WO2015129415A1 - 半導体装置の製造方法および半導体装置 - Google Patents

半導体装置の製造方法および半導体装置 Download PDF

Info

Publication number
WO2015129415A1
WO2015129415A1 PCT/JP2015/053098 JP2015053098W WO2015129415A1 WO 2015129415 A1 WO2015129415 A1 WO 2015129415A1 JP 2015053098 W JP2015053098 W JP 2015053098W WO 2015129415 A1 WO2015129415 A1 WO 2015129415A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
bonding
ultrasonic
bonding pad
wire
Prior art date
Application number
PCT/JP2015/053098
Other languages
English (en)
French (fr)
Inventor
悦子 石塚
知稔 佐藤
中西 宏之
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016505127A priority Critical patent/JP6250788B2/ja
Priority to US15/118,576 priority patent/US20170062375A1/en
Publication of WO2015129415A1 publication Critical patent/WO2015129415A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05556Shape in side view
    • H01L2224/05558Shape in side view conformal layer on a patterned surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49431Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/495Material
    • H01L2224/49505Connectors having different materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85206Direction of oscillation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to a semiconductor device, and relates to a semiconductor device using wire bonding.
  • a semiconductor chip and other semiconductor chips or inner leads are electrically connected by wire bonding using a metal wire.
  • a metal wire is bonded to a semiconductor chip, there is a concern about a load on the semiconductor chip.
  • Patent Document 1 discloses a method of avoiding wire bonding to a power semiconductor element by wire bonding a metal wire to a chip electrode.
  • the power semiconductor device disclosed in Patent Document 1 uses an aluminum wire for wire bonding in order to cope with a large current, and is wire-bonded by ultrasonic waves or heat.
  • a method of forming a chip electrode (bonding pad) on the power semiconductor element has been proposed.
  • JP 2004-140072 Japanese Patent Publication “JP 2004-140072 (published May 13, 2004)”
  • the direction in which the wire is stretched matches the direction in which ultrasonic vibration is applied.
  • the vibration direction of the ultrasonic vibration and the longitudinal direction of the lower layer metal in the power semiconductor element are nearly perpendicular, stress is applied to the power semiconductor element through the bonding pad during bonding.
  • the present invention has been made to solve the above problems, and an object of the present invention is to realize a manufacturing method that suppresses the occurrence of cracks in a semiconductor element during manufacturing of a semiconductor device by a simple method.
  • a method for manufacturing a semiconductor device includes ultrasonic waves for bonding wires to an upper metal layer formed over a semiconductor element while applying ultrasonic vibrations to the wires.
  • a semiconductor device manufacturing method including a bonding step, wherein the semiconductor element has a lower layer metal formed under the upper layer metal, and ultrasonic vibration is applied to the wire in the ultrasonic bonding step. The ultrasonic vibration is applied so that an angle ⁇ formed by the direction in which the first metal layer is formed and the longitudinal direction of the lower layer metal satisfies 0 ° ⁇ ⁇ ⁇ 45 °.
  • FIG. 5 is a view for explaining the method for manufacturing the semiconductor device according to the first embodiment of the present invention, and is a cross-sectional view taken along line AA in FIG.
  • A is a top view which shows the structure of the semiconductor device which concerns on Embodiment 1 of this invention
  • (b) is a side view of (a).
  • A It is a top view of the GaN-type power device of the semiconductor device which concerns on Embodiment 1 of this invention
  • (b) is a figure for demonstrating a contact electrode part, and the arrow view of the AA line of (a)
  • It is a perspective view which shows a cross section. It is a perspective view of the contact electrode part of the semiconductor device which concerns on Embodiment 1 of this invention.
  • (A) is a top view of the contact electrode of the semiconductor device which concerns on Embodiment 1 of this invention
  • (b) is a figure explaining the angle
  • (A)-(f) is a top view of the bonding pad part of the semiconductor device which concerns on Embodiment 3 of this invention.
  • Embodiment 1 A method for manufacturing a semiconductor device 50 and the semiconductor device 50 according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • FIG. 2A is a plan view showing the configuration of the semiconductor device 50 according to the first embodiment of the present invention.
  • FIG. 2B is a side view of FIG.
  • the semiconductor device 50 includes a GaN-based power device 1 (semiconductor element, GaN-based semiconductor element), a bonding pad portion 2 (upper layer metal), and an aluminum wire 3. (Aluminum wire), MOS-FET 51, fin portion 52, gold wire 53, inner lead portion 55, solder 56, silver paste 57, and die pad portion 58 are provided.
  • the GaN-based power device 1 is mounted on the die pad portion 58 via a silver paste 57.
  • the GaN-based power device 1 and the MOS-FET 51 are electrically connected by an aluminum wire 3 via a bonding pad portion 2.
  • the GaN-based power device 1 and the inner lead portion 55 are electrically connected by the aluminum wire 3 through the bonding pad portion 2.
  • the bonding pad portion 2 allows the current collected from the GaN-based power device 1 to flow to the inner lead portion 55 or the MOS-FET 51 through the aluminum wire 3.
  • the MOS-FET 51 is mounted on the die pad portion 58 via the solder 56. Further, the MOS-FET 51 is electrically connected to the inner lead portion 55 by a gold wire 53. For example, the MOS-FET 51 transmits a signal to the GaN-based power device 1 based on a signal from the inner lead portion 55.
  • the inner lead portion 55 is electrically connected to the outer lead portion 54.
  • the outer lead portion 54 is connected to the inner lead portion 55. Further, some outer lead portions 54 are directly connected to the die pad portion 58.
  • the outer lead portion 54 electrically connects the GaN-based power device 1 or the MOS-FET 51 and, for example, an external circuit via the inner lead portion 55.
  • the outer lead portion 54 electrically connects the die pad portion 58 and, for example, an external circuit.
  • the fin portion 52 is formed integrally with the die pad portion 58 and is provided so as to be exposed to the outside of a resin mold (not shown).
  • the resin mold includes, for example, the GaN-based power device 1, the bonding pad portion 2, the aluminum wire 3, the MOS-FET 51, the gold wire 53, the inner lead portion 55, the solder 56, the silver paste 57, the die pad portion 58, and the outer lead. It is formed so as to cover one end of the portion 54.
  • the fin portion 52 is provided for releasing heat generated by the GaN-based power device 1 and the MOS-FET 51 arranged in the die pad portion 58 to the outside.
  • the die pad portion 58 is formed with a thickness of about 1.27 mm.
  • the MOS-FET 51 is mounted via a Pb—Ag—Cu-based high melting point solder 56 (about 40 W / m ⁇ K).
  • the GaN-based power device 1 is mounted on the die pad portion 58 via a silver paste 57 (about 10 W / m ⁇ K).
  • the aluminum wire 3 and the gold wire 53 are used. ing.
  • a gold wire 53 having a diameter of 30 ⁇ m is used for a portion (such as a part of the electrical connection between the MOS-FET 51 and the GaN-based power device 1) that is used for signal transmission and the like and has only a small current.
  • FIG. 1 is a view for explaining the method for manufacturing the semiconductor device 50 and is a cross-sectional view taken along the line AA in FIG. 3A is a plan view of the GaN-based power device 1 of the semiconductor device 50, and FIG. 3B is a diagram for explaining the contact electrode portion 4, and FIG. It is a perspective view which shows the cross section of the AA of FIG.
  • the contact electrode portion 4 there are a plurality of contact electrode portions 4, which are formed on the electronic functional element 8 so as to be parallel to each other.
  • the insulating layer 7 is formed so as to cover the electronic functional element 8 and the contact electrode portion 4.
  • the bonding pad portion 2 is formed so as to cover the insulating layer 7.
  • the bonding pad portion 2 is on the upper side with respect to the electronic functional element 8.
  • FIG. 3A and FIG. 5A to be described later the contact electrode portion 4 is covered with the insulating layer 7 and the contact electrode portion 4 cannot be seen. Is indicated by a dotted line.
  • the contact electrode portion 4 is electrically connected to the electronic functional element 8.
  • the contact electrode portion 4 is electrically connected to the bonding pad portion 2 at a predetermined position.
  • the contact electrode unit 4 includes a first electrode 41 and a second electrode 42.
  • the first electrode 41 is formed to extend in the longitudinal direction of the GaN-based power device 1 (the front and back direction in FIG. 1).
  • the cross section obtained by cutting the first electrode 41 perpendicularly to the longitudinal direction of the GaN-based power device 1 is substantially U-shaped with a downward convex portion as shown in FIG.
  • the first electrode 41 has flange portions 41 a that protrude outward at two locations on the upper end.
  • the first electrode 41 is a thin film (for example, having a thickness of about 100 nm) formed of, for example, gold or titanium, and functions as a barrier metal in the compound semiconductor in the GaN-based power device 1.
  • the second electrode 42 (lower layer metal) is formed so as to extend in the longitudinal direction of the GaN-based power device 1 along the first electrode 41.
  • the cross section obtained by cutting the second electrode 42 perpendicularly to the longitudinal direction of the GaN-based power device 1 is a substantially U-shape having a downward convex portion as shown in FIG.
  • the second electrode 42 has a groove 6a.
  • the portion where the contact electrode portion 4 and the bonding pad portion 2 are electrically connected has a groove portion 6b.
  • the second electrode 42 has flange portions 42 a that protrude outward at two locations on the upper end.
  • the first electrode 41 is formed such that a part of the first electrode 41 is embedded on the electronic functional element 8.
  • the outer bottom surface and a part of the outer side surface of the second electrode 42 are in contact with the substantially U-shaped inner surface of the first electrode 41 in the cross section shown in FIG.
  • the second electrode 42 is formed to be thicker than the first electrode 41.
  • the bonding pad portion 2 (upper layer metal) has a first concave portion 2a, a second concave portion 2b, and a first convex portion 2c. Furthermore, the bonding pad portion 2 has a connection portion 5 at a location where the bonding pad portion 2 and the contact electrode portion 4 are electrically connected.
  • the connection part 5 has the 2nd convex part 5a and the 3rd convex part 5b.
  • the bonding pad portion 2 is provided for bonding the aluminum wire 3 (wire bonding). Furthermore, the bonding pad part 2 collects the current from the contact electrode part 4 in the GaN-based power device 1.
  • the first recess 2a is formed on the upper surface of the bonding pad portion 2 and above the groove 6a.
  • the first convex portion 2 c is formed on the lower surface of the bonding pad portion 2 and above the groove portion 6 a.
  • the first convex portion 2c is formed so as to protrude downward.
  • the 1st recessed part 2a and the 1st convex part 2c are formed along the groove part 6a. Since the groove portion 6a has a concave shape, the insulating layer 7 and the bonding pad portion 2 stacked on the groove portion inevitably have a concave shape, so that the bonding pad portion 2 has a first concave portion 2a and a first convex portion 2c. .
  • the second concave portion 2 b is formed on the upper surface of the bonding pad portion 2 at the upper portion where the contact electrode portion 4 and the bonding pad portion 2 are electrically connected, that is, the upper portion of the connecting portion 5.
  • the connecting portion 5 forms a groove portion 6 b by, for example, etching a hole in the insulating layer 7 at a position where the contact electrode portion 4 and the bonding pad portion 2 are electrically connected. After that, the bonding pad portion 2 is formed at the same time. For this reason, the depth of the recess of the second recess 2b is formed deeper than the depth of the recess of the first recess 2a.
  • the second convex portion 5a is formed on the lower surface of the bonding pad portion 2 and above the groove portion 6b.
  • the 2nd convex part 5a is formed so that it may protrude toward the lower side.
  • a third convex portion 5b is formed on the lower surface of the second convex portion 5a so as to protrude further downward.
  • the contact electrode portion 4 and the bonding pad portion 2 are not electrically connected, and an insulating layer 7 is provided between the first convex portion 2 c and the contact electrode portion 4.
  • the bonding pad portion 2 and the contact electrode portion 4 are electrically connected to each other at the location where the connection portion 5 is formed in the bonding pad portion 2, and an insulating layer is provided between the connection portion 5 and the contact electrode portion 4. Does not have 7.
  • FIG. 6 is a view for explaining a conventional method for manufacturing a semiconductor device, and is a cross-sectional view taken along line AA in FIG.
  • the bonding pad portion 2 when the elongated bonding pad portion 2 is used, it is preferable to dispose the bonding pad portion 2 as follows in order to collect current from the contact electrode portion 4 efficiently with a small number of metal wires.
  • Current collection from the contact electrode portion 4 is performed by the bonding pad portion 2 for wire bonding the aluminum wire 3.
  • the bonding pad portion includes a large number of groove portions 6b (second concave portions 2b) formed in the contact electrode portion 4 and is orthogonal to the groove portions 6a (first concave portions 2a). 2 is arranged in the GaN-based power device 1.
  • ultrasonic bonding is used for bonding the aluminum wire 3.
  • a substrate on which a bonding pad portion 2 is faced up and a GaN-based power device 1 is die-bonded is placed on a fixed base of an ultrasonic bonding apparatus, and a substrate on which the GaN-based power device 1 is die-bonded is usually mounted.
  • the direction in which the wire is stretched matches the direction of ultrasonic vibration.
  • the bonding wire (aluminum wire 3) supplied from the ultrasonic bonding apparatus to the bonding pad portion 2 is pressed by the wedge tool of the ultrasonic bonding apparatus, and a bonding load (wedge pressure) is applied while applying ultrasonic vibration.
  • the connecting portion of the aluminum wire 3 is usually parallel to the longitudinal direction of the bonding pad portion 2 in order to match the direction of stretching the wire and the direction of ultrasonic vibration during ultrasonic bonding (see FIG. 2). (See (a)).
  • the ultrasonic wave application direction 21 and the longitudinal direction of the contact electrode portion 4 are perpendicular as shown in FIG.
  • the ultrasonic wave application direction 21 indicates the direction of ultrasonic vibration applied during ultrasonic bonding
  • the longitudinal direction of the contact electrode portion 4 indicates the Y direction in FIG.
  • FIG. 4 is a perspective view of the contact electrode portion 4 of the semiconductor device 50 according to the first embodiment of the present invention.
  • the corner 4 c of the contact electrode of the contact electrode unit 4 indicates the inner side of the upper surface of the second electrode of the contact electrode unit 4.
  • the ultrasonic wave application direction 21 is substantially the same as the contact electrode portion line direction 20.
  • the aluminum wire 3 is ultrasonically bonded to the bonding pad portion 2 so as to be parallel.
  • 5A is a plan view of the contact electrode portion 4 of the semiconductor device 50 according to the present embodiment
  • FIG. 5B is a view formed by the contact electrode portion line direction 20 and the ultrasonic wave application direction 21. It is a figure explaining angle (theta).
  • the substantially parallel mentioned above means that the contact electrode portion line direction 20 and the ultrasonic wave application direction 21 are parallel, or when the ultrasonic wave application direction 21 is used as a reference, the contact electrode portion line direction 20 and the ultrasonic wave application direction 21 are the same.
  • the angle ⁇ formed is ⁇ 45 ° ⁇ ⁇ ⁇ 45 °.
  • either the contact electrode portion line direction 20 or the ultrasonic wave application direction 21 may be a reference, that is, substantially parallel.
  • the angle ⁇ formed by the contact electrode portion line direction 20 and the ultrasonic wave application direction 21 (the size of the angle ⁇ formed by the contact electrode portion line direction 20 and the ultrasonic wave application direction 21) is 0 ° ⁇ ⁇ . ⁇ 45 °.
  • the contact electrode portion line direction 20 indicates the longitudinal direction of the contact electrode portion 4.
  • FIG. 7 is a plan view of the bonding pad portion 2 of the semiconductor device 50 according to the present embodiment.
  • the ultrasonic wave application direction 21 and the contact electrode portion line direction 20 are substantially parallel. For this reason, the stress to the corner
  • produce in the insulating layer 7 can be suppressed. As a result, a short circuit due to the interlayer crack 10 can be suppressed. Further, in the method for manufacturing the semiconductor device 50 according to the present embodiment, only a simple change for changing the vibration direction of the wedge tool is required, and it is not necessary to procure the manufacturing apparatus and a new member, and the cost is higher and the reliability is higher. There is an effect that a product can be manufactured.
  • the manufacturing method of the semiconductor device 50 according to the present embodiment includes the contact electrode portion 4 formed on the electronic functional element 8 and the GaN power device 1 by ultrasonic bonding.
  • the ultrasonic wave application direction 21 and the contact electrode portion line direction 20 are substantially parallel.
  • the manufacturing method of the semiconductor device 50 allows the bonding pad portion 2 and the inner lead portion 55 or the MOS-FET 51 to be electrically connected with the aluminum wire 3 exceeding the bonding pad portion 2.
  • the ultrasonic wave application direction 21 and the contact electrode portion line direction 20 are substantially parallel to each other.
  • FIG. 1 A verification example of the method for manufacturing the semiconductor device 50 according to this embodiment will be described below.
  • This verification example shows an example in which the aluminum wire 3 is wire bonded to the bonding pad portion 2 under the following conditions (1) to (3).
  • the bonding pad portion 2 formed on the GaN-based power device 1 is about 600 ⁇ m ⁇ 1200 ⁇ m.
  • the aluminum wire 3 is ⁇ 300 ⁇ m.
  • Wire bonding is performed by ultrasonic bonding with a load of 700 g.
  • the load on the GaN-based power device 1 during ultrasonic bonding can be further reduced. Can be further suppressed.
  • the corner 4c of the contact electrode is likely to be a starting point, the shape of the contact electrode 4 is tapered from the bottom surface of the groove 6a to the corner 4c of the contact electrode instead of a square, so that the ultrasonic bonding can be performed.
  • the load on the corner 4c of the contact electrode can be reduced. Therefore, generation
  • the material and shape of the GaN-based power device 1 itself are not limited.
  • the target to be connected to the GaN-based power device 1 by wire bonding is not limited to the inner lead portion 55 and the MOS-FET 51, but may be the die pad portion 58, other chip terminals, or the like, and the connection destination is not limited.
  • the number of GaN-based power devices 1 mounted on the semiconductor device 50 is not limited as long as it is at least one.
  • about the wire to be used, material, wire diameter, etc. are not limited, such as gold
  • the outer lead portion 54 and the inner lead portion 55 can generally be made of solid copper or Ag-plated product, but the material is not limited.
  • the direction in which the contact electrode portion 4 is extended is the longitudinal direction of the GaN-based power device 1, but is not limited thereto.
  • the contact electrode part line direction 20 and the ultrasonic wave application direction 21 at the time of ultrasonic bonding should just be substantially parallel.
  • the ultrasonic wave application direction 21 and the contact electrode portion line direction 20 are substantially parallel. Therefore, during ultrasonic bonding, the load of stress applied to the groove 6a of the contact electrode portion 4 and the first convex portion 2c of the bonding pad portion 2 is reduced, and the generation of the interlayer crack 10 can be suppressed. This will be explained in detail below.
  • the groove part 6a is a hollow part formed when the contact electrode part 4 is produced. After the formation of the contact electrode portion 4, the groove portion 6a is filled with the insulating layer 7, and the bonding pad portion 2 is formed thereon. In that case, the 1st convex part 2c which has a convex shape toward the groove part 6a is formed in the bonding pad part 2 in the position facing the groove part 6a. In the manufacturing process of the conventional semiconductor device, the presence of the groove 6a and the first convex portion 2c formed in the contact electrode portion 4 tends to easily cause the interlayer crack 10 during ultrasonic bonding.
  • ultrasonic vibration is applied so that the longitudinal direction of the groove 6a and the ultrasonic wave application direction 21 are substantially parallel during ultrasonic bonding.
  • the stress load applied to the groove 6a and the first convex portion 2c is reduced, and the generation of the interlayer crack 10 can be suppressed.
  • FIG. 8 is a plan view of the bonding pad portion 2 of the semiconductor device 50 according to the present embodiment.
  • the bonding pad portion 2 of the semiconductor device 50 according to the first embodiment is rectangular as shown in FIG.
  • the shape of the bonding pad portion 2 of the semiconductor device 50 has a wide portion (wide region) and a narrow portion (narrow width) in the contact electrode portion line direction 20 and the ultrasonic wave application direction 21. Region).
  • the narrow area of one bonding pad part 2 and the wide area of the other bonding pad part 2 face each other in the direction along the longitudinal direction of the lower layer metal (second electrode 42).
  • the narrow region of the other bonding pad portion 2 and the wide region of the one bonding pad portion 2 face each other in the direction along the longitudinal direction of the lower layer metal.
  • the aluminum wire 3 is wire-bonded to the wide portion so as to be substantially parallel to the longitudinal direction of the bonding pad portion 2.
  • the semiconductor device 50 has two bonding pad portions 2.
  • the GaN-based power device 1 has a plurality of contact electrode portions 4 that are parallel to each other.
  • Each of the two bonding pad portions 2 is an electrical connection region arranged so as to cross all of the plurality of contact electrode portions 4 along an ultrasonic orthogonal direction that is a direction perpendicular to the application direction of ultrasonic vibration. 11 (electrical connection).
  • Each of the two bonding pad portions 2 has a bonding region 12 (bonding portion) whose length in the orthogonal direction of ultrasonic waves is smaller than the electrical connection region 11 and larger than the diameter of the aluminum wire 3. Further, the bonding region 12 of one bonding pad portion 2 and the bonding region 12 of the other bonding pad portion 2 are arranged side by side in the ultrasonic orthogonal direction.
  • the direction in which the aluminum wire 3 is wire bonded to the bonding pad portion 2 (hereinafter referred to as the bonding direction of the aluminum wire 3) and the contact electrode portion line direction 20 can be made substantially parallel. Therefore, at the time of ultrasonic bonding, ultrasonic vibration can be applied without difficulty and substantially parallel to the contact electrode portion line direction 20. As a result, the risk that the wedge tool is bent can be avoided. Moreover, since the aluminum wire 3 is crushed in the length direction by the above configuration, it is possible to avoid a risk of protruding from the bonding pad portion 2. This will be explained in detail below. Details will be described below.
  • the bonding direction of the aluminum wire 3 and the ultrasonic wave application direction 21 are substantially perpendicular to each other.
  • the force from the wedge tool is likely to be applied in a direction along the length direction of the aluminum wire 3. Therefore, in the manufacturing method according to the first embodiment in which ultrasonic vibration applied from the wedge tool to the aluminum wire 3 is applied perpendicularly to the length direction of the aluminum wire 3, an excessive stress is applied between the aluminum wire 3 and the wedge tool. .
  • the flap of the wedge tool becomes large, and the wedge tool may be bent.
  • the aluminum wire 3 is crushed in the ultrasonic wave application direction 21. Therefore, when ultrasonic vibration is applied to the aluminum wire 3 in the first embodiment, the aluminum wire 3 is crushed in the diameter direction of the aluminum wire 3. For this reason, the aluminum wire 3 crushed in the diametrical direction may protrude from the bonding pad portion 2. Therefore, in the method for manufacturing the semiconductor device 50 according to the first embodiment, measures are required to prevent the aluminum wire 3 from protruding from the bonding pad portion 2, such as increasing the bonding pad portion 2.
  • the bonding direction of the aluminum wire 3 and the contact electrode portion line direction 20 are substantially parallel, so that the bonding direction of the aluminum wire 3 and the ultrasonic wave application direction 21 are substantially parallel. According to the above configuration, ultrasonic vibration can be applied to the aluminum wire 3 without applying excessive stress from the wedge tool to the aluminum wire 3. As a result, it is possible to avoid the risk of bending of the wedge tool.
  • the aluminum wire 3 is crushed in the length direction during ultrasonic bonding, so that the danger of the aluminum wire 3 protruding from the bonding pad portion 2 can be avoided.
  • the bonding pad portion 2 that collects the current from the contact electrode portion 4 traverses all of the plurality of contact electrode portions 4 and has a large area. The current from the contact electrode unit 4 can be collected.
  • FIGS. 9A to 9F are plan views of the bonding pad portion 2 of the semiconductor device 50 according to the present embodiment.
  • the bonding pad portion 2 of the semiconductor device 50 according to the first embodiment is rectangular as shown in FIG.
  • the bonding pad portion 2 has a connection portion 5 that is electrically connected to any one of the contact electrode portions 4.
  • the width of the electrical connection region 11 and the bonding region 12 in the direction increases as the total number of the connection portions 5 arranged in the direction orthogonal to the ultrasonic wave increases.
  • the current density collected from the contact electrode portion 4 can be smoothed, so that an electrical loss can be reduced and electricity can be efficiently extracted. Details will be described below.
  • the bonding pad portion 2 shown in FIG. 9A is one of the bonding pad portions 2 installed in the GaN-based power device 1.
  • the bonding pad portion 2 shown in FIG. 9A is paired with the bonding pad portion 2 having a shape rotated by 180 ° about the midpoint of the oblique side of the bonding pad portion 2 shown in FIG.
  • the GaN-based power device 1 is disposed.
  • the two bonding pad portions 2 are rectangular as a whole when the two pairs are combined.
  • the aluminum wire 3 is ultrasonically bonded so that the bonding direction of the aluminum wire 3 and the contact electrode portion line direction 20 are substantially parallel to each other.
  • the pair of bonding pad portions 2 are formed in a shape that does not interfere with the aluminum wires 3 of each other.
  • connection portion 5 increases as the number of locations (connection portions 5) electrically connected to the bonding pad portion 2 increases. Therefore, even if the number of electrically connected locations (connection portion 5) increases, the current density increases if the area of the bonding pad portion 2 is constant. Therefore, the bonding pad portion 2 according to the present embodiment increases the width of the bonding pad portion 2 of the connection portion 5 in the direction perpendicular to the contact electrode portion line direction 20 as the total number increases.
  • the current from the contact electrode portion 4 is collected from the right side of the drawing to the left side of the drawing.
  • the total number of connection portions 5 of the bonding pad portion 2 increases from the right side of the drawing to the left side of the drawing.
  • the width of the bonding pad portion 2 in the direction perpendicular to the contact electrode portion line direction 20 also increases from the right side to the left side of the drawing.
  • FIG. 9B is an example of the shape of the bonding pad portion 2 of the semiconductor device 50 of the present embodiment shown in FIG. 9B, and the shape of the bonding pad portion 2 is an arc shape, a slide shape, or a staircase shape. Or a case where each part has irregularities.
  • the shape of the bonding pad portion 2 only needs to be larger toward the endmost line of each contact electrode portion line when viewed macroscopically, and the pad shape is not limited.
  • a vacant area 13 may be formed between the two bonding pad parts 2 and a new bonding pad part may be arranged in this vacant area.
  • the upper layer metal (bonding pad portion 2) formed on the semiconductor element (GaN-based power device 1) is applied while applying ultrasonic vibration to the wire.
  • a method of manufacturing a semiconductor device (50) including an ultrasonic bonding step of bonding the wire (aluminum wire 3), wherein the semiconductor element is formed of a lower layer metal (second electrode 42) formed under the upper layer metal.
  • the ultrasonic wave is set so that the angle ⁇ formed by the direction in which ultrasonic vibration is applied to the wire and the longitudinal direction of the lower layer metal satisfies 0 ° ⁇ ⁇ ⁇ 45 °. Apply vibration.
  • the ultrasonic vibration is substantially parallel to the longitudinal direction of the lower layer metal (the angle ⁇ between the direction in which the ultrasonic vibration is applied to the wire and the longitudinal direction of the lower layer metal is 0 ° ⁇ ⁇ ⁇ 45 °. ) Is applied.
  • angular part of a contact electrode is relieve
  • the method of manufacturing a semiconductor device (50) according to aspect 2 of the present invention is the method of manufacturing the semiconductor device (50) according to aspect 1, wherein the semiconductor element (GaN-based power device 1) is a GaN-based semiconductor element and the wire (aluminum wire 3) is an aluminum wire. It may be.
  • a GaN-based semiconductor element is used as the semiconductor element. For this reason, a power semiconductor device can be manufactured. Moreover, the aluminum wire is used for the wire. For this reason, it can respond to a large current.
  • the lower metal (second electrode 42) has a recess, and the upper metal (bonding pad part 2)
  • a convex portion (first convex portion 2c) protruding toward the concave portion may be provided at a position facing the concave portion.
  • the concave shape is formed in the lower layer metal, and the convex shape is formed toward the lower layer metal at a position facing the concave shape of the lower layer metal of the upper layer metal.
  • stress applied to the convex shape of the upper layer metal and the concave shape of the lower layer metal during ultrasonic bonding is reduced, and generation of interlayer cracks can be suppressed.
  • a semiconductor device (50) according to Aspect 4 of the present invention is a semiconductor device manufactured by the method for manufacturing a semiconductor device according to any one of Aspects 1 to 3, wherein the semiconductor device (50) A semiconductor element (GaN-based power device 1) and two upper metal layers (bonding pad portion 2), and the semiconductor element includes a plurality of lower metal layers (second electrodes 42) and two upper metal layers.
  • Each of the metals has an electrical connection portion (electrical connection region) arranged so as to traverse all of the plurality of lower-layer metals along an orthogonal direction of ultrasonic waves, which is a direction perpendicular to the application direction of the ultrasonic vibration.
  • bonding region 12 whose length in the orthogonal direction of ultrasonic waves is smaller than that of the electrical connection portion and larger than the diameter of the wire (aluminum wire 3).
  • bonding portion of one of the upper metallization, and the above bonding portion of the other of the upper-layer metal may be arranged in the ultrasonic orthogonal direction.
  • the bonding direction of the wire in the upper layer metal and the longitudinal direction of the lower layer metal can be made substantially parallel. Therefore, ultrasonic vibration can be applied substantially in parallel with the longitudinal direction of the lower layer metal without applying excessive stress during ultrasonic bonding. Thereby, the danger that a wedge tool will bend can be avoided. Moreover, according to the said structure, since a wire is crushed in the length direction, the danger of protruding from an upper metal can be avoided.
  • each upper layer metal (bonding pad portion 2) is electrically connected to any one of the lower layer metal (second electrode 42). (5), and the length of the electrical connection portion (electrical connection region 11) and the bonding portion (bonding region 12) in the ultrasonic orthogonal direction of each upper layer metal is in the ultrasonic orthogonal direction. The larger the total number of the connection parts arranged in the line, the larger it may be.
  • the present invention can be used as a method for manufacturing a semiconductor device, and in particular, can be used for a method for manufacturing a semiconductor device using ultrasonic bonding for wire bonding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wire Bonding (AREA)

Abstract

 GaN系パワーデバイス(1)は、アルミワイヤ(3)を超音波ボンディングするボンディングパッド部(2)と、ボンディングパッド部(2)の下に形成されている第2電極(42)とを備え、超音波振動をワイヤに印加する方向と第2電極(42)の長手方向との成す角θが、0°≦θ≦45°となるように超音波振動を印加にする。

Description

半導体装置の製造方法および半導体装置
 本発明は、半導体装置に関し、ワイヤボンディングを使用する半導体装置に関する。
 近年、世界的に環境問題への取り組みが進む中で、風力・太陽光発電等の環境対応型エネルギー市場が拡大している。また、さらに中国向けを中心としたアジア諸国の市場が拡大している。これらの市場の拡大に伴い、パワーモジュールの需要がさらに高まっている。
 このようなパワーモジュールでは、半導体チップと他の半導体チップあるいはインナーリード等とを、金属ワイヤを用いたワイヤボンディングにより電気的に接続する。ここで、金属ワイヤを半導体チップ上にワイヤボンディングする際、半導体チップへの負荷が懸念される。
 これを回避する手法として、特許文献1には、金属ワイヤをチップ電極にワイヤボンディングすることで、パワー半導体素子へのワイヤボンディングを避ける方法が開示されている。また、特許文献1に開示されているパワー半導体装置は、大電流に対応するため、ワイヤボンディングにアルミワイヤが用いられ、超音波または熱によりワイヤボンディングされている。ここで、チップ電極をパワー半導体素子とは別のエリアへ設置すると、半導体装置のサイズが大きくなるため、パワー半導体素子上にチップ電極(ボンディングパッド)を形成する方法が提案されている。
日本国公開特許公報「特開2004-140072号(2004年5月13日公開)」
 しかしながら、パワー半導体素子上に形成されたボンディングパッドと、上記ボンディングパッドと電気的に接続される下層メタルを有するパワー半導体素子とを備えた半導体装置の構造において、超音波振動をワイヤに印加させ、ワイヤをボンディングする場合、下記のような問題がある。
 通常、超音波振動をワイヤに印加させながら、ワイヤをボンディングする場合、ワイヤを張る方向と超音波振動を印加する方向を合わせる。その場合、超音波振動の振動方向とパワー半導体素子内の下層メタルの長手方向とが垂直に近いと、ボンディング時にボンディングパッドを通じてパワー半導体素子へ応力がかかってしまう。
 このため、ボンディングパッドと下層メタルとが接続されていない箇所においては、ボンディングパッドと下層メタルとの間に層間クラックが発生し、該層間クラックに起因してショートが発生する。上述した問題は、このような箇所における、層間クラックの発生と、該層間クラックに起因するショートの発生である。
 本発明は、上記の問題を解決するためになされたもので、その目的は、簡易な方法により半導体装置製造時における半導体素子内のクラックの発生を抑制する製造方法を実現することにある。
 上記の課題を解決するために、本発明の一態様に係る半導体装置の製造方法は、超音波振動をワイヤに印加させながら、半導体素子上に形成された上層メタルに該ワイヤをボンディングする超音波ボンディング工程を含む半導体装置の製造方法であって、上記半導体素子は、上記上層メタルの下に形成されている下層メタルを有し、上記超音波ボンディング工程にて、超音波振動を上記ワイヤに印加する方向と上記下層メタルの長手方向との成す角θが、0°≦θ≦45°となるように超音波振動を印加することを特徴とする。
 本発明の一態様によれば、簡易な方法により半導体装置製造時における半導体素子内のクラックの発生を抑制する製造方法を実現できる効果を奏する。
本発明の実施形態1に係る半導体装置の製造方法を説明する図であり、図3の(a)のA-A線矢視断面図である。 (a)は本発明の実施形態1に係る半導体装置の構成を示す平面図であり、(b)は(a)の側面図である。 (a)本発明の実施形態1に係る半導体装置のGaN系パワーデバイスの平面図であり、(b)は接触電極部を説明するため図であり、(a)のA-A線の矢視断面を示す斜視図である。 本発明の実施形態1に係る半導体装置の接触電極部の斜視図である。 (a)は本発明の実施形態1に係る半導体装置の接触電極の平面図であり、(b)は、接触電極部ライン方向と超音波印加方向との成す角を説明する図である。 従来の半導体装置の製造方法を説明する図であり、図3の(a)のA-A線矢視断面図である。 本発明の実施形態1に係る半導体装置のボンディングパッド部の平面図である。 本発明の実施形態2に係る半導体装置のボンディングパッド部の平面図である。 (a)~(f)は、本発明の実施形態3に係る半導体装置のボンディングパッド部の平面図である。
 以下、本発明の実施形態について、図面を参照しながら詳細に説明する。なお、各実施形態に記載されている構成部品の寸法、材質、形状、その相対配置等は、特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明に過ぎない。
 〔実施形態1〕
 本発明の実施形態1に係る半導体装置50の製造方法および半導体装置50を、図1~図7に基づき説明する。
 〔半導体装置50の構造〕
 まず、本実施形態に係る半導体装置50の構造について、図2の(a)および図2の(b)に基づき説明する。図2の(a)は、本発明の実施形態1に係る半導体装置50の構成を示す平面図である。図2の(b)は、図2の(a)の側面図である。
 半導体装置50は、図2の(a)および図2の(b)に示すように、GaN系パワーデバイス1(半導体素子、GaN系半導体素子)、ボンディングパッド部2(上層メタル)、アルミワイヤ3(アルミニウムワイヤ)、MOS-FET51、フィン部52、金線53、インナーリード部55、半田56、銀ペースト57、およびダイパッド部58を備えている。
 GaN系パワーデバイス1は、ダイパッド部58上に銀ペースト57を介して搭載されている。GaN系パワーデバイス1とMOS-FET51とは、ボンディングパッド部2を介して、アルミワイヤ3により電気的に接続されている。また、GaN系パワーデバイス1とインナーリード部55とは、ボンディングパッド部2を介して、アルミワイヤ3により電気的に接続されている。ボンディングパッド部2は、例えば、GaN系パワーデバイス1から集電された電流を、アルミワイヤ3を通じてインナーリード部55またはMOS-FET51へ流す。
 MOS-FET51は、ダイパッド部58上に半田56を介して搭載されている。また、MOS-FET51は、金線53によりインナーリード部55に電気的に接続されている。MOS-FET51は、例えば、インナーリード部55からの信号に基づき、GaN系パワーデバイス1に信号を送信する。
 インナーリード部55は、アウターリード部54と電気的に接続されている。
 アウターリード部54は、インナーリード部55に接続されている。また、一部のアウターリード部54は、ダイパッド部58に直接接続されている。アウターリード部54は、インナーリード部55を介して、GaN系パワーデバイス1またはMOS-FET51と、例えば外部の回路とを電気的に接続する。また、アウターリード部54は、ダイパッド部58と、例えば外部の回路とを電気的に接続する。
 フィン部52は、ダイパッド部58と一体に形成され、樹脂モールド(図示なし)の外部に露出するように設けられている。ここで、樹脂モールドは、例えば、GaN系パワーデバイス1、ボンディングパッド部2、アルミワイヤ3、MOS-FET51、金線53、インナーリード部55、半田56、銀ペースト57、ダイパッド部58およびアウターリード部54の一端を覆うように形成されている。フィン部52は、ダイパッド部58に配置されたGaN系パワーデバイス1およびMOS-FET51が発する熱を外部に放出するために設けられている。
 本実施形態では、半導体装置50は、ダイパッド部58が、厚さが約1.27mmで形成されている。また、ダイパッド部58には、MOS-FET51がPb-Ag-Cu系の高融点半田56(約40W/m・K)を介して搭載されている。また、ダイパッド部58には、GaN系パワーデバイス1が銀ペースト57(約10W/m・K)を介して搭載されている。
 また、MOS-FET51とGaN系パワーデバイス1、GaN系パワーデバイス1とインナーリード部55、およびのMOS-FET51とインナーリード部55との電気的接続において、アルミワイヤ3および金線53が用いられている。特に大電流が流れる箇所(MOS-FET51とGaN系パワーデバイス1との電気的接続の一部、GaN系パワーデバイス1とインナーリード部55との電気的接続)については、φ300μm径のアルミワイヤ3が使用されている。信号伝達等に使用され、小電流のみとなる箇所(MOS-FET51とGaN系パワーデバイス1との電気的接続の一部等)についてはφ30μm径の金線53が使用されている。
 〔半導体装置50の配線構造〕
 半導体装置50の配線構造について、図1~図7に基づき説明する。
 GaN系パワーデバイス1は、図1に示すように、電子機能素子8、接触電極部4および絶縁層7がこの順に積層されている。GaN系パワーデバイス1の上には、ボンディングパッド部2が形成されている。図1は、半導体装置50の製造方法を説明する図であり、図3の(a)のA-A線矢視断面図である。また、図3の(a)は半導体装置50のGaN系パワーデバイス1の平面図であり、図3の(b)は接触電極部4を説明するための図であり、図3の(a)のA-A線の断面を示す斜視図である。
 詳しくは、接触電極部4は複数あり、互いに平行になるように、電子機能素子8上に形成されている。絶縁層7は、電子機能素子8および接触電極部4を覆うように形成されている。ボンディングパッド部2は、絶縁層7を覆うように形成されている。なお、ここでは、電子機能素子8に対してボンディングパッド部2を上側とする。また、図3の(a)、および後述する図5の(a)では、接触電極部4が絶縁層7に覆われており接触電極部4が見えないが、説明のため、接触電極部4を点線で示した。
 接触電極部4は、電子機能素子8と電気的に接続される。また、接触電極部4は、ボンディングパッド部2と所定の位置において電気的に接続される。接触電極部4は、第1電極41および第2電極42を有する。
 第1電極41は、GaN系パワーデバイス1の長手方向(図1において紙面表裏方向)に延びるように形成されている。第1電極41をGaN系パワーデバイス1の長手方向に垂直に切った断面は、図1に示すように、下方向への凸部を有する略コの字形状である。第1電極41は、図1に示す断面の形状において、上端の2ヶ所に、外側に突出したつば部41aを有している。第1電極41は、例えば金またはチタンで形成される薄い膜(例えば、厚みが100nm程度)であり、GaN系パワーデバイス1において化合物半導体におけるバリアメタルとして機能する。
 第2電極42(下層メタル)は、第1電極41に沿ってGaN系パワーデバイス1の長手方向に延びるように形成されている。第2電極42をGaN系パワーデバイス1の長手方向に垂直に切った断面は、図1に示すように、下方向への凸部を有する略コの字形状である。また、第2電極42は、溝部6aを有する。さらに、接触電極部4とボンディングパッド部2とが電気的に接続される箇所においては、溝部6bを有する。第2電極42は、図1に示す断面の形状において、上端の2ヶ所に、外側に突出したつば部42aを有している。
 第1電極41は、第1電極41の一部が電子機能素子8上に埋め込まれるように形成されている。第2電極42の外側の底面および外側の側面の一部は、図1に示す断面における第1電極41の略コの字形状の内面に当接される。第2電極42の厚さは、第1電極41の厚さよりも厚く形成されている。
 ボンディングパッド部2(上層メタル)は、第1凹部2a、第2凹部2b、第1凸部2cを有する。さらに、ボンディングパッド部2は、ボンディングパッド部2と接触電極部4とが電気的接続されている箇所において、接続部5を有する。接続部5は、第2凸部5aおよび第3凸部5bを有する。ボンディングパッド部2は、アルミワイヤ3をボンディング(ワイヤボンディング)するために設けられている。さらに、ボンディングパッド部2は、GaN系パワーデバイス1において、接触電極部4からの電流を集電する。
 第1凹部2aは、ボンディングパッド部2の上面において、溝部6aの上部に形成されている。第1凸部2cは、ボンディングパッド部2の下面において、溝部6aの上部に形成されている。第1凸部2cは下側に向かって突出するように形成されている。第1凹部2aおよび第1凸部2cは、溝部6aに沿って形成されている。溝部6aが凹形状となるため、その上に積層する絶縁層7およびボンディングパッド部2も必然的に凹形状となるので、ボンディングパッド部2は、第1凹部2aおよび第1凸部2cを有する。
 第2凹部2bは、ボンディングパッド部2の上面において、接触電極部4とボンディングパッド部2とが電気的に接続される上部、すなわち接続部5の上部に形成されている。接続部5は、ボンディングパッド部2を形成する際に、接触電極部4とボンディングパッド部2とが電気的に接続される位置において、例えば、エッチングにより絶縁層7に穴を開け溝部6bを形成した後、ボンディングパッド部2と同時に形成される。このため、第2凹部2bの凹部の深さは、第1凹部2aの凹部の深さよりも深く形成される。
 第2凸部5aは、ボンディングパッド部2の下面において、溝部6bの上部に形成されている。第2凸部5aは下側に向かって突出するように形成されている。第2凸部5aの下面には、さらに下側に向かって突出するように、第3凸部5bが形成されている。
 ボンディングパッド部2と接触電極部4との間において、第1凸部2cと接触電極部4とは接触しない。そのため、接触電極部4とボンディングパッド部2とは電気的に接続されず、第1凸部2cと接触電極部4との間には絶縁層7を有する。
 それに対し、第2凸部5aは、第2凸部5aの下面がつば部42aの上面と当接し、さらに第3凸部5bの下面および側面が、溝部6bに当接する。そのため、ボンディングパッド部2において接続部5が形成されている箇所では、ボンディングパッド部2と接触電極部4とは電気的に接続され、接続部5と接触電極部4との間には絶縁層7を有さない。
 ここで、GaN系パワーデバイス1およびボンディングパッド部2が上述するような構成となる場合、ボンディングパッド部2とインナーリード部55またはMOS-FET51とにアルミワイヤ3を用いて超音波ボンディングによりワイヤをボンディングする際に、GaN系パワーデバイス1内で層間クラックが発生する虞がある。具体的に図3の(a)および図6に基づき説明する。図6は、従来の半導体装置の製造方法を説明する図であり、図3の(a)のA-A線矢視断面図である。
 半導体装置50において、細長い形状のボンディングパッド部2を用いる場合、少ないメタル配線で効率よく接触電極部4から電流を集電するために、下記のようにボンディングパッド部2を配置することが好ましい。(1)アルミワイヤ3をワイヤボンディングするためのボンディングパッド部2により接触電極部4からの集電を行う。(2)図3の(a)に示すように、接触電極部4に形成される溝部6b(第2凹部2b)を多く含み溝部6a(第1凹部2a)と直交するように、ボンディングパッド部2をGaN系パワーデバイス1に配置する。
 ここで、本実施形態に係る半導体装置50の製造方法において、アルミワイヤ3のボンディングには、超音波ボンディングを用いる。
 超音波ボンディングによるワイヤボンディングは、通常、例えば、ボンディングパッド部2を上にしてGaN系パワーデバイス1をダイボンドした基板を超音波ボンディング装置の固定台に載せ、GaN系パワーデバイス1をダイボンドした基板を吸着させた超音波ボンディング装置のヘッド部を回転させることで、ワイヤを張る方向と超音波振動の方向を合わせる。この状態で超音波ボンディング装置からボンディングパッド部2に供給したボンディングワイヤ(アルミワイヤ3)を超音波ボンディング装置のウェッジツールにより押さえつけ、超音波振動を加えながらボンディング荷重(ウエッジ圧力)を掛ける。これにより、超音波振動の摩擦により接合面の不純物(酸化物)が除去され、同時に生じる接合面の発熱によりワイヤの抗張力が急減して塑性変形してボンディングパッド部2とアルミワイヤ3とが接合される(超音波ボンディング工程)。
 上述したように、通常、超音波ボンディング時にワイヤを張る方向と超音波振動の方向を合わせるため、アルミワイヤ3の接続部は、ボンディングパッド部2の長手方向に対して平行となる(図2の(a)参照)。その結果、超音波印加方向21と接触電極部4の長手方向とは、図6に示すように、垂直となる。ここで、超音波印加方向21は、超音波ボンディング時に与える超音波振動の方向を示し、接触電極部4の長手方向は、図4におけるY方向を示す。図4は、本発明の実施形態1に係る半導体装置50の接触電極部4の斜視図である。
 このように、超音波印加方向21と接触電極部4の長手方向とが直交する場合、接触電極部4の接触電極の角部4cに応力が係り易くなり、図6に示すように、層間クラック10が発生する恐れがある。その結果、半導体装置50において層間クラック10に起因するショートが発生する虞がある。ここで、接触電極部4の接触電極の角部4cは、接触電極部4の第2電極の上面の内側の辺を示す。
 特に、金線53と比較して太く硬いアルミワイヤ3を使用する場合、ワイヤボンディング時の接触電極の角部4cへの負荷が大きくなり、層間クラック10が発生し易くなる傾向がある。また、超音波印加方向21と接触電極部4の長手方向とが、垂直に近い場合であっても同じことがいえる。
 ここで、本実施形態に係る半導体装置50の製造方法では、図5の(a)および図5の(b)に示すように、接触電極部ライン方向20に対して超音波印加方向21が略平行となるように、アルミワイヤ3をボンディングパッド部2に超音波ボンディングすることを特徴とする。図5の(a)は、本実施形態に係る半導体装置50の接触電極部4の平面図であり、図5の(b)は、接触電極部ライン方向20と超音波印加方向21との成す角θを説明する図である。
 上述した略平行とは、接触電極部ライン方向20と超音波印加方向21とが平行、もしくは、超音波印加方向21を基準とした場合、接触電極部ライン方向20と超音波印加方向21との成す角θが、-45°≦θ≦45°となることである。ここで、接触電極部ライン方向20と超音波印加方向21との成す角θを考える際、接触電極部ライン方向20、または超音波印加方向21のどちらが基準であってもよく、すなわち、略平行とは、接触電極部ライン方向20と超音波印加方向21との成す角θ(接触電極部ライン方向20と超音波印加方向21とで形成される角θの大きさ)が、0°≦θ≦45°となることである。なお、接触電極部ライン方向20は接触電極部4の長手方向を示す。
 具体的には、図4において、溝部6aの幅方向の長さをX、溝部6aの延伸方向の長さをY(1<Y/X)とすると、該延伸方向(接触電極部ライン方向20)と超音波ボンディング時の超音波印加方向21とを略平行とすることで、層間クラック10の発生を抑制することができる。
 このとき、ボンディングパッド部2に着目すると、図7に示すように、ボンディングパッド部2の長手方向と接触電極部ライン方向20および超音波印加方向21とは略垂直となる。図7は、本実施形態に係る半導体装置50のボンディングパッド部2の平面図である。
 上記構成によれば、超音波印加方向21と接触電極部ライン方向20とが略平行となる。このため、接触電極の角部4cへの応力が緩和され、絶縁層7で発生しやすい層間クラック10の発生を抑制することができる。その結果、層間クラック10に起因するショートを抑制することができる。また、本実施形態に係る半導体装置50の製造方法では、ウェッジツールの振動方向を変更する簡易な変更だけでよく、製造装置および新規部材の調達が不要であり、低コストでより信頼性の高い製品を作製できるという効果を奏する。
 本実施形態に係る半導体装置50の製造方法は、上述したように、電子機能素子8上に形成された接触電極部4を備えるGaN系パワーデバイス1において、超音波ボンディングによりGaN系パワーデバイス1を、例えば他の端子へ接続する際に、超音波印加方向21と接触電極部ライン方向20とを略平行とすることを特徴とする。
 言い換えると、本実施形態に係る半導体装置50の製造方法は、ボンディングパッド部2とインナーリード部55、もしくはMOS-FET51とを電気的に接続するために、ボンディングパッド部2においてアルミワイヤ3を超音波ボンディングする際に、超音波印加方向21と接触電極部ライン方向20とを略平行とすることを特徴とする。
 〔検証例〕
 本実施形態に係る半導体装置50の製造方法の検証例について以下に述べる。本検証例では、下記(1)~(3)の条件により、アルミワイヤ3をボンディングパッド部2にワイヤボンディングする場合について実施した例を示す。(1)GaN系パワーデバイス1上に形成されるボンディングパッド部2を約600μm×1200μmとする。(2)アルミワイヤ3をφ300μmとする。(3)ワイヤボンディングを、荷重700gとする超音波ボンディングにより実施する。
 その結果、接触電極部ライン方向20に対して超音波印加方向21が略垂直となるように超音波振動を印加した場合、接触電極の角部4cが起点となり、ボンディングパッド部2と接触電極部4との間に層間クラック10が発生した。
 一方、接触電極部ライン方向20に対して超音波印加方向21が略平行となるように超音波振動を印加した場合は、層間クラック10が発生しないことを確認した。
 また、ワイヤボンディングのファースト側をGaN系パワーデバイス1側(ボンディングパッド部2側)とすることで、超音波ボンディング時のGaN系パワーデバイス1への負荷を一層低減することができ、層間クラック10の発生をさらに抑えることができる。
 また、接触電極の角部4cが起点となりやすいことから、接触電極部4の形状を、方形ではなく溝部6aの底面から接触電極の角部4cに向かいテーパーとすることで、超音波ボンディング時の接触電極の角部4cへの負荷を低減することができる。そのため、層間クラック10の発生をさらに抑えることができる。
 ここで、GaN系パワーデバイス1自体の材質や形状は限定されない。また、ワイヤボンディングによりGaN系パワーデバイス1と接続する対象は、インナーリード部55およびMOS-FET51に限らず、ダイパッド部58、他のチップ端子等でもよく、接続先が限定されるものではない。半導体装置50に搭載するGaN系パワーデバイス1の数については、少なくとも1つ以上であればその数は限定されない。また、使用するワイヤについては、金、銀、銅、アルミ等、材質や線径は限定されない。アウターリード部54およびインナーリード部55は、一般的に銅無垢あるいはAgめっき品等が使用可能だが、その材質についても限定されない。
 なお、本実施形態では、接触電極部4が延長される方向はGaN系パワーデバイス1の長手方向となっているが上記に限らない。超音波ボンディング時の接触電極部ライン方向20と超音波印加方向21とが略平行なっていればよい。
 また、超音波印加方向21と接触電極部ライン方向20とを略平行とすることにより、超音波印加方向21と溝部6aの長手方向とが略平行となる。これにより、超音波ボンディング時において、接触電極部4の溝部6aおよびボンディングパッド部2の第1凸部2cに掛かる応力の負荷が小さくなり、層間クラック10の発生を抑制することができる。下記に詳しく説明する。
 溝部6aは、接触電極部4を作製する際に形成される空洞箇所である。接触電極部4の形成後、溝部6aは絶縁層7により充填され、その上にボンディングパッド部2が形成される。その際に、ボンディングパッド部2には溝部6aに対向する位置に、溝部6aに向かって凸形状を有する第1凸部2cが形成される。従来の半導体装置の製造工程においては、接触電極部4に形成される溝部6aおよび第1凸部2cの存在により、超音波ボンディング時に層間クラック10が発生しやすくなる傾向が見られた。
 ここで、本実施形態に係る半導体装置50の製造方法に基づき、超音波ボンディングの際に、溝部6aの長手方向と超音波印加方向21とが略平行になるように超音波振動を印加する。これにより、超音波ボンディング時において、溝部6aと第1凸部2cとに掛かる応力の負荷が小さくなり、層間クラック10の発生を抑制することができる。その結果、絶縁層7で発生しやすい層間クラック10に起因するショートを抑制することができる。
 〔実施形態2〕
 本発明の他の実施形態について、図7および図8に基づいて説明すれば、以下のとおりである。図8は、本実施形態に係る半導体装置50のボンディングパッド部2の平面図である。
 実施形態1に係る半導体装置50のボンディングパッド部2は、図7に示すように、矩形である。
 それに対し、本実施形態に係る半導体装置50のボンディングパッド部2の形状は、接触電極部ライン方向20および超音波印加方向21に、幅が広い部分(幅広領域)と幅が狭い部分(幅狭領域)とを有する。隣接するボンディングパッド部2は、一方のボンディングパッド部2の幅狭領域と、他方のボンディングパッド部2の幅広領域とが上記下層メタル(第2電極42)の長手方向に沿った方向に対向すると共に、他方のボンディングパッド部2の幅狭領域と、一方のボンディングパッド部2の幅広領域とが上記下層メタルの長手方向に沿った方向に対向する。また、幅が広い部分にはアルミワイヤ3がボンディングパッド部2の長手方向と略平行となるようにワイヤボンディングされる。
 言い換えると、本実施形態に係る半導体装置50は2つのボンディングパッド部2を有する。GaN系パワーデバイス1は、互いに平行な複数の接触電極部4を有する。2つのボンディングパッド部2の各々は、超音波振動の印加方向に垂直な方向である超音波直交方向に沿って、複数の接触電極部4の全てを横断するように配置された電気的接続領域11(電気的接続部)を有する。また、2つのボンディングパッド部2の各々は、超音波直交方向の長さが、電気的接続領域11より小さく、アルミワイヤ3の直径より大きいボンディング領域12(ボンディング部)を有する。さらに、一方のボンディングパッド部2のボンディング領域12と、他方のボンディングパッド部2のボンディング領域12とが、超音波直交方向に並んで配置されている。
 上記構成によれば、ボンディングパッド部2にアルミワイヤ3をワイヤボンディングする方向(以下、アルミワイヤ3のボンディング方向と称する)と、接触電極部ライン方向20とを略平行とすることができる。そのため、超音波ボンディング時に、無理なく接触電極部ライン方向20と略平行に超音波振動を印加することができる。その結果、ウェッジツールが撓む危険性を回避することができる。また、上記構成により、アルミワイヤ3が長さ方向に潰れるのでボンディングパッド部2からはみ出す危険性を回避できる。下記に詳しく説明する。詳しくは、下記に説明する。
 実施形態1では、図2の(a)および図7に示すように、アルミワイヤ3のボンディング方向と超音波印加方向21とは略垂直となっている。ここで、超音波ボンディングにおいて、ウェッジツールからの力は、アルミワイヤ3の長さ方向に沿った方向にかかりやすい。そのため、ウェッジツールからアルミワイヤ3に印加される超音波振動がアルミワイヤ3の長さ方向と垂直に掛かる実施形態1の製造方法では、アルミワイヤ3とウェッジツールとの間に無理な応力がかかる。その結果、例えば、ウェッジツールのバタつきが大きくなり、ウェッジツールが撓んでしまう虞がある。
 また、超音波ボンディングにおいて、アルミワイヤ3に超音波振動を印加した場合、超音波印加方向21にアルミワイヤ3が潰れる。そのため、実施形態1においてアルミワイヤ3に対して超音波振動を印加すると、アルミワイヤ3は、アルミワイヤ3の直径方向に潰れてしまう。このため、直径方向に潰れたアルミワイヤ3がボンディングパッド部2からはみ出す可能性がある。そのため、実施形態1に係る半導体装置50の製造方法では、ボンディングパッド部2を大きくする等、アルミワイヤ3がボンディングパッド部2からはみ出さないようにするための対策が必要となる。
 本実施形態では、アルミワイヤ3のボンディング方向と接触電極部ライン方向20とを略平行とすることで、アルミワイヤ3のボンディング方向と超音波印加方向21とが略平行となる。上記構成によれば、ウェッジツールからアルミワイヤ3へ無理な応力をかけることなく超音波振動をアルミワイヤ3に印加することができる。その結果、ウェッジツールの撓む危険性を回避することができる。
 また、上記構成によれば、超音波ボンディング時に、アルミワイヤ3は長さ方向に潰れるので、アルミワイヤ3がボンディングパッド部2からはみ出す危険性を回避できる。
 また、GaN系パワーデバイス1において、接触電極部4からの電流を集電するボンディングパッド部2は、複数の接触電極部4の全てを横断し、面積が大きくなるので、少ないメタル配線で効率よく接触電極部4からの電流を集電することができる。
 〔実施形態3〕
 本発明の実施形態3について、図9の(a)~図9の(f)に基づいて説明すれば、以下のとおりである。図9の(a)~図9の(f)は、本実施形態に係る半導体装置50のボンディングパッド部2の平面図である。
 実施形態1に係る半導体装置50のボンディングパッド部2は、図7に示すように、矩形である。
 それに対し、本実施形態に係る半導体装置50では、ボンディングパッド部2は、接触電極部4のいずれかと電気的に接続する接続部5を有し、さらに、各ボンディングパッド部2の、超音波直交方向における電気的接続領域11およびボンディング領域12の幅は、超音波直交方向に並んだ接続部5の総数が多いほど大きくなる。
 上記構成によれば、接触電極部4から集電した電流密度を平滑化できるので、電気的なロスを少なくでき、効率的に電気を取り出すことができる効果を奏する。詳しくは、下記に説明する。
 図9の(a)に示すボンディングパッド部2は、GaN系パワーデバイス1に設置されるボンディングパッド部2の一方である。図9の(a)に示すボンディングパッド部2は、図9の(a)に示すボンディングパッド部2の斜辺の中点を中心として180°回転させた形状を有するボンディングパッド部2と対になり、GaN系パワーデバイス1上に配置される。2つのボンディングパッド部2は、対の2つを合わせると全体として矩形となる。対となるボンディングパッド部2は、それぞれ、アルミワイヤ3のボンディング方向と接触電極部ライン方向20とが略平行となるように、アルミワイヤ3が超音波ボンディングされる。このとき、対のボンディングパッド部2は、お互いのアルミワイヤ3を邪魔しないような形状に形成される。
 接触電極部4から接続部5を通じて集電される電流は、ボンディングパッド部2と電気的に接続される箇所(接続部5)が増えるに伴って増える。したがって、電気的に接続される箇所(接続部5)が増えても、ボンディングパッド部2の面積が一定だと電流密度が増す。そこで、本実施形態に係るボンディングパッド部2は、接続部5のボンディングパッド部2の接触電極部ライン方向20と垂直な方向の総数が増えるに伴って当該方向の幅を大きくする。
 具体的に図9の(a)を用いて説明すると、ボンディングパッド部2において、接触電極部4からの電流は紙面右側から紙面左側へ向かって集電される。また、ボンディングパッド部2の接続部5の総数は、紙面右側から紙面左側へ向かって増える。本実施形態では、下流の接続部5の総数の増加に伴って、ボンディングパッド部2の接触電極部ライン方向20と垂直な方向の幅も紙面右側から紙面左側へ向かって大きくなる。上記構成によれば、ボンディングパッド部2を流れる電流密度がほぼ一定となり、電流密度が平滑化される。
 図9の(b)~図9の(e)に示す本実施形態の半導体装置50のボンディングパッド部2の形状の例であり、ボンディングパッド部2の形状が、円弧状、滑り台状、階段状、あるいは各々の一部に凹凸がある場合について示している。ボンディングパッド部2の形状は、巨視的に見て、各接触電極部ラインの最も端のラインに向かって大きくなっていればよく、そのパッド形状について限定されない。
 また、例えば、2つのボンディングパッド部2の間に空き領域13を形成し、この空き領域に新たなボンディングパッド部を配置してもよい。
 〔まとめ〕
 本発明の態様1に係る半導体装置(50)の製造方法は、超音波振動をワイヤに印加させながら、半導体素子(GaN系パワーデバイス1)上に形成された上層メタル(ボンディングパッド部2)に該ワイヤ(アルミワイヤ3)をボンディングする超音波ボンディング工程を含む半導体装置(50)の製造方法であって、上記半導体素子は、上記上層メタルの下に形成されている下層メタル(第2電極42)を有し、上記超音波ボンディング工程にて、超音波振動を上記ワイヤに印加する方向と上記下層メタルの長手方向との成す角θが、0°≦θ≦45°となるように超音波振動を印加する。
 上記構成によれば、超音波振動が下層メタルの長手方向と略平行(超音波振動を上記ワイヤに印加する方向と上記下層メタルの長手方向との成す角θが、0°≦θ≦45°)となるように印加される。このため、接触電極の角部への応力が緩和され、層間クラックの発生を抑制することができる。その結果、絶縁層で発生しやすい層間クラックに起因するショートを抑制することができる。そのため、簡易な方法により半導体装置製造時における半導体素子内のクラックの発生を抑制する製造方法を実現できる。また、製造装置および新規部材の調達が不要であり、低コストでより信頼性の高い製品を作製できるという効果を奏する。
 本発明の態様2に係る半導体装置(50)の製造方法は、上記態様1において、上記半導体素子(GaN系パワーデバイス1)はGaN系半導体素子であり、上記ワイヤ(アルミワイヤ3)はアルミニウムワイヤであってもよい。
 上記構成によれば、半導体素子にGaN系半導体素子を用いている。このため、パワー半導体装置を製造することができる。また、ワイヤにアルミニウムワイヤを用いている。このため大電流に対応できる。
 本発明の態様3に係る半導体装置(50)の製造方法は、上記態様1または2において、上記下層メタル(第2電極42)は、凹部を有し、上記上層メタル(ボンディングパッド部2)は、上記凹部に対向する位置に該凹部に向かって突出した凸部(第1凸部2c)を有していてもよい。
 上記構成によれば、半導体装置の製造工程において、下層メタルに凹形状が形成され、上層メタルの上記下層メタルの凹形状に対向する位置に、上記下層メタルに向かって凸形状が形成されていても、上層メタルの凸形状および下層メタルの凹形状に超音波ボンディング時に掛かる応力が小さくなり、層間クラックの発生を抑制することができる。その結果、絶縁層で発生しやすい層間クラックに起因するショートを抑制することができる。
 本発明の態様4に係る半導体装置(50)は、上記態様1から3のいずれか1つに係る半導体装置の製造方法により製造された半導体装置であって、上記半導体装置(50)は、上記半導体素子(GaN系パワーデバイス1)と2つの上記上層メタル(ボンディングパッド部2)とを有し、上記半導体素子は、複数の上記下層メタル(第2電極42)を有し、2つの上記上層メタルの各々は、上記超音波振動の印加方向に垂直な方向である超音波直交方向に沿って、複数の上記下層メタルの全てを横断するように配置された電気的接続部(電気的接続領域11)と、上記超音波直交方向の長さが、上記電気的接続部より小さく、かつ、上記ワイヤ(アルミワイヤ3)の直径より大きいボンディング部(ボンディング領域12)とを有しており、一方の上記上層メタルの上記ボンディング部と、他方の上記上層メタルの上記ボンディング部とが、上記超音波直交方向に並んで配置されていてもよい。
 上記構成によれば、上層メタルにおけるワイヤのボンディング方向と、下層メタルの長手方向とを略平行とすることができる。そのため、超音波ボンディング時に、無理な応力をかけることなく下層メタルの長手方向と略平行に超音波振動を印加することができる。これにより、ウェッジツールの撓む危険性を回避することができる。また、上記構成によれば、ワイヤが長さ方向に潰れるので上層メタルからはみ出す危険性を回避できる。
 本発明の態様5に係る半導体装置(50)は、上記態様4において、各上記上層メタル(ボンディングパッド部2)は、上記下層メタル(第2電極42)のいずれかと電気的に接続する接続部(5)を有し、各上記上層メタルの、上記超音波直交方向における上記電気的接続部(電気的接続領域11)および上記ボンディング部(ボンディング領域12)の長さは、当該超音波直交方向に並んだ上記接続部の総数が多いほど大きくなってもよい。
 上記構成によれば、上層メタルにおいて下層メタルから集電した電流密度を平滑化できるので、電気的なロスを少なくでき、効率的に電気を取り出すことができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 本発明は、半導体装置の製造方法として利用可能であり、特に、ワイヤボンディングに超音波ボンディングを用いる半導体装置の製造方法に利用することができる。
  1 GaN系パワーデバイス(半導体素子)
  2 ボンディングパッド部(上層メタル)
 2a 第1凹部
 2b 第2凹部
 2c 第1凸部(凸部)
  3 アルミワイヤ
 4 接触電極部
 4c 接触電極の角部
  5 接続部
 5a 第2凸部
 5b 第3凸部
 6a、6b 溝部
  7 絶縁層
  8 電子機能素子
 10 層間クラック
 11 電気的接続領域(電気的接続部)
 12 ボンディング領域(ボンディング部)
 13 空き領域
 20 接触電極部ライン方向
 21 超音波印加方向
 41 第1電極
 41a つば部
 42 第2電極(下層メタル)
 42a つば部
 50 半導体装置
 51 MOS-FET
 52 フィン部
 53 金線
 54 アウターリード部
 55 インナーリード部
 56 半田
 57 銀ペースト
 58 ダイパッド部

Claims (5)

  1.  超音波振動をワイヤに印加させながら、半導体素子上に形成された上層メタルに該ワイヤをボンディングする超音波ボンディング工程を含む半導体装置の製造方法であって、
     上記半導体素子は、上記上層メタルの下に形成されている下層メタルを有し、
     上記超音波ボンディング工程にて、超音波振動を上記ワイヤに印加する方向と上記下層メタルの長手方向との成す角θが、0°≦θ≦45°となるように超音波振動を印加することを特徴とする半導体装置の製造方法。
  2.  上記半導体素子はGaN系半導体素子であり、上記ワイヤはアルミニウムワイヤであることを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  上記下層メタルは、凹部を有し、
     上記上層メタルは、上記凹部に対向する位置に該凹部に向かって突出した凸部を有することを特徴とする請求項1または2に記載の半導体装置の製造方法。
  4.  請求項1から3のいずれか1項に記載の半導体装置の製造方法により製造された半導体装置であって、
     上記半導体装置は、上記半導体素子と2つの上記上層メタルとを有し、
     上記半導体素子は、複数の上記下層メタルを有し、
     2つの上記上層メタルの各々は、
      上記超音波振動の印加方向に垂直な方向である超音波直交方向に沿って、複数の上記下層メタルの全てを横断するように配置された電気的接続部と、
      上記超音波直交方向の長さが、上記電気的接続部より小さく、かつ、上記ワイヤの直径より大きいボンディング部とを有しており、
     一方の上記上層メタルの上記ボンディング部と、他方の上記上層メタルの上記ボンディング部とが、上記超音波直交方向に並んで配置されていることを特徴とする半導体装置。
  5.  各上記上層メタルは、上記下層メタルのいずれかと電気的に接続する接続部を有し、
     各上記上層メタルの、上記超音波直交方向における上記電気的接続部および上記ボンディング部の長さは、当該超音波直交方向に並んだ上記接続部の総数が多いほど大きくなることを特徴とする請求項4に記載の半導体装置。
PCT/JP2015/053098 2014-02-27 2015-02-04 半導体装置の製造方法および半導体装置 WO2015129415A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016505127A JP6250788B2 (ja) 2014-02-27 2015-02-04 半導体装置
US15/118,576 US20170062375A1 (en) 2014-02-27 2015-02-04 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-037325 2014-02-27
JP2014037325 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129415A1 true WO2015129415A1 (ja) 2015-09-03

Family

ID=54008741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053098 WO2015129415A1 (ja) 2014-02-27 2015-02-04 半導体装置の製造方法および半導体装置

Country Status (3)

Country Link
US (1) US20170062375A1 (ja)
JP (1) JP6250788B2 (ja)
WO (1) WO2015129415A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192384A1 (ja) * 2020-03-25 2021-09-30 ローム株式会社 半導体装置および半導体装置の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324798A (ja) * 2001-04-25 2002-11-08 Nissan Motor Co Ltd 電極構造
JP2004140072A (ja) * 2002-10-16 2004-05-13 Fuji Electric Device Technology Co Ltd パワー半導体装置のワイヤボンディング方法
JP2005510057A (ja) * 2001-11-16 2005-04-14 オイペク オイロペーシェ ゲゼルシャフト フューア ライストゥングスハルプライター エムベーハー 半導体素子および半導体素子の接触方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60176554U (ja) * 1984-05-04 1985-11-22 株式会社日立製作所 半導体装置
JP2001319945A (ja) * 2000-03-02 2001-11-16 Ibiden Co Ltd 電子部品搭載用基板
US8193555B2 (en) * 2009-02-11 2012-06-05 Megica Corporation Image and light sensor chip packages
JP2012015263A (ja) * 2010-06-30 2012-01-19 Shindengen Electric Mfg Co Ltd ワイヤボンディング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324798A (ja) * 2001-04-25 2002-11-08 Nissan Motor Co Ltd 電極構造
JP2005510057A (ja) * 2001-11-16 2005-04-14 オイペク オイロペーシェ ゲゼルシャフト フューア ライストゥングスハルプライター エムベーハー 半導体素子および半導体素子の接触方法
JP2004140072A (ja) * 2002-10-16 2004-05-13 Fuji Electric Device Technology Co Ltd パワー半導体装置のワイヤボンディング方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021192384A1 (ja) * 2020-03-25 2021-09-30 ローム株式会社 半導体装置および半導体装置の製造方法

Also Published As

Publication number Publication date
US20170062375A1 (en) 2017-03-02
JP6250788B2 (ja) 2017-12-20
JPWO2015129415A1 (ja) 2017-03-30

Similar Documents

Publication Publication Date Title
TWI643268B (zh) 堆疊封裝結構的製造方法
US7745253B2 (en) Ribbon bonding in an electronic package
JP5134582B2 (ja) 接続構造およびパワーモジュール
US7064425B2 (en) Semiconductor device circuit board, and electronic equipment
US8754510B2 (en) Conduction path, semiconductor device using the same, and method of manufacturing conduction path, and semiconductor device
CN104143518A (zh) 制造半导体器件的方法以及半导体器件
JP2009105334A (ja) 半導体装置及びその製造方法
KR102010224B1 (ko) 반도체 장치
JP5151158B2 (ja) パッケージ、およびそのパッケージを用いた半導体装置
KR102228945B1 (ko) 반도체 패키지 및 이의 제조방법
US8338288B2 (en) Method of manufacturing semiconductor device
US8253247B2 (en) Semiconductor device and method for manufacturing the same
CN100464418C (zh) 半导体装置及其制造方法
JP5388422B2 (ja) 半導体装置及びその製造方法
JP6250788B2 (ja) 半導体装置
WO2011030368A1 (ja) 半導体装置とその製造方法
JP2006196765A (ja) 半導体装置
JP2005123388A (ja) ボンディング構造及びボンディング方法、並びに半導体装置及びその製造方法
JP2010087403A (ja) 半導体装置
JP7353794B2 (ja) 半導体装置、その製造方法、及びモジュール
JP5822468B2 (ja) 半導体装置
JP7367580B2 (ja) 半導体装置
US8314501B2 (en) Semiconductor chip package structure, semiconductor chip and semiconductor chip group
CN109950220B (zh) 接合垫结构及接合垫结构的制作方法
WO2016125381A1 (ja) パワー半導体モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15755353

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505127

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15118576

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15755353

Country of ref document: EP

Kind code of ref document: A1