WO2015127792A1 - 一种吸油中空纤维多孔膜的制备方法 - Google Patents

一种吸油中空纤维多孔膜的制备方法 Download PDF

Info

Publication number
WO2015127792A1
WO2015127792A1 PCT/CN2014/089681 CN2014089681W WO2015127792A1 WO 2015127792 A1 WO2015127792 A1 WO 2015127792A1 CN 2014089681 W CN2014089681 W CN 2014089681W WO 2015127792 A1 WO2015127792 A1 WO 2015127792A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
oil
porous membrane
fiber porous
graphene
Prior art date
Application number
PCT/CN2014/089681
Other languages
English (en)
French (fr)
Inventor
肖长发
范智丽
刘海亮
赵健
黄庆林
Original Assignee
天津工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津工业大学 filed Critical 天津工业大学
Priority to CA2898815A priority Critical patent/CA2898815A1/en
Priority to JP2016504481A priority patent/JP6076536B2/ja
Publication of WO2015127792A1 publication Critical patent/WO2015127792A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0211Graphene or derivates thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/46Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/56Use of ultrasound
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil

Definitions

  • the invention relates to a preparation technology of a functional hollow fiber membrane, in particular to a preparation method of an oil-absorbing hollow fiber porous membrane.
  • oil-absorbing fibers are widely used because of their large specific surface area, fast oil absorption, high efficiency, and easy recovery of oil.
  • Xiao Changfa et al. prepared copolymerized methacrylate oil-absorbing fibers (CN 200710059780.7; CN 200410019338.8), and Liu Yanping prepared ultra-fine oil-absorbing fibers by electrospinning technology (CN 200710043566.2).
  • the oil absorbing fiber can only swell and absorb oil through the gap between the fibers or the semi-interpenetrating network.
  • the porous polymer-based graphene oil absorbing material is a novel oil absorbing material.
  • D.Zha et al. used diffusion method to make water or methanol into polyvinylidene fluoride (PVDF)/graphene dimethylformamide (DMF) dispersion to obtain PVDF/graphene gel, and then replace the gel with water.
  • PVDF polyvinylidene fluoride
  • DMF dimethylformamide
  • lyophilized to obtain superhydrophobic lipophilic PVDF/graphene porous material Zha D, Mei S, Wang Z, et al. Superhydrophobic polyvinylidene fluoride/graphene porous materials [J]. Carbon, 2011, 49 (15) :5166-5172.);
  • the polymer-based graphene oil-absorbing material has good oil-water selectivity and high oil absorption rate, and far exceeds the conventional intrinsic synthetic oil-absorbing resin material, and has attracted attention.
  • the oil absorption process of these oil-absorbing materials is still intermittent functional operation, and continuous high-efficiency adsorption and separation of oil-water systems cannot be achieved, and industrial scale applications are limited.
  • the oil absorption process of the existing oil-absorbing materials is still intermittent functional operation, and the continuous high-efficiency adsorption and separation of the oil-water system cannot be realized, and the industrial scale application is limited.
  • a preparation method of an oil-absorbing hollow fiber porous membrane is designed.
  • the preparation method comprises graphene as a surface adsorption layer and a hollow fiber porous membrane as a matrix layer, and adopts the following preparation process:
  • the polymer hollow fiber porous membrane is made into a module, immersed in the graphene dispersion liquid arranged in the step (1), and under a negative pressure of 0.2-0.8 bar, the dead end is suction-filtered for 5-30 min.
  • the film is naturally dried in the air, and after the excess graphene on the surface of the hollow fiber porous membrane is detached, it is placed in a vacuum oven of 0.1 MPa under negative pressure, and dried at room temperature for 6-12 hours;
  • the hollow fiber porous membrane of the polymer Refers to a polyvinyl chloride hollow fiber membrane, a polyvinylidene fluoride hollow fiber membrane, a polypropylene hollow fiber membrane or a polyacrylonitrile hollow braided tube; the graphene dispersion temperature is 20-30 ° C;
  • the interface bonding fastness between graphene and hollow fiber porous membrane is strengthened; the interface bonding fastness between graphene and hollow fiber porous membrane is strengthened by one of two treatment methods: 1 solvent treatment method, first A 20-100 wt% aqueous solution of the solvent is disposed, and then the oil-absorbing hollow fiber porous membrane prepared in the step (2) is immersed in the aqueous solvent solution for 1-20 s, and quickly taken out and placed in a coagulation bath to be solidified, thereby preparing the oil-absorbing hollow fiber porous membrane.
  • 1 solvent treatment method first A 20-100 wt% aqueous solution of the solvent is disposed, and then the oil-absorbing hollow fiber porous membrane prepared in the step (2) is immersed in the aqueous solvent solution for 1-20 s, and quickly taken out and placed in a coagulation bath to be solidified, thereby preparing the oil-absorbing hollow fiber porous membrane.
  • the solvent is dimethylformamide, dimethylacetamide, dimethyl sulfoxide or xylene;
  • the coagulation bath medium is water;
  • 2 dilute solution treatment method firstly configure a dilute solution, and then step (2)
  • the prepared oil-absorbing hollow fiber porous membrane is immersed in the dilute solution, suction-filtered under a vacuum of 0.2-0.8 bar for 3-20 s, and quickly taken out and solidified in a coagulation bath to obtain the oil-absorbing hollow fiber porous membrane;
  • the dilute solution is a dilute polymer solution, the mass of the polymer material accounts for 0.5-6% of the total mass of the dilute solution, the additive mass accounts for 0-12% of the total mass of the dilute solution, and the solvent mass accounts for 82-99% of the total mass of the dilute solution.
  • the polymer is polyvinyl chloride, Polyvinylidene fluoride, polypropylene or polyacrylonitrile
  • the solvent is dimethylformamide, dimethylacetamide, tetrahydrofuran or decahydronaphthalene
  • the coagulation bath medium is an aqueous solution or water of the solvent.
  • the oil-absorbing hollow fiber porous membrane of the invention has the functions of continuous oil absorption and separation, and has large oil absorption specific surface area, high oil absorption speed, high efficiency, and easy recovery of oil; the oil-absorbing hollow fiber porous membrane of the invention can be as needed
  • the product processed into various forms and uses can be suspended in the oil-water interface to absorb oil in the water area polluted by the oily organic matter, thereby broadening the application range and the field, and the method of the invention is simple in process, low in cost, and industrialized. Easy and have good economic and social benefits prospects.
  • the finished hollow fiber membrane had a water inlet pressure of 0.16 bar and a kerosene flux of 12733 L/m 2 ⁇ h measured at 0.1 bar.
  • the method for preparing an oil-absorbing hollow fiber porous membrane (hereinafter referred to as a hollow membrane) designed by the present invention (hereinafter referred to as a preparation method) is prepared by using the following process as a surface adsorption layer and a hollow fiber porous membrane as a matrix layer:
  • the dispersing agent is anhydrous ethanol, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide or dimethylacetamide;
  • the polymer hollow fiber porous film is made into a module, immersed in the step (1)
  • the dead end is suction filtered for 5-30 min under a vacuum of 0.2-0.8 bar, and then the film is placed in the air to be naturally dried.
  • a negative pressure is applied.
  • a 0.1 MPa vacuum oven drying at room temperature for 6-12 h; the graphene dispersion temperature is 20-30 ° C;
  • the polymer material is polyvinyl chloride, polyvinylidene fluoride, polypropylene or polyacrylonitrile;
  • the solvent is one of dimethylformamide, dimethylacetamide, tetrahydrofuran or decahydronaphthalene, the solidification
  • the bath medium is an aqueous solution or water of the solvent.
  • the dispersing agent for dispersing graphene in the production method of the present invention includes anhydrous ethanol, N-methylpyrrolidone, tetrahydrofuran, dimethylformamide or dimethylacetamide, etc.; and the dispersing agent is preferably anhydrous ethanol.
  • the preparation method of the present invention is further characterized in that the hollow fiber porous membrane has a pore size ranging from 0.1 to 10 ⁇ m and a porosity greater than 50%; and the hollow fiber braided tube has a specification of a weaving pitch of 400 -600 ⁇ m.
  • the oil-absorbing hollow film of the present invention can be obtained.
  • the oil-absorbing hollow membrane not only has the function of high oil absorption rate, but also has a continuous oil absorption function, and also has a function of separating oil and water.
  • the hollow fiber porous membrane obtained by the production method of the present invention does not swell in the treated oil.
  • the treated oil is mainly an oily low molecular organic liquid such as toluene or chloroform or a partial hydrocarbon mixture such as kerosene or diesel.
  • One of the principles of the continuous oil absorption function of the oil-absorbing hollow membrane prepared by the preparation method of the present invention is that when the surface of the oil-absorbing hollow membrane obtained by the step (2) is treated with an aqueous solvent solution, the solvent is a hollow fiber porous membrane polymer material.
  • the solvent swells and dissolves on the surface of the hollow fiber membrane, and re-solidifies in the coagulation bath, and the graphene can be embedded in the pores of the hollow fiber membrane, thereby improving the graphene and the hollow.
  • the second principle of the oil-absorbing hollow membrane prepared by the preparation method of the invention has the principle of continuous oil absorption function: when the surface of the oil-absorbing hollow membrane obtained by the step (2) is treated with a dilute solution, since the dilute solution is a dilute polymer solution, Certainly sticky, can The graphene is firmly bonded to the surface of the oil-absorbing hollow membrane while ensuring that the graphene is exposed on the surface of the matrix layer, thereby improving the interface bonding fastness between the graphene and the oil-absorbing hollow membrane.
  • the oil-absorbing hollow membrane prepared by the preparation method of the invention adopts hydrophobic graphene as an adsorption layer and a lipophilic (non-swelling) hollow fiber porous membrane as a matrix layer, and forms the membrane module into an oil/water solution, and seals at one end.
  • the other end provides a suitable negative pressure
  • the graphene adsorption layer acts as an oil-absorbing and water-repellent
  • the negative pressure provides power for the continuous transportation of the oil.
  • the mass transfer mechanism of continuous oil absorption and separation is that the oil is absorbed by the outer surface of the hollow fiber membrane.
  • the graphene is preferentially adsorbed, and the oil is passed through the hollow fiber porous membrane wall by vacuum suction, and is transported along the hollow pipeline to the oil storage device, so that the adsorption and desorption of the oil are simultaneously performed.
  • the finished hollow fiber membrane had a water inlet pressure of 0.16 bar and a kerosene flux of 12733 L/m 2 ⁇ h measured at 0.1 bar.
  • a polyvinyl chloride hollow fiber membrane was made into a module, immersed in a graphene dispersion having a temperature of 20 ° C, and filtered at a dead end of 0.6 bar under a negative pressure for 30 minutes, and then the membrane was placed in the air. It is naturally dried. After the excess graphene on the surface of the hollow fiber porous membrane is peeled off, it is placed in a vacuum oven of 0.1 MPa under negative pressure and dried at room temperature for 12 hours.
  • the oil-absorbing hollow membrane prepared in the step (2) is immersed in an 80 wt% aqueous solution of xylene, taken out after 3 s, and immediately solidified in water.
  • the finished hollow fiber membrane had a water inlet pressure of 0.65 bar and a kerosene flux of 126.32 L/m 2 ⁇ h measured at 0.56 bar.
  • the oil-absorbing hollow membrane prepared in the step (2) is immersed in a 100 wt% dimethylacetamide solution, taken out after 1 s, and immediately solidified in water.
  • the finished hollow fiber membrane had a water inlet pressure of 0.6 bar and a kerosene flux of 88.24 L/m 2 ⁇ h measured at 0.44 bar.
  • the finished hollow fiber membrane had a water inlet pressure of 1.3 bar and a kerosene flux of 1398.86 L/m 2 ⁇ h measured at 0.84 bar.
  • the present invention performs continuous adsorption of oil and oil-water separation performance tests on the oil-absorbing hollow film obtained in Examples 1-4:
  • the continuous oil suction device used is a well-known conventional membrane filtration device (see Fig. 1).
  • the oil-absorbing hollow membrane is made into a membrane module 3 suspended at the interface between the kerosene 2 and the water 1, and the circulating water-type vacuum pump 7 provides a suitable negative pressure to pump the oil; the oil is sucked into the graphene on the outer surface of the hollow fiber membrane.
  • the adsorption is preferentially carried out, and the suction is desorbed by vacuum suction, and is passed through the hollow fiber membrane wall to be transported along the hollow pipe, and then passed through the pressure gauge 4 and the valve 5 in sequence to be transported to the liquid storage tank 6.
  • the liquid storage tank 6 is connected to the circulating water type vacuum pump 7 in a pipeline.
  • the kerosene flux of the oil-absorbing hollow fiber membrane Before determining the kerosene flux of the oil-absorbing hollow fiber membrane, first determine the critical pressure of water entry, and then below the critical Under pressure conditions, the kerosene flux is measured to ensure that the oil-absorbing hollow membrane absorbs only oil and does not absorb water. The test results are shown in Table 1. (The continuous oil absorption device test shows that the oil-absorbing hollow membrane can perform oil-water separation while continuously adsorbing oil, which can realize continuous oil absorption of the oil-absorbing hollow membrane; and the oil-absorbing hollow membrane kerosene flux meter ( Table 1) characterizes that the oil-absorbing hollow membrane has a continuous oil absorption function.
  • the preparation method is based on the oil absorption process of the material, and the oil-absorbing hollow fiber porous membrane oil collecting product is prepared by using super-hydrophobic and lipophilic graphene as the surface adsorption layer and the oleophilic (non-swelling) polymer hollow fiber porous membrane as the matrix layer.
  • the adsorption performance and the oil-water separation function are integrated, and have the characteristics of continuous oil absorption and water repellency and continuous oil-water separation. At the same time, it can be processed into various forms of products, and the process is simple, the cost is low, and the industrial practicability is met.
  • the oil-absorbing hollow membrane prepared by the preparation method of the invention not only has the function of high oil absorption rate, but also has the function of continuous oil absorption, and also has the function of oil-water separation.
  • the hollow fiber porous membrane obtained by the production method of the present invention does not swell in the treated oil.
  • the treated oil is mainly an oily low molecular organic liquid such as toluene or chloroform or a partial hydrocarbon mixture such as kerosene or diesel.
  • FIG. 1 is a schematic view showing the structure of a continuous oil absorption test device for an oil-absorbing hollow fiber porous membrane prepared by the preparation method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Artificial Filaments (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明公开一种吸油中空纤维多孔膜的制备方法。该制备方法以石墨烯为表面吸附层,以中空纤维多孔膜为基质层,并采用如下制备工艺:(1).配置石墨烯分散液;将0.1-1g石墨烯与200-1000ml分散剂混合,超声波分散10-50min;(2).制备吸油中空膜;首先将聚合物中空纤维多孔膜制成组件,浸没于步骤(1)所配置的石墨烯分散液中,在0.2-0.8 bar负压下,死端抽滤5-30 min,然后在空气中自然干燥到中空纤维多孔膜表面石墨烯脱落后,放入负压0.1MPa真空烘箱中常温干燥6-12h;(3).通过①溶剂处理法或②稀溶液处理法强化石墨烯与中空纤维多孔膜之间的界面结合牢度。

Description

一种吸油中空纤维多孔膜的制备方法 技术领域
本发明涉及一种功能中空纤维膜的制备技术,具体为一种吸油中空纤维多孔膜的制备方法。
背景技术
近年来,油性有机化合物及其有机废水、废弃液和各种事故如油船、油罐泄漏造成的河流、海洋等水资源及环境污染问题日趋严重,传统吸油材料如粘土、纸浆、木绵等,其吸油倍率低、油水选择性差、保油能力弱,无法满足含油废水资源化和环境治理的要求。
在诸多的油类污染物处理方法中,吸油纤维因其比表面积大、吸油速度快、效率高、油品易回收等优势被广泛采用。关于吸油纤维的研究,肖长发等制备了共聚甲基丙烯酸酯吸油纤维(CN 200710059780.7;CN 200410019338.8),刘艳萍等通过静电纺丝技术制备了超细吸油纤维(CN 200710043566.2)。但是所述吸油纤维只能通过纤维之间的空隙或半互穿网络溶胀吸油,当吸附油品达到饱和状态后,其吸附功能殆尽,不能连续使用,需对吸油材料进行更换或再生,不仅使用效率降低、处置成本提高,而且也难以满足连续、快速、高效处置有机废水、大面积水面溢油污染和环保等需求。
多孔聚合物基石墨烯吸油材料是一种新型的吸油材料。2011年,D.Zha等采用扩散法使水或甲醇进入聚偏氟乙烯(PVDF)/石墨烯的二甲基甲酰胺(DMF)分散液,获得PVDF/石墨烯凝胶,再用水替换凝胶中的DMF,冻干后获得超疏水亲油性PVDF/石墨烯多孔材料(Zha D,Mei S,Wang Z,et al.Superhydrophobic polyvinylidene fluoride/graphene porous materials[J].Carbon,2011,49(15):5166-5172.);2012年,台湾清华大学的D.D.Nguyen等将三聚氰胺海绵浸渍在石墨烯的乙醇分散液中,得到涂覆石墨烯海绵,再经聚二甲基硅氧烷表面处理,制得超疏水、亲油性海绵基石墨烯材料(Nguyen D D,Tai N H,Lee S B,et al.Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method[J].Energy & Environmental Science,2012,5(7):7908-7912.)。其对油性有机化合物具有很强的吸附能力,如对三氯甲烷的最大饱和吸附量可达自重的165倍;2013年,天津大学的Liu等将聚氨酯海绵浸渍在氧化石墨烯的分散液中,调节分散液pH,并采用肼对氧化石墨烯进行还原,制得超疏水、超亲油性海绵基石墨烯吸油材料(Yue Liu, Junkui Ma,Tao Wu,et al.Cost-effective reduced grapheme oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent[J].ACS Applied materials & interfaces,2013,5(20):10018-10026.)。其对三氯甲烷的最大饱和吸附量达到160g/g。上述聚合物基石墨烯吸油材料油水选择性好、吸油倍率高,远远超过常规的本征合成吸油树脂材料,受到人们关注。然而,这些吸油材料的吸油过程仍属间歇功能操作,尚无法实现油水体系的连续高效吸附与分离,工业上规模应用受到限制。
技术问题
现有吸油材料的吸油过程仍属间歇功能操作,尚无法实现油水体系的连续高效吸附与分离,工业上规模应用受到限制。
技术解决方案
设计一种吸油中空纤维多孔膜的制备方法,该制备方法以石墨烯为表面吸附层,以中空纤维多孔膜为基质层,并采用如下制备工艺:
(1).配置石墨烯分散液;将0.1-1g石墨烯与200-1000ml分散剂混合,超声波分散10-50min,配制成石墨烯分散液;其中,石墨烯的厚度小于10nm,直径为0.1-5μm;分散剂为无水乙醇、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺或二甲基乙酰胺中的一种;
(2).制备吸油中空膜;首先将聚合物中空纤维多孔膜制成组件,浸没于步骤⑴所配置的石墨烯分散液中,在0.2-0.8bar负压下,死端抽滤5-30min,然后将该膜放置在空气中自然干燥,待中空纤维多孔膜表面多余的石墨烯脱落后,放入负压0.1MPa真空烘箱中,常温下干燥6-12h;所述聚合物中空纤维多孔膜是指聚氯乙烯中空纤维膜、聚偏氟乙烯中空纤维膜、聚丙烯中空纤维膜或聚丙烯腈中空编织管;所述石墨烯分散液温度为20-30℃;
(3).石墨烯与中空纤维多孔膜之间界面结合牢度强化;通过两种处理法之一强化石墨烯与中空纤维多孔膜两者之间的界面结合牢度:①溶剂处理法,首先配置20-100wt%的溶剂水溶液,然后将步骤⑵所制备的吸油中空纤维多孔膜浸没于该溶剂水溶液中1-20s,迅速取出放入凝固浴中固化,即制得所述吸油中空纤维多孔膜;所述溶剂为二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜或二甲苯;所述凝固浴介质为水;②稀溶液处理法,首先配置稀溶液,然后将步骤⑵所制备的吸油中空纤维多孔膜浸没于该稀溶液中,在0.2-0.8bar负压下抽滤3-20s,迅速取出放入凝固浴中固化,即制得所述吸油中空纤维多孔膜;所述稀溶液为稀的聚合物溶液,聚合物材料质量占稀溶液总质量的0.5-6%,添加剂质量占稀溶液总质量的0-12%,溶剂质量占稀溶液总质量的82-99%,各组分之和为100%;所述聚合物为聚氯乙烯、 聚偏氟乙烯、聚丙烯或聚丙烯腈;所述溶剂为二甲基甲酰胺、二甲基乙酰胺、四氢呋喃或十氢萘;所述凝固浴介质为所述溶剂的水溶液或水。
有益效果
与现有技术相比,本发明吸油中空纤维多孔膜具有连续吸油与分离功能,且其吸油比表面积大,吸油速度快、效率高,油品易回收;本发明吸油中空纤维多孔膜可以根据需要将其加工成各种形态和用途的制品,在治理受油性有机物污染的水域时,可以悬浮于油水界面处吸油,拓宽了其应用范围和领域,并且本发明方法工艺简单,成本低廉,工业化实施容易,具有良好的经济和社会效益前景。
本发明最佳实施方式
实施例1
(1)配置石墨烯分散液:在容器中加入800mL分散剂二甲基乙酰胺和0.24g石墨烯,超声波分散处理30min,制得均匀的石墨烯分散液。
(2)制备吸油中空膜:将聚丙烯腈中空编织管制成组件,浸没于温度为25℃的石墨烯分散液中,在0.8bar负压下死端过滤10min,然后将该膜放置在空气中自然干燥,待中空纤维多孔膜表面多余石墨烯脱落后,放入负压0.1MPa真空烘箱中,于常温下干燥10h。
(3)吸油中空膜表面处理:首先配置稀溶液,将占稀溶液总质量1%聚丙烯腈、占稀溶液总质量6%添加剂、占稀溶液总质量93%二甲基乙酰胺混合,在70℃搅拌1h,形成均一透明的溶液,然后将步骤⑵制备的吸油中空膜浸入稀溶液中,在0.8bar负压下抽滤7s,迅速取出放入水中固化即得。
性能检验:该成品中空纤维膜的水进入压力为0.16bar,在0.1bar下测得其煤油通量为12733L/m2·h。
本发明的实施方式
下面结合实施例及附图进一步叙述本发明:
本发明设计的吸油中空纤维多孔膜(以下简称中空膜)的制备方法(以下简称制备方法)以石墨烯为表面吸附层、以中空纤维多孔膜为基质层,采用如下工艺过程制备:
⑴配置石墨烯分散液;将0.1-1g石墨烯与200-1000ml分散剂混合,超声波分散10-50min,配制成石墨烯分散液;其中,所述石墨烯的厚度小于10nm,直径为0.1-5μm;所述分散剂为无水乙醇、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺或二甲基乙酰胺;
⑵制备吸油中空膜;首先将聚合物中空纤维多孔膜制成组件,浸没于步骤⑴所配置的 石墨烯分散液中,在0.2-0.8bar负压下死端抽滤5-30min,然后将该膜放置在空气中自然干燥,待中空纤维多孔膜表面多余的石墨烯脱落后,放入负压0.1MPa真空烘箱中,于常温下干燥6-12h;所述石墨烯分散液温度为20-30℃;
⑶石墨烯与中空纤维多孔基膜之间界面结合牢度强化;通过两种处理法之一来强化石墨烯与中空纤维多孔(基)膜两者之间的界面结合牢度:①溶剂处理法,首先配置20-100wt%的溶剂水溶液,然后将步骤⑵所制备的吸油中空膜浸没于溶剂水溶液中1-20s,迅速取出放入凝固浴中固化,即制得所述吸油中空膜;其中,所述溶剂为二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜或二甲苯中的一种;所述凝固浴介质为水;②稀溶液处理法,首先配置稀溶液,然后将步骤⑵所制备的吸油中空膜浸没于该稀溶液中,在0.2-0.8bar负压下抽滤3-20s,迅速取出,放入凝固浴中固化,即制得所述吸油中空膜;所述稀溶液为稀的聚合物溶液,其中,聚合物材料质量占稀溶液总质量的0.5-6%,添加剂质量占稀溶液总质量的0-12%,溶剂质量占稀溶液总质量的82-99%,各组分之和为100%;所述聚合物材料为聚氯乙烯、聚偏氟乙烯、聚丙烯或聚丙烯腈;所述溶剂为二甲基甲酰胺、二甲基乙酰胺、四氢呋喃或十氢萘中的一种,所述凝固浴介质为所述溶剂的水溶液或水。
本发明制备方法中用于分散石墨烯的分散剂包括无水乙醇、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺或二甲基乙酰胺等;所述分散剂优选无水乙醇。
为保证高效吸油与分离,本发明制备方法的进一步特征是,所述中空纤维多孔膜规格为:孔径范围0.1-10μm,孔隙率大于50%;所述中空纤维编织管规格为:编织节距400-600μm。
依据本发明制备方法可以制得本发明所述的吸油中空膜。该吸油中空膜不仅具有吸油率高的功能,而且具有连续吸油功能,同时还具有油水分离功能。本发明制备方法所得中空纤维多孔膜在所处理油品中不溶胀。所述处理油品主要为甲苯、三氯甲烷等油性低分子有机液体或煤油、柴油等部分烃类混合物。
本发明制备方法所制得的吸油中空膜具有连续吸油功能的原理之一是:采用溶剂水溶液处理步骤⑵所制得的吸油中空膜表面时,由于所述溶剂为中空纤维多孔膜聚合物材料的良溶剂,吸油中空膜与溶剂水溶液接触时,溶剂会对中空纤维膜表面孔溶胀溶解,在凝固浴中重新固化的同时,可将石墨烯嵌入中空纤维膜孔中,从而提高了石墨烯与中空纤维膜之间的界面结合牢度。
本发明制备方法所制得的吸油中空膜具有连续吸油功能的原理之二是:采用稀溶液处理步骤⑵所制得的吸油中空膜表面时,由于所述稀溶液为稀的聚合物溶液,具有一定粘性,可 将石墨烯牢固地粘结在吸油中空膜表面,同时保证石墨烯裸露在基质层的表面,从而提高了石墨烯与吸油中空膜之间的界面结合牢度。
本发明制备方法所制得的吸油中空膜以疏水性石墨烯为吸附层、亲油(非溶胀)性中空纤维多孔膜为基质层,将其制成膜组件放入油/水溶液中,一端密封,另一端提供适宜的负压,石墨烯吸附层起吸油拒水的作用,负压为油品的连续输送提供动力,其连续吸油与分离的传质机理为油品被吸油中空纤维膜外表面的石墨烯优先吸附,通过负压抽吸使油品穿过中空纤维多孔膜壁,沿其中空管道输送至储油装置,使其对油品的吸附与脱附同时进行。
本发明未述及之处适用于现有技术。下面给出具体实施例,以进一步具体详细说明本发明,但本申请权利要求保护范围不受具体实施例的限制:
实施例1
(1)配置石墨烯分散液:在容器中加入800mL分散剂二甲基乙酰胺和0.24g石墨烯,超声波分散处理30min,制得均匀的石墨烯分散液。
(2)制备吸油中空膜:将聚丙烯腈中空编织管制成组件,浸没于温度为25℃的石墨烯分散液中,在0.8bar负压下死端过滤10min,然后将该膜放置在空气中自然干燥,待中空纤维多孔膜表面多余石墨烯脱落后,放入负压0.1MPa真空烘箱中,于常温下干燥10h。
(3)吸油中空膜表面处理:首先配置稀溶液,将占稀溶液总质量1%聚丙烯腈、占稀溶液总质量6%添加剂、占稀溶液总质量93%二甲基乙酰胺混合,在70℃搅拌1h,形成均一透明的溶液,然后将步骤⑵制备的吸油中空膜浸入稀溶液中,在0.8bar负压下抽滤7s,迅速取出放入水中固化即得。
性能检验:该成品中空纤维膜的水进入压力为0.16bar,在0.1bar下测得其煤油通量为12733L/m2·h。
实施例2
(1)配置石墨烯分散液:在容器中加入600mL分散剂无水乙醇和0.3g石墨烯,超声波分散处理30min,制得均匀的石墨烯分散液。
(2)制备吸油中空膜:将聚氯乙烯中空纤维膜制成组件,浸没于温度为20℃的石墨烯分散液中,在0.6bar负压下死端过滤30min,然后将该膜放置在空气中自然干燥,待中空纤维多孔膜表面多余石墨烯脱落后,放入负压0.1MPa真空烘箱中,于常温下干燥12h。
(3)吸油中空膜表面处理:将步骤⑵制备的吸油中空膜浸入80wt%二甲苯水溶液中,3s后取出,立即放入水中固化即得。
性能检验:该成品中空纤维膜的水进入压力为0.65bar,在0.56bar下测得其煤油通量为126.32L/m2·h。
实施例3
(1)配置石墨烯分散液:在容器中加入800mL分散剂无水乙醇和0.32g石墨烯,超声波分散处理35min,制得均匀的石墨烯分散液。
(2)制备吸油中空膜:将聚偏氟乙烯中空纤维膜制成组件,浸没于温度为20℃的石墨烯分散液中,在0.8bar负压下死端过滤20min,然后将该膜放置在空气中自然干燥,待中空纤维多孔膜表面多余石墨烯脱落后,放入负压0.1MPa真空烘箱中,于常温下干燥12h。
(3)吸油中空膜表面处理:将步骤⑵制备的吸油中空膜浸入100wt%二甲基乙酰胺溶液中,1s后取出,立即放入水中固化即得。
性能检验:该成品中空纤维膜的水进入压力为0.6bar,在0.44bar下测得其煤油通量为88.24L/m2·h。
实施例4
(1)配置石墨烯分散液:在容器中加入500mL分散剂无水乙醇和0.20g石墨烯,超声波分散处理20min,制得均匀的石墨烯分散液。
(2)制备吸油中空膜:将聚丙烯中空纤维膜制成组件,浸没于温度为20℃的石墨烯分散液中,在0.8bar负压下死端过滤20min,将膜放置在空气中自然干燥。
(3)吸油中空膜表面处理:首先配置稀溶液,将占稀溶液总质量1%聚丙烯、占稀溶液总质量99%十氢萘混合,在180℃搅拌1h,形成均一透明的溶液。然后将步骤⑵制备的吸油中空膜浸入稀溶液中,在0.8bar负压下抽滤7s,迅速取出放入乙醇中固化即得。
性能检验:该成品中空纤维膜的水进入压力为1.3bar,在0.84bar下测得其煤油通量为1398.86L/m2·h。
本发明对实施例1-4所制得的吸油中空膜进行了连续吸附油品及油水分离性能测试:所用连续吸油装置是公知的普通的膜过滤装置(参见图1)。首先将吸油中空膜制成膜组件3悬浮于煤油2与水1的界面处,由循环水式真空泵7提供适宜的负压对油水进行抽吸;油品被吸油中空纤维膜外表面的石墨烯优先吸附,负压抽吸使其脱附,同时穿过中空纤维多孔膜壁,使其沿中空管道输送,再依次经过压力表4和阀门5,输送至储液罐6中。储液罐6与循环水式真空泵7管路连接。
测定吸油中空纤维膜煤油通量之前,首先要测定其水进入的临界压力,然后在低于临界 压力条件下,测定其煤油通量,以保证吸油中空膜只吸油不吸水。测试结果如表1所示(所述连续吸油装置测试说明了吸油中空膜可在连续吸附油品的同时进行油水分离,其可实现吸油中空膜的连续吸油;而吸油中空膜煤油通量表(表1)表征了吸油中空膜具有连续吸油功能。
表1 实施例所制得的吸油中空膜的煤油通量
Figure PCTCN2014089681-appb-000001
工业实用性
该制备方法从材料吸油过程出发,以超疏水、亲油性石墨烯为表面吸附层,以亲油(非溶胀)性聚合物中空纤维多孔膜为基质层,制备的吸油中空纤维多孔膜集油品吸附性能和油水分离功能于一体,具有连续吸油拒水和连续油水分离特点,同时还可加工制成多种形态的制品,并且工艺过程简单,成本低,满足工业实用性要求。
依据本发明制备方法制得的吸油中空膜,不仅具有吸油率高的功能,而且具有连续吸油功能,同时还具有油水分离功能。本发明制备方法所得中空纤维多孔膜在所处理油品中不溶胀。所述处理油品主要为甲苯、三氯甲烷等油性低分子有机液体或煤油、柴油等部分烃类混合物。
附图说明
图1为本发明制备方法所制得的吸油中空纤维多孔膜连续吸油试验装置结构示意图。

Claims (4)

  1. 一种吸油中空纤维多孔膜的制备方法,该制备方法以石墨烯为表面吸附层,以中空纤维多孔膜为基质层,并采用如下制备工艺:
    (1).配置石墨烯分散液;将0.1-1g石墨烯与200-1000ml分散剂混合,超声波分散10-50min,配制成石墨烯分散液;其中,石墨烯的厚度小于10nm,直径为0.1-5μm;分散剂为无水乙醇、N-甲基吡咯烷酮、四氢呋喃、二甲基甲酰胺或二甲基乙酰胺中的一种;
    (2).制备吸油中空膜;首先将聚合物中空纤维多孔膜制成组件,浸没于步骤⑴所配置的石墨烯分散液中,在0.2-0.8bar负压下,死端抽滤5-30min,然后将该膜放置在空气中自然干燥,待中空纤维多孔膜表面多余的石墨烯脱落后,放入负压0.1MPa真空烘箱中,常温下干燥6-12h;所述聚合物中空纤维多孔膜是指聚氯乙烯中空纤维膜、聚偏氟乙烯中空纤维膜、聚丙烯中空纤维膜或聚丙烯腈中空编织管;所述石墨烯分散液温度为20-30℃;
    (3).石墨烯与中空纤维多孔膜之间界面结合牢度强化;通过以下两种处理法之一强化石墨烯与中空纤维多孔膜两者之间的界面结合牢度:①溶剂处理法,首先配置20-100wt%的溶剂水溶液,然后将步骤⑵所制备的吸油中空纤维多孔膜浸没于该溶剂水溶液中1-20s,迅速取出放入凝固浴中固化,即制得所述吸油中空纤维多孔膜;所述溶剂为二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜或二甲苯;所述凝固浴介质为水;②稀溶液处理法,首先配置稀溶液,然后将步骤⑵所制备的吸油中空纤维多孔膜浸没于该稀溶液中,在0.2-0.8bar负压下抽滤3-20s,迅速取出放入凝固浴中固化,即制得所述吸油中空纤维多孔膜;所述稀溶液为稀的聚合物溶液,聚合物材料质量占稀溶液总质量的0.5-6%,添加剂质量占稀溶液总质量的0-12%,溶剂质量占稀溶液总质量的82-99%,各组分之和为100%;所述聚合物为聚氯乙烯、聚偏氟乙烯、聚丙烯或聚丙烯腈;所述溶剂为二甲基甲酰胺、二甲基乙酰胺、四氢呋喃或十氢萘;所述凝固浴介质为所述溶剂的水溶液或水。
  2. 根据权利要求1所述吸油中空纤维多孔膜的制备方法,其特征在于所述中空纤维多孔膜规格为:孔径范围为0.1-10μm,孔隙率大于50%;所述中空纤维编织管规格为:编织节距400-600μm。
  3. 一种吸油中空纤维多孔膜,该中空纤维多孔膜根据权利要求1或2所述吸油中空纤维多孔膜的制备方法制备而得。
  4. 根据权利要求3所述吸油中空纤维多孔膜,其特征在于所述中空纤维多孔膜在所处理的油品中不溶胀;所处理油品为甲苯、三氯甲烷、煤油或柴油。
PCT/CN2014/089681 2014-02-28 2014-10-28 一种吸油中空纤维多孔膜的制备方法 WO2015127792A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA2898815A CA2898815A1 (en) 2014-02-28 2014-10-28 A preparation method of an oil-absorbing hollow fiber porous membrane
JP2016504481A JP6076536B2 (ja) 2014-02-28 2014-10-28 吸油中空繊維多孔膜の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410070073.8 2014-02-28
CN201410070073.8A CN103801274B (zh) 2014-02-28 2014-02-28 一种吸油中空纤维多孔膜的制备方法

Publications (1)

Publication Number Publication Date
WO2015127792A1 true WO2015127792A1 (zh) 2015-09-03

Family

ID=50698948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089681 WO2015127792A1 (zh) 2014-02-28 2014-10-28 一种吸油中空纤维多孔膜的制备方法

Country Status (4)

Country Link
JP (1) JP6076536B2 (zh)
CN (1) CN103801274B (zh)
CA (1) CA2898815A1 (zh)
WO (1) WO2015127792A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106759198A (zh) * 2017-03-02 2017-05-31 中国科学技术大学 溢油回收装置及方法
CN113363668A (zh) * 2021-06-08 2021-09-07 浙江理工大学 具有准分子紫外光辐照修饰的石墨烯负载玻璃纤维膜及其制备方法
WO2021255758A1 (en) * 2020-06-15 2021-12-23 Log 9 Materials Scientific Private Limited High gravimetric sorption capacity oil/chemical/dye sorbent pads and a method of manufacturing the same
CN114990683A (zh) * 2022-06-06 2022-09-02 华北电力大学(保定) 石墨烯涂层不锈钢阵列微孔纤维及其制备方法
CN115779700A (zh) * 2023-02-07 2023-03-14 天津膜天膜科技股份有限公司 快速吸油中空纤维膜及其制备方法和应用

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103801274B (zh) * 2014-02-28 2015-07-08 天津工业大学 一种吸油中空纤维多孔膜的制备方法
CN104128166B (zh) * 2014-07-22 2016-04-06 天津工业大学 一种中空管状吸油材料及其制备方法
CN104313552A (zh) * 2014-10-22 2015-01-28 湖南元素密码石墨烯研究院(有限合伙) 一种化学镍-石墨烯防锈涂层的制备方法
CN104525098A (zh) * 2014-12-04 2015-04-22 常州大学 一种空心铝硅球吸附材料的制备方法
CN105080356B (zh) * 2015-08-04 2018-01-19 天津工业大学 疏水亲油中空纤维复合膜及其制备方法
CN105251459A (zh) * 2015-11-05 2016-01-20 南京理工大学 一种高吸油石墨烯复合材料的制备方法
CN105544019A (zh) * 2015-12-16 2016-05-04 华南理工大学 一种高吸油聚丙烯腈中空活性碳纤维及其制备方法
CN106757531B (zh) * 2016-12-08 2019-10-11 东南大学 一种采用过滤膜制备石墨烯基中空纤维的方法
CN107349802A (zh) * 2017-07-04 2017-11-17 联合环境技术(厦门)有限公司 一种加强型石墨烯改性pvdf中空纤维膜及其制备方法
CN108179732A (zh) * 2017-12-18 2018-06-19 天津膜天膜科技股份有限公司 快速、高效的水上溢油回收系统及其使用方法
CN109095550A (zh) * 2018-07-25 2018-12-28 深圳全钰环保科技有限公司 垃圾滤液处理工艺以及垃圾滤液处理系统
CN110182898A (zh) * 2019-07-03 2019-08-30 青岛科技大学 一种油水分离实验装置
CN210528841U (zh) * 2019-08-09 2020-05-15 河南烯力新材料科技有限公司 黏着结构与电子装置
CN112221478A (zh) * 2020-10-09 2021-01-15 哈尔滨工程大学 具有高效油水分离性能的石墨烯吸油纤维及制备方法
CN114824342A (zh) * 2021-01-28 2022-07-29 上海神力科技有限公司 一种石墨极板的制备方法、石墨极板、燃料电池以及车辆
CN113318611B (zh) * 2021-05-31 2022-11-11 天津工业大学 具有持久高抗污染性能中空纤维超滤膜及其制备方法
CN113856244B (zh) * 2021-10-21 2023-03-21 国网浙江省电力有限公司检修分公司 一种具有梯度结构的多孔复合材料及其制备方法和应用
CN113975978B (zh) * 2021-12-10 2023-05-26 江苏巨之澜科技有限公司 一种石墨烯增强光热蒸发膜、膜组件及污水浓缩处理装置
CN114870632B (zh) * 2022-05-12 2024-02-20 浙江师范大学 一种提升印染废水脱色率的耦合膜及其制备方法
CN117019118B (zh) * 2023-10-08 2024-01-05 西安金沃泰环保科技有限公司 一种用于苯系废气的过滤材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102617853A (zh) * 2012-03-27 2012-08-01 大连理工大学 一种泡沫多孔石墨烯/聚吡咯复合吸油材料的制备方法
WO2013062373A1 (en) * 2011-10-26 2013-05-02 Idt International Co., Ltd. Mixture of multi-layered graphene for adsorbing organic material
CN103521199A (zh) * 2013-10-26 2014-01-22 天津工业大学 一种中空管状复合吸油材料的制备方法
CN103801274A (zh) * 2014-02-28 2014-05-21 天津工业大学 一种吸油中空纤维多孔膜的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102580571B (zh) * 2012-03-15 2014-04-16 上海交通大学 一种超高分子量聚乙烯微滤膜的制备方法
CN102600734B (zh) * 2012-03-27 2014-12-10 南京工业大学 增强型氧化石墨烯中空纤维复合膜及其制备方法
CN102671549A (zh) * 2012-04-10 2012-09-19 浙江大学 一种石墨烯基复合分离膜器件的制备方法
GB201214565D0 (en) * 2012-08-15 2012-09-26 Univ Manchester Membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013062373A1 (en) * 2011-10-26 2013-05-02 Idt International Co., Ltd. Mixture of multi-layered graphene for adsorbing organic material
CN102617853A (zh) * 2012-03-27 2012-08-01 大连理工大学 一种泡沫多孔石墨烯/聚吡咯复合吸油材料的制备方法
CN103521199A (zh) * 2013-10-26 2014-01-22 天津工业大学 一种中空管状复合吸油材料的制备方法
CN103801274A (zh) * 2014-02-28 2014-05-21 天津工业大学 一种吸油中空纤维多孔膜的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106759198A (zh) * 2017-03-02 2017-05-31 中国科学技术大学 溢油回收装置及方法
WO2021255758A1 (en) * 2020-06-15 2021-12-23 Log 9 Materials Scientific Private Limited High gravimetric sorption capacity oil/chemical/dye sorbent pads and a method of manufacturing the same
CN113363668A (zh) * 2021-06-08 2021-09-07 浙江理工大学 具有准分子紫外光辐照修饰的石墨烯负载玻璃纤维膜及其制备方法
CN114990683A (zh) * 2022-06-06 2022-09-02 华北电力大学(保定) 石墨烯涂层不锈钢阵列微孔纤维及其制备方法
CN115779700A (zh) * 2023-02-07 2023-03-14 天津膜天膜科技股份有限公司 快速吸油中空纤维膜及其制备方法和应用

Also Published As

Publication number Publication date
JP6076536B2 (ja) 2017-02-08
CN103801274B (zh) 2015-07-08
CN103801274A (zh) 2014-05-21
JP2016515933A (ja) 2016-06-02
CA2898815A1 (en) 2015-08-28

Similar Documents

Publication Publication Date Title
WO2015127792A1 (zh) 一种吸油中空纤维多孔膜的制备方法
Wu et al. Photothermal and Joule heating-assisted thermal management sponge for efficient cleanup of highly viscous crude oil
US10710027B2 (en) Reinforced oil-absorptive membrane material, unit and preparation method thereof
Li et al. Solar-heating crassula perforata-structured superoleophilic CuO@ CuS/PDMS nanowire arrays on copper foam for fast remediation of viscous crude oil spill
Zhang et al. Bioinspired superwettable covalent organic framework nanofibrous composite membrane with a spindle-knotted structure for highly efficient oil/water emulsion separation
CN103521199B (zh) 一种中空管状复合吸油材料的制备方法
Li et al. Facile one-step fabrication of highly hydrophobic, renewable and mechanically flexible sponge with dynamic coating for efficient oil/water separation
Zhang et al. A durable and high-flux composite coating nylon membrane for oil-water separation
WO2015189705A1 (en) Hydrophobic photothermal membranes, devices including the hydrophobic photothermal membranes, and methods for solar desalination
Zhang et al. Robust and durable superhydrophobic polyurethane sponge for oil/water separation
Xu et al. Facile ZIF‐8 functionalized hierarchical micronanofiber membrane for high‐efficiency separation of water‐in‐oil emulsions
CN107158959B (zh) 一种超亲水及水下超疏油多孔复合膜制备方法
Li et al. A versatile hydrogel platform for oil/water separation, dye adsorption, and wastewater purification
Hao et al. In situ reduced graphene oxide-based polyurethane sponge hollow tube for continuous oil removal from water surface
Guan et al. Efficient recovery of highly viscous crude oil spill by superhydrophobic ocean biomass-based aerogel assisted with solar energy
Zhang et al. Fabrication of polystyrene fibers with tunable co-axial hollow tubing structure for oil spill cleanup
Yang et al. Superhydrophobic/superoleophilic modified melamine sponge for oil/water separation
Li et al. A robust air superhydrophilic/superoleophobic diatomite porous ceramic for high-performance continuous separation of oil-in-water emulsion
Zheng et al. Polydimethylsiloxane/carbonized bacterial cellulose sponge for oil/water separation
Bai et al. Recent advances in superwetting materials for separation of oil/water mixtures
Li et al. Surface synthesis of a polyethylene glutaraldehyde coating for improving the oil removal from wastewater of microfiltration carbon membranes
Zhu et al. One-step removal of insoluble oily compounds and water-miscible contaminants from water by underwater superoleophobic graphene oxide-coated cotton
Luo et al. Construction of superhydrophobic ZIF-90/Melamine sponge with highly stable puncture structure for sustainable oil spill removal from seawater
Verma et al. TiS2 Nanoparticle-Anchored Candle-Soot Decorated Carbon Nanofiber-Based Hydrophobic/Oleophilic Membrane for Oil/Water Separation
Li et al. Energy-Optimized Oil Spill Cleanup: Joule-/Solar-Heating Copper Foam for Efficient All-Weather Recovery of Viscous Crude Oil

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016504481

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2898815

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884145

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884145

Country of ref document: EP

Kind code of ref document: A1