WO2015125473A1 - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
WO2015125473A1
WO2015125473A1 PCT/JP2015/000754 JP2015000754W WO2015125473A1 WO 2015125473 A1 WO2015125473 A1 WO 2015125473A1 JP 2015000754 W JP2015000754 W JP 2015000754W WO 2015125473 A1 WO2015125473 A1 WO 2015125473A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
level
voltage
transistor
time
Prior art date
Application number
PCT/JP2015/000754
Other languages
English (en)
French (fr)
Inventor
中山 雅義
村久木 康夫
敬史 圓山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016503977A priority Critical patent/JP6398090B2/ja
Priority to CN201580009550.2A priority patent/CN106062881B/zh
Publication of WO2015125473A1 publication Critical patent/WO2015125473A1/ja
Priority to US15/219,232 priority patent/US10210930B2/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/0064Verifying circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0054Read is performed on a reference element, e.g. cell, and the reference sensed value is used to compare the sensed value of the selected cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/79Array wherein the access device being a transistor

Definitions

  • the present invention relates to a read circuit capable of stable data determination even with different determination currents in a verify operation, which is a read operation for data by detecting a current flowing when a voltage is applied across a memory cell. .
  • the main non-volatile memory is a flash memory, but the rewrite time is on the order of microseconds or milliseconds, which is a factor that hinders the performance improvement of set devices equipped with the non-volatile memory.
  • a resistance change type memory (ReRAM: Resistive Random Access Memory) using a resistance change type element as a memory element.
  • a determination node As a read circuit for determining the data state of a memory cell of a nonvolatile semiconductor memory device such as a ReRAM, a determination node is precharged to a power supply voltage, then discharged through the memory cell, and a determination caused by the amount of current flowing through the memory cell
  • a method of amplifying a voltage difference between a node voltage and a reference voltage to a logic level and determining data operates at a relatively low voltage and at a high speed, and is therefore employed as a read circuit of a nonvolatile semiconductor memory device.
  • the determination resistance during the verify operation is different from the determination resistance during the read operation, when the read circuit is used in all the operations of the read operation and the verify operation, the voltage transition of the determination node during discharge is Depending on the operation mode, the timing for amplifying the voltage difference needs to be optimal in each mode, but there is a problem that it is difficult to design such a timing generation circuit.
  • a mirror circuit is added separately from the precharge circuit for the decision node, and the operation circuit is switched between the read operation and the verify operation, so that the amplification timing is substantially the same regardless of the operation mode.
  • Patent Document 1 A configuration has been proposed (Patent Document 1). However, in such a configuration, a mirror circuit is newly required, and there is a problem that increases the circuit area.
  • Patent Document 2 a configuration that uses a replica circuit as a timing generation circuit
  • Patent Document 3 a configuration that enables operation at a constant amplification timing regardless of the operation mode by switching the capacitive load of the determination node in the operation mode
  • the present invention has been made in view of the above problems, and relates to a nonvolatile semiconductor memory device including a read circuit that determines data by detecting a current that flows when a voltage is applied across a memory cell.
  • An object of the present invention is to provide a non-volatile semiconductor memory device equipped with a read circuit that does not impair the high-speed read operation and the determination accuracy without increasing the circuit scale even if the determination current differs between the operation and the verify operation.
  • the present invention has taken the following solutions.
  • a nonvolatile semiconductor memory device includes at least a memory cell including first and second terminals, a reference cell including at least third and fourth terminals, the first terminal, and the third terminal.
  • a readout circuit connected to a terminal; a first transistor connected to the first terminal; a second transistor connected to the third terminal; and a gate of the first transistor and the first transistor The gates of the two transistors are connected in common, and are electrically connected between the gate of the first transistor, the gate of the second transistor, and the third terminal or the fourth terminal. Is equipped with a switch for short-circuiting and disconnecting.
  • the amplification timing can be made substantially the same in the read operation and the verify operation, and both the high speed of the read operation and the determination accuracy can be achieved with a small circuit configuration. Further, the bit line applied voltage in the LR verify operation is lowered. Therefore, a nonvolatile semiconductor memory device that can reduce current consumption can be provided.
  • FIG. 1 is a circuit diagram of a nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a memory cell using the resistance change element according to the first embodiment of the present invention.
  • FIG. 3 is a circuit diagram of another memory cell using the resistance change element according to the first embodiment of the present invention.
  • FIG. 4 is a circuit diagram of a reference cell according to the first embodiment of the present invention.
  • FIG. 5 is a circuit diagram of another reference cell according to the first embodiment of the present invention.
  • FIG. 6 is a circuit diagram of the switch circuit according to the first embodiment of the present invention.
  • FIG. 7 is a circuit diagram of a determination circuit according to the first embodiment of the present invention.
  • FIG. 1 is a circuit diagram of a nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a memory cell using the resistance change element according to the first embodiment of the present invention.
  • FIG. 3 is a circuit
  • FIG. 8 is a circuit diagram of a control circuit according to the first embodiment of the present invention.
  • FIG. 9 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • FIG. 10 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • FIG. 11 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • FIG. 12 is a circuit diagram of a nonvolatile semiconductor memory device according to the second embodiment of the present invention.
  • FIG. 13 is a circuit diagram of an equalize circuit according to the second embodiment of the present invention.
  • FIG. 14 is a circuit diagram of a control circuit according to the second embodiment of the present invention.
  • FIG. 15 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the second embodiment of the present invention.
  • FIG. 16 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the second embodiment of the present invention.
  • FIG. 17 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the second embodiment of the present invention.
  • FIG. 18 is a circuit diagram of a nonvolatile semiconductor memory device according to the third embodiment of the present invention.
  • FIG. 19 is a circuit diagram of a switch circuit according to the third embodiment of the present invention.
  • FIG. 20 is a circuit diagram of a control circuit according to the third embodiment of the present invention.
  • FIG. 21 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • FIG. 22 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • FIG. 23 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • FIG. 24 is a circuit diagram of a nonvolatile semiconductor memory device according to the fourth embodiment of the present invention.
  • FIG. 25 is a circuit diagram of an equalize circuit according to the fourth embodiment of the present invention.
  • FIG. 21 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • FIG. 22 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory
  • FIG. 26 is a circuit diagram of a nonvolatile semiconductor memory device according to the fifth embodiment of the present invention.
  • FIG. 27 is a circuit diagram of a clamp voltage switching circuit according to the fifth embodiment of the present invention.
  • FIG. 28 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • FIG. 29 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • FIG. 30 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • FIG. 31 is a circuit diagram of a nonvolatile semiconductor memory device according to the sixth embodiment of the present invention.
  • FIG. 32 is a circuit diagram of a nonvolatile semiconductor memory device according to the seventh embodiment of the present invention.
  • FIG. 33 is a circuit diagram of a clamp voltage switching circuit according to the seventh embodiment of the present invention.
  • FIG. 34 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the seventh and eighth embodiments of the present invention.
  • FIG. 35 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the seventh and eighth embodiments of the present invention.
  • FIG. 36 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the seventh and eighth embodiments of the present invention.
  • FIG. 37 is a circuit diagram of a nonvolatile semiconductor memory device according to the eighth embodiment of the present invention.
  • FIG. 38 is a circuit diagram of an equalize circuit according to the eighth embodiment of the present invention.
  • FIG. 39 is a circuit diagram of an equalize circuit according to the eighth embodiment of the present invention.
  • FIG. 1 is a circuit diagram of a nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • Reference numeral 100 denotes a read unit of 1-bit data of the nonvolatile semiconductor memory device. If the read unit is 16-bit data, 16 pieces are arranged, and control signals and the like are commonly connected to each read unit.
  • Reference numeral 101 denotes a memory cell (resistance variable nonvolatile memory cell). In this figure, the case where one memory cell 101 is arranged is shown for simplification, but the operation described below is the same even when a plurality of memory cells are arranged.
  • Reference numeral 102 is a reference cell.
  • Reference numerals 103 and 104 denote PMOS transistors for applying the power supply voltage VDD to the data node SDAT and the reference node SREF as determination nodes.
  • Reference numeral 111 denotes a switch circuit between pg and SREF.
  • a determination circuit 107 includes an amplifier that performs latching by amplifying the voltage difference between SDAT and SREF to a logic level.
  • a control circuit 112 outputs 100 control signals c and d in response to the VERIF and SENB signals.
  • FIG. 2 is a circuit diagram of a memory cell using the resistance change element according to the first embodiment of the present invention.
  • FIG. 2 shows a configuration example of the memory cell 101.
  • This type includes one NMOS selection element 201 and a nonvolatile resistance change element 202, and the nonvolatile resistance change element is connected to a bit line. Here, it is connected to BL_DAT.
  • the other of the memory cells is connected to a ground power source.
  • FIG. 3 is a circuit diagram of another memory cell using the resistance change element according to the first embodiment of the present invention.
  • FIG. 3 shows a configuration example of another memory cell 101.
  • BL_DAT The other of the memory cells is connected to a ground power source.
  • the selection element may be a diode.
  • FIG. 4 is a circuit diagram of the reference cell according to the first embodiment of the present invention.
  • FIG. 4 shows a configuration example of the reference cell 102.
  • This type includes three NMOS selection elements (401, 403, 405) and three fixed resistance elements (402: Ref_RR, 404: Ref_LR, 406: Ref_HR), and the fixed resistance elements are connected to the bit lines.
  • Ref_RR is a fixed resistance element selected in the read operation
  • Ref_LR is a fixed resistance element selected in the verify operation of the memory cell in the low resistance state
  • Ref_HR is a fixed resistance selected in the verify operation of the memory cell in the high resistance state. It is an element.
  • the fixed resistance elements (Ref_RR, Ref_LR, Ref_HR) are made of, for example, a polysilicon film, and the resistance value is adjusted by the width and length of the film.
  • FIG. 5 is a circuit diagram of another reference cell according to the first embodiment of the present invention. This includes three NMOS selection elements (501, 503, 505) and three fixed resistance elements (502: Ref_RR, 504: Ref_LR, 506: Ref_HR), and the selection elements are connected to the bit lines. Similar to 101, the configuration of 102 may be as shown in FIG. 5, and the selection element may be a diode.
  • At least one end of at least two resistors is connected in parallel to the third terminal or the fourth terminal, and the other end of the resistor is Depending on the first operation mode or the second operation mode, when one end of the resistor is connected to the third terminal, it is connected to the fourth terminal, or one end of the resistor is connected to the fourth terminal. When connected, it may be electrically connected to the third terminal.
  • FIG. 6 is a circuit diagram of the switch circuit according to the first embodiment of the present invention.
  • FIG. 6 shows the configuration of the switch circuit 111.
  • an operation of short-circuiting or disconnecting pg and SREF is performed.
  • FIG. 7 is a circuit diagram of a determination circuit according to the first embodiment of the present invention.
  • FIG. 7 shows the configuration of the determination circuit 107.
  • SDAT and SREF are input to a CMOS differential amplifier circuit connected in a cross couple, and the latch signal LAT is in a logic 'high' level (hereinafter, 'H' level) state.
  • 'H' level logic 'high' level
  • the voltage difference between SDAT and SREF is amplified to a logic level, taken into the latch circuit 802 by the output signal of the delay circuit 801 that delays LAT, and output as the sense amplifier output SAOUT.
  • FIG. 8 is a circuit diagram of a control circuit according to the first embodiment of the present invention.
  • FIG. 8 shows the configuration of the control circuit 112.
  • Control signals c and d are output in response to the SENB and VERIF signals.
  • the control signal c is connected to the switch circuit 111, and the control signal d is connected to the gates of the PMOS transistors 103 and 104.
  • a first control terminal is connected to the gate of the first transistor, and a second control terminal for controlling short-circuiting and disconnection of the switch is connected to the switch. The control of the first and second control terminals may be switched.
  • FIG. 9 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • VERIF is set to a logic 'low' level (hereinafter, 'L' level), and WLRef_L and WLRef_H are set to non-selection levels (here, 'L' level).
  • WLRef_R and WL are changed to a selected level (here, “H” level), and SENB is set to “L” level.
  • the control signals a and b transition to the ‘H’ level and the d transitions to the ‘L’ level, the PMOS transistors 103 and 104 operate as precharge transistors, and precharge of SDAT and SREF is started.
  • the control signal c is fixed at the 'L' level.
  • SDAT, SREF and BL_DAT, BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the SDAT voltage decreases more quickly than the SREF voltage.
  • Time t3 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • FIG. 10 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • VERIF is set to the 'H' level
  • WLRef_R and WLRef_H are set to the non-selection level.
  • WLRef_L and WL are changed to the selected level, and SENB is changed to the “L” level, so that the control signals a and c are changed to the “H” level, and the control signal d becomes high impedance.
  • the gates pg of the PMOS transistors 103 and 104 have the same voltage as SREF. Thereby, the PMOS transistors 103 and 104 operate as mirror transistors, and charge SDAT, SREF, BL_DAT, and BL_REF to a constant voltage.
  • the control signal b is fixed at the 'L' level.
  • SDAT, SREF, BL_DAT, and BL_REF are at a constant voltage level determined by the operating point.
  • the PMOS transistors 103 and 104 operate as mirror transistors. As a result, currents of the same level flow in the memory cell 101 and the reference cell 102, and therefore a voltage difference between SDAT and SREF is generated due to a resistance difference between the memory cell and the reference cell.
  • the SDAT voltage is lower than the SREF voltage.
  • the SDAT voltage is higher than the SREF voltage.
  • Time t3 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_L are set to the non-selection level, LAT is set to the 'L' level, and the amplifier is stopped.
  • the PMOS transistors 103 and 104 are not operated as precharge transistors during the LR verify operation, but are operated as mirror transistors, so that the timing at time t3 can be set to the same timing as during the read operation. it can.
  • FIG. 11 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the first embodiment of the present invention.
  • VERIF is set to the “H” level
  • WLRef_R and WLRef_L are set to the non-selection level.
  • WLRef_H and WL are changed to the selected level, and SENB is set to the “L” level, whereby the control signals a and c are changed to the “H” level, and the control signal d becomes high impedance.
  • the gates pg of the PMOS transistors 103 and 104 have the same voltage as SREF. Accordingly, the PMOS transistors 103 and 104 operate as mirror transistors, and charge SDAT, SREF, BL_DAT, and BL_REF to a constant voltage during a period from time t1 to time t2.
  • the control signal b is fixed at the 'L' level.
  • SDAT, SREF, BL_DAT, and BL_REF are at a constant voltage level determined by the operating point.
  • the PMOS transistors 103 and 104 operate as mirror transistors. As a result, the same amount of current flows through the memory cell 101 and the reference cell 102, so that a voltage difference between SDAT and SREF occurs due to a resistance difference between the memory cell and the reference cell.
  • the SDAT voltage is lower than the SREF voltage.
  • the SDAT voltage is higher than the SREF voltage.
  • Time t3 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_H are set to the non-selection level, LAT is set to the 'L' level, and the amplifier is stopped.
  • the control circuit includes a first transistor and a second transistor which are PMOS transistors, and the control circuit has a first control terminal connected to the first control terminal in the first operation mode.
  • the first and second transistors are set to energize, the second control terminal is set to cut off the switch, and the first transistor and the second transistor are set to the first voltage at the first terminal and the third terminal.
  • the first control terminal is set to high impedance, and the second control terminal is set to short-circuit the switch.
  • the second transistor is controlled to operate as a mirror transistor that applies a first voltage to the first terminal and the third terminal. It may be.
  • the memory cell includes a memory cell, a reference cell, and a read circuit that determines a data state from a voltage difference caused by a current difference flowing between the memory cell and the reference cell by applying a voltage to the memory cell and the reference cell.
  • One transistor is connected, a second transistor is connected to the reference cell, the first and second transistors operate as precharge transistors in the first operation mode, and operate as mirror transistors in the second operation mode Then, the first and second operation modes may be switched.
  • the PMOS transistors 103 and 104 do not operate as precharge transistors during the HR verify operation, but operate as mirror transistors, so that the timing at time t3 can be set to the same timing as during the read operation. .
  • the present invention may be applied to only one of them.
  • the present invention is applied only to the LR verify operation in which the time from the time t2 to the time t3 is short and the timing generation is difficult.
  • the HR verify operation the PMOS transistors 103 and 104 are operated as precharge transistors as in the read operation. As a result, the current consumption can be reduced because the stationary memory cell and the reference current required when operating as a mirror transistor can be reduced.
  • a memory cell is a resistance change type nonvolatile memory cell, and a read operation for confirming a resistance value after a low resistance operation in a normal read operation and a rewrite operation
  • the low resistance verification operation which is the operation
  • the high resistance verification operation which is the read operation for confirming the high resistance state after the high resistance operation
  • the normal read operation is performed in the first operation mode
  • the second In the operation mode at least one of the high resistance verification operation and the low resistance verification operation may be performed.
  • the switch circuit 111 is provided between the gates pg and SREF, but may be provided between the gates pg and SDAT.
  • the PMOS transistors 103 and 104 may be NMOS transistors, and in that case, the same effect as described in the present embodiment can be obtained by changing the control circuit 112.
  • FIG. 12 is a circuit diagram of a nonvolatile semiconductor memory device according to the second embodiment of the present invention.
  • Reference numeral 100 denotes a 1-bit data read unit of the nonvolatile semiconductor memory device. If the data is 16-bit data, 16 data are arranged, and control signals and the like are commonly connected to each read unit.
  • Reference numeral 101 denotes a memory cell (resistance variable nonvolatile memory cell). In this figure, the case where one memory cell 101 is arranged is shown for simplification, but the operation described below is the same even when a plurality of memory cells are arranged.
  • 102 is a reference cell
  • 103 and 104 are PMOS transistors for applying a voltage to the data node SDAT and the reference node SREF as decision nodes
  • 111 is a switch circuit between pg and SREF.
  • Reference numerals 105 and 106 denote clamp transistors that control the voltage of the bit line BL_DAT and the reference bit line BL_REF to a constant voltage during operation.
  • Reference numeral 107 denotes a determination circuit including an amplifier that performs latching by amplifying the voltage difference between SDAT and SREF to a logic level, and 114 and 115 are discharge transistors of SDAT and SREF.
  • a control circuit 2012 outputs the control signals c and d of 100 according to VERIF, SENB, and EQ signals, and 108 is an equalize circuit.
  • Configuration examples of the memory cell 101, the reference cell 102, the switch circuit 111, and the determination circuit 107 are the same as those in the first embodiment.
  • FIG. 13 is a circuit diagram of an equalize circuit according to the second embodiment of the present invention.
  • FIG. 13 shows the configuration of the equalize circuit 108.
  • SDAT and SREF are equalized or disconnected to the same voltage.
  • FIG. 14 is a circuit diagram of a control circuit according to the second embodiment of the present invention.
  • FIG. 14 shows the configuration of the control circuit 2012.
  • Control signals c and d are output in response to the SENB, EQ, and VERIF signals.
  • FIG. 15 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the second embodiment of the present invention.
  • VERIF is set to the 'L' level
  • CLAMP voltage is set to a constant voltage (VCLAMP).
  • WLRef_L and WLRef_H are set to a non-selection level.
  • the EQ is set to the “H” level.
  • WLRef_R and WL are transited to the selected level, and SENB is set to the 'L' level, so that the control signals a and b transit to the 'H' level.
  • the PMOS transistors 103 and 104 operate as precharge transistors, and precharge of SDAT and SREF starts.
  • the control signal c is fixed at the 'L' level.
  • SENB is set to the “H” level and EQ is set to the “L” level, so that the control signals a and b are changed to the “L” level, and precharge and equalization are stopped.
  • SDAT and SREF are substantially at the VDD level
  • BL_DAT and BL_REF are at the level of VCLAMP ⁇ Vtn when the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • SDAT, SREF and BL_DAT, BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the SDAT voltage decreases more quickly than the SREF voltage.
  • Time t3 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_R are set to a non-selection level
  • EQ is set to ‘H’ level
  • SREF and SDAT are equalized
  • LAT is set to ‘L’ level
  • the amplifier is stopped.
  • FIG. 16 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the second embodiment of the present invention.
  • VERIF is set to the “H” level
  • CLAMP voltage is set to a constant voltage (VCLAMP).
  • WLRef_R and WLRef_H are set to a non-selection level.
  • WLRef_L and WL are shifted to the selected level.
  • the control signals a and c transition to the “H” level, and the control signal d becomes high impedance.
  • the gates pg of the PMOS transistors 103 and 104 have the same voltage as SREF.
  • the PMOS transistors 103 and 104 operate as mirror transistors, and charge SDAT, SREF, BL_DAT, and BL_REF to a constant voltage.
  • the control signal b is fixed at the 'L' level.
  • Equalization is stopped by setting EQ to the “L” level at time t2.
  • SDAT and SREF are constant voltage levels determined by the operating point, and BL_DAT and BL_REF are at the level of VCLAMP ⁇ Vtn, where the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • the PMOS transistors 103 and 104 operate as mirror transistors. As a result, the same amount of current flows through the memory cell 101 and the reference cell 102, so that a voltage difference between SDAT and SREF occurs due to the resistance difference between the memory cell and the reference cell.
  • the SDAT voltage is lower than the SREF voltage.
  • the SDAT voltage is higher than the SREF voltage.
  • Time t3 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_L are set to a non-selection level
  • SENB and EQ are set to ‘H’ level
  • SREF and SDAT are discharged and equalized
  • LAT is set to ‘L’ level
  • the amplifier is stopped.
  • the PMOS transistors 103 and 104 do not operate as precharge transistors during the LR verify operation, but operate as mirror transistors, so that the timing at time t3 can be set to the same timing as during the read operation. .
  • FIG. 17 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the second embodiment of the present invention.
  • VERIF is set to the “H” level
  • CLAMP voltage is set to a constant voltage (VCLAMP).
  • WLRef_R and WLRef_L are set to a non-selection level.
  • WLRef_H and WL are changed to the selected level, and SENB is set to the “L” level, whereby the control signals a and c are changed to the “H” level, and the control signal d becomes high impedance.
  • the gate pg of the PMOS transistors 103 and 104 becomes the same voltage as SREF by the switch circuit 111, and the PMOS transistors 103 and 104 operate as mirror transistors.
  • the PMOS transistors 103 and 104 charge SDAT, SREF, BL_DAT, and BL_REF to a constant voltage during a period from time t1 to time t2.
  • the control signal b is fixed at the 'L' level.
  • Equalization is stopped by setting EQ to the “L” level at time t2.
  • SDAT and SREF are constant voltage levels determined by the operating point, and BL_DAT and BL_REF are at the level of VCLAMP ⁇ Vtn, where the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • the PMOS transistors 103 and 104 operate as mirror transistors, and the same current flows through the memory cell 101 and the reference cell 102. As a result, a voltage difference between SDAT and SREF is generated due to the resistance difference between the memory cell and the reference cell.
  • the SDAT voltage is lower than the SREF voltage.
  • the SDAT voltage is higher than the SREF voltage.
  • Time t3 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_H are set to a non-selection level
  • SENB and EQ are set to ‘H’ level
  • SREF and SDAT are discharged and equalized
  • LAT is set to ‘L’ level
  • the amplifier is stopped.
  • the PMOS transistors 103 and 104 do not operate as precharge transistors during the HR verify operation, but operate as mirror transistors, so that the timing at time t3 can be set to the same timing as during the read operation. .
  • the discharge transistor and the equalize circuit can be operated at a higher speed from time t1 to time t2 than the nonvolatile semiconductor memory device according to the first embodiment.
  • the present invention when operating as a precharge transistor, the present invention is applied only to an LR verify operation in which the time from time t2 to time t3 is short and timing generation is difficult.
  • the PMOS transistors 103 and 104 are operated as precharge transistors as in the read operation. Thereby, since it can reduce from the stationary memory cell and reference current which are required when operating as a mirror transistor, current consumption can be reduced.
  • the switch circuit 111 is provided between the gates pg and SREF, but may be provided between the gates pg and SDAT.
  • the PMOS transistors 103 and 104 may be NMOS transistors. In this case, the same effect as described in the present embodiment can be obtained by changing the control circuit 2012 shown in FIG.
  • FIG. 18 is a circuit diagram of a nonvolatile semiconductor memory device according to the third embodiment of the present invention.
  • Reference numeral 1300 denotes a 1-bit data read unit of the nonvolatile semiconductor memory device. If the data is 16-bit data, 16 data are arranged, and a control signal and the like are commonly connected to each read unit.
  • Reference numeral 101 denotes a memory cell (resistance variable nonvolatile memory cell). In this figure, the case where one memory cell 101 is arranged is shown for simplification, but the operation described below is the same even when a plurality of memory cells are arranged.
  • Reference numeral 102 is a reference cell
  • 1303 and 1304 are PMOS transistors for applying a voltage to the bit line BL_DAT and the reference bit line BL_REF, which are decision nodes
  • 1311 is a switch circuit between pg and BL_REF.
  • Reference numeral 107 denotes a determination circuit including an amplifier that performs latching by amplifying the voltage difference between SDAT and SREF to a logic level.
  • Reference numerals 1314 and 1315 denote precharge transistors of SL_DAT and SL_REF.
  • Reference numerals 1305 and 1306 denote SL_DAT and SL_REF discharge transistors.
  • Reference numeral 1312 denotes a circuit for controlling the control signals b, c and d of the 1300 according to the VERIF and SAEN signals.
  • the memory cell 101, the reference cell 102, and the determination circuit 107 have the same configuration as that described in the first embodiment.
  • FIG. 19 is a circuit diagram of a switch circuit according to the third embodiment of the present invention.
  • FIG. 19 shows the configuration of the switch circuit 1311. In accordance with the control signal c, an operation of short-circuiting or disconnecting pg and BL_REF is performed.
  • FIG. 20 is a circuit diagram of a control circuit according to the third embodiment of the present invention.
  • FIG. 20 shows the configuration of the control circuit 1312. Control signals b, c, and d are controlled according to the SAEN and VERIF signals.
  • FIG. 21 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • VERIF is set to the 'L' level
  • WLRef_L and WLRef_H are set to the non-selection level.
  • WL_Ref_R and WL are changed to the selected level, and SAEN is set to the “H” level, so that the control signals a and b change to the “L” level and d changes to the “H” level, and the precharge is stopped.
  • DIS_SL is set to the “H” level.
  • SL_REF and SL_DAT are discharged by the discharge transistors 1305 and 1306 during the period from time t1 to time t2.
  • BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the BL_DAT voltage decreases more quickly than the BL_REF voltage.
  • the decrease in the BL_DAT voltage is slower than the BL_REF voltage.
  • Time t2 is set to a timing at which the voltage difference between BL_DAT and BL_REF becomes larger than the amplification limit voltage of the amplifier 107.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_R are set to the non-selection level
  • SAEN is set to the 'L' level
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged
  • the LAT is set to the 'L' level to stop the amplifier.
  • FIG. 22 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • VERIF is set to the “H” level
  • WLRef_R and WLRef_H are set to the non-selection level.
  • WLRef_L and WL are changed to the selected level, and SAEN is set to the 'H' level.
  • the control signal b transitions to the ‘L’ level and the control signal c transitions to the ‘H’ level, and the control signal d becomes high impedance.
  • the gates pg of the PMOS transistors 1303 and 1304 have the same voltage as SREF.
  • the precharge is stopped and DIS_SL is set to the “H” level.
  • the control signal b transitions to the “L” level.
  • SL_REF and SL_DAT are discharged by the discharge transistors 1305 and 1306 during the period from time t1 to time t2.
  • BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the gates pg and BL_REF of the PMOS transistors 1303 and 1304 have the same voltage, and the PMOS transistors 1303 and 1304 operate as mirror transistors. As a result, the same amount of current flows through the memory cell 101 and the reference cell 102. Therefore, a voltage difference between BL_DAT and BL_REF is generated due to a resistance difference between the memory cell and the reference cell.
  • the SDAT voltage is lower than the SREF voltage.
  • the SDAT voltage is higher than the SREF voltage.
  • Time t2 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_L are set to the non-selection level, and SAEN is set to the 'L' level.
  • SAEN is set to the 'L' level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged, the LAT is set to ‘L’ level, and the amplifier is stopped.
  • the PMOS transistors 1303 and 1304 do not operate as precharge transistors during the LR verify operation, but operate as mirror transistors, so that the time t2 can be set to the same timing as during the read operation.
  • FIG. 23 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • VERIF is set to the “H” level
  • WLRef_R and WLRef_L are set to the non-selection level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged to VDD.
  • WLRef_H and WL are changed to the selected level, and SAEN is set to the “H” level, so that the control signal b changes to the “L” level, the control signal c changes to the “H” level, and the control signal d is High impedance.
  • the gates pg of the PMOS transistors 1303 and 1304 have the same voltage as SREF.
  • DIS_SL is set to the “H” level.
  • the control signal b transitions to the “L” level.
  • SL_REF and SL_DAT are discharged by the discharge transistors 1305 and 1306 during the period from time t1 to time t2.
  • BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the gates pg and BL_REF of the PMOS transistors 1303 and 1304 have the same voltage, and 1303 and 1304 operate as mirror transistors. As a result, currents of the same level flow in the memory cell 101 and the reference cell 102, so that a voltage difference between BL_DAT and BL_REF is generated due to a resistance difference between the memory cell and the reference cell.
  • the SDAT voltage is lower than the SREF voltage.
  • the SDAT voltage is higher than the SREF voltage.
  • Time t2 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_H are set to the non-selection level
  • SAEN is set to the 'L' level
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged and equalized
  • the LAT is set to the 'L' level and the amplifier is stopped.
  • the PMOS transistors 1303 and 1304 do not operate as precharge transistors during HR verification, but operate as mirror transistors, so that the time t2 can be set to the same timing as during the read operation.
  • the present invention when operating as a precharge transistor, the present invention is applied only to an LR verify operation in which the time from time t1 to time t2 is short and timing generation is difficult.
  • a method is employed in which 1303 and 1304 are operated as precharge transistors similarly to the read operation. As a result, the current consumption can be reduced because it can be reduced from the stationary memory cell and the reference current when operating as a mirror transistor.
  • the switch circuit 1311 is provided between the gate pg and BL_REF, but may be provided between the gate pg and BL_DAT.
  • the PMOS transistors 1303 and 1304 may be NMOS transistors, and in that case, the same effect as described in this embodiment can be obtained by changing the control circuit 1312.
  • FIG. 24 is a circuit diagram of a nonvolatile semiconductor memory device according to the fourth embodiment of the present invention.
  • Reference numeral 1300 denotes a 1-bit data read unit of the nonvolatile semiconductor memory device. If the data is 16-bit data, 16 data are arranged, and a control signal and the like are commonly connected to each read unit.
  • Reference numeral 101 denotes a memory cell (resistance variable nonvolatile memory cell). In this figure, the case where one memory cell 101 is arranged is shown for simplification, but the operation described below is the same even when a plurality of memory cells are arranged.
  • a determination circuit 107 includes an amplifier that performs latching by amplifying the voltage difference between SDAT and SREF to a logic level.
  • Reference numerals 1314 and 1315 denote SL_DAT and SL_REF precharge transistors
  • reference numeral 1312 denotes a circuit for controlling the control signals b, c and d of the 1300 in accordance with the VERIF and SAEN signals.
  • the memory cell 101, the reference cell 102, and the determination circuit 107 have the same configuration as that described in the first embodiment.
  • FIG. 25 is a circuit diagram of an equalize circuit according to the fourth embodiment of the present invention.
  • FIG. 25 shows the configuration of the equalize circuit 1308.
  • an operation of equalizing or disconnecting BL_DAT and BL_REF to the same voltage is performed.
  • FIG. 21 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • VERIF is set to the 'L' level
  • WLRef_L and WLRef_H are set to the non-selection level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged to VDD.
  • WL_Ref_R and WL are changed to the selection level, and SAEN is set to the “H” level, so that the control signals a and b change to the “L” level.
  • EQ is set to ‘L’ level, precharge and equalization are stopped, and DIS_SL is set to ‘H’ level.
  • SL_REF and SL_DAT are discharged by the discharge transistors 1305 and 1306 during the period from time t1 to time t2.
  • BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the BL_DAT voltage decreases more quickly than the BL_REF voltage.
  • the decrease in the BL_DAT voltage is slower than the BL_REF voltage.
  • Time t2 is set to a timing at which the voltage difference between BL_DAT and BL_REF becomes larger than the amplification limit voltage of the amplifier 107.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_R are set to the non-selection level, SAEN is set to the “L” level, and EQ is set to the “H” level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged and equalized, the LAT is set to the ‘L’ level, and the amplifier is stopped.
  • FIG. 22 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • VERIF is set to the “H” level
  • WLRef_R and WLRef_H are set to the non-selection level.
  • WLRef_L and WL are transited to the selected level, and SAEN is set to the “H” level, whereby the control signal b transits to the “L” level and the control signal c transits to the “H” level.
  • the gates pg of the PMOS transistors 1303 and 1304 have the same voltage as SREF.
  • EQ is set to ‘L’ level, precharge and equalization are stopped, and DIS_SL is set to ‘H’ level.
  • the control signal b transitions to the “L” level.
  • SL_REF and SL_DAT are discharged by the discharge transistors 1305 and 1306 during the period from time t1 to time t2.
  • BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the gates pg and BL_REF of the PMOS transistors 1303 and 1304 have the same voltage, and the PMOS transistors 1303 and 1304 operate as mirror transistors.
  • currents of the same level flow in the memory cell 101 and the reference cell 102, so that a voltage difference between BL_DAT and BL_REF is generated due to a resistance difference between the memory cell and the reference cell.
  • the SDAT voltage is lower than the SREF voltage.
  • the SDAT voltage is higher than the SREF voltage.
  • Time t2 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_L are set to the non-selection level, SAEN is set to the “L” level, and EQ is set to the “H” level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged and equalized, the LAT is set to the ‘L’ level, and the amplifier is stopped.
  • the PMOS transistors 1303 and 1304 do not operate as precharge transistors during the LR verify operation, but operate as mirror transistors, so that the time t2 can be set to the same timing as during the read operation.
  • FIG. 23 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the third and fourth embodiments of the present invention.
  • VERIF is set to the “H” level
  • WLRef_R and WLRef_L are set to the non-selection level.
  • WLRef_H and WL are changed to the selected level, and SAEN is set to the 'H' level.
  • the control signal b transitions to the ‘L’ level and the control signal c transitions to the ‘H’ level, and the gates pg of the PMOS transistors 1303 and 1304 have the same voltage as SREF.
  • EQ is set to ‘L’ level, precharge and equalization are stopped, and DIS_SL is set to ‘H’ level.
  • the control signal b transitions to the “L” level.
  • SL_REF and SL_DAT are discharged by the discharge transistors 1305 and 1306 during the period from time t1 to time t2.
  • BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the gates pg and BL_REF of the PMOS transistors 1303 and 1304 have the same voltage, and the PMOS transistors 11303 and 1304 operate as mirror transistors. As a result, the same amount of current flows through the memory cell 101 and the reference cell 102. Therefore, a voltage difference between BL_DAT and BL_REF is generated due to a resistance difference between the memory cell and the reference cell.
  • the SDAT voltage is lower than the SREF voltage.
  • the SDAT voltage is higher than the SREF voltage.
  • Time t2 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_H are set to the non-selection level, SAEN is set to the “L” level, and EQ is set to the “H” level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged and equalized, the LAT is set to the ‘L’ level, and the amplifier is stopped.
  • the PMOS transistors 1303 and 1304 do not operate as precharge transistors during HR verification, but operate as mirror transistors, so that the time t2 can be set to the same timing as during the read operation.
  • the discharge transistor and the equalize circuit can be operated at higher speed than the nonvolatile semiconductor memory device according to the third embodiment.
  • the present invention when operating as a precharge transistor, the present invention is applied only to an LR verify operation in which the time from time t1 to time t2 is short and timing generation is difficult.
  • a method is employed in which 1303 and 1304 are operated as precharge transistors similarly to the read operation. As a result, the current consumption can be reduced because it can be reduced from the stationary memory cell and the reference current when operating as a mirror transistor.
  • the switch circuit 1311 is provided between the gate pg and BL_REF, but may be provided between the gate pg and BL_DAT.
  • the PMOS transistors 1303 and 1304 may be NMOS transistors, and in that case, the same effect as described in this embodiment can be obtained by changing the control circuit 1312.
  • FIG. 26 is a circuit diagram of a nonvolatile semiconductor memory device according to the fifth embodiment of the present invention.
  • Reference numeral 101 denotes a memory cell (resistance variable nonvolatile memory cell).
  • the case where one memory cell 101 is arranged is shown for simplification, but the operation described below is the same even when a plurality of memory cells are arranged.
  • a determination circuit 107 includes an amplifier that performs latching by amplifying a voltage difference between SDAT and SREF to a logic level.
  • 2011 is a circuit that selectively outputs a CLAMP voltage according to signals READ, VERIF_LR, and VERIF_HR.
  • the memory cell 101, the reference cell 102, the determination circuit 107, and the equalize circuit 108 have the same configuration as that described in the first embodiment.
  • FIG. 27 is a circuit diagram of a clamp voltage switching circuit according to the fifth embodiment of the present invention.
  • FIG. 27 shows a configuration of the clamp voltage switching circuit 2011. This is a circuit that selectively outputs clamp voltages VCLAMP_VH, VCLAMP_VR, and VCLAMP_VL in response to signals READ, VERIF_LR, and VERIF_HR, respectively.
  • Each voltage relationship is VCLAMP_VH> VCLAMP_VR> VCLAMP_VL.
  • At least two signals input to the first circuit may be connected to a terminal of any one of the resistors connected in series.
  • FIG. 28 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • READ is set to ‘H’ level
  • VERIF_LR is set to ‘L’ level
  • VERIF_HR is set to ‘L’ level
  • CLAMP voltage is set to a constant voltage (VCLAMP_VR).
  • WLRef_L and WLRef_H are set to a non-selection level.
  • WLRef_R and WL are transitioned to the selected level, and PREB is set to the ‘L’ level to start precharging of SDAT, SREF, BL_DAT, and BL_RED.
  • PREB is set to the “H” level, and the precharge is stopped.
  • SDAT and SREF are substantially at the VDD level
  • BL_DAT and BL_REF are at the level of VCLAMP_VR ⁇ Vtn, where the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • SDAT, SREF and BL_DAT, BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the SDAT voltage decreases more quickly than the SREF voltage.
  • Time t3 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_R are set to the non-selection level, LAT is set to the 'L' level, and the amplifier is stopped.
  • FIG. 29 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • READ is set to ‘L’ level
  • VERIF_LR is set to ‘H’ level
  • VERIF_HR is set to ‘L’ level
  • CLAMP voltage is set to a constant voltage (VCLAMP_VL).
  • WLRef_R and WLRef_H are set to a non-selection level.
  • WLRef_L and WL are transitioned to the selected level, and PREB is set to the ‘L’ level to start precharging of SDAT, SREF, BL_DAT, and BL_REF.
  • PREB is set to the “H” level, and the precharge is stopped.
  • SDAT and SREF are substantially at the VDD level
  • BL_DAT and BL_REF are at the level of VCLAMP_VL ⁇ Vtn, where the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • SDAT, SREF and BL_DAT, BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the SDAT voltage decreases more quickly than the SREF voltage.
  • VCLAMP_VL the voltage of VCLAMP_VL is adjusted so that the SREF decrease rate is substantially equal to the SREF decrease rate during the read operation. For this reason, the timing at time t3 can be made the same as the read operation.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WL_Ref_L are set to the non-selection level, LAT is set to the 'L' level, and the amplifier is stopped.
  • FIG. 30 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • READ is set to the “L” level
  • VERIF_LR is set to the “L” level
  • VERIF_HR is set to the “H” level
  • CLAMP voltage is set to a constant voltage (VCLAMP_VH).
  • WLRef_R and WLRef_L are set to a non-selection level.
  • WLRef_H and WL are transitioned to the selected level, and PREB is set to the ‘L’ level to start precharging of SDAT, SREF, BL_DAT, and BL_REF.
  • PREB is set to the “H” level, and the precharge is stopped.
  • SDAT and SREF are substantially at the VDD level
  • BL_DAT and BL_REF are at the level of VCLAMP_VH ⁇ Vtn, where the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • SDAT, SREF and BL_DAT, BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the SDAT voltage decreases more quickly than the SREF voltage.
  • the voltage of VCLAMP_VH is adjusted so that the SREF decrease rate is substantially equal to the SREF decrease rate during the read operation. For this reason, the timing at time t3 can be made the same as the read operation.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_H are set to the non-selection level, LAT is set to the 'L' level, and the amplifier is stopped.
  • the present invention is applied to both the LR verify operation and the HR verify operation has been described.
  • the present invention may be applied to only one of them. This is applied only during the LR verify operation, which is difficult. It is necessary to set BL_DAT and BL_REF to a high voltage, and the current consumption of the verify operation can be reduced by not applying to the HR verify operation in which the current consumption increases.
  • At least a memory cell including a first terminal and a second terminal, a reference cell including at least a third terminal and a fourth terminal, and a data node
  • a read circuit connected to the reference node, the data node and the first transistor are connected, the reference node and the second transistor are connected, the voltage between the first terminal and the second terminal and You may provide the 1st circuit which controls the voltage between a 3rd terminal and a 4th terminal with the input signal.
  • the second terminal and the fourth terminal are connected to the second power source
  • the first circuit includes an NMOS transistor having a source connected to the first terminal and a drain connected to the data node, and a source Is connected to the third terminal, the drain is connected to the reference node, the source is connected to the second power source, the PMOS transistor is connected to the data node, and the source is the second power source. It may be a PMOS transistor that is connected and whose drain is connected to the reference node.
  • the voltage controlled by the first circuit may be different between a normal read operation and a verification operation that is a completion determination operation at the time of rewriting the nonvolatile memory cell.
  • the memory cell is a variable resistance nonvolatile memory cell.
  • a low resistance verification operation that is a read operation for confirming a resistance value after the low resistance operation and a high resistance after the high resistance operation are performed.
  • the high resistance verification operation which is a read operation for confirming the state may be performed, and the voltage controlled by the first circuit may be different in the low resistance verification operation and the high resistance verification operation.
  • FIG. 31 is a circuit diagram of a nonvolatile semiconductor memory device according to the sixth embodiment of the present invention.
  • Reference numeral 2300 denotes a 1-bit data read unit of the nonvolatile semiconductor memory device. If the data is 16-bit data, 16 data are arranged, and control signals and the like are commonly connected to each read unit.
  • Reference numeral 101 denotes a memory cell (resistance variable nonvolatile memory cell). In this figure, the case where one memory cell 101 is arranged is shown for simplification, but the operation described below is the same even when a plurality of memory cells are arranged.
  • a determination circuit 107 includes an amplifier that performs latching by amplifying the voltage difference between SDAT and SREF to a logic level.
  • 2011 is a circuit that selectively outputs a CLAMP voltage according to READ, VERIF_LR, and VERIF_HR signals, and 108 is an equalizing circuit.
  • the memory cell 101, the reference cell 102, the determination circuit 107, and the equalize circuit 108 have the same configuration as that described in the second embodiment.
  • FIG. 27 shows the configuration of 2011. This is a circuit that selectively outputs clamp voltages VCLAMP_VH, VCLAMP_VR, and VCLAMP_VL in response to signals READ, VERIF_LR, and VERIF_HR, respectively. Each voltage relationship is VCLAMP_VH> VCLAMP_VR> VCLAMP_VL.
  • FIG. 28 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • READ is set to ‘H’ level
  • VERIF_LR is set to ‘L’ level
  • VERIF_HR is set to ‘L’ level
  • CLAMP voltage is set to a constant voltage (CLAMP_VR).
  • WLRef_L and WLRef_H are set to a non-selection level.
  • WLRef_R and WL are transitioned to the selected level, and PREB is set to the ‘L’ level to start precharging of SDAT, SREF, BL_DAT, and BL_RED.
  • PREB is set to the “H” level
  • EQ is set to the “L” level
  • precharging and equalization are stopped.
  • SDAT and SREF are substantially at the VDD level
  • BL_DAT and BL_REF are at the level of VCLAMP_VR ⁇ Vtn, where the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • SDAT, SREF and BL_DAT, BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the SDAT voltage decreases more quickly than the SREF voltage.
  • Time t3 is set to a timing at which the voltage difference between SDAT and SREF becomes larger than the amplification limit voltage of 107 amplifier.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_R are set to a non-selection level
  • EQ is set to 'H' level
  • SREF and SDAT are equalized
  • LAT is set to 'L' level
  • the amplifier is stopped.
  • FIG. 29 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • READ is set to ‘L’ level
  • VERIF_LR is set to ‘H’ level
  • VERIF_HR is set to ‘L’ level
  • CLAMP voltage is set to a constant voltage (VCLAMP_VL).
  • WLRef_R and WLRef_H are set to a non-selection level.
  • WLRef_L and WL are transitioned to the selected level, and PREB is set to the ‘L’ level to start precharging of SDAT, SREF, BL_DAT, and BL_REF.
  • PREB is set to the “H” level
  • EQ is set to the “L” level
  • precharging and equalization are stopped.
  • SDAT and SREF are substantially at the VDD level
  • BL_DAT and BL_REF are at the level of VCLAMP_VL ⁇ Vtn, where the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • SDAT, SREF and BL_DAT, BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the SDAT voltage decreases more quickly than the SREF voltage.
  • VCLAMP_VL the voltage of VCLAMP_VL is adjusted so that the SREF decrease rate is substantially equal to the SREF decrease rate during the read operation. For this reason, the timing at time t3 can be made the same as the read operation.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WL_Ref_L are set to a non-selection level, EQ is set to ‘H’ level, SREF and SDAT are equalized, LAT is set to ‘L’ level, and the amplifier is stopped.
  • FIG. 30 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the fifth and sixth embodiments of the present invention.
  • READ is set to the “L” level
  • VERIF_LR is set to the “L” level
  • VERIF_HR is set to the “H” level
  • CLAMP voltage is set to a constant voltage (VCLAMP_VH).
  • WLRef_R and WLRef_L are set to a non-selection level.
  • WLRef_H and WL are transitioned to the selected level, and PREB is set to the ‘L’ level to start precharging of SDAT, SREF, BL_DAT, and BL_REF.
  • PREB is set to the “H” level
  • EQ is set to the “L” level
  • precharging and equalization are stopped.
  • SDAT and SREF are substantially at the VDD level
  • BL_DAT and BL_REF are at the level of VCLAMP_VH ⁇ Vtn, where the threshold voltage of the clamp transistors 105 and 106 is Vtn.
  • SDAT, SREF and BL_DAT, BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the SDAT voltage decreases more quickly than the SREF voltage.
  • the voltage of VCLAMP_VH is adjusted so that the SREF decrease rate is substantially equal to the SREF decrease rate during the read operation. For this reason, the timing at time t3 can be made the same as the read operation.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_H are set to a non-selection level, EQ is set to ‘H’ level, SREF and SDAT are equalized, LAT is set to ‘L’ level, and the amplifier is stopped.
  • the discharge transistor and the equalize circuit can be operated at a higher speed than the nonvolatile semiconductor memory device according to the fifth embodiment.
  • the present invention is applied to both the LR verification operation and the HR verification operation has been described, but the present invention may be applied to only one of them.
  • the present invention is applied only to the LR verification operation in which the time from time t2 to time t3 is short and the timing generation is difficult.
  • FIG. 32 is a circuit diagram of a nonvolatile semiconductor memory device according to the seventh embodiment of the present invention.
  • 2500 is a 1-bit data read unit of the nonvolatile semiconductor memory device. If the data is 16-bit data, 16 data are arranged, and control signals and the like are commonly connected to each read unit.
  • Reference numeral 101 denotes a memory cell (resistance variable nonvolatile memory cell). In this figure, the case where one memory cell 101 is arranged is shown for simplification, but the operation described below is the same even when a plurality of memory cells are arranged.
  • 2503 and 2504 are PMOS transistors for precharging the bit line BL_DAT and the reference bit line BL_REF, which are decision nodes.
  • Reference numerals 2512 and 2513 denote PMOS transistors for precharging the source line SL_DAT and the reference source line SL_REF.
  • Reference numerals 2505 and 2506 denote clamp transistors for controlling the voltages of the source line SL_DAT and the reference source line SL_REF to a constant voltage.
  • Reference numerals 2509 and 2510 denote NMOS transistors for discharging the source line SL_DAT and the reference source line SL_REF.
  • a determination circuit 107 includes an amplifier that performs latching by amplifying the voltage difference between BL_DAT and BL_REF to a logic level.
  • a circuit 2511 selectively outputs a CLAPM voltage according to signals READ, VERIF_LR, and VERIF_HR.
  • the memory cell 101, the reference cell 102, and the determination circuit 107 have the same configuration as that described in the first embodiment.
  • FIG. 33 is a circuit diagram of a clamp voltage switching circuit according to the seventh embodiment of the present invention.
  • FIG. 33 shows the configuration of the clamp voltage switching circuit 2511. This is a circuit that selectively outputs clamp voltages VCLAMP_VH, VCLAMP_VR, and VCLAMP_VL in response to signals READ, VERIF_LR, and VERIF_HR, respectively.
  • Each voltage relationship is VCLAMP_VLP> VCLAMP_VRP> VCLAMP_VHP.
  • FIG. 34 is a chart showing read operation waveforms using the nonvolatile semiconductor memory device according to the seventh and eighth embodiments of the present invention.
  • READ is set to the “H” level
  • VERIF_LR is set to the “L” level
  • VERIF_HR is set to the “L” level
  • CLAMP voltage is set to a constant voltage (CLAMP_VRP).
  • WLRef_L and WLRef_H are set to a non-selection level.
  • WLRef_R and WL are changed to the selected level, PREB is set to ‘H’ level, precharge is stopped, and DIS_SL is set to ‘H’ level.
  • the absolute value of the threshold voltage of the clamp transistors 2505 and 2506 is set to Vtp.
  • SL_REF and SL_DAT change to the level of CLAMP_VRP + Vtp, and BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the BL_DAT voltage decreases more quickly than the BL_REF voltage.
  • the decrease in the BL_DAT voltage is slower than the BL_REF voltage.
  • Time t2 is set to a timing at which the voltage difference between BLDAT and BL_REF becomes larger than the amplification limit voltage of the amplifier 107.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_R are set to a non-selection level
  • PREB is set to ‘L’ level
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged
  • LAT is set to ‘L’ level to stop the amplifier.
  • FIG. 35 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the seventh and eighth embodiments of the present invention.
  • READ is set to the “L” level
  • VERIF_LR is set to the “H” level
  • VERIF_HR is set to the “L” level
  • CLAMP voltage is set to a constant voltage (CLAMP_VLP).
  • WLRef_R and WLRef_H are set to a non-selection level.
  • WLRef_L and WL are transitioned to the selected level, PREB is set to ‘H’ level, precharge is stopped, and DIS_SL is set to ‘H’ level.
  • the absolute value of the threshold voltage of the clamp transistors 2505 and 2506 is Vtp.
  • SL_REF and SL_DAT change to the level of CLAMP_VLP + Vtp, and BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the BL_DAT voltage decreases more quickly than the BL_REF voltage.
  • the decrease in the BL_DAT voltage is slower than the BL_REF voltage.
  • the voltage of CLAMP_VLP is adjusted so that the decrease rate of BL_REF is substantially equal to the decrease rate of the BL_REF voltage in the read operation. For this reason, the timing at time t2 can be made the same as that of the read operation.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_L are set to the non-selection level
  • PREB is set to the 'L' level
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged
  • the LAT is set to the 'L' level to stop the amplifier.
  • FIG. 36 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the seventh and eighth embodiments of the present invention.
  • READ is set to ‘L’ level
  • VERIF_LR is set to ‘L’ level
  • VERIF_HR is set to ‘H’ level
  • CLAMP voltage is set to a constant voltage (CLAMP_VHP).
  • WLRef_R and WLRef_L are set to a non-selection level.
  • WLRef_L and WL are transitioned to the selected level, PREB is set to ‘H’ level, precharge and equalization are stopped, and DIS_SL is set to ‘H’ level.
  • the threshold voltages of the clamp transistors 2905 and 2906 are set to Vtp.
  • SL_REF and SL_DAT change to the level of CLAMP_VHP + Vtp, and BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the BL_DAT voltage decreases more quickly than the BL_REF voltage.
  • the decrease in the BL_DAT voltage is slower than the BL_REF voltage.
  • the voltage of CLAMP_VHP is adjusted so that the decrease rate of BL_REF is substantially equal to the decrease rate of the BL_REF voltage in the read operation. For this reason, the timing at time t2 can be made the same as that of the read operation.
  • LAT is set to ‘H’ level, and data is output to SAOUT which starts the amplifier.
  • WL and WLRef_H are set to the non-selection level
  • PREB is set to the ‘L’ level
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged
  • the LAT is set to the ‘L’ level to stop the amplifier.
  • the second terminal and the fourth terminal are connected to the second power source
  • the first circuit includes a PMOS transistor having a drain connected to the first terminal and a source connected to the third power source, and a drain Is connected to the third terminal, the source is connected to the third voltage, the PMOS is connected to the third voltage, the drain is connected to the data node, and the source is the third It may be a PMOS transistor connected to the voltage and having a drain connected to the reference node.
  • FIG. 37 is a circuit diagram of a nonvolatile semiconductor memory device according to the eighth embodiment of the present invention.
  • 2500 is a 1-bit data read unit of the nonvolatile semiconductor memory device. If the data is 16-bit data, 16 data are arranged, and control signals and the like are connected in common.
  • Reference numeral 101 denotes a memory cell (resistance variable nonvolatile memory cell). In this figure, the case where one memory cell 101 is arranged is shown for simplification, but the operation described below is the same even when a plurality of memory cells are arranged.
  • 2503 and 2504 are PMOS transistors for precharging the bit line BL_DAT and the reference bit line BL_REF, which are decision nodes.
  • Reference numerals 2512 and 2513 denote PMOS transistors for precharging the source line SL_DAT and the reference source line SL_REF.
  • Reference numerals 2505 and 2506 denote clamp transistors for controlling the voltages of the source line SL_DAT and the reference source line SL_REF to a constant voltage.
  • Reference numerals 2509 and 2510 denote NMOS transistors for discharging the source line SL_DAT and the reference source line SL_REF.
  • a determination circuit 107 includes an amplifier that performs latching by amplifying the voltage difference between BL_DAT and BL_REF to a logic level.
  • a circuit 2511 selectively outputs a CLAPM voltage according to signals READ, VERIF_LR, and VERIF_HR, and 2508 and 2514 are equalizing circuits.
  • the memory cell 101, the reference cell 102, and the determination circuit 107 have the same configuration as that described in the first embodiment.
  • FIG. 38 is a circuit diagram of an equalize circuit according to the eighth embodiment of the present invention.
  • FIG. 38 shows the configuration of the equalize circuit 2508.
  • an operation of equalizing or disconnecting BL_DAT and BL_REF to the same voltage is performed.
  • FIG. 39 is a circuit diagram of an equalize circuit according to the eighth embodiment of the present invention.
  • FIG. 39 shows the configuration of the equalize circuit 2514.
  • an operation of equalizing or disconnecting SL_DAT and SL_REF to the same voltage is performed.
  • READ is set to the “H” level
  • VERIF_LR is set to the “L” level
  • VERIF_HR is set to the “L” level
  • CLAMP voltage is set to a constant voltage (CLAMP_VRP).
  • EQ and EQ_S are set to the “H” level
  • WLRef_L and WLRef_H are set to the non-selection level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged to VDD.
  • WLRef_R and WL are changed to the selected level, PREB is set to the “H” level, EQ is set to the “L” level, precharge and equalization are stopped, and DIS_SL is set to the “H” level.
  • EQ_S holds the “H” level, and equalization of SL_DAT and SL_REF is not stopped.
  • the threshold voltages of the clamp transistors 2505 and 2506 are set to Vtp.
  • SL_REF and SL_DAT transition to the level of CLAMP_VRP + Vtp.
  • BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the BL_DAT voltage decreases more quickly than the BL_REF voltage.
  • the decrease in the BL_DAT voltage is slower than the BL_REF voltage.
  • Time t2 is set to a timing at which the voltage difference between BLDAT and BL_REF becomes larger than the amplification limit voltage of the amplifier 107.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_R are set to the non-selection level
  • PREB is set to the 'L' level
  • EQ and EQ_S are set to the 'H' level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged and equalized
  • the LAT is set to the ‘L’ level, and the amplifier is stopped.
  • FIG. 35 is a chart showing LR verify operation waveforms using the nonvolatile semiconductor memory device according to the seventh and eighth embodiments of the present invention.
  • READ is set to the “L” level
  • VERIF_LR is set to the “H” level
  • VERIF_HR is set to the “L” level
  • CLAMP voltage is set to a constant voltage (CLAMP_VLP).
  • EQ and EQ_S are set to the “H” level
  • WLRef_R and WLRef_H are set to the non-selection level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged to VDD.
  • WLRef_L and WL are changed to the selected level, PREB is set to the “H” level, and EQ and EQ_S are set to the “L” level.
  • precharge and equalization are stopped, and DIS_SL is set to the “H” level.
  • EQ_S holds the “H” level, and equalization of SL_DAT and SL_REF is not stopped.
  • the threshold voltages of the clamp transistors 2505 and 2506 are set to Vtp.
  • SL_REF and SL_DAT change to the level of CLAMP_VLP + Vtp, and BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the BL_DAT voltage decreases more quickly than the BL_REF voltage.
  • the decrease in the BL_DAT voltage is slower than the BL_REF voltage.
  • the voltage of CLAMP_VLP is adjusted so that the decrease rate of BL_REF is substantially equal to the decrease rate of the BL_REF voltage in the read operation. For this reason, the timing at time t2 can be made the same as that of the read operation.
  • LAT is set to the “H” level, the amplifier is activated, and data is output to SAOUT.
  • WL and WLRef_L are set to the non-selection level, PREB is set to the ‘L’ level, and EQ and EQ_S are set to the ‘H’ level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged and equalized, the LAT is set to the ‘L’ level, and the amplifier is stopped.
  • FIG. 36 is a chart showing HR verify operation waveforms using the nonvolatile semiconductor memory device according to the seventh and eighth embodiments of the present invention.
  • READ is set to ‘L’ level
  • VERIF_LR is set to ‘L’ level
  • VERIF_HR is set to ‘H’ level
  • CLAMP voltage is set to a constant voltage (CLAMP_VHP).
  • EQ and EQ_S are set to the “H” level
  • WLRef_R and WLRef_L are set to the non-selection level.
  • PREB is at ‘L’ level and EQ and EQ_S are at ‘H’ level, so that BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged to VDD.
  • WLRef_L and WL are changed to the selected level, PREB is set to the “H” level, and EQ is set to the “L” level.
  • DIS_SL is set to the ‘H’ level.
  • EQ and EQ_S hold the “H” level, and equalization of SL_DAT and SL_REF is not stopped.
  • the threshold voltages of the clamp transistors 2905 and 2906 are set to Vtp.
  • SL_REF and SL_DAT change to the level of CLAMP_VHP + Vtp, and BL_DAT and BL_REF are discharged through the memory cell 101 and the reference cell 102.
  • the BL_DAT voltage decreases more quickly than the BL_REF voltage.
  • the decrease in the BL_DAT voltage is slower than the BL_REF voltage.
  • the voltage of CLAMP_VHP is adjusted so that the decrease rate of BL_REF is substantially equal to the decrease rate of the BL_REF voltage in the read operation. For this reason, the timing at time t2 can be made the same as that of the read operation.
  • WL and WLRef_H are set to the non-selection level
  • PREB is set to the ‘L’ level
  • EQ and EQ_S are set to the ‘H’ level.
  • BL_DAT, BL_REF, SL_DAT, and SL_REF are precharged and equalized
  • the LAT is set to the ‘L’ level, and the amplifier is stopped.
  • the discharge transistor and the equalize circuit can be operated at higher speed than the nonvolatile semiconductor memory device according to the seventh embodiment.
  • the configuration using the variable resistance nonvolatile memory cell (ReRAM) as the memory cell has been described.
  • the data is read by detecting the current flowing at both ends of the memory cell.
  • the present invention can be applied to a nonvolatile semiconductor memory device provided with a circuit.
  • a magnetoresistive change type memory MRAM: Magnetorandom Random Access Memory
  • PRAM Phase Change Random Access Memory
  • flash memory a flash memory
  • the reading unit 100 connected to the single control circuit 112 may be singular or plural. As the number of read units 100 connected to a single control circuit 112 increases, the control circuit 112 of the entire nonvolatile semiconductor memory device can be omitted.
  • the nonvolatile semiconductor memory device can have substantially the same amplification timing even when an operation with a wide range of determination currents such as a verify operation is required in addition to the read operation, and the high speed and determination of the read operation. Since both accuracy can be achieved, it is useful for a memory that stores a data state by determining the amount of current flowing through the memory cell at the time of data determination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

 動作で異なる判定電流であっても、回路規模を増加せずに、読出し動作の高速性、判定精度を損なわない不揮発性半導体記憶装置。 データノードおよびリファレンスノードには、それぞれ第一のトランジスタおよび第二のトランジスタが接続され、データ状態判定動作時に、第一および第二のトランジスタは、データノードおよびリファレンスノードに電圧を印加する場合に、第一の動作モードではプリチャージトランジスタとして動作し、第二の動作モードではミラートランジスタとして動作し、第一、第二の動作モードを切り替えることを特徴とする。

Description

不揮発性半導体記憶装置
 本発明は、メモリセルの両端に電圧を印加した時に流れる電流を検知することでデータするための読出し動作であるベリファイ動作で異なる判定電流であっても、安定したデータ判定が可能な読出し回路に関する。
 近年、電子機器、特に携帯電話(スマートフォン)、携帯音楽プレーヤー、デジタルカメラ、タブレット端末等の需要増に伴い、不揮発性半導体記憶装置の需要が高まっており、大容量化、小型化、高速書換え、高速読出し、低消費動作を実現する技術開発が盛んに行われている。
 現在主力の不揮発性メモリはフラッシュメモリであるが、書換え時間がマイクロ秒、あるいはミリ秒オーダーであり、不揮発性メモリを搭載したセット機器の性能向上を阻害する要因となっている。
 近年フラッシュメモリと比べて、高速・低消費書換えが可能な新規不揮発性メモリの開発が盛んに行われている。例えば、抵抗変化型素子を記憶素子に用いた抵抗変化型メモリ(ReRAM:Resistive Random Access Memory)等である。
 ReRAMなどの不揮発性半導体記憶装置のメモリセルのデータ状態を判定する読出し回路として、判定ノードを電源電圧までプリチャージ後、メモリセルを介してディスチャージを行い、メモリセルに流れる電流量によって発生する判定ノードの電圧と参照電圧との電圧差を論理レベルまで増幅し、データを判定する方法は、比較的低電圧、高速に動作することから、不揮発性半導体記憶装置の読出し回路として採用されている。
 しかしながら、ReRAMにおいては、書換え後の抵抗特性保証および、データ保持特性を確保するために、書換え動作後の低抵抗状態の判定、あるいは高抵抗状態を判定する動作であるベリファイ動作を実施することが考えられる。
 この場合、読出し動作時の判定抵抗に対して、ベリファイ動作時の判定抵抗は異なるため、前記の読出し回路を読出し動作、ベリファイ動作の全動作で使用した場合、ディスチャージ時の判定ノードの電圧遷移が動作モードによって異なり、電圧差を増幅するタイミングはそれぞれのモードで最適なタイミングが必要であるが、このようなタイミング生成回路の設計が困難である課題がある。
 このような課題に対して、判定ノードに対するプリチャージ回路とは別に、ミラー回路を追加し、読出し動作とベリファイ動作で動作回路を切り替えることで、動作モードによらず、増幅タイミングをほぼ同じとする構成が提案されている(特許文献1)。しかしながら、このような構成では、新たにミラー回路が必要となり、回路面積の増大を招く課題がある。
 その他、タイミング生成回路としてレプリカ回路を用いる構成(特許文献2)や、判定ノードの容量負荷を動作モードで切替えることで、動作モードによらず一定の増幅タイミングでの動作を可能にする構成(特許文献3)が提案されているが、複雑な回路が必要であり、回路規模の増大や、読出し動作の高速性を損なう課題がある。
特開2011-165297号公報 特開2011-103155号公報 特開2011-108311号公報
 本発明は、上記の問題点を鑑みてなされたもので、メモリセルの両端に電圧を印加した時に流れる電流を検知することでデータを判定する読出し回路を備えた不揮発性半導体記憶装置に関し、読出し動作、ベリファイ動作で異なる判定電流であっても、回路規模を増加せずに、読出し動作の高速性、判定精度を損なわない読出し回路を搭載した不揮発性半導体記憶装置を提供することである。
 上記課題を解決するため、本発明によって次のような解決手段を講じた。
 本発明の不揮発性半導体記憶装置は、少なくとも、第一と第二の端子を備えるメモリセルと、少なくとも、第三と第四の端子を備えるリファレンスセルと、前記第一の端子および前記第三の端子と接続された読出し回路と、前記第一の端子と接続された第一のトランジスタと、前記第三の端子と接続された第二のトランジスタを備え、前記第一のトランジスタのゲートと前記第二のトランジスタのゲートとは共通に接続されており、前記第一のトランジスタの前記ゲートと前記第二のトランジスタの前記ゲートと、前記第三の端子あるいは前記第四の端子との間を電気的に短絡、切断するためのスイッチを備える。
 このことにより、読出し動作、ベリファイ動作で増幅タイミングをほぼ同じにでき、少ない回路構成で読出し動作の高速性、判定精度の両立が可能であり、さらには、LRベリファイ動作のビット線印加電圧を下げることから、消費電流の低減が可能な不揮発性半導体記憶装置を提供できる。
図1は、本発明の第1の実施形態に係る不揮発性半導体記憶装置の回路図である。 図2は、本発明の第1の実施形態に係る抵抗変化素子を用いたメモリセルの回路図である。 図3は、本発明の第1の実施形態に係る抵抗変化素子を用いた別のメモリセルの回路図である。 図4は、本発明の第1の実施形態に係るリファレンスセルの回路図である。 図5は、本発明の第1の実施形態に係る別のリファレンスセルの回路図である。 図6は、本発明の第1の実施形態に係るスイッチ回路の回路図である。 図7は、本発明の第1の実施形態に係る判定回路の回路図である。 図8は、本発明の第1の実施形態に係る制御回路の回路図である。 図9は、本発明の第1の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。 図10は、本発明の第1の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。 図11は、本発明の第1の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。 図12は、本発明の第2の実施形態に係る不揮発性半導体記憶装置の回路図である。 図13は、本発明の第2の実施形態に係るイコライズ回路の回路図である。 図14は、本発明の第2の実施形態に係る制御回路の回路図である。 図15は、本発明の第2の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。 図16は、本発明の第2の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。 図17は、本発明の第2の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。 図18は、本発明の第3の実施形態に係る不揮発性半導体記憶装置の回路図である。 図19は、本発明の第3の実施形態に係るスイッチ回路の回路図である。 図20は、本発明の第3の実施形態に係る制御回路の回路図である。 図21は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。 図22は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。 図23は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。 図24は、本発明の第4の実施形態に係る不揮発性半導体記憶装置の回路図である。 図25は、本発明の第4の実施形態に係るイコライズ回路の回路図である。 図26は、本発明の第5の実施形態に係る不揮発性半導体記憶装置の回路図である。 図27は、本発明の第5の実施形態に係るクランプ電圧切替え回路の回路図である。 図28は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。 図29は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。 図30は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。 図31は、本発明の第6の実施形態に係る不揮発性半導体記憶装置の回路図である。 図32は、本発明の第7の実施形態に係る不揮発性半導体記憶装置の回路図である。 図33は、本発明の第7の実施形態に係るクランプ電圧切替え回路の回路図である。 図34は、本発明の第7及び8の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。 図35は、本発明の第7及び8の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。 図36は、本発明の第7及び8の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。 図37は、本発明の第8の実施形態に係る不揮発性半導体記憶装置の回路図である。 図38は、本発明の第8の実施形態に係るイコライズ回路の回路図である。 図39は、本発明の第8の実施形態に係るイコライズ回路の回路図である。
 以下、本発明の実施形態について、図面を参照して説明する。
 《第1の実施形態》
 本発明の第1の実施形態の構成を図1から図8に示す。図1は、本発明の第1の実施形態に係る不揮発性半導体記憶装置の回路図である。100は不揮発性半導体記憶装置のデータ1ビットの読出し単位であり、読出し単位が16ビットのデータであれば、16個を並べ、制御信号等は各読出し単位に共通に接続されている。101はメモリセル(抵抗変化型不揮発メモリセル)である。本図では、簡単化のため1つのメモリセル101が配置された場合について記載しているが、複数のメモリセルが配置された場合でも、以後説明する動作は同じである。
 102はリファレンスセルである。103と104は、判定ノードであるデータノードSDATとリファレンスノードSREFに電源電圧VDDを印加するためのPMOSトランジスタである。111は、pgとSREF間のスイッチ回路である。107はSDATとSREFの電圧差を論理レベルに増幅してラッチを行うアンプを含んだ判定回路である。112はVERIF、SENB信号に応じて、100の制御信号c、dを出力する制御回路である。
 図2は、本発明の第1の実施形態に係る抵抗変化素子を用いたメモリセルの回路図である。図2にメモリセル101の構成例を示す。1つのNMOS選択素子201と不揮発抵抗変化素子202を含んでおり、不揮発抵抗変化素子がビット線に接続されるタイプである。ここでは、BL_DATに接続されている。メモリセルの他方は、接地電源に接続されている。図3は、本発明の第1の実施形態に係る抵抗変化素子を用いた別のメモリセルの回路図である。図3は別のメモリセル101の構成例を示す。1つのNMOS選択素子301と不揮発抵抗変化素子302を含んでおり、選択素子がビット線に接続されるタイプである。ここでは、BL_DATに接続されている。メモリセルの他方は、接地電源に接続されている。いずれも選択素子はダイオードであっても良い。
 図4は、本発明の第1の実施形態に係るリファレンスセルの回路図である。図4にリファレンスセル102の構成例を示す。3つのNMOS選択素子(401、403、405)と3つの固定抵抗素子(402:Ref_RR、404:Ref_LR、406:Ref_HR)を含んでおり、固定抵抗素子がビット線に接続されるタイプである。ここでは、BL_DATに接続されている。Ref_RRは読み出し動作で選択される固定抵抗素子で、Ref_LRは低抵抗状態のメモリセルのベリファイ動作で選択される固定抵抗素子で、Ref_HRは高抵抗状態のメモリセルのベリファイ動作で選択される固定抵抗素子である。前記固定抵抗素子(Ref_RR、Ref_LR、Ref_HR)は例えば、ポリシリコン膜で構成し、膜の幅および長さによって抵抗値を調整する。
 それぞれの抵抗値は、Ref_LR < Ref_RR < Ref_HRの関係である。図5は、本発明の第1の実施形態に係る別のリファレンスセルの回路図である。3つのNMOS選択素子(501、503、505)と3つの固定抵抗素子(502:Ref_RR、504:Ref_LR、506:Ref_HR)を含んでおり、選択素子がビット線に接続されるタイプである。101と同様に102の構成は図5であってもよく、また、選択素子がダイオードであってもよい。
 本発明の不揮発性半導体記憶装置の一態様として、リファレンスセルは、少なくとも2つ以上の抵抗の一端が第三の端子あるいは、第四の端子に並列に接続されており、抵抗の他の端は、第一の動作モードあるいは第二の動作モードに応じて、抵抗の一端が第三の端子に接続されているときは第四の端子に、あるいは、抵抗の一端が第四の端子に接続されているときは第三の端子に電気的に接続されていてもよい。
 図6は、本発明の第1の実施形態に係るスイッチ回路の回路図である。図6にスイッチ回路111の構成を示す。制御信号cに応じて、pgとSREFを短絡あるいは、切断する動作を行う。
 図7は、本発明の第1の実施形態に係る判定回路の回路図である。図7に判定回路107の構成を示す。SDATとSREFがクロスカップルに接続したCMOS型の差動増幅回路に入力されており、ラッチ信号LATが論理‘ハイ’レベル(以下、‘H’レベル)状態である。これによりSDAT、SREFの電圧差を論理レベルに増幅し、LATを遅延させる遅延回路801の出力信号によりラッチ回路802に取り込み、センスアンプ出力SAOUTとして出力する。
 図8は、本発明の第1の実施形態に係る制御回路の回路図である。図8に制御回路112の構成を示す。SENB、VERIF信号に応じて、制御信号c、dを出力する。制御信号cは、スイッチ回路111に接続され、制御信号dは、PMOSトランジスタ103、104のゲートに接続されている。本発明の不揮発性半導体記憶装置の一態様として第一のトランジスタのゲートには、第一の制御端子が接続され、スイッチには、スイッチの短絡、切断を制御する第二の制御端子が接続され、第一および第二の制御端子の制御を切替えてもよい。
 次に、読み出し動作について説明する。図9は、本発明の第1の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。VERIFを論理‘ロー’レベル(以下、‘L’レベル)に設定し、WLRef_L、WLRef_Hを非選択レベル(ここでは、‘L’レベル)に設定する。
 時刻t1でWLRef_RとWLを選択レベル(ここでは、‘H’レベル)に遷移させ、SENBを‘L’レベルとする。これにより制御信号a、bが‘H’レベルにdが‘L’レベルに遷移し、PMOSトランジスタ103、104はプリチャージトランジスタとして動作し、SDAT、SREFのプリチャージを開始する。このとき、制御信号cは‘L’レベルに固定されている。
 時刻t2でSENBを‘H’レベル、制御信号a、bが‘L’レベルにdが‘H’レベルに遷移し、プリチャージを停止する。この時SDAT、SREFはほぼVDDレベルとなっている。
 時刻t2から時刻t3の期間で、メモリセル101、リファレンスセル102を通して、SDAT、SREFとBL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧の低下が遅くなる。
 時刻t3は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4でWL、WLRef_Rを非選択レベルとし、LATを‘L’レベルとしてアンプを停止する。
 次に、低抵抗化動作後の抵抗値を確認する読出し動作である低抵抗化検証動作(以下、LRベリファイ動作)について説明する。図10は、本発明の第1の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。VERIFを‘H’レベルに設定し、また、WLRef_R、WLRef_Hを非選択レベルに設定する。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、SENBを‘L’レベルとすることで、制御信号a,cが‘H’レベルに遷移し、制御信号dは、ハイインピーダンスになる。スイッチ回路111により時刻t1から時刻t2の期間で、PMOSトランジスタ103、104のゲートpgは、SREFと同電圧となる。これにより、PMOSトランジスタ103、104はミラートランジスタとして動作し、SDAT、SREF、BL_DAT、BL_REFを一定電圧まで充電する。このとき、制御信号bは‘L’レベルに固定されている。
 時刻t2でSDAT、SREF、BL_DAT、BL_REFは動作点で決まる一定電圧レベルとなっている。
 時刻t2から時刻t3の期間で、PMOSトランジスタ103、104はミラートランジスタとして動作する。これにより、メモリセル101、リファレンスセル102は同程度の電流が流れるため、メモリセルとリファレンスセルの抵抗差により、SDAT、SREFの電圧差が発生する。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧が低くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧が高くなる。
 時刻t3は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4で、WL、WLRef_Lを非選択レベルとし、LATを‘L’レベルとしてアンプを停止する。
 このように、LRベリファイ動作時にPMOSトランジスタ103、104をプリチャージトランジスタとして動作するのではなく、ミラートランジスタとして動作することで、時刻t3のタイミングを、読出し動作時と同等のタイミングに設定することができる。
 次に、高抵抗化動作後の高抵抗状態を確認する読出し動作である高抵抗化検証動作(以下、HRベリファイ動作)について説明する。図11は、本発明の第1の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。VERIFを‘H’レベルに設定し、また、WLRef_R、WLRef_Lを非選択レベルに設定する。
 時刻t1でWLRef_HとWLを選択レベルに遷移させ、SENBを‘L’レベルとすることで、制御信号a,cが‘H’レベルに遷移し、制御信号dは、ハイインピーダンスになる。スイッチ回路111によりPMOSトランジスタ103、104のゲートpgは、SREFと同電圧となる。これにより、PMOSトランジスタ103、104はミラートランジスタとして動作し、時刻t1から時刻t2の期間で、SDAT、SREF、BL_DAT、BL_REFを一定電圧まで充電する。このとき、制御信号bは‘L’レベルに固定されている。
 時刻t2でSDAT、SREF、BL_DAT、BL_REFは動作点で決まる一定電圧レベルとなっている。
 時刻t2から時刻t3の期間で、PMOSトランジスタ103、104はミラートランジスタとして動作する。そのことのより、メモリセル101、リファレンスセル102は同程度の電流が流れるため、メモリセルとリファレンスセルの抵抗差により、SDAT、SREFの電圧差が発生する。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧が低くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧が高くなる。
 時刻t3は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4で、WL、WLRef_Hを非選択レベルとし、LATを‘L’レベルとしてアンプを停止する。
 本発明の不揮発性半導体記憶装置の一態様として制御回路は、第一のトランジスタおよび第二のトランジスタは、PMOSトランジスタであって、制御回路は第一の動作モードにおいて、第一の制御端子を第一および第二のトランジスタを通電する設定とし、第二の制御端子を、スイッチを切断する設定とし、第一のトランジスタおよび第二のトランジスタが第一の端子および第三の端子に第一の電圧を印加するプリチャージトランジスタとして動作し、第二の動作モードにおいて、第一の制御端子をハイインピーダンスとし、第二の制御端子を、スイッチを短絡する設定とすることで、第一のトランジスタおよび第二のトランジスタが第一の端子および第三の端子に第一の電圧を印加するミラートランジスタとして動作するように制御してもよい。また、メモリセルとレファレンスセルと、メモリセルとレファレンスセルに電圧を印加することでメモリセルとレファレンスセルに流れる電流差によって生じる電圧差からデータ状態を判定する読出し回路を備え、メモリセルには第一のトランジスタが接続され、レファレンスセルには第二のトランジスタが接続され、第一の動作モードにおいて第一および第二のトランジスタがプリチャージトランジスタとして動作し、第二の動作モードにおいてミラートランジスタとして動作し、第一、第二の動作モードを切り替えてもよい。
 このように、HRベリファイ動作時にPMOSトランジスタ103、104をプリチャージトランジスタとして動作するのではなく、ミラートランジスタとして動作することで、時刻t3のタイミングを読出し動作時と同等のタイミングに設定することができる。
 本実施形態ではLRベリファイ動作、HRベリファイ動作双方に、本発明を適用した場合を説明したが、どちらか一方のみに適用してもよい。たとえばPMOSトランジスタ103、104がプリチャージトランジスタとして動作した場合に、時刻t2から時刻t3の時間が短くタイミング生成が困難なLRベリファイ動作時にのみに適用する。一方で、HRベリファイ動作時は読出し動作と同様にPMOSトランジスタ103、104をプリチャージトランジスタとして動作する方式とする。このことによりミラートランジスタとして動作した場合に必要な定常的なメモリセルおよび、リファレンス電流より低減することができるため、消費電流を低減できる。
 本発明の不揮発性半導体記憶装置の一態様としてメモリセルが抵抗変化型の不揮発性メモリセルであって、通常の読出し動作および、書換え動作時において、低抵抗化動作後の抵抗値を確認する読出し動作である低抵抗化検証動作および、高抵抗化動作後の高抵抗状態を確認する読出し動作である高抵抗化検証動作を行い、第一の動作モードにおいて通常の読出し動作を行い、第二の動作モードにおいて高抵抗化検証動作、低抵抗化検証動作の内、少なくとも一つの動作を行ってもよい。
 また、スイッチ回路111はゲートpgとSREF間に設けているが、ゲートpgとSDAT間に設けても構わない。
 また、PMOSトランジスタ103、104をNMOSトランジスタとしてもよく、その場合には、制御回路112を変更することで、本実施形態で説明したものと同じ効果が得られる。
 《第2の実施形態》
 本発明の第2の実施形態の構成を図12から図14に示す。図12は、本発明の第2の実施形態に係る不揮発性半導体記憶装置の回路図である。100は不揮発性半導体記憶装置のデータ1ビットの読出し単位であり、16ビットのデータであれば、16個を並べ、制御信号等は各読出し単位に共通に接続されている。101はメモリセル(抵抗変化型不揮発メモリセル)である。本図では、簡単化のため1つのメモリセル101が配置された場合について記載しているが、複数のメモリセルが配置された場合でも、以後説明する動作は同じである。
 102はリファレンスセルで、103と104は、判定ノードであるデータノードSDATとリファレンスノードSREFに電圧を印加するためのPMOSトランジスタで、111は、pgとSREF間のスイッチ回路である。105と106は動作時にビット線BL_DATとリファレンスビット線BL_REFの電圧を一定電圧に制御するクランプトランジスタである。107はSDATとSREFの電圧差を論理レベルに増幅してラッチを行うアンプを含んだ判定回路で、114と115は、SDAT、SREFのディスチャージトランジスタである。2012はVERIF、SENB、EQ信号に応じて、前記100の制御信号c、dを出力する制御回路で、108はイコライズ回路である。
 メモリセル101、リファレンスセル102、スイッチ回路111、判定回路107の構成例は実施の形態1と同じである。
 図13は、本発明の第2の実施形態に係るイコライズ回路の回路図である。図13にイコライズ回路108の構成を示す。イコライズ信号EQに応じて、SDATとSREFを同電圧にイコライズあるいは、切断する動作を行う。
 図14は、本発明の第2の実施形態に係る制御回路の回路図である。図14に制御回路2012の構成を示す。SENB、EQ、VERIF信号に応じて、制御信号c、dを出力する。
 次に、読み出し動作について説明する。図15は、本発明の第2の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。VERIFを‘L’レベルに設定し、CLAMP電圧を一定電圧(VCLAMP)に設定する。また、WLRef_L、WLRef_Hを非選択レベルに設定する。EQは‘H’レベルに設定する。
 時刻t1でWLRef_RとWLを選択レベルに遷移させ、SENBを‘L’レベルとすることで、制御信号a、bが‘H’レベルに遷移する。これによりPMOSトランジスタ103、104はプリチャージトランジスタとして動作し、SDAT、SREFのプリチャージが開始する。このとき、制御信号cは‘L’レベルに固定されている。
 時刻t2でSENBを‘H’レベル、EQを‘L’レベルとすることで、制御信号a、bが‘L’レベルに遷移し、プリチャージとイコライズを停止する。この時SDAT、SREFはほぼVDDレベルとなっており、BL_DAT、BL_REFはクランプトランジスタ105、106の閾値電圧をVtnとするとVCLAMP-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、メモリセル101、リファレンスセル102を通して、SDAT、SREFとBL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧の低下が遅くなる。
 時刻t3は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4でWL、WLRef_Rを非選択レベルとし、EQを‘H’レベルとしSREF、SDATのイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 次に、LRベリファイ動作について説明する。図16は、本発明の第2の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。VERIFを‘H’レベルに設定し、CLAMP電圧を一定電圧(VCLAMP)に設定する。また、WLRef_R、WLRef_Hを非選択レベルに設定する。
 時刻t1でWLRef_LとWLを選択レベルに遷移させる。これによりSENBを‘L’レベルとすることで、制御信号a、cが‘H’レベルに遷移し、制御信号dは、ハイインピーダンスになる。スイッチ回路111により時刻t1から時刻t2の期間で、PMOSトランジスタ103、104のゲートpgは、SREFと同電圧となる。これにより、PMOSトランジスタ103、104はミラートランジスタとして動作し、SDAT、SREF、BL_DAT、BL_REFを一定電圧まで充電する。このとき、制御信号bは‘L’レベルに固定されている。
 時刻t2でEQを‘L’レベルとすることで、イコライズを停止する。この時SDAT、SREFは動作点で決まる一定電圧レベルとなり、BL_DAT、BL_REFはクランプトランジスタ105、106の閾値電圧をVtnとするとVCLAMP-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、PMOSトランジスタ103、104はミラートランジスタとして動作する。これによりメモリセル101、リファレンスセル102は同程度の電流が流れるため、メモリセルとリファレンスセルの抵抗差により、SDAT、SREFの電圧差が発生する。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧が低くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧が高くなる。
 時刻t3は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4で、WL、WLRef_Lを非選択レベルとし、SENB、EQを‘H’レベルとしSREF、SDATのディスチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 このように、LRベリファイ動作時にPMOSトランジスタ103、104をプリチャージトランジスタとして動作するのではなく、ミラートランジスタとして動作することで、時刻t3のタイミングを読出し動作時と同等のタイミングに設定することができる。
 次に、HRベリファイ動作について説明する。図17は、本発明の第2の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。VERIFを‘H’レベルに設定し、CLAMP電圧を一定電圧(VCLAMP)に設定する。また、WLRef_R、WLRef_Lを非選択レベルに設定する。
 時刻t1でWLRef_HとWLを選択レベルに遷移させ、SENBを‘L’レベルとすることで、制御信号a、cが‘H’レベルに遷移し、制御信号dは、ハイインピーダンスになる。スイッチ回路111によりPMOSトランジスタ103、104のゲートpgは、SREFと同電圧となり、PMOSトランジスタ103、104はミラートランジスタとして動作する。PMOSトランジスタ103、104は時刻t1から時刻t2の期間で、SDAT、SREF、BL_DAT、BL_REFを一定電圧まで充電する。このとき、制御信号bは‘L’レベルに固定されている。
 時刻t2でEQを‘L’レベルとすることで、イコライズを停止する。この時SDAT、SREFは動作点で決まる一定電圧レベルとなり、BL_DAT、BL_REFはクランプトランジスタ105、106の閾値電圧をVtnとするとVCLAMP-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、PMOSトランジスタ103、104はミラートランジスタとして動作し、メモリセル101、リファレンスセル102は同程度の電流が流れる。これによりメモリセルとリファレンスセルの抵抗差により、SDAT、SREFの電圧差が発生する。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧が低くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧が高くなる。
 時刻t3は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4で、WL、WLRef_Hを非選択レベルとし、SENB、EQを‘H’レベルとしSREF、SDATのディスチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 このように、HRベリファイ動作時にPMOSトランジスタ103、104をプリチャージトランジスタとして動作するのではなく、ミラートランジスタとして動作することで、時刻t3のタイミングを読出し動作時と同等のタイミングに設定することができる。
 本実施形態では、ディスチャージトランジスタ、イコライズ回路により第1の実施形態に係る不揮発性半導体記憶装置より時刻t1から時刻t2間を高速に動作させることができる。
 本実施形態ではLRベリファイ動作、HRベリファイ動作双方に、本発明を適用した場合を説明したが、どちらか一方のみに適用してもよい。たとえばプリチャージトランジスタとして動作した場合に、時刻t2から時刻t3の時間が短くタイミング生成が困難なLRベリファイ動作時のみに適用する。一方、HRベリファイ動作時は読出し動作と同様にPMOSトランジスタ103、104をプリチャージトランジスタとして動作する方式とする。これにより、ミラートランジスタとして動作した場合に必要な定常的なメモリセルおよび、リファレンス電流より低減することができるため、消費電流を低減できる。
 また、スイッチ回路111はゲートpgとSREF間に設けているが、ゲートpgとSDAT間に設けても構わない。
 また、PMOSトランジスタ103、104をNMOSトランジスタとしてもよく、その場合には、図14に示した制御回路2012を変更することで、本実施形態で説明したものと同じ効果が得られる。
 《第3の実施形態》
 本発明の第3の実施形態の構成を図18から図20に示す。
 図18は、本発明の第3の実施形態に係る不揮発性半導体記憶装置の回路図である。1300は不揮発性半導体記憶装置のデータ1ビットの読出し単位であり、16ビットのデータであれば、16個を並べ、制御信号等は各読出し単位に共通に接続されている。101はメモリセル(抵抗変化型不揮発メモリセル)である。本図では、簡単化のため1つのメモリセル101が配置された場合について記載しているが、複数のメモリセルが配置された場合でも、以後説明する動作は同じである。
 102はリファレンスセルで、1303と1304は、判定ノードであるビット線BL_DATとリファレンスビット線BL_REFに電圧を印加するためのPMOSトランジスタで、1311は、pgとBL_REF間のスイッチ回路である。107はSDATとSREFの電圧差を論理レベルに増幅してラッチを行うアンプを含んだ判定回路で、1314と1315は、SL_DAT、SL_REFのプリチャージトランジスタである。1305と1306は、SL_DAT、SL_REFのディスチャージトランジスタである。1312はVERIF、SAEN信号に応じて、前記1300の制御信号b、c、dを制御する回路である。
 メモリセル101、リファレンスセル102および判定回路107は第1の実施形態で説明した構成と同様の構成である。
 図19は、本発明の第3の実施形態に係るスイッチ回路の回路図である。図19にスイッチ回路1311の構成を示す。制御信号cに応じて、pgとBL_REFを短絡あるいは、切断する動作を行う。
 図20は、本発明の第3の実施形態に係る制御回路の回路図である。図20に制御回路1312の構成を示す。SAEN、VERIF信号に応じて、制御信号b、c、dを制御する。
 次に、読み出し動作について説明する。図21は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。VERIFを‘L’レベルに設定し、WLRef_L、WLRef_Hを非選択レベルに設定する。
 時刻t0でSAENが‘L’レベルであり、制御信号a、bが‘H’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWL_Ref_RとWLを選択レベルに遷移させ、SAENを‘H’レベルとすることで、制御信号a、bが‘L’レベルにdが‘H’レベルに遷移し、プリチャージを停止し、DIS_SLを‘H’レベルとする。
 時刻t1から時刻t2の期間で、SL_REF、SL_DATはディスチャージトランジスタ1305と1306によってディスチャージされる。同時に、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が遅くなる。
 時刻t2は、BL_DATとBL_REF電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3で、WL、WLRef_Rを非選択レベルとし、SAENを‘L’レベルとし、BL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージを行い、LATを‘L’レベルとしてアンプを停止する。
 次に、LRベリファイ動作について説明する。図22は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。VERIFを‘H’レベルに設定し、WLRef_R、WLRef_Hを非選択レベルに設定する。
 時刻t0でSAENが‘L’レベルであり、制御信号a、bが‘H’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、SAENを‘H’レベルとする。これにより、制御信号bが‘L’レベル、制御信号cが‘H’レベルに遷移し、制御信号dは、ハイインピーダンスになる。これにより、PMOSトランジスタ1303、1304のゲートpgは、SREFと同電圧となる。プリチャージを停止し、DIS_SLを‘H’レベルとする。この時、制御信号bは‘L’レベルに遷移する。
 時刻t1から時刻t2の期間で、SL_REF、SL_DATはディスチャージトランジスタ1305と1306によってディスチャージされる。同時に、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 ここで、PMOSトランジスタ1303、1304のゲートpgとBL_REFは同電圧であり、PMOSトランジスタ1303、1304はミラートランジスタとして動作する。これによりメモリセル101、リファレンスセル102は同程度の電流が流れるため、メモリセル、リファレンスセルの抵抗差により、BL_DAT、BL_REFの電圧差が発生する。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧が低くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧が高くなる。
 時刻t2は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3で、WL、WLRef_Lを非選択レベルとし、SAENを‘L’レベルとする。これによりBL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージを行い、LATを‘L’レベルとしてアンプを停止する。
 このように、LRベリファイ動作時にPMOSトランジスタ1303、1304をプリチャージトランジスタとして動作するのではなく、ミラートランジスタとして動作することで、時刻t2を読出し動作時と同等のタイミングに設定することができる。
 次に、HRベリファイ動作について説明する。図23は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。VERIFを‘H’レベルに設定し、WLRef_R、WLRef_Lを非選択レベルに設定する。
 時刻t0でSAENが‘L’レベルであり、制御信号a、bが‘H’レベルである。これによりBL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_HとWLを選択レベルに遷移させ、SAENを‘H’レベルとすることで、制御信号bが‘L’レベル、制御信号cが‘H’レベルに遷移し、制御信号dは、ハイインピーダンスになる。これにより、PMOSトランジスタ1303、1304のゲートpgは、SREFと同電圧となる。同時にDIS_SLを‘H’レベルとする。この時、制御信号bは‘L’レベルに遷移する。
 時刻t1から時刻t2の期間で、SL_REF、SL_DATはディスチャージトランジスタ1305と1306によってディスチャージされる。同時に、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 ここで、PMOSトランジスタ1303、1304のゲートpgとBL_REFは同電圧であり、1303、1304はミラートランジスタとして動作する。これにより、メモリセル101、リファレンスセル102は同程度の電流が流れるため、メモリセル、リファレンスセルの抵抗差により、BL_DAT、BL_REFの電圧差が発生する。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧が低くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧が高くなる。
 時刻t2は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3で、WL、WLRef_Hを非選択レベルとし、SAENを‘L’レベルとし、BL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 このように、HRベリファイ時にPMOSトランジスタ1303、1304をプリチャージトランジスタとして動作するのではなく、ミラートランジスタとして動作することで、時刻t2を読出し動作時と同等のタイミングに設定することができる。
 本実施形態ではLRベリファイ動作、HRベリファイ動作双方に、本発明を適用した場合を説明したが、どちらか一方のみに適用してもよい。たとえばプリチャージトランジスタとして動作した場合に、時刻t1から時刻t2の時間が短くタイミング生成が困難なLRベリファイ動作時のみに適用する。一方、HRベリファイ動作時は読出し動作と同様に1303、1304をプリチャージトランジスタとして動作する方式とする。これにより、ミラートランジスタとして動作した場合の定常的なメモリセル、リファレンス電流より低減することができるため、消費電流を低減できる。
 また、スイッチ回路1311はゲートpgとBL_REF間に設けているが、ゲートpgとBL_DAT間に設けても構わない。
 また、PMOSトランジスタ1303、1304をNMOSトランジスタとしてもよく、その場合には、制御回路1312を変更することで、本実施形態で説明したものと同じ効果が得られる。
 《第4の実施形態》
 本発明の第4の実施形態の構成を図24から図25に示す。図24は、本発明の第4の実施形態に係る不揮発性半導体記憶装置の回路図である。1300は不揮発性半導体記憶装置のデータ1ビットの読出し単位であり、16ビットのデータであれば、16個を並べ、制御信号等は各読出し単位に共通に接続されている。101はメモリセル(抵抗変化型不揮発メモリセル)である。本図では、簡単化のため1つのメモリセル101が配置された場合について記載しているが、複数のメモリセルが配置された場合でも、以後説明する動作は同じである。
 102はリファレンスセルで、1303と1304は、判定ノードであるビット線BL_DATとリファレンスビット線BL_REFに電圧を印加するためのPMOSトランジスタである。1311は、pgとBL_REF間のスイッチ回路である。1305と1306は、ソース線SL_DATとリファレンスソース線SL_REFをディスチャージするNMOSトランジスタである。107はSDATとSREFの電圧差を論理レベルに増幅してラッチを行うアンプを含んだ判定回路である。1314と1315は、SL_DAT、SL_REFのプリチャージトランジスタで、1312はVERIF、SAEN信号に応じて、前記1300の制御信号b、c、dを制御する回路である。
 メモリセル101、リファレンスセル102および判定回路107は第1の実施形態で説明した構成と同様の構成である。
 図25は、本発明の第4の実施形態に係るイコライズ回路の回路図である。図25にイコライズ回路1308の構成を示す。イコライズ信号EQに応じて、BL_DATとBL_REFを同電圧にイコライズあるいは、切断する動作を行う。
 次に、読み出し動作について説明する。図21は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。VERIFを‘L’レベルに設定し、WLRef_L、WLRef_Hを非選択レベルに設定する。
 時刻t0でSAENが‘L’レベルであり、制御信号a、bが‘H’レベルである。これによりBL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWL_Ref_RとWLを選択レベルに遷移させ、SAENを‘H’レベルとすることで、制御信号a、bが‘L’レベルに遷移する。同時にEQを‘L’レベルとして、プリチャージとイコライズを停止し、DIS_SLを‘H’レベルとする。
 時刻t1から時刻t2の期間で、SL_REF、SL_DATはディスチャージトランジスタ1305と1306によってディスチャージされる。同時に、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が遅くなる。
 時刻t2は、BL_DATとBL_REF電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3で、WL、WLRef_Rを非選択レベルとし、SAENを‘L’レベル、EQを‘H’レベルする。これによりBL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 次に、LRベリファイ動作について説明する。図22は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。VERIFを‘H’レベルに設定し、WLRef_R、WLRef_Hを非選択レベルに設定する。
 時刻t0でSAENが‘L’レベルであり、制御信号a、bが‘H’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、SAENを‘H’レベルとすることで、制御信号bが‘L’レベル、制御信号cが‘H’レベルに遷移する。これにより、PMOSトランジスタ1303、1304のゲートpgは、SREFと同電圧となる。同時にEQを‘L’レベルとして、プリチャージとイコライズを停止し、DIS_SLを‘H’レベルとする。この時、制御信号bは‘L’レベルに遷移する。
 時刻t1から時刻t2の期間で、SL_REF、SL_DATはディスチャージトランジスタ1305と1306によってディスチャージされる。同時に、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 ここで、PMOSトランジスタ1303、1304のゲートpgとBL_REFは同電圧であり、PMOSトランジスタ1303、1304はミラートランジスタとして動作する。これにより、メモリセル101、リファレンスセル102は同程度の電流が流れるため、メモリセル、リファレンスセルの抵抗差により、BL_DAT、BL_REFの電圧差が発生する。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧が低くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧が高くなる。
 時刻t2は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3で、WL、WLRef_Lを非選択レベルとし、SAENを‘L’レベル、EQを‘H’レベルとする。これによりBL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 このように、LRベリファイ動作時にPMOSトランジスタ1303、1304をプリチャージトランジスタとして動作するのではなく、ミラートランジスタとして動作することで、時刻t2を読出し動作時と同等のタイミングに設定することができる。
 次に、HRベリファイ動作について説明する。図23は、本発明の第3及び4の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。VERIFを‘H’レベルに設定し、WLRef_R、WLRef_Lを非選択レベルに設定する。
 時刻t0でSAENが‘L’レベルであり、制御信号a、bが‘H’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_HとWLを選択レベルに遷移させ、SAENを‘H’レベルとする。これにより制御信号bが‘L’レベル、制御信号cが‘H’レベルに遷移し、PMOSトランジスタ1303、1304のゲートpgは、SREFと同電圧となる。同時にEQを‘L’レベルとして、プリチャージとイコライズを停止し、DIS_SLを‘H’レベルとする。この時、制御信号bは‘L’レベルに遷移する。
 時刻t1から時刻t2の期間で、SL_REF、SL_DATはディスチャージトランジスタ1305と1306によってディスチャージされる。同時に、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 ここで、PMOSトランジスタ1303、1304のゲートpgとBL_REFは同電圧であり、PMOSトランジスタ11303、1304はミラートランジスタとして動作する。これによりメモリセル101、リファレンスセル102は同程度の電流が流れるため、メモリセル、リファレンスセルの抵抗差により、BL_DAT、BL_REFの電圧差が発生する。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧が低くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧が高くなる。
 時刻t2は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3で、WL、WLRef_Hを非選択レベルとし、SAENを‘L’レベル、EQを‘H’レベルとする。これによりBL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 このように、HRベリファイ時にPMOSトランジスタ1303、1304をプリチャージトランジスタとして動作するのではなく、ミラートランジスタとして動作することで、時刻t2を読出し動作時と同等のタイミングに設定することができる。
 本実施形態では、ディスチャージトランジスタ、イコライズ回路により第3の実施形態に係る不揮発性半導体記憶装置より高速に動作させることができる。
 本実施形態ではLRベリファイ動作、HRベリファイ動作双方に、本発明を適用した場合を説明したが、どちらか一方のみに適用してもよい。たとえばプリチャージトランジスタとして動作した場合に、時刻t1から時刻t2の時間が短くタイミング生成が困難なLRベリファイ動作時のみに適用する。一方、HRベリファイ動作時は読出し動作と同様に1303、1304をプリチャージトランジスタとして動作する方式とする。これにより、ミラートランジスタとして動作した場合の定常的なメモリセル、リファレンス電流より低減することができるため、消費電流を低減できる。
 また、スイッチ回路1311はゲートpgとBL_REF間に設けているが、ゲートpgとBL_DAT間に設けても構わない。
 また、PMOSトランジスタ1303、1304をNMOSトランジスタとしてもよく、その場合には、制御回路1312を変更することで、本実施形態で説明したものと同じ効果が得られる。
 《第5の実施形態》
 本発明の第5の実施形態の構成を図26から図27に示す。図26は、本発明の第5の実施形態に係る不揮発性半導体記憶装置の回路図である。101はメモリセル(抵抗変化型不揮発メモリセル)である。本図では、簡単化のため1つのメモリセル101が配置された場合について記載しているが、複数のメモリセルが配置された場合でも、以後説明する動作は同じである。
 102はリファレンスセルで、2003と2004は、判定ノードであるデータノードSDATとリファレンスノードSREFのプリチャージを行うPMOSトランジスタである。105と106はビット線BL_DATとリファレンスビット線BL_REFの電圧を一定電圧に制御するクランプトランジスタである。107はSDATとSREFの電圧差を論理レベルに増幅してラッチを行うアンプを含んだ判定回路で、2011はREAD、VERIF_LR、VERIF_HRの信号に応じて、CLAMP電圧を選択出力する回路である。
 メモリセル101、リファレンスセル102および判定回路107、イコライズ回路108は第1の実施形態で説明した構成と同様の構成である。
 図27は、本発明の第5の実施形態に係るクランプ電圧切替え回路の回路図である。図27にクランプ電圧切替え回路2011の構成を示す。READ、VERIF_LR、VERIF_HRの信号に応じて、それぞれクランプ電圧VCLAMP_VH、VCLAMP_VR、VCLAMP_VLを選択的に出力する回路である。それぞれの電圧関係は、VCLAMP_VH > VCLAMP_VR > VCLAMP_VLである。
 本発明の不揮発性半導体記憶装置の一態様として第一の回路に入力される信号は、少なくとも2つ以上直列に接続された抵抗のいずれかの抵抗の端子に接続されていてもよい。
 次に、読み出し動作について説明する。図28は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。READを‘H’レベル、VERIF_LRを‘L’レベル、VERIF_HRを‘L’レベルに設定し、CLAMP電圧を一定電圧(VCLAMP_VR)に設定する。また、WLRef_L、WLRef_Hを非選択レベルに設定する。
 時刻t1でWLRef_RとWLを選択レベルに遷移させ、PREBを‘L’レベルとすることで、SDAT、SREF、BL_DAT、BL_REDのプリチャージを開始する。
 時刻t2でPREBを‘H’レベルとして、プリチャージを停止する。この時SDAT、SREFはほぼVDDレベルとなり、BL_DAT、BL_REFはクランプトランジスタ105、106の閾値電圧をVtnとすると、VCLAMP_VR-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、メモリセル101、リファレンスセル102を通して、SDAT、SREFとBL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧の低下が遅くなる。
 時刻t3は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4で、WL、WLRef_Rを非選択レベルとし、LATを‘L’レベルとしてアンプを停止する。
 次に、LRベリファイ動作について説明する。図29は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。READを‘L’レベル、VERIF_LRを‘H’レベル、VERIF_HRを‘L’レベルに設定し、CLAMP電圧を一定電圧(VCLAMP_VL)に設定する。また、WLRef_R、WLRef_Hを非選択レベルに設定する。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、PREBを‘L’レベルとすることで、SDAT、SREF、BL_DAT、BL_REFのプリチャージを開始する。
 時刻t2でPREBを‘H’レベルとして、プリチャージを停止する。この時SDAT、SREFはほぼVDDレベルとなり、BL_DAT、BL_REFは、クランプトランジスタ105、106の閾値電圧をVtnとすると、VCLAMP_VL-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、メモリセル101、リファレンスセル102を通して、SDAT、SREFとBL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧の低下が遅くなる。
 この時、SREFの低下速度は読み出し動作の時のSREFの低下速度とほぼ等しくなるように、VCLAMP_VLの電圧は調整されている。このため、時刻t3のタイミングを読み出し動作と同じにすることができる。
 時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4で、WL、WL_Ref_Lを非選択レベルとし、LATを‘L’レベルとしてアンプを停止する。
 次にHRベリファイ動作について説明する。図30は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。READを‘L’レベル、VERIF_LRを‘L’レベル、VERIF_HRを‘H’レベルに設定し、CLAMP電圧を一定電圧(VCLAMP_VH)に設定する。また、WLRef_R、WLRef_Lを非選択レベルに設定する。
 時刻t1でWLRef_HとWLを選択レベルに遷移させ、PREBを‘L’レベルとすることで、SDAT、SREF、BL_DAT、BL_REFのプリチャージを開始する。
 時刻t2でPREBを‘H’レベルとして、プリチャージを停止する。この時SDAT、SREFはほぼVDDレベルとなり、BL_DAT、BL_REFは、クランプトランジスタ105、106の閾値電圧をVtnとすると、VCLAMP_VH-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、メモリセル101、リファレンスセル102を通して、SDAT、SREFとBL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧の低下が遅くなる。
 この時、SREFの低下速度は読み出し動作の時のSREFの低下速度とほぼ等しくなるように、VCLAMP_VHの電圧は調整されている。このため、時刻t3のタイミングを読み出し動作と同じにすることができる。
 時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4では、WL、WLRef_Hを非選択レベルとし、LATを‘L’レベルとしてアンプを停止する。
 本実施形態ではLRベリファイ動作、HRベリファイ動作双方に、本発明を適用した場合を説明したが、どちらか一方のみに適用してもよく、たとえば従来構成では時刻t2から時刻t3時間が短くタイミング生成が困難であったLRベリファイ動作時のみに適用する。BL_DAT、BL_REFを高電圧に設定する必要があり、消費電流が増加するHRベリファイ動作には非適用とすることで、ベリファイ動作の消費電流を低減できる効果がある。
 本発明の不揮発性半導体記憶装置の一態様として少なくとも、第一の端子と第二の端子とを備えるメモリセルと、少なくとも、第三の端子と第四の端子とを備えるリファレンスセルと、データノードおよびレファレンスノードと接続された読出し回路を備え、データノードと第一のトランジスタが接続され、レファレンスノードと第二のトランジスタが接続され、第一の端子と第二の端子との間の電圧および第三の端子と第四の端子との間の電圧を、入力された信号により制御する第一の回路を備えていてもよい。また、第二の端子と第四の端子とが第二の電源に接続され、第一の回路は、ソースが第一の端子に接続され、ドレインがデータノードに接続されるNMOSトランジスタと、ソースが第三の端子に接続され、ドレインがリファレンスノードに接続されるNMOSトランジスタと、ソースが第二の電源に接続され、ドレインがデータノードに接続されるPMOSトランジスタと、ソースが第二の電源に接続され、ドレインがリファレンスノードに接続されるPMOSトランジスタであってもよい。また、前記第一の回路が制御する電圧は、通常の読み出し動作と不揮発性メモリセルの書換え動作時の完了判定動作である検証動作で異なっていてもよい。また、メモリセルは抵抗変化型の不揮発性メモリセルであり、ベリファイ動作として、低抵抗化動作後の抵抗値を確認する読出し動作である低抵抗化検証動作および、高抵抗化動作後の高抵抗状態を確認する読出し動作である高抵抗化検証動作を行い、低抵抗化検証動作、高抵抗化検証動作で第一の回路が制御する電圧が異なっていてもよい。
 《第6の実施形態》
 本発明の第6の実施形態の構成を図31に示す。図31は、本発明の第6の実施形態に係る不揮発性半導体記憶装置の回路図である。2300は不揮発性半導体記憶装置のデータ1ビットの読出し単位であり、16ビットのデータであれば、16個を並べ、制御信号等は各読出し単位に共通に接続されている。101はメモリセル(抵抗変化型不揮発メモリセル)である。本図では、簡単化のため1つのメモリセル101が配置された場合について記載しているが、複数のメモリセルが配置された場合でも、以後説明する動作は同じである。
 102はリファレンスセルで、2003と2004は、判定ノードであるデータノードSDATとリファレンスノードSREFのプリチャージを行うPMOSトランジスタである。105と106はビット線BL_DATとリファレンスビット線BL_REFの電圧を一定電圧に制御するクランプトランジスタである。107はSDATとSREFの電圧差を論理レベルに増幅してラッチを行うアンプを含んだ判定回路である。2011はREAD、VERIF_LR、VERIF_HRの信号に応じて、CLAMP電圧を選択出力する回路で、108はイコライズ回路である。
 メモリセル101、リファレンスセル102および判定回路107、イコライズ回路108は第2の実施形態で説明した構成と同様の構成である。
 図27に2011の構成を示す。READ、VERIF_LR、VERIF_HRの信号に応じて、それぞれクランプ電圧VCLAMP_VH、VCLAMP_VR、VCLAMP_VLを選択的に出力する回路である。それぞれの電圧関係は、VCLAMP_VH > VCLAMP_VR > VCLAMP_VLである。
 次に、読み出し動作について説明する。図28は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。READを‘H’レベル、VERIF_LRを‘L’レベル、VERIF_HRを‘L’レベルに設定し、CLAMP電圧を一定電圧(CLAMP_VR)に設定する。また、WLRef_L、WLRef_Hを非選択レベルに設定する。
 時刻t1でWLRef_RとWLを選択レベルに遷移させ、PREBを‘L’レベルとすることで、SDAT、SREF、BL_DAT、BL_REDのプリチャージを開始する。
 時刻t2でPREBを‘H’レベル、EQを‘L’レベルとして、プリチャージとイコライズを停止する。この時SDAT、SREFはほぼVDDレベルとなり、BL_DAT、BL_REFはクランプトランジスタ105、106の閾値電圧をVtnとすると、VCLAMP_VR-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、メモリセル101、リファレンスセル102を通して、SDAT、SREFとBL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧の低下が遅くなる。
 時刻t3は、SDATとSREFの電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4で、WL、WLRef_Rを非選択レベルとし、EQを‘H’レベルとしSREF、SDATのイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 次に、LRベリファイ動作について説明する。図29は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。READを‘L’レベル、VERIF_LRを‘H’レベル、VERIF_HRを‘L’レベルに設定し、CLAMP電圧を一定電圧(VCLAMP_VL)に設定する。また、WLRef_R、WLRef_Hを非選択レベルに設定する。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、PREBを‘L’レベルとすることで、SDAT、SREF、BL_DAT、BL_REFのプリチャージを開始する。
 時刻t2でPREBを‘H’レベル、EQを‘L’レベルとして、プリチャージとイコライズを停止する。この時SDAT、SREFはほぼVDDレベルとなり、BL_DAT、BL_REFは、クランプトランジスタ105、106の閾値電圧をVtnとすると、VCLAMP_VL-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、メモリセル101、リファレンスセル102を通して、SDAT、SREFとBL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧の低下が遅くなる。
 この時、SREFの低下速度は読み出し動作の時のSREFの低下速度とほぼ等しくなるように、VCLAMP_VLの電圧は調整されている。このため、時刻t3のタイミングを読み出し動作と同じにすることができる。
 時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4で、WL、WL_Ref_Lを非選択レベルとし、EQを‘H’レベルとしSREF、SDATのイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 次にHRベリファイ動作について説明する。図30は、本発明の第5及び6の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。READを‘L’レベル、VERIF_LRを‘L’レベル、VERIF_HRを‘H’レベルに設定し、CLAMP電圧を一定電圧(VCLAMP_VH)に設定する。また、WLRef_R、WLRef_Lを非選択レベルに設定する。
 時刻t1でWLRef_HとWLを選択レベルに遷移させ、PREBを‘L’レベルとすることで、SDAT、SREF、BL_DAT、BL_REFのプリチャージを開始する。
 時刻t2でPREBを‘H’レベル、EQを‘L’レベルとして、プリチャージとイコライズを停止する。この時SDAT、SREFはほぼVDDレベルとなり、BL_DAT、BL_REFは、クランプトランジスタ105、106の閾値電圧をVtnとすると、VCLAMP_VH-Vtnのレベルとなっている。
 時刻t2から時刻t3の期間で、メモリセル101、リファレンスセル102を通して、SDAT、SREFとBL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、SREF電圧よりSDAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、SREF電圧よりSDAT電圧の低下が遅くなる。
 この時、SREFの低下速度は読み出し動作の時のSREFの低下速度とほぼ等しくなるように、VCLAMP_VHの電圧は調整されている。このため、時刻t3のタイミングを読み出し動作と同じにすることができる。
 時刻t3でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t4では、WL、WLRef_Hを非選択レベルとし、EQを‘H’レベルとしSREF、SDATのイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 本実施形態では、ディスチャージトランジスタ、イコライズ回路により第5の実施形態に係る不揮発性半導体記憶装置より高速に動作させることができる。
 本実施形態ではLRベリファイ動作、HRベリファイ動作双方に、本発明を適用した場合を説明したが、どちらか一方のみに適用してもよい。たとえば従来構成では時刻t2から時刻t3時間が短くタイミング生成が困難であったLRベリファイ動作時のみに適用する。一方、BL_DAT、BL_REFを高電圧に設定する必要があり、消費電流が増加するHRベリファイ動作には非適用とすることで、ベリファイ動作の消費電流を低減できる効果がある。
 《第7の実施形態》
 本発明の第7の実施形態の構成を図32から図33に示す。図32は、本発明の第7の実施形態に係る不揮発性半導体記憶装置の回路図である。2500は不揮発性半導体記憶装置のデータ1ビットの読出し単位であり、16ビットのデータであれば、16個を並べ、制御信号等は各読出し単位に共通に接続されている。101はメモリセル(抵抗変化型不揮発メモリセル)である。本図では、簡単化のため1つのメモリセル101が配置された場合について記載しているが、複数のメモリセルが配置された場合でも、以後説明する動作は同じである。
 102はリファレンスセルで、2503と2504は、判定ノードであるビット線BL_DAT、リファレンスビット線BL_REFのプリチャージを行うPMOSトランジスタである。2512と2513は、ソース線SL_DAT、リファレンスソース線SL_REFのプリチャージを行うPMOSトランジスタである。2505と2506はソース線SL_DATとリファレンスソース線SL_REFの電圧を一定電圧に制御するクランプトランジスタである。2509と2510は、ソース線SL_DATとリファレンスソース線SL_REFをディスチャージするNMOSトランジスタである。107はBL_DATとBL_REFの電圧差を論理レベルに増幅してラッチを行うアンプを含んだ判定回路である。2511はREAD、VERIF_LR、VERIF_HRの信号に応じて、CLAPM電圧を選択出力する回路である。
 メモリセル101、リファレンスセル102および判定回路107は第1の実施形態で説明した構成と同様の構成である。
 図33は、本発明の第7の実施形態に係るクランプ電圧切替え回路の回路図である。図33にクランプ電圧切替え回路2511の構成を示す。READ、VERIF_LR、VERIF_HRの信号に応じて、それぞれクランプ電圧VCLAMP_VH、VCLAMP_VR、VCLAMP_VLを選択的に出力する回路である。それぞれの電圧関係は、VCLAMP_VLP > VCLAMP_VRP > VCLAMP_VHPである。
 次に、読み出し動作について説明する。図34は、本発明の第7及び8の実施形態に係る不揮発性半導体記憶装置を用いた読出し動作波形を示すチャートである。READを‘H’レベル、VERIF_LRを‘L’レベル、VERIF_HRを‘L’レベルに設定し、CLAMP電圧を一定電圧(CLAMP_VRP)に設定する。また、WLRef_L、WLRef_Hを非選択レベルに設定する。
 時刻t0でPREBが‘L’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_RとWLを選択レベルに遷移させ、PREBを‘H’レベルとし、プリチャージを停止し、DIS_SLを‘H’レベルとする。時刻t1から時刻t2の期間で、クランプトランジスタ2505、2506の閾値電圧の絶対値をVtpとする。SL_REF、SL_DATはCLAMP_VRP+Vtpのレベルに遷移し、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が遅くなる。
 時刻t2は、BLDATとBL_REF電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3で、WL、WLRef_Rを非選択レベルとし、PREBを‘L’レベルとし、BL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージを行い、LATを‘L’レベルとしてアンプを停止する。
 次にLRベリファイ動作について説明する。図35は、本発明の第7及び8の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。READを‘L’レベル、VERIF_LRを‘H’レベル、VERIF_HRを‘L’レベルに設定し、CLAMP電圧を一定電圧(CLAMP_VLP)に設定する。また、WLRef_R、WLRef_Hを非選択レベルに設定する。
 時刻t0でPREBが‘L’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、PREBを‘H’レベルとして、プリチャージを停止し、DIS_SLを‘H’レベルとする。
 時刻t1から時刻t2の期間で、クランプトランジスタ2505、2506の閾値電圧の絶対値をVtpとする。SL_REF、SL_DATはCLAMP_VLP+Vtpのレベルに遷移し、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が遅くなる。
 この時、BL_REFの低下速度は読み出し動作の場合のBL_REF電圧の低下速度とほぼ等しくなるように、CLAMP_VLPの電圧は調整されている。このため、時刻t2のタイミングを読み出し動作と同じにすることができる。
 時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3では、WL、WLRef_Lを非選択レベルとし、PREBを‘L’レベル、とし、BL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージを行い、LATを‘L’レベルとしてアンプを停止する。
 次にHRベリファイ動作について説明する。図36は、本発明の第7及び8の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。READを‘L’レベル、VERIF_LRを‘L’レベル、VERIF_HRを‘H’レベルに設定し、CLAMP電圧を一定電圧(CLAMP_VHP)に設定する。また、WLRef_R、WLRef_Lを非選択レベルに設定する。
 時刻t0でPREBが‘L’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、PREBを‘H’レベルとしとして、プリチャージとイコライズを停止し、DIS_SLを‘H’レベルとする。
 時刻t1から時刻t2の期間で、クランプトランジスタ2905、2906の閾値電圧をVtpとする。SL_REF、SL_DATはCLAMP_VHP+Vtpのレベルに遷移し、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が遅くなる。
 この時、BL_REFの低下速度は読み出し動作の場合のBL_REF電圧の低下速度とほぼ等しくなるように、CLAMP_VHPの電圧は調整されている。このため、時刻t2のタイミングを読み出し動作と同じにすることができる。
 時刻t2でLATを‘H’レベルとしてアンプの起動を行うSAOUTにデータを出力する。
 時刻t3では、WL、WLRef_Hを非選択レベルとし、PREBを‘L’レベル、BL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージを行い、LATを‘L’レベルとしてアンプを停止する。
 第二の端子と第四の端子とが第二の電源に接続され、第一の回路は、ドレインが第一の端子に接続され、ソースが第三の電源に接続されるPMOSトランジスタと、ドレインが第三の端子に接続され、ソースが第三の電圧に接続されるPMOSトランジスタと、ソースが第三の電圧に接続され、ドレインがデータノードに接続されるPMOSトランジスタと、ソースが第三の電圧に接続され、ドレインがリファレンスノードに接続されるPMOSトランジスタであってもよい。
 《第8の実施形態》
 本発明の第8の実施形態の構成を図37から図39に示す。図37は、本発明の第8の実施形態に係る不揮発性半導体記憶装置の回路図である。2500は不揮発性半導体記憶装置のデータ1ビットの読出し単位であり、16ビットのデータであれば、16個を並べ、制御信号等は共通に接続されている。101はメモリセル(抵抗変化型不揮発メモリセル)である。本図では、簡単化のため1つのメモリセル101が配置された場合について記載しているが、複数のメモリセルが配置された場合でも、以後説明する動作は同じである。
 102はリファレンスセルで、2503と2504は、判定ノードであるビット線BL_DAT、リファレンスビット線BL_REFのプリチャージを行うPMOSトランジスタである。2512と2513は、ソース線SL_DAT、リファレンスソース線SL_REFのプリチャージを行うPMOSトランジスタである。2505と2506はソース線SL_DATとリファレンスソース線SL_REFの電圧を一定電圧に制御するクランプトランジスタである。2509と2510は、ソース線SL_DATとリファレンスソース線SL_REFをディスチャージするNMOSトランジスタである。107はBL_DATとBL_REFの電圧差を論理レベルに増幅してラッチを行うアンプを含んだ判定回路である。2511はREAD、VERIF_LR、VERIF_HRの信号に応じて、CLAPM電圧を選択出力する回路で、2508と2514はイコライズ回路である。
 メモリセル101、リファレンスセル102および判定回路107は第1の実施形態で説明した構成と同様の構成である。
 図38は、本発明の第8の実施形態に係るイコライズ回路の回路図である。図38にイコライズ回路2508の構成を示す。イコライズ信号EQに応じて、BL_DATとBL_REFを同電圧にイコライズあるいは、切断する動作を行う。
 図39は、本発明の第8の実施形態に係るイコライズ回路の回路図である。図39にイコライズ回路2514の構成を示す。イコライズ信号EQ_Sに応じて、SL_DATとSL_REFを同電圧にイコライズあるいは、切断する動作を行う。
 次に、読み出し動作について図34に示す。READを‘H’レベル、VERIF_LRを‘L’レベル、VERIF_HRを‘L’レベルに設定し、CLAMP電圧を一定電圧(CLAMP_VRP)に設定する。また、EQ、EQ_Sを‘H’レベルに設定し、WLRef_L、WLRef_Hを非選択レベルに設定する。
 時刻t0でPREBが‘L’レベル、EQが‘H’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_RとWLを選択レベルに遷移させ、PREBを‘H’レベルとし、EQを‘L’レベルとして、プリチャージとイコライズを停止し、DIS_SLを‘H’レベルとする。EQ_Sは‘H’レベルを保持し、SL_DATとSL_REFのイコライズは停止しない。
 時刻t1から時刻t2の期間で、クランプトランジスタ2505、2506の閾値電圧をVtpとする。SL_REF、SL_DATはCLAMP_VRP+Vtpのレベルに遷移する。これによりメモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が遅くなる。
 時刻t2は、BLDATとBL_REF電圧差が、107のアンプの増幅限界電圧より大きくなるタイミングに設定しておく。時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3で、WL、WLRef_Rを非選択レベルとし、PREBを‘L’レベル、EQ、EQ_Sを‘H’レベルとする。これによりBL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 次にLRベリファイ動作について説明する。図35は、本発明の第7及び8の実施形態に係る不揮発性半導体記憶装置を用いたLRベリファイ動作波形を示すチャートである。READを‘L’レベル、VERIF_LRを‘H’レベル、VERIF_HRを‘L’レベルに設定し、CLAMP電圧を一定電圧(CLAMP_VLP)に設定する。また、EQ、EQ_Sを‘H’レベルに設定し、WLRef_R、WLRef_Hを非選択レベルに設定する。
 時刻t0でPREBが‘L’レベル、EQが‘H’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、PREBを‘H’レベルとし、EQ、EQ_Sを‘L’レベルとする。これによりプリチャージとイコライズを停止し、DIS_SLを‘H’レベルとする。EQ_Sは‘H’レベルを保持し、SL_DATとSL_REFのイコライズは停止しない。
 時刻t1から時刻t2の期間で、クランプトランジスタ2505、2506の閾値電圧をVtpとする。SL_REF、SL_DATはCLAMP_VLP+Vtpのレベルに遷移し、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が遅くなる。
 この時、BL_REFの低下速度は読み出し動作の場合のBL_REF電圧の低下速度とほぼ等しくなるように、CLAMP_VLPの電圧は調整されている。このため、時刻t2のタイミングを読み出し動作と同じにすることができる。
 時刻t2でLATを‘H’レベルとしてアンプを起動し、SAOUTにデータを出力する。
 時刻t3では、WL、WLRef_Lを非選択レベルとし、PREBを‘L’レベル、EQ、EQ_Sを‘H’レベルとする。これによりBL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 次にHRベリファイ動作について説明する。図36は、本発明の第7及び8の実施形態に係る不揮発性半導体記憶装置を用いたHRベリファイ動作波形を示すチャートである。READを‘L’レベル、VERIF_LRを‘L’レベル、VERIF_HRを‘H’レベルに設定し、CLAMP電圧を一定電圧(CLAMP_VHP)に設定する。また、EQ、EQ_Sを‘H’レベルに設定し、WLRef_R、WLRef_Lを非選択レベルに設定する。
 時刻t0でPREBが‘L’レベル、EQ、EQ_Sが‘H’レベルであるので、BL_DAT、BL_REF、SL_DAT、SL_REFはVDDにプリチャージされている。
 時刻t1でWLRef_LとWLを選択レベルに遷移させ、PREBを‘H’レベルとし、EQを‘L’レベルとする。これにより、プリチャージとイコライズを停止し、DIS_SLを‘H’レベルとする。EQ、EQ_Sは‘H’レベルを保持し、SL_DATとSL_REFのイコライズは停止しない。
 時刻t1から時刻t2の期間で、クランプトランジスタ2905、2906の閾値電圧をVtpとする。SL_REF、SL_DATはCLAMP_VHP+Vtpのレベルに遷移し、メモリセル101、リファレンスセル102を通して、BL_DAT、BL_REFのディスチャージが行われる。
 メモリセルが低抵抗状態(LR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が早くなる。
 メモリセルが高抵抗状態(HR)の場合は、BL_REF電圧よりBL_DAT電圧の低下が遅くなる。
 この時、BL_REFの低下速度は読み出し動作の場合のBL_REF電圧の低下速度とほぼ等しくなるように、CLAMP_VHPの電圧は調整されている。このため、時刻t2のタイミングを読み出し動作と同じにすることができる。
 時刻t2でアンプの起動が行われるとSAOUTにデータが出力される。
 時刻t3では、WL、WLRef_Hを非選択レベルとし、PREBを‘L’レベル、EQ、EQ_Sを‘H’レベルとする。これにより、BL_DAT、BL_REF、SL_DAT、SL_REFのプリチャージとイコライズを行い、LATを‘L’レベルとしてアンプを停止する。
 本実施形態では、ディスチャージトランジスタ、イコライズ回路により第7の実施形態に係る不揮発性半導体記憶装置より高速に動作させることができる。
 以上の第1から第8の実施形態では、メモリセルとして抵抗変化型不揮発メモリセル(ReRAM)を用いた構成について説明したが、メモリセルの両端に流れる電流を検知することでデータを判定する読出し回路を備えた不揮発性半導体記憶装置に適用可能である。上記以外に、磁気抵抗変化型メモリ(MRAM:Magnetoresistive Random Access Memory)、相変化型不揮発性メモリ(PRAM:Phase Change Random Access Memoory)および、フラッシュメモリでも適用可能である。
 また、単数の制御回路112に対して接続される読出し単位100は単数であっても、複数であっても構わない。単数の制御回路112に対して接続される読出し単位100が多いほど不揮発性半導体記憶装置全体の制御回路112を省くことができる。
 本発明に係る不揮発性半導体記憶装置は、読出し動作に加えてベリファイ動作などの広い範囲の判定電流での動作が必要であっても、増幅タイミングをほぼ同じにでき、読出し動作の高速性、判定精度の両立が可能であることから、データ判定時のメモリセルに流れる電流量を判定することでデータ状態を記憶するメモリに有用である。
101 メモリセル
102 リファレンスセル
107 判定回路
108 イコライズ回路
111 スイッチ回路
112 制御回路
1308 イコライズ回路
1311 スイッチ回路
1312 制御回路
2011 クランプ電圧切替え回路
2012 制御回路
2508 イコライズ回路
2511 クランプ電圧切替え回路
2514 イコライズ回路

Claims (14)

  1.  少なくとも、第一の端子と第二の端子を備えるメモリセルと、少なくとも、第三の端子と第四の端子を備えるリファレンスセルと、前記第一の端子および前記第三の端子と接続された読出し回路と、前記第一の端子と接続された第一のトランジスタと、前記第三の端子と接続された第二のトランジスタを備え、
     前記第一のトランジスタのゲートと前記第二のトランジスタのゲートとは共通に接続されており、
     前記第一のトランジスタの前記ゲートと前記第二のトランジスタの前記ゲートと、前記第三の端子あるいは前記第四の端子との間を電気的に短絡、切断するためのスイッチを備えた不揮発性半導体記憶装置。
  2.  前記第一のトランジスタの前記ゲートには、第一の制御端子が接続され、前記スイッチには、前記スイッチの短絡、切断を制御する第二の制御端子が接続され、前記第一および前記第二の制御端子の制御を切替える制御回路を備える請求項1に記載の不揮発性半導体記憶装置。
  3.  少なくとも複数の前記メモリセルを備える請求項2に記載の不揮発性半導体記憶装置。
  4.  前記第一のトランジスタおよび前記第二のトランジスタは、PMOSトランジスタであって、前記制御回路は第一の動作モードにおいて、前記第一の制御端子を前記第一および前記第二のトランジスタを通電する設定とし、前記第二の制御端子を、前記スイッチを切断する設定とし、前記第一のトランジスタおよび前記第二のトランジスタが前記第一の端子および前記第三の端子に第一の電圧を印加するプリチャージトランジスタとして動作し、
     第二の動作モードにおいて、前記第一の制御端子をハイインピーダンスとし、前記第二の制御端子を、スイッチを短絡する設定とすることで、前記第一のトランジスタおよび前記第二のトランジスタが前記第一の端子および前記第三の端子に前記第一の電圧を印加するミラートランジスタとして動作するように制御する請求項2または3に記載の不揮発性半導体記憶装置。
  5.  前記第一のトランジスタおよび前記第二のトランジスタがNMOSトランジスタである請求項4に記載の不揮発性半導体記憶装置。
  6.  前記リファレンスセルは、少なくとも2つ以上の抵抗の一端が前記第三の端子あるいは、前記第四の端子に並列に接続されており、
     前記抵抗の他の端は、前記第一の動作モードあるいは前記第二の動作モードに応じて、抵抗の一端が前記第三の端子に接続されているときは前記第四の端子に、あるいは、抵抗の一端が前記第四の端子に接続されているときは前記第三の端子に電気的に接続することを特徴とする請求項1から5に記載の不揮発性半導体記憶装置。
  7.  メモリセルとレファレンスセルと、前記メモリセルと前記レファレンスセルに電圧を印加することで前記メモリセルと前記レファレンスセルに流れる電流差によって生じる電圧差からデータ状態を判定する読出し回路を備え、前記メモリセルには第一のトランジスタが接続され、前記レファレンスセルには第二のトランジスタが接続され、第一の動作モードにおいて前記第一のトランジスタおよび前記第二のトランジスタがプリチャージトランジスタとして動作し、第二の動作モードにおいてミラートランジスタとして動作し、前記第一の動作モード、第二の動作モードを切り替える不揮発性半導体記憶装置。
  8.  前記メモリセルが抵抗変化型の不揮発性メモリセルであって、通常の読出し動作および、書換え動作時において、低抵抗化動作後の抵抗値を確認する読出し動作である低抵抗化検証動作および、高抵抗化動作後の高抵抗状態を確認する読出し動作である高抵抗化検証動作を行い、前記第一の動作モードにおいて通常の読出し動作を行い、前記第二の動作モードにおいて前記高抵抗化検証動作、前記低抵抗化検証動作の内、少なくとも一つの動作を行う請求項1から7に記載の不揮発性半導体記憶装置。
  9.  少なくとも、第一の端子と第二の端子とを備えるメモリセルと、少なくとも、第三の端子と第四の端子とを備えるリファレンスセルと、データノードおよびレファレンスノードと接続された読出し回路を備え、
     前記データノードと第一のトランジスタが接続され、前記レファレンスノードと第二のトランジスタが接続され、前記第一の端子と前記第二の端子との間の電圧および前記第三の端子と前記第四の端子との間の電圧を、入力された信号により制御する第一の回路を備えた不揮発性半導体記憶装置。
  10.  前記第二の端子と前記第四の端子とが第二の電源に接続され、
     前記第一の回路は、ソースが前記第一の端子に接続され、ドレインが前記データノードに接続されるNMOSトランジスタと、ソースが前記第三の端子に接続され、ドレインが前記リファレンスノードに接続されるNMOSトランジスタと、ソースが前記第二の電源に接続され、ドレインが前記データノードに接続されるPMOSトランジスタと、ソースが前記第二の電源に接続され、ドレインが前記リファレンスノードに接続されるPMOSトランジスタである請求項9に記載の不揮発性半導体記憶装置。
  11.  前記第二の端子と前記第四の端子とが第二の電源に接続され、
     前記第一の回路は、ドレインが前記第一の端子に接続され、ソースが第三の電源に接続されるPMOSトランジスタと、ドレインが前記第三の端子に接続され、ソースが前記第三の電圧に接続されるPMOSトランジスタと、ソースが前記第三の電圧に接続され、ドレインが前記データノードに接続されるPMOSトランジスタと、ソースが前記第三の電圧に接続され、前記ドレインがリファレンスノードに接続されるPMOSトランジスタである請求項9に記載の不揮発性半導体記憶装置。
  12.  前記第一の回路が制御する電圧は、通常の読み出し動作と前記不揮発性メモリセルの書換え動作時の完了判定動作である検証動作で異なる請求項9から11に記載の不揮発性半導体記憶装置。
  13.  前記メモリセルは抵抗変化型の不揮発性メモリセルであり、請求項12に記載の検証動作として、低抵抗化動作後の抵抗値を確認する読出し動作である低抵抗化検証動作および、高抵抗化動作後の高抵抗状態を確認する読出し動作である高抵抗化検証動作を行い、前記低抵抗化検証動作、高抵抗化検証動作で前記第一の回路が制御する電圧が異なることを特徴とする請求項12に記載の不揮発性半導体記憶装置。
  14.  前記第一の回路に入力される信号は、少なくとも2つ以上直列に接続された抵抗のいずれかの抵抗の端子に接続されていることを特徴とする請求項9から13に記載の不揮発性半導体記憶装置。
PCT/JP2015/000754 2014-02-20 2015-02-18 不揮発性半導体記憶装置 WO2015125473A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016503977A JP6398090B2 (ja) 2014-02-20 2015-02-18 不揮発性半導体記憶装置
CN201580009550.2A CN106062881B (zh) 2014-02-20 2015-02-18 非易失性半导体存储装置
US15/219,232 US10210930B2 (en) 2014-02-20 2016-07-25 Nonvolatile semiconductor storage apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-030309 2014-02-20
JP2014030309 2014-02-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/219,232 Continuation US10210930B2 (en) 2014-02-20 2016-07-25 Nonvolatile semiconductor storage apparatus

Publications (1)

Publication Number Publication Date
WO2015125473A1 true WO2015125473A1 (ja) 2015-08-27

Family

ID=53877992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000754 WO2015125473A1 (ja) 2014-02-20 2015-02-18 不揮発性半導体記憶装置

Country Status (4)

Country Link
US (1) US10210930B2 (ja)
JP (1) JP6398090B2 (ja)
CN (1) CN106062881B (ja)
WO (1) WO2015125473A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017060687A1 (en) * 2015-10-05 2017-04-13 Arm Ltd Circuit and method for monitoring correlated electron switches
US9748943B2 (en) 2015-08-13 2017-08-29 Arm Ltd. Programmable current for correlated electron switch
US9851738B2 (en) 2015-08-13 2017-12-26 Arm Ltd. Programmable voltage reference
JP2019164872A (ja) * 2018-03-20 2019-09-26 株式会社東芝 磁気メモリ及びメモリシステム
US11615840B2 (en) 2019-09-19 2023-03-28 Kioxia Corporation Memory device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102643712B1 (ko) * 2016-10-26 2024-03-06 에스케이하이닉스 주식회사 센스 앰프, 이를 포함하는 비휘발성 메모리 장치 및 시스템
JP2018113084A (ja) * 2017-01-06 2018-07-19 東芝メモリ株式会社 半導体記憶装置
US11516042B2 (en) * 2018-07-19 2022-11-29 Panasonic Intellectual Property Management Co., Ltd. In-vehicle detection system and control method thereof
KR20210127559A (ko) * 2020-04-14 2021-10-22 에스케이하이닉스 주식회사 가변 저항층을 포함하는 반도체 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276828A (ja) * 2007-04-26 2008-11-13 Nec Corp 不揮発性メモリ、及び、動作方法
JP2009295264A (ja) * 2008-06-04 2009-12-17 Samsung Electronics Co Ltd 相変化メモリ装置及びその読み出し方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0805454A1 (en) * 1996-04-30 1997-11-05 STMicroelectronics S.r.l. Sensing circuit for reading and verifying the content of a memory cell
JPH09306189A (ja) * 1996-05-10 1997-11-28 Mitsubishi Electric Corp 不揮発性半導体記憶装置
FR2753829B1 (fr) * 1996-09-24 1998-11-13 Circuit de lecture pour memoire non volatile fonctionnant avec une basse tension d'alimentation
JP3869430B2 (ja) * 2004-05-11 2007-01-17 株式会社東芝 磁気ランダムアクセスメモリ
JP5359798B2 (ja) 2009-11-10 2013-12-04 ソニー株式会社 メモリデバイスおよびその読み出し方法
JP5359804B2 (ja) 2009-11-16 2013-12-04 ソニー株式会社 不揮発性半導体メモリデバイス
JP5521612B2 (ja) 2010-02-15 2014-06-18 ソニー株式会社 不揮発性半導体メモリデバイス
JP2012128892A (ja) * 2010-12-13 2012-07-05 Sony Corp 記憶装置
KR102049306B1 (ko) * 2011-12-12 2019-11-27 삼성전자주식회사 메모리 셀의 리드 또는 라이트 동작 방법 과 장치 및 이를 포함하는 메모리 시스템
US9070466B2 (en) * 2012-09-06 2015-06-30 Infineon Technologies Ag Mismatch error reduction method and system for STT MRAM
US9311999B2 (en) * 2013-09-06 2016-04-12 Micron Technology, Inc. Memory sense amplifiers and memory verification methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276828A (ja) * 2007-04-26 2008-11-13 Nec Corp 不揮発性メモリ、及び、動作方法
JP2009295264A (ja) * 2008-06-04 2009-12-17 Samsung Electronics Co Ltd 相変化メモリ装置及びその読み出し方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9748943B2 (en) 2015-08-13 2017-08-29 Arm Ltd. Programmable current for correlated electron switch
US9851738B2 (en) 2015-08-13 2017-12-26 Arm Ltd. Programmable voltage reference
US10447260B2 (en) 2015-08-13 2019-10-15 Arm Ltd. Programmable current for correlated electron switch
US11347254B2 (en) 2015-08-13 2022-05-31 ARM, Ltd. Programmable voltage reference
WO2017060687A1 (en) * 2015-10-05 2017-04-13 Arm Ltd Circuit and method for monitoring correlated electron switches
US9979385B2 (en) 2015-10-05 2018-05-22 Arm Ltd. Circuit and method for monitoring correlated electron switches
US10354727B2 (en) 2015-10-05 2019-07-16 Arm Ltd. Circuit and method for monitoring correlated electron switches
JP2019164872A (ja) * 2018-03-20 2019-09-26 株式会社東芝 磁気メモリ及びメモリシステム
US11615840B2 (en) 2019-09-19 2023-03-28 Kioxia Corporation Memory device

Also Published As

Publication number Publication date
US10210930B2 (en) 2019-02-19
US20160372191A1 (en) 2016-12-22
JPWO2015125473A1 (ja) 2017-03-30
CN106062881A (zh) 2016-10-26
JP6398090B2 (ja) 2018-10-03
CN106062881B (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
JP6398090B2 (ja) 不揮発性半導体記憶装置
JP4859835B2 (ja) 事前充電回路を有するmramセンス増幅器及び検知方法
JP6161959B2 (ja) 抵抗式メモリのための感知増幅器回路
JP5502692B2 (ja) 自己参照型mramセルを検知するための調節可能なタイミング信号を発生するための回路
US9524766B2 (en) Symmetrical differential sensing method and system for STT MRAM
TWI582771B (zh) 電阻式記憶體裝置與其感測電路
US10297317B2 (en) Non-volatile semiconductor memory device including clamp circuit with control transistor and amplifier circuit
US9070466B2 (en) Mismatch error reduction method and system for STT MRAM
CN106887246B (zh) 用于非易失性存储器件的感测放大器及相关方法
JP2011054232A (ja) 不揮発性半導体記憶装置とその読み出し方法
KR20130069029A (ko) 저항성 메모리 장치
JP2000311493A (ja) 不揮発性半導体記憶装置
JP2846850B2 (ja) センスアンプ回路
JP2005190626A (ja) 半導体読み出し回路
US9754640B1 (en) Sensing circuit and method utilizing voltage replication for non-volatile memory device
US7460409B2 (en) Electrically writable nonvolatile memory
KR20180045690A (ko) 센스 앰프, 이를 포함하는 비휘발성 메모리 장치 및 시스템
JP5077646B2 (ja) 半導体記憶装置、及び、半導体記憶装置の動作方法
CN107958688B (zh) 非易失性存储装置的感测电路及方法
US7586791B2 (en) Delay circuit for controlling a pre-charging time of bit lines of a memory cell array
KR100624298B1 (ko) 플래쉬 메모리 셀의 센싱 회로
JP2017130246A (ja) ラッチ回路及び半導体記憶装置
WO2006124159A2 (en) Sense amplifier circuit for parallel sensing of four current levels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016503977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752189

Country of ref document: EP

Kind code of ref document: A1