JP6564740B2 - 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法 - Google Patents

負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
JP6564740B2
JP6564740B2 JP2016132892A JP2016132892A JP6564740B2 JP 6564740 B2 JP6564740 B2 JP 6564740B2 JP 2016132892 A JP2016132892 A JP 2016132892A JP 2016132892 A JP2016132892 A JP 2016132892A JP 6564740 B2 JP6564740 B2 JP 6564740B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
secondary battery
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016132892A
Other languages
English (en)
Other versions
JP2018006190A (ja
Inventor
貴一 廣瀬
貴一 廣瀬
玲子 酒井
玲子 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60912625&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6564740(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2016132892A priority Critical patent/JP6564740B2/ja
Priority to EP17823868.9A priority patent/EP3480872A4/en
Priority to PCT/JP2017/018352 priority patent/WO2018008260A1/ja
Priority to CN202111341837.9A priority patent/CN114242967B/zh
Priority to KR1020187037764A priority patent/KR102307067B1/ko
Priority to US16/090,906 priority patent/US10873082B2/en
Priority to CN201780031189.2A priority patent/CN109155406B/zh
Priority to TW106116980A priority patent/TWI731086B/zh
Publication of JP2018006190A publication Critical patent/JP2018006190A/ja
Publication of JP6564740B2 publication Critical patent/JP6564740B2/ja
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/32Alkali metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法に関する。
近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
上記のリチウムイオン二次電池は、正極及び負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm〜50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1〜1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm−1及び1580cm−1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
特開2001−185127号公報 特開2002−042806号公報 特開2006−164954号公報 特開2006−114454号公報 特開2009−070825号公報 特開2008−282819号公報 特開2008−251369号公報 特開2008−177346号公報 特開2007−234255号公報 特開2009−212074号公報 特開2009−205950号公報 特許第2997741号明細書
上述したように、近年、電子機器に代表される小型のモバイル機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれている。しかしながら、炭素系活物質を用いたリチウムイオン二次電池と同等のサイクル安定性を示す負極活物質を提案するには至っていなかった。
ケイ素材の中でもケイ素酸化物は良い特性を示す材料であり、実際に製品に適用されつつある。しかしながら、ケイ素酸化物は充放電を繰り返すことでSiとLiシリケートに不均化し、結果としてSiの肥大化を生じる。このSiの肥大化により、ケイ素酸化物においても金属SiやSi合金などと同じような劣化挙動を示す。酸化ケイ素は金属Siなどと比較し、大幅に電池サイクル特性を延命することが可能であるが、長期サイクルに伴う劣化抑制までは至っていない。
本発明は、上記問題点に鑑みてなされたものであって、二次電池の負極活物質として用いた際に、電池容量を増加させ、サイクル特性を向上させることが可能な負極活物質、この負極活物質を含む負極、この負極を用いたリチウムイオン二次電池、及び、このリチウムイオン二次電池の使用方法を提供することを目的とする。また、電池容量を増加させ、サイクル特性を向上させることが可能な負極活物質の製造方法を提供することを目的とする。また、そのような負極活物質を用いるリチウムイオン二次電池の製造方法を提供することを目的とする。
上記目的を達成するために、本発明では、負極活物質粒子を含む負極活物質であって、
前記負極活物質粒子は、SiO(0.5≦x≦1.6)で表されるケイ素化合物を含有し、
前記負極活物質がLi吸蔵を行う際に、前記負極活物質粒子に含まれるSi4+の少なくとも一部が、Siy+(yは0,1,2及び3のいずれかである)の価数状態のうちから選ばれる、少なくとも1種以上の状態に変化するものであることを特徴とする負極活物質を提供する。
本発明の負極活物質は、ケイ素化合物(SiO:0.5≦x≦1.6、以下、ケイ素酸化物とも称する)を含有する負極活物質粒子を含むため、高い電池容量を有する。この負極活物質粒子に含まれるケイ素酸化物は、実際には、二酸化ケイ素(SiO)成分とケイ素(Si)成分を有するものである。本発明では、二酸化ケイ素(SiO)成分のSi4+の少なくとも一部がLi吸蔵時に4未満(Siy+)の価数に変化し、このSiy+が、元々負極活物質粒子中に存在するSiと共に、Liを吸蔵脱離する活物質として機能することができる。これにより、ケイ素酸化物(SiO)が充放電に伴いSiとLiシリケートに不均化するのを抑制することができる。また、Siの単独反応が抑制され、Siの肥大化を抑制することが可能となる。その結果、良好なサイクル特性が得られる。
また、前記負極活物質粒子は、前記負極活物質がLi吸蔵脱離を行うことで、Si0+の状態が生成するものであることが好ましい。
このような負極活物質であれば、ケイ素酸化物が充放電に伴いSiとLiシリケートに不均化するのをより抑制すると共に安定した電池特性を得ることができる。
この場合、前記Si0+は非晶質Siであることが好ましい。
このように、より結晶性が低いSiを含む負極活物質であれば、ケイ素酸化物が充放電に伴いSiとLiシリケートに不均化するのをさらに抑制することができる。
また、前記Siy+のうちのSiz+(zは1,2及び3のいずれかである)は、前記負極活物質がLiを吸蔵した際に、Li化合物の形態で存在することができる。
このような負極活物質であれば、Siz+がLiを吸蔵した際に、Li化合物の形態で存在し、活物質として機能することができる。
また、前記負極活物質は、該負極活物質を含む負極と正極活物質を含む正極とを有する第一の二次電池の充放電を100サイクル行った後、前記充放電の後の第一の二次電池を解体し、前記充放電の後の負極と、金属Liからなる対極とを有する第二の二次電池を作製し、前記第二の二次電池の開回路電位を2.0Vとした後に、該第二の二次電池から前記負極を取り出し、該負極のXANES測定を行ったとき、前記XANES測定から得られるXANESスペクトルにおいてエネルギー1841eVを超えて1845eV以下の範囲に少なくとも1種以上のショルダーピークを有することが好ましい。
上記の範囲のショルダーピークは、Siz+に由来するものである。従って、このような負極活物質であれば、Siz+がより多く含まれるため、Siz+が活物質としてより機能しやすくなる。これにより、ケイ素酸化物が充放電に伴いSiとLiシリケートに不均化するのをさらに抑制することができる。
また、前記負極活物質粒子は、前記負極活物質がLi吸蔵脱離を繰り返すとき、前記Si4+と、前記Siy+のうちのSiz+(zは1,2及び3のいずれかである)とが可逆に変化するものであることが好ましい。
このように、Siz+が可逆的に変化することでSiの単独反応をより抑制し、Siの肥大化をより抑制することが可能である。
また、前記負極活物質粒子のメジアン径は0.5μm以上20μm以下であることが好ましい。
負極活物質粒子のメジアン径が上記の範囲内にあることで、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、より良好なサイクル特性及び初期充放電特性が得られる。
また、前記負極活物質粒子は、表層部に炭素材を含むことが好ましい。
このように、負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られるため、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池特性を向上させることができる。
また、前記炭素材の平均厚さは5nm以上5000nm以下であることが好ましい。
被覆する炭素材の平均厚さが5nm以上であれば導電性向上が得られ、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池容量の低下を抑制することができる。
さらに本発明では、上記本発明の負極活物質を含むことを特徴とする負極を提供する。
このような負極であれば、この負極をリチウムイオン二次電池の負極として用いた際に、高い電池容量を有するとともに、良好なサイクル特性が得られる。
また、前記負極は、前記負極活物質を含む負極活物質層と、
負極集電体とを有し、
前記負極活物質層は前記負極集電体上に形成されており、
前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であることが好ましい。
このように、負極を構成する負極集電体が、炭素及び硫黄を上記のような含有量含むことで、充電時の負極の変形を抑制することができる。
さらに本発明では、負極として、上記本発明の負極を用いたものであることを特徴とするリチウムイオン二次電池を提供する。
このような負極を用いたリチウムイオン二次電池であれば、高容量であるとともに良好なサイクル特性が得られる。
さらに本発明では、上記本発明のリチウムイオン二次電池の使用方法であって、
前記負極と、金属Liからなる対極とを有する二次電池から得られる放電カーブの0.7V付近に生じる変曲点における電位よりも低い値となる範囲で、前記負極が用いられるように前記リチウムイオン二次電池の終止電圧を設定することを特徴とするリチウムイオン二次電池の使用方法を提供する。
このような使用方法であれば、リチウムイオン二次電池の負極に含まれる負極活物質において、ケイ素酸化物が充放電に伴いSiとLiシリケートに不均化するのをさらに抑制することができる。
さらに本発明では、負極活物質粒子を含む負極活物質の製造方法であって、
一般式SiO(0.5≦x≦1.6)で表されるケイ素化合物を含む負極活物質粒子を準備する工程と、
前記負極活物質がLi吸蔵を行う際に、前記負極活物質粒子に含まれるSi4+の少なくとも一部が、Siy+(yは0,1,2及び3のいずれかである)の価数状態のうちから選ばれる、少なくとも1種以上の状態に変化する負極活物質粒子を選別する工程と
を有することを特徴とする負極活物質の製造方法を提供する。
負極活物質粒子をこのように選別して、負極活物質を製造することで、リチウムイオン二次電池の負極活物質として使用した際に、高容量であるとともに良好なサイクル特性を有する負極活物質を製造することができる。
さらに本発明では、上記本発明の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造することを特徴とするリチウムイオン二次電池の製造方法を提供する。
この製造方法は、上記のように選別された負極活物質粒子を含む負極活物質を用いることにより、高容量であるとともに良好なサイクル特性を有するリチウムイオン二次電池を製造することができる。
本発明の負極活物質は、リチウムイオン二次電池の負極活物質として用いた際に、高容量で良好なサイクル特性が得られる。また、本発明の負極活物質の製造方法であれば、良好なサイクル特性を有するリチウムイオン二次電池用負極活物質を製造することができる。また、本発明のリチウムイオン二次電池の使用方法であれば、リチウムイオン二次電池中の負極活物質に含まれるケイ素酸化物が、SiとLiシリケートに不均化するのを抑制することが可能である。
実施例1−2、比較例1−1において測定された、XANESスペクトルである。 本発明の負極の構成の一例を示す断面図である。 本発明のリチウムイオン二次電池(ラミネートフィルム型)の構成の一例を示す分解図である。 ケイ素酸化物(SiO)を含む負極と、金属Liからなる対極とを有する二次電池から得られる放電カーブ及び充電カーブである。
以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。このケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近いサイクル特性が望まれているが、炭素系活物質を用いたリチウムイオン二次電池と同等のサイクル特性を示す負極活物質を提案するには至っていなかった。
そこで、本発明者らは、リチウムイオン二次電池の負極として用いた際に、良好なサイクル特性が得られる負極活物質について鋭意検討を重ねた。その結果、負極活物質粒子を含む負極活物質であって、負極活物質粒子は、SiO(0.5≦x≦1.6)で表されるケイ素化合物を含有し、負極活物質がLi吸蔵を行う際に、負極活物質粒子に含まれるSi4+の少なくとも一部が、Siy+(yは0,1,2及び3のいずれかである)の価数状態のうちから選ばれる、少なくとも1種以上の状態に変化するものであることを特徴とする負極活物質を用いた際に、高い電池容量及び良好なサイクル特性が得られることを見出し、本発明をなすに至った。
<負極>
まず、負極(非水電解質二次電池用負極)について、説明する。図2は本発明の負極の構成の一例を示す断面図である。
[負極の構成]
図2に示すように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。また、負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[負極集電体]
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。また、この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。なぜならば、負極集電体11の物理的強度が向上するためである。特に、充電時に膨張する活物質層を負極が有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果がある。上記の含有元素のそれぞれの含有量は特に限定されないが、中でも100質量ppm以下であることが好ましい。なぜならば、より高い変形抑制効果が得られるためである。このような変形抑制効果によりサイクル特性をより向上できる。
また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。
[負極活物質層]
負極活物質層12は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。
本発明の負極活物質は負極活物質粒子を含む。負極活物質粒子は、リチウムイオンを吸蔵、放出可能なコア部を有する。負極活物質粒子が、表層部に炭素材を含むものである場合は、さらに、導電性が得られる炭素被覆部を有する。
負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含有するものであり、ケイ素化合物の組成としてはxが1に近い方が好ましい。なぜならば、安定した電池特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。この負極活物質粒子に含まれるケイ素酸化物は、実際には、二酸化ケイ素(SiO)成分とケイ素(Si)成分を有するものである。
本発明の負極活物質は、該負極活物質がLi吸蔵を行う際に、負極活物質粒子に含まれるSi4+の少なくとも一部が、Siy+(yは0,1,2及び3のいずれかである)の価数状態のうちから選ばれる、少なくとも1種以上の状態に変化するものであることを特徴とする。なお、負極活物質がLi吸蔵を行うことによって、負極活物質に含まれる負極活物質粒子もLi吸蔵を行うことになる。また、負極活物質がLi脱離を行うことによって、負極活物質に含まれる負極活物質粒子もLi脱離を行うことになる。
一般的な酸化ケイ素材は充電を行うことでSiとLiとが反応するシリサイド反応とSiOとLiとが反応するLiシリケート反応が起こり、Siが単独で容量を持つ。すなわち、Siが単独でLiを吸蔵脱離する活物質として機能する。SiOとLiとが反応するLiシリケート反応により生成したLiSiOなどのLiシリケートは4価のSiを有するものであるが、これは安定なLi化合物であり、Liを脱離しにくいものである。従って、このLiシリケートは活物質として機能せず、不可逆容量となる。本発明の負極活物質粒子においては、二酸化ケイ素(SiO)成分のSi4+の少なくとも一部がLi吸蔵時に4未満(Siy+)の価数に変化する。例えば、二酸化ケイ素成分の少なくとも一部が可逆的成分(Siz+(zは1,2及び3のいずれかである))に分解する。従って、本発明の負極活物質粒子においては、充電時には、実質的に、SiとLiとが反応するシリサイド反応と、SiOw(0<w<2)とLiの間の反応が起こる。すなわち、本発明では、0価のSiだけでなく、中途半端な価数のSi(1価、2価及び3価のSi)が活物質として機能し、この中途半端な価数のSiがSi−O結合を有したまま充放電サイクルが回る。
従って、本発明では、ケイ素酸化物(SiO)が充放電に伴いSiとLiシリケートに不均化するのを抑制することができ、電池特性を向上できる。また、Siの単独反応が抑制され、Siの肥大化を抑制することが可能となる。その結果、良好なサイクル特性が得られる。
また、本発明の負極活物質粒子は、負極活物質がLi吸蔵脱離を行うことで、Si0+の状態が生成するものであることが好ましい。例えば、充放電を繰り返すことによって、Si−O結合を有するもの(Si1+、Si2+、Si3+又はSi4+)のSi−O結合が少なくとも一部切れて、Si0+となると考えられる。なお、Si0+は、主に放電時に生成する。これは、Liシリケート(Si1+、Si2+又はSi3+を有するLiシリケートであり、後述する不完全な酸化ケイ素の状態でLiを吸蔵したもの)からLiを引き抜く際にSiからOが外れ、Si−Si結合になることを指している。このような負極活物質であれば、ケイ素酸化物が充放電に伴いSiとLiシリケート(4価のSiを有するLiシリケート)に不均化するのをより抑制すると共に安定した電池特性を得ることができる。
この場合、上記のSi0+は非晶質Siであることが好ましい。このように、より結晶性が低いSiを含む負極活物質であれば、ケイ素酸化物が充放電に伴いSiとLiシリケートに不均化するのをさらに抑制することができる。なお、この非晶質Siは、XRD(X線回折)では確認できず、長周期的規則性へと相変化する。
また、Siy+のうちのSiz+(zは1,2及び3のいずれかである)は、負極活物質がLiを吸蔵した際に、Li化合物の形態で存在することができる。すなわち、不完全な酸化ケイ素の状態でLiを吸蔵することができる。このような負極活物質であれば、Siz+がLiを吸蔵した際に、Li化合物の形態で存在し、活物質として機能することができる。なお、ここでいう「不完全」とはSiの価数が0より大きく、4未満であることを意味する。一方で、4配位であるSiOは完全な酸化ケイ素、二酸化ケイ素である。
また、負極活物質は、該負極活物質を含む負極と正極活物質を含む正極とを有する第一の二次電池の充放電を100サイクル行った後、充放電の後の第一の二次電池を解体し、充放電の後の負極と、金属Liからなる対極とを有する第二の二次電池を作製し、第二の二次電池の開回路電位(Open Circuit Potential:OCP)を2.0Vとした後に、該第二の二次電池から負極を取り出し、該負極のXANES(X線吸収端近傍構造)測定を行ったとき、XANES測定から得られるXANESスペクトルにおいてエネルギー1841eVを超えて1845eV以下の範囲に少なくとも1種以上のショルダーピークを有することが好ましい。このピーク位置は、より好ましくは1842eV以上1844eV以下の範囲であり、特に好ましくは1843eV近傍(±0.5eV以内)である。まず、1841eVを超えて1845eV以下の範囲のショルダーピークは、Siz+に由来するものである。従って、このような負極活物質であれば、Siz+がより多く含まれるため、Siz+が活物質としてより機能しやすくなる。これにより、ケイ素酸化物が充放電に伴いSiとLiシリケートに不均化するのをさらに抑制することができる。なお、第一の二次電池の具体例としては、後述する図3に示すラミネートフィルム型のリチウムイオン二次電池30が挙げられる。また、第二の二次電池の具体例としては、後述する実施例に示す2032型コイン電池が挙げられる。
本発明において、Li吸蔵時にSi4+の価数が変化したということは、XANESのスペクトル形状を見て、判断することができる。XANESスペクトルにおいて特定の位置にショルダーピークなどのピークを有することは、その価数状態のSiが多いことを意味する。例えば、XANESスペクトルにおいて1839eV近傍にショルダーピークを有する場合、Si0+(非晶質Si)の状態が多いことを意味する。また、1841eV近傍にショルダーピークを有する場合、Si0+(結晶Si、長期的規則性を有するSiとも称する)の状態が多いことを意味する。また、1843eV近傍にショルダーピークを有する場合、Si2+の状態が多いことを意味する。1843eVよりやや低エネルギー側(例えば1842eV近傍)にショルダーピークを有する場合、Si1+の状態が多いことを意味する。1843eVよりやや高エネルギー側(例えば1844eV近傍)にショルダーピークを有する場合、Si3+の状態が多いことを意味する。従って、これらの位置にショルダーピークを有する場合、Li吸蔵時にSi4+の価数が変化したと判断することができる。なお、元々活物質中に存在するSi成分と、Si4+の価数が変化して生じたSi0+を区別することはできないが、XANESスペクトルにおけるその他ピーク高さ(例えば、LiSiOに含まれるSi4+に由来するピークの高さ)と比較すればSi0+が増えたか否かが分かる。また、Li吸蔵前後のXANESスペクトルを比較するなどして、Si0+、Si1+、Si2+及びSi3+が増えたことを確認しても良い。なお、1847eV近傍にピークを有する場合、LiSiOに含まれるSi4+の状態が多いことを意味する。
また、Li吸蔵時にSi4+の価数が変化した場合であっても、上記のショルダーピークが確認できないことがある。例えば、Si0+、Si1+、Si2+及びSi3+に由来するピークが全体的に多く存在する場合(のっぺりとしたスローピーなピークが全体に存在する場合)や全体的に少なく存在する場合である。このような場合であっても、Li吸蔵前後のXANESスペクトルを比較するなどして、Si0+、Si1+、Si2+及びSi3+が増えたことを確認することは可能である。
また、負極活物質粒子は、負極活物質がLi吸蔵脱離を繰り返すとき、Si4+と、Siy+のうちのSiz+(zは1,2及び3のいずれかである)とが可逆に変化するものであることが好ましい。すなわち、Siz+は、Liを吸蔵脱離する活物質として機能し、かつ、この吸蔵脱離の際にSiの価数が+4に変化することが好ましい。このように、Siz+が可逆的に変化することでSiの単独反応をより抑制し、Siの肥大化をより抑制することが可能である。なお、この場合であっても、Siz+は、上記と同様、負極活物質がLiを吸蔵した際には、Li化合物の形態で存在することが好ましい。なお、Siz+がLiを吸蔵脱離する際に、その価数が変化しない場合もある。なお、Si0+は酸化されないため、その価数は変化しない。
負極活物質粒子のメジアン径(D50:累積体積が50%となる時の粒子径)は特に限定されないが、0.5μm以上20μm以下であることが好ましい。メジアン径が上記の範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、粒子が割れにくくなるからである。メジアン径が0.5μm以上であれば、質量当たりの表面積を小さくでき、電池不可逆容量の増加を抑制することができる。一方で、メジアン径を20μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。
また、負極活物質粒子は、表層部に炭素材を含むことが好ましい。
このように、負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られるため、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池特性を向上させることができる。
また、この炭素材の平均厚さは5nm以上5000nm以下であることが好ましい。
被覆する炭素材の平均厚さが5nm以上であれば導電性向上が得られ、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池容量の低下を抑制することができる。
この炭素材の平均厚さは、例えば、以下の手順により算出できる。まず、TEM(透過型電子顕微鏡)により任意の倍率で負極活物質を観察する。この倍率は、厚さを測定できるように、目視で炭素材の厚さを確認できる倍率が好ましい。続いて、任意の15点において、炭素材の厚さを測定する。この場合、できるだけ特定の場所に集中せず、広くランダムに測定位置を設定することが好ましい。最後に、上記の15点の炭素材の厚さの平均値を算出する。
炭素材の被覆率は特に限定されないが、できるだけ高い方が望ましい。被覆率が30%以上であれば、電気伝導性がより向上するため好ましい。炭素材の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。なぜならば、被覆率を向上させることができるからである。
また、負極活物質層12に含まれる負極結着剤として、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
負極活物質層12は、本発明の負極活物質(ケイ素系活物質)に加えて、炭素系活物質を含んでいてもよい。これにより、負極活物質層12の電気抵抗を低下するとともに、充電に伴う膨張応力を緩和することが可能となる。この炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。
負極活物質層12は、例えば、塗布法で形成される。塗布法とは、ケイ素系活物質と上記の結着剤など、また、必要に応じて導電助剤、炭素系活物質を混合した後に、有機溶剤や水などに分散させ塗布する方法である。
[負極の製造方法]
負極10は、例えば、以下の手順により製造できる。まず、負極に使用する負極活物質の製造方法を説明する。最初に、一般式SiO(0.5≦x≦1.6)で表されるケイ素化合物を含む負極活物質粒子を準備する。次に、負極活物質がLi吸蔵を行う際に、負極活物質粒子に含まれるSi4+の少なくとも一部が、Siy+(yは0,1,2及び3のいずれかである)の価数状態のうちから選ばれる、少なくとも1種以上の状態に変化する負極活物質粒子を選別する。
ケイ素酸化物(SiO:0.5≦x≦1.6)を含む負極活物質粒子は、例えば、以下のような手法により作製できる。まず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃〜1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。このとき、原料は金属珪素粉末と二酸化珪素粉末の混合物を用いることができる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。
次に、発生した酸化珪素ガスは吸着板(堆積板)上で固体化され堆積される。この際、ガスが流れる途中に炭素材を存在させることができ、又はこのガスにSi蒸気を一部混合させることができる。これにより、Li吸蔵時にSi4+がSiy+に変化する負極活物質粒子、特に、Li吸蔵脱離を繰り返すとき、Si4+と、Siy+のうちのSiz+(zは1,2及び3のいずれかである)とが可逆に変化する負極活物質粒子が得やすくなる。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕、粉末化を行う。以上のようにして、負極活物質粒子を作製することができる。
なお、Li吸蔵時にSi4+がSiy+に変化する負極活物質粒子、特に、Li吸蔵脱離を繰り返すとき、Si4+と、Siy+のうちのSiz+とが可逆に変化する負極活物質粒子を得る方法は、上記の炭素材やSi蒸気を混合する方法に限定されない。例えば、酸化珪素ガスを発生する原料の気化温度の変更、堆積板温度の変更、酸化珪素ガスの蒸着流に対するガス(不活性ガス,還元ガス)の噴射量若しくは種類の変更、酸化珪素ガスを含む炉内の圧力の変更、負極活物質粒子生成後の熱処理又は後述する炭素材を堆積する際の温度若しくは時間の変更などにより、これらの負極活物質粒子を得やすくすることもできる。
次に、準備した負極活物質粒子の表層部に炭素材を形成する。但し、この工程は必須ではない。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法の一例について以下に説明する。
まず、負極活物質粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1200℃以下が望ましい。所定の温度まで炉内温度を昇温させた後に、負極活物質粒子の表層部に炭素材を生成する。また、炭素材の原料となる炭化水素ガスは特に限定しないが、C組成においてn≦3であることが望ましい。n≦3であれば、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。
このように、炭素材で負極活物質粒子を被覆することでバルク内部の化合物状態をより均一化にすることができ、活物質としての安定性が向上し、より高い効果を得ることができる。
このような製造方法により製造された負極活物質は、Liとの反応時にケイ素酸化物のバルク内に存在する二酸化ケイ素成分を可逆成分に一部変化させることができると共に、ケイ素−リチウム結合状態が二次電池に適した状態へ誘導されるものとなる。
以上のようにして製造(選別)された負極活物質と、負極結着剤、導電助剤などの他の材料とを混合して、負極合剤とした後に、有機溶剤又は水などを加えてスラリーとする。次に、負極集電体11の表面に、上記の負極合剤スラリーを塗布し、乾燥させて、負極活物質層12を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、負極を作製できる。
選別は、負極活物質粒子を製造した後、その一部を取り出して上記XANES測定等を行って、本発明の条件に該当する負極活物質粒子を採用することにより行うことができる。また、この選別は、負極活物質粒子を製造するたびに逐一行う必要はない。特定の条件で製造した負極活物質粒子が本発明の条件に該当するものであったときは、同一の条件で製造した負極活物質粒子は同一の特性を有するものとして判断することができ、これを選別して負極活物質粒子とすることができる。
<リチウムイオン二次電池>
次に、本発明のリチウムイオン二次電池について説明する。本発明のリチウムイオン二次電池は負極として、上記本発明の負極を用いたものである。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
[ラミネートフィルム型二次電池の構成]
図3に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体の最外周部は保護テープにより保護されている。
正負極リードは、例えば、外装部材35の内部から外部に向かって一方向で導出されている。正極リード32は、例えば、アルミニウムなどの導電性材料により形成され、負極リード33は、例えば、ニッケル、銅などの導電性材料により形成される。
外装部材35は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が巻回電極体31と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
外装部材35と正負極リードとの間には、外気侵入防止のため密着フィルム34が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
[正極]
正極は、例えば、図2の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいてもよい。この場合、結着剤、導電助剤に関する詳細は、例えば、既に記述した負極結着剤、負極導電助剤と同様とすることができる。
正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えば、リチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物が挙げられる。これらの正極材の中でも、ニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの正極材の化学式は、例えば、LiM1O、又は、LiM2POで表される。上記の化学式中、M1、M2は少なくとも1種以上の遷移金属元素を示しており、x、yの値は電池充放電状態によって異なる値を示すが、一般的に、0.05≦x≦1.10、0.05≦y≦1.10で示される。
リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)などが挙げられ、リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)、リチウム鉄マンガンリン酸化合物(LiFe1−uMnPO(0<u<1))などが挙げられる。上記の正極材を用いれば、高い電池容量が得られるともに、優れたサイクル特性も得られるからである。
[負極]
負極は、上記した図2の負極10と同様の構成を有し、例えば、集電体の両面に負極活物質層を有している。この負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。
上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため、負極活物質層の状態が形成直後のまま維持され、これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。
[セパレータ]
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば、合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[電解液]
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2−ジメトキシエタン、テトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒とを組み合わせて用いることで、電解質塩の解離性やイオン移動度を向上させることができる。
合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。
ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4−フルオロ−1,3−ジオキソラン−2−オン、4,5−ジフルオロ−1,3−ジオキソラン−2−オンなどが挙げられる。
溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。これは、充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとしては、例えば炭酸ビニレン、炭酸ビニルエチレンなどが挙げられる。
また、溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることも好ましい。これは、電池の化学的安定性が向上するからである。スルトンとしては、例えば、プロパンスルトン、プロペンスルトンが挙げられる。
さらに、溶媒は、酸無水物を含んでいることが好ましい。これは、電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩としては、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。これは、高いイオン伝導性が得られるからである。
[ラミネートフィルム型のリチウムイオン二次電池の製造方法]
最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤とした後に、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また加熱又は圧縮を複数回繰り返しても良い。
次に、上記した負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。
正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図2を参照)。
続いて、電解液を調製する。続いて、超音波溶接などにより、正極集電体に正極リード32を取り付けると共に、負極集電体に負極リード33を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体31を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材の間に巻回電極体を挟み込んだ後、熱融着法により外装部材35の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調製した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型のリチウムイオン二次電池30を製造することができる。
本発明においては、このようにして得られたリチウムイオン二次電池を以下のようにして使用することが好ましい。すなわち、上記本発明の負極と、金属Liからなる対極(対極Li)とを有する二次電池から得られる放電カーブの0.7V付近に生じる変曲点における電位よりも低い値となる範囲で、本発明の負極が用いられるように本発明のリチウムイオン二次電池の終止電圧を設定すること(以下、低電位設計とも称する)が好ましい。このような使用方法であれば、リチウムイオン二次電池の負極に含まれる負極活物質において、ケイ素酸化物が充放電に伴いSiとLiシリケートに不均化するのをさらに抑制することができる。以下、本発明のリチウムイオン二次電池の使用方法について、図4を参照して説明する。
図4は、ケイ素酸化物(SiO)を含む負極と、金属Liからなる対極とを有する二次電池から得られる放電カーブ(以下、放電カーブAとも称する)及び充電カーブである。縦軸は電位(V)、横軸は容量(mAh)である。0mAhのとき、電位が3V付近である曲線が充電カーブ(充電曲線)であり、0mAhのとき、電位が0V付近である曲線が放電カーブ(放電曲線)である。容量は、充電カーブにおいては充電した容量であり、放電カーブにおいては放電した容量である。図4に示すように放電カーブは0.7Vに変曲点を有する。ここでいう「変曲点」とは、容量に対する電位の増加率が急増する点のことである。この場合、負極放電電位が0.7V未満(例えば0.66V以下)を低電位と規定し、0.7V以上を高電位と規定することができる。従って、図4に示す場合、この放電カーブAにおいて負極放電電位が0.66V以下となる範囲で、本発明の負極が用いられるように本発明のリチウムイオン二次電池の終止電圧を設定することが好ましい。リチウムイオン二次電池の放電カーブ(以下、放電カーブCとも称する)は、対極Liに対する正極の放電カーブ(以下、放電カーブBとも称する)から、放電カーブAを引いたもの(すなわち、合成カーブ)となる。予めこれら放電カーブA、B、Cを得ておけば、放電カーブAの負極放電電位が0.66Vとなるとき、放電カーブCの電圧が何ボルトになるのかが分かる。例えば、放電カーブAの負極放電電位が0.66Vとなるとき、放電カーブCの電圧が3.0Vになるのであれば、本発明のリチウムイオン二次電池の終止電圧を3.0Vに設定する。
以下、実施例及び比較例を示して本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1−1)
以下の手順により、図3に示したラミネートフィルム型のリチウムイオン二次電池30を作製した。
最初に正極を作製した。正極活物質はリチウムニッケルコバルト複合酸化物であるLiNi0.7Co0.25Al0.05O(リチウムニッケルコバルトアルミニウム複合酸化物:NCA)を95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し、正極合剤とした。続いて正極合剤を有機溶剤(N−メチル−2−ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。
次に負極を作製した。負極活物質は金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。粒径を調整した後、熱分解CVDを行うことで負極活物質粒子の表層部に炭素材を形成した。続いて、負極活物質粒子と負極結着剤の前駆体(ポリアミック酸)、導電助剤1(鱗片状黒鉛)と導電助剤2(アセチレンブラック)とを80:8:10:2の乾燥質量比で混合した後、NMPで希釈してペースト状の負極合剤スラリーとした。この場合には、ポリアミック酸の溶媒としてNMPを用いた。続いて、コーティング装置で負極集電体の両面に負極合剤スラリーを塗布してから乾燥させた。この負極集電体としては、粗化電解銅箔(厚さ=15μm)を用いた。最後に、真空雰囲気中で700℃1時間焼成した。これにより、負極結着剤の一部が炭化形成された。また、これにより、負極集電体の両面に負極活物質層が形成された。このとき、負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であった。
次に、溶媒(4−フルオロ−1,3−ジオキソラン−2−オン(FEC)、エチレンカーボネート(EC)及びジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.0mol/kgとした。
次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体の一端にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に巻回させ巻回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム(厚さ12μm)を用いた。続いて、外装部材間に電極体を挟んだ後、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調製した電解液を注入し、真空雰囲気下で含浸した後、熱融着し、封止した。
以上のようにして作製した二次電池のサイクル特性を評価した。
サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が100サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、100サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率を算出した。なお、サイクル条件として、4.2Vに達するまで定電流密度、2.5mA/cmで充電し、電圧4.2Vに達した段階で4.2V定電圧で電流密度が0.25mA/cmに達するまで充電した。また、放電時は2.5mA/cmの定電流密度で電圧が2.5Vに達するまで放電した。
次に、XAFS測定試験用の二次電池として、2032型コイン電池を組み立てた。
負極としては、以下に示す処理を行ったものを使用した。まず、上記のサイクル特性評価におけるラミネートフィルム型のリチウムイオン二次電池30と同様の手順で作製した二次電池の充放電をサイクル特性評価と同様の条件で100サイクル行った。次に、充放電の後の二次電池を解体し、この二次電池から充放電の後の負極を取り出した。このようにして得られた負極を2032型コイン電池の負極として使用した。なお、この負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は2.5mg/cmであった。
電解液としては、上記のサイクル特性評価におけるラミネートフィルム型のリチウムイオン二次電池30の電解液と同様の手順で作製したものを使用した。
対極としては、厚さ0.5mmの金属リチウム箔を使用した。また、セパレータとして、厚さ20μmのポリエチレンを用いた。
続いて、2032型コイン電池の底ブタ、リチウム箔、セパレータを重ねて、電解液150mLを注液し、続けて負極、スペーサ(厚さ1.0mm)を重ねて、電解液150mLを注液し、続けてスプリング、コイン電池の上ブタの順にくみ上げ、自動コインセルカシメ機でかしめることで、2032型コイン電池を作製した。
次に、この2032型コイン電池の開回路電位を2.0Vとした後に、該コイン電池から負極を取り出し、該負極のXANES測定を行った。
XAFS(X線吸収微細構造)測定条件は、以下の通りである。
・測定施設:あいちシンクロトロン光センター
加速エネルギー:1.2GeV、
蓄積電流値:300mA、
単色化条件:ベンディングマグネットからの白色X線を二結晶分光器により単色化し、測定に利用
・集光条件:Niコートしたベンドシリンドリカルミラーによる縦横方向の集光
・上流スリット開口:水平方向7.0mm×垂直3.0mm
・ビームサイズ:水平方向2.0mm×垂直1.0mm
・試料への入射角:直入射(入射角0度)
・エネルギー校正:KSOのS−K端でのピーク位置を2481.70eVに校正
・測定方法:試料電流を計測することによる全電子収量法
・I測定方法:XANES(X線吸収端近傍構造)測定時 Au−メッシュ
:EXAFS(広域X線吸収微細構造)測定時 Al−メッシュ
・試料環境:トランスファーベッセルを用いて大気非暴露での輸送
真空度:5×10−7Pa
(実施例1−2、1−3、比較例1−1)
Siy+変化の有無、Si0+の有無、Si0+非晶質の有無、1841eVを超えて1845eV以下の範囲のショルダーピークの有無を変化させたことを除き、実施例1−1と同様に、二次電池を作製し、サイクル特性を評価した。この場合、ケイ素酸化物を作製する際の条件の変更(堆積板温度の変更、酸化珪素ガスを含む炉内の圧力の変更、酸化珪素ガスが流れる途中に炭素材を存在させる、又はこのガスにSi蒸気を一部混合させるなど)により、Siy+変化の有無などを調整した。表1に実施例1−1〜実施例1−3及び比較例1−1の結果を示す。なお、表1〜6におけるSi0+は、Si−O結合を有するもの(Si1+、Si2+、Si3+又はSi4+)のSi−O結合が少なくとも一部切れて、Si0+になったもののことを指す。従って、そもそもSiy+変化が無い比較例1−1などでは、これらの欄には「−」と記載している。
なお、実施例1−1〜1−3、比較例1−1の負極活物質は以下のような性質を有していた。SiOのxが1であった。負極活物質粒子のメジアン径は5μmであった。負極活物質粒子は、表層部に平均厚さ100nmの炭素材を含むものであった。これらの実施例及び比較例では低電位設計を行わなかった。
Figure 0006564740
表1に示すように、Siy+変化が無しの比較例1−1と比べて、Siy+変化が有りの実施例1−1〜1−3は電池維持率が良好となった。特に、Si0+、Si0+非晶質及びショルダーピークが全て有る実施例1−2は、電池維持率が最も良好となった。
以下、実施例1−2、比較例1−1について、図1を参照して、より詳細に説明する。図1は、実施例1−2、比較例1−1において測定された、XANESスペクトルである。縦軸は正規化された強度(任意単位)、横軸は光子エネルギー(eV)である。図1に示すように、一般的なケイ素酸化物(比較例1−1)は、充放電を繰り返すとともに、LiシリケートとSiに不均化する。その時、XAFS測定におけるXANES領域において、1841eV近辺のSiに起因するショルダーピークと1847eV近辺のLiシリケート(LiSiO)に起因するピークに分散する。
一方、図1に示すように、実施例1−2では、Liシリケート(LiSiO)に起因するピークと共に、1839eV近辺の非晶質Siに起因するショルダーピーク及び1843eV近辺のSi2+に起因するショルダーピークを有する。すなわち、実施例1−2においては、0価と4価の中間体(Siz+(zは1,2及び3のいずれかである)、特にSi2+)がLiを吸蔵、放出する反応に寄与する状況が作り出されている。このように、非晶質SiとSiz+を用いることで電池特性を大幅に改善することができる。なお、1841eVを超えて1845eV以下の範囲のショルダーピークは、Siz+に由来するものと推測される。なお、実施例1−1ではショルダーピークが確認できなかったが、これは、実施例1−2と比べて、1841eV近辺のSi0+に起因するショルダーピークが増えたためであると考えられる。すなわち、実施例1−1ではSi0+、Si1+、Si2+及びSi3+に由来するピークが全体的に少なく存在するため、ショルダーピークが確認できなかったと考えられる。
(実施例2−1、2−2、比較例2−1、2−2)
ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1−2と同じ条件で二次電池を作製し、サイクル特性を評価した。結果を表2に示す。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。
Figure 0006564740
SiOの酸素量を変化させて評価を行ったところ、xが0.3である場合、酸化が不十分であり、低いサイクル特性となった。また、xが1.8である場合、酸化が進みすぎ、抵抗が高くなったため電池としての評価ができなかった。
(実施例3−1〜実施例3−6)
負極活物質粒子のメジアン径を変化させたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性を評価した。結果を表3に示す。
Figure 0006564740
負極活物質粒子の粒径が0.5μm以上であると、表面積の増加が抑制できるため、電池維持率がより良い傾向にあった。また粒径が20μm以下であると充電時に負極活物質が膨張しにくくなり、負極活物質が割れにくくなるため、電池特性を向上させることができることが分かった。
(実施例4−1〜実施例4−6)
炭素材の厚さを変化させたこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性を評価した。結果を表4に示す。
Figure 0006564740
炭素材の厚さを変化させ、電池特性を評価した結果、炭素材を堆積していない場合、電池維持率が低下した。炭素材は一部電解液の分解を抑制する効果があると推測される。炭素材の厚みを増すことで電池特性が安定するが、炭素材が厚くなると共に電池容量向上がし辛くなる。約5μm(5000nm)程度の厚みでも電池容量が向上しづらくなる。また炭素材の厚さを約7μm程度とした実験では容量がより発現しなくなった。これらの結果から総合的に判断し、炭素材の厚さは5μm以下が望ましいと考えられる。
(実施例5−1)
負極集電体に炭素及び硫黄を含有しなかったこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性を評価した。結果を表5に示す。
Figure 0006564740
負極集電体に炭素及び硫黄をそれぞれ100質量ppm以下含有させることで、充電時の負極の変形を抑制する可能となる。その結果、電池維持率が向上することが分かった。
(実施例6−1)
低電位設計を行ったこと以外、実施例1−2と同じ条件で二次電池を作製し、サイクル特性を評価した。結果を表6に示す。具体的には、実施例1−2ではリチウムイオン二次電池の終止電圧を2.5Vとし、実施例6−1ではリチウムイオン二次電池の終止電圧を3.0Vとした。
Figure 0006564740
負極電位が低い領域(例えば、図4に示す放電カーブAの負極放電電位が0.66V以下である領域、すなわち、放電カーブCの電圧が3V以上である領域)で、本発明の負極が用いられるように本発明のリチウムイオン二次電池の終止電圧を設定すると、サイクル特性が向上した。
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
10…負極、 11…負極集電体、 12…負極活物質層、
30…ラミネートフィルム型のリチウムイオン二次電池、 31…巻回電極体、
32…正極リード、 33…負極リード、 34…密着フィルム、
35…外装部材。

Claims (14)

  1. 負極活物質粒子を含む負極活物質であって、
    前記負極活物質粒子は、SiO(0.5≦x≦1.6)で表されるケイ素化合物を含有し、
    前記負極活物質がLi吸蔵を行う際に、前記負極活物質粒子に含まれるSi4+の少なくとも一部が、Siy+(yは0,1,2及び3のいずれかである)の価数状態のうちから選ばれる、少なくとも1種以上の状態に変化し、
    前記Si y+ のうちのSi z+ (zは1,2及び3のいずれかである)は、前記負極活物質がLiを吸蔵した際に、Li化合物の形態で存在するものであることを特徴とする負極活物質。
  2. 前記負極活物質粒子は、前記負極活物質がLi吸蔵脱離を行うことで、Si0+の状態が生成するものであることを特徴とする請求項1に記載の負極活物質。
  3. 前記Si0+は非晶質Siであることを特徴とする請求項2に記載の負極活物質。
  4. 前記負極活物質は、該負極活物質を含む負極と正極活物質を含む正極とを有する第一の二次電池の充放電を100サイクル行った後、前記充放電の後の第一の二次電池を解体し、前記充放電の後の負極と、金属Liからなる対極とを有する第二の二次電池を作製し、前記第二の二次電池の開回路電位を2.0Vとした後に、該第二の二次電池から前記負極を取り出し、該負極のXANES測定を行ったとき、前記XANES測定から得られるXANESスペクトルにおいてエネルギー1841eVを超えて1845eV以下の範囲に少なくとも1種以上のショルダーピークを有することを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  5. 前記負極活物質粒子は、前記負極活物質がLi吸蔵脱離を繰り返すとき、前記Si4+と、前記Siy+のうちのSiz+(zは1,2及び3のいずれかである)とが可逆に変化するものであることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  6. 前記負極活物質粒子のメジアン径は0.5μm以上20μm以下であることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  7. 前記負極活物質粒子は、表層部に炭素材を含むことを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。
  8. 前記炭素材の平均厚さは5nm以上5000nm以下であることを特徴とする請求項に記載の負極活物質。
  9. 請求項1から請求項のいずれか1項に記載の負極活物質を含むことを特徴とする負極。
  10. 前記負極は、前記負極活物質を含む負極活物質層と、
    負極集電体とを有し、
    前記負極活物質層は前記負極集電体上に形成されており、
    前記負極集電体は炭素及び硫黄を含むとともに、それらの含有量がいずれも100質量ppm以下であることを特徴とする請求項に記載の負極。
  11. 負極として、請求項又は請求項10に記載の負極を用いたものであることを特徴とするリチウムイオン二次電池。
  12. 請求項11に記載のリチウムイオン二次電池の使用方法であって、
    前記負極と、金属Liからなる対極とを有する二次電池から得られる放電カーブの0.7V付近に生じる変曲点における電位よりも低い値となる範囲で、前記負極が用いられるように前記リチウムイオン二次電池の終止電圧を設定することを特徴とするリチウムイオン二次電池の使用方法。
  13. 負極活物質粒子を含む負極活物質の製造方法であって、
    一般式SiO(0.5≦x≦1.6)で表されるケイ素化合物を含む負極活物質粒子を準備する工程と、
    前記負極活物質がLi吸蔵を行う際に、前記負極活物質粒子に含まれるSi4+の少なくとも一部が、Siy+(yは0,1,2及び3のいずれかである)の価数状態のうちから選ばれる、少なくとも1種以上の状態に変化し、
    前記Si y+ のうちのSi z+ (zは1,2及び3のいずれかである)は、前記負極活物質がLiを吸蔵した際に、Li化合物の形態で存在する負極活物質粒子を選別する工程と
    を有することを特徴とする負極活物質の製造方法。
  14. 請求項13に記載の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製し、該作製した負極を用いてリチウムイオン二次電池を製造することを特徴とするリチウムイオン二次電池の製造方法。
JP2016132892A 2016-07-04 2016-07-04 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法 Active JP6564740B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2016132892A JP6564740B2 (ja) 2016-07-04 2016-07-04 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
KR1020187037764A KR102307067B1 (ko) 2016-07-04 2017-05-16 부극 활물질, 부극, 리튬 이온 이차 전지, 리튬 이온 이차 전지의 사용 방법, 부극 활물질의 제조 방법 및 리튬 이온 이차 전지의 제조 방법
PCT/JP2017/018352 WO2018008260A1 (ja) 2016-07-04 2017-05-16 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
CN202111341837.9A CN114242967B (zh) 2016-07-04 2017-05-16 负极活性物质及其制备方法、负极、锂离子二次电池及其使用方法以及制造方法
EP17823868.9A EP3480872A4 (en) 2016-07-04 2017-05-16 NEGATIVE ELECTRODE ACTIVE MATERIAL, NEGATIVE ELECTRODE, LITHIUM-ION SECONDARY BATTERY, METHOD OF USING LITHIUM-ION SECONDARY BATTERY, PROCESS FOR PRODUCING NEGATIVE ELECTRODE ACTIVE MATERIAL, AND METHOD OF PRODUCING LITHIUM-ION SECONDARY BATTERY
US16/090,906 US10873082B2 (en) 2016-07-04 2017-05-16 Negative electrode active material, negative electrode, lithium ion secondary battery, method of using lithium ion secondary battery, method of producing negative electrode active material, and method of producing lithium ion secondary battery
CN201780031189.2A CN109155406B (zh) 2016-07-04 2017-05-16 负极活性物质、负极、锂离子二次电池、锂离子二次电池的使用方法、负极活性物质的制备方法、及锂离子二次电池的制造方法
TW106116980A TWI731086B (zh) 2016-07-04 2017-05-23 負極活性物質、負極、鋰離子二次電池、鋰離子二次電池的使用方法、負極活性物質的製造方法、以及鋰離子二次電池的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016132892A JP6564740B2 (ja) 2016-07-04 2016-07-04 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法

Publications (2)

Publication Number Publication Date
JP2018006190A JP2018006190A (ja) 2018-01-11
JP6564740B2 true JP6564740B2 (ja) 2019-08-21

Family

ID=60912625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016132892A Active JP6564740B2 (ja) 2016-07-04 2016-07-04 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法

Country Status (7)

Country Link
US (1) US10873082B2 (ja)
EP (1) EP3480872A4 (ja)
JP (1) JP6564740B2 (ja)
KR (1) KR102307067B1 (ja)
CN (2) CN109155406B (ja)
TW (1) TWI731086B (ja)
WO (1) WO2018008260A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087147B2 (ja) * 2009-06-22 2017-03-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company プロスタグランジンの精製方法
KR102253781B1 (ko) * 2017-04-28 2021-05-20 주식회사 엘지화학 방전 제어 장치 및 방법
JP2018206560A (ja) * 2017-06-01 2018-12-27 信越化学工業株式会社 負極活物質、混合負極活物質材料、及び、負極活物質粒子の製造方法
CN113646921B (zh) * 2019-03-29 2024-07-19 松下知识产权经营株式会社 非水电解质二次电池
JP2021048049A (ja) * 2019-09-18 2021-03-25 信越化学工業株式会社 負極活物質、負極及びそれらの製造方法
JP7490590B2 (ja) * 2021-02-04 2024-05-27 信越化学工業株式会社 負極及び負極の製造方法
CN113884900B (zh) * 2021-09-13 2022-08-23 北京交通大学 一种三元锂离子电池容量突变点预测方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997741B2 (ja) 1992-07-29 2000-01-11 セイコーインスツルメンツ株式会社 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP4650603B2 (ja) * 2003-12-22 2011-03-16 日本電気株式会社 二次電池用負極材料及びその製造方法並びにそれを用いた二次電池
JP4367311B2 (ja) 2004-10-18 2009-11-18 ソニー株式会社 電池
JP4994634B2 (ja) 2004-11-11 2012-08-08 パナソニック株式会社 リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
EP1956674B1 (en) * 2005-12-02 2014-06-04 Panasonic Corporation Active substance for negative electrode and negative electrode and lithium ion secondary battery using the substance
JP4911990B2 (ja) 2006-02-27 2012-04-04 三洋電機株式会社 リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP5108355B2 (ja) 2007-03-30 2012-12-26 パナソニック株式会社 リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
KR100913177B1 (ko) 2007-09-17 2009-08-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이의 제조 방법
JP5196149B2 (ja) 2008-02-07 2013-05-15 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP5555978B2 (ja) 2008-02-28 2014-07-23 信越化学工業株式会社 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP5329858B2 (ja) 2008-07-10 2013-10-30 株式会社東芝 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP5659696B2 (ja) * 2009-12-24 2015-01-28 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
JP5842985B2 (ja) * 2009-12-24 2016-01-13 ソニー株式会社 リチウムイオン二次電池、リチウムイオン二次電池用負極、電動工具、電気自動車および電力貯蔵システム
CN103168380B (zh) * 2010-10-15 2016-04-20 株式会社大阪钛技术 锂离子二次电池负极材料用粉末、锂离子二次电池负极和电容器负极、以及锂离子二次电池和电容器
JP2012164481A (ja) * 2011-02-04 2012-08-30 Hitachi Maxell Energy Ltd 非水電解質二次電池及びその製造方法
JP2013008586A (ja) * 2011-06-24 2013-01-10 Sony Corp リチウムイオン二次電池、リチウムイオン二次電池用負極、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP5861444B2 (ja) * 2011-12-20 2016-02-16 ソニー株式会社 二次電池用活物質、二次電池および電子機器
JPWO2013175715A1 (ja) * 2012-05-23 2016-01-12 株式会社大阪チタニウムテクノロジーズ リチウムイオン二次電池負極材用粉末、これを用いたリチウムイオン二次電池負極およびリチウムイオン二次電池
US20150118548A1 (en) * 2012-06-06 2015-04-30 Nec Corporation Electrolytic solution, method for preparing ester compound contained therein and lithium secondary cell
KR102171605B1 (ko) * 2013-08-21 2020-10-29 신에쓰 가가꾸 고교 가부시끼가이샤 부극 활물질, 부극 활물질 재료, 부극 전극, 리튬 이온 이차 전지, 부극 활물질의 제조 방법, 및 리튬 이온 이차 전지의 제조 방법
KR102537225B1 (ko) * 2015-10-23 2023-05-30 삼성전자주식회사 복합 음극 활물질, 상기 복합 음극 활물질을 포함하는 음극 및 상기 음극을 포함하는 리튬 이차전지

Also Published As

Publication number Publication date
TW201817062A (zh) 2018-05-01
JP2018006190A (ja) 2018-01-11
WO2018008260A1 (ja) 2018-01-11
EP3480872A4 (en) 2020-02-26
CN114242967B (zh) 2024-09-17
EP3480872A1 (en) 2019-05-08
KR20190024906A (ko) 2019-03-08
CN109155406B (zh) 2021-12-03
US20190123353A1 (en) 2019-04-25
CN109155406A (zh) 2019-01-04
CN114242967A (zh) 2022-03-25
US10873082B2 (en) 2020-12-22
TWI731086B (zh) 2021-06-21
KR102307067B1 (ko) 2021-10-01

Similar Documents

Publication Publication Date Title
JP6457590B2 (ja) 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
JP6082355B2 (ja) 非水電解質二次電池の負極材用の負極活物質、及び非水電解質二次電池用負極電極、並びに非水電解質二次電池
JP6474548B2 (ja) 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
JP6386414B2 (ja) 非水電解質二次電池用負極活物質及びその製造方法、並びにその負極活物質を用いた非水電解質二次電池及び非水電解質二次電池用負極材の製造方法
JP6196183B2 (ja) 非水電解質二次電池用負極材及びその製造方法、並びに非水電解質二次電池用負極活物質層、非水電解質二次電池用負極、非水電解質二次電池
JP6564740B2 (ja) 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
WO2015063979A1 (ja) 負極活物質、負極活物質の製造方法、並びに、リチウムイオン二次電池
CN108292748B (zh) 负极活性物质、锂离子二次电池及其制造方法、混合负极活性物质材料、负极
JP2018078114A (ja) 非水電解質二次電池用負極材
CN108292746B (zh) 负极活性物质、混合负极活性物质材料、负极、二次电池
WO2017119031A1 (ja) 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、及びリチウムイオン二次電池の製造方法
JP6453203B2 (ja) 負極活物質、負極電極、リチウムイオン二次電池、非水電解質二次電池用負極材の製造方法及びリチウムイオン二次電池の製造方法
JP6634398B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6746526B2 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
JP6680531B2 (ja) 負極活物質の製造方法及びリチウムイオン二次電池の製造方法
JP6704327B2 (ja) 負極活物質、負極、リチウムイオン二次電池、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
JP2020009776A (ja) 負極活物質、負極電極、リチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R150 Certificate of patent or registration of utility model

Ref document number: 6564740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150