WO2015122505A1 - 耐熱性に優れる表面被覆層付き銅合金板条 - Google Patents

耐熱性に優れる表面被覆層付き銅合金板条 Download PDF

Info

Publication number
WO2015122505A1
WO2015122505A1 PCT/JP2015/054032 JP2015054032W WO2015122505A1 WO 2015122505 A1 WO2015122505 A1 WO 2015122505A1 JP 2015054032 W JP2015054032 W JP 2015054032W WO 2015122505 A1 WO2015122505 A1 WO 2015122505A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
copper alloy
surface coating
coating layer
phase
Prior art date
Application number
PCT/JP2015/054032
Other languages
English (en)
French (fr)
Inventor
将嘉 鶴
大輔 橋本
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US15/118,758 priority Critical patent/US10415130B2/en
Priority to EP15749499.8A priority patent/EP3106546B1/en
Priority to KR1020187022215A priority patent/KR102196605B1/ko
Priority to CN201580007214.4A priority patent/CN105960484B/zh
Priority to KR1020167025113A priority patent/KR20160120324A/ko
Publication of WO2015122505A1 publication Critical patent/WO2015122505A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • B22D7/005Casting ingots, e.g. from ferrous metals from non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/20Electroplating: Baths therefor from solutions of iron
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles

Definitions

  • the present invention relates to a copper alloy strip with a surface coating layer that is mainly used as a conductive material for connecting parts such as terminals in the automobile field and general consumer field and can maintain the contact resistance of the terminal contact portion at a low value for a long time.
  • the surface coating layer to be formed has a three-layer structure of an underlayer (such as Ni) / Cu—Sn alloy layer / Sn layer. According to this three-layered surface coating layer, the diffusion of Cu from the base material is suppressed by the underlayer, and the diffusion of the underlayer is suppressed by the Cu—Sn alloy layer, thereby achieving low contact even after a high temperature for a long time. Resistance can be maintained.
  • Patent Documents 2 and 3 Japanese Patent Laid-Open No. 2006-77307, which is Patent Document 2, and Japanese Patent Laid-Open No. 2006-183068, which is Patent Document 3, are incorporated herein by reference
  • the surface of the base material is disclosed. It is described that the surface coating layer of the copper alloy sheet with a surface coating layer subjected to surface roughening treatment has the above three-layer structure.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2010-168598, which is Patent Document 4 is incorporated herein by reference
  • the Cu—Sn alloy layer is composed of two phases, the ⁇ (Cu 3 Sn) phase on the Ni layer side and the ⁇ (Cu 6 Sn 5 ) phase on the Sn phase side, and the ⁇ phase covers the Ni layer. Is set to 60% or more.
  • the reflow treatment is constituted by a heating process, a primary cooling process, and a secondary cooling process.
  • Patent Document 4 describes that this surface coating layer can maintain a low contact resistance even after a high temperature and a long time, and can prevent peeling of the surface coating layer.
  • Patent Documents 5 and 6 As a base material for forming a surface coating layer whose outermost surface is a Sn layer, for example, Patent Documents 5 and 6 (Patent Document 5, JP 2006-342389 A and Patent Document 6, JP 2010-236038 A are disclosed.
  • Cu-Ni-Sn-P-based copper alloy strips described in the present specification are incorporated herein by reference.
  • This copper alloy strip has excellent bending workability, shear punchability and stress relaxation resistance, and the terminals molded from this copper alloy strip have excellent stress relaxation resistance, so it is high even after a long period of time at high temperatures. It has a holding stress and can maintain high electrical reliability (low contact resistance).
  • JP 2004-68026 A JP 2006-77307 A JP 2006-183068 A JP 2010-168598 A JP 2006-342389 A JP 2010-236038 A
  • Patent Documents 1 to 3 show that the low contact resistance is maintained even after a high temperature and long time of 160 ° C. ⁇ 120 Hr.
  • Patent Document 4 shows that the low contact resistance is maintained even after a long time of 175 ° C. ⁇ 1000 Hr, and that the surface coating layer does not peel off after a long time of 160 ° C. ⁇ 250 Hr. Yes.
  • no elastic stress is applied to the test piece while the test piece is held at a high temperature for a long time.
  • the fitting portion between the male terminal and the female terminal is kept in contact by elastic stress.
  • the copper alloy plate described in Patent Documents 5 and 6 is used as a base material, and the copper alloy plate with a surface coating layer in which the surface coating layer of the three-layer structure is formed on the surface thereof is used as a material for a male terminal or a female terminal. Even when it is used, such a problem has arisen and its improvement is demanded.
  • the present invention relates to an improvement in a copper alloy sheet with a surface coating layer in which the surface coating layer having the three-layer structure is formed on the surface of a base material composed of a Cu—Ni—Sn—P-based copper alloy sheet.
  • the main object of the present invention is to provide a copper alloy strip with a surface coating layer capable of maintaining a low contact resistance even after a high temperature and a long time have passed with an elastic stress applied.
  • Another object of the present invention is to provide a copper alloy sheet with a surface coating layer having excellent heat-resistant peelability even after a high temperature and a long time have passed with an elastic stress applied.
  • the copper alloy sheet with a surface coating layer according to the present invention comprises Ni: 0.4 to 2.5% by mass, Sn: 0.4 to 2.5% by mass, P: 0.027 to 0.15% by mass.
  • the Ni / P mass ratio Ni / P is less than 25, Fe: 0.0005 to 0.15 mass%, Zn: 1 mass% or less, Mn: 0.1 mass% or less , Si: 0.1% by mass or less, Mg: 0.3% by mass or less, and a copper alloy base plate made of a copper alloy sheet, the balance being substantially made of Cu and inevitable impurities,
  • the structure has a structure in which precipitates are dispersed in the phase, and the precipitates have a diameter of 60 nm or less, and 20 or more particles having a diameter of 5 nm to 60 nm are observed in a 500 nm ⁇ 500 nm field of view.
  • a surface coating layer composed of a Cu—Sn alloy layer and an Sn layer is formed in this order.
  • the Ni layer has an average thickness of 0.1 to 3.0 ⁇ m
  • the Cu—Sn alloy layer has an average thickness of 0.1 to 3.0 ⁇ m
  • the Sn layer has an average thickness of 0.05 to 5.0 ⁇ m. It is.
  • a part of the Cu—Sn alloy layer is exposed on the outermost surface of the surface coating layer, and the surface exposed area ratio is 3 to 75% (see Patent Document 2).
  • the Cu—Sn alloy layer is composed only of ⁇ phase (Cu 6 Sn 5 ) or ⁇ phase (Cu 3 Sn) and ⁇ phase.
  • the ⁇ phase exists between the Ni layer and the ⁇ phase, and the average thickness of the ⁇ phase with respect to the average thickness of the Cu—Sn alloy layer
  • the ratio of the length of the ⁇ phase to the length of the Ni layer is 50% or less.
  • the Ni layer and the Sn layer contain Ni alloy and Sn alloy in addition to Ni and Sn metal, respectively.
  • the copper alloy sheet with the surface coating layer has the following desirable embodiments.
  • the copper alloy strip that is a base material further contains one or more of Cr, Co, Ag, In, Be, Al, Ti, V, Zr, Mo, Hf, Ta, and B in a total amount of 0. Including 1% by mass or less.
  • the arithmetic average roughness Ra in at least one direction is 0.15 ⁇ m or more, and the arithmetic average roughness Ra in all directions is Ra of 3.0 ⁇ m (see Patent Document 3) ) And the arithmetic average roughness Ra in all directions may be less than 0.15 ⁇ m.
  • the Sn layer includes a reflow Sn plating layer and a glossy or semi-gloss Sn plating layer formed thereon.
  • a Co layer or Fe layer is formed instead of the Ni layer, and the average thickness of the Co layer or Fe layer is 0.1 to 3.0 ⁇ m.
  • a Co layer or Fe layer is formed between the surface of the base material and the Ni layer, or between the Ni layer and the Cu—Sn alloy layer, and the Ni layer and the Co layer or Ni layer are formed.
  • the total average thickness of the layer and the Fe layer is 0.1 to 3.0 ⁇ m.
  • the material surface after heating at 160 ° C. for 1000 hours in the air (surface of the surface coating layer) does not have Cu 2 O at a position 15 nm deep from the outermost surface.
  • a copper alloy strip with a surface coating layer using a Cu—Ni—Sn—P-based copper alloy strip as a base material is excellent after being heated for a long time at a high temperature with an elastic stress applied. Electrical characteristics (low contact resistance) can be maintained. Therefore, this copper alloy sheet with a surface coating layer is suitable for use as a material for a multipolar connector disposed in a high temperature atmosphere such as an engine room of an automobile.
  • the ratio of the length of the ⁇ phase to the length of the Ni layer is 50% or less, so that excellent heat-resistant peelability can be achieved even after a long period of time at high temperatures with elastic stress applied. Can be obtained.
  • the copper alloy strip with a surface coating layer in which a part of the Cu—Sn alloy layer is exposed on the outermost surface of the surface coating layer can suppress the friction coefficient to a low level, and is particularly suitable as a fitting type terminal material.
  • Copper alloy strip that is the base material (1) Chemical composition of the copper alloy strip The chemical composition of the Cu—Ni—Sn—P-based copper alloy strip (base material) according to the present invention is basically patented. As described in detail in Document 5. Ni is an element that dissolves in a copper alloy to strengthen the stress relaxation resistance and improve the strength. However, when the Ni content is less than 0.4% by mass, the effect is small. When the Ni content exceeds 2.5% by mass, an intermetallic compound is easily precipitated together with P added at the same time. Stress relaxation characteristics are reduced.
  • the Ni content is in the range of 0.4 to 2.5% by mass, preferably the lower limit is 0.7% by mass and the upper limit is 2.0% by mass.
  • the upper limit is preferably set to 1.6% by mass.
  • Sn is an element that dissolves in a copper alloy, brings about strength improvement by work hardening, and contributes to improvement of heat resistance.
  • the copper alloy sheet according to the present invention in order to improve the bending workability and the shear punchability, it is necessary to perform final annealing at a high temperature. However, if the Sn content is less than 0.4% by mass, the heat resistance is improved. In addition, since recrystallization softening proceeds in finish annealing, the temperature of finish annealing cannot be sufficiently increased. On the other hand, when Sn content exceeds 2.5 mass%, electrical conductivity will fall and 25% IACS cannot be achieved. Therefore, the Sn content is set to 0.4 to 2.5% by mass.
  • the lower limit is 0.6% by mass and the upper limit is 2.0% by mass.
  • the upper limit is preferably set to 1.6% by mass.
  • solid solution Ni necessary for improving the stress relaxation resistance can be sufficiently obtained by performing the finish annealing at a high temperature.
  • P is an element that expresses Ni—P precipitates during the manufacturing process and improves the heat resistance during finish annealing. As a result, finish annealing at a high temperature is possible, and bending workability and shear punchability are improved.
  • the P content is less than 0.027% by mass, it becomes easy to combine with Ni having a relatively large addition amount compared to the P addition amount, and a strong Ni-P intermetallic compound is formed, while P is When the addition amount exceeds 0.15% by mass, the precipitation amount of Ni—P intermetallic compound further increases.
  • the P content is 0.027 to 0.15 mass%.
  • the lower limit is 0.05% by mass and the upper limit is 0.08% by mass.
  • the heat resistance is improved by Ni—P precipitates during the finish annealing, and the Ni—P precipitates are decomposed and re-dissolved. Both can be achieved.
  • the mass ratio Ni / P is preferably less than 15.
  • the copper alloy according to the present invention may contain Fe as a subcomponent, if necessary. Fe is an element that suppresses the coarsening of recrystallized grains in finish annealing.
  • the finish annealing temperature can be increased to sufficiently dissolve the additive element, and at the same time, the coarsening of recrystallized grains can be suppressed.
  • the Fe content exceeds 0.15%, the electrical conductivity decreases, and about 25% IACS cannot be achieved. Therefore, the Fe content is set to 0.0005 to 0.15 mass%.
  • the copper alloy which concerns on this invention may contain 1 or more types of Zn, Mn, Mg, Si as a subcomponent as needed.
  • Zn has an effect of preventing peeling of tin plating and is added in a range of 1% by mass or less.
  • Mn and Si act as a deoxidizer and are added in the range of 0.1% by mass or less.
  • the Mn and Si contents are preferably 0.001% by mass or less and 0.002% by mass or less, respectively.
  • Mg has the effect of improving the stress relaxation resistance and is added in the range of 0.3% by mass or less.
  • the copper alloy according to the present invention may contain one or more of Cr, Co, Ag, In, Be, Al, Ti, V, Zr, Mo, Hf, Ta, and B as subcomponents as necessary. . These elements have the effect of preventing the coarsening of crystal grains, and are added in a total amount of 0.1% or less.
  • the copper alloy sheet (base material) according to the present invention has a Ni—P intermetallic compound precipitate in the copper alloy matrix as described in detail in Patent Document 5.
  • the precipitates particles having a diameter exceeding 60 nm cause cracking in bending with a small R / t (R: bending radius, t: plate thickness), and if this exists, bending workability deteriorates.
  • the precipitate becomes a starting point of cracking at the time of shear punching, and if this is distributed at a high density, the shear punching property is excellent.
  • Fine precipitates having a diameter of less than 5 nm interact with dislocations in the shear stress field to cause local work hardening and contribute to the propagation and progress of shear punching.
  • the fracture surface of the shear punching progresses through the place where the precipitate is present, so that the shear punching property is further improved, which helps to reduce the flash.
  • the precipitate particles having a diameter of 60 nm or less that do not deteriorate the bending workability it is desirable that there are 20 or more particles on average in a field of view of 500 nm ⁇ 500 nm, and more preferably 30 or more particles. desirable.
  • the diameter of the precipitate particles in the present invention means the diameter (major axis) of the circumscribed circle of the precipitate particles.
  • the copper alloy strip (base material) according to the present invention is hot rolled after homogenizing the copper alloy ingot, as described in detail in Patent Documents 5 and 6. Further, it can be produced by performing cold rough rolling, subsequently subjecting the copper alloy sheet after cold rough rolling to finish continuous annealing, and further performing cold finish rolling and stabilization annealing.
  • the homogenization treatment is performed at 800 to 1000 ° C. for 0.5 to 4 hours
  • the hot rolling is performed at 800 to 950 ° C.
  • the hot rolling is cooled with water or allowed to cool.
  • the processing rate is selected so that a processing rate of about 30 to 80% is obtained in the cold finish rolling.
  • An intermediate recrystallization annealing can be appropriately interposed during the cold rough rolling.
  • the final continuous annealing is a high-temperature short-time annealing that is maintained at a solid temperature of 650 ° C. or higher for 15 to 30 seconds, and is rapidly cooled at a cooling rate of 10 ° C./second or higher after annealing.
  • the coarse precipitate generated in the low temperature region is decomposed and re-dissolved, and a fine Ni—P compound is precipitated.
  • the holding temperature is less than 650 ° C., precipitate particles having a precipitation diameter exceeding 60 nm are easily observed, and particles having a diameter of 60 nm or less are insufficient in a composition region where the contents of Ni and P are extremely small.
  • the holding temperature is 650 ° C.
  • the stabilization annealing after the cold finish rolling is desirably performed at 250 to 450 ° C. ⁇ 20 to 40 seconds or 200 to 400 ° C. ⁇ 0.1 to 10 hours. By performing the stabilization annealing under these conditions, it is possible to suppress the strength reduction and remove the distortion introduced by the cold finish rolling. In addition, when the conditions for the stabilization annealing are high temperature and short time, the stress relaxation rate is low and the conductivity is low, and when low temperature and long time, the stress relaxation rate is high and the conductivity tends to be high.
  • Ni layer suppresses the growth of the Cu-Sn alloy layer by suppressing the diffusion of the matrix constituent elements to the material surface as the underlayer. It prevents the Sn layer from being consumed and suppresses an increase in contact resistance after a long period of use at a high temperature.
  • the average thickness of the Ni layer is less than 0.1 ⁇ m, the above effect cannot be sufficiently exhibited due to an increase in pit defects in the Ni layer.
  • the average thickness of the Ni layer exceeds 3.0 ⁇ m, the above-mentioned effect is saturated, and the forming processability to the terminal is deteriorated such that cracking occurs in the bending process, and the productivity and the economical efficiency are also deteriorated. .
  • the average thickness of the Ni layer is 0.1 to 3.0 ⁇ m.
  • the average thickness of the Ni layer is preferably 0.2 ⁇ m at the lower limit and 2.0 ⁇ m at the upper limit.
  • the Ni layer may contain a small amount of component elements contained in the base material.
  • the Ni coating layer is made of a Ni alloy, Cu, P, Co, and the like are listed as constituent components other than Ni of the Ni alloy.
  • the ratio of Cu in the Ni alloy is preferably 40% by mass or less, and P and Co are preferably 10% by mass or less.
  • the Cu—Sn alloy layer prevents the diffusion of Ni into the Sn layer. If the average thickness of the Cu—Sn alloy layer is less than 0.1 ⁇ m, the above-mentioned diffusion preventing effect is insufficient, and Ni diffuses to the surface layer of the Cu—Sn alloy layer or Sn layer to form an oxide. Since the volume resistivity of the Ni oxide is 1000 times greater than that of the Sn oxide and the Cu oxide, the contact resistance increases and the electrical reliability decreases. On the other hand, when the average thickness of the Cu—Sn alloy layer exceeds 3.0 ⁇ m, the formability to the terminal deteriorates, for example, cracking occurs during bending. Therefore, the average thickness of the Cu—Sn alloy layer is set to 0.1 to 3.0 ⁇ m. The average thickness of the Cu—Sn alloy layer is preferably 0.2 ⁇ m at the lower limit and 2.0 ⁇ m at the upper limit.
  • the Cu—Sn alloy layer is composed of only ⁇ phase (Cu 6 Sn 5 ) or ⁇ phase (Cu 3 Sn) and ⁇ phase.
  • the Cu—Sn alloy layer is composed of an ⁇ phase and an ⁇ phase, the ⁇ phase is formed between the Ni layer and the ⁇ phase and is in contact with the Ni layer.
  • the Cu—Sn alloy layer is a layer formed by reacting Cu of the Cu plating layer and Sn of the Sn plating layer by a reflow process.
  • the ⁇ phase is harder than the ⁇ phase, the presence of the ⁇ phase makes the coating layer hard and contributes to the reduction of the friction coefficient.
  • the ⁇ phase which is a non-equilibrium phase, is converted into an ⁇ phase, which is an equilibrium phase, and Cu in the ⁇ phase is thermally diffused to the ⁇ phase and the Sn layer and reaches the surface of the Sn layer.
  • the ratio of the average thickness of the ⁇ phase to the average thickness of the Cu—Sn alloy layer is 30% or less. When the Cu—Sn alloy layer is composed of only the ⁇ phase, this ratio is 0%.
  • the ratio of the average thickness of the ⁇ phase to the average thickness of the Cu—Sn alloy layer is preferably 20% or less, more preferably 15% or less.
  • the ratio of the length of the ⁇ phase to the length of the underlayer in the cross section of the surface coating layer Is preferably 50% or less. This is because the void is generated at a location where the ⁇ phase was present.
  • the ratio of the length of the ⁇ phase to the length of the underlayer is preferably 40% or less, more preferably 30% or less. When the Cu—Sn alloy layer is composed of only the ⁇ phase, this ratio is 0%.
  • the average thickness of the Sn layer is less than 0.05 ⁇ m, the amount of Cu oxide on the surface of the material due to thermal diffusion such as high-temperature oxidation increases, and the contact resistance is likely to increase, and the corrosion resistance is also good. Since it worsens, it becomes difficult to maintain the reliability of electrical connection. Further, when the average thickness of the Sn layer is less than 0.05 ⁇ m, the coefficient of friction increases, and the insertion force when processed into a fitting terminal increases. On the other hand, when the average thickness of the Sn layer exceeds 5.0 ⁇ m, it is economically disadvantageous and the productivity is also deteriorated. Therefore, the average thickness of the Sn layer is set to 0.05 to 5.0 ⁇ m.
  • the lower limit of the average thickness of the Sn layer is preferably 0.1 ⁇ m, more preferably 0.2 ⁇ m, and the upper limit of the average thickness of the Sn layer is preferably 3.0 ⁇ m, more preferably 2.0 ⁇ m.
  • the average thickness of the Sn layer is preferably 0.05 to 0.4 ⁇ m.
  • examples of constituents other than Sn of the Sn alloy include Pb, Bi, Zn, Ag, and Cu.
  • the proportion of Pb in the Sn alloy is preferably less than 50% by mass, and the other elements are preferably less than 10% by mass.
  • the average thickness of the total Sn layer is set to 0.05 to 5.0 ⁇ m.
  • the Cu—Sn alloy layer When it is required to reduce friction when inserting and extracting the male terminal and the female terminal, the Cu—Sn alloy layer may be partially exposed on the outermost surface of the surface coating layer. .
  • the Cu—Sn alloy layer is very hard compared to Sn or Sn alloy forming the Sn layer, and by partially exposing it to the outermost surface, deformation resistance due to the excavation of the Sn layer during terminal insertion and removal, The shear resistance that shears the Sn—Sn adhesion can be suppressed, and the friction coefficient can be made extremely low.
  • the Cu—Sn alloy layer exposed on the outermost surface of the surface coating layer is a ⁇ phase.
  • the exposed area ratio of the Cu—Sn alloy layer exceeds 75%, the amount of Cu oxide on the surface of the surface coating layer (Sn layer) increases due to aging or corrosion, and it is easy to increase the contact resistance. It becomes difficult to maintain the reliability of the electrical connection. Therefore, the exposed area ratio of the Cu—Sn alloy layer is 3 to 75% (see Patent Documents 2 and 3).
  • the lower limit of the exposed area ratio of the Cu—Sn alloy layer is preferably 10% and the upper limit is 50%.
  • Patent Documents 2 and 3 disclose a random structure in which exposed Cu—Sn alloy layers are irregularly distributed and a linear structure extending in parallel.
  • Japanese Patent Laid-Open No. 2013-185193 discloses that a copper alloy as a base material is limited to a Cu—Ni—Si based alloy, and an exposed Cu—Sn alloy layer having a linear structure extending parallel to the rolling direction (Cu -The exposed area ratio of the Sn alloy layer is 10 to 50%).
  • 2013-209680 discloses an exposed Cu—Sn alloy layer having a random structure randomly distributed and a linear structure extending in parallel to the rolling direction (the exposed area of the Cu—Sn alloy layer). The rate is 3 to 75% in total).
  • all these exposed forms are allowed.
  • the exposed form of the Cu—Sn alloy layer is a random structure, the friction coefficient is low regardless of the terminal insertion / extraction direction.
  • the exposed form of the Cu—Sn alloy layer is a linear structure, or in the case of a composite form composed of a random structure and a linear structure, when the terminal insertion / extraction direction is perpendicular to the linear structure, the friction coefficient is The lowest. Therefore, for example, when the terminal insertion / removal direction is set to the rolling vertical direction, it is desirable to form the linear structure in the rolling parallel direction.
  • the copper alloy sheet with a surface coating layer described in Patent Document 3 is a base material (copper alloy sheet itself). It is manufactured by performing a roughening treatment, performing Ni plating, Cu plating, and Sn plating on the surface of the base material in this order, and then performing a reflow treatment.
  • the surface roughness of the roughened base material the arithmetic average roughness Ra in at least one direction is 0.3 ⁇ m or more, and the arithmetic average roughness Ra in all directions is 4.0 ⁇ m or less.
  • the surface roughness of the surface coating layer is an arithmetic average roughness Ra of 0.15 ⁇ m or more in at least one direction, and an arithmetic average roughness Ra in all directions is 3. 0 ⁇ m or less. Since the base material is roughened and the surface is uneven, and the Sn layer is smoothed by the reflow treatment, a part of the Cu—Sn alloy layer exposed on the surface after the reflow treatment is the surface of the Sn layer. Protruding from.
  • the copper alloy sheet with a surface coating layer As in the copper alloy sheet with a surface coating layer described in Patent Document 3, a part of the Cu—Sn alloy layer is exposed to form a surface coating layer.
  • the surface roughness can be such that the arithmetic average roughness Ra in at least one direction is 0.15 ⁇ m or more and the arithmetic average roughness Ra in all directions is 3.0 ⁇ m or less.
  • the arithmetic average roughness Ra in at least one direction is 0.2 ⁇ m or more, and the arithmetic average roughness Ra in all directions is 2.0 ⁇ m or less.
  • the copper alloy sheet with a surface coating layer described in Patent Document 2 is manufactured by the same process as the copper alloy sheet with a surface coating layer described in Patent Document 3 (see (6a) above).
  • the surface roughness of the base material is such that the arithmetic average roughness Ra in at least one direction is 0.15 ⁇ m or more and the arithmetic average roughness Ra in all directions is 4.0 ⁇ m or less.
  • the range of the surface roughness includes a side having a smaller surface roughness than the surface roughness of the base material of the copper alloy sheet with a surface coating layer described in Patent Document 3.
  • the copper alloy sheet with a surface coating layer described in Patent Document 2 includes a case where the arithmetic average roughness Ra of the surface coating layer is less than 0.15 ⁇ m in all directions. In this case, it is assumed that the Cu—Sn alloy layer exposed on the surface may not protrude at all from the surface of the Sn layer.
  • the copper alloy sheet with a surface coating layer according to the present invention includes a case where the arithmetic average roughness Ra of the surface coating layer is less than 0.15 ⁇ m in all directions.
  • the Cu—Sn alloy layer of this surface coating layer does not protrude from the surface of the Sn layer.
  • the bending workability of the base material may be reduced, or abnormal precipitation of Ni plating may occur due to the work-affected layer formed on the surface, Thus, when the surface of the base material is roughened and roughened, the problem can be avoided.
  • the average surface exposure interval of the Cu—Sn alloy layer in at least one direction of the surface is 0 .01 to 0.5 mm is desirable.
  • the average width (length along the straight line) of the Cu—Sn alloy layer crossing the straight line drawn on the surface of the surface coating layer with the average surface exposure interval of the Cu—Sn alloy layer and the average of the Sn layer is defined as the value plus the width.
  • the average surface exposure interval of the Cu-Sn alloy layer is less than 0.01 mm, the amount of Cu oxide on the material surface due to thermal diffusion such as high-temperature oxidation increases, and it is easy to increase the contact resistance and improve the reliability of electrical connection. It becomes difficult to maintain.
  • the average surface exposure interval of the Cu—Sn alloy layer exceeds 0.5 mm, it may be difficult to obtain a low friction coefficient particularly when used for a small terminal.
  • the contact area of an electrical contact portion (insertion / extraction portion) such as an indent or a rib becomes small, and therefore the contact probability of only the Sn layers increases at the time of insertion / extraction.
  • the average surface exposure interval of the Cu—Sn alloy layer be 0.01 to 0.5 mm in at least one direction. More desirably, the average surface exposure interval of the Cu—Sn alloy layer is set to 0.01 to 0.5 mm in all directions. Thereby, the contact probability only of Sn layers in the case of insertion / extraction falls.
  • the average surface exposure interval of the Cu—Sn alloy layer is preferably 0.05 mm at the lower limit and 0.3 mm at the upper limit.
  • the Cu—Sn alloy layer formed between the Cu plating layer and the molten Sn plating layer usually grows reflecting the surface morphology of the base material (copper alloy strip), and the Cu—Sn alloy in the surface coating layer
  • the surface exposure interval of the layer roughly reflects the average interval Sm of the irregularities on the surface of the base material. Therefore, in order to set the average surface exposure distance of the Cu—Sn alloy layer in at least one direction on the surface of the coating layer to 0.01 to 0.5 mm, it is calculated in at least one direction on the surface of the base material (copper alloy strip). It is desirable that the average interval Sm between the irregularities is 0.01 to 0.5 mm.
  • the average interval Sm of the unevenness is preferably 0.05 mm at the lower limit and 0.3 mm at the upper limit.
  • Co layer and Fe layer average thickness Co layer and Fe layer suppresses the growth of the Cu-Sn alloy layer by suppressing the diffusion of the matrix constituent elements to the material surface. This prevents the Sn layer from being consumed, suppresses an increase in contact resistance after long time use at a high temperature, and helps to obtain good solder wettability. For this reason, a Co layer or a Fe layer can be used instead of the Ni layer as a base plating layer.
  • the average thickness of the Co layer or Fe layer is less than 0.1 ⁇ m, the above effect cannot be sufficiently exhibited due to an increase in pit defects in the Co layer or Fe layer, as in the case of the Ni layer.
  • the average thickness of the Co layer or Fe layer exceeds 3.0 ⁇ m, the above effects are saturated and, as with the Ni layer, the formability to the terminal is reduced, such as cracking caused by bending. In addition, productivity and economic efficiency also deteriorate. Therefore, when the Co layer or Fe layer is used as the underlayer instead of the Ni layer, the average thickness of the Co layer or Fe layer is 0.1 to 3.0 ⁇ m.
  • the average thickness of the Co layer or Fe layer is preferably 0.2 ⁇ m at the lower limit and 2.0 ⁇ m at the upper limit.
  • the Co layer and the Fe layer can be used together with the Ni layer as a base plating layer.
  • the Co layer or the Fe layer is formed between the surface of the base material and the Ni layer, or between the Ni layer and the Cu—Sn alloy layer.
  • the total average thickness of the Ni layer and the Co layer or the Ni layer and the Fe layer is 0.1 to 3.0 ⁇ m for the same reason as when the base plating layer is only the Ni layer, only the Co layer or only the Fe layer. To do.
  • the total average thickness of the Ni layer and the Co layer or the total average thickness of the Ni layer and the Fe layer preferably has a lower limit of 0.2 ⁇ m and an upper limit of 2.0 ⁇ m.
  • the ratio of the average thickness of the ⁇ phase to the average thickness of the Cu—Sn alloy layer is set to 30% or less. There is a need.
  • the copper alloy sheet with surface coating layer according to the present invention includes a Cu—Sn alloy layer that is not exposed on the outermost surface, and a Cu—Sn alloy layer. Are exposed on the outermost surface, and in the latter case, the base material (copper alloy strip itself) has a large surface roughness (arithmetic mean roughness Ra ⁇ 0.15 ⁇ m in at least one direction) and , Including those having a small surface roughness (arithmetic mean roughness Ra ⁇ 0.15 ⁇ m in all directions).
  • a method for producing these copper alloy strips with a surface coating layer will be described below.
  • the Cu—Sn alloy layer is not exposed on the outermost surface.
  • this copper alloy strip with a surface coating layer is made of Ni as a base plating on the surface of the copper alloy strip.
  • a plating layer is formed, and then a Cu plating layer and a Sn plating layer are formed in this order, reflow treatment is performed, and a Cu—Sn alloy layer is formed by mutual diffusion of Cu in the Cu plating layer and Sn in the Sn plating layer. It can be manufactured by eliminating the plating layer and appropriately leaving the molten and solidified Sn plating layer in the surface layer portion. What is necessary is just to use what is described in patent document 1 with respect to Ni plating, Cu plating, and Sn plating.
  • Plating conditions are Ni plating / current density: 3 to 10 A / dm 2 , bath temperature: 40 to 55 ° C., Cu plating / current density: 3 to 10 A / dm 2 , bath temperature: 25 to 40 ° C., Sn plating / current Density: 2 to 8 A / dm 2 , bath temperature: 20 to 35 ° C.
  • the current density is preferably low.
  • Ni plating layer, Cu plating layer, and Sn plating layer these mean the surface plating layer before a reflow process.
  • Ni layer, Cu—Sn alloy layer, or Sn layer these mean a plating layer after reflow treatment or a compound layer formed by reflow treatment.
  • the thicknesses of the Cu plating layer and the Sn plating layer are set on the assumption that the Cu—Sn alloy layer to be produced becomes an equilibrium ⁇ single phase after the reflow treatment, but depending on the conditions of the reflow treatment, The equilibrium state cannot be reached and the ⁇ phase remains.
  • the condition may be set so as to be close to an equilibrium state by adjusting one or both of the heating temperature and the heating time. That is, it is effective to increase the reflow processing time and / or increase the reflow processing temperature.
  • the reflow process is performed for 20 to 40 seconds at an ambient temperature not lower than the melting point of the Sn plating layer and not higher than 300 ° C.
  • the ambient temperature is higher than 300 ° C. and lower than 600 ° C., it is selected within the range of 10 to 20 seconds.
  • a reflow processing furnace having a heat capacity sufficiently larger than the heat capacity of the heat-treated plating material is used.
  • the cooling rate after the reflow treatment is preferably 20 ° C./second or more, preferably 35 ° C./second or more, from the melting point of Sn (232 ° C.) to the water temperature. Specifically, immediately after the reflow treatment, the Sn plating material is continuously quenched into a water bath having a water temperature of 20 to 70 ° C., or is cooled by showering with 20 to 70 ° C.
  • water after being discharged from the reflow heating furnace can be achieved by a combination of water tanks.
  • Ni plating layer, Cu plating layer, and Sn plating layer contain Ni alloy, Cu alloy, and Sn alloy other than Ni, Cu, and Sn metal, respectively.
  • Ni plating layer is made of a Ni alloy
  • Sn plating layer is made of a Sn alloy
  • the alloys described above with respect to the Ni layer and the Sn layer can be used.
  • Cu plating layer consists of Cu alloy, Sn, Zn, etc. are mentioned as structural components other than Cu of Cu alloy.
  • the proportion of Sn in the Cu alloy is preferably less than 50% by mass and the other elements are preferably less than 5% by mass.
  • a Co plating layer or an Fe plating layer is formed instead of the Ni plating layer, or after the Co plating layer or the Fe plating layer is formed, the Ni plating layer is formed, or After forming the Ni plating layer, a Co plating layer or an Fe plating layer can also be formed.
  • the Cu—Sn alloy layer is exposed on the outermost surface and the surface roughness of the base material is large.
  • This copper alloy sheet with a surface coating layer is as described in (II) (6a) and (6b) above.
  • the surface of the copper alloy sheet as a base material can be roughened, and then subjected to plating and reflow treatment under the conditions described in (1) above.
  • the arithmetic average roughness Ra in at least one direction is 0.15 ⁇ m or more or 0.3 ⁇ m or more, and the arithmetic average roughness Ra in all directions is 4.0 ⁇ m or less.
  • a surface coating layer having an Sn layer with an average thickness of 0.05 to 5.0 ⁇ m on the outermost surface and a part of the Cu—Sn alloy layer exposed on the surface (the above (II) (6a)
  • a copper alloy strip with a surface coating layer having (see (6b)) can be produced.
  • the lower limit of the average thickness of the Sn layer is preferably 0.2 ⁇ m
  • the upper limit is preferably 2.0 ⁇ m, more preferably 1.5 ⁇ m.
  • the Cu—Sn alloy layer is not exposed to the outermost surface of the surface coating layer.
  • the copper alloy strip is rolled using, for example, a rolling roll roughened by polishing or shot blasting.
  • a rolling roll roughened by shot blasting the exposed form of the Cu—Sn alloy layer exposed on the outermost surface of the surface coating layer becomes a random structure.
  • the Cu—Sn alloy layer exposed on the outermost surface of the surface coating layer is used.
  • the exposed form is a composite form composed of a random structure and a linear structure extending parallel to the rolling direction.
  • the Cu—Sn alloy layer is exposed on the outermost surface, and the surface roughness of the base metal is small.
  • the arithmetic average roughness Ra of the surface of the copper alloy strip that is the base material is less than 0.15 ⁇ m in all directions.
  • a copper alloy sheet with a surface coating layer in which a part of the Cu—Sn alloy layer is exposed on the surface can be produced.
  • a buffing or rolling line is formed in the rolling parallel direction (direction parallel to the rolling direction) by the method described below, and the surface roughness Is adjusted to a range of less than 0.15 ⁇ m.
  • the plating method and the reflow treatment conditions may be the conditions described in (1) above. As a result, it has an Sn layer having an average thickness of 0.05 ⁇ m or more on the outermost surface and a surface coating layer (see (II) (6c) above) in which a part of the Cu—Sn alloy layer is exposed on the surface.
  • a copper alloy sheet with a surface coating layer can be produced.
  • the copper alloy strip as a base material is manufactured by hot rolling, rough rolling, pre-finishing rolling, intermediate annealing, polishing, finish rolling, and further, if necessary, strain relief annealing and polishing.
  • any of the following methods (a) and (b) can be suitably used in the polishing and finish rolling steps.
  • the buff used for this polishing a buff containing abrasive grains slightly coarser than those for normal finishing is used.
  • the finish rolling after polishing is an ordinary finish rolling roll (surface roughness measured in the roll axis direction is arithmetic average roughness Ra: 0.02 to 0.08 ⁇ m, maximum height roughness Rz: 0.2 to About 0.9 ⁇ m), and it is performed in one pass at a rolling reduction of 10% or less.
  • the finish rolling step is performed with a coarser roll than the normal finish rolling roll (surface roughness measured in the roll axis direction is arithmetic average roughness Ra: about 0.07 to 0.18 ⁇ m, maximum height roughness Rz: about 0.7 to 1.5 ⁇ m) and rolling with a normal finish rolling roll.
  • Rolling with a coarser roll than a normal finish rolling roll preferably has a total rolling reduction of 10% or more in one or a few passes, so that a rolling roll slightly rougher than a normal finish rolling roll is formed on the surface of the copper alloy sheet. Form.
  • rolling with a normal finish rolling roll is performed in one pass (final pass) at a rolling reduction of 10% or less.
  • the thicknesses of the plated layers of Ni, Cu, and Sn are adjusted as follows. First, the thickness of the Ni plating layer is set to 0.1 to 1 ⁇ m. The upper limit of the Ni plating layer is preferably 0.8 ⁇ m. Thereafter, Cu plating and Sn plating are performed. The average thickness of the Sn plating layer is set to at least twice the average thickness of the Cu plating layer, and an Sn layer having an average thickness of 0.05 to 0.7 ⁇ m is formed after the reflow treatment. The average thickness of the Cu plating layer and the Sn plating layer is adjusted so as to remain. The upper limit of the average thickness of the Sn layer is preferably 0.4 ⁇ m.
  • the arithmetic average roughness Ra of the surface coating layer is the largest in the direction perpendicular to the rolling direction, and is in a range of approximately 0.03 ⁇ m or more and less than 0.15 ⁇ m.
  • the surface exposed form of the Cu—Sn alloy layer is a form in which the Cu—Sn alloy layer is exposed linearly in parallel with the rolling direction, or a line of Cu—Sn alloy layer exposed in a line parallel to the rolling direction.
  • a spot-like or island-like (irregular form) Cu—Sn alloy layer is exposed around the periphery.
  • the Cu—Sn alloy layer is exposed on the outermost surface, but is flat reflecting the small surface roughness of the base material (copper alloy strip), and does not protrude from the Sn layer.
  • the Cu—Sn alloy layer is not exposed to the outermost surface of the surface coating layer.
  • Copper alloy is dissolved in the atmosphere while being coated with charcoal, Ni: 0.83% by mass, Sn: 1.23% by mass, P: 0.074% by mass, Fe: 0.025% by mass, Zn: 0.16
  • An ingot having a thickness of 75 mm was prepared, which contained mass%, Mn: 0.01 mass%, and consisted of the remainder Cu and inevitable impurities.
  • the oxygen (O) and hydrogen (H) contents analyzed in the ingot were 12 ppm and 1 ppm, respectively.
  • the ingot was homogenized at 950 ° C. for 2 hours, hot-rolled to 16.5 mm, and water quenched from a temperature of 750 ° C. or higher.
  • Both sides of this hot rolled material were chamfered to a thickness of 14.5 mm, and then cold rolled to 0.7 mm. Subsequently, heat treatment was performed for a short time at 660 ° C. for 20 seconds in a salt bath furnace, and after cold pickling, cold rolling was performed to 0.25 mm. Thereafter, heat treatment was performed for 20 seconds at 400 ° C. for 20 seconds in a glass furnace to obtain a plating base material.
  • TEM transmission electron microscope
  • the base metal was plated with various thicknesses (Ni, Co, Fe), Cu plating and Sn plating, and then subjected to a reflow treatment to obtain No. 1 shown in Table 1.
  • 1 to 26 test materials were obtained. In all cases, the Cu plating layer disappeared.
  • the conditions for the reflow process are No. For 1 to 21, 23, 26, the range of 300 ° C. ⁇ 20-30 sec or 450 ° C. ⁇ 10-15 sec.
  • No. 22 was the conventional condition (280 ° C. ⁇ 8 sec).
  • No. The conditions for the reflow treatment of No. 24 are 290 ° C. ⁇ 10 sec, The conditions for the 25 reflow treatment were 285 ° C. ⁇ 8 sec.
  • the surface of the base material was not roughened, and the surface roughness in the direction perpendicular to the rolling was an arithmetic average roughness Ra of 0.025 ⁇ m and a maximum height roughness Rz of 0.1 ⁇ m. No. in which Sn plating layer disappeared by reflow treatment. In addition to 21, the Cu—Sn alloy layer is not exposed on the outermost surface.
  • the average thickness of the Ni layer of the test material was calculated using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were Sn / Ni / base metal two-layer calibration curve for the calibration curve and the collimator diameter was ⁇ 0.5 mm.
  • the average thickness of the Co layer of the test material was calculated using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were Sn / Co / matrix two-layer calibration curve for the calibration curve, and the collimator diameter was 0.5 mm.
  • the average thickness of the Fe layer of the test material was calculated using a fluorescent X-ray film thickness meter (Seiko Instruments Inc .; SFT3200). The measurement conditions were Sn / Fe / matrix two-layer calibration curve for the calibration curve, and the collimator diameter was 0.5 mm.
  • the cross section of the test material processed by the microtome method was observed with a scanning electron microscope at a magnification of 10,000 times, and from the obtained cross-sectional composition image, the Cu—Sn alloy layer was analyzed by image analysis processing. The area was calculated, and the value divided by the width of the measurement area was taken as the average thickness.
  • the cross section of the test material was a cross section perpendicular to the rolling direction.
  • the area of the ⁇ phase is calculated by image analysis, and the value obtained by dividing by the width of the measurement area is the average thickness of the ⁇ phase, and the average thickness of the ⁇ phase is the average thickness of the Cu—Sn alloy layer.
  • the ⁇ -phase thickness ratio (ratio of the average thickness of the ⁇ -phase to the average thickness of the Cu—Sn alloy layer) was calculated by dividing by.
  • the length of the ⁇ phase (the length along the width direction of the measurement area) is measured, and this is divided by the length of the underlayer (the width of the measurement area) to obtain the length of the ⁇ phase.
  • the ratio (ratio of the length of the ⁇ phase to the length of the underlayer) was calculated. In each case, the measurement was carried out for 5 fields of view, and the average value was taken as the measurement value.
  • No. 1 shows a cross-sectional composition image (cross-section in the direction perpendicular to rolling) of a test material of No. 1 by a scanning electron microscope.
  • white lines are drawn by tracing the boundary between the Ni layer and the base material, the boundary between the Ni layer and the Cu—Sn alloy layer ( ⁇ phase and ⁇ phase), and the boundary between the ⁇ phase and ⁇ phase. ing.
  • a surface plating layer 2 is formed on the surface of a copper alloy base material 1, and the surface plating layer 2 includes a Ni layer 3, a Cu—Sn alloy layer 4, and a Sn layer 5, and the Cu—Sn alloy layer 4 Consists of ⁇ phase 4a and ⁇ phase 4b.
  • the ⁇ phase 4a is formed between the Ni layer 3 and the ⁇ phase 4b and is in contact with the Ni layer.
  • the ⁇ phase 4a and the ⁇ phase 4b of the Cu—Sn alloy layer 4 were confirmed by color tone observation of a cross-sectional composition image and quantitative analysis of Cu content using an EDX (energy dispersive X-ray spectrometer).
  • the measurement conditions were a single layer calibration curve of Sn / base material or a two-layer calibration curve of Sn / Ni / base material for the calibration curve, and the collimator diameter was ⁇ 0.5 mm.
  • the collimator diameter was ⁇ 0.5 mm.
  • test piece 6 (Test for heat resistance after high temperature and long time heating) A test piece having a width of 10 mm and a length of 100 mm is cut from the test material (the length direction is the rolling parallel direction), and is deflected to the position of the length l of the test piece 6 by a cantilever type test jig shown in FIG. A displacement ⁇ was applied, and 80% bending stress of 0.2% proof stress at room temperature was applied to the test piece 6. In this case, a compressive force acts on the upper surface of the test piece 6 and a tensile force acts on the lower surface. In this state, the test piece 6 was heated at 160 ° C. ⁇ 1000 hr in the air, and then the stress was removed.
  • This test method complies with the Japan Copper and Brass Association Technical Standard JCBAT309: 2004 “Stress Relaxation Test Method by Bending Copper and Copper Alloy Sheet Strips”.
  • the deflection displacement ⁇ was set to 10 mm, and the span length l was determined by the formula described in the test method.
  • FIG. 3A 7 is a V-shaped block, and 8 is a metal fitting.
  • the surface on which the compressive force was applied with the test jig shown in FIG. 2 was directed upward, and the portion 6A serving as a fulcrum when stress was applied was made to coincide with the bending line.
  • test piece 6 was cut at a cross section including the bent portion 6B (cross section perpendicular to the bend line), filled with resin, polished, and then observed for voids and peeling at the interface between the Ni layer and the Cu—Sn alloy layer using a scanning electron microscope. Was observed. The case where no void and peeling were observed was evaluated as ⁇ , and the case where void or peeling was observed was evaluated as x.
  • test piece having a width of 10 mm and a length of 100 mm was cut out from the test material (the length direction was parallel to the rolling direction), and the bending stress of 80% of 0.2% proof stress at room temperature was applied to the test piece in the same manner as the heat-resistant peel test. Was added (see FIG. 2). In this state, the test piece was heated in the atmosphere at 160 ° C. ⁇ 1000 hr, and then the stress was removed.
  • the surface coating layer of the heated test piece was etched for 3 minutes under the condition that the etching rate with respect to Sn was about 5 nm / min, and then Cu 2 O using an X-ray photoelectron spectrometer (ESCA-LAB210D manufactured by VG). The presence or absence was confirmed.
  • the analysis conditions were Alk ⁇ 300W (15 kV, 20 mA) and analysis area 1 mm ⁇ .
  • Cu 2 O When Cu 2 O is detected, it is determined that Cu 2 O exists at a position deeper than 15 nm from the outermost surface of the surface coating layer (the thickness of the O oxide film exceeds 15 nm (Cu 2 O> 15 nm)), When not detected, it was determined that Cu 2 O was not present at a position deeper than 15 nm from the outermost surface of the surface coating layer (the thickness of the Cu 2 O oxide film was 15 nm or less (Cu 2 O ⁇ 15 nm)).
  • test piece having a width of 10 mm and a length of 100 mm was cut out from the test material (the length direction was parallel to the rolling direction), and the bending stress of 80% of 0.2% proof stress at room temperature was applied to the test piece in the same manner as in the heat-resistant peel test.
  • the test piece was heated in the atmosphere at 160 ° C. ⁇ 1000 hr, and then the stress was removed.
  • the contact resistance was measured five times by the four-terminal method under the conditions of a release voltage of 20 mV, a current of 10 mA, a load of 3 N, and sliding, and the average value was defined as the contact resistance value.
  • the results are shown in Table 1.
  • the composition of the surface coating layer, the average thickness of each layer, and the ⁇ -phase thickness ratio satisfy No. 1 of the present invention.
  • the thickness of the Cu 2 O oxide film is 15 nm or less, and the contact resistance after high-temperature and long-time heating is maintained at a low value of 1.0 m ⁇ or less.
  • the ⁇ phase length ratio satisfies No. 1 of the present invention. 1 to 13 and 16 to 18 are excellent in heat-resistant peelability.
  • the average thickness of the Ni layer is small. 19, No. 19 in which the average thickness of the Cu—Sn alloy layer is thin. No. 20, the Sn layer had disappeared No. 21, the reflow process is performed under conventional conditions and the ⁇ phase thickness ratio is high. 22, No. No Ni layer exists. No. 23, the reflow process is performed under conditions close to the conventional conditions, and the ⁇ -phase thickness ratio is high. Nos. 24, 25, and Sn layers having a small average thickness. No. 26 had a high contact resistance after heating at a high temperature for a long time. No. In 20 to 26, the thickness of the Cu 2 O oxide film exceeded 15 nm. In addition, No. with a high ⁇ -phase thickness ratio. 24, and No. with a high ratio of ⁇ phase thickness and ⁇ phase length. In Nos. 22 and 25, peeling of the surface coating layer occurred after heating at a high temperature for a long time.
  • a copper alloy plate having a thickness of 0.7 mm manufactured in Example 1 (which was heat-treated in a salt bath furnace at 660 ° C. for 20 seconds for a short time and pickled and polished) was used.
  • the copper alloy sheet was cold-rolled to a thickness of 0.25 mm and then cold-rolled to a thickness of 0.25 mm with a rolling roll roughened by shot blasting or roughened by polishing and shot-blasting.
  • various surface roughnesses (arithmetic average roughness Ra in the direction perpendicular to the rolling where the surface roughness was the largest is 0.15 ⁇ m or more) and copper alloy sheets roughened in the form were obtained (No. in Table 2). 27-43).
  • no. No surface roughening treatment 34 is performed.
  • a short-time heat treatment was performed at 400 ° C. for 20 seconds in a glass stone furnace to obtain a plating base material.
  • This base material had substantially the same precipitate deposition state, conductivity and mechanical properties as those of Example 1.
  • the base material is pickled and degreased, and then subjected to underflow plating (Ni, Co), Cu plating and Sn plating of each thickness, followed by a reflow treatment to obtain No. 27 to 43 test materials were obtained.
  • the conditions for the reflow process are No. 27 to 40 and 43 are in the range of 300 ° C. ⁇ 25 to 35 sec or 450 ° C. ⁇ 10 to 15 sec.
  • conventional conditions 280 ° C. ⁇ 8 sec
  • No. 42 was 290 ° C. ⁇ 8 sec.
  • Example 2 For the test materials 27 to 43, in the same manner as in Example 1, the average thickness of the underlayer (Ni layer, Co layer), Cu—Sn alloy layer and Sn layer, ⁇ phase thickness ratio, ⁇ phase length ratio, The thickness of the Cu 2 O oxide film, the contact resistance after high-temperature and long-time heating were measured, and a heat-resistant peelability test was performed. Further, the surface roughness of the surface coating layer, the surface exposed area ratio of the Cu—Sn alloy layer, and the friction coefficient were measured in the following manner.
  • the surface roughness (arithmetic average roughness Ra) of the surface coating layer was measured based on JIS B0601-1994 using a contact-type surface roughness meter (Tokyo Seimitsu Co., Ltd .; Surfcom 1400).
  • the surface roughness measurement conditions were a cutoff value of 0.8 mm, a reference length of 0.8 mm, an evaluation length of 4.0 mm, a measurement speed of 0.3 mm / s, and a stylus tip radius of 5 ⁇ mR.
  • the surface roughness measurement direction was the direction perpendicular to the rolling direction where the surface roughness was greatest.
  • the surface of the test material was observed at a magnification of 200 using an SEM (scanning electron microscope) equipped with EDX (energy dispersive X-ray spectrometer), and the resulting composition image was shaded (dirt, scratches, etc.).
  • the surface exposed area ratio of the Cu—Sn alloy layer was measured by image analysis.
  • the exposed form of the Cu—Sn alloy layer was observed.
  • the exposed form consisted of a random structure, or a linear structure + random structure, and all the linear structures were formed in the rolling parallel direction.
  • the results are shown in Table 2.
  • the composition of the surface coating layer, the average thickness of each layer, and the thickness ratio of the ⁇ phase satisfy No. 1 of the present invention.
  • the contact resistance after heating at a high temperature for a long time is maintained at a low value of 1.0 m ⁇ or less.
  • the ⁇ phase length ratio satisfies No. 1 of the present invention.
  • Nos. 27 to 34 and 36 to 40 are excellent in heat-resistant peelability.
  • the surface exposure rate of the Cu—Sn alloy layer of the surface coating layer is No. satisfying the definition of the present invention.
  • Nos. 27 to 32 and 35 to 40 are No. 2 having a surface exposure rate of 2% for the Cu—Sn alloy layer. 33 or zero No.
  • No. 32 is a No. 32 in which the thickness of each surface coating layer is substantially the same and the arithmetic average roughness Ra of the surface coating layer is large. Compared with 27-29, 31, 35, the friction coefficient is high.
  • no. 41 and 42 have high contact resistance after high-temperature and long-time heating, and are inferior in heat-resistant peelability.
  • the average thickness of the Sn layer is thin.
  • No. 43 became high in contact resistance after heating at high temperature for a long time.
  • the Cu—Sn alloy layer exposure rate satisfies the provisions of the present invention, the arithmetic average roughness Ra of the surface coating layer is relatively large, and the friction coefficient is low. Further, No. in which peeling of the surface coating layer did not occur.
  • Nos. 27 to 34, 36 to 40, and 43 no void was formed at the interface between the Ni layer and the Cu—Sn alloy layer.
  • 35, 41, and 42 many voids were formed at the interface.
  • Copper alloy is dissolved in the atmosphere while being coated with charcoal, Ni: 0.84 mass%, Sn: 1.26 mass%, P: 0.084 mass%, Fe: 0.022 mass%, Zn: 0.15
  • An ingot having a thickness of 75 mm containing mass% and comprising the remainder Cu and inevitable impurities was produced.
  • the oxygen (O) and hydrogen (H) contents analyzed in the ingot were 10 ppm and 1 pmm, respectively.
  • the ingot was homogenized at 950 ° C. for 2 hours, hot-rolled to 16.5 mm, and water quenched from a temperature of 750 ° C. or higher. Both sides of this hot rolled material were chamfered to a thickness of 14.5 mm, and then cold rolled to 0.7 mm.
  • the base material was subjected to Ni plating, Cu plating, and Sn plating of each thickness, and then subjected to reflow treatment to obtain No. 44-52 test materials were obtained.
  • the conditions for the reflow process are No. Nos. 42 to 50 and 52 are in the range of 300 ° C. ⁇ 25 to 35 sec or 450 ° C. ⁇ 10 to 15 sec. About 51, it was set as the conventional conditions (280 degreeC x 8 sec).
  • the contact resistance after heating at a high temperature for a long time was measured, and a heat resistance peel test was conducted. Further, the surface roughness of the surface coating layer, the surface exposed area ratio of the Cu—Sn alloy layer and the friction coefficient (rolling perpendicular direction: ⁇ ⁇ , rolling parallel direction: ⁇ ) were measured in the same manner as in Example 2. Note that the surface exposed form of the Cu—Sn alloy layer was a linear structure in the rolling parallel direction.
  • the friction coefficient is small, and in particular, the friction coefficient in the direction perpendicular to rolling is small.
  • the ⁇ phase length ratio satisfies No. 1 of the present invention.
  • Nos. 44 to 48 and 50 are excellent in heat-resistant peelability.
  • the thickness ratio and length ratio of the ⁇ phase are No. which do not satisfy the provisions of the present invention.
  • No. 51 has a high contact resistance after heating at a high temperature for a long time and is inferior in heat-resistant peelability.
  • the average thickness of the Sn layer is thin.
  • No. 52 became high in contact resistance after heating at high temperature for a long time. Further, No. in which peeling of the surface coating layer did not occur.
  • Nos. 43 to 48, 50, and 52 no void was formed at the interface between the Ni layer and the Cu—Sn alloy layer. In 49 and 51, many voids were formed at the interface.
  • the copper alloy was melted in the atmosphere while being coated with charcoal, and an ingot having a thickness of 75 mm having the composition shown in Table 4 was produced.
  • the oxygen (O) content analyzed in the ingot was 7 to 20 ppm, and the hydrogen (H) content was 1 ppm.
  • the ingot was homogenized at 850 to 950 ° C. for 2 hours, hot-rolled to 16.5 mm, and water-quenched from a temperature of 700 ° C. or higher. Both sides of this hot rolled material were chamfered to a thickness of 14.5 mm, and then cold rolled to 0.7 mm. Subsequently, heat treatment is performed for 20 seconds at 660 to 680 ° C.
  • this base material was subjected to underflow plating (Ni, Co), Cu plating and Sn plating of each thickness, and then subjected to a reflow treatment to obtain No. 1.
  • 53-58 test materials were obtained.
  • the reflow process conditions were 325 ° C. ⁇ 25 to 35 sec. No.
  • the average thickness of the underlayer (Ni layer, Co layer), Cu—Sn alloy layer and Sn layer, ⁇ phase thickness ratio, ⁇ phase length ratio, The thickness of the Cu 2 O oxide film, the contact resistance after high-temperature and long-time heating were measured, and a heat-resistant peelability test was performed. Further, in the same manner as in Example 2, the surface roughness of the surface coating layer, the surface exposed area ratio of the Cu—Sn alloy layer, and the friction coefficient (perpendicular to the rolling direction) were measured.
  • each of 53 to 58 is the composition of the surface coating layer and the average thickness of each layer, the thickness ratio of the ⁇ phase, the length ratio of the ⁇ phase, the arithmetic average roughness of the surface coating layer, and the surface of the Cu—Sn alloy layer
  • the exposure rate satisfies the definition of the present invention. For this reason, no. In any of 53 to 58, the contact resistance after heating at a high temperature for a long time is maintained at a low value of 1.0 m ⁇ or less, the heat peelability after heating at a high temperature for a long time is excellent, and the friction coefficient is low.
  • the present invention includes the following aspects.
  • Aspect 1 Ni: 0.4 to 2.5% by mass, Sn: 0.4 to 2.5% by mass, P: 0.027 to 0.15% by mass, and the mass ratio of Ni content to P content Ni /
  • a copper alloy sheet having P of less than 25 and the balance being Cu and inevitable impurities is used as a base material, and an Ni layer, a Cu—Sn alloy layer, and a Sn layer as an underlayer are formed on the surface thereof in this order.
  • the Ni layer has an average thickness of 0.1 to 3.0 ⁇ m
  • the Cu—Sn alloy layer has an average thickness of 0.1 to 3.0 ⁇ m
  • the Sn layer has an average thickness of 0.05 to 3.0 ⁇ m.
  • a copper alloy sheet with a surface coating layer excellent in heat resistance characterized in that it is 5.0 ⁇ m and the Cu—Sn alloy layer comprises a ⁇ phase.
  • Aspect 2 The copper alloy strip which is a base material has a structure in which precipitates are dispersed in a copper alloy matrix, and the precipitates have a diameter of 60 nm or less, and a diameter of 5 nm to 60 nm within a field of view of 500 nm ⁇ 500 nm. 20 or more things are observed, The copper alloy sheet with a surface coating layer excellent in heat resistance described in the aspect 1.
  • a copper alloy sheet having P of less than 25 and the balance substantially consisting of Cu and inevitable impurities is used as a base material, and a surface coating layer consisting of a Ni layer, a Cu—Sn alloy layer and a Sn layer is formed in this order on the surface.
  • the Ni layer has an average thickness of 0.1 to 3.0 ⁇ m
  • the Cu—Sn alloy layer has an average thickness of 0.1 to 3.0 ⁇ m
  • the Sn layer has an average thickness of 0.05 to 5 ⁇ m.
  • the Cu—Sn alloy layer is composed of an ⁇ phase and an ⁇ phase, and the ⁇ phase exists between the Ni layer and the ⁇ phase, and the ⁇ relative to the average thickness of the Cu—Sn alloy layer.
  • Aspect 4 The copper alloy strip which is a base material has a structure in which precipitates are dispersed in a copper alloy matrix, and the precipitates have a diameter of 60 nm or less, and a diameter of 5 nm to 60 nm within a field of view of 500 nm ⁇ 500 nm.
  • Aspect 5 With the surface coating layer having excellent heat resistance according to the aspect 3 or 4, wherein the ratio of the length of the ⁇ phase to the length of the base layer is 50% or less in the cross section of the surface coating layer Copper alloy strip.
  • Aspect 6 The copper with a surface coating layer excellent in heat resistance according to any one of embodiments 1 to 5, wherein the copper alloy sheet strip as a base material further contains Fe: 0.0005 to 0.15 mass% Alloy strip.
  • the copper alloy strip as the base material is further selected from any one of Zn: 1 mass% or less, Mn: 0.1 mass% or less, Si: 0.1 mass% or less, Mg: 0.3 mass% or less.
  • Aspect 9 The heat-resistant layer according to any one of aspects 1 to 8, wherein a part of the Cu-Sn alloy layer is exposed on the outermost surface of the surface coating layer, and the surface exposed area ratio is 3 to 75%. Copper alloy sheet with a surface coating layer with excellent properties.
  • Aspect 10 The surface roughness of the surface coating layer is such that the arithmetic average roughness Ra in at least one direction is 0.15 ⁇ m or more, and the arithmetic average roughness Ra in all directions is Ra of 3.0 ⁇ m or less. 9.
  • Aspect 11 The copper alloy sheet with a surface coating layer according to aspect 9, wherein the surface roughness of the surface coating layer is an arithmetic average roughness of less than 0.15 ⁇ m in all directions.
  • Aspect 12 9. The copper alloy sheet with a surface coating layer according to any one of aspects 1 to 8, wherein the Sn layer comprises a reflow Sn plating layer and a glossy or semi-gloss Sn plating layer formed thereon.
  • Aspect 13 Any one of aspects 1 to 12, wherein a Co layer or an Fe layer is formed as an underlayer instead of the Ni layer, and the average thickness of the Co layer or the Fe layer is 0.1 to 3.0 ⁇ m.
  • a Co layer or Fe layer is formed as an underlayer between the surface of the base material and the Ni layer, or between the Ni layer and the Cu—Sn alloy layer, and the average of the total of the Ni layer and the Co layer or the Ni layer and the Fe layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

 銅合金板条を母材とし、その表面に厚さ0.1~3.0μmNi層、厚さ0.1~3.0μmCu-Sn合金層、厚さ0.05~5.0μmSn層がこの順に形成され、かつ前記Cu-Sn合金層がε相とη相からなり、前記ε相が前記Ni層とη相の間に存在し、前記Cu-Sn合金層の平均厚さに対する前記ε相の平均厚さの比率が30%以下であり、前記Ni層の長さに対する前記ε相の長さの比率が50%以下であることを特徴とする表面被覆層付き銅合金板条。

Description

耐熱性に優れる表面被覆層付き銅合金板条
 本発明は、主として自動車分野や一般民生分野において端子等の接続部品用導電材料として用いられ、端子接点部の接触抵抗を長時間にわたり低い値に維持できる表面被覆層付き銅合金板条に関する。
 自動車等の電線の接続に用いられるコネクタには、オス端子とメス端子の組み合せからなる嵌合型接続端子が使用されている。近年、自動車のエンジンルームにも電装品が搭載されてきており、コネクタには高温長時間経過後の電気的特性(低接触抵抗)の確保が求められる。
 表面被覆層として最表面にSn層が形成された表面被覆層付き銅合金板条は、高温環境下において長時間保持すると接触抵抗が増大する。これに対し、例えば特許文献1(特許文献1である特開2004-68026号公報は、参照することにより本明細書に取り込まれる。)には、母材(銅合金板条)の表面に形成する表面被覆層を、下地層(Niなど)/Cu-Sn合金層/Sn層の3層構造とすることが記載されている。この3層構造の表面被覆層によれば、下地層により母材からのCuの拡散を抑制し、Cu-Sn合金層により下地層の拡散を抑制し、これにより高温長時間経過後も低接触抵抗を維持できる。
 特許文献2,3(特許文献2である特開2006-77307号公報および特許文献3である特開2006-183068公報は参照することにより本明細書に取り込まれる。)には、母材の表面を粗面化処理した表面被覆層付き銅合金板条の表面被覆層を、上記3層構造とすることが記載されている。
 特許文献4(特許文献4である特開2010-168598号公報は参照することにより本明細書に取り込まれる。)には、Ni層/Cu-Sn合金層/Sn層からなる3層構造の表面被覆層において、Cu-Sn合金層をNi層側のε(CuSn)相とSn相側のη(CuSn)相の2相とし、ε相がNi層を被覆する面積被覆率を60%以上とすることが記載されている。この表面被覆層を得るには、リフロー処理を加熱工程、一次冷却工程及び二次冷却工程により構成し、加熱工程において昇温速度と到達温度、一次冷却工程において冷却速度と冷却時間、及び二次冷却工程において冷却速度を、それぞれ精密に制御する必要がある。特許文献4には、この表面被覆層により、高温長時間経過後も低接触抵抗を維持でき、かつ表面被覆層の剥離を防止することができると記載されている。
 最表面がSn層である表面被覆層を形成する母材として、例えば特許文献5,6(特許文献5である特開2006-342389号公報および特許文献6である特開2010-236038号公報は、参照することにより本明細書に取り込まれる。)に記載されたCu-Ni-Sn-P系の銅合金板条が用いられている。この銅合金板条は優れた曲げ加工性、剪断打抜き性及び耐応力緩和特性を有し、この銅合金板条から成形した端子は耐応力緩和特性に優れることから、高温長時間経過後も高い保持応力を有し、高い電気的信頼性(低接触抵抗)を維持することができる。
特開2004-68026号公報 特開2006-77307号公報 特開2006-183068公報 特開2010-168598号公報 特開2006-342389号公報 特開2010-236038号公報
 特許文献1~3では、160℃×120Hrの高温長時間経過後にも低接触抵抗が維持されたことが示されている。また、特許文献4には175℃×1000Hrの高温長時間経過後にも低接触抵抗が維持され、かつ160℃×250Hrの高温長時間経過後に表面被覆層の剥離が生じなかったことが示されている。
 特許文献1~4に記載された接触抵抗の測定及び耐熱剥離性の試験では、試験片を高温長時間保持する間、該試験片に弾性応力が掛けられていない。一方、実際の嵌合型端子において、雄端子と雌端子の嵌合部は弾性的な応力により接触を保つ。前記3層構造の表面被覆層を形成した表面被覆層付き銅合金板条を用いて雄端子又は雌端子を成形し、それぞれ雌端子又は雄端子と嵌合させた状態で高温環境下に保持すると、弾性応力によりε相からη層への相変化、母材及び下地層の元素の拡散が活発になる。このため、高温長時間経過後に接触抵抗が増大しやすく、かつ母材と表面被覆層の界面又は下地層とCu-Sn合金層の界面で剥離が発生しやすくなる。
 特許文献5,6に記載された銅合金板条を母材とし、その表面に前記3層構造の表面被覆層を形成した表面被覆層付き銅合金板条を、雄端子又は雌端子の素材として用いた場合も、このような問題が生じており、その改善が求められている。
 本発明は、Cu-Ni-Sn-P系の銅合金板条からなる母材表面に前記3層構造の表面被覆層を形成した表面被覆層付き銅合金板条の改良に係る。本発明は、弾性応力を付加した状態で高温長時間経過させた後にも低接触抵抗が維持できる表面被覆層付き銅合金板条を提供することを主たる目的とする。また、本発明は、弾性応力を付加した状態で高温長時間経過させた後にも優れた耐熱剥離性を有する表面被覆層付き銅合金板条を提供することを他の目的とする。
 本発明に係る表面被覆層付き銅合金板条は、Ni:0.4~2.5質量%、Sn:0.4~2.5質量%、P:0.027~0.15質量%を含み、Ni含有量とP含有量の質量比Ni/Pが25未満であり、更に、Fe:0.0005~0.15質量%、Zn:1質量%以下、Mn:0.1質量%以下、Si:0.1質量%以下、Mg:0.3質量%以下のいずれか1種以上を含み、残部が実質的にCu及び不可避不純物からなる銅合金板条を母材とし、銅合金母相中に析出物が分散した組織を有し、前記析出物は直径60nm以下であり、500nm×500nmの視野内に直径5nm以上60nm以下のものが20個以上観察され、その表面に、Ni層、Cu-Sn合金層及びSn層からなる表面被覆層がこの順に形成されている。前記Ni層の平均厚さは0.1~3.0μm、前記Cu-Sn合金層の平均厚さは0.1~3.0μm、前記Sn層の平均厚さは0.05~5.0μmである。前記表面被覆層の最表面に前記Cu-Sn合金層の一部が露出し、その表面露出面積率が3~75%である(特許文献2参照)。前記Cu-Sn合金層はη相(CuSn)のみ又はε相(CuSn)とη相からなる。前記Cu-Sn合金層がε相とη相からなる場合、前記ε相は前記Ni層とη相の間に存在し、前記Cu-Sn合金層の平均厚さに対する前記ε相の平均厚さの比率が30%以下であり、前記Ni層の長さに対する前記ε相の長さの比率が50%以下である。なお、上記Ni層及びSn層は、それぞれNi、Sn金属のほか、Ni合金、Sn合金を含む。
 上記表面被覆層付き銅合金板条は、次のような望ましい実施の形態を有する。
(1)母材である前記銅合金板条が、さらにCr、Co、Ag、In、Be、Al、Ti、V、Zr、Mo、Hf、Ta、Bのいずれか1種以上を総量で0.1質量%以下含む。
(2)表面被覆層の表面粗さは、少なくとも一方向における算術平均粗さRaが0.15μm以上で、かつ全ての方向における算術平均粗さがRaが3.0μmの場合(特許文献3参照)と、全ての方向における算術平均粗さがRaが0.15μm未満の場合がある。
(3)前記Sn層が、リフローSnめっき層とその上に形成された光沢又は半光沢Snめっき層からなる。
(4)前記Ni層の代わりにCo層又はFe層が形成され、前記Co層又はFe層の平均厚さが0.1~3.0μmである。
(5)前記Ni層が存在する場合、前記母材表面とNi層の間、又は前記Ni層とCu-Sn合金層の間にCo層又はFe層が形成され、Ni層とCo層又はNi層とFe層の合計の平均厚さが0.1~3.0μmである。
(6)大気中160℃×1000時間加熱後の材料表面(表面被覆層の表面)において、最表面から15nmの深さの位置にCuOを有しない。
 本発明によれば、Cu-Ni-Sn-P系の銅合金板条を母材とする表面被覆層付き銅合金板条において、弾性応力を付加した状態で高温長時間加熱した後に、優れた電気的特性(低接触抵抗)を維持できる。従って、この表面被覆層付き銅合金板条は、例えば自動車のエンジンルーム等の高温雰囲気下に配置する多極コネクタの素材として使用するのに適する。
 また、表面被覆層の断面において、Ni層の長さに対するε相の長さの比率を50%以下とすることにより、弾性応力を付加した状態で高温長時間経過後も、優れた耐熱剥離性を得ることができる。
 さらに、表面被覆層の最表面にCu-Sn合金層の一部が露出した表面被覆層付き銅合金板条は、摩擦係数を低く抑えることができ、特に嵌合型端子用材料として適する。
実施例のNo.1の試験材の走査型電子顕微鏡による断面組成像を示す。 耐熱剥離性の試験に用いる試験治具及び試験方法を説明する斜視図である。 耐熱剥離性の試験において行われる高温長時間加熱後の90°曲げ及び曲げ戻しについて説明する図である。 耐熱剥離性の試験において行われる高温長時間加熱後の90°曲げ及び曲げ戻しについて説明する図である。 摩擦係数測定治具の概念図である。
 以下、本発明に係る表面被覆層付き銅合金板条の構成について、具体的に説明する。
(I)母材である銅合金板条
(1)銅合金板条の化学組成
 本発明に係るCu-Ni-Sn-P系銅合金板条(母材)の化学組成は、基本的に特許文献5に詳細に記載されたとおりである。
 Niは銅合金中に固溶して耐応力緩和特性を強化し、強度を向上させる元素である。しかし、Ni含有量が0.4%質量未満ではその効果が少なく、2.5質量%を超えると同時添加しているPと容易に金属間化合物を析出し、固溶Niが減少して耐応力緩和特性が低下する。また、Ni含有量が2.5質量%を超えると、25%IACSの導電率を達成できなくなり、さらに、その製造工程において、仕上げ連続焼鈍温度を高くする必要があり、結晶粒が粗大化して銅合金板条曲げ加工性を低下させてしまう。従って、Ni含有量は0.4~2.5質量%の範囲とし、好ましくは下限は0.7質量%とし、上限は2.0質量%とする。より高い導電率(30%IACS以上)が要求される場合には、好ましくは上限を1.6質量%とする。
 Snは銅合金中に固溶し加工硬化による強度向上をもたらし、耐熱性の向上にも寄与する元素である。本発明に係る銅合金板において、曲げ加工性及びせん断打ち抜き性を向上させるには、高い温度で仕上げ焼鈍を行う必要があるが、Sn含有量が0.4質量%未満では耐熱性が向上せず、仕上げ焼鈍において再結晶軟化が進むため、仕上げ焼鈍の温度を十分に上げることができない。一方、Sn含有量が2.5質量%を超えると導電率が低下して、25%IACSを達成できない。従って、Sn含有量は0.4~2.5質量%とする。好ましくは下限は0.6質量%であり、上限は2.0質量%である。より高い導電率(30%IACS以上)が要求される場合には、好ましくは上限を1.6質量%とする。
 なお、仕上げ焼鈍を高い温度で行うことにより、耐応力緩和特性向上に必要な固溶Niが十分に得られる利点もある。
 Pは製造工程途中でNi-P析出物を発現し、仕上げ焼鈍時の耐熱性を向上させる元素である。これにより、高い温度での仕上げ焼鈍が可能となり、曲げ加工性及びせん断打ち抜き性が向上する。しかし、P含有量が0.027質量%未満では、P添加量に比べて相対的に添加量の多いNiと化合しやすくなり、強固なNi-P金属間化合物が形成され、一方、Pが0.15質量%を超えて添加されるとさらにNi-P金属間化合物析出量が増加する。このため、いずれの場合も、仕上げ焼鈍においてNi-P金属間化合物の再固溶が起きず、曲げ加工性及びせん断打ち抜き加工性が低下すると共に、耐応力緩和特性を向上させるための固溶Niが十分に得られない。従って、P含有量は0.027~0.15質量%とする。好ましくは、下限は0.05質量%であり、上限は0.08質量%である。
 Ni含有量とP含有量の質量比Ni/Pを25未満にすることにより、仕上げ焼鈍時において、Ni-P析出物による耐熱性の向上と、Ni-P析出物の分解、再固溶を両立させることができる。この質量比Ni/Pが25以上では、仕上げ焼鈍時の耐熱性が不十分となり、比較的低い温度で仕上げ焼鈍せざるを得ず、曲げ加工性及びせん断打ち抜き性が向上せず、かつ十分な耐応力緩和特性が得られない。質量比Ni/Pは15未満が好ましい。
 本発明に係る銅合金は、副成分としてFeを、必要に応じて含み得る。Feは、仕上げ焼鈍において再結晶粒の粗大化を抑制する元素である。Fe含有量が0.0005質量%以上のとき、仕上げ焼鈍温度を高くして添加元素を十分固溶させ、同時に再結晶粒の粗大化を抑制することができる。しかし、Fe含有量が0.15%を超えると導電率が低下し、約25%IACSを達成できない。従って、Fe含有量は0.0005~0.15質量%とする。
 本発明に係る銅合金は、副成分としてZn、Mn、Mg、Siの1種以上を、必要に応じて含み得る。Znは錫めっきの剥離を防止する効果を有し、1質量%以下の範囲で添加される。ただし、自動車用端子として使用する温度領域(約150~180℃)であれば、0.05質量%以下の添加で十分効果がある。MnおよびSiは脱酸剤として作用し、それぞれ0.1質量%以下の範囲で添加される。MnおよびSi含有量は、好ましくは、それぞれ、0.001質量%以下および0.002質量%以下である。Mgは耐応力緩和特性を向上させる作用があり、0.3質量%以下の範囲で添加される。
 また、本発明に係る銅合金は、副成分としてCr、Co、Ag、In、Be、Al、Ti、V、Zr、Mo、Hf、Ta、Bの1種以上を、必要に応じて含み得る。
 これらの元素は、結晶粒の粗大化を防止する作用があり、総量で0.1%以下の範囲で添加される。
(2)銅合金板条の組織
 本発明に係る銅合金板条(母材)は、特許文献5に詳細に記載されたとおり、銅合金母相中にNi-P金属間化合物の析出物が分散した組織を有する。
 析出物のうち直径が60nmを越える粒子は、R/t(R:曲げ半径、t:板厚)が小さい曲げ加工において割れ発生の原因となり、これが存在すると曲げ加工性が低下する。一方、析出物はせん断打ち抜き時の割れの起点となり、これが高い密度で分布している方がせん断打ち抜き性に優れる。直径5nm未満の微細析出物は、せん断応力場では転位と相互作用して局所的な加工硬化を引き起こし、せん断打ち抜きの伝搬・進行に寄与する。直径5nm以上の析出物が分散していると、その存在している場所を伝ってせん断打ち抜きの破面が進行していくため、さらにせん断打ち抜き性が向上し、ばりの低減に役立つ。従って、曲げ加工性を低下させない直径60nm以下の析出物粒子については、5nm以上のものが、500nm×500nmの視野内に平均で20個以上存在することが望ましく、さらに30個以上存在することが望ましい。なお、本発明でいう析出物粒子の直径は、析出物粒子の外接円の直径(長径)を意味する。
(3)銅合金板条の製造方法
 本発明に係る銅合金板条(母材)は、特許文献5,6に詳細に記載されたとおり、銅合金鋳塊を均質化処理後、熱間圧延及び冷間粗圧延を行い、続いて冷間粗圧延後の銅合金板に仕上げ連続焼鈍を行い、さらに冷間仕上げ圧延及び安定化焼鈍を行うことにより製造することができる。
 均質化処理は800~1000℃×0.5~4時間、熱間圧延は800~950℃で行い、熱間圧延後は水冷又は放冷する。冷間粗圧延は冷間仕上げ圧延において30~80%程度の加工率が得られるように、加工率を選択する。冷間粗圧延の途中に適宜中間の再結晶焼鈍を挟むことができる。
 仕上げ連続焼鈍は、実体温度で650℃以上の温度に、15~30秒間保持する高温短時間焼鈍とし、焼鈍後は10℃/秒以上の冷却速度で急冷する。これにより、低温領域で発生した粗大析出物が分解・再固溶し、微細なNi-P化合物が析出する。保持温度が650℃未満であると、析出直径60nmを越える析出物粒子が観察されやすくなり、またNi及びPの含有量がごく少ない組成領域では、直径60nm以下の粒子が不足する。一方、保持温度が650℃以上でも、保持時間が短いと、粗大析出物の分解・再固溶が不十分となり、直径60nmを越える析出物が残留する。逆に保持時間が長過ぎると、再結晶粒が粗大化して曲げ加工性の低下を招く可能性がある。
 冷間仕上げ圧延後の安定化焼鈍は、250~450℃×20~40秒又は200~400℃×0.1~10時間で行うのが望ましい。この条件で安定化焼鈍を行うことにより、強度の低下を抑えて、冷間仕上げ圧延で導入された歪みを除去することができる。なお、安定化焼鈍の条件が高温短時間のとき、応力緩和率が低め、導電率が低めとなり、低温長時間のとき、応力緩和率が高め、導電率が高めとなる傾向がある。
(II)表面被覆層
(1)Ni層の平均厚さ
 Ni層は、下地層として、母材構成元素の材料表面への拡散を抑制することにより、Cu-Sn合金層の成長を抑制してSn層の消耗を防止し、高温長時間使用後において接触抵抗の上昇を抑制する。しかし、Ni層の平均厚さが0.1μm未満の場合には、Ni層中のピット欠陥が増加することなどにより、上記効果を充分に発揮できなくなる。一方、Ni層は平均厚さが3.0μmを超えて厚くなると上記効果が飽和し、また曲げ加工で割れが発生するなど端子への成形加工性が低下し、生産性や経済性も悪くなる。従って、Ni層の平均厚さは0.1~3.0μmとする。Ni層の平均厚さは、好ましくは下限が0.2μm、上限が2.0μmである。
 なお、Ni層には、母材に含まれる成分元素等が少量混入していてもよい。Ni被覆層がNi合金からなる場合、Ni合金のNi以外の構成成分としては、Cu、P、Coなどが挙げられる。Ni合金中のCuの割合は40質量%以下、P、Coについては10質量%以下が好ましい。
(2)Cu-Sn合金層の平均厚さ
 Cu-Sn合金層は、Sn層へのNiの拡散を防止する。このCu-Sn合金層は平均厚さが0.1μm未満では上記拡散防止効果が不十分であり、NiがCu-Sn合金層又はSn層の表層まで拡散して酸化物を形成する。Niの酸化物は体積抵抗率がSnの酸化物、及びCuの酸化物の1000倍以上大きいことから、接触抵抗が高くなり電気的信頼性が低下する。一方、Cu-Sn合金層の平均厚さが3.0μmを超えると、曲げ加工で割れが発生するなど、端子への成形加工性が低下する。従って、Cu-Sn合金層の平均厚さは0.1~3.0μmとする。Cu-Sn合金層の平均厚さは、好ましくは下限が0.2μm、上限が2.0μmである。
(3)Cu-Sn合金層の相構成
 Cu-Sn合金層はη相(CuSn)のみ又はε相(CuSn)とη相からなる。Cu-Sn合金層がε相とη相からなる場合、ε相はNi層とη相の間に形成され、Ni層に接している。Cu-Sn合金層はCuめっき層のCuとSnめっき層のSnがリフロー処理により反応して形成される層である。リフロー処理前のSnめっきの厚さ(ts)とCuめっきの厚さ(tc)の関係をts/tc>2としたとき、平衡状態ではη相のみが形成されるが、リフロー処理条件により、実際には非平衡な相であるε相も形成される。
 ε相はη相に比べて硬いため、ε相が存在すると被覆層が硬くなり、摩擦係数の低減に寄与する。しかしながら、ε相の平均厚さが厚い場合、ε相はη相に比べて脆いため、曲げ加工で割れが発生するなど、端子への成形加工性が低下する。また、150℃以上の温度で、非平衡相であるε相が平衡相であるη相へ転化し、ε相のCuがη相及びSn層へ熱拡散し、Sn層の表面に達すると材料表面のCuの酸化物(CuO)量が多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。さらに、ε相のCuが熱拡散することにより、ε相が存在していた箇所においてCu-Sn合金層と下地層(Ni層のほか後述するCo層、Fe層を含む)の界面にボイドが生じ、Cu-Sn合金層と下地層の界面での剥離が発生しやすくなる。以上の理由から、Cu-Sn合金層の平均厚さに対するε相の平均厚さの比率は30%以下とする。Cu-Sn合金層がη相のみからなるとき、この比率は0%である。Cu-Sn合金層の平均厚さに対するε相の平均厚さの比率は、好ましくは20%以下、より好ましくは15%以下である。
 Cu-Sn合金層と下地層の界面での剥離をより効果的に抑制するには、上記の限定に加え、さらに表面被覆層の断面において、下地層の長さに対するε相の長さの比率を50%以下にすることが望ましい。これは前記ボイドがε相が存在していた箇所に発生するためである。下地層の長さに対するε相の長さの比率は、好ましくは40%以下、より好ましくは30%以下である。Cu-Sn合金層がη相のみからなるとき、この比率は0%である。
(4)Sn層の平均厚さ
 Sn層の平均厚さが0.05μm未満では、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、また耐食性も悪くなることから、電気的接続の信頼性を維持することが困難となる。また、Sn層の平均厚さが0.05μm未満になると摩擦係数が上昇し、嵌合端子に加工したときの挿入力が上昇する。一方、Sn層の平均厚さが5.0μmを超える場合には、経済的に不利であり、生産性も悪くなる。従って、Sn層の平均厚さは0.05~5.0μmとする。Sn層の平均厚さの下限は、好ましくは0.1μm、より好ましくは0.2μm、Sn層の平均厚さの上限は、好ましくは3.0μm、より好ましくは2.0μmである。なお、端子として低挿入力を重視する場合、Sn層の平均厚さは0.05~0.4μmとすることが好ましい。
 Sn層がSn合金からなる場合、Sn合金のSn以外の構成成分としては、Pb、Bi、Zn、Ag、Cuなどが挙げられる。Sn合金中のPbの割合は50質量%未満、他の元素については10質量%未満が好ましい。
 なお、リフロー処理後、さらに光沢又は半光沢Snめっき(好ましくは平均厚さが0.01~0.2μm)を行う場合もある(特開2009-52076号公報参照)。その場合、トータルのSn層(リフローSnめっき層+光沢又は半光沢Snめっき層)の平均厚さが0.05~5.0μmとなるようにする。
(5)Cu-Sn合金層の露出面積率
 オス端子とメス端子の挿抜に際しての摩擦の低減が求められる場合は、Cu-Sn合金層を表面被覆層の最表面に部分的に露出させるとよい。Cu-Sn合金層は、Sn層を形成するSn又はSn合金に比べて非常に硬く、それを最表面に部分的に露出させることで、端子挿抜の際にSn層の掘り起こしによる変形抵抗や、Sn-Snの凝着をせん断するせん断抵抗を抑制でき、摩擦係数を非常に低くすることができる。表面被覆層の最表面に露出するCu-Sn合金層はη相であり、その露出面積率が3%未満では、摩擦係数の低減が十分でなく、端子の挿入力低減効果が充分得られない。一方、Cu-Sn合金層の露出面積率が75%を超える場合には、経時や腐食などによる表面被覆層(Sn層)の表面のCuの酸化物量などが多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。従って、Cu-Sn合金層の露出面積率は3~75%とする(特許文献2,3参照)。Cu-Sn合金層の露出面積率は、好ましくは下限が10%、上限が50%である。
 表面被覆層の最表面に露出するCu-Sn合金層の露出形態は種々のものがあり得る。特許文献2,3には、露出したCu-Sn合金層が不規則に分布するランダム組織のものと、平行に延びる線状組織のものが開示されている。また、特開2013-185193号公報には、母材の銅合金がCu-Ni-Si系合金に限定され、露出したCu-Sn合金層として圧延方向に平行に延びる線状組織のもの(Cu-Sn合金層の露出面積率は10~50%)が記載されている。特開2013-209680号公報には、露出したCu-Sn合金層として不規則に分布するランダム組織と圧延方向に平行に延びる線状組織からなる複合形態のもの(Cu-Sn合金層の露出面積率はトータルで3~75%)が記載されている。本発明に係る表面被覆層付き銅合金板条において、これらの全ての露出形態が許容される。
 Cu-Sn合金層の露出形態がランダム組織の場合、摩擦係数は端子の挿抜方向によらず低くなる。一方、Cu-Sn合金層の露出形態が線状組織の場合、又はランダム組織と線状組織からなる複合形態の場合、端子の挿抜方向が前記線状組織に対し垂直方向のとき、摩擦係数が最も低くなる。従って、例えば端子の挿抜方向が圧延垂直方向に設定される場合、前記線状組織を圧延平行方向に形成するのが望ましい。
(6)Cu-Sn合金層が露出する場合の表面被覆層の表面粗さ
(6a)特許文献3に記載された表面被覆層付き銅合金板条は、母材(銅合金板条そのもの)に粗面化処理を行い、母材表面にNiめっき、Cuめっき、Snめっきをこの順に行った後、リフロー処理することにより製造される。粗面化処理した母材の表面粗さは、少なくとも一方向における算術平均粗さRaが0.3μm以上で、全ての方向における算術平均粗さRaが4.0μm以下とされる。得られた表面被覆層付き銅合金板条は、表面被覆層の表面粗さが、少なくとも一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが3.0μm以下である。母材が粗面化されて表面に凹凸があること、及びリフロー処理によりSn層が平滑化されることから、リフロー処理後に表面に露出したCu-Sn合金層の一部は、Sn層の表面から突出している。
 本発明に係る表面被覆層付き銅合金板条においても、特許文献3に記載された表面被覆層付き銅合金板条と同様に、Cu-Sn合金層の一部を露出させ、表面被覆層の表面粗さを、少なくとも一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが3.0μm以下とすることができる。好ましくは、少なくとも一方向の算術平均粗さRaが0.2μm以上、かつ全ての方向の算術平均粗さRaが2.0μm以下である。
(6b)特許文献2に記載された表面被覆層付き銅合金板条は、特許文献3に記載された表面被覆層付き銅合金板条と同様のプロセス(上記(6a)参照)で製造される。ただし、母材(銅合金板条そのもの)の表面粗さは、少なくとも一方向における算術平均粗さRaが0.15μm以上で、全ての方向における算術平均粗さRaが4.0μm以下とされる。この表面粗さの範囲には、特許文献3に記載された表面被覆層付き銅合金板条の母材の表面粗さに比べ、表面粗さのより小さい側が含まれる。このため、特許文献2に記載された表面被覆層付き銅合金板条では、上記(6a)に記載した表面粗さと同等か、それより小さい表面粗さを有する表面被覆層が得られる。従って、特許文献2に記載された表面被覆層付き銅合金板条には、表面被覆層の算術平均粗さRaが全ての方向において0.15μm未満の場合が含まれる。この場合、表面に露出したCu-Sn合金層が、Sn層の表面から全く突出しない場合もあり得ると推測される。
 本発明に係る表面被覆層付き銅合金板条においても、特許文献2に記載された表面被覆層付き銅合金板条と同様に、Cu-Sn合金層の一部を露出させ、上記(6a)に記載した表面粗さと同等か、それより小さい表面粗さを有する表面被覆層を得ることができる。従って、本発明に係る表面被覆層付き銅合金板条には、表面被覆層の算術平均粗さRaが全ての方向において0.15μm未満になる場合が含まれる。
(6c)一方、母材(銅合金板条そのもの)表面の算術平均粗さが、全ての方向において0.15μm未満の場合でも、Ni、Cu、Snの各めっきをこの順に行った後、リフロー処理することにより、最表面に所定厚さのSn層を残留させ、かつCu-Sn合金層の一部を最表面に露出させることが可能である。製造方法は後述するが、結果的に、リフロー処理後、算術平均粗さRaが全ての方向において0.15μm未満で、所定厚さのSn層を最表面に有し、かつCu-Sn合金層が表面に露出した表面被覆層を得ることができる。この表面被覆層のCu-Sn合金層は、Sn層の表面から突出していない。
 なお、母材の表面に深い圧延目や研磨目を形成した場合、母材の曲げ加工性が低下したり、表面にできた加工変質層によりNiめっきの異常析出が生じる可能性があるが、このように母材の表面を浅く粗面化する場合、その問題は回避できる。
(7)Cu-Sn合金層の表面露出間隔
 Cu-Sn合金層の一部が最表面に露出した表面被覆層において、表面の少なくとも一方向におけるCu-Sn合金層の平均の表面露出間隔を0.01~0.5mmとすることが望ましい。ここで、Cu-Sn合金層の平均の表面露出間隔を表面被覆層の表面に描いた直線を横切るCu-Sn合金層の平均の幅(前記直線に沿った長さ)とSn層の平均の幅を足した値と定義される。
 Cu-Sn合金層の平均の表面露出間隔が0.01mm未満では、高温酸化などの熱拡散による材料表面のCuの酸化物量が多くなり、接触抵抗を増加させ易く、電気的接続の信頼性を維持することが困難となる。一方、Cu-Sn合金層の平均の表面露出間隔が0.5mmを超える場合には、特に小型端子に用いた際に低い摩擦係数を得ることが困難となる場合が生じてくる。一般的に端子が小型になれば、インデントやリブなどの電気接点部(挿抜部)の接触面積が小さくなるため、挿抜の際にSn層同士のみの接触確率が増加する。これにより凝着量が増すため、低い摩擦係数を得ることが困難となる。従って、Cu-Sn合金層の平均の表面露出間隔を少なくとも一方向において0.01~0.5mmとすることが望ましい。より望ましくは、Cu-Sn合金層の平均の表面露出間隔を全ての方向において0.01~0.5mmにする。これにより、挿抜の際のSn層同士のみの接触確率が低下する。Cu-Sn合金層の平均の表面露出間隔は、好ましくは下限が0.05mm、上限が0.3mmである。
 Cuめっき層と溶融したSnめっき層の間に形成されるCu-Sn合金層は、通常、母材(銅合金板条)の表面形態を反映して成長し、表面被覆層におけるCu-Sn合金層の表面露出間隔は、母材表面の凹凸の平均間隔Smをおよそ反映する。従って、被覆層表面の少なくとも一方向におけるCu-Sn合金層の平均の表面露出間隔を0.01~0.5mmとするには、母材(銅合金板条)表面の少なくとも一方向において算出された凹凸の平均間隔Smを0.01~0.5mmとすることが望ましい。凹凸の平均間隔Smは、好ましくは下限が0.05mm、上限が0.3mmである。
(8)Co層、Fe層の平均厚さ
 Co層とFe層は、Ni層と同様に、母材構成元素の材料表面への拡散を抑制することにより、Cu-Sn合金層の成長を抑制してSn層の消耗を防止し、高温長時間使用後において接触抵抗の上昇を抑制するとともに、良好なはんだ濡れ性を得るのに役立つ。このため、Co層又はFe層を、下地めっき層としてNi層の代わりに用いることができる。しかし、Co層又はFe層の平均厚さが0.1μm未満の場合、Ni層と同様に、Co層又はFe層中のピット欠陥が増加することなどにより、上記効果を充分に発揮できなくなる。また、Co層又はFe層の平均厚さが3.0μmを超えて厚くなると、Ni層と同様に、上記効果が飽和し、また曲げ加工で割れが発生するなど端子への成形加工性が低下し、生産性や経済性も悪くなる。従って、Co層又はFe層を下地層としてNi層の代わりに用いる場合、Co層又はFe層の平均厚さは0.1~3.0μmとする。Co層又はFe層の平均厚さは、好ましくは下限が0.2μm、上限が2.0μmである。
 また、Co層とFe層を、下地めっき層としてNi層とともに用いることができる。この場合、Co層又はFe層を、母材表面とNi層の間、又は前記Ni層とCu-Sn合金層の間に形成する。Ni層とCo層又はNi層とFe層の合計の平均厚さは、下地めっき層をNi層のみ、Co層のみ又はFe層のみとした場合と同じ理由で、0.1~3.0μmとする。Ni層とCo層の合計の平均厚さ又はNi層とFe層の合計の平均厚さは、好ましくは下限が0.2μm、上限が2.0μmである。
(9)CuO酸化膜の厚さ
 大気中160℃×1000時間加熱後、表面被覆層の材料表面にはCuの拡散によるCuO酸化膜が形成されている。CuOはSnOやCuOに比べて電気抵抗値が極めて高く、材料表面に形成されたCuO酸化膜は電気的な抵抗となる。CuO酸化膜が薄い場合には、自由電子が比較的容易にCuO酸化膜を通過する状態(トンネル効果)となり接触抵抗はあまり高くならないが、CuO酸化膜の厚さが15nmを超える(材料最表面から15nmより深い位置にCuOが存在する)と接触抵抗が増大する。Cu-Sn合金層におけるε相の比率が大きいほど、CuO酸化膜が厚く形成される(最表面からより深い位置にCuOが形成される)。CuO酸化膜の厚さを15nm以下にとどめ、接触抵抗が増大するのを防止するには、Cu-Sn合金層の平均厚さに対するε相の平均厚さの比率を30%以下とする必要がある。
(III)表面被覆層付き銅合金板条の製造方法
 本発明に係る表面被覆層付き銅合金板条には、Cu-Sn合金層が最表面に露出していないものと、Cu-Sn合金層が最表面に露出しているものが含まれ、さらに後者には、母材(銅合金板条そのもの)の表面粗さが大きいもの(少なくとも一方向における算術平均粗さRa≧0.15μm)と、表面粗さが小さいもの(全ての方向における算術平均粗さRa<0.15μm)が含まれる。これらの表面被覆層付き銅合金板条の製造方法について、以下説明する。
(1)Cu-Sn合金層が最表面に露出していないもの
 この表面被覆層付き銅合金板条は、特許文献1に記載されているように、銅合金板条の表面に下地めっきとしてNiめっき層を形成し、次いでCuめっき層及びSnめっき層をこの順に形成し、リフロー処理を行い、Cuめっき層のCuとSnめっき層のSnの相互拡散によりCu-Sn合金層を形成し、Cuめっき層を消滅させ、溶融・凝固したSnめっき層を表層部に適宜残留させることで製造することができる。
 めっき液は、Niめっき、Cuめっき、及びSnめっきとも特許文献1に記載されているものを用いればよい。めっき条件は、Niめっき/電流密度:3~10A/dm、浴温:40~55℃、Cuめっき/電流密度:3~10A/dm、浴温:25~40℃、Snめっき/電流密度:2~8A/dm、浴温:20~35℃とすればよい。電流密度は低目が好ましい。
 なお、本発明において、Niめっき層、Cuめっき層、Snめっき層というとき、これらはリフロー処理前の表面めっき層を意味する。Ni層、Cu-Sn合金層、Sn層というとき、これらはリフロー処理後のめっき層、又はリフロー処理により形成された化合物層を意味する。
 Cuめっき層及びSnめっき層の厚さは、リフロー処理後、生成するCu-Sn合金層が平衡状態のη単相となることを想定して設定しているが、リフロー処理の条件によっては、平衡状態に到達できずε相が残ってしまう。Cu-Sn合金層中のε相の比率を小さくするには、加熱温度と加熱時間の一方又は双方を調整することにより、平衡状態に近くなるように条件を設定すればよい。すなわち、リフロー処理時間を長くし又はリフロー処理温度を高温化する、あるいはその両方を行うことが有効である。Cu-Sn合金層の平均厚さに対するε相の平均厚さの比率を30%以下とするには、リフロー処理の条件を、Snめっき層の融点以上300℃以下の雰囲気温度では20~40秒間、300℃を超えて600℃以下の雰囲気温度では10~20秒間の範囲内で選択する。リフロー処理炉として、加熱処理されるめっき材の熱容量に対し十分大きな熱容量を持つリフロー処理炉を用いる。上記範囲内で高温長時間寄りの条件を選択することにより、表面被覆層の断面において、下地層の長さに対するε相の長さの比率を50%以下とすることができる。
 リフロー処理後の冷却速度は大きいほうが、Cu-Sn合金層の結晶粒径が小さくなる。それによりCu-Sn合金層の硬さが大きくなるため、Sn層の見かけ硬さが大きくなり、端子に加工したときの摩擦係数低減により効果的である。リフロー処理後の冷却速度はSnの融点(232℃)から水温までの冷却速度を20℃/秒以上とすることが好ましく、35℃/秒以上とすることが好ましい。具体的にはリフロー処理後、直ちに、Snめっき材を20~70℃の水温の水槽に連続的に通板焼入れ、あるいはリフロー加熱炉より出炉後20~70℃の水でシャワー冷却する、あるいはシャワーと水槽の組合せにより達成することができる。また、リフロー処理後、表面のSn酸化膜を薄くするため、非酸化性雰囲気、又は還元性雰囲気でリフロー処理の加熱を行なうことが望ましい。
 上記製造方法において、Niめっき層、Cuめっき層及びSnめっき層は、それぞれNi、Cu及びSn金属のほか、Ni合金、Cu合金及びSn合金を含む。Niめっき層がNi合金からなる場合、及びSnめっき層がSn合金からなる場合、先にNi層及びSn層に関して説明した各合金を用いることができる。また、Cuめっき層がCu合金からなる場合、Cu合金のCu以外の構成成分としては、Sn、Zn等が挙げられる。Cu合金中のSnの割合は50質量%未満、他の元素は5質量%未満が好ましい。
 また、上記製造方法において、下地めっき層として、Niめっき層の代わりにCoめっき層又はFeめっき層を形成し、若しくはCoめっき層又はFeめっき層を形成した後、Niめっき層を形成し、あるいはNiめっき層を形成した後、Coめっき層又はFeめっき層を形成することもできる。
(2)Cu-Sn合金層が最表面に露出し、母材の表面粗さが大きいもの
 この表面被覆層付き銅合金板条は、上記(II)(6a),(6b)に記載したように、母材である銅合金板条の表面を粗面化し、その後、上記(1)に記載した条件でめっき、及びリフロー処理を行なって製造することができる。粗面化した母材の表面粗さは、少なくとも一方向における算術平均粗さRaが0.15μm以上又は0.3μm以上で、全ての方向における算術平均粗さRaが4.0μm以下とする。その結果、平均厚さが0.05~5.0μmのSn層を最表面に有し、かつ一部のCu-Sn合金層が表面に露出した表面被覆層(上記(II)(6a),(6b)参照)を有する表面被覆層付き銅合金板条を製造することができる。この場合、Sn層の平均厚さの下限は好ましくは0.2μm、上限は好ましくは2.0μm、より好ましくは1.5μmである。
 なお、リフロー処理後、さらに光沢又は半光沢Snめっきを行ってもよい。ただし、この場合、表面被覆層の最表面へのCu-Sn合金層の露出はなくなる。
 銅合金板条の表面の粗面化には、例えば、研磨やショットブラストにより粗面化した圧延ロールを用い、銅合金板条を圧延する。ショットブラストによって粗面化したロールを用いると、表面被覆層の最表面に露出するCu-Sn合金層の露出形態がランダム組織となる。また、圧延ロールを研磨して深めの研磨目を形成後、ショットブラストによりランダムの凹凸を形成して粗面化したロールを用いると、表面被覆層の最表面に露出するCu-Sn合金層の露出形態が、ランダム組織と圧延方向に平行に延びる線状組織からなる複合形態となる。
(3)Cu-Sn合金層が最表面に露出し、母材の表面粗さが小さいもの
 母材である銅合金板条の表面の算術平均粗さRaが全ての方向において0.15μm未満の場合でも、上記(II)(6c)に記載したように、一部のCu-Sn合金層が表面に露出した表面被覆層付き銅合金板条を製造することができる。この場合、母材である銅合金板条の表面に、圧延平行方向(圧延方向に対し平行の方向)にバフの研磨目又は圧延目を、以下に説明する方法で形成して、表面粗さが最も大きくなる圧延直角方向の算術平均粗さRaを0.15μm未満の範囲に調整する。めっき方法、リフロー処理条件は、上記(1)に記載した条件でよい。その結果、平均厚さが0.05μm以上のSn層を最表面に有し、かつ一部のCu-Sn合金層が表面に露出した表面被覆層(上記(II)(6c)参照)を有する表面被覆層付き銅合金板条を製造することができる。
 母材である銅合金板条は、熱間圧延後、粗圧延、仕上げ前圧延、中間焼鈍、研磨、仕上げ圧延、必要に応じてさらに歪み取り焼鈍及び研磨の工程で製造される。上記研磨目又は圧延目を形成する方法として、研磨及び仕上げ圧延工程において、下記(a),(b)のいずれかの方法が好適に利用できる。
(a)中間焼鈍後の研磨工程において、回転するバフを銅合金板条に押し当て(バフの回転軸は圧延方向に直角)、表面を研磨する。この研磨に用いるバフとして、通常の仕上げ用のものより少し粗い砥粒を含むバフを用いる。そして、バフの回転数を通常より大きくするか、銅合金板条への押し付け圧力を大きくするか、銅合金板条の送り速度を小さくするか、いずれか1つ以上の実施条件を選択し、銅合金板条の表面に通常よりやや粗い研磨目を形成する。研磨後の仕上げ圧延は、通常の仕上げ圧延ロール(ロール軸線方向に測定した表面粗さが、算術平均粗さRa:0.02~0.08μm程度、最大高さ粗さRz:0.2~0.9μm程度)を用い、10%以下の圧下率で1パスで行う。
(b)仕上げ圧延工程を、通常の仕上げ圧延ロールより目の粗いロール(ロール軸線方向に測定した表面粗さが、算術平均粗さRa:0.07~0.18μm程度、最大高さ粗さRz:0.7~1.5μm程度)による圧延と、通常の仕上げ圧延ロールによる圧延の2段階で実施する。通常の仕上げ圧延ロールより目の粗いロールによる圧延は、1又は数パスで総圧下率を望ましくは10%以上とし、これにより銅合金板条の表面に通常の仕上げ圧延ロールよりやや粗い圧延目を形成する。続いて通常の仕上げ圧延ロールによる圧延を、10%以下の圧下率で1パス(最終パス)で行う。
 上記(a),(b)いずれの場合も、Ni、Cu、Snの各めっき層の厚さは次のように調整する。まず、Niめっき層の厚さは0.1~1μmとする。Niめっき層の上限は好ましくは0.8μmである。その後、Cuめっき及びSnめっきを行なうが、Snめっき層の平均厚さをCuめっき層の平均厚さの2倍以上とし、かつリフロー処理後に平均厚さ0.05~0.7μmのSn層が残存するように、Cuめっき層とSnめっき層の平均厚さを調整する。Sn層の平均厚さの上限は好ましくは0.4μmである。
 製造条件を上記のように調整することにより、全ての方向において算術平均粗さRaが0.15μm未満の母材を用いた場合でも、Cu-Sn合金層の一部を表面被覆層の最表面に露出させることが可能である。この場合、表面被覆層の算術平均粗さRaは圧延直角方向に最も大きく、ほぼ0.03μm以上、0.15μm未満の範囲内となる。また、Cu-Sn合金層の表面露出形態は、圧延方向に平行に、線状にCu-Sn合金層が露出した形態、又は、圧延方向に平行な線状に露出したCu-Sn合金層の周囲に点状又は島状(不規則形態)のCu-Sn合金層が露出した形態となる。Cu-Sn合金層は最表面に露出するが、母材(銅合金板条)の小さい表面粗さを反映して平坦であり、Sn層から突出していない。
 なお、リフロー処理後、さらに光沢又は半光沢Snめっきを行ってもよい。ただし、この場合、表面被覆層の最表面へのCu-Sn合金層の露出はなくなる。
 母材の表面粗さが小さく、リフロー処理後に表面に比較的厚め(0.05~0.7μm)のSn層を残した場合でも、Cu-Sn合金層が表面に露出する現象が生じる機構は明確でない。通常の仕上げ圧延や研磨を行ったものに比べ、仕上げ圧延、研磨工程において、母材の圧延目、研磨目に沿った表面の領域に蓄積される加工エネルギーが大きく、それにより、同領域においてCu-Sn合金の結晶成長速度が大きくなるためかと推測される。なお、この現象を生じさせるには、Niめっき層の平均厚さ(Ni層の平均厚さ)、及びリフロー処理後のSn層の平均厚さを、前記の範囲にとどめることが必要である。
 銅合金を木炭被覆しながら大気中で溶解し、Ni:0.83質量%、Sn:1.23質量%、P:0.074質量%、Fe:0.025質量%、Zn:0.16質量%、Mn:0.01質量%を含有し、残部Cuと不可避不純物よりなる厚さ75mmの鋳塊を作製した。鋳塊において分析した酸素(O)及び水素(H)の含有量はそれぞれ12ppm、1ppmであった。この鋳塊を950℃で2時間均質化処理後、16.5mmまで熱間圧延して750℃以上の温度から水焼入れした。この熱延材の両面を面削して厚さ14.5mmとした後、0.7mmまで冷間圧延した。続いて塩浴炉で660℃、20秒間の短時間熱処理を行い、酸洗研磨後0.25mmまで冷間圧延した。この後、硝石炉で400℃、20秒間の短時間熱処理を行ってめっき用母材とした。
 透過型電子顕微鏡(TEM)により母材を観察したところ、視野内に直径60nm超えの析出物は存在せず、500nm×500nmの視野内に直径5nm以上60nm以下の析出物の個数は72個であった。
 また、特許文献5の実施例に記載された方法で母材の各種特性を測定した。その結果は以下のとおりであった。導電率:34%IACS。0.2%耐力:560MPa(LD)、575MPa(TD)。伸び:10%(LD)、9%(TD)。W曲げ加工(R/t=2):LD、TD共に割れなし。応力緩和率:11%(LD)、14%(TD)。なお、LDは圧延平行方向、TDは圧延直角方向を意味する。以上の特性は、特許文献5の実施例に記載された銅合金板(No.1~4)の特性とほぼ同等である。
 上記母材に対し、酸洗及び脱脂後、各々の厚さの下地めっき(Ni,Co,Fe)、Cuめっき及びSnめっきを施した後、リフロー処理を行うことにより,表1に示すNo.1~26の試験材を得た。いずれもCuめっき層は消滅していた。リフロー処理の条件は、No.1~21,23,26については300℃×20~30sec又は450℃×10~15secの範囲、No.22については従来の条件(280℃×8sec)とした。また、No.24のリフロー処理の条件は290℃×10sec、No.25のリフロー処理の条件は285℃×8secとした。
 なお、母材の表面は粗面化しておらず、圧延直角方向の表面粗さは、算術平均粗さRaが0.025μm、最大高さ粗さRzが0.1μmであった。リフロー処理によりSnめっき層が消滅したNo.21のほかは、Cu-Sn合金層が最表面に露出していない。
 No.1~26の試験材について、下記要領で下地層(Ni層、Co層、Fe層)、Cu-Sn合金層及びSn層の平均厚さ、ε相厚さ比率(Cu-Sn合金層の平均厚さに対するε相の平均厚さの比率)、ε相長さ比率(Ni層の長さに対するε相の長さの比率)を測定した。また、No.1~26の試験材について、下記要領でCuO酸化膜の厚さ、高温長時間加熱後の接触抵抗を測定し、かつ耐熱剥離性の試験を行った。
(Ni層の平均厚さの測定)
 蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のNi層の平均厚さを算出した。測定条件は、検量線にSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
(Co層の平均厚さの測定)
 蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のCo層の平均の厚さを算出した。測定条件は、検量線にSn/Co/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
(Fe層の平均厚さの測定)
 蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のFe層の平均厚さを算出した。測定条件は、検量線にSn/Fe/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。
(Cu-Sn合金層の平均厚さ、ε相厚さ比率、ε相長さ比率の測定)
 ミクロトーム法にて加工した試験材の断面(圧延直角方向の断面)を走査型電子顕微鏡より10,000倍の倍率で観察し、得られた断面組成像から画像解析処理によりCu-Sn合金層の面積を算出し、測定エリアの幅で割った値を平均厚さとした。試験材の断面は圧延直角方向の断面とした。また、同じ組成像において、画像解析によりε相の面積を算出し、測定エリアの幅で割った値をε相の平均厚さとし、ε相の平均厚さをCu-Sn合金層の平均厚さで割ることにより、ε相厚さ比率(Cu-Sn合金層の平均厚さに対するε相の平均厚さの比率)を算出した。さらに、同じ組成像において、ε相の長さ(測定エリアの幅方向に沿った長さ)を測定し、これを下地層の長さ(測定エリアの幅)で割ることにより、ε相長さ比率(下地層の長さに対するε相の長さの比率)を算出した。いずれも測定はそれぞれ5視野ずつ実施し、その平均値を測定値とした。
 図1にNo.1の試験材の走査型電子顕微鏡による断面組成像(圧延直角方向の断面)を示す。同組成像には、Ni層と母材の境界、Ni層とCu-Sn合金層(η相とε相)の境界、及びε相とη相の境界をなぞって白抜きのラインが引かれている。図1に示すとおり、銅合金母材1の表面に表面めっき層2が形成され、表面めっき層2がNi層3、Cu-Sn合金層4及びSn層5からなり、Cu-Sn合金層4がε相4aとη相4bからなる。ε相4aはNi層3とη相4bの間に形成され、Ni層に接している。なお、Cu-Sn合金層4のε相4aとη相4bは、断面組成像の色調観察と、EDX(エネルギー分散型X線分光分析機)を用いたCu含有量の定量分析により確認した。
(Sn層の平均厚さの測定)
 まず、蛍光X線膜厚計(セイコーインスツルメンツ株式会社;SFT3200)を用いて、試験材のSn層の膜厚とCu-Sn合金層に含有されるSn成分の膜厚の和を測定した。その後、p-ニトロフェノール及び苛性ソーダを成分とする水溶液に10分間浸漬し、Sn層を除去した。再度、蛍光X線膜厚計を用いて、Cu-Sn合金層に含有されるSn成分の膜厚を測定した。測定条件は、検量線にSn/母材の単層検量線又はSn/Ni/母材の2層検量線を用い、コリメータ径をφ0.5mmとした。得られたSn層の膜厚とCu-Sn合金層に含有されるSn成分の膜厚の和から、Cu-Sn合金層に含有されるSn成分の膜厚を差し引くことにより、Sn層の平均の厚さを算出した。
(高温長時間加熱後の耐熱剥離性の試験)
 供試材から幅10mm、長さ100mmの試験片(長さ方向が圧延平行方向)を切り出し、図2に示す片持ち梁式の試験治具により、試験片6の長さlの位置にたわみ変位δを与え、試験片6に室温における0.2%耐力の80%の曲げ応力を付加した。この場合、試験片6の上面に圧縮力、下面に引張力が作用する。この状態で、試験片6に対し大気中にて160℃×1000hrの加熱を行った後、応力を除去した。なお、この試験方法は、日本伸銅協会技術標準JCBAT309:2004「銅及び銅合金薄板条の曲げによる応力緩和試験方法」に準拠している。本実施例では、たわみ変位δを10mmとし、前記試験方法に記載されている式により、スパン長さlを決定した。
 加熱後の試験片6に対し、曲げ半径R=0.75mmで90°曲げ(図3A)及び曲げ戻し(図3B)を行った。図3Aにおいて、7はV字ブロック、8は押金具である。90°曲げに際しては、図2に示す試験治具で圧縮力を作用させた面を上に向け、かつ応力を付加したときに支点となる部位6Aを曲げ線に一致させた。
 次いで、曲げ部6Bの両面に透明樹脂テープを貼付けた後引き剥がし、表面被覆層のテープへの付着の有無(剥離の有無)を確認し、3本の試験片とも剥離がない場合を○、どれか1つでも剥離した場合を×と評価した。
 また、曲げ部6Bを含む断面(曲げ線に垂直な断面)で試験片6を切断し、樹脂埋め、研磨後、走査電子顕微鏡によりNi層とCu-Sn合金層の界面におけるボイド、剥離の有無を観察した。ボイド及び剥離の見られなかった場合を○、ボイド又は剥離の見られた場合を×と評価した。
(CuO酸化膜の厚さの測定)
 試験材から幅10mm、長さ100mmの試験片(長さ方向が圧延平行方向)を切り出し、前記耐熱剥離性の試験と同様に、試験片に室温における0.2%耐力の80%の曲げ応力を付加した(図2参照)。この状態で、試験片に対し大気中にて160℃×1000hrの加熱を行った後、応力を除去した。加熱後の試験片の表面被覆層に対し、Snに対するエッチングレートが約5nm/minとなる条件で3分間エッチングを行った後、X線光電子分光装置(VG社製ESCA-LAB210D)によりCuOの有無を確認した。分析条件はAlkα300W(15kV,20mA)、分析面積1mmφとした。CuOが検出された場合、表面被覆層の最表面から15nmより深い位置にCuOが存在する(O酸化膜の厚さが15nmを超える(CuO>15nm))と判定し、検出されなかった場合、表面被覆層の最表面から15nm以上深い位置にCuOが存在しない(CuO酸化膜の厚さが15nm以下(CuO≦15nm))と判定した。
(高温長時間加熱後の接触抵抗の測定)
 試験材から幅10mm、長さ100mmの試験片(長さ方向が圧延平行方向)を切り出し、前記耐熱剥離性の試験と同様に、試験片に室温における0.2%耐力の80%の曲げ応力を付加した(図2参照)。この状態で、試験片に対し大気中にて160℃×1000hrの加熱を行った後、応力を除去した。加熱後の試験片を用い、接触抵抗を四端子法により、解放電圧20mV、電流10mA、荷重3N、摺動有の条件にて5回測定を実施し、その平均値を接触抵抗値とした。






































Figure JPOXMLDOC01-appb-T000001
 以上の結果を表1に示す。
 表面被覆層の構成及び各層の平均厚さ、並びにε相厚さ比率が本発明の規定を満たすNo.1~18は、CuO酸化膜の厚さも15nm以下であり、高温長時間加熱後の接触抵抗が1.0mΩ以下と低い値に維持されている。また、ε相長さ比率が本発明の規定を満たすNo.1~13,16~18は耐熱剥離性も優れる。
 一方、Ni層の平均厚さが薄いNo.19、Cu-Sn合金層の平均厚さが薄いNo.20、Sn層が消滅していたNo.21、リフロー処理が従来の条件で行われε相厚さ比率が高いNo.22、Ni層が存在しないNo.23、リフロー処理が従来の条件に近い条件で行われε相厚さ比率が高いNo.24,25、及びSn層の平均厚さが薄いNo.26は、それぞれ高温長時間加熱後の接触抵抗が高くなった。No.20~26では、CuO酸化膜の厚さが15nmを超えていた。また、ε相厚さ比率が高いNo.24、及びε相厚さ比率とε相長さ比率が高いNo.22,25は、高温長時間加熱後、表面被覆層の剥離が発生した。
 表面被覆層の剥離が発生しなかったNo.1~13,16~21,26では、Ni層とCu-Sn合金層の界面にボイドが形成されていなかったが、表面被覆層の剥離が発生したNo.14,15,22,24,25では、前記界面にボイドが多く形成されていた。これにより、Ni層とCu-Sn合金層の界面に形成されるボイドがつながることにより、表面被覆層の剥離が発生することが確認された。なお、No.23はボイドの観察は行っていない。
 実施例1において製造した板厚0.7mmの銅合金板(塩浴炉で660℃、20秒間の短時間熱処理を行い、酸洗研磨したもの)を用いた。この銅合金板を板厚0.25mmまで冷間圧延した後、ショットブラストで粗面化し、又は研磨及びショットブラストで粗面化した圧延ロールにより板厚0.25mmまで冷間圧延した。これにより、種々の表面粗さ(表面粗さが最も大きく出る圧延直角方向の算術平均粗さRaが0.15μm以上)及び形態に表面粗化した銅合金板を得た(表2のNo.27~43)。ただし、No.34は表面粗化処理を行っていない。その後、硝石炉で400℃、20秒間の短時間熱処理を行ってめっき用母材とした。
 この母材は、析出物の析出状態、導電率及び機械的特性が、実施例1のものとほぼ同じであった。
 この母材に対し、酸洗及び脱脂後、各々の厚さの下地めっき(Ni,Co)、Cuめっき及びSnめっきを施した後、リフロー処理を行うことによりNo.27~43の試験材を得た。リフロー処理の条件は、No.27~40,43については300℃×25~35sec又は450℃×10~15secの範囲、No.41については従来の条件(280℃×8sec)、No.42については290℃×8secとした。
 No.27~43の試験材について、実施例1と同じ要領で下地層(Ni層、Co層)、Cu-Sn合金層及びSn層の平均厚さ、ε相厚さ比率、ε相長さ比率、CuO酸化膜の厚さ、高温長時間加熱後の接触抵抗を測定し、かつ耐熱剥離性の試験を行った。また、下記要領で表面被覆層の表面粗さ、Cu-Sn合金層の表面露出面積率及び摩擦係数を測定した。
(表面被覆層の表面粗さ)
 表面被覆層の表面粗さ(算術平均粗さRa)は、接触式表面粗さ計(株式会社東京精密;サーフコム1400)を用いて、JIS B0601-1994に基づいて測定した。表面粗さ測定条件は、カットオフ値を0.8mm、基準長さを0.8mm、評価長さを4.0mm、測定速度を0.3mm/s、及び触針先端半径を5μmRとした。なお、表面粗さ測定方向は、表面粗さが最も大きく出る圧延直角方向とした。
(Cu-Sn合金層の表面露出面積率の測定)
 試験材の表面を、EDX(エネルギー分散型X線分光分析器)を搭載したSEM(走査型電子顕微鏡)を用いて200倍の倍率で観察し、得られた組成像の濃淡(汚れや傷等のコントラストは除く)から画像解析によりCu-Sn合金層の表面露出面積率を測定した。同時にCu-Sn合金層の露出形態を観察した。露出形態はランダム組織、又は線状組織+ランダム組織からなり、線状組織は全て圧延平行方向に形成されていた。
(摩擦係数の測定)
 嵌合型接続部品における電気接点のインデント部の形状を模擬し、図4に示すような装置を用いて測定した。まず、No.27~43の各試験材から切り出した板材のオス試験片7を水平な台8に固定し、その上にNo.23(実施例1)の試験材から切り出した半球加工材(内径をφ1.5mmとした)のメス試験片9を置いて表面同士を接触させた。
 続いて、メス試験片9に3.0Nの荷重(錘10)をかけてオス試験片7を押さえ、横型荷重測定器(アイコーエンジニアリング株式会社;Model-2152)を用いて、オス試験片7を水平方向に引っ張り(摺動速度を80mm/minとした)、摺動距離5mmまでの最大摩擦力F(単位:N)を測定した。摩擦係数を下記式(1)により求めた。
 なお、11はロードセル、矢印は摺動方向であり、摺動方向は圧延方向に垂直な向きとした。
摩擦係数=F/3.0  ・・・(1)
Figure JPOXMLDOC01-appb-T000002
 以上の結果を表2に示す。
 表面被覆層の構成及び各層の平均厚さ、並びにε相の厚さ比率が本発明の規定を満たすNo.27~40は、高温長時間加熱後の接触抵抗が1.0mΩ以下と低い値に維持されている。このうち、ε相長さ比率が本発明の規定を満たすNo.27~34,36~40は耐熱剥離性にも優れる。また、表面被覆層のCu-Sn合金層の表面露出率が本発明の規定を満たすNo.27~32,35~40は、Cu-Sn合金層の表面露出率が2%のNo.33やゼロのNo.34と比べて摩擦係数が低い。ただし、表面被覆層の算術平均粗さRaが0.15μmに満たないNo.32は、表面被覆層の各層の厚さがほぼ同等で表面被覆層の算術平均粗さRaが大きいNo.27~29,31,35に比べると摩擦係数が高い。
 一方、ε相厚さ比率が大きいNo.41,42は、高温長時間加熱後の接触抵抗が高く、耐熱剥離性も劣る。Sn層の平均厚さが薄いNo.43は、高温長時間加熱後の接触抵抗が高くなった。なお、No.41,42はCu-Sn合金層露出率が本発明の規定を満たし、表面被覆層の算術平均粗さRaも比較的大きく、摩擦係数が低い。
 また、表面被覆層の剥離が発生しなかったNo.27~34,36~40,43では、Ni層とCu-Sn合金層の界面にボイドが形成されていなかったが、表面被覆層の剥離が発生したNo.35,41,42では、前記界面にボイドが多く形成されていた。
 銅合金を木炭被覆しながら大気中で溶解し、Ni:0.84質量%、Sn:1.26質量%、P:0.084質量%、Fe:0.022質量%、Zn:0.15質量%を含有し、残部Cuと不可避不純物よりなる厚さ75mmの鋳塊を作製した。鋳塊において分析した酸素(O)及び水素(H)の含有量はそれぞれ10ppm、1pmmであった。この鋳塊を950℃で2時間均質化処理後、16.5mmまで熱間圧延して750℃以上の温度から水焼入れした。この熱延材の両面を面削して厚さ14.5mmとした後、0.7mmまで冷間圧延した。続いて塩浴炉で650℃、20秒間の短時間熱処理を行い、酸洗研磨後0.25mmまで冷間圧延した。この後、350℃、2時間の熱処理を行ってめっき用母材とした。
この製造工程において、前記(III)(3)に記載した方法により、種々の表面粗さ(表面粗さが最も大きく出る圧延直角方向の算術平均粗さRaが0.15μm未満)に表面粗化した銅合金板を得た(表3のNo.44~52)。
 透過型電子顕微鏡(TEM)により母材を観察したところ、視野内に直径60nm超えの析出物は存在せず、500nm×500nmの視野内に直径5nm以上60nm以下の析出物の個数は86個であった。
 また、特許文献5の実施例に記載された方法で母材(No.44)の各種特性を測定した。その結果は以下のとおりであった。導電率:39%IACS。0.2%耐力:560MPa(LD)、570MPa(TD)。伸び:12%(LD)、10%(TD)。W曲げ加工(R/t=2):LD、TD共に割れなし。応力緩和率:13%(LD)、16%(TD)。
 前記母材に対し、酸洗及び脱脂後、各々の厚さのNiめっき、Cuめっき及びSnめっきを施した後、リフロー処理を行うことによりNo.44~52の試験材を得た。リフロー処理の条件は、No.42~50,52については300℃×25~35sec又は450℃×10~15secの範囲、No.51については従来の条件(280℃×8sec)とした。
 No.44~52の試験材について、実施例1と同じ要領でNi層、Cu-Sn合金層及びSn層の平均厚さ、ε相厚さ比率、ε相長さ比率、CuO酸化膜の厚さ、高温長時間加熱後の接触抵抗を測定し、かつ耐熱剥離性の試験を行った。また、実施例2と同じ要領で表面被覆層の表面粗さ、Cu-Sn合金層の表面露出面積率及び摩擦係数(圧延直角方向:⊥、圧延平行方向:∥)を測定した。なお、Cu-Sn合金層の表面露出形態は、全て圧延平行方向の線状組織であった。
Figure JPOXMLDOC01-appb-T000003
 以上の結果を表3に示す。
 No.44~52は、母材表面の算術平均粗さRaがいずれも0.15μm未満であったが、Cu-Sn合金層が表面被覆層の表面に線状に露出していた。
 表面被覆層の構成及び各層の平均厚さ、並びにε相の厚さ比率が本発明の規定を満たすNo.44~50は、高温長時間加熱後の接触抵抗が1.0mΩ以下と低い値に維持されている。また、No.44~50はCu-Sn合金層の表面露出率が本発明の規定を満たし、Cu-Sn合金層の表面露出率がゼロのNo.34(表2)に比べると摩擦係数が小さく、特に圧延直角方向の摩擦係数が小さくなっている。このうち、ε相長さ比率が本発明の規定を満たすNo.44~48,50は耐熱剥離性にも優れる。
 一方、ε相の厚さ比率及び長さ比率が本発明の規定を満たさないNo.51は、高温長時間加熱後の接触抵抗が高く、耐熱剥離性も劣る。Sn層の平均厚さが薄いNo.52は、高温長時間加熱後の接触抵抗が高くなった。
 また、表面被覆層の剥離が発生しなかったNo.43~48,50,52では、Ni層とCu-Sn合金層の界面にボイドが形成されていなかったが、表面被覆層の剥離が発生したNo.49,51では、前記界面にボイドが多く形成されていた。
 銅合金を木炭被覆しながら大気中で溶解し、表4に示す組成を有する厚さ75mmの鋳塊を作製した。鋳塊において分析した酸素(O)の含有量は7~20ppm、水素(H)の含有量はいずれも1ppmであった。この鋳塊を850~950℃で2時間均質化処理後、16.5mmまで熱間圧延して700℃以上の温度から水焼入れした。この熱延材の両面を面削して厚さ14.5mmとした後、0.7mmまで冷間圧延した。続いて塩浴炉で660~680℃、20秒間の短時間熱処理を行い、0.25mmまで冷間圧延した後、ショットブラストで粗面化し、又は研磨及びショットブラストで粗面化した圧延ロールにより板厚0.25mmまで冷間圧延した。これにより、種々の表面粗さ(表面粗さが最も大きく出る圧延直角方向の算術平均粗さRaが0.15μm以上)及び形態に表面粗化した銅合金板を得た(表4のNo.53~58)。その後、硝石炉で400℃、20秒間の短時間熱処理、または350~400℃×2時間の熱処理を行ってめっき用母材とした。
Figure JPOXMLDOC01-appb-T000004
 得られた母材(No.53~58)を用い、透過型電子顕微鏡(TEM)により、直径60nm超えの析出物の有無、及び500nm×500nmの視野内に存在する直径5nm以上60nm以下の析出物の個数を観察した。また、特許文献5の実施例に記載された方法で母材の各種特性を測定した。その結果を表4にあわせて示す。
 表4に示すように、No.53~58の母材は、直径60nm超えの析出物が存在せず、500nm×500nmの視野内に存在する直径5nm以上60nm以下の析出物の個数は特許文献5の規定を満たす。また、No.53~56の母材では、特許文献5の実施例とほぼ同等の特性が得られている。比較的高Ni、高SnのNo.57,58の銅合金板は、導電率が30%IACS未満であるが、高い強度が得られている。
 この母材に対し、酸洗及び脱脂後、各々の厚さの下地めっき(Ni,Co)、Cuめっき及びSnめっきを施した後、リフロー処理を行うことによりNo.53~58の試験材を得た。リフロー処理の条件は、325℃×25~35secとした。
 No.53~58の試験材について、実施例1と同じ要領で下地層(Ni層、Co層)、Cu-Sn合金層及びSn層の平均厚さ、ε相厚さ比率、ε相長さ比率、CuO酸化膜の厚さ、高温長時間加熱後の接触抵抗を測定し、かつ耐熱剥離性の試験を行った。また、実施例2と同じ要領で表面被覆層の表面粗さ、Cu-Sn合金層の表面露出面積率及び摩擦係数(圧延直角方向)を測定した。
Figure JPOXMLDOC01-appb-T000005
 以上の結果を表5に示す。
 No.53~58はいずれも、表面被覆層の構成及び各層の平均厚さ、ε相の厚さ比率、ε相の長さ比率、並びに表面被覆層の算術平均粗さ及びCu-Sn合金層の表面露出率が本発明の規定を満たす。このため、No.53~58はいずれも、高温長時間加熱後の接触抵抗が1.0mΩ以下と低い値に維持され、高温長時間加熱後の耐熱剥離性に優れ、摩擦係数が低い。
 本発明は、以下の態様を含む。
態様1:
 Ni:0.4~2.5質量%、Sn:0.4~2.5質量%、P:0.027~0.15質量%を含み、Ni含有量とP含有量の質量比Ni/Pが25未満であり、残部がCu及び不可避不純物からなる銅合金板条を母材とし、その表面に下地層としてのNi層、Cu-Sn合金層及びSn層からなる表面被覆層がこの順に形成され、前記Ni層の平均厚さが0.1~3.0μm、前記Cu-Sn合金層の平均厚さが0.1~3.0μm、前記Sn層の平均厚さが0.05~5.0μmであり、かつ前記Cu-Sn合金層がη相からなることを特徴とする耐熱性に優れる表面被覆層付き銅合金板条。

態様2:
 母材である前記銅合金板条が、銅合金母相中に析出物が分散した組織を有し、前記析出物は直径60nm以下であり、500nm×500nmの視野内に直径5nm以上60nm以下のものが20個以上観察されることを特徴とする態様1に記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様3:
 Ni:0.4~2.5質量%、Sn:0.4~2.5質量%、P:0.027~0.15質量%を含み、Ni含有量とP含有量の質量比Ni/Pが25未満であり、残部が実質的にCu及び不可避不純物からなる銅合金板条を母材とし、その表面にNi層、Cu-Sn合金層及びSn層からなる表面被覆層がこの順に形成され、前記Ni層の平均厚さが0.1~3.0μm、前記Cu-Sn合金層の平均厚さが0.1~3.0μm、前記Sn層の平均厚さが0.05~5.0μmであり、かつ前記Cu-Sn合金層がε相とη相からなり、前記ε相が前記Ni層とη相の間に存在し、前記Cu-Sn合金層の平均厚さに対する前記ε相の平均厚さの比率が30%以下であることを特徴とする耐熱性に優れる表面被覆層付き銅合金板条。

態様4:
 母材である前記銅合金板条が、銅合金母相中に析出物が分散した組織を有し、前記析出物は直径60nm以下であり、500nm×500nmの視野内に直径5nm以上60nm以下のものが20個以上観察されることを特徴とする態様3に記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様5:
 前記表面被覆層の断面において、前記下地層の長さに対する前記ε相の長さの比率が50%以下であることを特徴とする態様3又は4に記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様6:
 母材である前記銅合金板条が、さらにFe:0.0005~0.15質量%を含むことを特徴とする態様1~5のいずれかに記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様7:
 母材である前記銅合金板条が、さらにZn:1質量%以下、Mn:0.1質量%以下、Si:0.1質量%以下、Mg:0.3質量%以下のいずれか1種以上を含むことを特徴とする態様1~6のいずれかに記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様8:
 母材である前記銅合金板条が、さらにCr、Co、Ag、In、Be、Al、Ti、V、Zr、Mo、Hf、Ta、Bのいずれか1種以上を総量で0.1質量%以下含むことを特徴とする態様1~7のいずれかに記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様9:
 前記表面被覆層の最表面に前記Cu-Sn合金層の一部が露出し、その表面露出面積率が3~75%であることを特徴とする態様1~8のいずれかに記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様10:
 前記表面被覆層の表面粗さが、少なくとも一方向における算術平均粗さRaが0.15μm以上で、かつ全ての方向における算術平均粗さがRaが3.0μm以下であることを特徴とする態様9に記載された表面被覆層付き銅合金板条。

態様11:
 前記表面被覆層の表面粗さが、全ての方向において算術平均粗さが0.15μm未満であることを特徴とする態様9に記載された表面被覆層付き銅合金板条。

態様12:
 前記Sn層が、リフローSnめっき層とその上に形成された光沢又は半光沢Snめっき層からなることを特徴とする態様1~8のいずれかに記載された表面被覆層付き銅合金板条。

態様13:
 下地層として前記Ni層の代わりにCo層又はFe層が形成され、前記Co層又はFe層の平均厚さが0.1~3.0μmであることを特徴とする態様1~12のいずれかに記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様14:
 下地層として前記母材表面とNi層の間、又は前記Ni層とCu-Sn合金層の間にCo層又はFe層が形成され、Ni層とCo層又はNi層とFe層の合計の平均厚さが0.1~3.0μmであることを特徴とする態様1~12のいずれかに記載された耐熱性に優れる表面被覆層付き銅合金板条。

態様15:
 大気中160℃×1000時間加熱後の材料表面において、最表面から15nmより深い位置にCuOが存在しないことを特徴とする態様1~14のいずれかに記載された耐熱性に優れる表面被覆層付き銅合金板条。
 本出願は、出願日が2014年2月13日である日本国特許出願、特願第2014-025495号を基礎出願とする優先権主張と伴う。特願第2014-025495号は参照することにより本明細書に取り込まれる。
  1 銅合金母材
  2 表面めっき層
  3 Ni層
  4 Cu-Sn合金層
  4a ε相
  4b η相
  5 Sn層

Claims (18)

  1.  Ni:0.4~2.5質量%、Sn:0.4~2.5質量%、P:0.027~0.15質量%を含み、Ni含有量とP含有量の質量比Ni/Pが25未満であり、更に、Fe:0.0005~0.15質量%、Zn:1質量%以下、Mn:0.1質量%以下、Si:0.1質量%以下、Mg:0.3質量%以下のいずれか1種以上を含み、残部がCu及び不可避不純物からなる銅合金板条を母材とし、銅合金母相中に析出物が分散した組織を有し、前記析出物は直径60nm以下であり、500nm×500nmの視野内に直径5nm以上60nm以下のものが20個以上観察され、その表面にNi層、Cu-Sn合金層及びSn層からなる表面被覆層がこの順に形成され、前記Ni層の平均厚さが0.1~3.0μm、前記Cu-Sn合金層の平均厚さが0.1~3.0μm、前記Sn層の平均厚さが0.05~5.0μmであり、前記表面被覆層の最表面に前記Cu-Sn合金層の一部が露出し、その表面露出面積率が3~75%であり、かつ前記Cu-Sn合金層が
     1)η層からなる、または
     2)ε相とη相からなり、前記ε相が前記Ni層とη相の間に存在し、前記Cu-Sn合金層の平均厚さに対する前記ε相の平均厚さの比率が30%以下であり、前記Ni層の長さに対する前記ε相の長さの比率が50%以下である
    ことを特徴とする表面被覆層付き銅合金板条。
  2.  母材である前記銅合金板条が、さらにCr、Co、Ag、In、Be、Al、Ti、V、Zr、Mo、Hf、Ta、Bのいずれか1種以上を総量で0.1質量%以下含むことを特徴とする請求項1に記載された表面被覆層付き銅合金板条。
  3.  前記表面被覆層の表面粗さが、少なくとも一方向における算術平均粗さRaが0.15μm以上で、かつ全ての方向における算術平均粗さがRaが3.0μm以下であることを特徴とする請求項1または2に記載された表面被覆層付き銅合金板条。
  4.  前記表面被覆層の表面粗さが、全ての方向において算術平均粗さが0.15μm未満であることを特徴とする請求項1または2に記載された表面被覆層付き銅合金板条。
  5.  前記Ni層の代わりにCo層又はFe層が形成され、前記Co層又はFe層の平均厚さが0.1~3.0μmであることを特徴とする請求項3に記載された表面被覆層付き銅合金板条。
  6.  前記Ni層の代わりにCo層又はFe層が形成され、前記Co層又はFe層の平均厚さが0.1~3.0μmであることを特徴とする請求項4に記載された表面被覆層付き銅合金板条。
  7.  前記母材表面とNi層の間、又は前記Ni層とCu-Sn合金層の間にCo層又はFe層が形成され、Ni層とCo層又はNi層とFe層の合計の平均厚さが0.1~3.0μmであることを特徴とする請求項3に記載された表面被覆層付き銅合金板条。
  8.  前記母材表面とNi層の間、又は前記Ni層とCu-Sn合金層の間にCo層又はFe層が形成され、Ni層とCo層又はNi層とFe層の合計の平均厚さが0.1~3.0μmであることを特徴とする請求項4に記載された表面被覆層付き銅合金板条。
  9.  大気中160℃×1000時間加熱後の材料表面において、最表面から15nmより深い位置にCuOが存在しないことを特徴とする請求項3に記載された表面被覆層付き銅合金板条。
  10.  大気中160℃×1000時間加熱後の材料表面において、最表面から15nmより深い位置にCuOが存在しないことを特徴とする請求項4に記載された表面被覆層付き銅合金板条。
  11.  大気中160℃×1000時間加熱後の材料表面において、最表面から15nmより深い位置にCuOが存在しないことを特徴とする請求項5に記載された表面被覆層付き銅合金板条。
  12.  大気中160℃×1000時間加熱後の材料表面において、最表面から15nmより深い位置にCuOが存在しないことを特徴とする請求項6に記載された表面被覆層付き銅合金板条。
  13.  大気中160℃×1000時間加熱後の材料表面において、最表面から15nmより深い位置にCuOが存在しないことを特徴とする請求項7に記載された表面被覆層付き銅合金板条。
  14.  大気中160℃×1000時間加熱後の材料表面において、最表面から15nmより深い位置にCuOが存在しないことを特徴とする請求項8に記載された表面被覆層付き銅合金板条。
  15.  前記Sn層が、リフローSnめっき層とその上に形成された光沢又は半光沢Snめっき層からなることを特徴とする請求項3に記載された表面被覆層付き銅合金板条。
  16.  前記Sn層が、リフローSnめっき層とその上に形成された光沢又は半光沢Snめっき層からなることを特徴とする請求項4に記載された表面被覆層付き銅合金板条。
  17.  前記Sn層が、リフローSnめっき層とその上に形成された光沢又は半光沢Snめっき層からなることを特徴とする請求項5に記載された表面被覆層付き銅合金板条。
  18.  前記Sn層が、リフローSnめっき層とその上に形成された光沢又は半光沢Snめっき層からなることを特徴とする請求項6に記載された表面被覆層付き銅合金板条。
PCT/JP2015/054032 2014-02-13 2015-02-13 耐熱性に優れる表面被覆層付き銅合金板条 WO2015122505A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/118,758 US10415130B2 (en) 2014-02-13 2015-02-13 Copper alloy sheet strip with surface coating layer excellent in heat resistance
EP15749499.8A EP3106546B1 (en) 2014-02-13 2015-02-13 Copper alloy sheet strip with surface coating layer excellent in heat resistance
KR1020187022215A KR102196605B1 (ko) 2014-02-13 2015-02-13 내열성이 우수한 표면 피복층 부착 구리 합금 판조
CN201580007214.4A CN105960484B (zh) 2014-02-13 2015-02-13 耐热性优异的带表面包覆层的铜合金板条
KR1020167025113A KR20160120324A (ko) 2014-02-13 2015-02-13 내열성이 우수한 표면 피복층 부착 구리 합금 판조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014025495A JP6113674B2 (ja) 2014-02-13 2014-02-13 耐熱性に優れる表面被覆層付き銅合金板条
JP2014-025495 2014-02-13

Publications (1)

Publication Number Publication Date
WO2015122505A1 true WO2015122505A1 (ja) 2015-08-20

Family

ID=53800244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054032 WO2015122505A1 (ja) 2014-02-13 2015-02-13 耐熱性に優れる表面被覆層付き銅合金板条

Country Status (6)

Country Link
US (1) US10415130B2 (ja)
EP (1) EP3106546B1 (ja)
JP (1) JP6113674B2 (ja)
KR (2) KR102196605B1 (ja)
CN (1) CN105960484B (ja)
WO (1) WO2015122505A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015182786A1 (ja) * 2014-05-30 2015-12-03 古河電気工業株式会社 電気接点材、電気接点材の製造方法および端子
JP5984980B2 (ja) 2015-02-24 2016-09-06 Jx金属株式会社 電子部品用Snめっき材
JP5984981B2 (ja) * 2015-02-24 2016-09-06 Jx金属株式会社 電子部品用Snめっき材
JP2017082307A (ja) * 2015-10-30 2017-05-18 株式会社神戸製鋼所 表面被覆層付き銅又は銅合金板条
JP6741446B2 (ja) * 2016-03-17 2020-08-19 富士電機株式会社 通電接触部材
JP7060514B2 (ja) * 2016-10-17 2022-04-26 古河電気工業株式会社 導電性条材
CN110168119B (zh) * 2017-02-17 2022-10-04 古河电气工业株式会社 电阻材料用铜合金材料及其制造方法以及电阻器
JP2019065362A (ja) * 2017-10-03 2019-04-25 Jx金属株式会社 Cu−Ni−Sn系銅合金箔、伸銅品、電子機器部品およびオートフォーカスカメラモジュール
JP7335679B2 (ja) * 2017-12-22 2023-08-30 古河電気工業株式会社 導電材
JP6831161B2 (ja) * 2018-09-11 2021-02-17 株式会社高松メッキ コネクタ等の電子部品用導電材料及びその製造方法
JP7352851B2 (ja) * 2019-08-05 2023-09-29 株式会社オートネットワーク技術研究所 電気接点材料、端子金具、コネクタ、及びワイヤーハーネス
CN111826547B (zh) * 2020-07-13 2021-09-17 苏州金江铜业有限公司 一种铜镍锡银硼合金及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844120B2 (ja) * 1990-10-17 1999-01-06 同和鉱業株式会社 コネクタ用銅基合金の製造法
JP2002294368A (ja) * 2001-03-30 2002-10-09 Kobe Steel Ltd 端子・コネクタ用銅合金及びその製造方法
JP2003171790A (ja) * 2001-01-19 2003-06-20 Furukawa Electric Co Ltd:The めっき材料とその製造方法、それを用いた電気・電子部品
JP2003183882A (ja) * 2001-12-11 2003-07-03 Kobe Steel Ltd 錫めっき付き電子材料
JP2006342389A (ja) * 2005-06-08 2006-12-21 Kobe Steel Ltd 電気接続部品用銅合金板
JP2008231492A (ja) * 2007-03-20 2008-10-02 Dowa Metaltech Kk Cu−Ni−Sn−P系銅合金板材およびその製造法
JP2010168598A (ja) * 2009-01-20 2010-08-05 Mitsubishi Shindoh Co Ltd 導電部材及びその製造方法
JP2010196084A (ja) * 2009-02-23 2010-09-09 Mitsubishi Shindoh Co Ltd 導電部材及びその製造方法
JP2010248616A (ja) * 2009-03-26 2010-11-04 Kobe Steel Ltd 耐熱性に優れるSnめっき付き銅又は銅合金及びその製造方法
JP2010261067A (ja) * 2009-04-30 2010-11-18 Hitachi Cable Ltd めっき材料およびその製造方法
JP2011006760A (ja) * 2009-06-29 2011-01-13 Hitachi Cable Ltd 銅合金条の製造方法
JP2012506952A (ja) * 2008-10-31 2012-03-22 ズントビガー、メッシングベルク、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディトゲゼルシャフト 銅−スズ合金、複合材料およびその使用
JP2013209680A (ja) * 2012-03-30 2013-10-10 Kobe Steel Ltd 接続部品用導電材料

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226835A (ja) * 1997-02-18 1998-08-25 Dowa Mining Co Ltd 端子用銅基合金とそれを用いた端子
EP1075099B1 (en) * 1999-07-28 2012-04-18 Panasonic Corporation Apparatus for the transmission of data and method for digital radio communication
KR100836540B1 (ko) 2001-01-19 2008-06-10 후루까와덴끼고오교 가부시끼가이샤 도금재료와 그 제조방법, 이를 사용한 전기,전자부품
US20050037229A1 (en) 2001-01-19 2005-02-17 Hitoshi Tanaka Plated material, method of producing same, and electrical / electronic part using same
JP4090302B2 (ja) 2001-07-31 2008-05-28 株式会社神戸製鋼所 接続部品成形加工用導電材料板
DE60211808T2 (de) * 2001-07-31 2006-10-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Plattierte Kupferlegierung und Verfahren zu ihre Herstellung
GB0127472D0 (en) * 2001-11-16 2002-01-09 Dow Corning Coated fabrics
US7745180B2 (en) * 2002-04-24 2010-06-29 Hitachi Chemical Co., Ltd. Device and method for high-throughput quantification of mRNA from whole blood
JP4024244B2 (ja) 2004-12-27 2007-12-19 株式会社神戸製鋼所 接続部品用導電材料及びその製造方法
KR100870334B1 (ko) 2004-09-10 2008-11-25 가부시키가이샤 고베 세이코쇼 접속 부품용 도전 재료 및 그의 제조방법
JP3926355B2 (ja) 2004-09-10 2007-06-06 株式会社神戸製鋼所 接続部品用導電材料及びその製造方法
KR100968997B1 (ko) 2005-06-08 2010-07-09 가부시키가이샤 고베 세이코쇼 구리 합금, 구리 합금판 및 그의 제조 방법
JP5025387B2 (ja) * 2007-08-24 2012-09-12 株式会社神戸製鋼所 接続部品用導電材料及びその製造方法
CN102239280B (zh) * 2009-01-20 2014-03-19 三菱伸铜株式会社 导电部件及其制造方法
JP5334648B2 (ja) 2009-03-31 2013-11-06 株式会社神戸製鋼所 錫めっきの耐熱剥離性に優れた銅合金板
JP5789207B2 (ja) * 2012-03-07 2015-10-07 株式会社神戸製鋼所 嵌合型接続端子用Sn被覆層付き銅合金板及び嵌合型接続端子

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844120B2 (ja) * 1990-10-17 1999-01-06 同和鉱業株式会社 コネクタ用銅基合金の製造法
JP2003171790A (ja) * 2001-01-19 2003-06-20 Furukawa Electric Co Ltd:The めっき材料とその製造方法、それを用いた電気・電子部品
JP2002294368A (ja) * 2001-03-30 2002-10-09 Kobe Steel Ltd 端子・コネクタ用銅合金及びその製造方法
JP2003183882A (ja) * 2001-12-11 2003-07-03 Kobe Steel Ltd 錫めっき付き電子材料
JP2006342389A (ja) * 2005-06-08 2006-12-21 Kobe Steel Ltd 電気接続部品用銅合金板
JP2008231492A (ja) * 2007-03-20 2008-10-02 Dowa Metaltech Kk Cu−Ni−Sn−P系銅合金板材およびその製造法
JP2012506952A (ja) * 2008-10-31 2012-03-22 ズントビガー、メッシングベルク、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、コマンディトゲゼルシャフト 銅−スズ合金、複合材料およびその使用
JP2010168598A (ja) * 2009-01-20 2010-08-05 Mitsubishi Shindoh Co Ltd 導電部材及びその製造方法
JP2010196084A (ja) * 2009-02-23 2010-09-09 Mitsubishi Shindoh Co Ltd 導電部材及びその製造方法
JP2010248616A (ja) * 2009-03-26 2010-11-04 Kobe Steel Ltd 耐熱性に優れるSnめっき付き銅又は銅合金及びその製造方法
JP2010261067A (ja) * 2009-04-30 2010-11-18 Hitachi Cable Ltd めっき材料およびその製造方法
JP2011006760A (ja) * 2009-06-29 2011-01-13 Hitachi Cable Ltd 銅合金条の製造方法
JP2013209680A (ja) * 2012-03-30 2013-10-10 Kobe Steel Ltd 接続部品用導電材料

Also Published As

Publication number Publication date
US10415130B2 (en) 2019-09-17
CN105960484A (zh) 2016-09-21
KR20160120324A (ko) 2016-10-17
JP6113674B2 (ja) 2017-04-12
KR20180089566A (ko) 2018-08-08
JP2015151570A (ja) 2015-08-24
EP3106546B1 (en) 2019-11-27
EP3106546A4 (en) 2017-06-28
US20170044651A1 (en) 2017-02-16
KR102196605B1 (ko) 2020-12-30
CN105960484B (zh) 2019-01-15
EP3106546A1 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
JP6113674B2 (ja) 耐熱性に優れる表面被覆層付き銅合金板条
JP6113605B2 (ja) 耐熱性に優れる表面被覆層付き銅合金板条
JP6173943B2 (ja) 耐熱性に優れる表面被覆層付き銅合金板条
US20180301838A1 (en) Copper alloy sheet with sn coating layer for a fitting type connection terminal and a fitting type connection terminal
TWI330202B (en) Copper alloy sheet material for electric and electronic parts
US20190249275A1 (en) Conductive material for connection parts which has excellent minute slide wear resistance
JP2008266783A (ja) 電気・電子機器用銅合金およびその製造方法
JP5897084B1 (ja) 耐微摺動摩耗性に優れる接続部品用導電材料
JP5897083B1 (ja) 耐微摺動摩耗性に優れる接続部品用導電材料
JP5897082B1 (ja) 耐微摺動摩耗性に優れる接続部品用導電材料
WO2016152495A1 (ja) 接続部品用導電材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15749499

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015749499

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15118758

Country of ref document: US

Ref document number: 2015749499

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167025113

Country of ref document: KR

Kind code of ref document: A