessarily treated and deteriorated when the sea component is dissolved by the solvent. Furthermore, when the island component in which the fiber structure is sufficiently oriented is an ultrafine fiber, it has good mechanical properties.
  • the island component substantially has mechanical properties. Therefore, it is also suitable from the viewpoint of expressing the mechanical properties of the sea-island composite fiber and the ultrafine fiber. The fact that the mechanical properties are further enhanced is a point that should be noted from the viewpoint of the passability of the high-order processing step where a relatively high tension is applied and the quality of the ultrafine fibers.
  • the expression of the three-dimensional spiral structure depends on the accumulation of internal energy in the yarn-making process and the high-order processing process as described above.
  • S / I is preferably set to 0.1 to 1.0 from the viewpoint of increasing the appeal point. In terms of the expression of the spiral structure, the smaller the S / I, the better.
  • the S / I is 0.3 to 0.8. It is a more preferable range.
  • melt viscosity of the above polymers can be controlled relatively freely by adjusting the molecular weight and copolymerization component even in the case of the same type of polymer. Therefore, in the present invention, the melt viscosity is determined by polymer combination or spinning. It is an index for setting conditions.
  • the composite polymer flow discharged from the distribution plate 7 flows into the discharge plate 8.
  • the discharge plate 8 is preferably provided with a discharge introduction hole 12.
  • the discharge introduction hole 12 is for flowing the composite polymer flow discharged from the distribution plate 7 perpendicularly to the discharge surface for a certain distance. This aims to reduce the flow velocity distribution in the cross-sectional direction of the composite polymer flow as well as to reduce the flow velocity difference between the polymer A, the polymer B, and the polymer C.
  • the composite polymer flow is reduced in the cross-sectional direction along the polymer flow by the reduction holes 13 while being introduced into the discharge holes having a desired diameter.
  • the streamline of the middle layer of the composite polymer flow is substantially linear, but as it approaches the outer layer, it is greatly bent.
  • the polymer A, the polymer B, and the polymer C are combined and reduced without breaking the cross-sectional shape of the composite polymer flow constituted by an infinite number of polymer flows. Therefore, the angle of the hole wall of the reduced hole 13 is preferably set in a range of 30 ° to 90 ° with respect to the ejection surface.
  • the flow velocity distribution may be inclined such that the flow velocity at the contact surface with the pore wall is slow due to shear stress and the flow velocity increases toward the inner layer.
  • the above-described shear stress with the hole wall can be applied to the layer composed of the sea component (C polymer) disposed in the outermost layer of the composite polymer flow, and stabilize the flow of the composite polymer flow, particularly the island component. It can be done. For this reason, in the sea-island composite fiber of the present invention, the stability of the fiber diameter and cross-sectional shape of the composite island component is remarkably improved.
  • the composite polymer flow is discharged from the discharge holes 14 to the spinning line while maintaining the cross-sectional shape as the arrangement of the distribution holes 11 through the discharge introduction holes 12 and the reduction holes 13.
  • the discharge hole diameter D is selected in the range of 0.1 to 2.0 mm, and L / D (discharge hole length / discharge hole diameter) is selected in the range of 0.1 to 5.0. Is preferred.
  • the sea-island composite fiber of the present invention can be manufactured using the above-described composite die, and in view of productivity and facility simplicity, it is preferable to carry out by melt spinning.
  • the sea-island composite fiber of the present invention can be produced by a spinning method using a solvent such as solution spinning.
  • melt spinning as island component and sea component, for example, polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polypropylene, polyolefin, polycarbonate, polyacrylate, polyamide, polylactic acid, thermoplastic polyurethane,
  • melt moldable polymers such as polyphenylene sulfide and copolymers thereof.
  • the melting point of the polymer is preferably 165 ° C. or more, since the heat resistance is good.
  • the polymer contains various additives such as inorganic materials such as titanium oxide, silica and barium oxide, colorants such as carbon black, dyes and pigments, flame retardants, optical brighteners, antioxidants, and UV absorbers. You may go out.
  • inorganic materials such as titanium oxide, silica and barium oxide
  • colorants such as carbon black, dyes and pigments, flame retardants, optical brighteners, antioxidants, and UV absorbers. You may go out.
  • the difficultly soluble component For the combination of island component (hardly soluble component) and sea component (easyly soluble component), select the difficultly soluble component according to the intended application, and easily meltable that can be spun at the same spinning temperature based on the melting point of the hardly soluble component It is preferred to select the components.
  • S / I melting viscosity ratio
  • the composite ultrafine fiber is produced by utilizing the sea-island composite fiber of the present invention
  • the sea component polymer is selected from polymers that can be melt-molded such as polyester and copolymers thereof, polylactic acid, polyamide, polystyrene and copolymers thereof, polyethylene, and polyvinyl alcohol, and that are more soluble than other components. Is preferred.
  • the sea component is preferably a copolymerized polyester, polylactic acid, polyvinyl alcohol, or the like, which is easily soluble in an aqueous solvent or hot water.
  • polylactic acid are preferred from the viewpoint of spinnability and easy dissolution in a low concentration aqueous solvent.
  • polylactic acid polyester obtained by copolymerizing 5-sodium sulfoisophthalic acid with 3 mol% to 20 mol%, and the above-mentioned 5-sodium sulfoisophthalic acid are used.
  • polyesters obtained by copolymerizing polyethylene glycol in addition to the above-mentioned 5-sodium sulfoisophthalic acid alone and 5-sodium sulfoisophthalic acid do not hinder the deformation of island components in the yarn making process while maintaining crystallinity. Since a highly oriented fiber structure can be formed, it is suitable from the viewpoints of yarn forming property, handleability and fiber properties.
  • a combination of island component polymers suitable for producing a bimetal type composite ultrafine fiber from the sea-island composite fiber of the present invention a combination of polymers that causes a shrinkage difference upon heat treatment is preferable. From such a viewpoint, a combination of polymers having a difference in molecular weight or composition to such an extent that a viscosity difference of 10 Pa ⁇ s or more in melt viscosity is produced is preferable.
  • Specific polymer combinations include polyethylene terephthalate, polyethylene naphthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyamide, polylactic acid, thermoplastic polyurethane, and polyphenylene sulfide with different molecular weights of polymer A and polymer B. Or using one as a homopolymer and the other as a copolymer is preferable from the viewpoint of suppressing peeling.
  • polymer A / polymer B polyethylene terephthalate / polybutylene terephthalate, polyethylene terephthalate / polytrimethylene terephthalate, polyethylene terephthalate / thermoplastic.
  • Polyurethane and polybutylene terephthalate / polytrimethylene terephthalate are preferred.
  • the spinning temperature in the present invention is preferably set to a temperature at which a high melting point or high viscosity polymer exhibits fluidity among the used polymers determined from the aforementioned viewpoint.
  • the temperature indicating the fluidity varies depending on the polymer characteristics and the molecular weight, but the melting point of the polymer serves as a guideline and may be set at a melting point of + 60 ° C. or lower. If the temperature is lower than this, the polymer is not thermally decomposed in the spinning head or the spinning pack, the molecular weight reduction is suppressed, and the sea-island composite fiber of the present invention can be produced satisfactorily.
  • the discharge amount of the polymer in the present invention may be from 0.1 g / min / hole to 20.0 g / min / hole per discharge hole as a range in which the melt can be discharged while maintaining stability. At this time, it is preferable to consider the pressure loss in the discharge hole that can ensure the stability of the discharge.
  • the pressure loss mentioned here is preferably determined from the range of the discharge amount based on the relationship between the melt viscosity of the polymer, the discharge hole diameter, and the discharge hole length with 0.1 MPa to 40 MPa as a guide.
  • the ratio of the island component (Polymer A + Polymer B) and the sea component (Polymer C) when spinning the sea-island composite fiber used in the present invention is 5/95 to 95/95 by sea / island ratio by weight based on the discharge amount. A range of 5 can be selected. Of these sea / island ratios, increasing the island ratio is preferable from the viewpoint of productivity of ultrafine fibers. However, the sea / island ratio is more preferably 10/90 to 50/50 as long-term stability of the sea-island composite cross section and the range in which ultrafine fibers can be produced efficiently and in a balanced manner while maintaining stability. Further, 10/90 to 30/70 is particularly preferable in view of the point that the sea removal treatment is completed quickly and the openability of the ultrafine fibers is improved.
  • the ratio of the island components is selected according to the target mechanical properties and the properties imparted to the ultrafine fibers, and within such a range, the properties of the two or more types of polymers targeted by the present invention are present. It is possible to produce a composite ultrafine fiber.
  • the yarn melted and discharged from the discharge hole is cooled and solidified, converged by applying an oil or the like, and taken up by a roller having a specified peripheral speed.
  • the take-off speed is determined from the discharge amount and the target fiber diameter.
  • 100 to 7,000 m / min is preferable. Can be listed as a range.
  • the spun sea-island composite fiber is preferably stretched from the viewpoint of improving thermal stability and mechanical properties, and may be stretched after winding the spun sea-island composite fiber once. It is also possible to perform stretching following spinning without winding.
  • the stretching conditions for example, in a stretching machine composed of a pair of rollers, the first roller set to a temperature not lower than the glass transition temperature and not higher than the melting point as long as it is a fiber composed of a polymer exhibiting thermoplasticity generally capable of melt spinning.
  • the peripheral speed ratio of the second roller corresponding to the crystallization temperature, the second roller is stretched without difficulty and is heat-set and wound.
  • dynamic viscoelasticity measurement (tan ⁇ ) of the sea-island composite fiber is performed, and a temperature equal to or higher than the peak temperature on the high temperature side of the obtained tan ⁇ may be selected as the preheating temperature.
  • the easily dissolved component may be removed by immersing the composite fiber in a solvent that can dissolve the easily dissolved component.
  • a solvent that can dissolve the easily dissolved component.
  • the easily eluting component is a copolymerized polyethylene terephthalate or polylactic acid in which 5-sodium sulfoisophthalic acid or polyethylene glycol is copolymerized
  • an alkaline aqueous solution such as an aqueous sodium hydroxide solution can be used.
  • the composite fiber may be immersed in an alkaline aqueous solution.
  • the method for producing the ultrafine fiber of the present invention has been described based on a general melt spinning method. Needless to say, it can also be produced by a melt blow method and a spun bond method. It is also possible to manufacture by the solution spinning method.
  • the chip-like polymer was adjusted to a moisture content of 200 ppm or less with a vacuum dryer, and the melt viscosity was measured by changing the strain rate stepwise with a Capillograph 1B manufactured by Toyo Seiki.
  • the measurement temperature is the same as the spinning temperature, and the melt viscosity of 1216 s -1 is described in the examples or comparative examples. By the way, it took 5 minutes from putting the sample into the heating furnace to starting the measurement, and the measurement was performed in a nitrogen atmosphere.
  • the weight of the composite ultrafine fiber bundle was divided by the number of filaments present in the fiber bundle (corresponding to the number of islands) to calculate the single yarn fineness. The same operation was repeated 10 times, and the value obtained by rounding off the 4th decimal place of the simple average value was defined as the single yarn fineness of the composite ultrafine fiber.
  • the island component diameter is rounded to the second decimal place in ⁇ m units, and the island component diameter variation is rounded to the second decimal place.
  • a fabric composed of sea-island composite fibers collected under each spinning condition is dissolved and removed by 99% by weight or more of sea components in a desealing bath (bath ratio 1: 100) filled with a solvent that dissolves sea components.
  • a fabric consisting of The bulkiness of this fabric was evaluated according to JIS L 1096 (2010). That is, two test pieces of about 200 mm ⁇ 200 mm are collected, and the mass when left at a temperature of 25 ° C. and a humidity of 55% RH for one day is measured. The mass per unit area (g / m 2 ) is obtained from the mass, the average value is calculated, and the numbers after the second decimal place are rounded off.
  • the thickness under a certain amount of pressure is measured at five different locations of the fabric where the mass is measured, and the average value is obtained by rounding off the third decimal place in mm.
  • the constant pressure is 23.5 kPa when the fabric is a woven fabric and 0.7 kPa when the fabric is a knitted fabric.
  • the bulkiness B u (cm 3 / g) of the fabric is obtained according to the following formula, Calculated by rounding off.
  • the load was set to 88.2 ⁇ 10 ⁇ 3 cN / dtex, the scab length (L 1 ) after 60 seconds was measured, and the stretch / elongation rate E (%) was measured according to the following formula. The same operation was repeated 5 times per level, and the average value was calculated by rounding off to the second decimal place.
  • Example 1 The island component 1 is polyethylene terephthalate (PET1, melt viscosity: 140 Pa ⁇ s), the island component 2 is polytrimethylene terephthalate (3GT melt viscosity: 130 Pa ⁇ s), and 5-sodium sulfoisophthalic acid is used as the sea component.
  • PET1 polyethylene terephthalate
  • 3GT melt viscosity: 130 Pa ⁇ s polytrimethylene terephthalate
  • 5-sodium sulfoisophthalic acid is used as the sea component.
  • Each component was melted separately at 280 ° C. using polyethylene terephthalate (copolymerized PET 1, melt viscosity: 45 Pa ⁇ s) copolymerized with 0.0 mol% polyethylene glycol having a molecular weight of 1,000 wt%, and weighed.
  • a composite polymer flow was discharged from a discharge hole by flowing into a spin pack in which the composite base shown in FIG. 4 was incorporated.
  • the distribution plate directly above the discharge plate has an island component 1 distribution hole (15 in FIG. 5), an island component 2 distribution hole (16 in FIG. 5), and a sea component distribution hole (17 in FIG. 5).
  • island components having a bimetallic composite form of 250 islands were formed on one sea-island composite fiber.
  • the discharge plate having a discharge introduction hole length of 5 mm, a reduction hole angle of 60 °, a discharge hole diameter of 0.5 mm, and a discharge hole length / discharge hole diameter of 1.5 was used.
  • the combined ratio of island 1 / island 2 / sea was adjusted by the discharge amount so that the weight ratio was 35/35/30 (total discharge amount 30 g / min).
  • the melted and discharged yarn was cooled and solidified, and then an oil agent was applied, and the yarn was wound at a spinning speed of 1,500 m / min to obtain an undrawn fiber. Further, the unstretched fiber was stretched 3.2 times between rollers heated to 80 ° C. and 130 ° C. (stretching speed 800 m / min) to obtain a sea-island composite fiber (104 dtex-15 filament).
  • This sea-island composite fiber forms a sea-island composite cross section in which island components are regularly arranged as shown in FIG. 2, and the island components are island components 1 and islands as shown in FIG. A bimetallic composite cross section in which component 2 was bonded was formed.
  • the island component diameter variation was 5.1% and the variation was very small.
  • the mechanical properties of the sea-island composite fiber obtained in Example 1 have a strength of 3.9 cN / dtex, an elongation of 38%, and sufficient mechanical properties for high-order processing. When processed into a woven fabric or a knitted fabric However, no thread breakage occurred.
  • the sea component was desealed by 99 wt% or more with a 1 wt% sodium hydroxide aqueous solution heated to 90 ° C. using a test piece made of the sea-island composite fiber of Example 1 as a knitted fabric.
  • the island components are evenly arranged as described above, and the variation in the island component diameter is very small, so that the sea removal treatment is efficient without the presence of partially degraded island components.
  • Example 2 Sea-island composite fibers were obtained according to Example 1 except that the island component 2 was changed to polybutylene terephthalate (PBT, melt viscosity: 160 Pa ⁇ s).
  • the sea-island composite fiber of Example 2 has an island component having a bimetal structure in which PET1 and PBT are bonded together, and the homogeneity of the island component was excellent as in Example 1.
  • a test piece was prepared using the sea-island composite fiber of Example 2 as a knitted fabric, and sea components were removed under the same conditions as in Example 1.
  • Example 1 As a result of investigating the dropout of the ultrafine fibers at the time of sea removal, there was no dropout of the ultrafine fibers at the time of seawater removal as in Example 1, and the test piece was excellent in quality. In the observation result of this test piece, it is possible to observe a bimetal type ultrafine fiber having a three-dimensional spiral structure similar to that in Example 1, and the cross section of one ultrafine fiber bundle has a height of 225 ⁇ m and a width of 700 ⁇ m. It was confirmed that it had excellent bulkiness. The results are also shown in Table 1.
  • Example 3 The island component 1 is PET1 (melt viscosity: 120 Pa ⁇ s) used in Example 1, and the island component 2 is 7.0 mol% isophthalic acid and 2,2 bis ⁇ 4- (2-hydroxyethoxy) phenyl ⁇ propane. 4 mol% copolymerized polyethylene terephthalate (PET2, melt viscosity: 110 Pa ⁇ s) was used, the sea component was copolymerized PET1 (melt viscosity: 35 Pa ⁇ s) used in Example 1, the spinning temperature was 290 ° C., and 90 A sea-island composite fiber was obtained in accordance with Example 1 except that the film was drawn between rollers heated to 130 ° C and 130 ° C.
  • PET2 melt viscosity: 120 Pa ⁇ s
  • Example 4 Island component 1 is high molecular weight polyethylene terephthalate (PET3, melt viscosity: 160 Pa ⁇ s), island component 2 is low molecular weight polyethylene terephthalate (PET4, melt viscosity: 70 Pa ⁇ s), and the sea component is the same as that used in Example 1.
  • a sea-island composite fiber was obtained in accordance with Example 1 except that the polymerized PET1 (melt viscosity: 35 Pa ⁇ s) was drawn at a spinning temperature of 290 ° C. and stretched between rollers heated to 90 ° C. and 130 ° C.
  • Example 5 Island component 1 is high molecular weight nylon 6 (PA1, melt viscosity: 170 Pa ⁇ s), island component 2 is low molecular weight nylon 6 (PA2, melt viscosity: 120 Pa ⁇ s), and the sea component is the same as that used in Example 1.
  • a sea-island composite fiber was obtained in accordance with Example 1 except that the spinning temperature was 270 ° C. as polymerized PET1 (melt viscosity: 55 Pa ⁇ s).
  • Island component 1 is high molecular weight polyphenylene sulfide (PPS1, melt viscosity: 240 Pa ⁇ s)
  • island component 2 is low molecular weight polyphenylene sulfide (PPS2, melt viscosity: 170 Pa ⁇ s)
  • the sea component is 5-sodium sulfoisophthalic acid 5
  • Example 1 except that polyethylene terephthalate copolymerized with 0.0 mol% (copolymerized PET2, melt viscosity: 110 Pa ⁇ s) was drawn at a spinning temperature of 300 ° C. and stretched between rollers heated to 90 ° C. and 130 ° C. The sea-island composite fiber was obtained according to
  • the ultrafine fiber obtained by removing the sea component from the sea-island composite fiber a three-dimensional spiral structure was developed due to the bimetallic structure of PPS1 and PPS2 having different viscosities. For this reason, the cross section of one ultrafine fiber bundle has a sufficient bulkiness of 150 ⁇ m in height and 480 ⁇ m in width, and it was confirmed that the ultrafine fibers existed in a loose state (openness: good) ). Since polyphenylene sulfide is hydrophobic, when it is made into ultrafine fibers, the bundle of ultrafine fibers generally has a particularly agglomerated structure and often lacks openability. On the other hand, it was found that the ultrafine fiber bundle of Example 6 had excellent fiber opening properties without performing a dispersion treatment or the like as described above. The results are also shown in Table 1.
  • the island component by the conventional single component is formed as PET1 using the island component 1 and the island component 2 in Example 1, using the same base as in Example 1.
  • sea-island composite fibers were obtained in accordance with Example 1 except that the spinning temperature was 290 ° C. and stretching was performed between rollers heated to 90 ° C. and 130 ° C.
  • the cross section of this sea-island composite fiber an island component of PET1 alone was formed, and a regular sea-island composite cross section was formed.
  • the island component diameter (D) was 1.3 ⁇ m as in Example 1, and the island was constituted by the same polymer.
  • the cross section of one ultrafine fiber bundle of Comparative Example 1 has a height of 110 ⁇ m and a width of 400 ⁇ m, which is significantly less bulky than Example 1, and naturally, the bulkiness of the test piece is inferior to Example 1. There was no stretch.
  • Table 2 The results are shown in Table 2.
  • Comparative Example 4 Using the pipe-type sea-island composite base described in JP-A-2001-192924 (the number of islands per discharge hole: 250), the polymer was PET1 used in Example 1, and the conditions after spinning were compared. A sea-island composite fiber was obtained according to Example 1. In Comparative Example 4, there was no problem with spinning and there was no problem, but in the drawing process, the single yarn was broken and a weight wound around the drawing roller was observed. When observing the cross section of this sea-island composite fiber, the island component has a distorted round cross-section, and the viscosity of the sea component polymer is low for use in this pipe-type sea-island composite base. 10 islands) were found where two or more island components were fused.
  • the average island component diameter was about 1.5 ⁇ m on average, but the island component diameter variation was 16%, which was larger than that of Example 1. It is considered that the single yarn breakage in the drawing process described above is caused by the non-uniformity of the cross section.
  • Example 2 When the sea component was removed from the test piece (knitted fabric) made of this sea-island composite fiber by the same method as in Example 1, a portion where the ultrafine fibers were fluffy was partially seen, and the ultrafine fibers were dropped during the treatment process. It was observed. Moreover, in this test piece, compared with Example 1, it was inferior to bulkiness and stretch property, and tactile sense fell. When the cross section of this single ultrafine fiber bundle was observed, the bulkiness was significantly reduced as compared with Example 1, as in Comparative Example 1, with a height of 100 ⁇ m and a width of 380 ⁇ m. The results are also shown in Table 2.
  • Examples 7 to 9 Distributing plate immediately above the discharge plate so that five islands (Example 7), 15 islands (Example 8), and 1,000 islands (Example 9) are formed in one sea-island composite fiber.
  • a sea-island composite fiber was obtained in accordance with Example 2 except that was changed.
  • the hole arrangement pattern of this distribution plate was the same as the arrangement pattern of FIG.
  • the island component diameter (D) varies with the number of islands.
  • Example 7 is 9.5 ⁇ m
  • Example 8 is 5.5 ⁇ m
  • Example 9 is 0.7 ⁇ m.
  • a bimetallic island component was formed. In any cross section, island components were regularly arranged, and the variation in island component diameter was very uniform at 5% or less.
  • the sea-island composite fiber collected in the same manner as in Example 2 was used as a knitted fabric, and the sea component was removed to prepare a test piece made of ultrafine fibers. In these test pieces as well, the ultrafine fibers were not dropped out as in Example 2, and all were excellent in quality.
  • Example 7 with a large fiber diameter, the stretchability was particularly high compared to Example 2, and in Example 9, although the stretchability was reduced, the delicate tactile sensation was remarkable.
  • Example 8 was excellent in the balance between bulkiness and stretchability, and had the possibility of being widely developed from inner to outer as a high-performance textile. The results are shown in Table 3.
  • Example 10 The total discharge rate was 25 g / min, and the composite ratio of island 1 / island 2 / sea was adjusted to 15/15/70 by weight, and the spinning speed was 3,000 m / min and the draw ratio was 1.4 times. Except for this, sea-island composite fibers were obtained according to Example 9.
  • Example 10 when the bulkiness and stretchability were evaluated about the test piece which made the sea-island composite fiber as a 4 piece yarn, it has comparatively excellent characteristics. I found out that The results are also shown in Table 3.
  • Example 11 The island / island 2 / sea composite ratio was changed to 14/56/30 (Example 11) and 56/14/30 (Example 12) in weight ratio, and the sea / island composite fibers were all used in accordance with Example 2. Obtained.
  • ultrafine fibers have a different form from that of Example 2, and the ultrafine fibers themselves have a twisted and bent structure. By changing the ratio of this island component 1 / island component 2, It was found that the morphology of ultrafine fibers can be controlled. The results are also shown in Table 3.
  • Island component 1 is polyethylene terephthalate copolymerized with 8.0 mol% of 5-sodium sulfoisophthalic acid (copolymerized PET3, melt viscosity: 110 Pa ⁇ s), and island component 2 is PA1 (melt viscosity: used in Example 5). 120 Pa ⁇ s), the sea component was copolymerized PET1 (melt viscosity: 45 Pa ⁇ s) used in Example 5, and the spinning temperature was 280 ° C.
  • the composite base is provided with a distribution plate having an arrangement pattern shown in FIG.
  • the island component having a composite form was used in which 250 islands were formed per sea-island composite fiber (FIG. 4). Regarding other conditions, sea-island composite fibers were obtained according to Example 1.
  • the core part of the island component could be dissolved and removed in addition to the sea component by adjusting the treatment temperature from the weight before and after the treatment.
  • the cross section of this ultrafine fiber was observed in the same manner as in Example 1, it was an ultrafine fiber having a hollow cross section where the island component 1 was hollow.
  • This ultrafine hollow fiber has a light feel while having a delicate feel derived from the ultrafine fiber, for example, has a characteristic that is flexible and lightweight suitable for outer batting, etc. It was confirmed that In addition, in the cross-sectional observation, it was not confirmed that the hollow portion of the ultrafine fiber was crushed. This is because the island component 1 was present in the core of the ultrafine fiber while the sea component was removed, by using different copolymer polyethylene terephthalate whose elution rates differed by about 1.4 times between the island component 1 and the sea component. Therefore, it is estimated that resistance to external forces during the sea removal process was born.
  • Example 14 The island component 1 is PET 1 used in Example 1, the island component 2 is polystyrene (PS, melt viscosity: 100 Pa ⁇ s), and the spinning temperature is 290 ° C., between rollers heated to 90 ° C. and 130 ° C. A sea-island composite fiber was obtained in accordance with Example 13 except that the film was stretched 5 times.
  • PS polystyrene
  • This sea-island composite fiber had a sea-island cross section in which a core-sheath type island component in which the core component was composed of the island component 1 and the sheath component was composed of the island component 2 was formed. Even when this sea-island fiber was desealed, it was confirmed that the sheath component was not broken and it became a core-sheath type ultrafine fiber, and it was confirmed that the mechanical properties were excellent.
  • PS is an amorphous polymer, even when it is made into a fiber, it is generally a brittle fiber and difficult to utilize.
  • Example 14 due to the presence of polyethylene terephthalate that bears the mechanical properties in the core portion, it has mechanical properties that can withstand practical use, despite the ultrafine fibers reduced to 1.6 ⁇ m in fiber diameter. It was.
  • this ultrafine fiber can use the amorphous nature of PS to enhance the provision of the third component (functional agent, etc.) and its retention. Further, from the viewpoint of dyeability, it is possible to greatly improve the color development, which is one of the problems of conventional ultrafine fibers, by dyeing amorphous PS in a deep color. The results are also shown in Table 4.
  • Example 15 The combination of polymers is as in Example 13, and the sea-island composite is all in accordance with Example 13 except that the composite base (FIG. 4) provided with the distribution plate having the arrangement pattern of FIG. Fiber was obtained.
  • the obtained sea-island composite fiber 250 islands were formed per sea-island composite fiber in the form of sea-island in which the island component 1 was the island part (10) and the island component 2 was the sea part in the cross section.
  • the sea-island composite fiber of the present invention can be used as a variety of intermediates such as fiber winding packages, tows, cut fibers, cotton, fiber balls, cords, piles, knitted fabrics, and non-woven fabrics. It is possible to make various textile products.
  • the sea-island composite fiber of the present invention can be made into a fiber product by partially removing sea components or carrying out a de-islanding process while leaving untreated.
  • Textile products here include general clothing such as jackets, skirts, pants and underwear, sports clothing, clothing materials, interior products such as carpets, sofas and curtains, vehicle interiors such as car seats, cosmetics, cosmetic masks, and wiping. Used for daily use such as cloth and health supplies, environment and industrial materials such as abrasive cloth, filters, hazardous substance removal products, battery separators, and medical applications such as sutures, scaffolds, artificial blood vessels, blood filters, etc. Can do.

Abstract

 繊維断面において、海成分中に島成分が点在するように配置される海島複合繊維において、島成分が2種類以上の異なるポリマーが接合されて形成された複合形態を有しており、その島成分の接合部の長さLと複合島成分径Dとの比L/Dが0.1から10.0である海島複合繊維。 高次加工性が良好な海島複合繊維であるため既存の設備で高い生産性と品位を保持でき、かつ海成分を除去して得られた極細繊維は優れた触感を有しながらも形態制御等の機能を有している海島複合繊維を提供する。

Description

海島複合繊維、複合極細繊維および繊維製品
  本発明は、繊維軸と垂直方向の繊維断面に島成分とそれを取り囲むように配置された海成分からなる複合繊維において、島成分が2種類以上のポリマーからなる海島複合繊維に関するものである。また、この海島複合繊維を脱海処理して得られる複合極細繊維に関するものである。さらには、これら海島複合繊維または複合極細繊維が少なくとも1部を構成する繊維製品に関するものである。
  ポリエステルやポリアミドなどの熱可塑性ポリマーを用いた繊維は力学特性や寸法安定性に優れるため、衣料用途のみならずインテリアや車両内装、産業用途等幅広く利用されている。しかしながら、繊維の用途が多様化する現在において、その要求特性も多様なものとなり、繊維の断面形態によって、風合い、嵩高性などといった感性的効果を付与する技術が提案されている。中でも、“繊維の極細化”は、繊維自身の特性や布帛とした後の特性に対する効果が大きく、繊維の断面形態制御という観点では、主流の技術である。
 極細繊維を製造する方法は、高次加工での取り扱い性などを考慮し、極細繊維となる島成分が海成分で被覆されたいわゆる海島複合繊維を利用する方法が工業的には多く採用される。この手法では、繊維断面において、易溶解成分からなる海成分に難溶解成分からなる島成分を複数配置しておき、繊維あるいは繊維製品とした後に、海成分を溶解除去することで、島成分からなる極細繊維を発生させることができる。この手法は、現在工業的に生産されている極細繊維、特にマイクロファイバー製品を製造する方法として多く採用されるものであり、最近では、この技術の高度化によって、繊維径が更に縮小化されたナノファイバーの製造も可能になってきている。
 単繊維径が数μmのマイクロファイバーや数百nmになるナノファイバーでは、その重量あたりの表面積(比表面積)が通常繊維(繊維径:数十μm)と比較して、繊維径の2乗に比例して大幅に増加する。また、その剛性(断面2次モーメント)も繊維径に依存して増加するため、そのしなやかさが織り成す独特の触感を発現することが知られている。
 このため、通常繊維では得ることができない特異的な特性を発現し、例えば、接触面積の増大による払拭性能の向上や、超比表面積効果による気体吸着性能、独特の柔軟なタッチを利用して、衣料用途だけではなく様々な用途への展開が図られている。
 以上のような繊維の極細化技術に関しては、多くの提案があり、その極限的な技術が、特許文献1や特許文献2で提案されている。
 特許文献1においては、海島型複合繊維において、繊維直径と島成分の平均直径およびその配置を規定することにより、海成分溶解後の(極細)繊維のタフネスが20以上を有する高い力学特性を有した極細繊維(ナノファイバー)を得ることを可能としている。特許文献1は、海島複合繊維を利用した極細繊維の製造方法において、海成分を溶解除去する際に、島成分からなる極細繊維までもが不要に処理されることを予防する目的で、海島断面の断面パラメータを規定するものである。特許文献1においては、比較的高い力学特性を得られる記載があり、繊維製品への展開を高める可能性がある。
 極細繊維束の触感や風合いの改善策として、特許文献2では、比較的柔軟な特性を有するポリトリメチレンテレフタレートを島成分に採用するという提案がある。特許文献2では、特許文献1に比べるとソフト性、柔軟性が改善された極細繊維束および繊維製品を採取することができる可能性がある。
  特許文献3には、主として0.001~0.3デニール(繊維径:300nmから6μmに相当)のポリアミドとポリエステルの2種類以上の超極細繊維成分が実質的に群をなすことなく分散配列して島成分をなした海島複合繊維についての記載がある。この技術では、上記海島複合繊維から海成分を除去し、加熱処理を施すことで、ポリエステルとポリアミドからなる極細繊維が各々で独自に収縮し、この極細繊維の収縮差等を利用して極細繊維同士の配向を乱すことにより、極細繊維束内にて糸長差が生じ、従来の極細繊維と比較して、厚み方向にも膨らみ感のある織編物を採取できる可能性がある。
特開2007-100243号公報(特許請求の範囲) 特開2011-157646号公報(特許請求の範囲) 特開平5-222668号公報(特許請求の範囲、第2頁、第3頁)
 特許文献1に記載される従来型の海島複合繊維においては、脱海後の極細繊維はその1本1本が屈曲することなく、ストレートな状態で束状になる傾向がある。このため、極細繊維同士の配向が揃い、繊維間空隙が非常に小さいものとなるため、極細繊維束に外力を加えると、極細繊維が開繊することなく大半が束状態のまま移動してしまうため、繊維径の縮小化から期待される柔軟性で繊細な触感の発現は限定的なものとなる場合がある。また、このような極細繊維束からなる布帛は、厚み方向の膨らみが出にくく、繊維間空隙が小さいため、毛細管現象が必要となる吸水性や汚れの捕捉性能に乏しい繊維製品になる場合が多い。
 この対策として、海島複合繊維のまま仮撚り加工を施したり、他種のポリマーからなる通常繊維と混繊するなども考えられる。しかしながら、いずれも海成分を除去した後に元々の海島複合繊維断面の履歴を残した極細繊維束の状態(嵩高性など)を格段に改善するのには至らず、特に触感や風合いが重要となる高機能アパレル(アウター、インナー等)や高精度な払拭性能が必要となる高機能ワイピングクロスへの展開は極細繊維単独では困難なものであり、前述した通常繊維との混繊、織編組成の構成など、布帛の組成設計等を無用に複雑化し、その展開が限定的になる場合があった。
 特許文献2においても、極細繊維の配向が揃った繊維束を形成するために、極細繊維束としては、多少柔軟になる場合があっても、やはり極細繊維が織り成す柔軟で繊細な風合いを十分に発揮しているとは言い難く、また何より極細繊維間の空隙率は非常に小さいものであり、この極細繊維から構成される織編物の嵩高性の乏しさを解消するものではなかった。
 特許文献3の技術においては、加熱処理を施し、極細繊維間の収縮差を利用した技術である。換言すれば、極細繊維が収縮によって捲縮形態を発現する一方で、他方の極細繊維においては、依然ストレートの状態を維持することを意味しており、このストレート状態の極細繊維によって繊維束内の配向の乱れは制限されたものとなる場合があった。
 このため、極細繊維ならではの柔軟性を活かしつつも、嵩高性を有した織編物を得るには不十分なものであり、極細繊維特有の柔軟性やその繊細な触感を最大限に活かすことができる厚み方向に膨らみ感を持った高機能高風合い繊維製品を得るのに好適な複合繊維の開発が切望されていた。
 本発明の課題は、極細繊維由来の繊細な触感を有しながらも、力学特性、耐磨耗性や嵩高性に加え、高機能加工処理、形態制御等といった様々な機能を有する複合極細繊維を既存の設備を使いながらも生産性高く製造可能とする海島複合繊維を提供することにある。
 上記課題を解決するため本発明の海島繊維は次の構成を有する。すなわち、
繊維断面において、海成分中に島成分が点在するように配置される海島複合繊維において、島成分が2種類以上の異なるポリマーが接合されて形成された複合形態を有しており、その島成分の接合部の長さLと複合島成分径Dとの比L/Dが0.1から10.0である海島複合繊維、である。
 本発明の複合極細繊維は次の構成を有する。すなわち、
前記海島複合繊維を脱海処理して得られる複合極細繊維、である。
 本発明の繊維製品は次の構成を有する。すなわち、
前記海島複合繊維または前記複合極細繊維が少なくとも1部を構成する繊維製品、である。
 本発明の海島繊維は、2種類以上の異なるポリマーが接合した島成分の径が0.2μmから10.0μmであることが好ましい。
 本発明の海島繊維は、2種類以上の異なるポリマーが接合した島成分において、島成分径のバラツキが1.0~20.0%であることが好ましい。
 本発明の海島繊維は、2種類以上の異なるポリマーが接合した複合型の島成分において、島成分における複合比が10/90から90/10であることが好ましい。
 本発明の海島繊維は、島成分ポリマー粘度Iと海成分ポリマー粘度Sとの比S/Iが0.1から2.0であることが好ましい。
 ここで、島成分ポリマー粘度Iとは、2種類以上の島成分ポリマーのうち最も粘度が高い島成分ポリマーの粘度を意味する。
 本発明の海島繊維は、島成分がバイメタル型に接合されていることが好ましい。
 本発明の複合極細繊維は、繊維軸に垂直方向の繊維断面が2種類のポリマーが貼り合わされた構造を有するバイメタル型であり、単糸繊度が0.001~0.970dtex、嵩高性が14~79cm/gであることが好ましい。
 本発明の複合極細繊維は、伸縮伸長率が41~223%であることが好ましい。
 本発明の海島複合繊維を活用すれば、繊維径が大幅に縮小化された極細の複合繊維を製造することが可能であり、様々な用途分野に展開可能な高機能繊維が得られる。すなわち、本発明の海島複合繊維から海成分を除去して得られる極細繊維は、2種類以上のポリマーの特性を有した複合極細繊維となる。このため、極細繊維由来の繊細な触感を有しながらも、力学特性、耐磨耗性や嵩高性に加え、高機能加工処理、形態制御等といった様々な機能を有した複合極細繊維となり、極細繊維の用途展開を大幅に拡張するものである。
 また、本発明の海島複合繊維では、海成分を除去する前は一般的な繊維と同等の繊維径を有しており、複合型の島成分が海成分に被覆されている。このため、通常の海島複合繊維に比べて、高次加工が良好であるため既存の設備を利用して、高い生産性で品位に優れた高機能繊維素材を製造することが可能となるといった工業的な利点も兼ね備えたものとなる。
島成分の断面形態を説明するための概要図であり、本発明の複合型の島成分あるいは複合極細繊維の例であって、図1(a)は芯鞘型断面、図1(b)はバイメタル型断面、図1(c)は分割型断面、図1(d)は海島型断面である。 海島複合型の島成分を説明するための概要図である。 海島複合繊維の断面の一例の概要図であり、島成分がバイメタル構造を有した海島複合断面の例である。 本発明の海島複合繊維の製造方法を説明するための説明図であり、複合口金の形態の一例であって、図4(a)は複合口金を構成する主要部分の正断面図であり、図4(b)は分配プレートの一部の横断面図、図4(c)は吐出プレートの横断面図である。 最終分配プレートにおける分配孔配置の実施形態の一例であり、図5(a)、図5(b)、図5(c)は最終分配プレートの一部の拡大図である。
 以下、本発明について、望ましい実施形態とともに詳述する。
 本発明の海島複合繊維は、繊維軸に対して垂直方向の繊維断面において、島成分が、海成分の中に点在する形態を有している繊維である。
 ここで、本発明の海島複合繊維においては、この島成分が2種類以上の異なるポリマーが接合してなる複合断面を有していることが必要である。この複合型の島成分とは、ポリマー特性が異なる2種類以上のポリマーが実質的に分離せず接合された状態で存在するものであり、一般的な複合繊維で見られる一方の成分を他方の成分が被覆した芯鞘型(図1(a))、2種類以上の成分が貼り合わされたバイメタル型(図1(b))、一方の成分に他方の成分がスリット状に配置された分割型(図1(c))および一方の成分に他方の成分が点在した海島型(図1(d))など、2種類以上のポリマーが接合したいずれの複合形態とすることも可能である。
 本発明の島成分が形成する2種類以上のポリマーが実質的に分離せず接合された状態とは、島成分用ポリマーA(ポリマーA:図2の1)と島成分用ポリマーB(ポリマーB:図2の2)が接合面を持って接着した状態にあることを意味する。このため、被覆する海成分ポリマー(ポリマーC:図2の3)を除去したあとにおいても、ポリマーAとポリマーBが剥離することなく一体となって存在している状態となる。
 また、これらの島成分の複合形態においては、各成分が上下左右対称に配置されている必要はなく、例えば、偏心芯鞘構造や海島構造において、島成分が偏って存在するなど変性した複合形態をとることも可能である。更に、これらの複合形態は、2種類以上の複合構造をハイブリット化することも可能であり、海島断面を有しながらも表層の海成分層の厚みを増やした芯鞘と海島のハイブリッド構造やバイメタル型の断面を更に鞘成分を設けた芯鞘とバイメタルのハイブリッド構造などを種々選択することが可能である。
 これらの多様な複合形態を利用すれば、極細繊維に2種類以上のポリマーが有する特性を付与することが可能となる。このため、使用する用途に応じて、例えば、極細繊維に耐磨耗性を付与したい場合には、繊維構造の配向に差が生まれるように芯成分と鞘成分の分子量を異なるものとしたり、鞘成分に第3成分が共重合されたポリマーを用いて、芯鞘型断面とすれば良い。また、極細繊維に機能剤の付与を目的としてポリスチレンなどの非晶ポリマーを鞘成分に配置し、芯成分にはポリエステルやポリアミドなどとして極細繊維の実質的な力学特性は芯成分で担うような構成とすることも可能である。このような構成は極細繊維の比表面積を十分に活用することができるため、好適な利用形態のひとつである。
 また、このような極細繊維に機能剤の付与を目的とした場合には、スリット等により比表面積の増加やアンカー効果を狙うことができる分割型や海島型を選択することが好適である。芯鞘型や海島型の断面を利用し、易溶解ポリマーが島成分内に存在する構造とし、極細繊維内の易溶解成分を溶解除去することで、軽量性が付与された極細中空繊維を得ることも可能である。特に海島型を利用した場合には、レンコン様の中空構造となるため、圧縮方向に力がかかった場合でもつぶれにくく、極細中空繊維とするには好適である。
 これらの複合形態の内、ポリマー特性の異なる2種類以上のポリマーが貼り合わされたバイメタル構造は、後述する複合ポリマー流の形成や高次加工等を複雑化させることなく、極細繊維やそれからなる製品の機能を大きく向上できるという観点から好ましい。  
 本発明の複合繊維は、紡糸工程や延伸工程といった製糸工程において複合繊維が一体となって伸長変形する。このため、そのポリマーの剛性に応じて、伸長変形によって生じる応力が内部エネルギーとなって島成分や海成分に蓄積されることとなる。海成分を有しない通常の繊維の場合には、例えば、繊維構造が十分形成されていない未延伸繊維の場合には、繊維を巻き取った後で変形が緩和するなどして、内部エネルギーが発散されるものであった。一方、本発明の場合には、海成分を有しているため、基本的にこの海成分の挙動に応じて変形が拘束されることとなる。このため、巻き取り等して放置した際にも内部エネルギーが複合型の島成分に十分蓄積された状態が維持されていることとなる。よって、海成分を除去した場合、島成分は蓄積された内部エネルギーが解放されることで、捲縮を発現する。ここで、この捲縮性の発現の際、異なる2種類のポリマーが貼り合わされたバイメタル構造の場合、ポリマー間で捲縮性の発現が異なるため、極細繊維の断面方向に加え、繊維軸方向でも屈曲し、従来の極細繊維ではあり得なかった3次元的なスパイラル構造を発現することができるのである。
 これは、仮撚り等の追加の高次加工を施すことなく、海島複合繊維で一般的に行われる脱海処理のみで、極細繊維間に好適な空隙が形成されることを意味する。この現象は、極細繊維の高機能化という観点で非常に重要な意味を持ち、従来から言われていた極細繊維ならではの柔軟で繊細な触感を大きく向上させることに加えて、束状で集束することが多かった極細繊維束がそのスパイラル構造によって開繊性が大幅に向上し、比表面積効果や繊維間空隙による毛細管現象、機能剤の保持機能など様々な機能が顕著化するものである。
この従来にはない特徴を実用で有効に活かすためには、複合極細繊維がある程度の嵩高性を有していることが好適であり、本発明の複合極細繊維の嵩高性は14~79cm/gであることが好ましい。
 従来の極細繊維においては、繊維間空隙が小さいために、例えば、ワイピングクロスに用いる場合には、その汚れを捕捉させる機能を付与するために、ニードルパンチやウォータージェットというような物理的な刺激を加えて、極細繊維束の開繊性を向上させる処理を必要とした。一方、上記した嵩高性を有している場合には、十分な開繊性を有していることを意味しており、従来の極細繊維で必要とされていた開繊処理の必要がなくなるのである。また、このような工程を省略可能とすることで、開繊工程中に生じる極細繊維の切れや脱落を予防することができ、品位に優れた高機能ワイピングクロスとすることが可能となる。
 このような3次元的なスパイラル構造が形成する繊維間空隙は、フェルトやシート状物等として、フィルター用途に展開した場合にもその効果を発現する。すなわち、その繊維径の縮小化に伴う空気塵等の捕集効率の向上に加えて、その繊維間空隙によって、従来の極細繊維では課題とされていた圧力損失の低下と目詰まりの抑制による長寿命化が可能となり、高機能フィルター用原綿として利用することができるのである。このようなフィルター用途への展開を考えると、この嵩高性能効果は有効に作用する。
  高機能アパレルへの応用としては、織編物等の布帛に加工した場合には、機能剤やそれを付与するためのバインダー等の含浸性を従来技術と比較して高めることができる。すなわち、一旦繊維間に取り込まれた機能剤などは、極細繊維が形成する微細な空隙に捕捉されるため、その耐久性においても、優れたものになる。このようなある程度の粒子を持った樹脂や機能材を含浸させることを想定すると、この嵩高性は20~79cm/gであることがより好ましい。
 ここで、嵩高性とは、海島複合繊維からなる布帛を海成分が溶解する溶剤で満たされた脱海浴(浴比1:100)にて海成分を99wt%以上溶解除去し、複合極細繊維からなる布帛を得て、この布帛をJIS  L  1096(2010)に準じて、評価した嵩高性を言う。すなわち、測定した単位当たりの厚さt(mm)および単位当たりの質量S(g/m)から、下記式に従い布帛の嵩高性Bu(cm/g)を求め、小数点第3位以下を四捨五入した値を本発明における嵩高性とする。
Figure JPOXMLDOC01-appb-M000001
 このバイメタル型の複合極細繊維では、従来の極細繊維では、決して発現することがなかった3次元的なスパイラル構造に起因するストレッチ性が発現し、これが、極細繊維由来の柔軟で繊細な触感と相まって、優れた風合いを有する。
 このスパイラル構造は従来の極細繊維にはなかった伸縮性を生み、本発明の複合極細繊維では、伸縮伸長率が41~223%であることが好ましい。係る範囲であれば、本発明特有の良好なストレッチ性を有したものであり、後述する繊度も相まって良好な触感を有する。
 ここで言う伸縮伸長率とは、海島複合繊維から海成分を99wt%以上溶解除去し、複合極細繊維を得て、採取した複合極細繊維をカセとし、温度25℃湿度55%RHで1日間放置した後、1.8×10-3cN/dtexの荷重をかけた際のカセ長(初期試料長:L)を測定し、次いで、荷重を88.2×10-3cN/dtexとし、60秒後のカセ長(L)を測定し、下記式にて伸縮伸長率E(%)を算出する。同操作を1水準当たり5回繰り返し、その平均値を小数点第2位で四捨五入することで求める。
Figure JPOXMLDOC01-appb-M000002
 この従来にはない非常に心地の良い風合いを奏でるためには、本発明の海島複合繊維から得たバイメタル型の複合極細繊維は単糸繊度が0.001~0.970dtexであることが好ましい。すなわち、バイメタル構造によるストレッチ性の発現は繊維径に依存して発現する。このため、特開2001-131837号公報や特開2003-213526号公報で提案されるようないわゆる通常の繊維径(数十μm)を有したバイメタル繊維の場合では、ストレッチ性の調整には限界があり、過剰に発現する場合には締め付け感として感じられる場合があった。一方、本発明においては、ポリマーの組み合わせやその繊維径を比較的自由に制御でき、更に、その繊維径を数μm(0.970dtex)以下にすることも可能である。このため、極細繊維が示す適度なストレッチ性が心地良いホールド感を付与し、更にその微細なスパイラル構造により人肌と非常に柔軟に接触し、心地よい触感を有する。この現象を推し進め、人肌と接触するインナーへの適用を想定した場合には、複合極細繊維の単糸繊度は0.001~0.400dtexであることがより好ましい。係る範囲においては、低ストレッチ性により締め付け感は無いものの、極細繊維の接触面積によって人肌との摩擦は担保され、動作追従性に優れたものとなる。このため、長時間使用した際にもストレスを感じない高機能インナーとしての着用が可能である。特に、これらの特性はスポーツ用途などで好適に活用できる特性である。スポーツ用途などの激しい動きにも追従できるようにするためには、ホールド感の確保を考えると、複合極細繊維の単糸繊度は0.050~0.400dtexの範囲が特に好ましい範囲として挙げることができる。係る範囲であれば、布帛の組成によっては繊維間の空気層により、保温性や吸水性を付与することもできる。
 ここで言う単糸繊度とは、本発明の海島複合繊維から糸束のまま海成分を99%以上除去し、採取した複合極細繊維束を温度25℃湿度55%RHの雰囲気下で単位長さ当たりの重量を測定し、その値から10,000mに相当する重量を算出する。該複合極細繊維束の重量を繊維束に存在するフィラメント数(島数に相当)で割り、単糸繊度を算出する。同じ操作を10回繰り返して、その単純平均値の小数点第4位以下を四捨五入した値を複合極細繊維の単糸繊度とする。  
 また、ストレッチ性を有した高密度織物として、ダウンジャケット等のアウターとして利用することが可能であり、複合極細繊維が形成する微細な凹凸による深色効果によって従来の繊維では表現することができなかった深みのある優れた発色性を発現する。
 この本発明の特徴的な複合型島成分の断面形状は、真円断面に加えて、短軸と長軸の比(扁平率)が1.0より大きい扁平断面はもとより、三角形、四角形、六角形、八角形などの多角形断面、一部に凹部を有したダルマ断面、Y型断面、星型断面等の様々な断面形状をとることができ、これらの断面形状によって、布帛の表面特性や力学特性の制御が可能となる。
 本発明の島成分においては、2種類以上のポリマーが一体として存在することを特徴としており、極細繊維の特性発現に加えて、紡糸や延伸における製糸性および高次加工通過性を担保しているものである。このため、巻き取られた複合繊維やその複合繊維を高次加工する際には剥離や分離を予防する必要があり、このためには、ポリマーAとポリマーBの接合部の長さL(図3の4)と複合島成分径D(図3の5)との比L/Dを0.1から10.0とする必要がある。
 ここで言う接合部の長さLおよび2種類以上のポリマーが複合化した島成分の径Dは、以下のように求めるものである。
 すなわち、海島複合繊維からなるマルチフィラメントをエポキシ樹脂などの包埋剤にて包埋し、この横断面を透過型電子顕微鏡(TEM)で100本以上の島成分が観察できる倍率として画像を撮影する。この際、金属染色を施せば、ポリマー間の染め差を利用して、島成分および該島成分の接合部のコントラストをはっきりさせることができる。撮影された各画像から同一画像内で無作為に抽出した100本の島成分の外接円径を測定した値が本発明でいう島成分径Dに相当する。ここで、1本の複合繊維において、100本以上の島成分が観察できない場合には、他の繊維を含めて合計で100本以上の島成分を観察すれば良い。ここで言う外接円径とは、2次元的に撮影された画像から繊維軸に対して垂直方向の断面を切断面とし、この切断面に2点以上で最も多く外接する真円の径のことを意味する。図3に示したバイメタル構造の島成分を用いて説明すると、図3の破線(図2の5)で示す円がここで言う外接円にあたる。
 また、島成分径Dを測定した画像を用いて、100本以上の島成分について評価した。2次元的に見られるポリマーAとポリマーBが接着している長さを測定した値が、本発明で言う接合部の長さLに相当する。具体的には、実施例の項中、「D.島成分径および島成分径バラツキ(CV[%])」において説明する。
 なお、本発明の海島複合繊維では、L/Dを10.0以上とすることも可能であるが、後述する本発明を達成するための口金設計を容易にするため、L/Dの実質的な上限を10.0とする。
 本発明の海島複合繊維においては、複合島成分において、L/Dが0.1~10.0になる必要がある。L/Dが0.1~10.0であるということは、「2種類以上のポリマーが明確な接触面を持って一体となり、接合している」ことを意味しており、剥離や分離には島成分径(D)に対して、接合部の長さ(L)が一定の長さを有して存在することが好適である。この点に関して、製糸工程や高次加工工程等で複合繊維が屈曲したり、擦過される等して、強い外力が加わった場合でも、複合型の島成分が剥離や分離をすることなく存在できる範囲として、L/Dの範囲を定めた。
 この剥離抑制という観点では、本発明の複合型の島成分が、実質的に一方のポリマーに他方のポリマーが被覆されている芯鞘型(図1(a))、分割型(図1(c))および海島型(図1(d))である場合は、L/Dの値を1.0以上10.0以下とすることが好ましく、より好ましくは、L/Dを1.0以上5.0以下とすることである。係る範囲であれば、複合型の島成分において、ポリマー同士が十分な接触面を持って存在していることを意味し、比較的薄く形成される島成分の海部が割れや剥離などを起こさず存在することができる。
 また、バイメタル型(図1(b))の島成分においては、剥離抑制という観点から、L/Dの値を0.1以上5.0以下とすることが好ましい。特にバイメタル型の島成分においては、海成分を除去する際、あるいはその後の熱処理によってポリマーの収縮差に応じたスパイラル構造の発現を特徴とするため、この構造の発現ならびにスパイラル構造の極細繊維の耐久性を考慮するとL/Dを0.1以上1.0以下とすることがより好ましい。
 以上のように、本発明の海島複合繊維においては、従来にはない2種類以上のポリマーが必要となる接合面を持って存在する複合型の島成分を有したものであり、海成分を除去した場合には、従来にはない2種類以上のポリマーの特性を有した極細繊維を採取することができる。ここで、この複合型の島成分からなる極細繊維の特徴は、その繊維径に依存した優れた触感を有しながらも、力学特性、耐磨耗性や嵩高性に加え、高機能加工処理、形態制御等といった用途展開に必要となる機能を付与できることである。このため、この特徴的な触感を担保するためには、複合型の島成分の径(島成分径:D)が0.2μmから10.0μmであることが好ましい。
 本発明の海島複合繊維では、島成分径を0.2μm未満とすることも可能であるが、0.2μm以上とすることで、製糸工程において、島成分が部分的に破断すること等を抑制したり、後加工工程における糸切れなどを予防することができる。また、本発明の海島複合繊維から極細繊維を発生させる場合には加工条件の設定が簡易になるといった効果がある。一方、本発明の目的である極細繊維ならではの繊細な触感、微細な繊維間空隙が織り成す様々な機能が通常の繊維と比べて優位なものとするためには、島成分径が10μm以下であることが好ましい。本発明の島成分径は、0.2から10.0μmの範囲で加工条件や目的とする用途に応じて適宜設定できるが、前述した極細繊維ならではの特性をより効果的なものとするためには、島成分径が0.5μm~7.0μmの範囲であることがより好ましい。さらに高次加工における工程通過性、脱海条件設定の簡易性、取り扱い性までを考慮すると、1.0μm~5.0μmであることが特に好ましい。
 本発明の島成分は好ましくは10μm以下の極細の径を有したものであるが、その島成分からなる極細繊維の品位を高めるという観点では、島成分径のバラツキが、1.0~20.0%であることが好ましい。係る範囲であれば、同複合断面において、部分的に粗大な島成分もしくは極小な島成分が存在しないことを意味し、いずれの島成分も均質であることを意味する。これは、製糸工程や高次加工工程において、複合繊維断面で一部の島成分に応力が偏ることなく、均等に分配されることとなるため、島成分がいずれも高配向となり、十分な繊維構造が形成される。また、マクロには複合繊維の断面で、応力に偏りが生じ、糸切れなどを誘発することを抑制するという観点から好ましい。特に、脱海処理を施す際には、この効果が間接的に影響し、このバラツキが小さい場合には、前述した繊維構造差やその比表面積の変化が抑制されるため、極細繊維の切れや脱落などがなく、品位に優れた極細繊維となる。以上の観点から島成分径バラツキは小さいほど好ましく、1.0~15.0%とすることがより好ましい。特に、バイメタル構造を有した極細繊維の場合には、その嵩高性やストレッチ性が、応力の履歴に伴う内部エネルギーの蓄積に依存する部分が大きく、島成分径バラツキが1.0~10.0%であることが特に好ましい。係る範囲であれば、例えば、島成分の一部に応力が偏り、部分的にスパイラル構造の発現の程度が異なった極細繊維が存在することがなくなる。このため、部分的に毛羽立ちなどをすることがなくなり、インナー等の直接人肌に触れる製品や外層となり擦過を受けるような製品などに用いる場合には、好適なのである。
 ここで言う島成分径バラツキとは、前述した島成分径と同様の方法で、海島複合繊維の断面を2次元的に撮影し、無作為に抽出した100本以上の島成分について測定した島成分径の値から求めるものである。すなわち、島成分径の平均値および標準偏差から、島成分径バラツキ(島成分径CV[%])=(島成分径の標準偏差/島成分径の平均値)×100(%)として算出される値である。この値を同様に撮影した10画像について評価し、10画像の結果の単純な数平均を島成分径バラツキとし、小数点2桁目以下は四捨五入する。
 本発明における海島複合繊維および極細繊維は、高次加工における工程通過性や実質的な使用を考えると、一定以上の靭性を持つことが好適であり、繊維の強度と伸度を指標とすることができる。ここで言う、強度とは、JIS  L 1013(1999年)に示される条件で繊維の荷重-伸長曲線を求め、破断時の荷重値を初期繊度で割った値であり、伸度とは、破断時の伸長を初期試長で割った値である。ここで、初期繊度とは、繊維の単位長さの重量を複数回測定した単純な平均値から、10,000m当たりの重量を算出した値を意味する。
 本発明の複合繊維の強度は、0.5~10.0cN/dtex、伸度は5~700%であることが好ましい。本発明の海島複合繊維において、強度の実現可能な上限値は10.0cN/dtexであり、伸度の実現可能な上限値は700%である。また、本発明の極細繊維をインナーやアウターなどの一般衣料用途に用いる場合には、強度を1.0~4.0cN/dtex、伸度を20~40%とすることが好ましい。また、使用環境が過酷であるスポーツ衣料用途などでは、強度を3.0~5.0cN/dtex、伸度を10~40%とすることが好ましい。産業資材用途、例えば、ワイピングクロスや研磨布としての使用を考えた場合には、荷重下で引っ張られながら対象物に擦りつけられることになる。
 このため、強度を1.0cN/dtex以上、伸度を10%以上とすれば、拭き取り中などに極細繊維が切れて脱落などすることなくなるため、好適である。
以上のように本発明の繊維では、その強度および伸度を目的とする用途等に応じて、製造工程の条件を制御することにより、調整することが好適である。
 本発明の海島複合繊維は、繊維巻き取りパッケージやトウ、カットファイバー、わた、ファイバーボール、コード、パイル、織編、不織布など多様な中間体とし、脱海処理するなどして極細繊維を発生させ、様々な繊維製品とすることが可能である。また、本発明の海島複合繊維は、未処理のまま、部分的に海成分を除去させる、あるいは脱島処理をするなどして繊維製品とすることも可能である。
 以下に本発明の海島複合繊維の製造方法の一例を詳述する。
 本発明の海島複合繊維は、2種類以上のポリマーが接合面を持って形成された島成分を有した海島複合繊維を製糸することにより製造可能である。ここで、本発明の海島複合繊維を製糸する方法としては、溶融紡糸による海島複合紡糸が生産性を高めるという観点から好適である。当然、溶液紡糸などして、本発明の海島複合繊維を得ることも可能である。ただし、本発明の海島複合紡糸を製糸する方法としては、繊維径および断面形状の制御に優れるという観点で、海島複合口金を用いる方法とすることが好ましい。
 本発明の海島複合繊維は、従来公知のパイプ型の海島複合口金を用いて製造することは、島成分の断面形状を制御する点で非常に困難なことである。すなわち、本発明の複合型の島成分においては、異なる2種類以上のポリマーが接触し、接合されている必要がある。しかしながら、従来のパイプ型口金においては、島成分を形成させるためのパイプはそのパイプ自体の厚みからおのずと近接できる距離には限界がある。また、何より機械加工によりパイプを溶接する必要があるため、溶接時のパイプの歪予防を考慮して、ある程度(数百μm)以上に隣り合うパイプとの間を離して加工する必要がある。このため、2種類以上のポリマーを実質的に接合させることは非常に困難であり、従来の口金技術においては、本発明の海島複合繊維は達成されなかったのである。
 また、従来口金技術において、本発明が達成できなかった本質的な要因として、制御するポリマー量が10-5g/min/holeオーダーと従来技術で用いられている条件よりも数桁低い極少的なポリマー量を制御する必要があることが挙げられる。すなわち、高々10-1g/min/hole程度の制御であった従来の口金技術においては、本発明の海島複合繊維のような複合型の島成分を有した海島複合繊維を達成することは非常に困難なものであった。この点、本発明者等は鋭意検討し、図4に例示するような海島複合口金を用いた方法が、本発明の目的を達成するには好適であることを見出したのである。
 図4に示した複合口金は、上から計量プレート6、分配プレート7および吐出プレート8の大きく3種類の部材が積層された状態で紡糸パック内に組み込まれ、紡糸に供される。ちなみに図4は、ポリマーA(島成分1)、ポリマーB(島成分2)およびポリマーC(海成分)といった3種類のポリマーを用いた例である。ここで、本発明の海島複合繊維においては、ポリマーCを溶解することによりポリマーAおよびポリマーBからなる複合型の島成分を極細繊維とする場合には、島成分を難溶解成分、海成分を易溶解成分とすれば良い。また、必要であれば、前記難溶解成分と易溶解成分以外のポリマーを含めた4種類以上のポリマーを用いて製糸しても良い。このような4種類以上のポリマーを活用した複合紡糸では、従来のパイプ型の複合口金で達成することは非常に困難なことであり、やはり図4に例示したような微細流路を利用した複合口金を用いることが好ましい。
  図4に例示した口金部材では、計量プレート6が各吐出孔および海と島の両成分の分配孔当たりのポリマー量を計量して流入し、分配プレート7によって、単(海島複合)繊維の断面における海島複合断面および島成分の断面形状を制御する。次いで、吐出プレート8によって、分配プレート7で形成された複合ポリマー流を圧縮して、吐出するという役割を担っている。複合口金の説明が錯綜するのを避けるために、図示していないが、計量プレートより上に積層する部材に関しては、紡糸機および紡糸パックに合わせて、流路を形成した部材を用いれば良い。ちなみに、計量プレート6を、既存の流路部材に合わせて設計することで、既存の紡糸パックおよびその部材をそのまま活用することができる。このため、特に該複合口金のために紡糸機を専有化する必要はない。
 また、実際には流路-計量プレート間あるいは計量プレート6-分配プレート7間に複数枚の流路プレート(図示せず)を積層すると良い。これは、口金断面方向および単繊維の断面方向に効率よく、ポリマーが移送される流路を設け、分配プレート7に導入される構成とすることが目的である。吐出プレート8より吐出された複合ポリマー流は、従来の溶融紡糸法に従い、冷却固化後、油剤を付与され、規定の周速になったローラで引き取られて、本発明の海島複合繊維となる。
 以下、図4に例示した複合口金を計量プレート6、分配プレート7を経て、複合ポリマー流となし、この複合ポリマー流が吐出プレート8の吐出孔から吐出されるまでを複合口金の上流から下流へとポリマーの流れに沿って順次説明する。
 紡糸パック上流からポリマーA、ポリマーBおよびポリマーCが、計量プレートのポリマーA用計量孔9-(a)、ポリマーB用計量孔9-(b)およびポリマーC用計量孔9-(c)に流入し、下端に穿設された孔絞りによって、計量された後、分配プレート8に流入される。ここで、各ポリマーは、各計量孔に具備する絞りによる圧力損失によって計量される。この絞りの設計の目安は、圧力損失が0.1MPa以上となることである。一方、この圧力損失が過剰になって、部材が歪むのを抑制するために、30.0MPa以下となる設計とすることが好ましい。この圧力損失は計量孔毎のポリマーの流入量および粘度によって決定される。例えば、温度280℃、歪速度1,000s-1での粘度が、100~200Pa・sのポリマーを用い、紡糸温度280~290℃、計量孔毎の吐出量が0.1~5.0g/minで溶融紡糸する場合には、計量孔の絞りは、孔径0.01~1.00mm、L/D(吐出孔長/吐出孔径)0.1~5.0であれば、計量性よく吐出することが可能である。ポリマーの溶融粘度が上記粘度範囲より小さくなる場合や各孔の吐出量が低下する場合には、孔径を上記範囲の下限に近づくように縮小あるいは/または孔長を上記範囲の上限に近づくように延長すれば良い。逆に高粘度、あるは吐出量が増加する場合には、孔径および孔長をそれぞれ逆の操作を行えばよい。
 また、この計量プレート6を複数枚積層して、段階的にポリマー量を計量することが好ましく、2段階から10段階に分けて計量孔を設けることがより好ましい。この計量プレートあるいは計量孔を複数回に分ける行為は、10-5g/min/holeオーダーと従来技術で用いられている条件よりも数桁低い微少量のポリマーを制御するには好適なことである。
 各計量孔9から吐出されたポリマーは、分配プレート7の分配溝10に別々に流入される。分配プレート7では、各計量孔9から流入したポリマーを溜める分配溝10とこの分配溝の下面にはポリマーを下流に流すための分配孔11が穿設されている。分配溝10には、2孔以上の複数の分配孔11が穿設されていることが好ましい。また、分配プレート9は、複数枚積層されることで、一部で各ポリマーが個別に合流-分配が繰り返されることが好ましい。これは、複数の分配孔11-分配溝10-複数の分配孔11といった繰り返しを行う流路設計としておくと、ポリマー流は他の分配孔11に流入することができる。このため、仮に分配孔11が部分的に閉塞した場合でも、下流の分配溝10で欠落した部分が充填されるのである。また、同一の分配溝10に複数の分配孔11が穿設され、これが繰り返されることで、閉塞した分配孔11のポリマーが他の孔に流入しても、その影響は実質的に皆無となる。さらに、この分配溝10を設けた効果は、様々な流路を経た、すなわち熱履歴を経たポリマーが複数回合流し、粘度バラツキの抑制という点でも大きい。特に本発明の海島複合繊維においては、少なくとも3種類以上のポリマーを複合紡糸する必要があるため、この熱履歴や粘度バラツキに対する配慮が複合断面の精度を高めるという観点では効果的なのである。また、このような分配孔11-分配溝10-分配孔11の繰り返しを行う設計をする場合、上流の分配溝に対して、下流の分配溝を円周方向に1~179°の角度をもって配置させ、異なる分配溝から流入するポリマーを合流させる構造とすると、異なる熱履歴等を受けたポリマーが複数回合流されため、海島複合断面の制御に効果的である。また、この合流と分配の機構は、前述の目的からすると、より上流部から採用することが好ましく、計量プレート6やその上流の部材にも施すことも好適である。このような構造を有した複合口金は、前述したようにポリマーの流れが常に安定化したものであり、本発明に必要となる高精度な海島複合繊維の製造が可能になる。
 ここで吐出孔1孔当りの島数は、理論的には各々1本からスペースの許す範囲で無限に作製することは可能である。実質的に実施可能な範囲として、総島数が2~10,000島が好ましい範囲である。島充填密度は、0.1~20.0島/mmの範囲であれば良い。
 ここで言う島充填密度とは、単位面積当たりの島数を表すものであり、この値が大きい程多島の海島複合繊維の製造が可能であることを示す。ここで言う島充填密度は、1吐出孔から吐出される島数を吐出導入孔の面積で除することによって求めた値である。この島充填密度は各吐出孔によって変更することも可能である。
 複合繊維の断面形態ならびに島成分の断面形態(複合および形状)は、吐出プレート8直上の最終分配プレートにおける各分配孔9の配置により制御することができる。
 本発明の海島複合繊維を達成するためには、このような新規な複合口金を採用することに加えて、島成分ポリマー(ポリマーAあるいはポリマーB)の溶融粘度Iと海成分ポリマー溶融粘度Sとの溶融粘度比(S/I)が0.1から2.0であることが好ましい。ここで言う溶融粘度とは、チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、キャピラリーレオメーターによって、測定できる溶融粘度を指し、紡糸温度での同せん断速度の際の溶融粘度を意味する。また、本発明において島成分ポリマーの溶融粘度Iとは、2種類以上の島成分ポリマーのうち最も高い溶融粘度を意味する。
 本発明において島成分の断面形態は、基本的に分配孔の配置により制御されるものの、各ポリマーが合流し、複合ポリマー流を形成した後に縮小孔13によって断面方向に大幅に縮小されることとなる。このため、その時の溶融粘度比、すなわち、溶融ポリマーの剛性比が断面の形成に影響を与える場合がある。このため、本発明においては、S/Iが0.1から1.0とすることがより好ましい。特に係る範囲においては、ポリマーの剛性は島成分が高く、海成分が低いこととなり、製糸工程や高次加工工程における伸長変形において、応力が島成分に優先的に付与されることとなる。このため、島成分が高配向となり、繊維構造がしっかりと形成されるため、溶剤により海成分を溶解する際に島成分が不要に処理されて劣化することを予防することができる。さらに、繊維構造が十分に配向した島成分は極細繊維とした際にも、良好な力学特性を有することとなり、加えて、本発明の海島複合繊維においては、実質的に力学特性を島成分が担っているため、海島複合繊維および極細繊維の力学特性の発現という観点からも好適なのである。このように力学特性がより高まるということは、比較的高い張力のかかる高次加工工程の通過性や極細繊維の品位という観点からも、注目すべき点である。
 また、特にバイメタル構造を有した島成分およびそれからなる極細繊維を製造する場合には、前述した通りその3次元的なスパイラル構造の発現が製糸工程や高次加工工程での内部エネルギーの蓄積に依るところが大きく、その訴求点を高めるという意味合いからも、S/Iが0.1から1.0とすることが好ましいのである。スパイラル構造の発現という観点においては、S/Iが小さいほど良いということになるが、複合ポリマー流の吐出安定性などの紡糸性までを考慮すると、S/Iが0.3から0.8とすることがさらに好ましい範囲である。
 なお、以上のポリマーの溶融粘度に関しては、同種のポリマーであっても、分子量や共重合成分を調整することで、比較的自由に制御できるため、本発明においては、溶融粘度をポリマー組み合わせや紡糸条件設定の指標にしている。
 分配プレート7から吐出された複合ポリマー流は、吐出プレート8に流入する。ここで、吐出プレート8には、吐出導入孔12を設けることが好ましい。吐出導入孔12とは、分配プレート7から吐出された複合ポリマー流を一定距離の間、吐出面に対して垂直に流すためのものである。これは、ポリマーA、ポリマーBおよびポリマーCの流速差を緩和させるととともに、複合ポリマー流の断面方向での流速分布を低減させることを目的としている。本発明においては、少なくとも3種類以上のポリマーを複合ポリマー流とすることとなるため、この吐出導入孔12を設けることは断面形態などの吐出安定性という観点では、好適なことである。
 この流速分布の抑制という点においては、各ポリマーの分配孔11における吐出量、孔径および孔数によって、ポリマーの流速自体を制御することが好ましい。但し、これを口金の設計に組み入れると、島数等を制限する場合がある。このため、ポリマーの分子量を考慮する必要はあるものの、流速比の緩和がほぼ完了するという観点から、複合ポリマー流が縮小孔13に導入されるまでに10-1~10秒(=吐出導入孔長/ポリマー流速)を目安として吐出導入孔12を設計することが好ましい。係る範囲であれば、流速の分布は十分に緩和され、断面の安定性向上に効果を発揮する。
 次に、複合ポリマー流は、所望の径を有した吐出孔に導入する間に縮小孔13によって、ポリマー流に沿って断面方向に縮小される。ここで、複合ポリマー流の中層の流線はほぼ直線状であるが、外層に近づくにつれ、大きく屈曲されることとなる。本発明の海島複合繊維を得るためには、ポリマーA、ポリマーBおよびポリマーCを合わせると無数のポリマー流によって構成された複合ポリマー流の断面形態を崩さないまま、縮小させることが好ましい。このため、この縮小孔13の孔壁の角度は、吐出面に対して、30°~90°の範囲に設定することが好適である。
 この縮小孔13における断面形態の維持という観点では、吐出プレート直上の分配プレートに、海成分用の分配孔を多く穿設しておき、複合ポリマー流の最外層に海成分の層を設けることが好ましい。なぜなら、分配プレートから吐出された複合ポリマー流は、縮小孔によって断面方向に大きく縮小される。その際、複合ポリマー流の外層部では大きく流れが屈曲されることに加えて、孔壁とのせん断を受けることとなる。この孔壁-ポリマー流外層の詳細を見ると、孔壁との接触面においては、せん断応力によって流速が遅く、内層に行くにつれ流速が増加するというような流速分布に傾斜が生じる場合がある。すなわち、上記した孔壁とのせん断応力は、複合ポリマー流の最外層に配置した海成分(Cポリマー)からなる層に担わせることができ、複合ポリマー流、特に島成分の流動を安定化させることができるのである。このため、本発明の海島複合繊維においては、複合型の島成分の繊維径や断面形状の安定性が格段に向上するのである。
 以上のように、吐出導入孔12および縮小孔13を経て複合ポリマー流は、分配孔11の配置の通りの断面形態を維持して、吐出孔14から紡糸線に吐出される。この吐出孔14は、複合ポリマー流の流量、すなわち吐出量を再度計量する点と紡糸線上のドラフト(=引取速度/吐出線速度)を制御する目的がある。吐出孔14の孔径および孔長は、ポリマーの粘度および吐出量を考慮して決定するのが好適である。本発明の海島複合繊維を製造する際には、吐出孔径Dは0.1~2.0mm、L/D(吐出孔長/吐出孔径)は0.1から5.0の範囲で選択することが好適である。
 本発明の海島複合繊維は以上のような複合口金を用いて製造することができ、生産性および設備の簡易性を鑑みると、溶融紡糸で実施することが好適であるが、該複合口金を使用すれば、溶液紡糸のような溶媒を使用する紡糸方法でも、本発明の海島複合繊維を製造することが可能であることは言うまでもない。
 溶融紡糸を選択する場合、島成分および海成分として、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリプロピレン、ポリオレフィン、ポリカーボネート、ポリアクリレート、ポリアミド、ポリ乳酸、熱可塑性ポリウレタン、ポリフェニレンサルファイドなどの溶融成形可能なポリマーおよびそれらの共重合体が挙げられる。特にポリマーの融点は165℃以上であると耐熱性が良好であり好ましい。また、酸化チタン、シリカ、酸化バリウムなどの無機質、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤をポリマー中に含んでいてもよい。
 島成分(難溶解成分)および海成分(易溶解成分)の組み合わせは、目的とする用途に応じて難溶解成分を選択し、難溶解成分の融点を基準に同紡糸温度で紡糸可能な易溶解成分を選択することが好適である。ここで前述したS/I(溶融粘度比)を考慮して、各成分の分子量等を調整すると海島複合繊維の島成分の繊維径および断面形状といった均質性を向上させるという観点から好ましい。また、本発明の海島複合繊維を活用し、複合極細繊維を製造する場合には、脱海に使用する溶剤に対する難溶解成分(島成分)と易溶解成分(海成分)の溶解速度差が大きいほど好ましく、3,000倍までの範囲を目安に前述したポリマーから組み合わせを選択すると良い。
 海成分ポリマーとして、ポリエステルおよびその共重合体、ポリ乳酸、ポリアミド、ポリスチレンおよびその共重合体、ポリエチレン、ポリビニールアルコールなどの溶融成形可能で、他の成分よりも易溶解性を示すポリマーから選択することが好適である。海成分としては、水系溶剤あるいは熱水などに易溶解性を示す共重合ポリエステル、ポリ乳酸、ポリビニールアルコールなどが好ましく、特に、ポリエチレングリコール、ナトリウムスルホイソフタル酸が単独あるいは組み合わされて共重合したポリエステルやポリ乳酸を用いることが紡糸性および低濃度の水系溶剤に簡単に溶解するという観点から好ましい。また、脱海性および脱海後の極細繊維の開繊性という観点では、ポリ乳酸、5-ナトリウムスルホイソフタル酸が3mol%から20mol%共重合されたポリエステルおよび前述した5-ナトリウムスルホイソフタル酸に加えて分子量500から3,000のポリエチレングリコールが5wt%から15wt%の範囲で共重合されたポリエステルが特に好ましい。特に、上記した5-ナトリウムスルホイソフタル酸単独および5-ナトリウムスルホイソフタル酸に加えてポリエチレングリコールが共重合されたポリエステルにおいては、結晶性を維持しながらも製糸工程において島成分の変形を阻害せず高配向な繊維構造を形成させることができるため、製糸性、取り扱い性ならびに繊維特性という観点から好適なのである。
 本発明の海島複合繊維からバイメタル型の複合極細繊維を製造するのに好適な島成分ポリマーの組み合わせとしては、加熱処理を施した際に収縮差を生じるポリマーの組み合わせが好ましい。このような観点では、溶融粘度で10Pa・s以上の粘度差が生まれる程度に分子量または組成に違いのあるポリマーの組み合わせが好適である。
 具体的なポリマーの組み合わせとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリアミド、ポリ乳酸、熱可塑性ポリウレタン、ポリフェニレンサルファイドをポリマーAとポリマーBで分子量を変更して使用したり、一方をホモポリマーとして、他方を共重合ポリマーとして使用することが剥離を抑制するという観点から好ましい。また、スパイラル構造による嵩高性を向上させるという観点では、ポリマー組成が異なる組み合わせが好ましく、例えば、ポリマーA/ポリマーBでポリエチレンテレフタレート/ポリブチレンテレフタレート、ポリエチレンテレフタレート/ポリトリメチレンテレフタレート、ポリエチレンテレフタレート/熱可塑性ポリウレタン、ポリブチレンテレフタレート/ポリトリメチレンテレフタレートが好ましい。
 本発明における紡糸温度は、前述した観点から決定した使用ポリマーのうち、主に高融点や高粘度のポリマーが流動性を示す温度とすることが好適である。この流動性を示す温度とは、ポリマー特性やその分子量によっても異なるが、そのポリマーの融点が目安となり、融点+60℃以下で設定すればよい。これ以下の温度であれば、紡糸ヘッドあるいは紡糸パック内でポリマーが熱分解等することなく、分子量低下が抑制され、良好に本発明の海島複合繊維を製造することができる。
 本発明におけるポリマーの吐出量は、安定性を維持しつつ溶融吐出できる範囲として、吐出孔当たり0.1g/min/holeから20.0g/min/holeを挙げることができる。この際、吐出の安定性を確保できる吐出孔における圧力損失を考慮することが好ましい。ここで言う圧力損失は、0.1MPa~40MPaを目安にポリマーの溶融粘度、吐出孔径、吐出孔長との関係から吐出量を係る範囲より決定することが好ましい。
 本発明に用いる海島複合繊維を紡糸する際の島成分(ポリマーA+ポリマーB)と海成分(ポリマーC)の比率は、吐出量を基準に重量比で海/島比率で5/95~95/5の範囲で選択することができる。この海/島比率のうち、島比率を高めると極細繊維の生産性という観点からは好適である。但し、海島複合断面の長期安定性および極細繊維を効率的に、かつ安定性を維持しつつバランス良く製造できる範囲として、この海/島比率は、10/90~50/50がより好ましい。さらに脱海処理を迅速に完了させ、極細繊維の開繊性を向上させるという点までを考慮すると、10/90~30/70が特に好ましい。
 本発明の海島複合繊維は、その島成分が複合形態を有していることを特徴としており、その島成分におけるポリマーAとポリマーBの比率は、吐出量を基準に重量比でポリマーA/ポリマーB=10/90から90/10までの範囲で選択することが好ましい。この島成分における比率は、目的とする力学特性および極細繊維に付与する特性に応じて選択するものであり、係る範囲内であれば、本発明の目的とする2種類以上のポリマーの特性を有した複合極細繊維を製造することが可能である。
 吐出孔から溶融吐出された糸条は、冷却固化され、油剤等を付与することにより集束し、周速が規定されたローラによって引き取られる。ここで、この引取速度は、吐出量および目的とする繊維径から決定するものである、本発明では、海島複合繊維を安定に製造するという観点から、100m/minから7,000m/minが好ましい範囲として挙げることができる。この紡糸された海島複合繊維は、熱安定性や力学特性を向上させるという観点から、延伸を行うことが好ましく、紡糸した海島複合繊維を一旦巻き取った後で延伸を施すことも良いし、一旦、巻き取ることなく、紡糸に引き続いて延伸を行うことも良い。
 この延伸条件としては、例えば、一対以上のローラからなる延伸機において、一般に溶融紡糸可能な熱可塑性を示すポリマーからなる繊維であれば、ガラス転移温度以上融点以下の温度に設定された第1ローラと結晶化温度相当とした第2ローラの周速比によって、繊維軸方向に無理なく引き伸ばされ、且つ熱セットされて巻き取られる。また、ガラス転移を示さないポリマーの場合には、海島複合繊維の動的粘弾性測定(tanδ)を行い、得られるtanδの高温側のピーク温度以上の温度を予備加熱温度として、選択すればよい。ここで、延伸倍率を高め、力学物性を向上させるという観点から、この延伸工程を多段で施すことも好適な手段である。
 本発明の海島複合繊維から複合極細繊維を発生させるためには、易溶解成分が溶解可能な溶剤などに複合繊維を浸漬して易溶解成分を除去すればよい。易溶出成分が、5-ナトリウムスルホイソフタル酸やポリエチレングリコールなどが共重合された共重合ポリエチレンテレフタレートやポリ乳酸等の場合には、水酸化ナトリウム水溶液などのアルカリ水溶液を用いることができる。本発明の複合繊維をアルカリ水溶液にて処理する方法としては、例えば、複合繊維あるいはそれからなる繊維構造体とした後で、アルカリ水溶液に浸漬させればよい。この時、アルカリ水溶液は50℃以上に加熱すると、加水分解の進行を早めることができるため、好ましい。また、流体染色機などを利用すれば、一度に大量に処理をすることができるため、生産性もよく、工業的な観点から好ましいことである。
 以上のように、本発明の極細繊維の製造方法を一般の溶融紡糸法に基づいて説明したが、メルトブロー法およびスパンボンド法でも製造可能であることは言うまでもなく、さらには、湿式および乾湿式などの溶液紡糸法などによって製造することも可能である。
  以下実施例を挙げて、本発明の極細繊維について具体的に説明する。
  実施例および比較例については、下記の評価を行った。
A.ポリマーの溶融粘度
  チップ状のポリマーを真空乾燥機によって、水分率200ppm以下とし、東洋精機製キャピログラフ1Bによって、歪速度を段階的に変更して、溶融粘度を測定した。なお、測定温度は紡糸温度と同様にし、実施例あるいは比較例には、1216s-1の溶融粘度を記載している。ちなみに、加熱炉にサンプルを投入してから測定開始までを5分とし、窒素雰囲気下で測定を行った。
B.繊度(海島複合繊維、複合極細繊維)
  採取した海島複合繊維は、温度25℃湿度55%RHの雰囲気下で単位長さ当たりの重量を測定し、その値から10,000mに相当する重量を算出する。これを10回繰り返して測定し、その単純平均値の小数点以下を四捨五入した値を繊度とした。
複合極細繊維の単糸繊度を評価する場合には、海島複合繊維から糸束のまま海成分を99%以上除去し、採取した複合極細繊維束を海島複合繊維と同じ雰囲気下で単位長さ当たりの重量を測定し、10,000mに相当する重量を算出する。該複合極細繊維束の重量を繊維束に存在するフィラメント数(島数に相当)で割り、単糸繊度を算出した。同じ操作を10回繰り返して、その単純平均値の小数点第4位以下を四捨五入した値を複合極細繊維の単糸繊度とした。
C.繊維の力学特性
  海島複合繊維および極細繊維をオリエンテック社製引張試験機“テンシロン”  (登録商標)UCT-100を用い、試料長20cm、引張速度100%/minの条件で応力-歪曲線を測定する。破断時の荷重を読みとり、その荷重を初期繊度で除することで強度を算出し、破断時の歪を読みとり、試料長で除した値を100倍することで、破断伸度を算出した。いずれの値も、この操作を水準毎に5回繰り返し、得られた結果の単純平均値を求め、強度は小数点2桁目、伸度は小数点以下を四捨五入した値である。
D.島成分径および島成分径バラツキ(CV[%])
  海島複合繊維をエポキシ樹脂で包埋し、Reichert社製FC・4E型クライオセクショニングシステムで凍結し、ダイヤモンドナイフを具備したReichert-Nissei  ultracut  N(ウルトラミクロトーム)で切削した後、その切削面を(株)日立製作所製透過型電子顕微鏡(TEM)H-7100FAにて島成分が合計で100本以上観察できる倍率で撮影した。この画像から無作為に選定した100本の島成分を抽出し、画像処理ソフト(WINROOF)を用いて全ての島成分径を測定し、平均値および標準偏差を求めた。これらの結果から下記式を基づき繊維径CV[%]を算出した。
      島成分径バラツキ(CV[%])=(標準偏差/平均値)×100
  全ての値は10ヶ所の各写真について測定を行い、10ヶ所の平均値を島成分径および島成分径バラツキとした。島成分径はμm単位で小数点第2位以下を四捨五入し、島成分径バラツキは小数点第2位以下を四捨五入するものである。
E.嵩高性
 各紡糸条件で採取した海島複合繊維からなる布帛を海成分が溶解する溶剤で満たされた脱海浴(浴比1:100)にて海成分を99wt%以上溶解除去し、複合極細繊維からなる布帛を得た。この布帛をJIS  L  1096(2010)に準じ、嵩高性を評価した。
 すなわち、約200mm×200mmの試験片2枚を採取し、それぞれの温度25℃湿度55%RHに1日間放置した際の質量を測定する。その質量から単位面積当たりの質量(g/m)を求め、その平均値を算出し、小数点第2位以下を四捨五入する。質量を測定した布帛の異なる5ヶ所について厚み測定器を用いて、一定圧量下での厚さを測定し、その平均値をmm単位で小数点第3位を四捨五入して求める。ここで、一定圧力とは、布帛が織物の場合、23.5kPa、編物の場合0.7kPaとした。
 測定した単位当たりの厚さt(mm)および単位当たりの質量S(g/m)から下記式に従い、布帛の嵩高性B(cm/g)を求め、小数点第3位以下を四捨五入することで求めた。
Figure JPOXMLDOC01-appb-M000003
F.ストレッチ性(伸縮伸長率)
 各紡糸条件で採取した海島複合繊維からなる編物を海成分が溶解する溶剤で満たされた脱海浴(浴比1:100)にて海成分を99wt%以上溶解除去し、デニットすることで複合極細繊維を得た。採取した複合極細繊維をカセ(1m×10回巻き)とし、温度25℃湿度55%RHで1日間放置した後、1.8×10-3cN/dtexの荷重をかけた際のカセ長(初期試料長:L)を測定した。ついで、荷重を88.2×10-3cN/dtexとし、60秒後のカセ長(L)を測定し、下記式に従って伸縮伸長率E(%)を測定した。同操作を1水準当たり5回繰り返し、その平均値を小数点第2位で四捨五入することで求めた。
Figure JPOXMLDOC01-appb-M000004
(実施例1)
 島成分1を、ポリエチレンテレフタレート(PET1、溶融粘度:140Pa・s)、島成分2を、ポリトリメチレンテレフタレート(3GT  溶融粘度:130Pa・s)とし、海成分として、5-ナトリウムスルホイソフタル酸を8.0モル%および分子量1,000のポリエチレングリコールを10wt%共重合したポリエチレンテレフタレート(共重合PET1、溶融粘度:45Pa・s)を用いて、各成分を280℃で別々に溶融後、計量し、図4に示した複合口金が組み込まれた紡糸パックに流入させ、吐出孔から複合ポリマー流を吐出した。なお、吐出プレート直上の分配プレートは、島成分1用分配孔(図5の15)、島成分2用分配孔(図5の16)および海成分用分配孔(図5の17)が図5(a)に示す配列パターンとなっており、1本の海島複合繊維に250島のバイメタル型の複合形態を有した島成分が形成されるものであった。また、吐出プレートは、吐出導入孔長5mm、縮小孔の角度60°、吐出孔径0.5mm、吐出孔長/吐出孔径1.5のものを用いた。
 島1/島2/海の複合比は、重量比で35/35/30となるように吐出量で調整した(総吐出量30g/min)。溶融吐出した糸条を冷却固化した後油剤付与し、紡糸速度1,500m/minで巻き取って未延伸繊維を得た。更に、未延伸繊維を80℃と130℃に加熱したローラ間で3.2倍に延伸を行い(延伸速度800m/min)、海島複合繊維を得た(104dtex-15フィラメント)。
 なお、この海島複合繊維は、図2に示すような島成分が規則的に配置された海島複合断面を形成しており、その島成分は図1(b)に示すような島成分1と島成分2が貼り合わされたバイメタル型の複合断面を形成していた。このバイメタル型の島成分は真円の形状を有しており、島成分径(D)は1.3μm、接合部の長さ(L)は0.4μmであり、L/D=0.3と十分な接合面を持って存在し、島成分径バラツキが5.1%と非常にバラツキが小さかった。
 実施例1で得た海島複合繊維の力学特性は、強度3.9cN/dtex、伸度38%と高次加工を行うのに十分な力学特性を有しており、織物や編物に加工した場合でも、糸切れ等が全く発生しなかった。
 実施例1の海島複合繊維を編物とした試験片を90℃に加熱した1wt%の水酸化ナトリウム水溶液にて、海成分を99wt%以上脱海した。実施例1の海島複合繊維は、前述の通り島成分が均等に配置され、かつ島成分径バラツキが非常に小さいため、部分的に劣化した島成分が存在することなく、脱海処理が効率的に行われた。この脱海時の極細繊維の脱落を調べたところ、脱海時の極細繊維の脱落はなく、試験片は毛羽など無く、品位に優れていた。この試験片を(株)キーエンス社製レーザーマイクロスコープVK-X200にて試験片の側面および断面を観察したところ、3次元的にスパイラル構造を発現したバイメタル型の極細繊維を観察することができ、この極細繊維束1本の断面は高さ245μm、幅770μmの優れた嵩高性を有していることが確認できた。
 この試験片は、極細繊維由来の繊細な触感を有しつつも、膨らみ感があり、ストレッチ性を有した快適性に優れた触感を有していた。この試験片を利用し、嵩高性およびストレッチ性を調べたところ、表1に示す通り優れた特性を有し、比較例に示すような単独ポリマーからなる極細繊維では決して到達できないものであった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
(実施例2)
 島成分2をポリブチレンテレフタレート(PBT、溶融粘度:160Pa・s)に変更したこと以外は全て実施例1に従い海島複合繊維を得た。
 実施例2の海島複合繊維では、PET1とPBTが貼り合わされたバイメタル構造の島成分を有しており、その島成分の均質性は実施例1と同様に優れていた。
 実施例2の海島複合繊維を編物として試験片を作製し、実施例1と同様の条件にて海成分を除去した。この脱海時の極細繊維の脱落を調べたところ、実施例1と同様に脱海時の極細繊維の脱落はなく、試験片は品位に優れていた。
 この試験片の観察結果では、実施例1と同様の3次元的にスパイラル構造を発現したバイメタル型の極細繊維を観察することができ、この極細繊維束1本の断面は高さ225μm、幅700μmの優れた嵩高性を有していることが確認できた。結果を表1に併せて示す。
(実施例3)
 島成分1を実施例1で使用したPET1(溶融粘度:120Pa・s)とし、島成分2としてイソフタル酸を7.0mol%および2,2ビス{4-(2-ヒドロキシエトキシ)フェニル}プロパンを4mol%共重合したポリエチレンテレフタレート(PET2、溶融粘度:110Pa・s)を用い、海成分を実施例1で使用した共重合PET1(溶融粘度:35Pa・s)として、紡糸温度を290℃とし、90℃と130℃に加熱したローラ間で延伸した以外は、全て実施例1に従い海島複合繊維を得た。
 この海島複合繊維においては、PET1とPET2が貼り合わされたバイメタル構造を有した島成分が形成されており、脱海後の極細繊維は、実施例1および実施例2と比較すると嵩高性およびストレッチ性が若干劣ったが、比較例1から比較例4に示す極細繊維と比較すると大きく特性が向上し、特に問題のないものであった。実施例1と同様に試験片の観察を行ったところ、実施例3の極細繊維束1本の断面は高さ200μm、幅625μmであり、実施例1と比較すると、より大きな曲率半径を有したスパイラル構造を発現していることがわかった。この試験片を室温で、試料長に対して5%伸長した後、フリーな状態(無荷重)で180℃に加熱されたオーブンにて10分間乾熱処理すると、潜在的な収縮性を発現し、曲率半径が縮小化して嵩高性が向上し、実施例1とほぼ同等の形態となることがわかった(熱処理後の極細繊維束:高さ215μm、幅680μm)。結果を表1に併せて示す。
(実施例4)
 島成分1を高分子量ポリエチレンテレフタレート(PET3、溶融粘度:160Pa・s)とし、島成分2を低分子量ポリエチレンテレフタレート(PET4、溶融粘度:70Pa・s)とし、海成分は実施例1で使用した共重合PET1(溶融粘度:35Pa・s)として、紡糸温度290℃とし、90℃と130℃に加熱したローラ間で延伸した以外は、全て実施例1に従い海島複合繊維を得た。
 この海島複合繊維および極細繊維においては、高分子量のPET3を島成分1に用いたことによって、実施例1と比較すると力学特性が向上したものであった。一方、実施例3と同様にスパイラル構造の曲率半径が大きくなることにより、実施例1と比較すると嵩高性やストレッチ性は若干低下したが、極細繊維束1本の断面は高さ170μm、幅530μmと十分な嵩高性を有していた。結果を表1に併せて示す。
(実施例5)
 島成分1を高分子量ナイロン6(PA1、溶融粘度:170Pa・s)とし、島成分2を低分子量ナイロン6(PA2、溶融粘度:120Pa・s)とし、海成分は実施例1で使用した共重合PET1(溶融粘度:55Pa・s)として、紡糸温度270℃とした以外は、全て実施例1に従い海島複合繊維を得た。
 この海島複合繊維から海成分を除去して得られた極細繊維においては、粘度の異なるPA1とPA2がバイメタル構造となっていることにより、実施例4と同様に曲率半径の大きいスパイラル構造を発現していた。極細繊維束1本の断面では高さ180μm、幅550μmと十分な嵩高性を有することが確認できた。一方、実施例4と比較すると、極細繊維をなすポリマーがナイロン6であることにより、試験片(編物)の触感は非常に柔軟でありながらも、適度なストレッチ性を発現するものであり、優れた触感を有していた。結果を表1に併せて示す。
(実施例6)
 島成分1を高分子量ポリフェニレンサルファイド(PPS1、溶融粘度:240Pa・s)とし、島成分2を低分子量ポリフェニレンサルファイド(PPS2、溶融粘度:170Pa・s)とし、海成分は5-ナトリウムスルホイソフタル酸5.0モル%を共重合したポリエチレンテレフタレート(共重合PET2、溶融粘度:110Pa・s)として、紡糸温度300℃とし、90℃と130℃に加熱したローラ間で延伸した以外は、全て実施例1に従い海島複合繊維を得た。
 この海島複合繊維から海成分を除去して得られた極細繊維においては、粘度の異なるPPS1とPPS2がバイメタル構造となっていることにより、3次元的なスパイラル構造を発現していた。このため、極細繊維束1本の断面では高さ150μm、幅480μmと十分な嵩高性を有しており、極細繊維がバラけた状態で存在していることが確認できた(開繊性:良好)。ポリフェニレンサルファイドは、疎水性であるため、極細繊維とした場合には、一般にその極細繊維束が特に凝集した構造となり、開繊性に欠けたものとなる場合が多い。一方で、実施例6の極細繊維束においては、前述した通り、分散処理等を行わなくても優れた開繊性を有したものであることがわかった。結果を表1に併せて示す。
(比較例1)
 本発明のバイメタル構造による効果を検証するため、実施例1と同じ口金を用いて、島成分1および島成分2を実施例1で使用したPET1として、従来型の単独成分による島成分が形成されるようにし、紡糸温度を290℃とし、90℃と130℃に加熱したローラ間で延伸したこと以外は、全て実施例1に従い海島複合繊維を得た。
 この海島複合繊維の断面においては、PET1単独の島成分が形成され、規則的な海島複合断面が形成されていた。この島成分は、実施例1と同様に島成分径(D)は1.3μmで、同じポリマーにより島が構成され、本発明で言う接合部は存在せず、L/Dは0であった。
 この海島複合繊維を編物とした試験片から海成分を除去したところ、その島成分の規則的な配列から脱海処理は効率的に進行し、極細繊維の脱落等はなく、その品位は問題なかったが、実施例1の試験片と比べると繊細な触感に欠けていた。
 この試験片について、実施例1と同様にレーザーマイクロスコープによって、その側面および断面を観察したところ、実施例1で見られたスパイラル構造は発現しておらず、極細繊維の配向が揃った束状で存在していることが確認できた。比較例1の極細繊維束1本の断面は高さ110μm、幅400μmと実施例1と比較すると大幅に嵩高性が低下し、当然、実施例1と比較すると試験片の嵩高性は劣るものであり、ストレッチ性も有さなかった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000006
(比較例2,3)
 比較例1の目的と同じく、本発明の効果を検証するため、島成分1および島成分2を実施例1で使用した3GT(比較例2)、実施例2で使用したPBT(比較例3)としたこと以外は全て実施例1に従い海島複合繊維を得た。
 これらの海島複合繊維の断面においては、3GT単独(比較例1)またはPBT単独(比較例2)の島成分が形成され、規則的な海島複合断面が形成されていた。これらの島成分は、実施例1と同様に島成分径(D)は1.3μmで、同じポリマーにより島が構成され、本発明で言う接合部は存在せず、L/Dは0であった。
 比較例2および比較例3の海島複合繊維から海成分を除去した試験片(編物)においては、ポリマー特性を要因として、触感が若干変化したが、嵩高性およびストレッチ性は実施例と比較すると遠く及ばなかった。結果を表2に併せて示す。
(比較例4)
 特開2001-192924号公報に記載されたパイプ型海島複合口金(吐出孔1孔当たり島数:250)を使用して、ポリマーは実施例1で使用したPET1とし、紡糸以降の条件は、比較例1に従い海島複合繊維を得た。比較例4では、紡糸に関しては、糸切れ等も無く、問題がなかったものの、延伸工程では単糸が糸切れし、延伸ローラに巻き付いた錘が見られた。
 この海島複合繊維の断面を観察すると、島成分は歪んだ丸断面となっており、このパイプ型の海島複合口金で採用するには、海成分ポリマーの粘度が低かったため、一部(5島~10島)に2島以上の島成分が融着した箇所が見られた。このため、平均の島成分径は、平均で1.5μm程度であったが、その島成分径バラツキは16%と実施例1と比較して大きかった。前述した延伸工程における単糸切れは、この断面の不均一性に起因するものと考えられる。
 この海島複合繊維からなる試験片(編物)から実施例1と同様の方法で海成分を除去したところ、極細繊維が毛羽立った箇所が部分的に見られ、その処理工程中には極細繊維の脱落が見られた。また、この試験片では、実施例1と比較すると、嵩高性およびストレッチ性に劣り、触感が低下した。この極細繊維束1本の断面を観察したところ、高さ100μm、幅380μmと比較例1と同様に、実施例1と比較すると大幅に嵩高性が低下していた。結果を表2に併せて示す。
 (実施例7~9)
 1本の海島複合繊維にバイメタル構造の島成分がそれぞれ5島(実施例7)、15島(実施例8)、1,000島(実施例9)形成されるように吐出プレート直上の分配プレートを変更したこと以外は全て実施例2に従い海島複合繊維を得た。この分配プレートの孔配列パターンは実施例2と同じ図5(a)の配列パターンとした。
 これらの海島複合繊維においては、島成分径(D)が島数に伴って変化するものであり、実施例7が9.5μm、実施例8が5.5μm、実施例9が0.7μmのバイメタル構造の島成分が形成されていた。いずれの断面においても、規則的に島成分が配置され、島成分径バラツキは5%以下と非常に均質であった。
 実施例2と同様に採取した海島複合繊維を編物とし、海成分を除去することにより、極細繊維からなる試験片を作製した。これらの試験片においても、実施例2と同様に極細繊維の脱落は見られず、いずれも品位に優れていた。
 これらの試験片の嵩高性およびストレッチ性は島成分径(極細繊維の繊維径)に依存して変化し、その目的に応じて制御可能であることがわかった。すなわち、繊維径が大きい実施例7では、実施例2と比較すると、特にストレッチ性が高く、実施例9では、ストレッチ性は低下するものの、その繊細な触感が顕著であった。また、実施例8は嵩高性とストレッチ性のバランスに優れ、高機能テキスタイルとして、インナーからアウターまで幅広く展開できる可能性を有したものであった。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007
(実施例10)
 総吐出量25g/minで島1/島2/海の複合比を重量比で15/15/70となるように調整し、紡糸速度3,000m/min、延伸倍率1.4倍に変更したこと以外は全て実施例9に従い海島複合繊維を得た。
 この海島複合繊維においては、島成分が実施例9と比較して、島成分径が0.3μmと更に縮小化したものでありながらも、規則的な島成分の配列や島成分バラツキ等で精密な海島断面が維持されていた。
 実施例10の海島複合繊維を編物とし、海成分を除去した際にはほとんど極細繊維の脱落は見られることはなく、品位について問題なかった。この試験片を観察したところ、繊維径0.3μmの微細な極細繊維にも関わらず、バイメタル構造に起因した3次元的なスパイラル構造が発現していた。この極細繊維束1本の断面は、高さ45μm、幅140μmであり、実施例2と比較すると、極細繊維束1本の嵩高性は見掛け上、低下するものであった。一方、総繊度を類似させたものにするため、あらかじめ海島複合繊維を4本合糸し、脱海した試験片においては、極細繊維の繊維径の影響から実施例2と比較して、非常に微細な空隙を有した嵩高性のある極細繊維束とすることができた。
 このような結果を踏まえて、実施例10については、海島複合繊維を4本合糸として作成した試験片について、嵩高性およびストレッチ性を評価したところ、比較的優れた特性を有しているものであることがわかった。結果を表3に併せて示す。
(実施例11、12)
 島1/島2/海の複合比を重量比で14/56/30(実施例11)、56/14/30(実施例12)に変更したこと以外は全て実施例2に従い海島複合繊維を得た。
 いずれも海島断面において、凹部2個有するダルマ形状の島成分が形成されており、島成分径(D)1.3μm、接合部の長さ(L)0.2μmであり、L/D=0.1であることがわかった。
 これらの海島複合繊維を編物とし、海成分を除去することで試験片を作製した。この試験片の断面を実施例1と同様の方法で確認したところ、極細繊維の断面においても、海島断面で見られたダルマ形状の断面を維持しており、L/D=0.1であり脱海した場合でも、ポリマー接合部が維持されることがわかった。
 これらの極細繊維においては、実施例2とは異なる形態を有しており、極細繊維自体が捩れて屈曲した構造を有しており、この島成分1/島成分2の比率を変更することで極細繊維の形態を制御できることがわかった。結果を表3に併せて示す。
(実施例13)
 島成分1は5-ナトリウムスルホイソフタル酸を8.0モル%共重合したポリエチレンテレフタレート(共重合PET3、溶融粘度:110Pa・s)とし、島成分2を実施例5で使用したPA1(溶融粘度:120Pa・s)とし、海成分を実施例5で使用した共重合PET1(溶融粘度:45Pa・s)とし、紡糸温度を280℃とした。複合口金には、吐出プレート直上に、図5(b)に示す配列パターンとなった分配プレートが具備されており、島成分1が芯部、島成分2が鞘部となった芯鞘型の複合形態を有した島成分が1本の海島複合繊維あたり250島形成されるものを用いた(図4)。その他の条件に関しては、実施例1に従い海島複合繊維を得た。
 この海島複合繊維では、処理前後の重量から処理温度を調整することで、海成分に加えて、更に島成分の芯部分を溶解除去することができた。この極細繊維の断面を実施例1と同様に観察したところ、島成分1が存在していた部分が空洞化した中空断面を有した極細繊維となっていた。
 この極細中空繊維においては、極細繊維由来の繊細な触感を有しながらも、軽量感を有したものであり、例えば、アウターの中綿などに適した柔軟で且つ軽量性を備えた特性を有していることが確認できた。また、断面観察では極細繊維の中空部がつぶれたものは確認されなかった。これは、島成分1と海成分で溶出速度が1.4倍程度異なる共重合ポリエチレンテレフタレートを使い分けたことにより、海成分が除去する間は島成分1が極細繊維の芯部に存在していたことで脱海工程中の外力にも耐性が生まれたものと推定される。また、ここで海成分が島成分と比較して低粘度であることにより、製糸工程で加わる応力を最終的に残存する島成分2が担うことで、島成分2の繊維構造が高配向化したことが好適な影響を与えたと推定する。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008
(実施例14)
 島成分1を実施例1で使用したPET1、島成分2をポリスチレン(PS、溶融粘度:100Pa・s)とし、紡糸温度を290℃、90℃と130℃に加熱されたローラー間で倍率2.5倍で延伸したこと以外は全て実施例13に従い海島複合繊維を得た。
 この海島複合繊維においては、芯成分が島成分1、鞘成分が島成分2によって構成された芯鞘型の島成分が形成された海島断面を有していた。この海島繊維を脱海した場合でも、鞘成分が割れることなく、芯鞘型の極細繊維になることが確認でき、その力学特性に関しても、優れた特性を有していることが確認できた。
 PSは非晶性ポリマーであるため、繊維とした場合でも一般に脆い繊維となり、活用することが困難である。しかしながら、実施例14においては、芯部に力学特性を担うポリエチレンテレフタレートが存在することで、繊維径が1.6μmと縮小化された極細繊維にも関わらず、実用に耐えうる力学特性を有していた。この極細繊維は、繊維径由来の比表面積に加え、PSの非晶性を利用して第3成分(機能剤など)の付与やその保持性を高めることが可能となる。また、染色性という観点では、非晶性のPSが濃色に染色されることで、従来の極細繊維の課題のひとつである発色性を大きく改善することが可能となる。結果を表4に併せて示す。
(実施例15)
 ポリマーの組み合わせを実施例13の通りとし、吐出プレート直上に、図5(c)の配列パターンとした分配プレートを具備した複合口金(図4)を使用したこと以外は全て実施例13に従い海島複合繊維を得た。
 得られた海島複合繊維においては、その断面に島成分1を島部(10本)、島成分2を海部とした海島形態の島成分が1本の海島複合繊維あたり250島形成されていた。
 この海島複合繊維を編物とし、実施例13に記載の方法で海成分および島成分1を溶解して除去したところ、極細繊維の断面に複数のレンコン中空様の断面を有した極細繊維を得た。この極細繊維おいては、特異な中空構造を有しているため、断面方向に力が加えられた場合においてもつぶれにくく、圧縮変形に対する耐性を有した極細中空繊維が得られることがわかった。結果を表4に併せて示す。
 本発明の海島複合繊維は、繊維巻き取りパッケージやトウ、カットファイバー、わた、ファイバーボール、コード、パイル、織編、不織布など多様な中間体とし、脱海処理するなどして極細繊維を発生させ、様々な繊維製品とすることが可能である。また、本発明の海島複合繊維は、未処理のまま、部分的に海成分を除去させる、あるいは脱島処理をするなどして繊維製品とすることも可能である。ここで言う繊維製品は、ジャケット、スカート、パンツ、下着などの一般衣料から、スポーツ衣料、衣料資材、カーペット、ソファー、カーテンなどのインテリア製品、カーシートなどの車輌内装品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用途や研磨布、フィルター、有害物質除去製品、電池用セパレーターなどの環境・産業資材用途や、縫合糸、スキャフォールド、人工血管、血液フィルターなどの医療用途に使用することができる。
 1:島成分1
 2:島成分2
 3:海成分
 4:島成分の接合部
 5:島成分径(外接円)
 6:計量プレート
 7:分配プレート
 8:吐出プレート
 9:計量孔
  9-(a):ポリマーA(島成分1)・計量孔
  9-(b):ポリマーB(島成分2)・計量孔
  9-(a):ポリマーC(海成分)・計量孔
10:分配溝
11:分配孔
12:吐出導入孔
13:縮小孔
14:吐出孔
15:ポリマーA(島成分1)・分配孔
16:ポリマーB(島成分2)・分配孔
17:ポリマーC(海成分)・分配孔

Claims (10)

  1. 繊維断面において、海成分中に島成分が点在するように配置される海島複合繊維において、島成分が2種類以上の異なるポリマーが接合されて形成された複合形態を有しており、その島成分の接合部の長さLと複合島成分径Dとの比L/Dが0.1から10.0である海島複合繊維。
  2. 2種類以上の異なるポリマーが接合した島成分の径が0.2μmから10.0μmである請求項1に記載の海島複合繊維。
  3. 2種類以上の異なるポリマーが接合した島成分において、島成分径のバラツキが1.0~20.0%である請求項1または2に記載の海島複合繊維。
  4. 2種類以上の異なるポリマーが接合した複合型の島成分において、島成分における複合比が10/90から90/10である請求項1から3のいずれかに記載の海島複合繊維。
  5. 島成分ポリマー粘度Iと海成分ポリマー粘度Sとの比S/Iが0.1から2.0である請求項1から4のいずれかに記載の海島複合繊維。
  6. 島成分がバイメタル型に接合されている請求項1から5のいずれかに記載の海島複合繊維。
  7. 請求項1から6のいずれかに記載の海島複合繊維を脱海処理して得られる複合極細繊維。
  8. 繊維軸に垂直方向の繊維断面が2種類のポリマーが貼り合わされた構造を有するバイメタル型であり、単糸繊度が0.001~0.970dtex、嵩高性が14~79cm/gである請求項7に記載の複合極細繊維。
  9. 伸縮伸長率が41~223%である請求項8に記載の複合極細繊維。
  10. 請求項1から6のいずれかに記載の海島複合繊維または請求項7から9のいずれかに記載の複合極細繊維が少なくとも1部を構成する繊維製品。
PCT/JP2015/054411 2014-02-25 2015-02-18 海島複合繊維、複合極細繊維および繊維製品 WO2015129519A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580003502.2A CN105874111B (zh) 2014-02-25 2015-02-18 海岛复合纤维、复合极细纤维和纤维产品
EP15755549.1A EP3112505B1 (en) 2014-02-25 2015-02-18 Sea-island composite fiber, composite ultra-fine fiber, and fiber product
US15/121,171 US10604866B2 (en) 2014-02-25 2015-02-18 Sea-island composite fiber, composite ultra-fine fiber, and fiber product
JP2015511135A JP6651849B2 (ja) 2014-02-25 2015-02-18 海島複合繊維、複合極細繊維および繊維製品
KR1020167010658A KR102319779B1 (ko) 2014-02-25 2015-02-18 해도 복합 섬유, 복합 극세 섬유 및 섬유 제품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014034212 2014-02-25
JP2014-034212 2014-02-25

Publications (1)

Publication Number Publication Date
WO2015129519A1 true WO2015129519A1 (ja) 2015-09-03

Family

ID=54008840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054411 WO2015129519A1 (ja) 2014-02-25 2015-02-18 海島複合繊維、複合極細繊維および繊維製品

Country Status (7)

Country Link
US (1) US10604866B2 (ja)
EP (1) EP3112505B1 (ja)
JP (1) JP6651849B2 (ja)
KR (1) KR102319779B1 (ja)
CN (1) CN105874111B (ja)
TW (1) TWI658182B (ja)
WO (1) WO2015129519A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137601A (ja) * 2016-02-05 2017-08-10 東レ株式会社 混繊糸、それを用いた織編物及びスエード調織編物
JP2017179653A (ja) * 2016-03-30 2017-10-05 東レ株式会社 海島複合繊維
JP2020105647A (ja) * 2018-12-27 2020-07-09 東レ株式会社 ストレッチ織物およびその製造方法
JP2021188174A (ja) * 2020-05-29 2021-12-13 東レ株式会社 複合繊維

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017111011A1 (ja) * 2015-12-25 2017-06-29 東レ・モノフィラメント株式会社 ブラシ用毛材及びそれを用いたブラシ
US20170342597A1 (en) * 2016-05-31 2017-11-30 Industrial Technology Research Institute Composite fiber and method for forming the same
JP6866851B2 (ja) * 2016-09-07 2021-04-28 東レ株式会社 積層不織布
CN109112670A (zh) * 2017-06-22 2019-01-01 东丽纤维研究所(中国)有限公司 一种海岛复合纤维、混纤纤维及海岛复合纤维的应用
US11478767B2 (en) 2017-08-23 2022-10-25 Sodi-Osis Movable device for filling catalytic reactor chambers
EP3741885A4 (en) * 2018-01-18 2021-10-20 Toray Industries, Inc. COLORABLE POLYOLEFIN FIBERS AND FIBER STRUCTURES THEREFORE
CN108261287B (zh) * 2018-01-30 2021-01-29 中原工学院 一种导湿保湿医用敷料及其制备方法
JP7163959B2 (ja) * 2018-06-20 2022-11-01 東レ株式会社 シート状物の製造方法
BR112020021595A2 (pt) * 2018-07-31 2021-02-17 Toray Industries, Inc. carreador para adsorver matéria orgânica, e, coluna para adsorção.
CN112593303A (zh) * 2020-11-18 2021-04-02 江苏盛恒化纤有限公司 一种白色纯海岛网络丝加工工艺
CN112663155B (zh) * 2020-12-21 2022-04-15 江苏华峰超纤材料有限公司 一种热成型无纺布用海岛纤维及其制备方法
CN112575398B (zh) * 2020-12-21 2021-11-12 江苏华峰超纤材料有限公司 一种热成型无纺布用pp/ldpe海岛纤维及其制备方法
CN112981722B (zh) * 2021-01-26 2023-03-28 广东蒙泰高新纤维股份有限公司 一种海岛copet-pp复合负压纺丝制备锂离子电池隔膜的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194013A (ja) * 1990-11-21 1992-07-14 Chisso Corp 極細繊維発生繊維
JP2005133250A (ja) * 2003-10-31 2005-05-26 Toray Ind Inc 芯鞘複合繊維
WO2013021809A1 (ja) * 2011-08-11 2013-02-14 東レ株式会社 海島繊維

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3274124D1 (en) * 1982-01-15 1986-12-11 Toray Industries Ultra-fine sheath-core composite fibers and composite sheets made thereof
JPS6147822A (ja) * 1985-07-22 1986-03-08 Toray Ind Inc 極細複合繊維の結束物
JP2590661B2 (ja) 1992-02-05 1997-03-12 東レ株式会社 超極細繊維織編物の製造法
JP3338374B2 (ja) * 1997-06-30 2002-10-28 松下電器産業株式会社 演算処理方法および装置
JP2003213526A (ja) 2002-01-18 2003-07-30 Teijin Ltd ストレッチ性織編物用ポリエステル複合繊維
CN1312335C (zh) * 2002-08-05 2007-04-25 东丽株式会社 多孔纤维
JP4122335B2 (ja) * 2002-12-09 2008-07-23 富士通株式会社 電子部品の実装構造及び実装方法
JP2005163233A (ja) * 2003-12-04 2005-06-23 Toray Ind Inc 3成分系海島型複合繊維用紡糸口金装置
JP4676857B2 (ja) 2005-10-04 2011-04-27 帝人ファイバー株式会社 高タフネス極細繊維用海島型複合繊維
KR101168218B1 (ko) * 2009-04-06 2012-07-30 웅진케미칼 주식회사 잠재권축성 폴리에스테르 단섬유 및 그의 제조방법
US8969224B2 (en) * 2010-01-29 2015-03-03 Toray Industries, Inc. Sea-island composite fiber, ultrafine fiber, and composite spinneret
JP2011157646A (ja) 2010-01-29 2011-08-18 Teijin Fibers Ltd ポリエステル極細繊維

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04194013A (ja) * 1990-11-21 1992-07-14 Chisso Corp 極細繊維発生繊維
JP2005133250A (ja) * 2003-10-31 2005-05-26 Toray Ind Inc 芯鞘複合繊維
WO2013021809A1 (ja) * 2011-08-11 2013-02-14 東レ株式会社 海島繊維

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017137601A (ja) * 2016-02-05 2017-08-10 東レ株式会社 混繊糸、それを用いた織編物及びスエード調織編物
JP2017179653A (ja) * 2016-03-30 2017-10-05 東レ株式会社 海島複合繊維
JP2020105647A (ja) * 2018-12-27 2020-07-09 東レ株式会社 ストレッチ織物およびその製造方法
JP7275570B2 (ja) 2018-12-27 2023-05-18 東レ株式会社 ストレッチ織物およびその製造方法
JP2021188174A (ja) * 2020-05-29 2021-12-13 東レ株式会社 複合繊維

Also Published As

Publication number Publication date
US10604866B2 (en) 2020-03-31
JPWO2015129519A1 (ja) 2017-03-30
EP3112505A1 (en) 2017-01-04
TW201544642A (zh) 2015-12-01
KR102319779B1 (ko) 2021-11-01
JP6651849B2 (ja) 2020-02-19
CN105874111B (zh) 2017-12-26
EP3112505A4 (en) 2017-10-04
KR20160123280A (ko) 2016-10-25
CN105874111A (zh) 2016-08-17
EP3112505B1 (en) 2020-07-15
TWI658182B (zh) 2019-05-01
US20170016147A1 (en) 2017-01-19

Similar Documents

Publication Publication Date Title
WO2015129519A1 (ja) 海島複合繊維、複合極細繊維および繊維製品
JP5472479B2 (ja) 複合繊維
JP5983411B2 (ja) 海島繊維
TWI551738B (zh) 海島型複合纖維、極細纖維及複合紡嘴
JP6729367B2 (ja) 芯鞘複合繊維およびスリット繊維ならびにそれら繊維の製造方法
JP6090159B2 (ja) 海島繊維、混繊糸および繊維製品
KR102278861B1 (ko) 벌키사
JP2019026944A (ja) 芯鞘複合繊維
JP6303291B2 (ja) 複合繊維
JP2020105682A (ja) 芯鞘複合繊維
JP5740877B2 (ja) 極細繊維
JP5630254B2 (ja) 複合繊維
JP7047414B2 (ja) 捲縮糸
JP2015074853A (ja) 海島複合繊維
JP7063037B2 (ja) 嵩高軽量マルチフィラメント
JP5928017B2 (ja) 混繊糸
JP2020076193A (ja) 繊維束および繊維製品

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015511135

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755549

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167010658

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015755549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015755549

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15121171

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE