WO2015118830A1 - 非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池 - Google Patents
非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池 Download PDFInfo
- Publication number
- WO2015118830A1 WO2015118830A1 PCT/JP2015/000321 JP2015000321W WO2015118830A1 WO 2015118830 A1 WO2015118830 A1 WO 2015118830A1 JP 2015000321 W JP2015000321 W JP 2015000321W WO 2015118830 A1 WO2015118830 A1 WO 2015118830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- negative electrode
- active material
- electrode active
- secondary battery
- silicon
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/044—Activating, forming or electrochemical attack of the supporting material
- H01M4/0445—Forming after manufacture of the electrode, e.g. first charge, cycling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/04—Processes of manufacture in general
- H01M4/0438—Processes of manufacture in general by electrochemical processing
- H01M4/0459—Electrochemical doping, intercalation, occlusion or alloying
- H01M4/0461—Electrochemical alloying
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/582—Halogenides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a negative electrode active material for a negative electrode material of a non-aqueous electrolyte secondary battery, a negative electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.
- This secondary battery is not limited to a small electronic device, but is also considered to be applied to a large-sized electronic device represented by an automobile or the like, or an electric power storage system represented by a house.
- lithium ion secondary batteries are highly expected because they are small in size and easy to increase in capacity, and can obtain higher energy density than lead batteries and nickel cadmium batteries.
- the above lithium ion secondary battery includes a positive electrode, a negative electrode, and a separator together with an electrolyte, and the negative electrode includes a negative electrode active material involved in a charge / discharge reaction.
- this negative electrode active material a carbon material is widely used, but further improvement in battery capacity is required due to recent market demand.
- silicon As a negative electrode active material, use of silicon as a negative electrode active material has been studied. This is because the theoretical capacity of silicon (4199 mAh / g) is 10 times or more larger than the theoretical capacity of graphite (372 mAh / g), so that significant improvement in battery capacity can be expected.
- the development of a siliceous material as a negative electrode active material has been examined not only for silicon itself but also for compounds represented by alloys and oxides.
- the shape of the active material has been studied from a standard coating type for carbon materials to an integrated type directly deposited on a current collector.
- the negative electrode active material when silicon is used as the negative electrode active material as the main raw material, the negative electrode active material expands and contracts during charge / discharge, and therefore, it tends to break mainly near the surface of the negative electrode active material. Further, an ionic material is generated inside the active material, and the negative electrode active material is easily broken. When the negative electrode active material surface layer is cracked, a new surface is generated thereby increasing the reaction area of the active material. At this time, a decomposition reaction of the electrolytic solution occurs on the new surface, and a coating that is a decomposition product of the electrolytic solution is formed on the new surface, so that the electrolytic solution is consumed. For this reason, the cycle characteristics are likely to deteriorate.
- silicon and amorphous silicon dioxide are deposited simultaneously using a vapor phase method (see, for example, Patent Document 1). Further, in order to obtain a high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Furthermore, in order to improve cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is produced, and an active material layer having a high oxygen ratio in the vicinity of the current collector is formed ( For example, see Patent Document 3). Further, in order to improve cycle characteristics, oxygen is contained in the silicon active material, the average oxygen content is 40 at% or less, and the oxygen content is increased at a location close to the current collector. (For example, refer to Patent Document 4).
- Si phase (for example, see Patent Document 5) by using a nanocomposite containing SiO 2, M y O metal oxide in order to improve the initial charge and discharge efficiency.
- the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios in the vicinity of the active material and current collector interface The active material is controlled within a range of 0.4 or less (see, for example, Patent Document 7).
- Patent Document 8 a metal oxide containing lithium is used (see, for example, Patent Document 8).
- a hydrophobic layer such as a silane compound is formed on the surface layer of the siliceous material (see, for example, Patent Document 9).
- conductivity is imparted by using silicon oxide and forming a graphite film on the surface layer (see, for example, Patent Document 10).
- Patent Document 10 with respect to the shift value obtained from the RAMAN spectrum for graphite coating, with broad peaks appearing at 1330 cm -1 and 1580 cm -1, their intensity ratio I 1330 / I 1580 is 1.5 ⁇ I 1330 / I 1580 ⁇ 3.
- particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to improve high battery capacity and cycle characteristics (see, for example, Patent Document 11).
- silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1: y (0 ⁇ y ⁇ 2) is used (see, for example, Patent Document 12).
- a mixed electrode of silicon and carbon is prepared and the silicon ratio is designed to be 5 wt% or more and 13 wt% or less (see, for example, Patent Document 13).
- lithium ion secondary batteries which are the main power sources, are required to have an increased battery capacity.
- development of a lithium ion secondary battery composed of a negative electrode using a siliceous material as a main material is desired.
- the lithium ion secondary battery using a siliceous material is desired to have a cycle characteristic close to that of a lithium ion secondary battery using a carbon material.
- a negative electrode active material that exhibits cycle stability equivalent to that of a lithium ion secondary battery using a carbon material has not been proposed.
- the present invention has been made in view of the above problems, and when used as a negative electrode active material of a lithium ion secondary battery, it is possible to improve battery capacity, cycle characteristics, and initial charge / discharge characteristics.
- An object of the present invention is to provide a negative active material and a lithium ion secondary battery having a negative electrode using the negative active material.
- a negative electrode active material for a negative electrode material of a non-aqueous electrolyte secondary battery wherein the negative electrode active material is Li 6 Si 2 O 7 , Li 2 Si 3 O. 5 , a fluorine-containing material containing a silicon-based material (SiO x : 0.5 ⁇ x ⁇ 1.6) containing at least one of Li 4 SiO 4 and crystallized on at least a part of the surface layer of the negative electrode active material
- a negative electrode active material comprising a compound, a compound having a —CF 2 —CF 2 — unit, or both of them.
- the negative electrode active material contains the above-described silicon-based material, and further has the above-mentioned compound in the surface layer, so that the negative-electrode active material containing the silicon-based material can be used as a non-aqueous electrolyte secondary battery.
- the negative electrode active material When used as a negative electrode active material, it has a high battery capacity and good cycle characteristics and initial charge / discharge characteristics.
- the crystallized fluorine compound is preferably di (trifluoromethyl) dicarbonate.
- such a crystallized fluorine compound can be preferably used.
- the fluorine compound having the —CF 2 —CF 2 — unit is preferably selected from at least one of polytetrafluoroethylene, polyhexafluoropropylene, and polyperfluorokerocene.
- such a compound having a —CF 2 —CF 2 — unit can be preferably used.
- the negative electrode active material contains SiO 2 having a scale quartz structure. If the negative electrode active material contains SiO 2 having such a structure, cracking of the negative electrode active material is suppressed, and good cycle characteristics and initial charge / discharge characteristics can be obtained.
- the surface layer portion of the silicon-based material is preferably coated with at least one of carbon, lithium carbonate, and lithium fluoride. If the silicon-based material is coated with these substances, even better cycle characteristics and initial charge / discharge characteristics can be obtained.
- the surface layer portion of the silicon-based material contains at least one of O 2 SiF ⁇ and OSiF ⁇ as anions obtained from the TOF-SIMS spectrum. If it is such, the electrolyte solution reaction in the surface layer of a silicon-type material can be reduced, and more favorable cycling characteristics can be acquired.
- the surface layer of the silicon-based material of the negative electrode active material has a carbon-based material, at least one of lithium carbonate and lithium fluoride, and di (trifluoromethyl) dicarbonate and —CF 2 —CF 2 — units. It is preferable that at least one of the fluorine compounds has a layered structure coated in this order. With such a structure, better cycle characteristics and initial charge / discharge characteristics can be obtained.
- the negative electrode active material has a Si region peak value A given by ⁇ 60 to ⁇ 100 ppm as a chemical shift value obtained from a 29 Si-MAS-NMR spectrum, and SiO 2 given by ⁇ 100 to ⁇ 150 ppm. It is preferable that the peak value intensity value B of the region satisfies the relationship of A / B ⁇ 0.8.
- the negative electrode active material has a half-value width (2 ⁇ ) of a diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction of 1.2 ° or more, and the Si (111) crystal plane
- the resulting crystallite size is preferably 7.5 nm or less.
- the negative electrode for nonaqueous electrolyte secondary batteries which consists of said negative electrode active material of this invention is provided. If it is a negative electrode containing such a negative electrode active material, it will have high capacity and good cycle characteristics and initial charge / discharge characteristics.
- the negative electrode for a non-aqueous electrolyte secondary battery preferably includes a carbon-based active material, and the ratio of the silicon-based active material to the total amount of the negative electrode active material is preferably 6 wt% or more. If it is such, the negative electrode for nonaqueous electrolyte secondary batteries with a still higher volume energy density is obtained.
- the present invention provides a nonaqueous electrolyte secondary battery having the above negative electrode for a nonaqueous electrolyte secondary battery. If it is a nonaqueous electrolyte secondary battery using such a negative electrode, it is high capacity
- the negative electrode active material of the present invention when used as a negative electrode active material for a non-aqueous electrolyte secondary battery, a high capacity and good cycle characteristics and initial charge / discharge characteristics can be obtained.
- FIG. 3 is an XRD (X-ray defraction) diagram showing di (trifluoromethyl) dicarbonate and silicon dioxide having a clinopite structure deposited on the surface layer of negative electrode active material particles. It is a figure which shows the anion mass spectrum in the surface layer of negative electrode active material particle. It is a figure which shows the increase rate of a battery capacity at the time of making the ratio of a silicon type active material increase in a negative electrode active material.
- the present invention will be described in detail as an example of an embodiment with reference to the drawings, but the present invention is not limited thereto.
- a negative electrode using a silicon material as a main material as a negative electrode of a lithium ion secondary battery has been studied.
- the lithium ion secondary battery using this silicon material is expected to have cycle characteristics similar to those of a lithium ion secondary battery using a carbon material, but the cycle is equivalent to that of a lithium ion secondary battery using a carbon material.
- No proposal has been made for a negative electrode active material exhibiting stability.
- the inventors have made extensive studies on a negative electrode active material that can provide good cycle characteristics when used as a negative electrode of a lithium ion secondary battery. As a result, it has SiO x (0.5 ⁇ x ⁇ 1.6) containing at least one of Li 6 Si 2 O 7 , Li 2 Si 3 O 5 , and Li 4 SiO 4 and at least one of the surface layers.
- SiO x 0.5 ⁇ x ⁇ 1.6
- a negative electrode active material containing a fluorine compound crystallized in a part, a compound having a —CF 2 —CF 2 — unit, or both thereof as a negative electrode active material of a lithium ion secondary battery The inventors have found that initial charge / discharge characteristics can be obtained, and have completed the present invention.
- FIG. 1 shows a cross-sectional configuration of a negative electrode for a lithium ion secondary battery (hereinafter referred to as “negative electrode”) according to an embodiment of the present invention.
- the negative electrode 10 is configured to have a negative electrode active material layer 12 on a negative electrode current collector 11. Further, the negative electrode active material layer 12 may be provided on both surfaces or only one surface of the negative electrode current collector 11. Furthermore, the negative electrode current collector 11 may be omitted as long as the negative electrode active material of the present invention is used.
- the negative electrode current collector 11 is an excellent conductive material and is made of a material having excellent mechanical strength. Examples of such a conductive material include copper (Cu) and nickel (Ni). The conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
- the negative electrode current collector 11 preferably contains carbon (C) and sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved.
- content of said content element is not specifically limited, Especially it is preferable that it is 100 ppm or less. This is because a higher deformation suppressing effect can be obtained.
- the surface of the negative electrode current collector may be roughened or may not be roughened.
- the roughened negative electrode current collector include an electrolytic treatment, an embossing treatment, or a chemically etched metal foil.
- Examples of the non-roughened negative electrode current collector include a rolled metal foil.
- the negative electrode active material layer includes a plurality of particulate negative electrode active materials capable of occluding and releasing lithium ions, and the battery design may further include other materials such as a negative electrode binder and a conductive additive. good.
- the negative electrode active material of the present invention comprises at least a core part capable of occluding and releasing lithium ions, a crystallized fluorine compound, a compound having a —CF 2 —CF 2 — unit, or both of them in at least a part of the surface layer.
- a conductive coating such as carbon or lithium carbonate may cover at least a part of the surface of the negative electrode active material. In these cases, the covering portion is effective in either an island shape or a film shape.
- Negative electrode active material particles include, for example, a core part capable of occluding and releasing lithium ions, a carbon coating part capable of obtaining electrical conductivity, a fluorine compound having an effect of suppressing the decomposition reaction of the electrolytic solution, lithium carbonate, and a fluorine compound having high water resistance. It can consist of parts. In this case, occlusion / release of lithium ions may be performed in at least a part of the carbon coating portion.
- the negative electrode active material of the present invention contains a silicon-based material (SiO x : 0.5 ⁇ x ⁇ 1.6), and it is preferable that x is close to 1 as the composition of the silicon-based material. This is because as the value of x is closer to 1, better cycle characteristics can be obtained. Further, the composition of the silicon-based material in the present invention does not necessarily mean that the purity of the silicon oxide material is 100%, and may contain a trace amount of impurity elements.
- the silicon-based material of the negative electrode active material is given as a chemical shift value obtained from the 29 Si-MAS-NMR spectrum to a peak intensity value A in the Si region given at ⁇ 60 to ⁇ 100 ppm and ⁇ 100 to ⁇ 150 ppm. It is preferable that the peak intensity value B of the SiO 2 region to be satisfied satisfies the relationship of the peak intensity ratio of A / B ⁇ 0.8. If it is such, the stable battery characteristic can be acquired.
- a part of the SiO 2 component generated in silicon oxide, which is a silicon-based material is selectively changed to a Li compound.
- a Li compound at least one selected from Li 6 Si 2 O 7 , Li 2 Si 3 O 5 , and Li 4 SiO 4 is selected. These Li compounds exhibit particularly good battery characteristics.
- an electrochemical method may be used as a method for producing the selective compound (Li compound).
- selective compounds can be produced by changing conditions such as potential regulation or current regulation with respect to the lithium counter electrode. Further, after the selective compound is partially produced by an electrochemical method, a denser substance can be obtained by drying in a carbonic acid atmosphere or an oxygen atmosphere.
- the particle surface layer using an electrochemical method LiF is possible to suppress the decomposition of the electrolytic solution due to the battery charge and discharge by generating a Li 2 CO 3.
- These Li compounds can be quantified by NMR and XPS as described above.
- NMR and XPS an X-ray photoelectron spectrometer is used as the apparatus, the X-ray source is measured as a monochromatic Al K ⁇ ray, the diameter of the X-ray spot is 100 ⁇ m, and the Ar ion gun sputtering condition is 0.5 kV / 2 mm ⁇ 2 mm. Can do.
- the negative electrode active material contains SiO 2 having a scale silica structure (tridymite). This can be generated by controlling the deposition plate temperature and rate of the SiO X material and the reaction temperature during deposition of the carbon layer. Since the SiO 2 contained in the negative electrode active material has a scale silica structure, cracking of the negative electrode active material accompanying charging is suppressed.
- the surface layer of the silicon-based material includes a crystallized fluorine compound, a compound having a —CF 2 —CF 2 — unit, or both of them.
- the converted fluorine compound is preferably di (trifluoromethyl) dicarbonate.
- Examples of the compound having a —CF 2 —CF 2 — unit include tetrafluoroethylene, hexafluoropropylene, which is a compound having a CF 2 ⁇ CF 2 bond, and polytetrafluoroethylene, polyhexafluoro, which is a polymer of perfluorokerosene. It is preferably one selected from at least one of propylene and polyperfluorokerosene. These compounds are also highly water-resistant, making it difficult for gelation to occur during slurrying and maintaining a stable state of the Li compound in the bulk. Surface coating is possible by immersing the silicon-based material powder in a state in which both the crystallized fluorine compound and the compound having a —CF 2 —CF 2 — unit are dissolved in a solvent and drying.
- FIG. 4 is a diagram showing a diffraction peak and a half-value width of silicon dioxide having di (trifluoromethyl) dicarbonate and scale silica structure deposited on the surface layer of the negative electrode active material obtained by XRD (X-ray diffraction). From the spectrum measured by XRD, it is possible to confirm silicon dioxide and di (trifluoromethyl) dicarbonate having the scale silica structure.
- the present invention it is possible to reduce or prevent the formation of a Li compound in the Si region, and a negative active material that is stable in the atmosphere, in an aqueous slurry, or in a solvent slurry. Moreover, it is possible to make a more stable negative electrode active material against thermal reforming that is compounded randomly.
- the surface layer part of a silicon-type material is coat
- the initial efficiency of the battery can be improved, and the long-term storage stability of the silicon-based material is improved.
- the carbon layer can easily obtain conduction between the active materials and improve battery characteristics.
- the surface layer of the silicon-based material preferably contains at least one of anions O 2 SiF ⁇ and OSiF ⁇ . This is because the electrolyte reaction particularly on the surface layer is reduced and good battery characteristics can be obtained.
- the surface layer of the silicon-based material of the negative electrode active material is composed of a carbon-based material, at least one of lithium carbonate and lithium fluoride, and a fluorine compound having di (trifluoromethyl) dicarbonate and —CF 2 —CF 2 — units. At least one of them preferably has a layered structure coated in this order. With such a configuration, better cycle characteristics and initial charge / discharge characteristics can be obtained.
- the crystallite size resulting from the crystal plane is desirably 7.5 nm or less. In particular, if the presence of Si crystals is small, the battery characteristics are hardly deteriorated, and the production of a stable Li compound becomes easier.
- the median diameter of the negative electrode active material particles is not particularly limited, but is preferably 0.5 ⁇ m to 20 ⁇ m. This is because lithium ions are easily occluded and released during charge and discharge, and the negative electrode active material particles are difficult to break. If the particle size is 0.5 ⁇ m or more, the battery irreversible capacity is difficult to increase because the surface area does not increase excessively. Further, when the median diameter is 20 ⁇ m or less, the particles are difficult to break and a new surface is difficult to appear.
- the average thickness of the carbon material coating portion is not particularly limited, but is desirably 1 nm to 5000 nm or less. With an average thickness in such a range, it is possible to improve electrical conductivity. The battery characteristics are not deteriorated, and the battery capacity is not reduced.
- the average thickness of the carbon material covering portion is calculated according to the following procedure. First, the negative electrode active material is observed with a TEM (transmission electron microscope) at an arbitrary magnification. This magnification is preferably a magnification that can be visually confirmed in order to measure the thickness. Subsequently, the thickness of the carbon material covering portion is measured at any 15 points. At this time, it is preferable to set the measurement position widely and randomly without concentrating the measurement position in a specific place as much as possible. Finally, the average thickness is calculated from the measurement result.
- TEM transmission electron microscope
- the coverage of the carbon material is not particularly limited, but is preferably as high as possible. In particular, if it is 30% or more, sufficient electrical conductivity can be obtained.
- these carbon material coating methods are not particularly limited, a sugar carbonization method and a thermal decomposition method of hydrocarbon gas are preferable. This is because these methods can improve the coverage of the carbon material.
- Examples of the negative electrode binder include one or more of polymer materials and synthetic rubbers.
- Examples of the polymer material include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, and carboxymethylcellulose.
- Examples of the synthetic rubber include styrene butadiene rubber, fluorine rubber, ethylene propylene diene, and the like.
- Examples of the negative electrode conductive assistant include one or more carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotube, and carbon nanofiber.
- the negative electrode active material layer 12 may be prepared in a mixed state with a carbon material.
- the electrical resistance of the negative electrode active material layer 12 is reduced, and the expansion stress associated with charging can be reduced.
- the carbon material include pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, and carbon blacks.
- the negative electrode active material layer 12 is formed by, for example, a coating method.
- the coating method is a method in which a negative electrode active material particle and the above-described binder, and the like, and a conductive additive and a carbon material are mixed as necessary, and then dispersed and coated in an organic solvent or water.
- This negative electrode is manufactured, for example, by the following procedure.
- a raw material that generates silicon oxide gas is heated in the presence of an inert gas or under reduced pressure in a temperature range of 900 to 1600 degrees to generate silicon oxide gas.
- the raw material is a mixture of metal silicon powder and silicon dioxide powder, and considering the surface oxygen of the metal silicon powder and the presence of trace amounts of oxygen in the reactor, the mixing molar ratio is 0.8 ⁇ (metal silicon powder. ) / (Silicon dioxide powder) ⁇ 1.3.
- the Si crystallites in the particles are controlled by changing the preparation range and vaporization temperature, and by heat treatment after generation.
- the generated gas is deposited on the adsorption plate. The deposit is taken out with the temperature in the reactor lowered to 100 degrees or less, and pulverized and pulverized using a ball mill, a jet mill or the like.
- Pyrolysis CVD is desirable as a method for generating a carbon layer on the surface layer of the obtained powder material.
- Thermal decomposition CVD fills the silicon oxide powder set in the furnace and the hydrocarbon gas into the furnace to raise the temperature in the furnace.
- the decomposition temperature is not particularly limited, but is particularly preferably 1200 degrees or less. More preferably, it is 950 ° C. or less, and it is possible to suppress disproportionation of the active material particles within this temperature range.
- the hydrocarbon gas is not particularly limited, but a CnHm composition of 3 ⁇ n is desirable. This is because the production cost is low and the physical properties of the decomposition product are good.
- the substance generated in the bulk can be controlled by adjusting the insertion potential and the desorption potential, changing the current density, the bath temperature, and the number of times of insertion and desorption.
- the device structure is not particularly limited, for example, it can be created with the device structure obtained in FIG.
- the reformer 20 in the bulk is disposed in the bathtub 27 filled with the organic solvent 23, the positive electrode (lithium source) 21 disposed in the bathtub 27 and connected to one of the power sources 26, and the bathtub 27.
- the power supply 26 Connected to the other side of the power supply 26, it has a powder storage container 25 storing the silicon oxide powder 22, and a separator 24 provided between the positive electrode 21 and the powder storage container 25.
- the modified active material is then dried in an oxygen atmosphere, a carbon dioxide atmosphere, a fluorine atmosphere, a hydrogen atmosphere, or the like. This provides a better bulk composition.
- the temperature is not particularly limited, but is preferably 800 degrees or less. This is because particle disproportionation can be suppressed.
- the obtained modified particles may not contain a carbon layer. However, when more uniform control is required in the reforming process in the bulk, it is necessary to reduce the potential distribution, and it is desirable that a carbon layer exists.
- organic solvent 23 in the bathtub 27 ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, fluoromethyl methyl carbonate, difluoromethyl methyl carbonate, or the like can be used.
- electrolyte salt contained in the organic solvent 23 lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), or the like can be used.
- the positive electrode 21 may be a Li foil or a Li-containing compound.
- the Li-containing compound include lithium carbonate, lithium oxide, lithium olivine, lithium cobaltate, lithium nickelate, and lithium vanadium phosphate.
- the negative electrode active material particles and other materials such as a negative electrode binder and a conductive additive are mixed to form a negative electrode mixture, and then an organic solvent or water is added to obtain a slurry.
- the negative electrode mixture slurry is applied to the surface of the negative electrode current collector 11 and dried to form the negative electrode active material layer 12. At this time, you may perform a heat press etc. as needed.
- the initial efficiency of the battery and the stability of the active material accompanying the cycle characteristics are improved by changing the SiO 2 component present in the bulk to a stable Li compound.
- the peak intensity value A of Si region given at ⁇ 60 to ⁇ 100 ppm and the peak intensity value B of SiO 2 region given at ⁇ 100 to ⁇ 150 ppm are It is preferable to satisfy the relationship of the peak intensity ratio of A / B ⁇ 0.8. In that case, when Li silicate and lithium carbonate are generated in the bulk or in the surface layer, a higher effect can be obtained.
- a water-resistant layer on the surface layer after bulk modification or simultaneously with bulk modification. This is because gelation is unlikely to occur during slurrying, and the Li compound in the bulk is kept stable.
- the water-resistant layer of the negative electrode active material is not particularly limited, but a fluorine compound is desirable.
- a fluorine compound is desirable.
- the presence of polytetrafluoroethylene, polyhexafluoropropylene, polyperfluorokerocene, and di (trifluoromethyl) dicarbonate stabilizes the Li compound in the bulk.
- the surface layer of the silicon-based material of the negative electrode active material contains at least one of anions O 2 SiF ⁇ and OSiF ⁇ .
- anions O 2 SiF ⁇ and OSiF ⁇ are preferable.
- the mass spectrum of these anions can be measured by a method such as TOF-SIMS (Time of Flight-Secondary Ion Mass Spectroscopy).
- TOF-SIMS Time of Flight-Secondary Ion Mass Spectroscopy.
- PHI TRIFT 2 manufactured by ULVAC-PHI
- measurement can be performed by setting the primary ion source to Ga, the sample temperature to 25 ° C., the acceleration voltage to 5 kV, the spot size to 100 ⁇ m ⁇ 100 ⁇ m, and the sputtering to Ga, 100 ⁇ m ⁇ 100 ⁇ m, 10 s.
- FIG. 5 shows an anion mass spectrum in the surface layer of the negative electrode active material particles measured under such an apparatus and conditions. As shown in FIG. 5, when the surface layer of silicon-based material particles contains O 2 SiF ⁇ and OSiF ⁇ obtained from TOF-SIMS, these anion mass spectra are obtained at a predetermined mass-to-charge ratio (m / e). It can be measured.
- the crystallinity of the material other than the fluorine compound on the surface layer of the negative electrode active material is estimated from the crystallite size and the half width (2 ⁇ ) due to the Si (111) plane.
- a low crystalline material having a full width at half maximum (2 ⁇ ) of 1.2 ° or more and a crystallite size of 7.5 nm or less is desirable. This is because good battery cycle characteristics can be obtained with such a configuration.
- the material other than the fluorine compound on the surface layer of the negative electrode active material is preferably substantially non-crystalline. This is because higher battery characteristics can be obtained because Si crystal nuclei are reduced.
- the negative electrode current collector 11 contains 90 ppm or less of carbon and sulfur, higher battery characteristics can be obtained.
- the negative electrode preferably contains a carbon-based active material, and the ratio of the silicon-based active material to the total amount of the negative electrode active material is preferably 6 wt% or more. If it is such, the volume energy density (Wh / l) of a battery can be improved.
- a laminated film type secondary battery 30 shown in FIG. 3 is one in which a wound electrode body 31 is accommodated mainly in a sheet-like exterior member 35. This wound body has a separator between a positive electrode and a negative electrode and is wound. There is also a case where a separator is provided between the positive electrode and the negative electrode and a laminate is accommodated.
- the positive electrode lead 32 is attached to the positive electrode
- the negative electrode lead 33 is attached to the negative electrode.
- the outermost peripheral part of the electrode body is protected by a protective tape.
- the positive and negative electrode leads are led out in one direction from the inside of the exterior member 35 to the outside, for example.
- the positive electrode lead 32 is formed of a conductive material such as aluminum
- the negative electrode lead 33 is formed of a conductive material such as nickel or copper.
- the exterior member 35 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order.
- This laminate film is formed of two films so that the fusion layer faces the electrode body 31.
- the outer peripheral edges of the fusion layer are bonded together with an adhesive or an adhesive.
- the fused part is, for example, a film such as polyethylene or polypropylene, and the metal part is aluminum foil or the like.
- the protective layer is, for example, nylon.
- An adhesion film 34 is inserted between the exterior member 35 and the positive and negative electrode leads 32 and 33 to prevent intrusion of outside air.
- This material is, for example, polyethylene, polypropylene, or polyolefin resin.
- the positive electrode has, for example, a positive electrode active material layer on both surfaces or one surface of the positive electrode current collector, similarly to the negative electrode 10 of FIG.
- the positive electrode current collector is formed of, for example, a conductive material such as aluminum.
- the positive electrode active material layer includes one or more of positive electrode materials capable of occluding and releasing lithium ions, and includes other materials such as a binder, a conductive additive, and a dispersant depending on the design. You may go out.
- the details regarding the binder and the conductive additive can be the same as, for example, the negative electrode binder and the negative electrode conductive additive already described.
- a lithium-containing compound is desirable.
- the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element.
- these positive electrode materials compounds having at least one of nickel, iron, manganese, and cobalt are preferable.
- the chemical formulas of these positive electrode materials are represented by, for example, Li x M1O 2 or Li y M2PO 4 .
- M1 and M2 represent at least one or more transition metal elements, and the values of x and y vary depending on the battery charge / discharge state, but generally 0.05 ⁇ x ⁇ 1 .10, 0.05 ⁇ y ⁇ 1.10.
- Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ) and lithium nickel composite oxide (Li x NiO 2 ).
- the negative electrode has the same configuration as the negative electrode 10 for lithium ion secondary battery in FIG. 1 described above, and has, for example, a negative electrode active material layer on both sides of the current collector.
- This negative electrode preferably has a negative electrode charge capacity larger than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material agent. Thereby, precipitation of lithium metal on the negative electrode can be suppressed.
- the positive electrode active material layer is provided on a part of both surfaces of the positive electrode current collector, and the negative electrode active material layer is also provided on a part of both surfaces of the negative electrode current collector.
- the negative electrode active material layer provided on the negative electrode current collector is provided with a region where there is no opposing positive electrode active material layer. This is to perform a stable battery design.
- the separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing current short-circuiting due to bipolar contact.
- This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated.
- the synthetic resin include polytetrafluoroethylene, polypropylene, and polyethylene.
- Electrode At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolytic solution).
- This electrolytic solution has an electrolyte salt dissolved in a solvent, and may contain other materials such as additives.
- a non-aqueous solvent can be used as the solvent.
- the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran and the like.
- the dissociation property and ion mobility of the electrolyte salt are improved by using a combination of a high viscosity solvent such as ethylene carbonate and propylene carbonate and a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. be able to.
- a high viscosity solvent such as ethylene carbonate and propylene carbonate
- a low viscosity solvent such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate.
- a halogenated chain carbonate ester or a halogenated cyclic carbonate ester is contained as a solvent.
- the halogenated chain carbonate ester is a chain carbonate ester having halogen as a constituent element (at least one hydrogen is replaced by halogen).
- the halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is replaced by a halogen).
- halogen is not particularly limited, but fluorine is preferred. This is because a film having a better quality than other halogens is formed. Further, the larger the number of halogens, the better. This is because the resulting coating is more stable and the decomposition reaction of the electrolyte is reduced.
- halogenated chain carbonate examples include fluoromethyl methyl carbonate and difluoromethyl methyl carbonate.
- halogenated cyclic carbonate examples include 4-fluoro-1,3-dioxolane-2-one, 4,5-difluoro-1,3-dioxolane-2-one, and the like.
- the solvent additive contains an unsaturated carbon bond cyclic carbonate. This is because a stable film is formed on the negative electrode surface during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
- unsaturated carbon-bonded cyclic ester carbonate include vinylene carbonate and vinyl ethylene carbonate.
- sultone cyclic sulfonic acid ester
- solvent additive examples include propane sultone and propene sultone.
- the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
- the acid anhydride include propanedisulfonic acid anhydride.
- the electrolyte salt can contain, for example, any one or more of light metal salts such as lithium salts.
- the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
- the content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ion conductivity is obtained.
- a positive electrode is prepared using the above-described positive electrode material.
- a positive electrode active material and, if necessary, a binder and a conductive additive are mixed to form a positive electrode mixture, which is then dispersed in an organic solvent to form a positive electrode mixture slurry.
- the mixture slurry is applied to the positive electrode current collector with a coating apparatus such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
- the positive electrode active material layer is compression molded with a roll press or the like. At this time, heating may be performed or compression may be repeated a plurality of times.
- a negative electrode is prepared by forming a negative electrode active material layer on the negative electrode current collector using the same operation procedure as that of the negative electrode 10 for lithium ion secondary batteries described above.
- a positive electrode and a negative electrode are produced by the same production procedure as described above.
- each active material layer is formed on both surfaces of the positive electrode and the negative electrode current collector.
- the active material application length of both surface portions may be shifted in either electrode (see FIG. 1).
- the electrolytic solution is adjusted.
- the positive electrode lead 32 is attached to the positive electrode current collector and the negative electrode lead 33 is attached to the negative electrode current collector by ultrasonic welding or the like.
- the positive electrode and the negative electrode are laminated or wound through a separator to produce a wound electrode body 31, and a protective tape is adhered to the outermost periphery thereof.
- the wound body is molded so as to have a flat shape.
- the insulating portions of the exterior member 35 are adhered to each other by a thermal fusion method, and the wound electrode body is released in only one direction. Enclose.
- the laminated film type secondary battery 30 can be manufactured as described above.
- the laminate film type lithium secondary battery 30 shown in FIG. 3 was produced by the following procedure. First, a positive electrode was prepared.
- the positive electrode active material is a mixture of 95% by mass of LiCoO 2 which is a lithium cobalt composite oxide, 2.5% by mass of a positive electrode conductive additive, and 2.5% by mass of a positive electrode binder (polyvinylidene fluoride: PVDF).
- a positive electrode mixture was obtained. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste slurry.
- NMP N-methyl-2-pyrrolidone
- the slurry was applied to both surfaces of the positive electrode current collector with a coating apparatus having a die head, and dried with a hot air drying apparatus. At this time, the positive electrode current collector had a thickness of 15 ⁇ m. Finally, compression molding was performed with a roll press.
- the negative electrode active material is a mixture of metallic silicon and silicon dioxide placed in a reactor, heated to 1400 ° C under vacuum of 10 Pa, reacted and deposited, cooled sufficiently, and the deposit was taken out and pulverized with a ball mill.
- a silicon-based material was produced. After adjusting the particle size of the silicon-based material, a carbon layer was obtained by performing thermal decomposition CVD as necessary.
- the powder thus prepared was subjected to bulk modification using an electrochemical method in a 1: 1: 1 mixed solvent of propylene carbonate, ethylene carbonate and dimethyl carbonate (electrolyte salt 1.3 mol / kg).
- the obtained negative electrode active material particles are subjected to a drying treatment in a carbon dioxide atmosphere as necessary.
- the negative electrode active material particles and the negative electrode binder precursor, the conductive auxiliary agent 1 and the conductive auxiliary agent 2 are mixed in a dry weight ratio of 80: 8: 10: 2, and then diluted with pure water to obtain a paste.
- a negative electrode mixture slurry was obtained.
- polyacrylic acid molecular weight: 1 million
- the negative electrode mixture slurry was applied to both surfaces of the negative electrode current collector with a coating apparatus and then dried.
- an electrolyte salt lithium hexafluorophosphate: LiPF 6
- FEC solvent
- EC ethylene carbonate
- DMC dimethyl carbonate
- an electrolyte salt lithium hexafluorophosphate: LiPF 6
- the content of the electrolyte salt was 1.2 mol / kg with respect to the solvent.
- a secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to the negative electrode current collector. Subsequently, a positive electrode, a separator, a negative electrode, and a separator were laminated in this order and wound in the longitudinal direction to obtain a wound electrode body. The end portion was fixed with a PET protective tape. As the separator, a laminated film of 12 ⁇ m sandwiched between a film mainly composed of porous polyethylene and a film mainly composed of porous polypropylene was used.
- the outer peripheral edges except for one side were heat-sealed, and the electrode body was housed inside.
- an aluminum laminated film in which a nylon film, an aluminum foil, and a polypropylene film were laminated was used.
- the prepared electrolyte was injected from the opening, impregnated in a vacuum atmosphere, and then heat-sealed and sealed.
- Example 1-1 to Example 1-5 and Comparative Example 1-1 to Comparative Example 1-5 x of SiO x was changed from 0.3 to 1.8, and 29 Si-MAS-NMR Ratio of Si region peak intensity value A given at ⁇ 60 to ⁇ 100 ppm as chemical shift value obtained from the spectrum and SiO 2 region peak intensity value B given at ⁇ 100 to ⁇ 150 ppm: A / B is 2 Fixed.
- the amount of oxygen in the bulk was adjusted by changing the ratio and temperature of the vaporized starting material.
- the generated substance is controlled, and the substances generated in the bulk are Li 6 Si 2 O 7 , Li 2 Si 3 O 5 , Li 4 SiO 4. It was.
- the negative electrode active material used when producing the negative electrode includes polytetrafluoroethylene, polyhexafluoropropylene, polyperfluorokerosene in the surface layer of the negative electrode active material, and includes SiO 2 having a clinopite structure. did. However, only in Comparative Examples 1-2 to 1-4, a negative electrode active material that did not contain any of polytetrafluoroethylene, polyhexafluoropropylene, and polyperfluorokerosene on the surface layer was used. Incidentally, SiO 2 having a tridymite structure was produced by controlling deposition plate temperature of SiO x material, rate, the reaction temperature during the carbon layer deposition.
- Comparative Example 1-3 the dicarbonate (trifluoromethyl) dip-coated on the surface layer of the negative electrode active material cannot be confirmed by XRD, the adhesion state is incomplete, and there is no crystallization. It was judged. In order to reduce the Li reaction site with Li, measures for gelation and water resistance are required when shifting to battery evaluation thereafter.
- di (trifluoromethyl) dicarbonate is dip-coated on the surface layer so that it can be used in both solvent-based and water-based slurries.
- the presence or absence of crystallization of the fluorine compound is determined according to the powder separation method after dipping. In order to improve water resistance and suppress gelation, it is desirable that the fluorine compound is crystallized.
- the surface layer portion of the silicon-based material contains O 2 SiF ⁇ and OSiF ⁇ which are anions obtained from the TOF-SIMS spectrum, and the surface layer portion contains carbon, lithium carbonate, and lithium fluoride.
- the median diameter of the negative electrode active material particles is 4 ⁇ m, and the half-value width (2 ⁇ ) of the diffraction peak due to the (111) crystal plane obtained by X-ray diffraction of the negative electrode active material is 2.59 °.
- the material Si (111) crystallite was 3.2 nm.
- Example 1-1 to Example 1-5 and Comparative Example 1-1 to Comparative Example 1-5 the cycle characteristics and initial charge / discharge characteristics of the secondary batteries were examined.
- the cycle characteristics were examined as follows. First, in order to stabilize the battery, charge and discharge was performed for 2 cycles in an atmosphere at 25 ° C., and the discharge capacity at the second cycle was measured. Subsequently, charge and discharge were performed until the total number of cycles reached 100, and the discharge capacity was measured each time. Finally, the discharge capacity at the 100th cycle was divided by the discharge capacity at the second cycle, and the capacity retention rate was calculated.
- charging was performed at a constant current density of 2.5 mA / cm 2 until reaching 4.3 V, and when the voltage reached 4.3 V, the current density was 0.25 mA / cm at a constant voltage of 4.3 V. Charged until 2 was reached. During discharging, discharging was performed at a constant current density of 2.5 mA / cm 2 until the voltage reached 2.8V.
- the initial efficiency (%) (initial discharge capacity / initial charge capacity) ⁇ 100 was calculated.
- the atmosphere and temperature were the same as when the cycle characteristics were examined, and the charge / discharge conditions were 0.2 times the cycle characteristics. That is, a constant current density until reaching 4.3V, and charged at 0.5 mA / cm 2, at 4.3V constant voltage at the stage where the voltage reaches 4.3V until the current density reached 0.05 mA / cm 2
- the battery was charged and discharged at a constant current density of 0.5 mA / cm 2 until the voltage reached 2.8V.
- Table 1 shows the measurement results of Example 1-1 to Example 1-5 and Comparative Example 1-1 to Comparative Example 1-5.
- Example 2-1 to Example 2-3 Comparative Example 2-1
- a secondary battery was made in the same manner as Example 1-3.
- the generated substance was controlled, and the substance generated in the bulk was changed.
- Comparative Example 2-1 is a case where the bulk does not contain any Li compound of Li 6 Si 2 O 7 , Li 2 Si 3 O 5 , or Li 4 SiO 4 .
- the gas atmosphere was adjusted and heat-dried to change the state of the inclusions, realizing a more stable material.
- Li 4 SiO 4 is divided into Li 2 SiO 3 and Li 2 CO 3 by applying heat in a carbon dioxide atmosphere.
- the obtained Li compound can be confirmed by the above XPS.
- Li 4 SiO 4 can be confirmed by a binding energy in the vicinity of 532 eV
- Li 2 SiO 3 can be confirmed by a binding energy in the vicinity of 530 eV.
- it can be confirmed by 29 Si-MAS-NMR spectrum.
- the produced Li compound is desirably substantially amorphous. This is because if it is amorphous, the resistance of the negative electrode active material is hardly increased.
- the change in crystallinity can be controlled by heat treatment in a non-atmospheric atmosphere after Li insertion and desorption. Thereafter, the experiment was performed with the Li compound in the bulk in an amorphous state.
- Example 2-1 In the same manner as in Example 1-3, the cycle characteristics and initial charge / discharge characteristics of the secondary battery were examined. Table 2 shows the measurement results of Example 2-1 to Example 2-3 and Comparative Example 2-1.
- Examples 3-1 to 3-5 A secondary battery was made in the same manner as Example 1-3. However, the peak intensity value A in the Si region given at ⁇ 60 to ⁇ 100 ppm as the chemical shift value obtained from the 29 Si-MAS-NMR spectrum and the peak intensity value B in the SiO 2 region given at ⁇ 100 to ⁇ 150 ppm The value of A / B as a ratio was changed. This changed the value of A / B by changing the component ratio of Si and SiO 2 generated in the bulk.
- Example 3-1 to Example 3-5 The measurement results of Example 3-1 to Example 3-5 are shown in Table 3.
- Example 4-1 to Example 4-9 A secondary battery was made in the same manner as Example 1-3. However, the full width at half maximum (2 ⁇ ) of the diffraction peak caused by the (111) crystal plane obtained by X-ray diffraction of the negative electrode active material and the value of the Si (111) crystallite of the negative electrode active material are as shown in Table 4 below. Was changed.
- Example 4-1 to Example 4-9 are shown in Table 4.
- Example 4-9 the half-value width is calculated to be 20 ° or more, but it is a result of fitting using analysis software, and a peak is not substantially obtained. Therefore, it can be said that the negative electrode active material in Example 4-9 is substantially amorphous.
- Example 5-1 to Example 5-3 A secondary battery was made in the same manner as Example 1-3.
- the fluorine compound having a —CF 2 —CF 2 — unit on the surface layer of the negative electrode active material is selected from three types of polytetrafluoroethylene, polyhexafluoropropylene, and polyperfluorokerosene, and the selected compound The combination was changed to dip coat.
- Example 5 shows the measurement results of Example 5-1 to Example 5-3.
- the fluorine compound having a —CF 2 —CF 2 — unit is particularly high by selecting from among three types of polytetrafluoroethylene, polyhexafluoropropylene, and polyperfluorokerosene. It was found that capacity retention ratio and initial efficiency can be obtained. This is because these compounds improve the initial efficiency of the battery by reducing the SiO 2 part, which is the Li reaction site, in advance, and a stable Li compound can exist in the bulk or on the surface. This is thought to be because battery deterioration can be suppressed.
- Example 6-1 to Example 6-5 The capacity increase rate of the secondary batteries in Example 6-1 to Example 6-5 was examined.
- Table 6 shows the measurement results of Example 6-1 to Example 6-5.
- the increase rate (Wh%) of the secondary battery capacity shown in Table 6 is calculated based on the battery capacity when the silicon-based active material ratio is 0 wt%. As the ratio of the silicon-based active material increases, the influence of the SiO discharge potential on the carbon material is reduced, and the battery capacity can be expected to increase. Natural graphite contained in the negative electrode serves as a buffer for a silicon-based active material that repeatedly expands and contracts. Artificial graphite can obtain a high cycle maintenance rate.
- FIG. 6 is a graph showing the relationship between the ratio of the silicon-based active material to the total amount of the negative electrode active material and the rate of increase of the battery capacity of the secondary battery.
- the curve indicated by a in FIG. 6 indicates the rate of increase in battery capacity when the ratio of the silicon-based active material is increased in the negative electrode active material of the present invention.
- the curve indicated by b in FIG. 6 shows the increase rate of the battery capacity when the ratio of the silicon-based active material not doped with Li is increased. As shown in FIG.
- the curve a is a range in which the ratio of the silicon-based active material is 6 wt% or more, and the increase rate of the battery capacity is particularly larger than that of the curve b, and as the ratio of the silicon-based active material increases, The difference widens. From the results shown in Table 6 and FIG. 6, in the present invention, when the ratio of the silicon-based active material in the negative electrode active material is 6 wt% or more, the increase rate of the battery capacity becomes larger than that in the prior art. It has been found that the volume energy density of the active material increases particularly remarkably within the above range.
- Example 7-1 A secondary battery was made in the same manner as Example 1-3. However, the surface layer portion of the silicon-based material does not contain O 2 SiF ⁇ and OSiF ⁇ which are anions obtained from the TOF-SIMS spectrum.
- Example 7-1 The measurement results of Example 7-1 are shown in Table 7.
- Example 8-1 to Example 8-3 A secondary battery was made in the same manner as Example 1-3.
- the material to be coated on the surface layer of the silicon-based material in the negative electrode active material is selected from three types of carbon layer, fluorine compound layer, and lithium carbonate layer, and the potential and current are controlled simultaneously with the formation of the Li compound, and the solvent
- Table 8 The combination of compounds selected by using warming in the inside was changed as shown in Table 8 below.
- Example 8 shows the measurement results of Example 8-1 to Example 8-3.
- Example 9-1 A secondary battery was made in the same manner as Example 1-3. However, SiO 2 having a clinopite structure in the bulk was not generated.
- Example 9-1 The measurement results of Example 9-1 are shown in Table 9.
- the present invention is not limited to the above embodiment.
- the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。
負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。
また、活物質形状は、炭素材では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。
さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。
また、サイクル特性向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
また、サイクル特性改善のため、SiOx(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。
また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。
また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。
また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。
また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。
また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。
また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
また、高い電池容量、サイクル特性の改善のため、ケイ素と炭素の混合電極を作成しケイ素比率を5wt%以上13wt%以下で設計している(例えば、特許文献13参照)。
この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。
また、ケイ素材を用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれている。
しかしながら、炭素材を用いたリチウムイオン二次電池と同等のサイクル安定性を示す負極活物質を提案するには至っていなかった。
本発明では、このような結晶化したフッ素化合物を好適に用いることができる。
本発明では、このような-CF2-CF2-単位を有する化合物を好適に用いることができる。
負極活物質がこのような構造を持つSiO2を含んでいれば、負極活物質の割れが抑制され、良好なサイクル特性及び初期充放電特性が得られる。
これらの物質で被覆されたケイ素系材料であれば、さらに良好なサイクル特性及び初期充放電特性が得られる。
このようなものであれば、ケイ素系材料の表層における電解液反応を低減し、より良好なサイクル特性を得ることができる。
このような構造であれば、より良好なサイクル特性及び初期充放電特性が得られる。
負極活物質として、上記のピーク値強度値比を有するものを用いることで、さらに良好な初期充放電特性が得られる。
このような負極活物質であれば、電池特性を悪化させることなく、安定的なリチウム化合物の生成が容易にできる。
このような負極活物質を含む負極電極であれば、高容量であるとともに良好なサイクル特性及び初期充放電特性が得られる。
このようなものであれば、さらに高い体積エネルギー密度を持つ非水電解質二次電池用負極電極が得られる。
このような負極電極を用いた非水電解質二次電池であれば、高容量であるとともに良好なサイクル特性及び初期充放電特性が得られる。
前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。
このケイ素材を用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれているが、炭素材を用いたリチウムイオン二次電池と同等のサイクル安定性を示す負極活物質を提案するには至っていなかった。
その結果、Li6Si2O7、Li2Si3O5、Li4SiO4のうち少なくとも1種以上を含むSiOx(0.5≦x≦1.6)を有するとともに、表層の少なくとも一部に結晶化したフッ素化合物、又は-CF2-CF2-単位を有する化合物あるいはこれらの両方を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、良好なサイクル特性及び初期充放電特性が得られることを見出し、本発明を完成させた。
まず、本発明の非水電解質二次電池の負極材用の負極活物質を含んだリチウムイオン二次電池用負極について説明する。
図1は、本発明の一実施形態におけるリチウムイオン二次電池用負極(以下、「負極」と記述)の断面構成を表している。
図1に示すように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。また、負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
負極集電体11は、優れた導電性材料であり、機械的な強度に長けたもので構成される。このような導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。また、この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料である事が好ましい。
なぜならば、負極集電体の物理的強度が向上するためである。
特に充電時に膨張する活物質層を有する場合、集電体を含む電極変形を抑制する効果がある。
上記の含有元素の含有量は、特に限定されないが、中でも100ppm以下であることが好ましい。なぜならば、より高い変形抑制効果が得られるからである。
負極活物質層は、リチウムイオンを吸蔵、放出可能な複数の粒子状の負極活物質を含んでおり、電池設計上、さらに負極結着剤や導電助剤など、他の材料を含んでいても良い。
このようなものであれば、安定した電池特性を得ることができる。
このLi化合物としては、Li6Si2O7、Li2Si3O5、Li4SiO4のうち少なくとも1種以上を選択する。これらのLi化合物は、特に良い電池特性を示す。選択的化合物(Li化合物)の作成方法としては、電気化学法を用いると良い。電気化学法では、リチウム対極に対する電位規制やまたは電流規制などの条件を変更することで選択的化合物の作製が可能となる。
また、選択的化合物は一部電気化学法により生成したのち、炭酸雰囲気下、または酸素雰囲気下などで乾燥させることでより緻密な物質を得られる。
また、電気化学法を用い粒子表層にLiF、Li2CO3を生成する事で電池充放電に伴う電解液の分解を抑制する事が可能となる。
これらのLi化合物は上記のようなNMRとXPSで定量可能である。例えば、XPSでは、装置としてX線光電子分光器を用い、X線源を単色化Al Kα線、X線スポットの直径を100μm、Arイオン銃スパッタ条件を0.5kV/2mm×2mmとして測定することができる。
負極活物質に含まれるSiO2が鱗珪石構造を有する事で充電に伴う負極活物質の割れが抑制される。
特にフッ素化合物は結晶化する事によって耐水性が飛躍的に向上するため、スラリー化の際にゲル化が起こり難くなるとともに、バルク内のLi化合物を安定した状態を保つことができる。
-CF2-CF2-単位を有する化合物としては、CF2=CF2結合を有する化合物であるテトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロケロセンの重合体であるポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリパーフルオロケロセンの少なくとも1種以上から選ばれるものであることが好ましい。
これらの化合物も耐水性が高く、スラリー化の際にゲル化が起こり難くなるとともに、バルク内のLi化合物を安定した状態を保つことができる。
上記の結晶化したフッ素化合物、-CF2-CF2-単位を有する化合物のどちらの化合物も溶媒中に溶けた状態にケイ素系材料の粉末を浸し、乾かす事で表面被覆が可能となる。
XRDで測定されるスペクトルにより、上記の鱗珪石構造を有する二酸化ケイ素及び二炭酸ジ(トリフルオロメチル)を確認できる。
またランダムに化合物化する熱改質に対し、より安定した負極活物質を作ることが可能である。
このようなものであれば、特に電池初期効率の向上が得られると共に、ケイ素系材料の長期保存安定性が向上する。さらに、炭素層は活物質間の導通を得やすく電池特性を向上させることができる。
なぜならば、特に表層での電解液反応を低減し、良好な電池特性が得られるからである。
このようなものであれば、より良好なサイクル特性及び初期充放電特性が得られる。
特にSi結晶の存在が少なければ電池特性を悪化させることがほとんどなく、安定的なLi化合物の生成がより容易になる。
なぜならば、充放電時においてリチウムイオンの吸蔵放出がされやすくなると共に、負極活物質粒子が割れにくくなるからである。0.5μm以上の粒径であれば表面積が増加し過ぎないため電池不可逆容量が増加し難い。また、メジアン径が20μm以下である場合、粒子が割れ難く、新生面が出難いものとできる。
このような範囲の平均厚さであれば、電気伝導性を向上させる事が可能である。そして、電池特性を悪化させる事がなく、電池容量が低下することもない。
これらの炭素材被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。これらの方法であれば、炭素材の被覆率を向上させることができるからである。
この負極は、例えば以下の手順により製造される。
酸化珪素ガスを発生する原料を不活性ガスの存在下もしくは減圧下900度~1600度の温度範囲で加熱し、酸化ケイ素ガスを発生させる。
この場合、原料は金属珪素粉末と二酸化珪素粉末との混合であり、金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<(金属珪素粉末)/(二酸化珪素粉末)<1.3の範囲であることが望ましい。
粒子中のSi結晶子は仕込み範囲や気化温度の変更、また生成後の熱処理で制御される。
発生したガスは吸着板に堆積される。反応炉内温度を100度以下に下げた状態で堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。
分解温度は特に限定しないが特に1200度以下が望ましい。より望ましいのは950度以下であり、この温度範囲であれば活物質粒子の不均化を抑制する事が可能である。
なぜならば、製造コストが低く、分解生成物の物性が良いからである。
特に装置構造を限定する事はないが、例えば、図2で得られる装置構造で作成可能である。
バルク内改質装置20は、有機溶媒23で満たされた浴槽27と、浴槽27内に配置され、電源26の一方に接続された陽電極(リチウム源)21と、浴槽27内に配置され、電源26の他方に接続され、酸化ケイ素粉末22を格納した粉末格納容器25と、陽電極21と粉末格納容器25との間に設けられたセパレータ24とを有している。
特にフッ化リチウムはLi挿入、脱離状態で45度以上に保存し得る事が望ましい。
また、有機溶媒23に含まれる電解質塩として、六フッ化リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)などを用いることができる。
次に負極集電体11の表面に、上記の負極合剤スラリーを塗布し、乾燥させて、負極活物質層12を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。
このようにすれば、スラリー化の際ゲル化が起こりづらくなると共に、バルク内Li化合物が安定した状態を保たれるからである。
これらの陰イオンの質量スペクトルは、TOF-SIMS(Time of Flight-Secondary Ion Mass Spectroscopy)等の方法で測定することができる。
測定装置として、例えば、PHI TRIFT 2(アルバック・ファイ社製)を使用できる。また、例えば、一次イオン源をGa、試料温度を25℃、加速電圧を5kV、スポットサイズを100μm×100μm、スパッタをGa、100μm×100μm、10sに設定して測定できる。
このような、装置、条件で測定した負極活物質粒子の表層における陰イオン質量スペクトルを図5に示す。図5のように、ケイ素系材料の粒子の表層に、TOF-SIMSから得られるO2SiF-、OSiF-を含む場合、所定の質量電荷比(m/e)でこれらの陰イオン質量スペクトルを測定できる。
特に半値幅(2θ)が1.2°以上、結晶子サイズが7.5nm以下の低結晶性材料が望ましい。このようなものであれば、良好な電池サイクル特性が得られるからである。
また、負極活物質の表層のフッ素化合物以外の材料は、実質的に非結晶が望ましい。これは、Si結晶核が減少するため、より高い電池特性が得られるからである。
このようなものであれば、電池の体積エネルギー密度(Wh/l)を向上させることができる。
次に、上記したリチウムイオン二次電池用負極を用いたリチウムイオン二次電池について、図3を参照しながら説明する。
図3に示すラミネートフィルム型二次電池30は、主にシート状の外装部材35の内部に倦回電極体31が収納されたものである。この倦回体は正極、負極間にセパレータを有し、倦回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。
どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体の最外周部は保護テープにより保護されている。
融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
正極は、例えば、図1の負極10と同様に、正極集電体の両面または片面に正極活物質層を有している。
正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種または2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいてもよい。この場合、結着剤、導電助剤に関する詳細は、例えば、既に記述した負極結着剤、負極導電助剤と同様とすることができる。
これらの正極材の化学式は、例えば、LixM1O2、又は、LiyM2PO4で表される。上記の化学式中、M1、M2は少なくとも1種以上の遷移金属元素を示しており、x、yの値は電池充放電状態によって異なる値を示すが、一般的に、0.05≦x≦1.10、0.05≦y≦1.10で示される。
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体の両面に負極活物質層を有している。この負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば、合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒とを組み合わせて用いることで、電解質塩の解離性やイオン移動度を向上させることができる。
これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。
ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
最初に上記した正極材を用い正極電極を作成する。
先ず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。
続いて、ナイフロールまたはダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。
最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また圧縮を複数回繰り返しても良い。
続いて、正極と負極とをセパレータを介して積層、または倦回させて倦回電極体31を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。
続いて、折りたたんだフィルム状の外装部材の間に倦回電極体を挟み込んだ後、熱融着法により外装部材35の絶縁部同士を接着させ、一方向のみ解放状態にて、倦回電極体を封入する。次に、正極リード、および負極リードと外装部材の間に密着フィルムを挿入する。
そして、解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。
以上のようにして、ラミネートフィルム型二次電池30を製造することができる。
以下の手順により、図3に示したラミネートフィルム型リチウム二次電池30を作製した。
最初に正極を作成した。正極活物質はリチウムコバルト複合酸化物であるLiCoO2を95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し正極合剤とした。続いて、正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmを用いた。最後にロールプレスで圧縮成型を行った。
このケイ素系材料の粒径を調整した後、必要に応じて熱分解CVDを行う事で炭素層を得た。作成した粉末はプロピレンカーボネート及びエチレンカーボネート、ジメチルカーボネートの1:1:1混合溶媒(電解質塩1.3mol/kg)中で電気化学法を用いバルク改質を行った。
得られた負極活物質粒子は必要に応じて炭酸雰囲気下で乾燥処理を行っている。続いて、負極活物質粒子と負極結着剤の前駆体、導電助剤1と導電助剤2とを80:8:10:2の乾燥重量比で混合したのち、純水で希釈してペースト状の負極合剤スラリーとした。この場合には、ポリアクリル酸(分子量:100万)を用いた。
続いて、コーティング装置で負極集電体の両面に負極合剤スラリーを塗布してから乾燥させた。この負極集電体としては、電解銅箔(厚さ=15μm)を用いた。
最後に、90℃の真空雰囲気中で3時間乾燥した。
最初に正極集電体の一端にアルミリードを超音波溶接し、負極集電体にはニッケルリードを溶接した。
続いて正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に倦回させ倦回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム12μmを用いた。
続いて、外装部材間に電極体を挟んだのち、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔、及びポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。
続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し封止した。
また、電気化学法においてLi挿入、Li離脱条件を変化させて、生成する物質を制御し、バルク内に生成される物質をLi6Si2O7、Li2Si3O5、Li4SiO4とした。
また、負極を作製する際に使用した負極活物質は、負極活物質の表層にポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリパーフルオロケロセンを含み、鱗珪石構造を有するSiO2を含むものとした。ただし、比較例1-2~1-4のみ、表層にポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリパーフルオロケロセンのいずれも含まない負極活物質を使用した。尚、鱗珪石構造を有するSiO2は、SiOx材の析出板温度、レート、炭素層堆積時の反応温度を制御する事で生成した。
Li反応サイトをLiで低減するため、その後電池評価へ移行した際、ゲル化対策及び耐水性が求められる。そのため、溶剤系、水系どちらのスラリーにおいても対応できるように表層に二炭酸ジ(トリフルオロメチル)をディップコートする。この時、ディップ後の粉末分離手法に応じてフッ素化合物の結晶化の有無が決まる。耐水性の向上、ゲル化の抑制にはフッ素化合物が結晶化していることが望ましい。
また、負極活物質粒子のメジアン径は4μmであり、負極活物質のX線回折により得られる(111)結晶面に起因する回折ピークの半値幅(2θ)は2.59°であり、負極活物質のSi(111)結晶子は3.2nmであった。
最初に、電池安定化のため25℃の雰囲気下、2サイクル充放電を行い、2サイクル目の放電容量を測定した。
続いて、総サイクル数が100サイクルとなるまで充放電を行い、その都度放電容量を測定した。
最後に、100サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率を算出した。
なお、サイクル条件として、4.3Vに達するまで定電流密度、2.5mA/cm2で充電し、電圧が4.3Vに達した段階で4.3V定電圧で電流密度が0.25mA/cm2に達するまで充電した。また、放電時は2.5mA/cm2の定電流密度で電圧が2.8Vに達するまで放電した。
なお、雰囲気及び温度はサイクル特性を調べた場合と同様にし、充放電条件はサイクル特性の0.2倍で行った。すなわち、4.3Vに達するまで定電流密度、0.5mA/cm2で充電し、電圧が4.3Vに達した段階で4.3V定電圧で電流密度が0.05mA/cm2に達するまで充電し、放電時は0.5mA/cm2の定電流密度で電圧が2.8Vに達するまで放電した。
実施例1-3と同様にして二次電池を作製した。ただし、電気化学法におけるLi挿入、Li離脱条件を変化させて、生成する物質を制御し、バルク内に生成される物質を変化させた。更に、SiOxのxはx=1に固定した。尚、比較例2-1は、バルク内に、Li6Si2O7、Li2Si3O5、Li4SiO4のいずれのLi化合物も含まない場合である。
また、生成後にガス雰囲気を調整し熱乾燥させる事で含有物の状態を変化させ、より安定な材質を実現した。
例えば、Li4SiO4は二酸化炭素雰囲気下で熱を加える事でLi2SiO3とLi2CO3に分かれる。これらの反応などを取り入れ、最適なバルク状態を実現する事によって維持率、初期効率の向上を実現した。
得られたLi化合物は、上記のXPSで確認可能であり、例えばLi4SiO4は532eV付近での結合エネルギーで、Li2SiO3は530eV付近の結合エネルギーで確認できる。または、29Si-MAS-NMR spectrumでも確認可能である。
生成されるLi化合物は実質的に非晶質が望ましい。非晶質であれば、負極活物質の抵抗を増加させることがほぼ無いからである。
結晶化度の変化はLiの挿入、脱離後に非大気雰囲気下の熱処理で制御可能である。
以後、バルク内のLi化合物は非晶質状態で実験を行った。
実施例1-3と同様にして二次電池を作製した。ただし、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-60~-100ppmで与えられるSi領域のピーク強度値Aと、-100~-150ppmに与えられるSiO2領域のピーク強度値Bの比であるA/Bの値を変化させた。これは、バルク内に生成するSiとSiO2の成分比を変化させることにより、A/Bの値を変化させた。
実施例1-3と同様にして二次電池を作製した。ただし、負極活物質のX線回折により得られる(111)結晶面に起因する回折ピークの半値幅(2θ)と、負極活物質のSi(111)結晶子の値を下記の表4に示すように変化させた。
特に半値幅(2θ)が1.2°以上で、尚且つSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で高い容量維持率、初期効率が得られた。特に、非結晶領域では最も良い特性が得られる。実施例4-9では半値幅を20°以上と算出しているが、解析ソフトを用いフィッティングした結果であり、実質的にピークは得られていない。よって、実施例4-9における負極活物質は実質的に非晶質であると言える。
実施例1-3と同様にして二次電池を作製した。ただし、負極活物質の表層に-CF2-CF2-単位を有するフッ素化合物を、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリパーフルオロケロセンの三種類の中から選択し、選択する化合物の組み合わせを変化させてディップコートした。
これは、これらの化合物で、Li反応サイトであるSiO2部を予め減らすことで電池初期効率が向上するとともに、安定したLi化合物がバルク内、または表面に存在することができ、充放電に伴う電池劣化の抑制が可能となったためと考えられる。
実施例1-3と同様にして二次電池を作製した。ただし、ラミネートフィルム型リチウム二次電池30の負極は炭素系活物質を含むものとし、負極活物質材の総量に対するケイ素系活物質の比を下記の表6のように変化させた。このときの、ケイ素系活物質は、実施例2-1~実施例2-3と同様のSiO(x=1)であった。
また、負極に含まれる炭素系活物質は天然黒鉛と人造黒鉛を50:50の比で使用した。
また、負極に含まれる天然黒鉛は膨張収縮を繰り返すケイ素系活物質の緩衝剤としての役割を持つ。また人造黒鉛は高いサイクル維持率を得る事ができる。
図6中のaで示す曲線は、本発明の負極活物質中においてケイ素系活物質の比率を増加させた場合の電池容量の増加率を示している。一方、図6中のbで示す曲線はLiをドープしていないケイ素系活物質の比率を増加させた場合の電池容量の増加率を示している。
図6に示すように、曲線aはケイ素系活物質の比率が6wt%以上となる範囲で、曲線bよりも電池容量の増加率が特に大きくなり、ケイ素系活物質の比率が高くなるにつれて、その差は広がっていく。以上の表6及び図6の結果より、本発明において、負極活物質中でのケイ素系活物質の比率が6wt%以上となると電池容量の増加率は従来に比べて大きくなり、このことから負極活物質の体積エネルギー密度が、上記比率の範囲で特に顕著に増加することが分かった。
実施例1-3と同様にして二次電池を作製した。ただし、ケイ素系材料の表層部がTOF-SIMS スペクトルから得られる陰イオンである、O2SiF-、OSiF-を含まないものとした。
実施例1-3と同様にして二次電池を作製した。ただし、負極活物質中のケイ素系材料の表層に被覆する物質を炭素層、フッ素化合物層、炭酸リチウム層の三種類の中から選択し、Li化合物生成と同時に電位、電流を制御し、また溶媒中での加温保持などを用いる事によって選択する化合物の組み合わせ下記の表8に示すように変化させた。
実施例1-3と同様にして二次電池を作製した。ただし、バルク内部に鱗珪石構造を有するSiO2を生成させなかった。
Claims (12)
- 非水電解質二次電池の負極材用の負極活物質であって、
前記負極活物質は、Li6Si2O7、Li2Si3O5、Li4SiO4のうち少なくとも1種以上を含むケイ素系材料(SiOx:0.5≦x≦1.6)を含有し、前記負極活物質の表層の少なくとも一部に結晶化したフッ素化合物、又は-CF2-CF2-単位を有する化合物あるいはこれらの両方を含むものであることを特徴とする負極活物質。 - 前記結晶化したフッ素化合物は二炭酸ジ(トリフルオロメチル)であることを特徴とする請求項1に記載の負極活物質。
- 前記-CF2-CF2-単位を有するフッ素化合物は、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリパーフルオロケロセンの少なくとも1種以上から選ばれるものであることを特徴とする請求項1又は請求項2に記載の負極活物質。
- 前記負極活物質の少なくとも一部に鱗珪石構造を有するSiO2を含むことを特徴とする請求項1から請求項3のいずれか1項に記載の負極活物質。
- 前記ケイ素系材料の表層部は炭素、炭酸リチウム、フッ化リチウムのうちの少なくとも1種にて被覆されたものであることを特徴とする請求項1から請求項4のいずれか1項に記載の負極活物質。
- 前記ケイ素系材料の表層部がTOF-SIMS スペクトルから得られる陰イオンとして、O2SiF-、OSiF-のうち少なくとも1種以上を含むことを特徴とする請求項1から請求項5のいずれか1項に記載の負極活物質。
- 前記負極活物質のケイ素系材料の表層は、炭素系材料、炭酸リチウムとフッ化リチウムの少なくとも一方、及び二炭酸ジ(トリフルオロメチル)と-CF2-CF2-単位を有するフッ素化合物の少なくとも一方が、この順に被覆された層状構造を有することを特徴とする請求項1から請求項6のいずれか1項に記載の負極活物質。
- 前記負極活物質は29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-60~-100ppmで与えられるSi領域のピーク強度値Aと、-100~-150ppmに与えられるSiO2領域のピーク強度値Bが、A/B≧0.8という関係を満たすことを特徴とする請求項1から請求項7のいずれか1項に記載の負極活物質。
- 前記負極活物質は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であり、前記Si(111)結晶面に起因する結晶子サイズは7.5nm以下であることを特徴とする請求項1から請求項8のいずれか1項に記載の負極活物質。
- 請求項1から請求項9のいずれか1項に記載の負極活物質からなる非水電解質二次電池用負極電極。
- 前記非水電解質二次電池用負極電極は炭素系活物質を含み、負極活物質材の総量に対するケイ素系活物質の比が6wt%以上である事を特徴とする請求項10に記載の非水電解質二次電池用負極電極。
- 請求項10又は請求項11に記載の非水電解質二次電池用負極電極を有する非水電解質二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/112,622 US10388950B2 (en) | 2014-02-07 | 2015-01-26 | Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
EP15746703.6A EP3104440B1 (en) | 2014-02-07 | 2015-01-26 | Negative electrode active material for negative electrode material of non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery |
CN201580007499.1A CN105981204B (zh) | 2014-02-07 | 2015-01-26 | 非水电解质二次电池的负极材料用的负极活性物质、非水电解质二次电池用负极电极、以及非水电解质二次电池 |
KR1020167021239A KR102256230B1 (ko) | 2014-02-07 | 2015-01-26 | 비수전해질 이차 전지의 부극재용의 부극 활물질 및 비수전해질 이차 전지용 부극 전극, 및 비수전해질 이차 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-022159 | 2014-02-07 | ||
JP2014022159A JP6082355B2 (ja) | 2014-02-07 | 2014-02-07 | 非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015118830A1 true WO2015118830A1 (ja) | 2015-08-13 |
Family
ID=53777645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000321 WO2015118830A1 (ja) | 2014-02-07 | 2015-01-26 | 非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10388950B2 (ja) |
EP (1) | EP3104440B1 (ja) |
JP (1) | JP6082355B2 (ja) |
KR (1) | KR102256230B1 (ja) |
CN (1) | CN105981204B (ja) |
WO (1) | WO2015118830A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108475781A (zh) * | 2016-01-04 | 2018-08-31 | 信越化学工业株式会社 | 非水电解质二次电池用负极活性物质及其制造方法、非水电解质二次电池用负极及二次电池 |
WO2023013600A1 (ja) * | 2021-08-02 | 2023-02-09 | 国立大学法人 東京大学 | フルオロポリエーテル化合物 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102367610B1 (ko) | 2014-07-15 | 2022-02-28 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법 |
WO2016121320A1 (ja) * | 2015-01-28 | 2016-08-04 | 三洋電機株式会社 | 非水電解質二次電池用負極活物質及び非水電解質二次電池 |
JP6678351B2 (ja) * | 2015-09-24 | 2020-04-08 | パナソニックIpマネジメント株式会社 | 非水電解質二次電池用負極活物質及び負極 |
JP6746526B2 (ja) * | 2016-04-06 | 2020-08-26 | 信越化学工業株式会社 | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 |
JP6765997B2 (ja) * | 2017-03-13 | 2020-10-07 | 信越化学工業株式会社 | 負極材及びその負極材の製造方法、並びに混合負極材 |
JP6756301B2 (ja) * | 2017-04-28 | 2020-09-16 | トヨタ自動車株式会社 | 負極活物質粒子、負極、リチウムイオン二次電池、および負極活物質粒子の製造方法 |
KR102285979B1 (ko) * | 2017-09-11 | 2021-08-04 | 주식회사 엘지에너지솔루션 | 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지 |
CN110800142B (zh) | 2017-12-08 | 2022-08-05 | 株式会社Lg新能源 | 锂二次电池用负极活性材料及其制备方法 |
CN108199031B (zh) * | 2018-01-16 | 2020-04-10 | 毛伟波 | 一种高非晶态一氧化硅材料、制备方法及其用途 |
US20210384496A1 (en) * | 2018-10-18 | 2021-12-09 | Panasonic Intellectual Property Management Co., Ltd. | Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode, and nonaqueous electrolyte secondary battery |
CN111276675B (zh) * | 2018-12-04 | 2021-10-08 | 中国科学院宁波材料技术与工程研究所 | 改性硅碳材料及其制备方法、应用 |
US11469407B2 (en) * | 2018-12-20 | 2022-10-11 | Ppg Industries Ohio, Inc. | Battery electrode coatings applied by waterborne electrodeposition |
CN111403693B (zh) | 2019-01-02 | 2021-08-13 | 宁德新能源科技有限公司 | 负极活性材料和使用其的负极极片、电化学装置和电子装置 |
CN109888217B (zh) * | 2019-02-20 | 2021-08-03 | 宁德新能源科技有限公司 | 负极活性材料和使用其的负极极片以及电化学和电子装置 |
US11611062B2 (en) * | 2019-04-26 | 2023-03-21 | Ppg Industries Ohio, Inc. | Electrodepositable battery electrode coating compositions having coated active particles |
CN112467108B (zh) * | 2020-11-26 | 2022-04-12 | 东莞理工学院 | 一种多孔硅氧复合材料及其制备方法和应用 |
WO2023053888A1 (ja) * | 2021-09-28 | 2023-04-06 | パナソニックIpマネジメント株式会社 | 二次電池用負極活物質およびその製造方法、ならびに二次電池 |
CN116745936A (zh) * | 2021-10-27 | 2023-09-12 | 宁德时代新能源科技股份有限公司 | 改性硅材料及制备方法、负极材料、负极极片、二次电池、电池模块、电池包及用电装置 |
CN114975967A (zh) * | 2022-06-29 | 2022-08-30 | 宁波杉杉新材料科技有限公司 | 一种预锂化硅氧复合材料及其制备方法、负极极片、电池和应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243535A (ja) * | 2010-05-21 | 2011-12-01 | Shin Etsu Chem Co Ltd | 非水電解質二次電池負極材用珪素酸化物及びその製造方法、ならびに負極、リチウムイオン二次電池及び電気化学キャパシタ |
JP2013008567A (ja) * | 2011-06-24 | 2013-01-10 | Toyota Motor Corp | 負極活物質及び負極活物質の製造方法 |
JP2013069531A (ja) * | 2011-09-22 | 2013-04-18 | Shin Etsu Chem Co Ltd | 非水電解液二次電池用負極材及び非水電解液二次電池 |
WO2013062313A1 (ko) * | 2011-10-24 | 2013-05-02 | 주식회사 엘지화학 | 음극활물질의 제조방법, 그 음극활물질 및 이를 구비한 리튬이차전지 |
JP2013251097A (ja) * | 2012-05-31 | 2013-12-12 | Toyota Industries Corp | 非水電解質二次電池 |
JP2014044899A (ja) * | 2012-08-28 | 2014-03-13 | Toyota Industries Corp | 非水電解質二次電池用負極材料、その製造方法、非水電解質二次電池用負極及び非水電解質二次電池 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5180211A (ja) * | 1975-01-08 | 1976-07-13 | Hitachi Ltd | Fudogatajikihetsudokumitatetai |
JP2997741B2 (ja) | 1992-07-29 | 2000-01-11 | セイコーインスツルメンツ株式会社 | 非水電解質二次電池及びその製造方法 |
JP2001185127A (ja) | 1999-12-24 | 2001-07-06 | Fdk Corp | リチウム2次電池 |
JP2002042806A (ja) | 2000-07-19 | 2002-02-08 | Japan Storage Battery Co Ltd | 非水電解質二次電池 |
JP2004071542A (ja) * | 2002-06-14 | 2004-03-04 | Japan Storage Battery Co Ltd | 負極活物質、それを用いた負極、それを用いた非水電解質電池、ならびに負極活物質の製造方法 |
JP4367311B2 (ja) | 2004-10-18 | 2009-11-18 | ソニー株式会社 | 電池 |
JP4994634B2 (ja) | 2004-11-11 | 2012-08-08 | パナソニック株式会社 | リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池 |
JP4533822B2 (ja) | 2005-08-24 | 2010-09-01 | 株式会社東芝 | 非水電解質電池および負極活物質 |
JP4911990B2 (ja) | 2006-02-27 | 2012-04-04 | 三洋電機株式会社 | リチウム二次電池用負極及びその製造方法並びにリチウム二次電池 |
CN1913200B (zh) * | 2006-08-22 | 2010-05-26 | 深圳市贝特瑞电子材料有限公司 | 锂离子电池硅碳复合负极材料及其制备方法 |
JP2008177346A (ja) | 2007-01-18 | 2008-07-31 | Sanyo Electric Co Ltd | エネルギー貯蔵デバイス |
JP5108355B2 (ja) | 2007-03-30 | 2012-12-26 | パナソニック株式会社 | リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法 |
KR100913177B1 (ko) | 2007-09-17 | 2009-08-19 | 삼성에스디아이 주식회사 | 리튬 이차 전지용 음극 활물질 및 이의 제조 방법 |
JP5196149B2 (ja) | 2008-02-07 | 2013-05-15 | 信越化学工業株式会社 | 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ |
JP5555978B2 (ja) | 2008-02-28 | 2014-07-23 | 信越化学工業株式会社 | 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池 |
JP5329858B2 (ja) | 2008-07-10 | 2013-10-30 | 株式会社東芝 | 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質 |
JP2010092830A (ja) | 2008-09-11 | 2010-04-22 | Sanyo Electric Co Ltd | 非水電解質二次電池 |
JP5704633B2 (ja) | 2009-09-29 | 2015-04-22 | Necエナジーデバイス株式会社 | 二次電池 |
KR101424544B1 (ko) | 2009-12-21 | 2014-07-31 | 가부시키가이샤 도요다 지도숏키 | 비수계 2차 전지용 부극 활물질, 그 제조 방법 및 비수계 2차 전지 |
JP5636351B2 (ja) | 2011-09-27 | 2014-12-03 | 株式会社東芝 | 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法 |
WO2013054481A1 (ja) * | 2011-10-12 | 2013-04-18 | 株式会社豊田自動織機 | リチウムイオン二次電池、リチウムイオン二次電池用負極及びリチウムイオン二次電池用負極材料 |
KR101579641B1 (ko) * | 2012-05-30 | 2015-12-22 | 주식회사 엘지화학 | 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지 |
CN102983313B (zh) | 2012-12-05 | 2016-01-27 | 奇瑞汽车股份有限公司 | 硅碳复合材料及其制备方法、锂离子电池 |
JP6177345B2 (ja) * | 2013-10-31 | 2017-08-09 | エルジー・ケム・リミテッド | リチウム二次電池用負極活物質及びその製造方法 |
KR102367610B1 (ko) | 2014-07-15 | 2022-02-28 | 신에쓰 가가꾸 고교 가부시끼가이샤 | 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법 |
-
2014
- 2014-02-07 JP JP2014022159A patent/JP6082355B2/ja active Active
-
2015
- 2015-01-26 KR KR1020167021239A patent/KR102256230B1/ko active IP Right Grant
- 2015-01-26 EP EP15746703.6A patent/EP3104440B1/en active Active
- 2015-01-26 CN CN201580007499.1A patent/CN105981204B/zh active Active
- 2015-01-26 US US15/112,622 patent/US10388950B2/en active Active
- 2015-01-26 WO PCT/JP2015/000321 patent/WO2015118830A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011243535A (ja) * | 2010-05-21 | 2011-12-01 | Shin Etsu Chem Co Ltd | 非水電解質二次電池負極材用珪素酸化物及びその製造方法、ならびに負極、リチウムイオン二次電池及び電気化学キャパシタ |
JP2013008567A (ja) * | 2011-06-24 | 2013-01-10 | Toyota Motor Corp | 負極活物質及び負極活物質の製造方法 |
JP2013069531A (ja) * | 2011-09-22 | 2013-04-18 | Shin Etsu Chem Co Ltd | 非水電解液二次電池用負極材及び非水電解液二次電池 |
WO2013062313A1 (ko) * | 2011-10-24 | 2013-05-02 | 주식회사 엘지화학 | 음극활물질의 제조방법, 그 음극활물질 및 이를 구비한 리튬이차전지 |
JP2013251097A (ja) * | 2012-05-31 | 2013-12-12 | Toyota Industries Corp | 非水電解質二次電池 |
JP2014044899A (ja) * | 2012-08-28 | 2014-03-13 | Toyota Industries Corp | 非水電解質二次電池用負極材料、その製造方法、非水電解質二次電池用負極及び非水電解質二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3104440A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108475781A (zh) * | 2016-01-04 | 2018-08-31 | 信越化学工业株式会社 | 非水电解质二次电池用负极活性物质及其制造方法、非水电解质二次电池用负极及二次电池 |
CN108475781B (zh) * | 2016-01-04 | 2021-05-07 | 信越化学工业株式会社 | 非水电解质二次电池用负极活性物质及其制造方法、非水电解质二次电池用负极及二次电池 |
WO2023013600A1 (ja) * | 2021-08-02 | 2023-02-09 | 国立大学法人 東京大学 | フルオロポリエーテル化合物 |
JP2023021948A (ja) * | 2021-08-02 | 2023-02-14 | 国立大学法人 東京大学 | フルオロポリエーテル化合物 |
JP7274158B2 (ja) | 2021-08-02 | 2023-05-16 | 国立大学法人 東京大学 | フルオロポリエーテル化合物 |
Also Published As
Publication number | Publication date |
---|---|
CN105981204B (zh) | 2019-10-11 |
US20160344019A1 (en) | 2016-11-24 |
KR20160118261A (ko) | 2016-10-11 |
CN105981204A (zh) | 2016-09-28 |
EP3104440A4 (en) | 2017-09-27 |
JP6082355B2 (ja) | 2017-02-15 |
EP3104440B1 (en) | 2019-10-02 |
EP3104440A1 (en) | 2016-12-14 |
KR102256230B1 (ko) | 2021-05-27 |
JP2015149221A (ja) | 2015-08-20 |
US10388950B2 (en) | 2019-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6082355B2 (ja) | 非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池 | |
JP6457590B2 (ja) | 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法 | |
JP6474548B2 (ja) | 非水電解質二次電池用負極材及び負極活物質粒子の製造方法 | |
KR102236723B1 (ko) | 비수전해질 이차 전지용 부극 및 비수전해질 이차 전지 | |
JP6359836B2 (ja) | 非水電解質二次電池用負極材、非水電解質二次電池用負極及びその製造方法並びに非水電解質二次電池 | |
JP6268293B2 (ja) | 非水電解質二次電池用負極材及び負極活物質粒子の製造方法 | |
WO2015063979A1 (ja) | 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池 | |
JP6196183B2 (ja) | 非水電解質二次電池用負極材及びその製造方法、並びに非水電解質二次電池用負極活物質層、非水電解質二次電池用負極、非水電解質二次電池 | |
JP2015111547A5 (ja) | ||
JP6564740B2 (ja) | 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法 | |
JP6297991B2 (ja) | 非水電解質二次電池 | |
JP6448462B2 (ja) | 非水電解質二次電池用負極活物質及び非水電解質二次電池並びに非水電解質二次電池用負極活物質の製造方法 | |
JP6215804B2 (ja) | 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに負極活物質粒子の製造方法 | |
WO2017085907A1 (ja) | 負極活物質、負極電極、リチウムイオン二次電池、非水電解質二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法 | |
JP6680531B2 (ja) | 負極活物質の製造方法及びリチウムイオン二次電池の製造方法 | |
WO2018168196A1 (ja) | 負極活物質、混合負極活物質材料、及び負極活物質の製造方法 | |
JP2020009776A (ja) | 負極活物質、負極電極、リチウムイオン二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15746703 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15112622 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2015746703 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015746703 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20167021239 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |