WO2015115378A1 - エチレン/不飽和カルボン酸共重合体の製造方法及びその共重合体 - Google Patents

エチレン/不飽和カルボン酸共重合体の製造方法及びその共重合体 Download PDF

Info

Publication number
WO2015115378A1
WO2015115378A1 PCT/JP2015/052064 JP2015052064W WO2015115378A1 WO 2015115378 A1 WO2015115378 A1 WO 2015115378A1 JP 2015052064 W JP2015052064 W JP 2015052064W WO 2015115378 A1 WO2015115378 A1 WO 2015115378A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ethylene
carboxylic acid
unsaturated carboxylic
copolymer
Prior art date
Application number
PCT/JP2015/052064
Other languages
English (en)
French (fr)
Inventor
佐藤 直正
清水 史彦
丹那 晃央
俊昭 江頭
Original Assignee
日本ポリエチレン株式会社
日本ポリプロ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ポリエチレン株式会社, 日本ポリプロ株式会社 filed Critical 日本ポリエチレン株式会社
Priority to EP15742823.6A priority Critical patent/EP3101040B1/en
Priority to CN201580006358.8A priority patent/CN105940016A/zh
Priority to US15/113,243 priority patent/US20170002120A1/en
Publication of WO2015115378A1 publication Critical patent/WO2015115378A1/ja
Priority to US15/868,276 priority patent/US10550211B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/50Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority

Definitions

  • the present invention relates to a novel method for producing a novel ethylene / unsaturated carboxylic acid copolymer and the copolymer.
  • a method of copolymerizing ethylene and a polar group-containing vinyl monomer by radical polymerization at high temperature and high pressure is well known.
  • the polar group-containing vinyl monomer include unsaturated carboxylic acids or unsaturated carboxylic acid esters such as vinyl acetate, (meth) acrylic acid, and (meth) acrylic acid esters.
  • the production method by radical polymerization requires a lot of energy because of high temperature and pressure, and the copolymer produced has a low crystallinity due to a large number of branched formations, so that its mechanical and thermal properties are inferior.
  • There are drawbacks for example, Non-Patent Document 1).
  • polyethylene having a linear molecular structure can be obtained in a method for polymerizing polyethylene using a catalyst such as a metallocene catalyst, but a polar group-containing vinyl as a comonomer species can be obtained with a general metallocene catalyst or the like.
  • a catalyst such as a metallocene catalyst
  • a polar group-containing vinyl as a comonomer species can be obtained with a general metallocene catalyst or the like.
  • Non-Patent Document 2 a copolymerization of ethylene and acrylic acid produced using a phosphinesulfonic acid-palladium catalyst has been recently reported (for example, Non-Patent Document 2). Further, a copolymer of ethylene and acrylic acid is obtained by hydrolyzing a copolymer of ethylene and t-butyl acrylate with trimethylsilyl iodide at a temperature of about 40 ° C. using the same catalyst. A polymer converted into is also reported (for example, Non-Patent Document 3).
  • Patent Document 2 only the acrylic acid alkyl ester or the like is actually shown as a specific synthesis example as a comonomer species used for the production of a copolymer of ethylene and an acrylic acid alkyl ester. Also in Patent Document 3, only those having a stable structure such as a norbornene-based acid anhydride are used as specific comonomer species in the examples, and unsaturated carboxylic acids such as (meth) acrylic acid are used. No specific activity using acids as comonomer species is disclosed. Usually, there is a difference in catalyst activity depending on the comonomer type of the catalyst.
  • the copolymer of ethylene and acrylic acid produced using the phosphine sulfonic acid-palladium catalyst described in Non-Patent Document 2 has a molecular weight of 10,000 or less by NMR analysis, so that the mechanical strength is poor. It is enough.
  • the copolymer described in Non-Patent Document 3 has a molecular weight of around 10,000, so that the mechanical strength is insufficient.
  • the hydrolysis of the ester with trimethylsilyl iodide described in Non-Patent Document 3 requires 24 hours, so it is considered inefficient from a synthetic viewpoint.
  • Patent Document 4 The copolymerization of ethylene and acrylic acid or acrylic ester described in Patent Document 1 is described as a random copolymer, but the relationship between comonomer content and melting point described later (Patent Document 4, non-patent document) From Patent Document 4), it is considered that it is not a homogeneous random copolymer, and it is considered that the mechanical properties are not sufficiently high.
  • the object of the present invention is to provide a homogeneous ethylene / unsaturated carboxylic acid random copolymer, particularly an ethylene / (meth) acrylic acid random copolymer excellent in mechanical and thermal properties.
  • An object of the present invention is to provide an efficient method for producing a coalescence and a copolymer thereof.
  • an ethylene / unsaturated carboxylic acid copolymer obtained by random and linear copolymerization of a structural unit derived from ethylene and a structural unit derived from an unsaturated carboxylic acid.
  • a process for producing an ethylene / unsaturated carboxylic acid ester copolymer from an ethylene and an unsaturated carboxylic acid ester using a late transition metal complex catalyst, and the ethylene / unsaturated carboxylic acid A method for producing an ethylene / unsaturated carboxylic acid copolymer comprising the step of heating an ester copolymer at a temperature at which an ester group can be converted into a carboxylic acid group and converting the ester group into the ethylene / unsaturated carboxylic acid copolymer.
  • the unsaturated carboxylic acid ester is a (meth) acrylic acid ester
  • the unsaturated carboxylic acid is (meth) acrylic acid.
  • the method for producing an ethylene / unsaturated carboxylic acid copolymer according to the first or second aspect of the present invention wherein the heating temperature is 150 to 350 ° C. Provided.
  • the late transition metal complex catalyst comprises a late transition metal complex represented by the following formula (2):
  • a process for producing an ethylene / unsaturated carboxylic acid copolymer is provided.
  • (Ligand) MRL (2) [In the formula (2), M represents a group 9-11 transition metal.
  • Ligand represents a ligand that is chelate-coordinated to M as the central metal at any atom selected from the group consisting of an oxygen atom, a nitrogen atom, a phosphorus atom, an arsenic atom, a sulfur atom, and a carbon atom.
  • R represents a ligand that forms a ⁇ bond with M.
  • L represents a ligand coordinated to M.
  • the late transition metal complex is a phosphine-phenolate complex or a phosphine-sulfonate complex.
  • a method for producing an unsaturated carboxylic acid copolymer is provided.
  • the unsaturated carboxylic acid ester is a (meth) acrylic acid ester, and the (meth) acrylic acid ester
  • the alcohol part is a tertiary alcohol.
  • an ethylene / unsaturated carboxylic acid copolymer produced by the method for producing an ethylene / unsaturated carboxylic acid copolymer according to any one of the first to sixth aspects of the present invention is provided.
  • a polymer is provided.
  • an ethylene / (meth) acrylic acid produced by the method for producing an ethylene / unsaturated carboxylic acid copolymer according to any one of the first to sixth aspects of the present invention.
  • a copolymer is provided.
  • the resin composition contains 99.9 to 80.0 mol% of ethylene units and 0.1 to 20.0 mol% of (meth) acrylic acid units, and includes the following (a) to (c ), Ethylene / (meth) acrylic acid copolymers are provided.
  • the weight average molecular weight (Mw) measured by GPC is 20,000 or more and less than 1,000,000.
  • the weight average molecular weight / number average molecular weight (Mw / Mn) measured by GPC is 1.7 or more and 20 or less.
  • an ethylene / (meth) acrylic acid copolymer having a melting point (Tm) of 80 to 128 ° C. in the ninth aspect of the present invention.
  • the production method of the present invention is a novel method for producing an ethylene / unsaturated carboxylic acid copolymer. After producing a homogeneous ethylene / unsaturated carboxylic acid ester random copolymer with a late transition metal complex catalyst, the copolymer is produced. By heating the polymer, it is possible to produce a linear ethylene / unsaturated carboxylic acid random copolymer without using an excess aluminum compound. According to the production method of the present invention, an ethylene / unsaturated carboxylic acid copolymer can be produced efficiently in a short time.
  • the ethylene / unsaturated carboxylic acid copolymer of the present invention is a homogeneous random copolymer, has a relatively high molecular weight and melting point, and its mechanical and thermal properties. It is very useful because of its excellent physical properties.
  • FIG. 1 shows non-patent document 4 (radical polymerization), patent document 4 (chromium-containing catalyst), and the melting point (Tm) of an ethylene / (meth) acrylic acid copolymer in this example and (meta) in the copolymer. It is a figure which shows the relationship with content (AA) of an acrylic acid unit.
  • FIG. 2 shows the relationship between the melting point (Tm) of the ethylene / (meth) acrylic acid copolymer and the content (AA) of the (meth) acrylic acid unit in the copolymer in the examples and comparative examples.
  • FIG. 1 shows non-patent document 4 (radical polymerization), patent document 4 (chromium-containing catalyst), and the melting point (Tm) of an ethylene / (meth) acrylic acid copolymer in this example and (meta) in the copolymer. It is a figure which shows the relationship with content (AA) of an acrylic acid unit.
  • FIG. 2 shows the relationship between the melting point (Tm) of
  • Ethylene / (meth) acrylic acid copolymer (1) constitutional unit
  • the ethylene / (meth) acrylic acid copolymer of this embodiment is composed of ethylene units with respect to a total of 100 mol% of ethylene units and (meth) acrylic acid units. 99.9 mol% or less and 80 mol% or more, (meth) acrylic acid unit 0.1 mol% or more and 20 mol% or less, preferably ethylene unit 99.7 mol% or less 85 mol% or more, (meth) acrylic acid unit 0 .3 mol% to 15 mol%, more preferably 99.5 mol% to 90 mol%, and (meth) acrylic acid units from 0.5 mol% to 10 mol%.
  • a (meth) acrylic acid unit an acrylic acid unit or a methacrylic acid unit may be included independently, and both may be included in combination.
  • the mol% of the ethylene unit and the (meth) acrylic acid unit constituting the ethylene / (meth) acrylic acid copolymer is, for example, the amount ratio of each monomer used as a raw material during the production of the copolymer. It can be controlled by increasing or decreasing.
  • content of an ethylene unit and a (meth) acrylic acid unit is a value measured using IR analysis.
  • the ethylene / (meth) acrylic acid copolymer can contain a constituent monomer such as an ⁇ -olefin other than the constituent monomers.
  • a constituent monomer such as an ⁇ -olefin other than the constituent monomers.
  • an ⁇ -olefin it can be contained in an amount of 0.01 to 5 mol% based on the entire copolymer.
  • Specific examples of the ⁇ -olefin include the same monomers as those constituting the ethylene / unsaturated carboxylic acid ester copolymer described later.
  • the weight average molecular weight (Mw) measured by GPC is 20,000 or more and less than 1,000,000, preferably 25,000 or more and 900. 30,000, more preferably 30,000 or more and less than 800,000, particularly preferably 40,000 or more and less than 700,000.
  • the weight average molecular weight is less than 20,000, the mechanical strength is lowered, and when it exceeds 1,000,000, there is a possibility that the processability may be difficult.
  • the molecular weight distribution (weight average molecular weight / number average molecular weight: Mw / Mn) of the ethylene / (meth) acrylic acid copolymer of the present embodiment is preferably 1.7 or more, more preferably 1.7 or more and 20 or less. More preferably, it is 1.8 or more and 15 or less, More preferably, it is 1.9 or more and 10 or less. If the molecular weight distribution is less than 1.7, molding processability may be difficult. If it exceeds 20, the physical properties may be deteriorated due to low molecular weight components.
  • Mw and Mn of the ethylene / (meth) acrylic acid copolymer can be controlled by preparing Mw and Mn of an ethylene / (meth) acrylic acid ester copolymer described later. As will be described later, Mw and Mn of the ester copolymer can be controlled by a conventionally known method, for example, by adjusting the polymerization temperature or the monomer concentration. In addition, Mw and Mw / Mn are values measured by gel permeation chromatography (GPC), and the measurement conditions are as described in Examples described later.
  • GPC gel permeation chromatography
  • FIG. 1 shows the melting point (Tm) of the ethylene / (meth) acrylic acid copolymer in the conventional production method and this embodiment. , ° C.) and the content (AA) of the (meth) acrylic acid unit in the copolymer (AA, mol%).
  • Tm melting point
  • AA content of a (meth) acrylic acid unit
  • the ethylene / (meth) acrylic acid copolymer produced with a conventional chromium catalyst has a melting point (Tm, ° C.) and the copolymer in the copolymer as shown in the black triangle plot of FIG.
  • Tm ⁇ 1.70 ⁇ AA + 132.6
  • the ethylene / (meth) acrylic acid copolymer produced with a chromium catalyst is not considered to be a homogeneous random copolymer, and the slope of the straight line ( ⁇ 1.70) of the above formula (III) is It becomes smaller than the slope ( ⁇ 3.74) of the copolymer produced by the radical polymerization method shown in II). This is because the copolymer has high block copolymerizability, and even if the content of (meth) acrylic acid units in the copolymer is increased, the ethylene chain is long. This is considered to show a behavior similar to. For this reason, the polymer manufactured with the chromium catalyst may have poor transparency, and may have a large number of bright spots such as fisheye, resulting in problems in physical properties.
  • the slopes ( ⁇ 3.74) of the straight lines on the left and right sides of the above formulas (I) to (I ′′) are equal to the slope of the random copolymer produced by the radical polymerization method represented by the above formula (II). .
  • the ethylene / (meth) acrylic acid copolymer of the present embodiment is a random copolymer produced by using a late transition metal catalyst, so that a random copolymer produced by a conventional radical polymerization method is used. This is considered to be similar to the straight line inclination. The reason for taking this inclination is not limited to this.
  • the ethylene / (meth) acrylic acid copolymer (black square plot) of this embodiment is a copolymer (black paint) produced by a conventional radical polymerization method.
  • the tendency for the melting point to decrease with increasing acrylic acid content is almost the same, but at the same amount of acrylic acid content, it exhibits a higher Tm and is excellent in heat resistance.
  • Non-Patent Document 4 the more the (meth) acrylic acid units and methyl branches are contained in the copolymer, the lower the melting point of the copolymer and the worse the heat resistance.
  • the functionality due to the polar group is considered to be expressed at the same level, and the lower the methyl branching, the higher the melting point and the higher the heat resistant copolymer. .
  • the ethylene / (meth) acrylic acid copolymer produced using the late transition metal catalyst of the present embodiment is a copolymer produced by radical polymerization because it is linearly copolymerized and has few methyl branches.
  • the melting point is considered to be higher than that. Note that the mechanism for achieving a high melting point is not limited to this.
  • FIG. 2 shows the relationship between the melting point (Tm) of the ethylene / (meth) acrylic acid copolymer and the content (AA) of the (meth) acrylic acid unit in the copolymer in the examples and comparative examples.
  • Tm melting point
  • FIG. 2 shows the relationship between the melting point (Tm) of the ethylene / (meth) acrylic acid copolymer and the content (AA) of the (meth) acrylic acid unit in the copolymer in the examples and comparative examples.
  • FIG. 2 shows the relationship between the melting point (Tm) of the ethylene / (meth) acrylic acid copolymer and the content (AA) of the (meth) acrylic acid unit in the copolymer in the examples and comparative examples.
  • FIG. 2 shows the relationship between the melting point (Tm) of the ethylene / (meth) acrylic acid copolymer and the content (AA) of the (meth) acrylic acid unit in the copolymer in the examples and comparative examples.
  • FIG. 2 shows
  • Tm of the ethylene / (meth) acrylic acid copolymer of the present embodiment is not particularly limited as long as the relationship of the above formula (I) is satisfied, but from the viewpoint of heat resistance, it is preferably 80 ° C. or higher and 128 ° C. or lower. More preferably, it is 90 ° C. or higher and 122 ° C. or lower. Tm can be controlled within the above range by adjusting the comonomer concentration. The method for adjusting the comonomer concentration will be described later in the section “Ethylene / (meth) acrylic acid ester polymerization reaction”. Tm is a value measured using a differential scanning calorimeter (DSC), and the measurement conditions are as described in the examples described later.
  • DSC differential scanning calorimeter
  • the ethylene / (meth) acrylic acid copolymer of the present embodiment has high randomness, and the (meth) acrylic acid unit is isolated and arranged in the polymer, so that the ethylene chain is shortened and the amorphous part Will increase. Thereby, the polymer structure becomes homogeneous and the transparency is improved.
  • the method for producing a polymer of the present embodiment includes (1) a step of producing an ethylene / unsaturated carboxylic acid ester copolymer from ethylene and an unsaturated carboxylic acid ester using a late transition metal complex catalyst, And (2) heating the ethylene / unsaturated carboxylic acid ester copolymer at a temperature at which an ester group can be converted into a carboxylic acid group to convert the ethylene / unsaturated carboxylic acid ester copolymer into the ethylene / unsaturated carboxylic acid copolymer.
  • the manufacturing process is composed of two processes, but these processes may be performed continuously or separately. Hereinafter, each step will be described.
  • unsaturated carboxylic acid esters examples include unsaturated carboxylic acid esters such as acrylic acid esters, methacrylic acid esters, maleic acid esters, fumaric acid esters, and itaconic acid esters. Among these, acrylic acid esters or methacrylic acid esters are exemplified. Esters are preferred (hereinafter also referred to as (meth) acrylic acid esters). In addition, unsaturated carboxylic acid ester may be used individually by 1 type, and may be used in combination of 2 or more type.
  • ⁇ -olefin and the like can be contained in an amount of 0.01 to 5 mol% with respect to the entire copolymer within the range not impairing the object of the present invention.
  • the ⁇ -olefin is an ⁇ -olefin represented by a general formula: CH 2 ⁇ CHR A.
  • R A is a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond.
  • the carbon number of RA is greater than 20, sufficient polymerization activity tends not to be expressed.
  • ⁇ -olefins include propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 3-methyl-1-butene, 4-methyl-1-pentene. Vinylcyclohexene and styrene, and propylene, 1-butene, 1-hexene, 1-octene, 3-methyl-1-butene and styrene are more preferable.
  • Examples of the unsaturated carboxylic acid ester that is a constituent monomer include unsaturated carboxylic acid esters such as acrylic acid esters, methacrylic acid esters, maleic acid esters, fumaric acid esters, and itaconic acid esters. Acid esters are preferred.
  • unsaturated carboxylic acid esters such as acrylic acid esters, methacrylic acid esters, maleic acid esters, fumaric acid esters, and itaconic acid esters. Acid esters are preferred.
  • the (meth) acrylic acid ester which is a constituent monomer a compound represented by the following general formula (1) is used.
  • CH 2 C (R B ) CO 2 (R C ) (1)
  • R B represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and may have a branch, a ring, and / or an unsaturated bond.
  • R C represents a hydrocarbon group having 1 to 30 carbon atoms and may have a branch, a ring, and
  • R B is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and if R B has 11 or more carbon atoms, sufficient polymerization activity tends not to be exhibited.
  • Preferred R B is a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms. More preferably acrylic acid esters methacrylic acid ester or R B is R B is a methyl group is a hydrogen atom.
  • R C is a hydrocarbon group having 1 to 30 carbon atoms. When the carbon number of R C exceeds 30, the polymerization activity tends to decrease.
  • Preferred R C is a hydrocarbon group having 1 to 13 carbon atoms, more preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the structure of RC is not particularly limited, but a branched structure is more preferable, and a tertiary structure is more preferable.
  • the (meth) acrylate represented by the general formula (1) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, N-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, 1,3-dimethylbutyl (meth) acrylate Cyclohexyl (meth) acrylate, 2-ethylpentyl (meth) acrylate, 1,1,2,2-tetramethylpropyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate , Nonyl (meth) acrylate, decyl (meth) acrylate, do
  • isopropyl (meth) acrylate isobutyl (meth) acrylate, t-butyl (meth) acrylate, 1,3-dimethylbutyl (meth) acrylate, and cyclohexyl (meth) acrylate.
  • (meth) acrylic acid ester used in the production method of the present embodiment, (meth) acrylic acid in which the alcohol part of the (meth) acrylic acid ester is a tertiary alcohol from the viewpoint of the efficiency of thermal decomposition described later.
  • examples include esters.
  • t-butyl (meth) acrylate is particularly preferable from the viewpoint of availability of monomers.
  • the production method of the above-mentioned ethylene / unsaturated carboxylic acid ester is not particularly limited, and a conventionally known method can be used, but it is produced using the following late transition metal complex catalyst. It is preferable.
  • the late transition metal complex catalyst to be used is not particularly limited as long as a polymer satisfying the specific structure of the polymer of the present embodiment is obtained, but the late transition metal complex represented by the following general formula (2) is used. More preferably, the production method is as follows. (Ligand) MRL (2) [In the formula (2), M represents a group 9-11 transition metal.
  • Ligand is any ligand selected from the group consisting of oxygen atom, nitrogen atom, phosphorus atom, arsenic atom, sulfur atom and carbon atom, and is a ligand that chelates with M as the central metal.
  • R represents a ligand that forms a ⁇ bond with M.
  • L represents a ligand coordinated to M.
  • M is a transition metal of group 9 to 11, preferably group 10, and more preferably nickel (Ni) or palladium (Pd).
  • the valence of the M atom is 0, 1, or 2 and preferably 0 or 2.
  • Ligand is any atom selected from the group consisting of an oxygen atom, a nitrogen atom, a phosphorus atom, an arsenic atom, a sulfur atom, and a carbon atom, and is a coordinate that forms a chelate coordination with M as a central metal. It is a rank.
  • This ligand Ligand is preferably a bidentate ligand.
  • the atom coordinated to M include nitrogen, oxygen, phosphorus, arsenic, sulfur and carbon, with nitrogen, oxygen, phosphorus and sulfur being preferred, and nitrogen, oxygen and phosphorus being particularly preferred.
  • the combination of atoms coordinated to M of the bidentate ligand is not particularly limited, and may be any two elements among the above atoms.
  • the coordinated atom combination is nitrogen-nitrogen, nitrogen -Oxygen, oxygen-phosphorus, phosphorus-phosphorus, phosphorus-sulfur are preferred.
  • the bonding mode of the ligand to the central metal atom (M) is not particularly limited.
  • coordination by a lone electron pair hereinafter sometimes referred to as “ ⁇ coordination”
  • ⁇ coordination ⁇ coordination and ⁇ bond
  • ⁇ coordination and ⁇ bond are preferable.
  • the binding mode of the bidentate ligand to M is not particularly limited, and any two types of binding modes among the above binding modes may be mentioned.
  • ⁇ coordination- ⁇ bond ⁇ coordination- ⁇ coordination
  • ⁇ A coordination- ⁇ bond is preferred.
  • the combination means a plurality. That is, when a combination of nitrogen-oxygen and ⁇ coordination- ⁇ bond is selected, it means both nitrogen ( ⁇ coordination) -oxygen ( ⁇ bond) and nitrogen ( ⁇ bond) -oxygen ( ⁇ coordination). .
  • R is a ligand that forms a ⁇ bond with M.
  • the ligand R is not particularly limited as long as it can form a ⁇ bond with M.
  • hydrogen atom, halogen atom, hydrocarbon group, halogenated hydrocarbon group, silicon-containing hydrocarbon group, oxygen-containing Examples include a hydrocarbon group, an amino group, a substituted amino group, or a nitrogen-containing hydrocarbon group.
  • L represents a ligand coordinated to M
  • L is a hydrocarbon compound having 1 to 20 carbon atoms having oxygen, nitrogen and sulfur as atoms capable of coordination bonding.
  • a hydrocarbon compound having a carbon-carbon unsaturated bond capable of coordinating with a transition metal (which may contain a hetero atom) can also be used.
  • (I-1) Phosphine-phenolate complex (A) Furthermore, among the late transition metal complexes represented by the general formula (2), a phosphine-phenolate complex (A) represented by the following general formula (A) is more preferable.
  • R 8 represents a hydrocarbon group having 1 to 20 carbon atoms
  • R 9 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • M represents nickel or palladium.
  • R 1 represents a hydrogen atom or a hydrocarbon group that may contain a hetero atom having 1 to 20 carbon atoms.
  • L 1 represents a ligand coordinated to M.
  • R 1 and L 1 may be bonded to each other to form a ring.
  • P represents phosphorus.
  • O represents oxygen.
  • R 2 and R 3 each independently represent a hydrocarbon group which may contain a heteroatom having 1 to 30 carbon atoms, and may be bonded to each other to form a ring.
  • R 4 to R 7 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group optionally containing a heteroatom having 1 to 30 carbon atoms, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9 ) 2 , C (O) R 8 , SR 8 , SO 2 R 8 , SOR 8 , OSO 2 R 8 , P (O) (OR 8 ) 2-y (R 9 ) y , CN, NHR 8 , N (R 8 ) 2 , Si (OR 9 ) 3-x (R 9 ) x , OSi (OR 9 ) 3-x (R 9 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , PO 3 M ′′, P (O) (OR 8 ) 2 M ′ or an epoxy-containing group (wherein R 8 represents a hydrocarbon group having 1 to 20 carbon atoms, and R 9 represents Represents a hydrogen atom or a
  • M represents nickel or palladium, and the valence of M is preferably divalent.
  • the valence of M means a formal oxidation number used in organometallic chemistry. That is, when an electron pair in a bond involving an element is assigned to an element having a high electronegativity, it indicates the number of charges remaining on the atom of the element.
  • M is nickel
  • R 1 is a phenyl group
  • L 1 is pyridine
  • nickel (M) is adjacent phosphorus, oxygen, carbon of the phenyl group (R 1 ) and pyridine (L 1 )
  • the formal oxidation number of nickel, that is, the valence of nickel is divalent.
  • the electron pair is assigned to phosphorus, oxygen, carbon, and nitrogen, which have a higher electronegativity than nickel, and the charges are 0 for phosphorus, ⁇ 1 for oxygen, and phenyl.
  • the group is -1, the pyridine is 0, and the complex is electrically neutral as a whole, so that the charge remaining on the nickel is +2.
  • the divalent M include nickel (II) and palladium (II).
  • R 1 represents a hydrogen atom or a hydrocarbon group that may contain a heteroatom having 1 to 20 carbon atoms.
  • the polymerization or copolymerization reaction is thought to be initiated by the insertion of a monomer component at the bond between M and R 1 . Therefore, when the number of carbon atoms in R 1 is excessively large, handling tends to be difficult. For this reason, R 1 preferably has 1 to 16 carbon atoms, more preferably 1 to 10 carbon atoms.
  • R 1 examples include hydrido group, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, n-hexyl group, n-octyl group, n-decyl group, Examples thereof include n-dodecyl group, cyclopentyl group, cyclohexyl group, benzyl group, phenyl group, p-methylphenyl group, trimethylsilyl group, triethylsilyl group, triphenylsilyl group and the like.
  • L 1 represents a ligand coordinated to M.
  • the ligand L 1 is a hydrocarbon compound having 1 to 20 carbon atoms having oxygen, nitrogen, and sulfur as atoms capable of coordination bonding.
  • L 1 a hydrocarbon compound having a carbon-carbon unsaturated bond capable of coordinating to the transition metal (which may contain a hetero atom) can be used.
  • L 1 has 1 to 16 carbon atoms, more preferably 1 to 10 carbon atoms.
  • the L 1 to the general formula (A) coordinate bond with M in the compound having no charge is preferable.
  • Preferable L 1 includes pyridines, piperidines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitrile derivatives, aryl nitrile derivatives, alcohols, amides, aliphatic esters, aromatics Examples include esters, amines, and cyclic unsaturated hydrocarbons. More preferred L 1 includes pyridines, cyclic ethers, aliphatic esters, aromatic esters and cyclic olefins, and particularly preferred L 1 is pyridine, lutidine (dimethylpyridine), picoline (methylpyridine). , R 9 CO 2 R 8 (R 8 and R 9 are as described above).
  • R 1 and L 1 may be bonded to each other to form a ring.
  • An example of such is a cyclooct-1-enyl group, which is also a preferred embodiment in this embodiment.
  • R 2 and R 3 each independently represent a hydrocarbon group which may contain a heteroatom having 1 to 30 carbon atoms, and may be bonded to each other to form a ring. .
  • R 2 and R 3 are in the vicinity of the metal M and interact with M sterically and / or electronically. In order to exert such an effect, R 2 and R 3 are preferably bulky.
  • R 2 and R 3 preferably have 3 to 30 carbon atoms, more preferably 6 to 30 carbon atoms.
  • examples of the hetero atom contained in the hetero atom-containing group include oxygen, nitrogen, phosphorus, sulfur, selenium, silicon, fluorine, and boron. Of these heteroatoms, oxygen, silicon and fluorine are preferred.
  • examples of the heteroatom-containing group containing these heteroatoms include an alkoxy group, an aryloxy group, an acyl group, an allylyl group, and a carboxylate group as an oxygen-containing group, and a nitrogen-containing group as an amino group and an amide group.
  • Sulfur-containing groups include thioalkoxy groups and thioaryloxy groups
  • phosphorus-containing substituents include phosphino groups
  • selenium-containing groups include selenyl groups, and silicon-containing groups.
  • the fluorine-containing group include a fluoroalkyl group and a fluoroaryl group.
  • the boron-containing group include an alkylboron group and an arylboron group. Is mentioned. Of these heteroatom-containing groups, an alkoxy group or an aryloxy group is most preferable.
  • hetero atom contained in the hetero atom-containing group described above one capable of coordinating with a transition metal is preferable.
  • Specific examples of the hetero atom-containing group containing a hetero atom capable of transition metal include the following. That is, as an oxygen-containing group, alkoxy groups such as methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, t-butoxy group, phenoxy group, p-methylphenoxy group, p-methoxyphenoxy group
  • aryloxy groups such as acetyl groups, aryloyl groups such as benzoyl groups, acetoxy groups, ethyl carboxylate groups, t-butyl carboxylate groups, and carboxylate groups such as phenyl carboxylate groups.
  • nitrogen-containing group examples include dialkylamino groups such as a dimethylamino group, a diethylamino group, a di-n-propylamino group, and a cyclohexylamino group.
  • sulfur-containing group examples include thioalkoxy groups such as thiomethoxy group, thioethoxy group, thio-n-propoxy group, thioisopropoxy group, thio-n-butoxy group, thio-t-butoxy group, and thiophenoxy group, p-methylthio And thioaryloxy groups such as phenoxy group and p-methoxythiophenoxy group.
  • Examples of the phosphorus-containing substituent include dialkylphosphino groups such as a dimethylphosphino group, a diethylphosphino group, a di-n-propylphosphino group, and a cyclohexylphosphino group.
  • Examples of the selenium-containing group include selenyl groups such as a methylselenyl group, an ethylselenyl group, an n-propylselenyl group, an n-butylselenyl group, a t-butylselenyl group, and a phenylselenyl group.
  • R 2 and R 3 are each independently a hydrocarbon group which may contain a heteroatom having 1 to 30 carbon atoms, more specifically, hydrogen or a heteroatom.
  • R 2 and R 3 are preferably bulky. Therefore, among these, an alicyclic hydrocarbon group which may contain a hetero atom, or an aryl group which may contain a hetero atom is preferable, and an aryl group which may contain a hetero atom is preferred. Most preferred.
  • Such aryl groups include phenyl, naphthyl, and anthracenyl groups.
  • the heteroatom-containing group when the heteroatom-containing group described above is bonded to the aromatic skeleton of these aryl groups, as the bonding mode, the heteroatom-containing group may be directly bonded to the aromatic skeleton, or a methylene group It may be bonded to the aromatic skeleton through a spacer such as When the heteroatom-containing group is bonded to the aromatic skeleton via a methylene group, the number of methylene groups is preferably one.
  • the substitution position is preferably ortho to the carbon bonded to phosphorus in the aromatic skeleton in R 2 and R 3 . By doing so, it is possible to take a spatial arrangement so that the heteroatoms in R 2 and R 3 interact with M.
  • R 2 and R 3 include 2,6-dimethoxyphenyl group, 2,4,6-trimethoxyphenyl group, 4-methyl-2,6-dimethoxyphenyl group, 4-t-butyl-2. , 6-Dimethoxyphenyl group, 1,3-dimethoxy-2-naphthyl group, 2,6-diethoxyphenyl group, 2,4,6-triethoxyphenyl group, 4-methyl-2,6-diethoxyphenyl group 4-t-butyl-2,6-diethoxyphenyl group, 1,3-diethoxy-2-naphthyl group, 2,6-diphenoxyphenyl group, 2,4,6-triphenoxyphenyl group, 4-methyl -2,6-diphenoxyphenyl group, 4-t-butyl-2,6-diphenoxyphenyl group, 2-methoxy-6-phenoxyphenyl group, 2-methoxy-4-t-butyl-6-phenoxy Phenyl group, 2,4,6--
  • 2,6-dimethoxyphenyl group 2,4,6-trimethoxyphenyl group, 4-methyl-2,6-dimethoxyphenyl group, 4-t-butyl-2,6- Dimethoxyphenyl group, 1,3-dimethoxy-2-naphthyl group, 2,6-diethoxyphenyl group, 2,4,6-triethoxyphenyl group, 4-methyl-2,6-diethoxyphenyl group, 4- t-butyl-2,6-diethoxyphenyl group, 1,3-diethoxy-2-naphthyl group, 2,6-diphenoxyphenyl group, 2,4,6-triphenoxyphenyl group, 4-methyl-2, 6-diphenoxyphenyl group, 4-t-butyl-2,6-diphenoxyphenyl group, 2-methoxy-6-phenoxyphenyl group, 2-methoxy-4-t-butyl-6-phenoxyf It includes group.
  • R 4 to R 7 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group optionally containing a heteroatom having 1 to 30 carbon atoms, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9 ) 2 , C (O) R 8 , SR 8 , SO 2 R 8 , SOR 8 , OSO 2 R 8 , P (O) (OR 8 ) 2 ⁇ y (R 9) y, CN , NHR 8, N (R 8) 2, Si (OR 9) 3-x (R 9) x, OSi (OR 9) 3-x (R 9) x, NO 2, SO 3 M ′, PO 3 M ′ 2 , PO 3 M ′′, P (O) (OR 8 ) 2 M ′ or an epoxy-containing group (where R 8 is a hydrocarbon having 1 to 20 carbon atoms) R 9 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms,
  • R 4 to R 6 preferred are a hydrogen atom, a fluorine atom, a chloro atom, a bromo atom, a methyl group, an ethyl group, an isopropyl group, a phenyl group, a trifluoromethyl group, a pentafluorophenyl group, a trimethylsilyl group, Examples include methoxy group, ethoxy group, phenoxy group, nitrile group, trimethoxysilyl group, triethoxysilyl group, trimethylsiloxy group, trimethoxysiloxy group, sodium sulfonate, potassium sulfonate, sodium phosphate, and potassium phosphate.
  • R 7 is preferably bulky and preferably has 3 to 30 carbon atoms. Specific examples thereof include hydrocarbon groups such as n-butyl, isobutyl, t-butyl, phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, As heteroatom-containing hydrocarbon groups such as 9-anthracenyl group, 4-t-butylphenyl group, 2,4-di-t-butylphenyl group, 9-fluorenyl group, cyclohexyl group, trimethylsilyl group, triethylsilyl group, n-propylsilyl group, dimethylphenylsilyl group, methyldiphenylsilyl group, trisubstituted silyl group such as triphenylsilyl group, 2,6-difluorophenyl group, 2,4,6-trifluorophenyl group, pentafluoroph
  • t-butyl, phenyl, 1-naphthyl, 2-naphthyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 4-t-butylphenyl are preferred.
  • complex (A) (hereinafter also simply referred to as “complex (A)”) suitably used in this embodiment is represented by the following formula (B ) And / or (C) and a transition metal complex component (D) containing a transition metal M described later can be obtained.
  • Z represents a hydrogen atom or a leaving group
  • m represents the valence of Z.
  • R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are the same as described in the general formula (A).
  • Z is a hydrogen atom or a leaving group, and specifically, a hydrogen atom, an R 9 SO 2 group (where R 9 is as described above), CF. 3 SO 2 group and the like can be mentioned.
  • any counter cation can be used as long as the reaction with the transition metal complex component (D) is not inhibited.
  • the counter cation include ammonium, quaternary ammonium or phosphonium, and metal ions of Groups 1 to 14 of the periodic table.
  • NH 4 + , R 9 4 N + (wherein R 9 is as described above, and four R 9 may be the same or different), and R 9 4 P + ( here And R 9 is as described above, and the four R 9 may be the same or different), Li + , Na + , K + , Mg 2+ , Ca 2+ , Al 3+ , more preferably R 9 4 N + (wherein R 9 is as described above, the four R 9 may be the same or different), Li +, Na +, a K +.
  • the substances represented by the general formulas (B) and (C) can be synthesized based on a known synthesis method.
  • transition metal complex component (D) those capable of reacting with the compound represented by the general formula (B) or (C) to form a complex having a polymerization ability are used, and these are precursors (precursors).
  • a transition metal complex component (D) containing nickel a complex represented by bis (1,5-cyclooctadiene) nickel (0), a general formula: (CH 2 CR′CH 2 ) 2 Ni , R ′ is a hydrogen atom, a halogen atom, a hydrocarbon group optionally containing a heteroatom having 1 to 30 carbon atoms, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9) 2, C (O) R 8, SR 8, SO 2 R 8, SOR 8, OSO 2 R 8, P (O) (OR 8) 2-y (R 9) y, CN, NHR 8, N (R 8 ) 2 , Si (OR 9 ) 3-x (R 9 ) x , OSi
  • the following general formula (3) can be used about the transition metal complex component (D) containing the group 9, 10 or 11 transition metal.
  • MR ′ p L 1 q (3) (Wherein M is a transition metal of group 9, 10 or 11; R ′ and L 1 are as described above; p and q are integers of 0 or more that satisfy the valence of M; is there.)
  • transition metal complex components (D) those preferably used are represented by bis (1,5-cyclooctadiene) nickel (0), represented by the general formula: (CH 2 CR′CH 2 ) 2 Ni.
  • the complex (A) represented by the general formula (A) includes a compound represented by the general formula (B) or (C), a transition metal complex component (D) including the transition metal M in the complex (A), and In the reaction product.
  • a metal complex represented by the general formula (A) is formed by substitution with a portion other than the above and the general formula (C). This substitution reaction preferably proceeds quantitatively, but may not proceed completely in some cases.
  • other components derived from the compounds represented by the general formulas (B), (C), and (D) coexist, but when performing a polymerization reaction or a copolymerization reaction, These other components may or may not be removed. Generally, it is preferable to remove these other components because high activity can be obtained.
  • the reaction when performing the reaction, it may be allowed to coexist L 1.
  • L 1 when nickel or palladium is used as M, the stability of the purified complex (A) may be increased by allowing Lewis basic L 1 to coexist in the system. , to the extent that L 1 does not inhibit the polymerization reaction or copolymerization reaction, it is preferable to coexist L 1.
  • the reaction is carried out in a separate container from the reactor used for the polymerization of ⁇ -olefin and the copolymerization of ⁇ -olefin and (meth) acrylate, and the resulting complex ( A) may be subjected to polymerization of ⁇ -olefin, copolymerization of ⁇ -olefin and (meth) acrylic acid ester, or the reaction may be performed in the presence of these monomers.
  • the reaction may be performed in a reactor used for polymerization of ⁇ -olefin or copolymerization of ⁇ -olefin and (meth) acrylate. At this time, these monomers may exist or may not exist.
  • a single component may respectively be used and multiple types of component may be used together, respectively. Particularly, for the purpose of widening the molecular weight distribution and the comonomer content distribution, a combination of these plural types is useful.
  • M represents nickel or palladium.
  • P is phosphorus
  • S is sulfur
  • O oxygen.
  • R 11 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms which may contain a hetero atom, or an aryl group having 6 to 30 carbon atoms which may contain a hetero atom.
  • L 2 represents a ligand coordinated to M.
  • R 12 and R 13 each independently represent a hydrocarbon group having 1 to 30 carbon atoms which may contain a hetero atom, and may be bonded to each other to form a ring.
  • R 14 to R 17 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group optionally containing a heteroatom having 1 to 30 carbon atoms, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9 ) 2 , C (O) R 8 , SR 8 , SO 2 R 8 , SOR 8 , OSO 2 R 8 , P (O) (OR 8 ) 2-y (R 9 ) y , CN, NHR 8 , N (R 8 ) 2 , Si (OR 9 ) 3-x (R 9 ) x , OSi (OR 9 ) 3-x (R 9 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , PO 3 M ′′, P (O) (OR 8 ) 2 M ′ or an epoxy-containing group (wherein R 8 represents a hydrocarbon group having 1 to 20 carbon atoms, and R 9 represents Represents a hydrogen atom or a
  • M is the same as described in the general formula (A).
  • R 11 is a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms which may contain a hetero atom, or a C 6 to 30 carbon atom which may contain a hetero atom.
  • the hetero atom is preferably an oxygen atom, a nitrogen atom, a silicon atom, or a halogen atom, and more preferably an oxygen atom.
  • R 11 is an alkyl group having 1 to 30 carbon atoms which may contain a hetero atom, it is preferably an alkyl group having 1 to 6 carbon atoms. Preferred examples include methyl group, ethyl group, trifluoro A methyl group, an acyl group, and an acetoxy group are mentioned. In addition, when R 11 is a preferable aryl group having 6 to 30 carbon atoms which may contain a hetero atom, it is preferably an aryl group having 6 to 13 carbon atoms. Preferred specific examples include phenyl group, tolyl Group, xylyl group, phenanthryl group and pentafluorophenyl group. Among these, particularly preferred specific examples of R 11 include a hydrogen atom, a methyl group, and a phenyl group.
  • L 2 represents a ligand coordinated to M.
  • the ligand L 2 is preferably a hydrocarbon compound having 1 to 20 carbon atoms having oxygen, nitrogen and sulfur as atoms capable of coordinating bonding to M. Further, as L 2 , a hydrocarbon compound having a carbon-carbon unsaturated bond capable of coordinating to the transition metal (which may contain a hetero atom) can also be used.
  • the number of carbon atoms of L 2 is preferably 1 to 16, and more preferably 1 to 10.
  • L 2 to the general formula (A) coordinate bond with M in the compound having no charge is preferable.
  • Preferable L 2 includes pyridines, piperidines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitrile derivatives, aryl nitrile derivatives, alcohols, amides, aliphatic esters, aromatics Examples include esters, amines, and cyclic unsaturated hydrocarbons.
  • L 2 includes pyridines, cyclic ethers, aliphatic esters, aromatic esters, and cyclic olefins. Particularly preferable L 2 includes pyridine, lutidine (dimethylpyridine), picoline (methylpyridine). , R 9 CO 2 R 8 .
  • R 11 and L 2 may be combined to form a ⁇ -allyl bonding mode represented by the following general formula (E-1) (the following formula (E-1) is represented by the general formula (E) (Only the part where M and R 11 and L 2 are combined to form a ⁇ -allyl bond is shown.)
  • each R 10 independently represents a hydrogen atom, a halogen atom, a hydrocarbon group optionally containing a heteroatom having 1 to 30 carbon atoms, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9 ) 2 , C (O) R 8 , SR 8 , SO 2 R 8 , SOR 8 , OSO 2 R 8 , P (O) (OR 8 ) 2-y (R 9 ) y , CN, NHR 8 , N (R 8 ) 2 , Si (OR 9 ) 3-x (R 9 ) x , OSi (OR 9 ) 3-x (R 9 ) x , NO 2 , SO 3 M ′, PO 3 M ′ 2 , PO 3 M ′′, P (O) (OR 8 ) 2 M ′ or an epoxy-containing group (where R 8 is a hydrocarbon group having 1 to 20 carbon atoms) the stands, R 9 represents a hydrogen atom or
  • R 12 and R 13 each independently represent a hydrocarbon group that may contain a heteroatom having 1 to 30 carbon atoms, and may be bonded to each other to form a ring.
  • R 12 and R 13 are in the vicinity of the metal M, and interact with M sterically and / or electronically. In order to exert such an effect, R 12 and R 13 are preferably bulky.
  • R 12 and R 13 preferably have 3 to 30 carbon atoms, more preferably 6 to 30 carbon atoms.
  • R 12 and R 13 preferably have an aromatic skeleton, and preferably an aryl group that may contain a hetero atom.
  • R 12 and R 13 the substitution position of the hydrocarbon group which may contain the above hetero atom in the aromatic skeleton of these aryl groups is bonded to phosphorus among the aromatic skeletons in R 12 and R 13.
  • the ortho position relative to the carbon is preferred. By doing so, it is possible to adopt a spatial arrangement so that the heteroatoms in R 12 and R 13 interact with M.
  • the hydrocarbon group which may contain a hetero atom is a hydrocarbon group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms having oxygen, or an aryloxy group.
  • Examples of the hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • n-propyl group, isopropyl group, n-butyl group and cyclohexyl group are preferable, and methyl group, ethyl group, isopropyl group and cyclohexyl group are more preferable.
  • alkoxy group having 1 to 10 carbon atoms and aryloxy group having oxygen a methoxy group, an ethoxy group, a phenoxy group, and a 2-methylphenoxy group are preferable, and a methoxy group and a phenoxy group are preferable.
  • R 12 and R 13 include 2-methylphenyl group, 2,6-dimethylphenyl group, 2-ethylphenyl group, 2,6-diethylphenyl group, 2-isopropylphenyl group, 2,6 -Di (isopropyl) phenyl group, 2-cyclohexylphenyl group, 2,6-di (cyclohexyl) phenyl group, 2-methoxyphenyl group, 2,6-dimethoxyphenyl group, 2-phenoxyphenyl group, 2,6-diphenoxy Group and the like.
  • 2-methylphenyl group 2-ethylphenyl group, 2-isopropylphenyl group, 2-cyclohexylphenyl group, 2-methoxyphenyl group, 2,6-dimethoxyphenyl group, 2-phenoxy group.
  • Examples include a phenyl group and a 2,6-diphenoxy group.
  • Particularly preferred are 2-isopropylphenyl group, 2-cyclohexylphenyl group, 2-methoxyphenyl group, 2,6-dimethoxyphenyl group, 2-phenoxyphenyl group, and 2,6-diphenoxy group.
  • R 14 to R 17 are each independently a hydrogen atom, a halogen atom, a hydrocarbon group optionally containing a heteroatom having 1 to 30 carbon atoms, OR 8 , CO 2 R 8 , CO 2 M ′, C (O) N (R 9 ) 2 , C (O) R 8 , SR 8 , SO 2 R 8 , SOR 8 , OSO 2 R 8 , P (O) (OR 8 ) 2 ⁇ y (R 9) y, CN , NHR 8, N (R 8) 2, Si (OR 9) 3-x (R 9) x, OSi (OR 9) 3-x (R 9) x, NO 2, SO 3 M ′, PO 3 M ′ 2 , PO 3 M ′′, P (O) (OR 8 ) 2 M ′ or an epoxy-containing group (where R 8 is a hydrocarbon having 1 to 20 carbon atoms) R 9 represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms,
  • complex (E) The phosphine-sulfonate complex (E) (hereinafter also referred to as “complex (E)”) suitably used in the production method of the present embodiment is represented by the following general formula (F) and / or ( It can be obtained by a reaction between the compound represented by G) and a transition metal complex component (H) described later.
  • Z represents a hydrogen atom or a leaving group
  • m represents the valence of Z.
  • R 12 , R 13 , R 14 , R 15 , R 16 and R 17 are the same as described in the general formula (E). ]
  • Z is a hydrogen atom or a leaving group, and specifically, a hydrogen atom, an R 9 SO 2 group (where R 9 is as described above), CF. 3 SO 2 group and the like can be mentioned.
  • any counter cation can be used as long as the reaction with the transition metal complex (H) is not inhibited.
  • the counter cation include ammonium, quaternary ammonium or phosphonium, and metal ions of Groups 1 to 14 of the periodic table.
  • NH 4 + , R 9 4 N + (wherein R 9 is as described above, and four R 9 may be the same or different), and R 9 4 P + ( here And R 9 is as described above, and the four R 9 may be the same or different), Li + , Na + , K + , Mg 2+ , Ca 2+ , Al 3+ , more preferably R 9 4 N + (wherein R 9 is as described above, the four R 9 may be the same or different), Li +, Na +, a K +.
  • the substances represented by the general formulas (F) and (G) can be synthesized based on a known synthesis method.
  • the complex (E) is included in the reaction product of the compound represented by the general formula (F) or (G) and the transition metal complex component (H) containing the metal M.
  • transition metal complex component (H) used in the production method of the present embodiment those capable of forming a complex having a polymerization ability by reacting with the compound represented by the general formula (F) or (G) are used.
  • the These are sometimes called precursors (precursors).
  • the transition metal complex component (H) includes, for example, bis (dibenzylideneacetone) palladium, tetrakis (triphenylphosphine) palladium, palladium sulfate, palladium acetate, bis (allyl palladium chloride), palladium chloride, palladium bromide, (cycloocta Diene) palladium (methyl) chloride, dimethyl (tetramethylethylenediamine) palladium, bis (cyclooctadiene) nickel, nickel chloride, nickel bromide, (tetramethylethylenediamine) nickel (methyl) chloride, dimethyl (tetramethylethylenediamine) nickel, It is synthesized using (cyclooctadiene) nickel (methyl) chloride or the like.
  • the complexing reaction may be performed in a reactor used for copolymerization with an ⁇ -olefin, or may be performed in a container separate from the reactor. After complex formation, the metal complex may be isolated and extracted and used as a catalyst, or may be used as a catalyst without isolation. Furthermore, it can be carried out in the presence of a porous carrier described later.
  • One type of catalyst composition used in the production method of the present embodiment may be used alone, or a plurality of types of catalyst compositions may be used in combination. Particularly, for the purpose of widening the molecular weight distribution and the comonomer content distribution, the combined use of such a plurality of catalyst compositions is useful.
  • the production method of this embodiment includes a step of producing an ethylene / unsaturated carboxylic acid ester copolymer from ethylene and an unsaturated carboxylic acid ester using a late transition metal complex catalyst.
  • a late transition metal complex catalyst As the late transition metal complex catalyst, complex (A) or complex (E) can be suitably used as a catalyst component for polymerization or copolymerization.
  • the complex (A) can be formed by a reaction between the compound represented by the general formula (B) or (C) and the transition metal complex component (D).
  • the complex (E) can be formed by a reaction between the compound represented by the general formula (F) or (G) and the transition metal complex component (H).
  • the complex (A) or complex (E) is used as a catalyst component
  • an isolated one may be used, or one supported on a carrier may be used.
  • the reaction may be performed in the presence or absence of these monomers in the reactor used for the polymerization of the supported ⁇ -olefin or the copolymerization of the ⁇ -olefin and the (meth) acrylic acid ester. You may carry out in another container.
  • any carrier can be used as long as the gist of the present invention is not impaired.
  • inorganic oxides and polymer carriers can be preferably used. Specific examples include SiO 2 , Al 2 O 3 , MgO, ZrO 2 , TiO 2 , B 2 O 3 , CaO, ZnO, BaO, ThO 2, or a mixture thereof, and SiO 2 —Al 2 O 3.
  • SiO 2 —V 2 O 5 , SiO 2 —TiO 2 , SiO 2 —MgO, SiO 2 —Cr 2 O 3 and other mixed oxides can also be used, inorganic silicate, polyethylene carrier, polypropylene carrier, A polystyrene carrier, polyacrylic acid carrier, polymethacrylic acid carrier, polyacrylic acid ester carrier, polyester carrier, polyamide carrier, polyimide carrier and the like can be used. These carriers are not particularly limited in particle size, particle size distribution, pore volume, specific surface area, etc., and any one can be used.
  • clay, clay mineral, zeolite, diatomaceous earth, or the like can be used as the carrier.
  • a synthetic product may be used for these, and the mineral produced naturally may be used.
  • Specific examples of clays and clay minerals include allophanes such as allophane, kaolins such as dickite, nacrite, kaolinite and anorcite, halloysites such as metahalloysite and halloysite, and serpentine such as chrysotile, lizardite and antigolite. Stone group, montmorillonite, sauconite, beidellite, nontronite, saponite, hectorite, etc.
  • Examples include clay, gyrome clay, hysingelite, pyrophyllite, and ryokdeite group. These may form a mixed layer.
  • Synthetic products include synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite and the like.
  • kaolins such as dickite, nacrite, kaolinite, anorcite, halosites such as metahalosite, halosite, chrysotile, lizardite, serpentine such as antigolite, montmorillonite, Smectites such as sauconite, beidellite, nontronite, saponite, hectorite, vermiculite minerals such as vermiculite, mica minerals such as illite, sericite, sea chlorite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic teniolite
  • montmorillonite sauconite, beidellite, nontronite, saponite, smectite such as hectorite, vermiculite mineral such as vermiculite, synthetic mica, synthetic hectorite, synthetic saponite, synthetic Taeniolite.
  • These carriers may be used as they are, but may be treated with hydrochloric acid, nitric acid, sulfuric acid, etc. and / or LiCl, NaCl, KCl, CaCl 2 , MgCl 2 , Li 2 SO 4 , MgSO 4 , ZnSO 4 , Ti ( Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3 may be performed.
  • Salt treatment such as SO 4 ) 2 , Zr (SO 4 ) 2 , Al 2 (SO 4 ) 3
  • the corresponding acid and base may be mixed to produce a salt in the reaction system.
  • shape control such as pulverization and granulation and drying treatment may be performed.
  • the polymerization reaction may be a liquid such as a hydrocarbon solvent such as propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane, methylcyclohexane, or a liquefied ⁇ -olefin, or diethyl ether, ethylene.
  • a hydrocarbon solvent such as propane, n-butane, isobutane, n-hexane, n-heptane, toluene, xylene, cyclohexane, methylcyclohexane, or a liquefied ⁇ -olefin, or diethyl ether, ethylene.
  • the reaction can be performed in the presence or absence of a polar solvent such as glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol and the like.
  • a polar solvent such as glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide, acetonitrile, methanol, isopropyl alcohol, ethylene glycol and the like.
  • a polar solvent such as glycol dimethyl ether, tetrahydrofuran, dioxane, ethyl acetate, methyl benzoate, acetone, methyl ethyl ketone, formamide,
  • the polymerization reaction can be performed in the presence or absence of a known additive.
  • a polymerization inhibitor that inhibits radical polymerization and an additive that has an action of stabilizing the produced copolymer are preferable.
  • preferable additives include quinone derivatives and hindered phenol derivatives. Specifically, monomethyl ether hydroquinone, 2,6-di-t-butyl 4-methylphenol (BHT), reaction product of trimethylaluminum and BHT, reaction product of tetravalent titanium alkoxide and BHT, etc. Can be used.
  • inorganic and / or organic fillers may be used and polymerization may be performed in the presence of these fillers.
  • L or ionic liquid may be used as an additive.
  • a Lewis base is mentioned as a preferable additive.
  • the amount of the Lewis base is 0.0001 equivalent to 1000 equivalents, preferably 0.1 equivalents to 100 equivalents, more preferably 0.3 equivalents, relative to the transition metal M in the catalyst component present in the polymerization system. ⁇ 30 equivalents.
  • Arbitrary methods can be used. For example, it may be mixed with the above catalyst component, added with a monomer, or added to the polymerization system independently of the catalyst component or the monomer. A plurality of Lewis bases may be used in combination.
  • the same Lewis base as L1 which concerns on this invention may be used, and may differ.
  • Lewis bases include aromatic amines, aliphatic amines, alkyl ethers, aryl ethers, alkylaryl ethers, cyclic ethers, alkyl nitriles, aryl nitriles, alcohols, amides, aliphatic esters , Aromatic esters, phosphates, phosphites, thiophenes, thianthrenes, thiazoles, oxazoles, morpholines, and cyclic unsaturated hydrocarbons.
  • Lewis bases are aromatic amines, aliphatic amines, cyclic ethers, aliphatic esters, aromatic esters, and among them, preferred Lewis bases are pyridine derivatives, pyrimidine derivatives, piperidine. Derivatives, imidazole derivatives, aniline derivatives, piperidine derivatives, triazine derivatives, pyrrole derivatives, furan derivatives.
  • Lewis base compounds include pyridine, pentafluoropyridine, 2,6-lutidine, 2,4-lutidine, 3,5-lutidine, pyrimidine, N, N-dimethylaminopyridine, N-methylimidazole, 2, 2'-bipyridine, aniline, piperidine, 1,3,5-triazine, 2,4,6-tris (trifluoromethyl) -1,3,5-triazine, 2,4,6-tris (2-pyridyl) -S-triazine, quinoline, 8-methylquinoline, phenazine, 1,10-phenanthroline, N-methylpyrrole, 1,8-diazabicyclo- [5.4.0] -undec-7-ene, 1,4 -Diazabicyclo- [2,2,2] -octane, triethylamine, benzonitrile, picoline, triphenylamine, N-methyl-2-pyrrolide 4-methylmorpholine, benzoxazo
  • the polymerization format is not particularly limited.
  • slurry polymerization in which at least a part of the produced polymer in the medium becomes a slurry bulk polymerization using the liquefied monomer itself as a medium, gas phase polymerization performed in the vaporized monomer, or formation in a monomer liquefied at high temperature and high pressure
  • High pressure ionic polymerization in which at least a part of the polymer is dissolved can be used.
  • any of batch polymerization, semi-batch polymerization, and continuous polymerization may be used.
  • living polymerization may be sufficient and it may superpose
  • so-called chain transfer agent (CSA) may be used in combination, and chain shuffling or coordinative chain transfer polymerization (CCTP) may be performed.
  • chain transfer agent CSA
  • chain shuffling or coordinative chain transfer polymerization (CCTP) may be performed.
  • the unreacted monomer and medium may be separated from the produced copolymer and recycled before use. In recycling, these monomers and media may be purified and reused, or may be reused without purification.
  • a conventionally known method can be used to separate the produced copolymer from the unreacted monomer and the medium. For example, methods such as filtration, centrifugation, solvent extraction, and reprecipitation using a poor solvent can be used.
  • Polymerization temperature, polymerization pressure, and polymerization time are not particularly limited, but usually can be optimally set in consideration of productivity and process capability from the following ranges. That is, the polymerization temperature is usually ⁇ 20 ° C. to 290 ° C., preferably 0 ° C. to 250 ° C., the copolymerization pressure is 0.1 MPa to 300 MPa, preferably 0.3 MPa to 250 MPa, and the polymerization time is 0.1 minutes. It can be selected from the range of ⁇ 10 hours, preferably 0.5 minutes to 7 hours, more preferably 1 minute to 6 hours.
  • the polymerization reaction can be performed in a general inert gas atmosphere.
  • a nitrogen, argon or carbon dioxide atmosphere can be used, and a nitrogen atmosphere is preferably used.
  • a small amount of oxygen or air may be mixed.
  • control of the copolymer composition it is generally possible to use a control method in which a plurality of monomers are supplied to a reactor and the supply ratio is changed.
  • Other methods include controlling the copolymer composition using the difference in monomer reactivity ratio due to the difference in catalyst structure, and controlling the copolymer composition using the polymerization temperature dependence of the monomer reactivity ratio. .
  • a conventionally known method can be used for controlling the molecular weight of the polymer. That is, a method for controlling the molecular weight by controlling the polymerization temperature, a method for controlling the molecular weight by controlling the monomer concentration, a method for controlling the molecular weight by using a chain transfer agent, and a molecular weight by controlling the ligand structure in the transition metal complex.
  • a chain transfer agent a conventionally known chain transfer agent can be used.
  • hydrogen, metal alkyl, etc. can be used.
  • the (meth) acrylic acid ester component itself is a kind of chain transfer agent
  • the ratio of the (meth) acrylic acid ester component to the ethylene component and the concentration of the (meth) acrylic acid ester component can be adjusted.
  • the molecular structure is controlled by controlling the ligand structure in the transition metal complex, the type, number, and arrangement of the hetero atom-containing groups in R 2 , R 3 , R 12 , and R 13 are controlled.
  • an electron-donating group with respect to the metal M so that electron-donating groups, such as an aryl group and a hetero atom containing substituent, can interact. Whether or not such an electron-donating group can interact with the metal M can be generally determined by measuring the distance between the electron-donating group and the metal M by a molecular model or molecular orbital calculation.
  • the manufacturing method of the present embodiment is the step (2) in which the ethylene / unsaturated carboxylic acid ester obtained is manufactured after the ethylene / unsaturated carboxylic acid ester is manufactured by the above step.
  • the process includes converting the acid ester to an ethylene / unsaturated carboxylic acid copolymer by heating.
  • the temperature at which the ethylene / unsaturated carboxylic acid ester is heat-treated is not particularly limited as long as it is a reaction temperature at which the ester group can be converted into a carboxylic acid group. If the reaction temperature is too low, the ester group is not converted to a carboxylic acid group, and if it is too high, decarbonylation and decomposition of the copolymer proceed.
  • the reaction temperature is preferably in the range of 150 ° C. to 350 ° C., more preferably in the range of 180 ° C. to 300 ° C., and still more preferably in the range of 190 ° C. to 270 ° C.
  • the reaction time varies depending on the reaction temperature and the reactivity of the ester moiety, but is usually 1 minute to 10 hours, more preferably 2 minutes to 5 hours, and further preferably 2 minutes to 3 hours.
  • the reactor used for the reaction method is not particularly limited, but is not limited as long as the method can stir the copolymer substantially uniformly, and a glass container equipped with a stirrer or AC may be used. Any known kneader such as a Brabender plastograph, a single-screw or twin-screw extruder, a high-pressure screw kneader, a Banbury mixer, a kneader, or a roll can be used.
  • the reaction atmosphere is not particularly limited, but it is generally preferable that the reaction is performed under an inert gas stream.
  • an inert gas nitrogen, argon, carbon dioxide atmosphere can be used, and a small amount of oxygen or air may be mixed.
  • the ethylene / unsaturated carboxylic acid copolymer obtained by the step (2) contains at least ethylene and an unsaturated carboxylic acid as constituent monomers.
  • unsaturated carboxylic acid what substituted the ester group of unsaturated carboxylic acid ester which is a constituent monomer of the above-mentioned ethylene / unsaturated carboxylic acid ester by the carboxylic acid group is mentioned.
  • Specific examples of the unsaturated carboxylic acid include acrylic acid and methacrylic acid.
  • the ethylene / unsaturated carboxylic acid ester or the ethylene / unsaturated carboxylic acid copolymer may contain an antioxidant, a light stabilizer, an ultraviolet absorber, a metal soap, hydrochloric acid absorption, within the scope of the present invention. It may contain additives such as stabilizers such as agents, nucleating agents, lubricants, antistatic agents, antiblocking agents and the like. Examples of additives include 2,6-di-t-butyl-p-cresol (BHT), tetrakis (methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate.
  • BHT 2,6-di-t-butyl-p-cresol
  • tetrakis methylene-3- (3,5-di-t-butyl-4-hydroxyphenyl
  • Methane (trade name “IRGANOX 1010” manufactured by BASF Japan) or n-octadecyl-3- (4′-hydroxy-3,5′-di-t-butylphenyl) propionate (trade name “IRGANOX 1076” manufactured by BASF) )
  • phenolic stabilizers phosphite stabilizers represented by bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, etc., represented by higher fatty acid amides and higher fatty acid esters Lubricants, glycerol esters and sorbitan esters of fatty acids having 8 to 22 carbon atoms, polyethylene glycol ester
  • Antistatic agents such as ether, silica, calcium carbonate, and the like blocking agent typified by talc.
  • GPC analysis Mw / Mn: Measurement conditions (high temperature SEC) Apparatus: GPCV2000 (Waters) Detector: RI (differential refractometer) Mobile phase: ODCB (135 ° C) Flow rate: 1.0 mL / min Injection rate: 0.05 wt% x 524.5 ⁇ L Column: Tosoh TSKgel GMH-HT (30 cm ⁇ 4) The sample was dissolved in ODCB added with BHT (0.5 g / L) in a high temperature GPC pretreatment apparatus PL-SP260VS (dissolution temperature 135 ° C.), and measured after filtration through a glass filter.
  • GPC analysis Mw / Mn: Measurement conditions (high temperature SEC) Apparatus: GPCV2000 (Waters) Detector: RI (differential refractometer) Mobile phase: ODCB (135 ° C) Flow rate: 1.0 mL / min Injection rate: 0.05 wt% x
  • Catalyst (A) and catalyst (B) were prepared according to WO 2010/050256. Specific preparation will be described below.
  • Example 1 [Method of producing ethylene / tert-butyl acrylate copolymer (EtBA) (1)] Toluene (1,000 mL) and t-butyl acrylate (tBA) (6.0 mL, 41 mmol) were placed in an induction stirring autoclave having an internal volume of 2 L, and when the temperature was raised to about 65 ° C., the catalyst (A) A toluene solution (20 ⁇ mol / mL, 4.0 mL, 80 ⁇ mol) was introduced, and stirring was continued for 1 hour while adding ethylene to maintain 3.0 MPa at 70 ° C. After the completion of stirring, unreacted ethylene was purged to terminate the polymerization.
  • EtBA tert-butyl acrylate copolymer
  • EtBA (1) 10 g
  • EtBA (1) 10 g
  • the inside of the flask was replaced with purified CE nitrogen, and then heated in an oil bath at 260 ° C. for 2 hours.
  • the copolymer was swollen with boiling xylene and then removed from the flask.
  • the swollen copolymer was dried to obtain an ethylene / acrylic acid copolymer (EAA) (10 g).
  • the ethylene / acrylic acid copolymer (Examples 1 and 2) produced by the production method of the present invention is an ethylene / acrylic acid copolymer produced by a conventional radical polymerization method. It has higher heat resistance and superior mechanical strength than coalescence (Comparative Example 1).
  • the ethylene / unsaturated carboxylic acid copolymer obtained by the production method of the present invention particularly the ethylene / (meth) acrylic acid copolymer, has good paintability and printability due to the effect based on the polar group of the copolymer.
  • antistatic properties, inorganic filler dispersibility, adhesion with other resins, compatibilizing ability with other resins, and the like are exhibited. Utilizing these properties, the ethylene / (meth) acrylic acid copolymer of the present invention can be used in various applications, such as films, sheets, adhesive resins, binders, compatibilizers, waxes, etc. Can be suitably used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)

Abstract

 機械的および熱的物性に優れたエチレン/酸不飽和カルボン酸共重合体の効率的な製造方法の提供。 エチレンと不飽和カルボン酸エステルとから、後期遷移金属錯体触媒を用いて、エチレン/不飽和カルボン酸エステル共重合体を製造する工程および、前記エチレン/不飽和カルボン酸エステル共重合体を、エステルをカルボン酸に変換可能な温度で加熱し、前記エチレン/不飽和カルボン酸共重合体に変換する工程を含む、エチレン/不飽和カルボン酸共重合体の製造方法等。

Description

エチレン/不飽和カルボン酸共重合体の製造方法及びその共重合体
 本発明は、新規なエチレン/不飽和カルボン酸共重合体の新規な製造方法及びその共重合体に関する。
 エチレンと極性基含有ビニルモノマーとを高温高圧のラジカル重合で共重合する方法はよく知られている。極性基含有ビニルモノマーとしては、例えば、酢酸ビニル、(メタ)アクリル酸、(メタ)アクリル酸エステルなどの不飽和カルボン酸または不飽和カルボン酸エステルが挙げられる。しかしながら、ラジカル重合による製造方法は、高温高圧のため非常にエネルギーを必要とし、また、製造される共重合体は多数の分岐生成により結晶性が低いため、その力学的・熱的物性に劣るという欠点がある(例えば、非特許文献1)。
 一方、メタロセン触媒等の触媒を用いたポリエチレンの重合方法においては直鎖状の分子構造を有するポリエチレンが得られることが知られているが、一般のメタロセン触媒等で、コモノマー種として極性基含有ビニルモノマーを用いると、これらコモノマーが触媒毒となるため重合活性が極めて低下し、所望の共重合体を得ることができないとされていた。
 また、クロム触媒を用いたエチレンと極性基含有ビニルモノマーであるアクリル酸エステルとの共重合は、分岐数の少ない直鎖状共重合体であることが報告されている(特許文献1)。このためエチレン/アクリル酸エステル共重合体を加水分解して得られるエチレン/アクリル酸共重合体も分岐数の少ない直鎖状なものとなる。しかしながら、クロム触媒を用いたエチレン/アクリル酸エステル共重合体の製造方法は、その製造工程で、アクリル酸エステルと当量以上の塩化アルミニウムを必要とし、共重合終了後アルミニウム化合物由来の物質を除去する工程が必要であるため、工業的に非効率である。
 近年、本出願人等により提案された新規のトリアリールホスフィン又はトリアリールアルシン系の触媒によれば、過剰なアルミニウム化合物を用いることなく、エチレンとアクリル酸アルキルエステル等の極性基含有コモノマーを共重合した直鎖状のエチレン共重合体が得られることが見出されている(特許文献2)。また、本出願人等によって、同様の触媒を用いて、エチレンとノルボルネン系酸無水物コモノマー等を共重合した接着性に優れた直鎖状のエチレン共重合体も提案されている(特許文献3)。
 さらに、同様に過剰なアルミニウム化合物を用いない方法として、最近、ホスフィンスルホン酸-パラジウム触媒を用いて製造されたエチレンとアクリル酸との共重合が報告されている(例えば、非特許文献2)。また、同様な触媒を用いて、エチレンとt-ブチルアクリル酸エステルとの共重合体をトリメチルシリルヨージドで40℃程度の温度下で加水分解処理することで、エチレンとアクリル酸との共重合体に変換した重合体も報告されている(例えば、非特許文献3)。
特開昭63-75014号公報 特開2010-150246号公報 特開2013-227521号公報 特公平06-060220号公報
Bamford, C. H. In Encyclopedia of Polymer Science and Engineering, 2nd ed.; Mark, H. F., Bikales, N. M., Overberger, C. G., Menges, G., Eds.; Wiley: New York, 1986; Vol.13, p. 708. T. Ruenzi, D. Froehlich, S. Mecking J. Am. Chem. Soc. 2010, 132, p. 17690-17691. V. A. Kryuchkov, J.-C. Daigle, K. M. Skupov, J. P. Claverie, F. M. Winnk J. Am. Chem. Soc. 2010, 132, p. 15573-15579. Skupov, K. M.; Piche, L.; Claverie, J. P. Macromolecules 2008, 41, p. 2309-2310.
 しかしながら、上記特許文献2では、エチレンとアクリル酸アルキルエステルとの共重合体の製造に用いるコモノマー種として、実際に具体的合成例として示されているのはアクリル酸アルキルエステル等のみである。また、上記特許文献3でも、コモノマー種として具体的実施例で用いているのはノルボルネン系酸無水物系等の安定的な構造を有するもののみであり、(メタ)アクリル酸などの不飽和カルボン酸をコモノマー種として用いた具体的な活性については、開示されていない。通常、触媒にはコモノマー種により触媒活性に差があり、特許文献2及び3に開示されるトリアリールホスフィン又はトリアリールアルシン系触媒を用いて、直接、エチレンとアクリル酸モノマーとを共重合した場合、反応活性が低く、十分な分子量を有し、ランダムかつ直鎖状に共重合してなるエチレン/不飽和カルボン酸共重合体を得るのは難しいと考えられていた。
 また、上記非特許文献2に記載のホスフィンスルホン酸-パラジウム触媒を用いて製造されたエチレンとアクリル酸との共重合は、その分子量がNMR分析で1万以下であるため、力学的強度が不十分である。また、上記非特許文献3に記載の共重合体は、その分子量が1万前後であるため、力学的強度は不充分である。また、上記非特許文献3に記載のトリメチルシリルヨージドによるエステルの加水分解は24時間も必要であるため、合成的観点からも非効率であると考えられる。
 なお、上記特許文献1に記載されるエチレンとアクリル酸またはアクリル酸エステルとの共重合は、ランダム共重合体と記載されているが、後述するコモノマー含量と融点との関係(特許文献4、非特許文献4)から、均質なランダム共重合体ではないと考えられ、力学的性質が十分に高く発現しないと考えられる。
 本発明の目的は、上記した従来技術の問題点に鑑み、機械的および熱的物性に優れた、均質なエチレン/不飽和カルボン酸ランダム共重合体、特にエチレン/(メタ)アクリル酸ランダム共重合体の効率的な製造方法及びその共重合体を提供することにある。
 本発明者らは、鋭意研究した結果、エチレンと不飽和カルボン酸とから、特定の後期遷移金属錯体触媒を用いることで製造したエチレン/不飽和カルボン酸エステル共重合体を加熱することにより、エチレン/アクリル酸共重合体を製造できる新規で効率的な方法を見出し、更に、本製造方法によって得られたエチレン/アクリル酸共重合体は力学的及び熱的物性も優れていることを見出し、本発明を完成するに至った。
 すなわち、本発明の第1の発明によれば、エチレンに由来する構造単位と、不飽和カルボン酸に由来する構造単位が、ランダムかつ直線状に共重合してなるエチレン/不飽和カルボン酸共重合体の製造方法であって、エチレンと不飽和カルボン酸エステルとから、後期遷移金属錯体触媒を用いて、エチレン/不飽和カルボン酸エステル共重合体を製造する工程および、前記エチレン/不飽和カルボン酸エステル共重合体を、エステル基をカルボン酸基に変換可能な温度で加熱し、前記エチレン/不飽和カルボン酸共重合体に変換する工程を含む、エチレン/不飽和カルボン酸共重合体の製造方法が提供される。
 また、本発明の第2の発明によれば、本発明の第1の発明において、前記不飽和カルボン酸エステルが(メタ)アクリル酸エステルであり、前記不飽和カルボン酸が(メタ)アクリル酸である、エチレン/不飽和カルボン酸共重合体の製造方法が提供される。
 また、本発明の第3の発明によれば、本発明の第1又は2の発明において、前記加熱の温度が、150~350℃である、エチレン/不飽和カルボン酸共重合体の製造方法が提供される。
 また、本発明の第4の発明によれば、本発明の第1~3のいずれかの発明において、前記後期遷移金属錯体触媒が、下記式(2)で示される後期遷移金属錯体を含む触媒である、エチレン/不飽和カルボン酸共重合体の製造方法が提供される。
  (Ligand)MRL・・・(2)
[式(2)中、Mは9~11族の遷移金属を示す。Ligandは酸素原子、窒素原子、リン原子、ヒ素原子、硫黄原子及び炭素原子よりなる群から選ばれるいずれかの原子で中心金属であるMにキレート配位する配位子を示す。Rは、Mとσ結合を形成する配位子を示す。Lは、Mに配位したリガンドを示す。]
 また、本発明の第5の発明によれば、本発明の第1~4のいずれかの発明において、前記後期遷移金属錯体が、ホスフィン-フェノラート錯体、または、ホスフィン-スルホナート錯体である、エチレン/不飽和カルボン酸共重合体の製造方法が提供される。
 また、本発明の第6の発明によれば、本発明の第1~5のいずれかの発明において、前記不飽和カルボン酸エステルが(メタ)アクリル酸エステルであり、前記(メタ)アクリル酸エステルのアルコール部分が3級アルコールである、エチレン/不飽和カルボン酸共重合体を製造方法が提供される。
 また、本発明の第7の発明によれば、本発明の第1~6のいずれかの発明に係るエチレン/不飽和カルボン酸共重合体製造方法によって製造される、エチレン/不飽和カルボン酸共重合体が提供される。
 また、本発明の第8の発明によれば、本発明の第1~6のいずれかの発明に係るエチレン/不飽和カルボン酸共重合体製造方法によって製造される、エチレン/(メタ)アクリル酸共重合体が提供される。
 また、本発明の第9の発明によれば、エチレン単位を99.9~80.0mol%及び(メタ)アクリル酸単位を0.1~20.0mol%含み、下記の(a)~(c)の特性を有するエチレン/(メタ)アクリル酸共重合体が提供される。
 (a)GPCで測定した重量平均分子量(Mw)が20,000以上かつ1,000,000未満である。
 (b)GPCで測定した重量平均分子量/数平均分子量(Mw/Mn)が1.7以上20以下である。
 (c)DSC(示差走査型熱量計)を用いた測定により観測される前記共重合体の融点(Tm、℃)と前記共重合体中に含まれる(メタ)アクリル酸単位(AA、mol%)とが下記の式(I)を満たす。
  -3.74×AA+113.5<Tm<-3.74×AA+130・・・(I)
 また、本発明の第10の発明によれば、本発明の第9の発明において、融点(Tm)が80~128℃である、エチレン/(メタ)アクリル酸共重合体が提供される。
 本発明の製造方法は、新規なエチレン/不飽和カルボン酸共重合体の製造方法であり、後期遷移金属錯体触媒によって均質なエチレン/不飽和カルボン酸エステルランダム共重合体を製造した後、その共重合体を加熱することにより、過剰なアルミニウム化合物を使用することなく、直鎖状のエチレン/不飽和カルボン酸ランダム共重合体の製造を可能としたものである。本発明の製造方法によれば、短時間で効率的にエチレン/不飽和カルボン酸共重合体を製造することができる。また、本発明のエチレン/不飽和カルボン酸共重合体、特にエチレン/(メタ)アクリル酸共重合体は、均質なランダム共重合体であり、分子量及び融点も比較的高く且つその機械的および熱的物性に優れているので、非常に有用である。
図1は、非特許文献4(ラジカル重合)、特許文献4(クロム含有触媒)及び本実施例におけるエチレン/(メタ)アクリル酸共重合体の融点(Tm)とその共重合体中の(メタ)アクリル酸単位の含有量(AA)との関係を示す図である。 図2は、本実施例及び比較例におけるエチレン/(メタ)アクリル酸共重合体の融点(Tm)とその共重合体中の(メタ)アクリル酸単位の含有量(AA)との関係を示す図である。
 以下、実施形態の製造方法により得られるエチレン/不飽和カルボン酸共重合体であるエチレン/(メタ)アクリル酸共重合体およびその製造方法等について説明する。
1.エチレン/(メタ)アクリル酸共重合体
(1)構成単位
 本実施形態のエチレン/(メタ)アクリル酸共重合体は、エチレン単位及び(メタ)アクリル酸単位の合計100mol%に対して、エチレン単位を99.9mol%以下80mol%以上、(メタ)アクリル酸単位を0.1mol%以上20mol%以下含み、好まくはエチレン単位を99.7mol%以下85mol%以上、(メタ)アクリル酸単位を0.3mol%以上15mol%以下、より好ましくはエチレン単位を99.5mol%以下90mol%以上、(メタ)アクリル酸単位を0.5mol%以上10mol%以下含む。なお、(メタ)アクリル酸単位として、アクリル酸単位またはメタクリル酸単位を単独で含んでもよく、両者を組み合わせて含んでもよい。
 エチレン単位が99.9mol%を超えると極性モノマー共重合としての効果が発現し難くなり、一方、80mol%未満では製造が困難となる。また、(メタ)アクリル酸単位が0.1mol%未満では極性モノマー共重合としての効果が発現し難くなり、一方、20mol%を超えると製造が困難になる。エチレン/(メタ)アクリル酸共重合体を構成するエチレン単位と(メタ)アクリル酸単位のmol%は、例えば、当該共重合体の製造時に原料として使用されるそれぞれの単量体の量比を増減することで制御できる。なお、エチレン単位と(メタ)アクリル酸単位の含有量は、IR分析を用いて測定される値である。
 なお、エチレン/(メタ)アクリル酸共重合体は、上記構成モノマー以外のα-オレフィンなどの構成モノマーを含むことができる。例えば、α-オレフィンの場合、共重合全体に対して、0.01~5mol%含むことができる。α-オレフィンの具体例としては、後述するエチレン/不飽和カルボン酸エステル共重合体の構成モノマーと同様のものが挙げられる。
(2)重量平均分子量(Mw)
 実施形態のエチレン/(メタ)アクリル酸共重合体の分子量としては、GPCで測定される重量平均分子量(Mw)が20,000以上1,000,000未満であり、好ましくは25,000以上900,000未満であり、さらに好ましくは30,000以上かつ800,000未満であり、特に好ましいのは40,000以上700,000未満である。重量平均分子量が20,000未満では機械的強度が低下し、1,000,000を超える場合には加工性などに難点を有するおそれがある。
(3)重量平均分子量/数平均分子量(Mw/Mn)
 本実施形態のエチレン/(メタ)アクリル酸共重合体の分子量分布(重量平均分子量/数平均分子量:Mw/Mn)は、好ましくは1.7以上であり、より好ましくは1.7以上20以下、より好ましくは1.8以上15以下、さらに好ましくは1.9以上10以下である。分子量分布が1.7未満では成型加工性などに難を有するおそれがあり、20を超える場合には低分子量成分による物性の低下などを引き起こす場合がある。
 また、エチレン/(メタ)アクリル酸共重合体のMw、Mnは、後述するエチレン/(メタ)アクリル酸エステル共重合体のMw、Mnを調製することで制御できる。エステル共重合体のMw、Mnは、後述するように、従来公知の方法により制御でき、例えば、重合温度やモノマー濃度の調整等により制御できる。なお、Mw、Mw/Mnは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値であり、測定条件は後述の実施例に記載のとおりである。
(4)融点(Tm)と(メタ)アクリル酸単位の含有量(AA)との関係
 図1は、従来の製造方法及び本実施形態におけるエチレン/(メタ)アクリル酸共重合体の融点(Tm、℃)とその共重合体中の(メタ)アクリル酸単位の含有量(AA、mol%)の関係を示す図である。以下、図1を参照して、融点(Tm)と(メタ)アクリル酸単位の含有量(AA)との関係について説明する。
 従来の高温高圧のラジカル重合法で製造されたエチレン/(メタ)アクリル酸共重合体はランダム共重合体であり、図1の黒塗りのひし形のプロットに示されるように、その融点(Tm、℃)と該共重合体中の(メタ)アクリル酸単位の含有量(AA、mol%)との関係が下記の式(II)の関係をほぼ満たすことが知られている(非特許文献4)。
  Tm=-3.74×AA+111・・・式(II)
 また、従来のクロム触媒で製造されたエチレン/(メタ)アクリル酸共重合体は、図1の黒塗りの三角のプロットに示されるように、融点(Tm、℃)とその共重合体中の(メタ)アクリル酸単位の含有量(AA、mol%)との関係が以下の式(III)の関係をほぼ満たす(特許文献4の実施例)。
  Tm=-1.70×AA+132.6・・・式(III)
 クロム触媒で製造されたエチレン/(メタ)アクリル酸共重合体は、均質なランダム共重合体ではないと考えられ、上記式(III)の直線の傾き(-1.70)は、上記式(II)に示されるラジカル重合法で製造された共重合体の傾き(-3.74)よりも小さくなる。これは、この共重合体のブロック共重合性が高く、その共重合体中の(メタ)アクリル酸単位の含量が増加しても、エチレン連鎖が長いため、ポリマーの物性としてはポリエチレンのホモポリマーに類似する挙動を示すためと考えられる。このため、クロム触媒で製造された重合体は、透明性が不良となる可能性や、フッイシュアイ等の輝点が多くなる可能性があり、物性上の問題がある。
 これに対して、本実施形態のエチレン/(メタ)アクリル酸共重合体の融点(Tm、℃)とその共重合体中の(メタ)アクリル酸単位の含有量(AA、mol%)とは、図1の黒塗りの正方形のプロットに示すように、以下の式(I)の関係が成り立つ。
 -3.74×AA+113.5<Tm<-3.74×AA+130・・・式(I)
 また、以下の式(I’)の関係が成り立つことが好ましい。
  -3.74×AA+113.7<Tm<-3.74×AA+128・・・式(I’)
 また、以下の式(I’’)の関係が成り立つことがさらに好ましい。
  -3.74×AA+117.375≦Tm≦-3.74×AA+118.125・・・式(I’’)
 上記式(I)~(I’’)の左辺及び右辺における直線の傾き(-3.74)は、上記式(II)に示されるラジカル重合法で製造されたランダム共重合体の傾きと等しい。これは、本実施形態のエチレン/(メタ)アクリル酸共重合体は、後期遷移金属触媒を用いて製造されるランダム共重合体であるため、従来のラジカル重合法で製造されたランダム共重合体と同様な直線の傾きをとるためと考えられる。なお、この傾きをとる理由はこれに限定されない。
 また、図1に示されるように、本実施形態のエチレン/(メタ)アクリル酸共重合体(黒塗りの正方形のプロット)は、従来のラジカル重合法で製造された共重合体(黒塗りのひし形のプロット)と比較した場合、アクリル酸含量の増加に伴い融点が低下する割合の傾向はほぼ同じであるが、同量のアクリル酸含量において、より高いTmを示し、耐熱性に優れる。
 一般にポリエチレン鎖の分岐数と融点とは負の比例関係にあり、分岐数が多ければ融点が下がり、かつ、その分岐基にはよらないことが知られている(非特許文献4)。つまり、共重合体中に(メタ)アクリル酸単位やメチル分岐などが多く含まれているほど共重合体の融点が低下し、耐熱性が悪くなる。また、(メタ)アクリル酸の含量が同じである場合は、極性基による機能性は同じレベルに発現すると考えられ、メチル分岐が少ないほど融点が高く、耐熱性の高い共重合体となると考えられる。本実施形態の後期遷移金属触媒を用いて製造されるエチレン/(メタ)アクリル酸共重合体は、直鎖状に共重合し、メチル分岐が少ないため、ラジカル重合法により製造された共重合体よりも高融点となると考えられる。なお、高融点となるメカニズムは、これに限定されない。
 図2は、本実施例及び比較例におけるエチレン/(メタ)アクリル酸共重合体の融点(Tm)とその共重合体中の(メタ)アクリル酸単位の含有量(AA)との関係を示す図である。図2に示されるように、上記式(I’’)における直線の二つの切片の値(117.375及び118.125)は、この直線の傾きを上記式(I)と同様の値(-3.74)としたときの本願の実施例1及び2で示された融点(Tm)及び該共重合体中の(メタ)アクリル酸単位の含有量(AA)を元に求められる値である。
 本実施形態のエチレン/(メタ)アクリル酸共重合体のTmは、上記式(I)の関係を満たせは特に限定されないが、耐熱性の観点から、好ましくは80℃以上128℃以下であり、より好ましくは90℃以上122℃以下である。Tmは、コモノマー濃度を調製することにより、上記範囲に制御することができる。なお、コモノマー濃度の調製方法については、後述する「エチレン/(メタ)アクリル酸エステルの重合反応」の項で説明する。なお、Tmは、示差走査型熱量計(DSC)を用いて測定される値であり、測定条件は後述の実施例に記載のとおりである。
 また、本実施形態のエチレン/(メタ)アクリル酸共重合体は、ランダム性が高く、(メタ)アクリル酸単位がポリマー中に孤立して配置されるため、エチレン連鎖が短くなり非晶の部分が増加する。これにより、ポリマー構造が均質となり、透明性が向上する。
2.エチレン/不飽和カルボン酸共重合体の製造方法
 上記エチレン/(メタ)アクリル酸共重合体を含むエチレン/不飽和カルボン酸共重合体(以下、「本実施形態の重合体」ともいう。)は、本発明の新規な製造方法により製造することができる。
 すなわち、本実施形態の重合体の製造方法は、(1)エチレンと不飽和カルボン酸エステルとから、後期遷移金属錯体触媒を用いて、エチレン/不飽和カルボン酸エステル共重合体を製造する工程、および、(2)前記エチレン/不飽和カルボン酸エステルエステル共重合体を、エステル基をカルボン酸基に変換可能な温度で加熱し、前記エチレン/不飽和カルボン酸共重合体に変換する工程を含むことができる。
 上記製造工程は2つの工程からなっているが、これらの工程は、連続して行っても、別々に行っても良い。以下、各工程について説明する。
(1)エチレン/不飽和カルボン酸エステル共重合体の製造工程
 本実施形態の製造方法では、工程(1)として、後期遷移金属錯体触媒を用いて、エチレンと不飽和カルボン酸エステルとからエチレン/不飽和カルボン酸エステル共重合体を製造する工程を含む。
(I)エチレン/不飽和カルボン酸エステルの構成モノマー
 工程(1)により得られるエチレン/不飽和カルボン酸エステル共重合体は、構成モノマーとして、エチレンと不飽和カルボン酸エステルとを含む。
 不飽和カルボン酸エステルとしては、例えば、アクリル酸エステル、メタクリル酸エステル、マレイン酸エステル、フマル酸エステル、イタコン酸エステル等の不飽和カルボン酸エステルなどが挙げられ、これらの中でもアクリル酸エステル又はメタクリル酸エステル(以下、これらを併せて(メタ)アクリル酸エステルともいう)が好ましい。なお、不飽和カルボン酸エステルは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 なお、本発明の目的を損なわない範囲で、上記構成モノマー以外に、α-オレフィンなどを、共重合体全体に対して、0.01~5mol%含むことができる。α-オレフィンは、一般式:CH=CHRで表されるα-オレフィンである。ここで、Rは、水素原子または炭素数1~20の炭化水素基であり、分岐、環、および/または不飽和結合を有してもよい。Rの炭素数が20より大きいと、十分な重合活性が発現しない傾向がある。このため、なかでも、好ましいα-オレフィンとしては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、3-メチル-1-ブテン、4-メチル-1-ペンテン、ビニルシクロヘキセン、スチレンがあげられ、より好ましくは、プロピレン、1-ブテン、1-ヘキセン、1-オクテン、3-メチル-1-ブテン、スチレンである。
 構成モノマーである不飽和カルボン酸エステルとしては、たとえば、アクリル酸エステル、メタクリル酸エステル、マレイン酸エステル、フマル酸エステル、イタコン酸エステル等の不飽和カルボン酸エステルが挙げられ、特にアクリル酸エステル又はメタクリル酸エステルが好ましい。
 構成モノマーである(メタ)アクリル酸エステルとしては、下記一般式(1)で表される化合物を用いる。
  CH=C(R)CO(R)・・・式(1)
[式(1)中、Rは、水素原子または炭素数1~10の炭化水素基を表し、分岐、環、および/または不飽和結合を有していてもよい。Rは、炭素数1~30の炭化水素基を表し、分岐、環、および/または不飽和結合を有していてもよい。さらに、R内の任意の位置にヘテロ原子を含有していてもよい。]
 一般式(1)中、Rは、水素原子または炭素数1~10の炭化水素基であり、Rの炭素数が11以上であると、十分な重合活性が発現しない傾向がある。好ましいRとしては、水素原子または炭素数1~5の炭化水素基である。より好ましくはRがメチル基であるメタクリル酸エステルまたはRが水素原子であるアクリル酸エステルが挙げられる。
 一般式(1)中、Rは、炭素数1~30の炭化水素基であり、Rの炭素数が30を超えると、重合活性が低下する傾向がある。好ましいRとしては、炭素数1~13の炭化水素基であり、より好ましくは炭素数1~10の炭化水素基である。また、Rの構造としては特に限定されないが、分岐状の方がより好ましく、さらに3級構造が好ましい。
 一般式(1)で示される(メタ)アクリル酸エステルの具体例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸1,3-ジメチルブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルペンチル、(メタ)アクリル酸1,1,2,2-テトラメチルプロピル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸4-t-ブチルシクロヘキシル、(メタ)アクリル酸1-メチルシクロペンチル、(メタ)アクリル酸1-メチルシクロヘキシル、(メタ)アクリル酸4-t-ペンチルシクロヘキシル、(メタ)アクリル酸2-ノルボルニル、(メタ)アクリル酸1-アダマンチル、(メタ)アクリル酸2-アダマンチル、(メタ)アクリル酸ビシクロ[2,2,1]ペンタン-1-イル、(メタ)アクリル酸デカヒドロ-2-ナフタレニル、(メタ)アクリル酸オクタヒドロ-4,7-メタノ-1H-インデン-5-イル等が挙げられる。
 これらの中でも、好ましいものとしては、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸1,3-ジメチルブチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸2-エチルペンチル、(メタ)アクリル酸1,1,2,2-テトラメチルプロピル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸4-t-ブチルシクロヘキシル、(メタ)アクリル酸1-メチルシクロペンチル、(メタ)アクリル酸1-メチルシクロヘキシル、(メタ)アクリル酸4-t-ペンチルシクロヘキシル、(メタ)アクリル酸2-ノルボルニル、(メタ)アクリル酸1-アダマンチル、(メタ)アクリル酸2-アダマンチル、(メタ)アクリル酸ビシクロ[2,2,1]ペンタン-1-イル、(メタ)アクリル酸デカヒドロ-2-ナフタレニル、(メタ)アクリル酸オクタヒドロ-4,7-メタノ-1H-インデン-5-イルが挙げられる。なお、(メタ)アクリル酸エステルとしては、単独の成分を使用してもよいし、複数の成分を併用してもよい。
 特に本実施形態の製造方法に用いる好ましい(メタ)アクリル酸エステルとしては、後述の加熱分解の効率性の点から、(メタ)アクリル酸エステルのアルコール部分が3級アルコールである(メタ)アクリル酸エステルが挙げられる。その中でも、モノマーの入手しやすさ等の点で、特に(メタ)アクリル酸t-ブチルが好ましい。
(II)後期遷移金属錯体触媒
 上記エチレン/不飽和カルボン酸エステルの製造方法としては、特に限定されず、従来公知の方法を用いることができるが、下記の後期遷移金属錯体触媒を用いて製造することが好ましい。用いる後期遷移金属錯体触媒としては、本実施形態の重合体の特定の構造を満足する重合体が得られれば、特に限定されないが、下記一般式(2)で表される後期遷移金属錯体を用いて製造する方法がより好ましい。
  (Ligand)MRL・・・(2)
[式(2)中、Mは、9~11族の遷移金属を示す。Ligandは、酸素原子、窒素原子、リン原子、ヒ素原子、硫黄原子及び炭素原子よりなる群から選ばれる何れかの原子で、中心金属であるMにキレート配位する配位子である。Rは、Mとσ結合を形成する配位子を示す。Lは、Mに配位したリガンドを示す。]
 一般式(2)中、Mは、9~11族の遷移金属であり、好ましくは10族であり、さらに好ましくはニッケル(Ni)、パラジウム(Pd)である。このM原子の価数は、0価、1価または2価であり、好ましくは0価または2価である。
 一般式(2)中、Ligandは、酸素原子、窒素原子、リン原子、ヒ素原子、硫黄原子及び炭素原子よりなる群から選ばれる何れかの原子で、中心金属であるMにキレート配位する配位子である。この配位子Ligandは、好ましくは二座配位子である。
 Mに配位する原子としては、窒素、酸素、リン、ヒ素、硫黄、炭素が挙げられるが、窒素、酸素、リン、硫黄が好ましく、更に窒素、酸素、リンが特に好ましい。
 二座配位子のMに配位する原子の組合せは、特に限定されるものではなく、上記原子のうち任意の2元素であればよい。例えば、配位子がMと窒素で配位する1種と、酸素で配位する1種の組み合わせを「窒素―酸素」と表わすとすると、配位する原子の組み合わせは、窒素-窒素、窒素-酸素、酸素-リン、リン-リン、リン-硫黄が好ましい。
 配位子の中心金属原子(M)への結合様式は、特に限定されるものではなく、例えば、孤立電子対による配位(以下これを「σ配位」ということがある)、π配位、σ結合(結合軸方向を向いた原子軌道同士による結合)等が挙げられる。それらの中で、σ配位、σ結合が好ましい。
 また、二座配位子のMへの結合様式も、特に限定されるものではなく、上記の結合様式のうち任意の2種類の結合様式が挙げられる。例えば、二座配位子が、Mと、σ配位とσ結合の1つずつで配位する組み合わせを「σ配位-σ結合」と表わすとすると、σ配位-σ配位、σ配位-σ結合が好ましい。
 なお、原子の組合せと配位様式の組合せは一通りしか記さなかったが、組合せ方は複数を意味する。すなわち、窒素-酸素とσ配位-σ結合の組合せを選んだ場合は、窒素(σ配位)-酸素(σ結合)、窒素(σ結合)-酸素(σ配位)の両方を意味する。
 一般式(2)中、Rは、Mとσ結合を形成する配位子である。配位子Rとしては、Mとσ結合を形成し得るものであれば特に限定されないが、例えば、水素原子、ハロゲン原子、炭化水素基、ハロゲン化炭化水素基、ケイ素含有炭化水素基、酸素含有炭化水素基、アミノ基、置換アミノ基または窒素含有炭化水素基等が挙がられる。
 一般式(2)中、Lは、Mに配位したリガンドを表し、Lは配位結合可能な原子として、酸素、窒素、硫黄を有する炭素数1~20の炭化水素化合物である。また、Lとして、遷移金属に配位可能な炭素-炭素不飽和結合を有する炭化水素化合物(ヘテロ原子を含有していてもよい)も使用することができる。
(i-1)ホスフィン-フェノラート錯体(A)
 さらに、上記一般式(2)で表される後期遷移金属錯体の中でも、以下の一般式(A)で表されるホスフィン-フェノラート錯体(A)がより好ましい。
 なお、以下の各一般式の説明中、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000001
[式(A)中、Mは、ニッケルまたはパラジウムを表す。Rは、水素原子または炭素数1~20のヘテロ原子を含有していてもよい炭化水素基を表す。Lは、Mに配位したリガンドを表す。また、RとLが互いに結合して環を形成してもよい。Pはリンを表す。Oは酸素を表す。R及びRは、それぞれ独立に、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基を表し、互いに結合して環を形成しても良い。R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、POM’’、P(O)(ORM’またはエポキシ含有基を表す(ここで、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アンモニウム、4級アンモニウムまたはホスフォニウムを表し、M’’はアルカリ土類金属を表し、xは0~3の整数を表し、yは0~2の整数を表す。)。]
 一般式(A)中、Mは、ニッケルまたはパラジウムを表すが、Mの価数については2価が好ましい。
 ここでMの価数とは、有機金属化学で用いられる形式酸化数(formal oxidation number)を意味する。すなわち、ある元素が関与する結合中の電子対を電気陰性度の大きい元素に割り当てた時、その元素の原子上に残る電荷の数を指す。
 例えば、一般式(A)において、Mがニッケル、Rがフェニル基、Lがピリジンであり、ニッケル(M)が隣接するリン、酸素、フェニル基(R)の炭素およびピリジン(L)の窒素と結合を形成している場合、ニッケルの形式酸化数、すなわちニッケルの価数は2価となる。なぜならば、上述の定義に基づき、これらの結合において、電子対は、ニッケルよりも電気陰性度の大きいリン、酸素、炭素、窒素に割り当てられ、電荷は、リンが0、酸素が-1、フェニル基が-1、ピリジンが0で、錯体は、全体として電気的に中性であるため、ニッケル上に残る電荷は+2となるからである。
 2価のMとしては、例えば、ニッケル(II)、パラジウム(II)が挙げられる。
 一般式(A)中、Rは、水素原子または炭素数1~20のヘテロ原子を含有していてもよい炭化水素基を表す。重合または共重合反応は、MとRの結合にモノマー成分が挿入することによって開始されると考えられる。したがって、Rの炭素数が過度に多いと、取り扱いが困難になる傾向にある。このため、好ましいRとしては、炭素数1~16、さらに好ましくは炭素数1~10である。
 Rの具体的な例としては、ヒドリド基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ドデシル基、シクロペンチル基、シクロヘキシル基、ベンジル基、フェニル基、p-メチルフェニル基、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基等が挙げられる。
 一般式(A)中、Lは、Mに配位したリガンドを表す。リガンドLは、配位結合可能な原子として、酸素、窒素、硫黄を有する炭素数1~20の炭化水素化合物である。また、Lとして、遷移金属に配位可能な炭素-炭素不飽和結合を有する炭化水素化合物(ヘテロ原子を含有していてもよい)が使用されることができる。好ましくは、Lの炭素数は、1~16であり、さらに好ましくは1~10である。また一般式(A)中のMと配位結合するLとしては、電荷を持たない化合物が好ましい。好ましいLとしては、ピリジン類、ピペリジン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル誘導体、アリールニトリル誘導体、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、アミン類、環状不飽和炭化水素類などが挙げられる。さらに好ましいLとしては、ピリジン類、環状エーテル類、脂肪族エステル類、芳香族エステル類、環状オレフィン類が挙げられ、特に好ましいLとして、ピリジン、ルチジン(ジメチルピリジン)、ピコリン(メチルピリジン)、RCO(RおよびRは、前記したとおりである。)が挙げられる。
 なお、RとLが互いに結合して環を形成してもよい。そのような例として、シクロオクタ-1-エニル基が挙げられ、これも本実施形態における好ましい様態である。
 一般式(A)中、R及びRは、それぞれ独立に、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基を表し、互いに結合して環を形成しても良い。R及びRは、金属Mの近傍にあって、立体的および/または電子的にMに相互作用を及ぼす。こうした効果を及ぼすためには、R及びRは、かさ高い方が好ましい。R及びRの好ましい炭素数は3~30、さらに好ましくは6~30である。
 R及びRにおいて、ヘテロ原子含有基中に含まれるヘテロ原子としては、酸素、窒素、リン、硫黄、セレン、ケイ素、フッ素、ホウ素が挙げられる。これらのヘテロ原子のうち、酸素、ケイ素、フッ素が好ましい。また、これらのヘテロ原子を含むヘテロ原子含有基としては、酸素含有基として、アルコキシ基、アリーロキシ基、アシル基、アリロイル基、カルボキシレート基が挙げられ、窒素含有基としては、アミノ基、アミド基が挙げられ、硫黄含有基としては、チオアルコキシ基やチオアリーロキシが挙げられ、リン含有置換基としては、フォスフィノ基が挙げられ、セレン含有基としては、セレニル基が挙げられ、ケイ素含有基としては、トリアルキルシリル基、ジアルキルアリールシリル基、アルキルジアリールシリル基が挙げられ、フッ素含有基としては、フルオロアルキル基、フルオロアリール基が挙げられ、ホウ素含有基としては、アルキルホウ素基、アリールホウ素基が挙げられる。これらのヘテロ原子含有基のうち、もっとも好ましいのは、アルコキシ基またはアリーロキシ基である。
 前記したヘテロ原子含有基に含まれるヘテロ原子としては、遷移金属に配位可能なものが好ましい。こうした遷移金属可能なヘテロ原子を含むヘテロ原子含有基の具体的な例としては、以下のようなものが挙げられる。
 すなわち、酸素含有基として、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基などのアルコキシ基、フェノキシ基、p-メチルフェノキシ基、p-メトキシフェノキシ基などのアリーロキシ基、アセチル基などのアシル基、ベンゾイル基などのアリロイル基、アセトキシ基、エチルカルボキシレート基、t-ブチルカルボキシレート基、フェニルカルボキシレート基などのカルボキシレート基などが挙げられる。窒素含有基としては、ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、シクロヘキシルアミノ基などのジアルキルアミノ基などが挙げられる。硫黄含有基としては、チオメトキシ基、チオエトキシ基、チオ-n-プロポキシ基、チオイソプロポキシ基、チオ-n-ブトキシ基、チオ-t-ブトキシ基、チオフェノキシ基などのチオアルコキシ基、p-メチルチオフェノキシ基、p-メトキシチオフェノキシ基などのチオアリーロキシ基などが挙げられる。リン含有置換基としては、ジメチルフォスフィノ基、ジエチルフォスフィノ基、ジ-n-プロピルフォスフィノ基、シクロヘキシルフォスフィノ基などのジアルキルフォスフィノ基などが挙げられる。セレン含有基としては、メチルセレニル基、エチルセレニル基、n-プロピルセレニル基、n-ブチルセレニル基、t-ブチルセレニル基、フェニルセレニル基などのセレニル基が挙げられる。
 一般式(A)中、R及びRは、それぞれ独立に、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基であるが、より具体的には、水素またはヘテロ原子を含有していてもよい直鎖状炭化水素基、ヘテロ原子を含有していてもよい分岐鎖状炭化水素基、ヘテロ原子を含有していてもよい脂肪環式炭化水素基、ヘテロ原子を含有していてもよいアリール基が挙げられる。前記したように、R及びRは、かさ高い方が好ましい。したがって、これらのうち、ヘテロ原子を含有していてもよい脂環式炭化水素基、または、ヘテロ原子を含有していてもよいアリール基が好ましく、ヘテロ原子を含有していてもよいアリール基がもっとも好ましい。こうしたアリール基としては、フェニル基、ナフチル基、アンスラセニル基などが挙げられる。
 R及びRにおいて、これらアリール基の芳香族骨格に前記したヘテロ原子含有基が結合する場合、結合様式としては、ヘテロ原子含有基が芳香族骨格に直接結合してもよいし、メチレン基のようなスペーサーを介して芳香族骨格に結合してもよい。なお、メチレン基を介してヘテロ原子含有基が芳香族骨格に結合する場合、メチレン基の数は1個が好ましい。また、置換位置としては、R及びR中の芳香族骨格のうち、リンに結合した炭素に対してオルト位が好ましい。このようにすることによって、R及びR中のヘテロ原子がMと相互作用を持つように空間的配置をとることができる。
 好ましいR及びRの具体例としては、2,6-ジメトキシフェニル基、2,4,6-トリメトキシフェニル基、4-メチル-2,6-ジメトキシフェニル基、4-t-ブチル-2,6-ジメトキシフェニル基、1,3-ジメトキシ-2-ナフチル基、2,6-ジエトキシフェニル基、2,4,6-トリエトキシフェニル基、4-メチル-2,6-ジエトキシフェニル基、4-t-ブチル-2,6-ジエトキシフェニル基、1,3-ジエトキシ-2-ナフチル基、2,6-ジフェノキシフェニル基、2,4,6-トリフェノキシフェニル基、4-メチル-2,6-ジフェノキシフェニル基、4-t-ブチル-2,6-ジフェノキシフェニル基、2-メトキシ-6-フェノキシフェニル基、2-メトキシ-4-t-ブチル-6-フェノキシフェニル基、2,4,6-トリ(メトキシメチル)フェニル基、4-メチル-2,6-ジ(メトキシメチル)フェニル基、4-t-ブチル-2,6-ジ(メトキシメチル)フェニル基、1,3-ジ(メトキシメチル)-2-ナフチル基、2,6-ジ(フェノキシメチル)フェニル基、2,4,6-トリ(フェノキシメチル)フェニル基、4-メチル-2,6-ジ(フェノキシメチル)フェニル基、4-t-ブチル-2,6-ジ(フェノキシメチル)フェニル基、1,3-ジ(フェノキシメチル)-2-ナフチル基、2,6-ジ(2-メトキシエチル)フェニル基、2,4,6-トリ(2-メトキシエチル)フェニル基、4-メチル-2,6-ジ(2-メトキシエチル)フェニル基、4-t-ブチル-2,6-ジ(2-メトキシエチル)フェニル基、1,3-ジ(2-メトキシエチル)-2-ナフチル基、2,6-ジ(2-フェノキシエチル)フェニル基、2,4,6-トリ(2-フェノキシエチル)フェニル基、4-メチル-2,6-ジ(2-フェノキシエチル)フェニル基、4-t-ブチル-2,6-ジ(2-フェノキシエチル)フェニル基、1,3-ジ(2-フェノキシエチル)-2-ナフチル基などが挙げられる。
 これらのうち、好ましいものとしては、2,6-ジメトキシフェニル基、2,4,6-トリメトキシフェニル基、4-メチル-2,6-ジメトキシフェニル基、4-t-ブチル-2,6-ジメトキシフェニル基、1,3-ジメトキシ-2-ナフチル基、2,6-ジエトキシフェニル基、2,4,6-トリエトキシフェニル基、4-メチル-2,6-ジエトキシフェニル基、4-t-ブチル-2,6-ジエトキシフェニル基、1,3-ジエトキシ-2-ナフチル基、2,6-ジフェノキシフェニル基、2,4,6-トリフェノキシフェニル基、4-メチル-2,6-ジフェノキシフェニル基、4-t-ブチル-2,6-ジフェノキシフェニル基、2-メトキシ-6-フェノキシフェニル基、2-メトキシ-4-t-ブチル-6-フェノキシフェニル基が挙げられる。
 一般式(A)中、R~Rは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、POM’’、P(O)(ORM’またはエポキシ含有基を表す(ここで、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アンモニウム、4級アンモニウムまたはホスフォニウムを表し、M’’はアルカリ土類金属を表し、xは0~3の整数を表し、yは0~2の整数を表す。)。
 R~Rのうち、好ましいものとしては、水素原子、フッ素原子、クロロ原子、ブロモ原子、メチル基、エチル基、イソプロピル基、フェニル基、トリフルオロメチル基、ペンタフルオロフェニル基、トリメチルシリル基、メトキシ基、エトキシ基、フェノキシ基、ニトリル基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシロキシ基、トリメトキシシロキシ基、スルフォン酸ナトリウム、スルフォン酸カリウム、リン酸ナトリウム、リン酸カリウムなどが挙げられ、特に好ましいものとしては、水素原子、フッ素原子、メチル基、フェニル基、トリフルオロメチル基、ペンタフルオロフェニル基、ニトリル基、トリメチルシリル基、メトキシ基、フェノキシ基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシロキシ基、トリメトキシシロキシ基、スルフォン酸ナトリウム、リン酸ナトリウムなどが挙げられる。
 また、Rは、かさ高い方が好ましく、炭素数3~30であることが好ましい。その例を具体的に挙げると、炭化水素基として、n-ブチル基、イソブチル基、t-ブチル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アンスラセニル基、2-アンスラセニル基、9-アンスラセニル基、4-t-ブチルフェニル基、2,4-ジ-t-ブチルフェニル基、9-フルオレニル基、シクロヘキシル基など、ヘテロ原子含有炭化水素基として、トリメチルシリル基、トリエチルシリル基、トリn-プロピルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリフェニルシリル基などの3置換シリル基、2,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、ペンタフルオロフェニル基などのハロゲン化アリール基などが挙げられる。
 これらの中でより好ましいものとしては、t-ブチル基、フェニル基、1-ナフチル基、2-ナフチル基、1-アンスラセニル基、2-アンスラセニル基、9-アンスラセニル基、4-t-ブチルフェニル基、2,4-ジ-t-ブチルフェニル基、9-フルオレニル基、シクロヘキシル基、トリメチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、2,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基、ペンタフルオロフェニル基などが挙げられる。
 さらに好ましいものとしては、t-ブチル基、フェニル基、1-アンスラセニル基、2-アンスラセニル基、9-アンスラセニル基、9-フルオレニル基、トリメチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、ペンタフルオロフェニル基などが挙げられる。
(i-2)ホスフィン-フェノラート錯体(A)の合成方法
 本実施形態に好適に用いられるホスフィン-フェノラート錯体(A)(以下、単に「錯体(A)」ともいう。)は、下記式(B)および/または(C)で示される化合物と、後述する遷移金属Mを含有する遷移金属錯体成分(D)との反応により得ることができる。
Figure JPOXMLDOC01-appb-C000002
[式(B)又は(C)中、Zは、水素原子または脱離基を表し、mは、Zの価数を表す。R、R、R、R、R及びRは、上記一般式(A)の説明と同様である。]
 一般式(B)中、Zは、水素原子、または脱離基であるが、具体的には、水素原子、RSO基(ここでRは、前記したとおりである。)、CFSO基などを挙げることができる。
 一般式(C)は、アニオンの形で表されているが、そのカウンターカチオンは、遷移金属錯体成分(D)との反応を阻害しない限りにおいて、任意のものを用いることができる。カウンターカチオンとしては、具体的には、アンモニウム、4級アンモニウムまたはホスフォニウム、周期律表1族~14族の金属イオンが挙げられる。
 これらのうち好ましくは、NH 、R +(ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、R +(ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、Li、Na、K、Mg2+、Ca2+、Al3+であり、さらに好ましくは、R (ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、Li、Na、Kである。
 一般式(B)および(C)で示される物質については、公知の合成法に基づいて合成することができる。
 遷移金属錯体成分(D)としては、一般式(B)または(C)で示される化合物と反応して、重合能を有する錯体を形成可能なものが使用され、これらは、プリカーサー(前駆体)とも呼ばれることがある。
 例えば、ニッケルを含む遷移金属錯体成分(D)としては、ビス(1,5-シクロオクタジエン)ニッケル(0)、一般式:(CHCR’CHNiで表される錯体(以下、R’は、水素原子、ハロゲン原子、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、POM’’、P(O)(ORM’またはエポキシ含有基を表す。ただし、R、R、M’、M’’は、前記したとおりであり、xは0~3の整数を表し、yは0~2の整数を表す。)、ビス(シクロペンタジエニル)ニッケル(2)、一般式:Ni(CHSiR’ で表される錯体、一般式:NiR’ で表される錯体等(ここでLは、前記一般式(A)の説明と同様である。)を使用することができる。
 また、9族、10族または11族の遷移金属を含む遷移金属錯体成分(D)については、下記一般式(3)を使用することができる。
  MR’ ・・・(3)
(ここで、Mは、9族、10族または11族の遷移金属であり、R’、Lは、前記した通りであり、pおよびqは、Mの価数を満たす0以上の整数である。)
 これらの遷移金属錯体成分(D)のうち、好ましく用いられるものは、ビス(1,5-シクロオクタジエン)ニッケル(0)、一般式:(CHCR’CHNiで表される錯体、一般式:Ni(CHSiR’ で表される錯体、一般式:NiR’ で表される錯体、Pd(dba)、Pd(dba)、Pd(dba)(ここで、dbaは、ジベンジリデンアセトンを表す。)、Pd(OCOCHである。
 特に好ましくは、ビス(1,5-シクロオクタジエン)ニッケル(0)、(CHCHCHNi、(CHCMeCHNi、Ni(CHSiMe(Py)(以下Pyは、ピリジンを表す。)、Ni(CHSiMe(Lut)(以下Lutは、2,6-ルチジンを表す。)、NiPh(Py)、Ni(Ph)(Lut)2,Pd(dba)、Pd(dba)、Pd(dba)、Pd(OCOCHである。
 一般式(A)で表される錯体(A)は、一般式(B)または(C)で表される化合物と、錯体(A)中の遷移金属Mを含む遷移金属錯体成分(D)との反応生成物に含まれる。
 上記反応生成物は、一般式(B)または(C)で表される化合物と遷移金属錯体成分(D)とを、例えば[(B)+(C)]:(D)=1:99~99:1(モル比)の割合で、0~100℃のトルエンやベンゼン等の有機溶媒中、減圧~加圧下で、約1秒間~24時間、接触させることにより得ることができる。
 なお、遷移金属錯体成分(D)としてビス(1,5-シクロオクタジエン)ニッケル(0)のトルエンやベンゼン溶液を用いる場合には、溶液の色が黄色から例えば赤色に変化することにより、反応生成物の生成が確認できる。
 一般式(B)または(C)で表される化合物と遷移金属錯体成分(D)との反応後、遷移金属錯体成分(D)の遷移金属M以外の部分は、一般式(B)のZを除いた部分や一般式(C)によって置換されて、一般式(A)で表される金属錯体が生成する。この置換反応は、定量的に進行するほうが好ましいが、場合によっては完全に進行しなくてもよい。
 反応終了後、錯体(A)以外に、一般式(B)、(C)、(D)で表される化合物由来の他の成分が共存するが、重合反応または共重合反応を行う際に、これらの他の成分は除去してもよいし、除去しなくてもよい。一般的には、これらの他の成分は除去した方が、高活性が得られるので好ましい。
 なお、反応を行う際に、Lを共存させてもよい。例えば、Mとして、ニッケルやパラジウムを用いた場合には、ルイス塩基性のLを系内に共存させることによって、精製した錯体(A)の安定性が増す場合があり、このような場合には、Lが重合反応または共重合反応を阻害しない限りにおいて、Lを共存させることが好ましい。
 本実施形態において、反応をα-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器とは別の容器で、予め行ったうえで、得られた錯体(A)をα-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に供してもよいし、反応をこれらのモノマーの存在下に行ってもよい。
 また、反応を、α-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器の中で行ってもよい。この際に、これらのモノマーは存在していてもよいし、存在していなくてもよい。また、一般式(B)および(C)で示される成分については、それぞれ単独の成分を用いてもよいし、それぞれ複数種の成分を併用してもよい。特に、分子量分布やコモノマー含量分布を広げる目的には、こうした複数種の併用が有用である。
(ii-1)ホスフィン-スルホナート錯体(E)
 また、式(2)で表される後期遷移金属錯体の中でも、以下の一般式(E)で表されるホスフィン-スルホナート錯体(E)も、上記錯体(A)と同様に、好ましい。
Figure JPOXMLDOC01-appb-C000003
[式(E)中、Mは、ニッケルまたはパラジウムを表す。Pはリンであり、Sは硫黄であり、Oは酸素である。R11は、水素原子、ハロゲン原子、ヘテロ原子を含有していてもよい炭素数1~30のアルキル基またはヘテロ原子を含有していてもよい炭素数6~30のアリール基を表す。Lは、Mに配位したリガンドを表す。R12及びR13は、それぞれ独立に、ヘテロ原子を含有してもよい炭素数1~30の炭化水素基を表し、互いに結合して環を形成してもよい。R14~R17は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、POM’’、P(O)(ORM’またはエポキシ含有基を表す(ここで、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アンモニウム、4級アンモニウムまたはホスフォニウムを表し、M’’はアルカリ土類金属を表し、xは0~3の整数を表し、yは0~2の整数を表す。)]。
 一般式(E)中、Mは、前記一般式(A)の説明と同様である。
 一般式(E)中、R11は、水素原子、ハロゲン原子、ヘテロ原子を含有していてもよい炭素数1~30のアルキル基またはヘテロ原子を含有していてもよい炭素数6~30のアリール基を表す。ここで、ヘテロ原子としては、酸素原子、窒素原子、ケイ素原子、ハロゲン原子が好ましく、更に好ましくは酸素原子である。
 R11がヘテロ原子を含有していてもよい炭素数1~30のアルキル基である場合、好ましくは炭素数1~6のアルキル基であり、好ましい具体例として、メチル基、エチル基、トリフルオロメチル基、アシル基、アセトキシ基が挙げられる。
 また、R11が好ましいヘテロ原子を含有していてもよい炭素数6~30のアリール基である場合は、好ましくは炭素数6~13のアリール基であり、好ましい具体例として、フェニル基、トリル基、キシリル基、フェナンスリル基、ペンタフルオロフェニル基が挙げられる。
 これらの中でもR11の特に好ましい具体例としては、水素原子、メチル基およびフェニル基が挙げられる。
 一般式(E)中、Lは、Mに配位したリガンドを表す。リガンドLは、Mに配位結合可能な原子として、酸素、窒素、硫黄を有する炭素数1~20の炭化水素化合物であることが好ましい。また、Lとして、遷移金属に配位可能な炭素-炭素不飽和結合を有する炭化水素化合物(ヘテロ原子を含有していてもよい)も使用することができる。
 Lの炭素数は、好ましくは、1~16であり、さらに好ましくは1~10である。
 また一般式(A)中のMと配位結合するLとしては、電荷を持たない化合物が好ましい。
 好ましいLとしては、ピリジン類、ピペリジン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル誘導体、アリールニトリル誘導体、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、アミン類、環状不飽和炭化水素類などが挙げられる。
 さらに好ましいLとしては、ピリジン類、環状エーテル類、脂肪族エステル類、芳香族エステル類、環状オレフィン類が挙げられ、特に好ましいLとして、ピリジン、ルチジン(ジメチルピリジン)、ピコリン(メチルピリジン)、RCOが挙げられる。
 なお、R11とLが一つになり、下記一般式(E-1)で示されるπ-アリル結合様式を形成してもよい(下記式(E-1)は、一般式(E)中、MおよびR11とLが一つになりπ-アリル結合を形成した部分のみを示す。)。
Figure JPOXMLDOC01-appb-C000004
[式(E-1)中、R10は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、POM’’、P(O)(ORM’またはエポキシ含有基を表す(ここで、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アンモニウム、4級アンモニウムまたはホスフォニウムを表し、M’’はアルカリ土類金属を表し、xは0~3の整数を表し、yは0~2の整数を表す。)。]
 一般式(E-1)中、R10としては、水素、メチル基、エチル基、ブチル基、ペンチル基、ヘキシル基、フェニル基が好ましい。
 一般式(E)中、R12及びR13は、それぞれ独立に、炭素数1~30のヘテロ原子を含有してもよい炭化水素基を表し、互いに結合して環を形成しても良い。R12及びR13は、金属Mの近傍にあって、立体的および/または電子的にMに相互作用を及ぼす。こうした効果を及ぼすためには、R12及びR13は、かさ高い方が好ましい。R12及びR13の好ましい炭素数は3~30、さらに好ましくは6~30である。
 また、R12及びR13は、芳香族骨格を有することが好ましく、ヘテロ原子を含有してもよいアリール基が好ましい。
 R12及びR13において、これらアリール基の芳香族骨格に前記したヘテロ原子を含有しても良い炭化水素基の置換位置としては、R12及びR13中の芳香族骨格のうち、リンに結合した炭素に対してオルト位が好ましい。このようにすることによって、R12及びR13中のヘテロ原子がMと相互作用を持つように空間的配置をとることができる。
 ヘテロ原子を含有しても良い炭化水素基は、炭素数1~10の炭化水素基、酸素を有する炭素数1~10のアルコキシ基またはアリーロキシ基である。
 炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基があげられ、その中で、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、シクロヘキシル基が好ましく、メチル基、エチル基、イソプロピル基、シクロヘキシル基がさらに好ましい。
 酸素を有する炭素数1~10のアルコキシ基やアリーロキシ基としては、メトキシ基、エトキシ基、フェノキシ基、2-メチルフェノキシ基が好ましく、メトキシ基、フェノキシ基が好ましい。
 好ましいR12及びR13の具体的な例示として、2-メチルフェニル基、2,6-ジメチルフェニル基、2-エチルフェニル基、2,6-ジエチルフェニル基、2-イソプロピルフェニル基、2,6-ジ(イソプロピル)フェニル基、2-シクロヘキシルフェニル基、2,6-ジ(シクロヘキシル)フェニル基、2-メトキシフェニル基、2,6-ジメトキシフェニル基、2-フェノキシフェニル基、2,6-ジフェノキシ基などが挙げられる。
 これらのうち、好ましいものとしては、2-メチルフェニル基、2-エチルフェニル基、2-イソプロピルフェニル基、2-シクロヘキシルフェニル基、2-メトキシフェニル基、2,6-ジメトキシフェニル基、2-フェノキシフェニル基、2,6-ジフェノキシ基が挙げられる。
 特に好ましいものとしては、2-イソプロピルフェニル基、2-シクロヘキシルフェニル基、2-メトキシフェニル基、2,6-ジメトキシフェニル基、2-フェノキシフェニル基、2,6-ジフェノキシ基が挙げられる。
 一般式(E)中、R14~R17は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~30のヘテロ原子を含有していてもよい炭化水素基、OR、CO、COM’、C(O)N(R、C(O)R、SR、SO、SOR、OSO、P(O)(OR2-y(R、CN、NHR、N(R、Si(OR3-x(R、OSi(OR3-x(R、NO、SOM’、POM’、POM’’、P(O)(ORM’またはエポキシ含有基を表す(ここで、Rは、炭素数1~20の炭化水素基を表し、Rは、水素原子または炭素数1~20の炭化水素基を表し、M’は、アルカリ金属、アンモニウム、4級アンモニウムまたはホスフォニウムを表し、M’’はアルカリ土類金属を表し、xは0~3の整数を表し、yは0~2の整数を表す。)。
 これらのうち、好ましいものとしては、水素原子、フッ素原子、クロロ原子、ブロモ原子、メチル基、エチル基、イソプロピル基、シクロヘキシル基、フェニル基、トリフルオロメチル基、ペンタフルオロフェニル基、トリメチルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリフェニルシリル基、メトキシ基、エトキシ基、フェノキシ基、2-メチルフェノキシ基、ニトリル基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシロキシ基、トリメトキシシロキシ基、スルフォン酸ナトリウム、スルフォン酸カリウム、リン酸ナトリウム、リン酸カリウムなどが挙げられ、特に好ましいものとしては、水素原子、メチル基、エチル基、イソプロピル基、シクロヘキシル基、フェニル基、トリフルオロメチル基、ペンタフルオロフェニル基、トリメチルシリル基、ジメチルフェニルシリル基、メチルジフェニルシリル基、トリフェニルシリル基、メトキシ基、エトキシ基、フェノキシ基、2-メチルフェノキシ基、トリメトキシシリル基、トリエトキシシリル基、トリメチルシロキシ基、トリメトキシシロキシ基などが挙げられる。
錯体(E)の合成方法
 本実施形態の製造方法に好適に用いられるホスフィン-スルホナート錯体(E)(以下、「錯体(E)」ともいう。)は、下記一般式(F)及び/または(G)で示される化合物と後述する遷移金属錯体成分(H)との反応によって、得ることができる。
Figure JPOXMLDOC01-appb-C000005
[式(F)又は(G)中、Zは、水素原子または脱離基を表し、mは、Zの価数を表す。R12、R13、R14、R15、R16及びR17は、上記一般式(E)の説明と同様である。]
 一般式(F)中、Zは、水素原子、または脱離基であるが、具体的には、水素原子、RSO基(ここでRは、前記したとおりである。)、CFSO基などを挙げることができる。
 一般式(G)は、アニオンの形で表されているが、そのカウンターカチオンは、遷移金属錯体(H)との反応を阻害しない限りにおいて、任意のものを用いることができる。カウンターカチオンとしては、具体的には、アンモニウム、4級アンモニウムまたはホスフォニウム、周期律表1族~14族の金属イオンが挙げられる。これらのうち好ましくは、NH 、R +(ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、R +(ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、Li、Na、K、Mg2+、Ca2+、Al3+であり、さらに好ましくは、R (ここでRは、前記したとおりであり、4つのRは、同じでも異なっていてもよい)、Li、Na、Kである。
 一般式(F)及び(G)で示される物質については、公知の合成法に基づいて合成することができる。錯体(E)は、前記一般式(F)または(G)で表される化合物と、金属Mを含む遷移金属錯体成分(H)との反応生成物に含まれる。
 本実施形態の製造方法で用いられる遷移金属錯体成分(H)については、一般式(F)または(G)で示される化合物と反応して、重合能を有する錯体を形成可能なものが使用される。これらは、プリカーサー(前駆体)とも呼ばれることがある。
 遷移金属錯体成分(H)は、例えば、ビス(ジベンジリデンアセトン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム、硫酸パラジウム、酢酸パラジウム、ビス(アリルパラジウムクロライド)、塩化パラジウム、臭化パラジウム、(シクロオクタジエン)パラジウム(メチル)クロライド、ジメチル(テトラメチルエチレンジアミン)パラジウム、ビス(シクロオクタジエン)ニッケル、塩化ニッケル、臭化ニッケル、(テトラメチルエチレンジアミン)ニッケル(メチル)クロライド、ジメチル(テトラメチルエチレンジアミン)ニッケル、(シクロオクタジエン)ニッケル(メチル)クロライドなどを使用して合成する。
 錯形成反応は、α-オレフィンとの共重合に使用する反応器中で行ってもよいし、該反応器とは別の容器中で行ってもよい。錯形成後に、金属錯体を単離抽出して触媒に用いてもよいし、単離せずに触媒に用いてもよい。更に、後述する多孔質担体の存在下実施することも可能である。
 本実施形態の製造方法に用いられる触媒組成物は、一種類を単独で用いてもよいし、複数種の触媒組成物を併用してもよい。特に、分子量分布やコモノマー含量分布を広げる目的には、こうした複数種の触媒組成物の併用が有用である。
(III)重合反応
 本実施形態の製造方法では、エチレンと不飽和カルボン酸エステルとから、後期遷移金属錯体触媒を用いて、エチレン/不飽和カルボン酸エステル共重合体を製造する工程を含む。
 後期遷移金属錯体触媒としては、錯体(A)や錯体(E)を、重合または共重合の触媒成分として好適に使用することができる。前記したように、錯体(A)は、一般式(B)または(C)で示される化合物と遷移金属錯体成分(D)との反応によって、形成させることができる。また、錯体(E)は、一般式(F)または(G)で示される化合物と遷移金属錯体成分(H)との反応によって、形成させることができる。
 錯体(A)や錯体(E)を触媒成分に用いる場合、単離したものを用いてもよいし、担体に担持したものを用いてもよい。こうした担持α-オレフィンの重合やα-オレフィンと(メタ)アクリル酸エステルとの共重合に使用する反応器中で、これらのモノマーの存在下または非存在下で行ってもよいし、該反応器とは別の容器中で行ってもよい。
 使用可能な担体としては、本発明の主旨をそこなわない限りにおいて、任意の担体を用いることができる。一般に、無機酸化物やポリマー担体が好適に使用できる。
 具体的には、SiO、Al、MgO、ZrO、TiO、B、CaO、ZnO、BaO、ThO等またはこれらの混合物が挙げられ、SiO-Al、SiO-V、SiO-TiO、SiO-MgO、SiO-Cr等の混合酸化物も使用することができ、無機ケイ酸塩、ポリエチレン担体、ポリプロピレン担体、ポリスチレン担体、ポリアクリル酸担体、ポリメタクリル酸担体、ポリアクリル酸エステル担体、ポリエステル担体、ポリアミド担体、ポリイミド担体などが使用可能である。
 これらの担体については、粒径、粒径分布、細孔容積、比表面積などに特に制限はなく、任意のものが使用可能である。
 担体と用いられる無機ケイ酸塩としては、粘土、粘土鉱物、ゼオライト、珪藻土等が使用可能である。これらは、合成品を用いてもよいし、天然に産出する鉱物を用いてもよい。
 粘土、粘土鉱物の具体例としては、アロフェン等のアロフェン族、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロイサイト、ハロイサイト等のハロイサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、アタパルジャイト、セピオライト、パイゴルスカイト、ベントナイト、木節粘土、ガイロメ粘土、ヒシンゲル石、パイロフィライト、リョクデイ石群等が挙げられる。これらは混合層を形成していてもよい。
 合成品としては、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライト等が挙げられる。これら具体例のうち好ましくは、ディッカイト、ナクライト、カオリナイト、アノーキサイト等のカオリン族、メタハロサイト、ハロサイト等のハロサイト族、クリソタイル、リザルダイト、アンチゴライト等の蛇紋石族、モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、イライト、セリサイト、海緑石等の雲母鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられ、特に好ましくはモンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト等のスメクタイト、バーミキュライト等のバーミキュライト鉱物、合成雲母、合成ヘクトライト、合成サポナイト、合成テニオライトが挙げられる。
 これらの担体は、そのまま用いてもよいが、塩酸、硝酸、硫酸等による酸処理および/または、LiCl、NaCl、KCl、CaCl、MgCl、LiSO、MgSO、ZnSO、Ti(SO、Zr(SO、Al(SO等の塩類処理を行ってもよい。該処理において、対応する酸と塩基を混合して反応系内で塩を生成させて処理を行ってもよい。また粉砕や造粒等の形状制御や乾燥処理を行ってもよい。
 重合反応は、例えば、プロパン、n-ブタン、イソブタン、n-ヘキサン、n-ヘプタン、トルエン、キシレン、シクロヘキサン、メチルシクロヘキサン等の炭化水素溶媒や液化α-オレフィン等の液体、また、ジエチルエーテル、エチレングリコールジメチルエーテル、テトラヒドロフラン、ジオキサン、酢酸エチル、安息香酸メチル、アセトン、メチルエチルケトン、ホルミアミド、アセトニトリル、メタノール、イソプロピルアルコール、エチレングリコール等のような極性溶媒の存在下あるいは非存在下に行うことができる。また、ここで記載した液体化合物の混合物を溶媒として使用してもよい。さらに、イオン液体も溶媒として使用可能である。なお、高い重合活性や高い分子量を得るうえでは、上述の炭化水素溶媒やイオン液体がより好ましい。
 重合反応は、公知の添加剤の存在下または非存在下で行うことができる。添加剤としては、ラジカル重合を禁止する重合禁止剤や、生成共重合体を安定化する作用を有する添加剤が好ましい。例えば、キノン誘導体やヒンダードフェノール誘導体などが好ましい添加剤の例として挙げられる。具体的には、モノメチルエーテルハイドロキノンや、2,6-ジ-t-ブチル4-メチルフェノール(BHT)、トリメチルアルミニウムとBHTとの反応生成物、4価チタンのアルコキサイドとBHTとの反応生成物などが使用可能である。
 また、添加剤として、無機およびまたは有機フィラーを使用し、これらのフィラーの存在下で重合を行っても良い。さらに、Lやイオン液体を添加剤として用いてもよい。
 また、好ましい添加剤として、ルイス塩基が挙げられる。適切なルイス塩基を選択することにより、活性、分子量、アクリル酸エステルの共重合性を改良することができる。ルイス塩基の量としては、重合系内に存在する触媒成分中の遷移金属Mに対して、0.0001当量~1000当量、好ましくは0.1当量~100当量、さらに好ましくは、0.3当量~30当量である。ルイス塩基を重合系に添加する方法については、特に制限はなく、任意の手法を用いることができる。例えば、上記の触媒成分と混合して添加してもよいし、モノマーと混合して添加してもよいし、触媒成分やモノマーとは独立に重合系に添加してもよい。また、複数のルイス塩基を併用してもよい。また、本発明に係るL1と同じルイス塩基を用いてもよいし、異なっていてもよい。
 ルイス塩基としては、芳香族アミン類、脂肪族アミン類、アルキルエーテル類、アリールエーテル類、アルキルアリールエーテル類、環状エーテル類、アルキルニトリル類、アリールニトリル類、アルコール類、アミド類、脂肪族エステル類、芳香族エステル類、フォスフェート類、フォスファイト類、チオフェン類、チアンスレン類、チアゾール類、オキサゾール類、モルフォリン類、環状不飽和炭化水素類などが挙げられる。これらのうち、特に好ましいルイス塩基は、芳香族アミン類、脂肪族アミン類、環状エーテル類、脂肪族エステル類、芳香族エステル類であり、なかでも好ましいルイス塩基は、ピリジン誘導体、ピリミジン誘導体、ピペリジン誘導体、イミダゾール誘導体、アニリン誘導体、ピペリジン誘導体、トリアジン誘導体、ピロール誘導体、フラン誘導体である。
 具体的なルイス塩基化合物としては、ピリジン、ペンタフルオロピリジン、2,6-ルチジン、2,4-ルチジン、3,5-ルチジン、ピリミジン、N、N-ジメチルアミノピリジン、N-メチルイミダゾール、2,2′-ビピリジン、アニリン、ピペリジン、1,3,5-トリアジン、2,4,6-トリス(トリフルオロメチル)-1,3,5-トリアジン、2,4,6-トリス(2-ピリジル)-s-トリアジン、キノリン、8-メチルキノリン、フェナジン、1,10-フェナンスロリン、N-メチルピロール、1,8-ジアザビシクロ-[5.4.0]-ウンデカ-7-エン、1,4-ジアザビシクロ-[2,2,2]-オクタン、トリエチルアミン、ベンゾニトリル、ピコリン、トリフェニルアミン、N-メチル-2-ピロリドン、4-メチルモルフォリン、ベンズオキサゾール、ベンゾチアゾール、フラン、2,5-ジメチルフラン、ジベンゾフラン、キサンテン、1,4-ジオキサン、1,3,5-トリオキサン、ジベンゾチオフェン、チアンスレン、トリフェニルフォスフォニウムシクロペンタジエニド、トリフェニルフォスファイト、トリフェニルフォスフェート、トリピロリジノフォスフィン、トリス(ピロリジノ)ボランなどが挙げられる。
 本実施形態において、重合形式は特に限定されない。例えば、媒体中で少なくとも一部の生成重合体がスラリーとなるスラリー重合、液化したモノマー自身を媒体とするバルク重合、気化したモノマー中で行う気相重合、または、高温高圧で液化したモノマーに生成重合体の少なくとも一部が溶解する高圧イオン重合などを用いることができる。また、バッチ重合、セミバッチ重合、連続重合のいずれの形式でもよい。また、リビング重合であってもよいし、連鎖移動を併発しながら重合を行ってもよい。さらに、いわゆるchain transfer agent(CSA)を併用し、chain shuttlingや、coordinative chain transfer polymerization(CCTP)を行ってもよい。
 未反応モノマーや媒体は、生成共重合体から分離し、リサイクルして使用してもよい。リサイクルの際、これらのモノマーや媒体は、精製して再使用してもよいし、精製せずに再使用してもよい。生成共重合体と未反応モノマーおよび媒体との分離には、従来公知の方法が使用できる。例えば、濾過、遠心分離、溶媒抽出、貧溶媒を使用した再沈などの方法が使用できる。
 重合温度、重合圧力および重合時間は、特に制限はないが、通常は、以下の範囲から生産性やプロセスの能力を考慮して、最適な設定を行うことができる。すなわち、重合温度は、通常-20℃~290℃、好ましくは0℃~250℃、共重合圧力は、0.1MPa~300MPa、好ましくは、0.3MPa~250MPa、重合時間は、0.1分~10時間、好ましくは、0.5分~7時間、さらに好ましくは1分~6時間の範囲から選ぶことができる。
 重合反応は、一般な不活性ガス雰囲気下で行うことができる。例えば、窒素、アルゴン、二酸化炭素雰囲気が使用でき、窒素雰囲気が好ましく使用される。なお、少量の酸素や空気の混入があってもよい。
 重合反応器への触媒とモノマーの供給に関しても特に制限はなく、目的に応じてさまざまな供給法をとることができる。たとえばバッチ重合の場合、あらかじめ所定量のモノマーを重合反応器に供給しておき、そこに触媒を供給する手法をとることが可能である。この場合、追加のモノマーや追加の触媒を重合反応器に供給してもよい。また、連続重合の場合、所定量のモノマーと触媒を重合反応器に連続的に、または間歇的に供給し、重合反応を連続的に行う手法をとることができる。
 共重合体の組成の制御に関しては、複数のモノマーを反応器に供給し、その供給比率を変えることによって制御する方法を一般に用いることができる。その他、触媒の構造の違いによるモノマー反応性比の違いを利用して共重合組成を制御する方法や、モノマー反応性比の重合温度依存性を利用して共重合組成を制御する方法が挙げられる。
 重合体の分子量制御には、従来公知の方法を使用することができる。すなわち、重合温度を制御して分子量を制御する方法、モノマー濃度を制御して分子量を制御する方法、連鎖移動剤を使用して分子量を制御する方法、遷移金属錯体中のリガンド構造の制御により分子量を制御する等が挙げられる。連鎖移動剤を使用する場合には、従来公知の連鎖移動剤を用いることができる。例えば、水素、メタルアルキルなどを使用することができる。
 また、(メタ)アクリル酸エステル成分自身が一種の連鎖移動剤となる場合には、(メタ)アクリル酸エステル成分のエチレン成分に対する比率や、(メタ)アクリル酸エステル成分の濃度を制御することによっても、分子量調節が可能である。遷移金属錯体中のリガンド構造を制御して、分子量調節を行う場合には、前記したR、RやR12、R13中のヘテロ原子含有基の種類、数、配置を制御したり、金属Mのまわりに嵩高い置換基を配置したりすることによって、一般に分子量が向上する傾向を利用することができる。なお、金属Mに対して、アリール基やヘテロ原子含有置換基などの電子供与性基が相互作用可能となるように電子供与性基を配置することが好ましい。こうした電子供与性基が金属Mと相互作用可能であるかどうかは、一般に、分子模型や分子軌道計算で電子供与性基と金属Mとの距離を測定することによって判断できる。
(2)エチレン/不飽和カルボン酸エステルの加熱工程
 本実施形態の製造方法は、工程(2)として、前記工程によりエチレン/不飽和カルボン酸エステルを製造した後、得られたエチレン/不飽和カルボン酸エステルを加熱することにより、エチレン/不飽和カルボン酸共重合体に変換する工程を含む。
 エチレン/不飽和カルボン酸エステルを加熱処理する温度は、エステル基がカルボン酸基に変換可能な反応温度であれば、特に限定されない。反応温度が低すぎる場合はエステル基がカルボン酸基に変換されず、高すぎる場合には脱カルボニル化や共重合体の分解が進むので好ましくない。例えば、反応温度は、好ましくは150℃以上350℃以下の範囲、より好ましくは180℃以上300℃以下の範囲、さらに好ましくは190℃以上270℃以下の範囲である。
 反応時間は反応温度やエステル部分の反応性等により変わるが、通常1分~10時間であり、より好ましくは2分~5時間であり、更に好ましくは2分~3時間である。反応方法に用いる反応器としては、特に制限は無いが、共重合体を実質的に均一に攪拌できる方法であれば何ら限定されず、攪拌器を装備したガラス容器やACを用いても良いし、ブラベンダープラストグラフ、一軸あるいは二軸押出機、強力スクリュー型混練機、バンバリーミキサー、ニーダー、ロール等の従来知られているいかなる混練機も使用することができる。
 反応雰囲気は特に制限はないが、一般に不活性ガス気流下で行われるほうが好ましい。不活性ガスの例としては、窒素、アルゴン、二酸化炭素雰囲気が使用でき、なお、少量の酸素や空気の混入があってもよい。
 工程(2)により得られたエチレン/不飽和カルボン酸共重合体は、構成モノマーとして、エチレンと不飽和カルボン酸とを少なくとも含む。ここで、不飽和カルボン酸としては、上記したエチレン/不飽和カルボン酸エステルの構成モノマーである不飽和カルボン酸エステルのエステル基をカルボン酸基に置換したものが挙げられる。不飽和カルボン酸としては、具体的には、アクリル酸、メタクリル酸などが挙げられる。
 さらに、本発明の目的から逸脱しない範囲において、上記エチレン/不飽和カルボン酸エステルまたは上記エチレン/不飽和カルボン酸共重合体は、酸化防止剤、耐光安定剤、紫外線吸収剤、金属石鹸、塩酸吸収剤などの安定剤、造核剤、滑剤、帯電防止剤、アンチブロッキング剤などの添加剤を含有してもよい。添加剤としては、具体的には、2,6-ジ-t-ブチル-p-クレゾール(BHT)、テトラキス(メチレン-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオナート)メタン(BASFジャパン社製商品名「IRGANOX 1010」)やn-オクタデシル-3-(4‘-ヒドロキシ-3,5’-ジ-t-ブチルフェニル)プロピオナート(BASF社製商品名「IRGANOX 1076」)で代表されるフェノール系安定剤、ビス(2,4-ジ-t-ブチルフェニル)ペンタエリスルトールジホスファイトなどで代表されるホスファイト系安定剤、高級脂肪酸アミドや高級脂肪酸エステルで代表される滑剤、炭素原子数8~22の脂肪酸のグリセリンエステルやソルビタン酸エステル、ポリエチレングリコールエステルなどの帯電防止剤、シリカ、炭酸カルシウム、タルクなどで代表されるブロッキング剤などが挙げられる。
 以下の実施例および比較例において本発明をさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 以下の合成例で、とくに断りのない限り、操作は精製窒素雰囲気下で行い、溶媒は脱水・脱酸素したものを用いた。
1.溶媒、モノマー、及び窒素の調整
・精製窒素は、窒素雰囲気下で焼成したモレキュラーシーブ4A(MS4A)を使用して脱水したものを用いた。エチレンやトルエンは、窒素雰囲気下で焼成したMS4Aを使用して脱水したものを用いた。
・アクリル酸t-ブチル(tBA)(Wako純薬株式会社製)は、Inhibitor Remover(Aldrich社製)で処理したものを用いた。
2.各分析方法
(1)GPC分析(Mw/Mn):
 測定条件(高温SEC)
 装置:GPCV2000(Waters社製)
 検出器:RI(示差屈折計)
 移動相:ODCB(135℃)
 流量:1.0mL/分
 注入量:0.05wt%×524.5μL
 カラム:東ソーTSKgel GMH-HT(30cm×4)
 試料は、高温GPC用前処理装置PL-SP260VS中でBHT添加(0.5g/L)したODCBに溶解(溶解温度135℃)し、グラスフィルターにてろ過後測定した。
 較正法(135℃,ODCB中のPEの換算分子量):
 PEとしての較正曲線は、標準PSTの保持時間から汎用校正曲線法により算出した。
 用いた数値は、KPST=1.38E-4、αPST=0.70、KPE=4.77E-4、αPE=0.70である。
 較正曲線の近似式は3次式を用いた。
(2)DSC分析(Tm):
 HP社製DSC(示差走査熱量測定装置)を用いて測定した。測定は窒素雰囲気下、以下の表1に示す温度パターンで行った。
Figure JPOXMLDOC01-appb-T000006
(3)IR分析:
 熱プレスによってシートにしたサンプルをIR測定することでコモノマー含量を求めた。
 その際、1)EtBAの場合は1,740cm-1/730-720cm-1の面積比を、2)EAAの場合は1,710cm-1/730-720cm-1の面積比を、以下の式を用いて換算した値である。
  [RA]=1.3503(面積比)-0.2208
3.各評価方法
(1)MFR:
 JIS K7210に準拠し、190℃、2.16kgで測定した。
(2)引張降伏応力:
 JIS K71612に準拠して測定した値であり、試験片をJIS K6922-2(1997)表2の条件で作成した厚さ4mmで圧縮成形シートから1B多目的試験片形状に切出し、23℃の測定環境で、引張速度50mm/minで測定した値である。
(3)引張破断応力:
 JIS K7162に準拠して測定した値である。
(4)引張破断伸び:
 JIS K7162に準拠して測定した値である。
4.配位子及び触媒調整方法:
 触媒(A)及び触媒(B)は国際公開第2010/050256号に従って調整した。以下に具体的な調製を説明する。
 触媒(A):ビス-(1,5-シクロオクタジエン)ニッケル(0)(Ni(COD)、関東化学株式会社製)(40.0mg,145μmol)をトルエン(14.5mL)に溶解させ、その溶液(10μmol/mL,10mL)を2-ビス(2,6-ジメトキシフェニル)ホスファニル-6-(ペンタフルオロフェニル)フェノール(56.4mg,99.9μmol)に添加した後、40℃で90分間攪拌することにより調製した。
 触媒(B):2-ビス(2,6-ジメトキシフェニル)ホスファニル-6-t-ブチルフェノール(1.394g,3.07mmol)をトルエン(24.5mL)で溶解した。その溶液(24.0mL,3.00mmol)をNi(COD)(0.8248g,3.00mmol)のトルエン(24.0mL)に添加し、45℃で1時間攪拌した。減圧下の溶媒除去後、得られた残渣をトルエン(38.3mL)で溶解させることで、触媒(B)のトルエン溶液を調整した(78.3μmol/mL)。
(実施例1)
[エチレン/アクリル酸t-ブチル共重合体(EtBA)(1)の製造方法]
 内容積2Lの誘導攪拌式オートクレーブ内に、トルエン(1,000mL)、アクリル酸t-ブチル(tBA)(6.0mL,41mmol)を入れ、65℃位まで昇温した時に、上記触媒(A)トルエン溶液(20μmol/mL,4.0mL,80μmol)を導入し、70℃で3.0MPaに保つようにエチレンを追加しながら1時間攪拌を継続した。攪拌終了後、未反応エチレンをパージして重合を停止した。オートクレーブを開放して、濾過及び洗浄後、18gの共重合体が得られた。得られた共重合体を分析した結果、Mw=170k、Mw/Mn=2.0、tBA単位の含有量:[tBA]=1.1mol%であった。
[エチレン/アクリル酸共重合体(EAA)(1)の製造]
 上記で製造したEtBA(1)(10g)をフラスコに入れ、フラスコ内を精製CE窒素で置換し後、260℃のオイルバスで2時間加熱した。室温まで冷却し、共重合体を沸騰キシレンで膨潤させた後、フラスコから取り出した。膨潤した共重合体を乾燥することで、エチレン/アクリル酸共重合体(EAA)(10g)を得た。
アクリル酸単位の含有量:[AA]=1.1mol%、
 -3.74×[AA]+113.5=109.4<融点(Tm)=114℃<-3.74X[AA]+130=125.9であり、式(I)を満たすものであった。得られた共重合体を分析した結果、Mw=170k、Mw/Mn=2.0であった。
 得られた共重合体の各分析結果を表2に示す。
(実施例2)
[共重合体 EtBA(2)の製造方法]
 内容積2Lの誘導攪拌式オートクレーブ内に、トルエン(1,000mL)、tBA(8.0 mL,54.9mmol)を入れ、65℃位まで昇温した時に、上記触媒(B)トルエン溶液(5.0mL,392μmol)を導入し、70℃で2.0MPaに保つようにエチレンを追加しながら1時間攪拌を継続した。攪拌終了後、未反応エチレンをパージして重合を停止した。オートクレーブを開放して、濾過及び洗浄後、16.4 gの共重合体が得られた。得られた共重合体を分析した結果、Mw=97k、Mw/Mn=1.9、[tBA]=2.5mol%であった。
[EAA(2)の製造]
 上記で製造したEtBA(2)(10g)をフラスコに入れ、フラスコ内を精製CE窒素で置換し後、260℃のオイルバスで2時間加熱した。室温まで冷却し、共重合体を沸騰キシレンで膨潤させた後、フラスコから取り出した。膨潤した共重合体を乾燥することで、EAA(10g)を得た。
 [AA]=2.5mol%、
 -3.74×[AA]+113.5=104.2<融点(Tm)=108℃<-3.74×[AA]+130=120.7であり、式(I)を満たすものであった。得られた共重合体を分析した結果、
Mw=97k、Mw/Mn=1.9であった。
 得られた共重合体の各分析結果、評価結果を表2、3に示す。
(比較例1)
 エチレン-アクリル酸共重合体として、高圧ラジカル重合法により製造されたエチレン-アクリル酸共重合体である、ダウ社製PRIMACOR(登録商標)1321を用いて、評価した。
 [AA]=2.6mol%、
 -3.74×[AA]+113.5=103.8>融点(Tm)=103℃であり、式(I)を満たさないものであった。
 各分析結果、評価結果を表2、3に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(評価結果)
 表2、3に示されるように、本発明の製造方法により製造されたエチレン/アクリル酸共重合体(実施例1、2)は、従来のラジカル重合法により製造されたエチレン/アクリル酸共重合体(比較例1)よりも高い耐熱性及び優れた機械的強度を有する。
 本発明の製造方法により得られるエチレン/不飽和カルボン酸共重合体、特にエチレン/(メタ)アクリル酸共重合体は、この共重合体の極性基にもとづく効果により、良好な塗装性、印刷性、帯電防止性、無機フィラー分散性、他樹脂との接着性、他樹脂との相溶化能などが発現する。こうした性質を利用して、本発明のエチレン/(メタ)アクリル酸共重合体は、さまざまな用途に使用することができ、例えば、フィルム、シート、接着性樹脂、バインダー、相溶化剤、ワックスなどとして好適に使用することができる。

Claims (10)

  1.  エチレンに由来する構造単位と、不飽和カルボン酸に由来する構造単位が、ランダムかつ直線状に共重合してなるエチレン/不飽和カルボン酸共重合体の製造方法であって、エチレンと不飽和カルボン酸エステルとから、後期遷移金属錯体触媒を用いて、エチレン/不飽和カルボン酸エステル共重合体を製造する工程および、前記エチレン/不飽和カルボン酸エステル共重合体を、エステル基をカルボン酸基に変換可能な温度で加熱し、前記エチレン/不飽和カルボン酸共重合体に変換する工程を含む、エチレン/不飽和カルボン酸共重合体の製造方法。
  2.  前記不飽和カルボン酸エステルが(メタ)アクリル酸エステルであり、前記不飽和カルボン酸が(メタ)アクリル酸であることを特徴とする請求項1記載のエチレン/不飽和カルボン酸共重合体の製造方法。
  3.  前記加熱の温度が、150~350℃であることを特徴とする請求項1又は2記載のエチレン/不飽和カルボン酸共重合体の製造方法。
  4.  前記後期遷移金属錯体触媒が、下記式(2)で示される後期遷移金属錯体を含む触媒であることを特徴とする請求項1~3のいずれかに記載のエチレン/不飽和カルボン酸共重合体の製造方法。
      (Ligand)MRL・・・(2)
    [式(2)中、Mは、9~11族の遷移金属を示す。Ligandは、酸素原子、窒素原子、リン原子、ヒ素原子、硫黄原子及び炭素原子よりなる群から選ばれる何れかの原子で中心金属であるMにキレート配位する配位子を示す。Rは、Mとσ結合を形成する配位子を示す。Lは、Mに配位したリガンドを示す。]
  5.  前記後期遷移金属錯体が、ホスフィン-フェノラート錯体、または、ホスフィン-スルホナート錯体であることを特徴とする、請求項1~4のいずれかに記載のエチレン/不飽和カルボン酸共重合体の製造方法。
  6.  前記不飽和カルボン酸エステルが(メタ)アクリル酸エステルであり、前記(メタ)アクリル酸エステルのアルコール部分が3級アルコールであることを特徴とする請求項1~5のいずれかに記載のエチレン/不飽和カルボン酸共重合体の製造方法。
  7.  請求項1~6のいずれかに記載の製造方法により製造されたことを特徴とするエチレン/不飽和カルボン酸共重合体。
  8.  請求項1~6のいずれかに記載の製造方法により製造されたことを特徴とするエチレン/(メタ)アクリル酸共重合体。
  9.  エチレン単位を99.9~80.0mol%および(メタ)アクリル酸単位を0.1~20.0mol%含み、下記の(a)~(c)の特徴を有するエチレン/(メタ)アクリル酸共重合体。
     (a)GPCで測定した重量平均分子量(Mw)が20,000以上かつ1,000,000未満である。
     (b)GPCで測定した重量平均分子量/数平均分子量(Mw/Mn)が1.7以上20以下である。
     (c)DSC(示差走査型熱量計)を用いた測定により観測される前記共重合体の融点(Tm、℃)と前記共重合体中に含まれる(メタ)アクリル酸単位の含有量(AA、mol%)とが下記の式(I)を満たす。
      -3.74×AA+113.5<Tm<-3.74×AA+130・・・(I)
  10.  前記融点(Tm)が80~128℃であることを特徴とする請求項9に記載のエチレン/(メタ)アクリル酸共重合体。
PCT/JP2015/052064 2014-01-28 2015-01-26 エチレン/不飽和カルボン酸共重合体の製造方法及びその共重合体 WO2015115378A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15742823.6A EP3101040B1 (en) 2014-01-28 2015-01-26 Method for producing ethylene/unsaturated carboxylic acid copolymer
CN201580006358.8A CN105940016A (zh) 2014-01-28 2015-01-26 乙烯/不饱和羧酸共聚物的制造方法及所述共聚物
US15/113,243 US20170002120A1 (en) 2014-01-28 2015-01-26 Process for producing ethylene/unsaturated carboxylic acid copolymer, and said copolymer
US15/868,276 US10550211B2 (en) 2014-01-28 2018-01-11 Process for producing ethylene/unsaturated carboxylic acid copolymer, and said copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014013705 2014-01-28
JP2014-013705 2014-01-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/113,243 A-371-Of-International US20170002120A1 (en) 2014-01-28 2015-01-26 Process for producing ethylene/unsaturated carboxylic acid copolymer, and said copolymer
US15/868,276 Division US10550211B2 (en) 2014-01-28 2018-01-11 Process for producing ethylene/unsaturated carboxylic acid copolymer, and said copolymer

Publications (1)

Publication Number Publication Date
WO2015115378A1 true WO2015115378A1 (ja) 2015-08-06

Family

ID=53756951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052064 WO2015115378A1 (ja) 2014-01-28 2015-01-26 エチレン/不飽和カルボン酸共重合体の製造方法及びその共重合体

Country Status (5)

Country Link
US (2) US20170002120A1 (ja)
EP (1) EP3101040B1 (ja)
JP (1) JP6594628B2 (ja)
CN (1) CN105940016A (ja)
WO (1) WO2015115378A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060218A1 (ja) * 2014-10-15 2016-04-21 日本ポリエチレン株式会社 エチレン系アイオノマーの製造方法及びエチレン系アイオノマー
US20190263945A1 (en) * 2016-07-27 2019-08-29 The University Of Tokyo Metal complex and method for producing the same, catalyst component for olefin polymerization and catalyst for olefin polymerization containing the metal complex, and methods for producing ?-olefin polymer and copolymer using the catalyst for olefin polymerization

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501202B2 (en) * 2017-08-23 2019-12-10 The Boeing Company Ignition-quenching systems, apparatuses, and methods
CN109694435A (zh) * 2017-10-24 2019-04-30 中国石油化工股份有限公司 一种烯烃-不饱和羧酸聚合物及其制备方法
CN109705247B (zh) * 2018-12-28 2020-05-12 中国科学技术大学 阻燃聚烯烃及其制备方法以及改善聚烯烃和阻燃剂的相容性同时增强其阻燃性的方法
CN113366028A (zh) 2019-01-28 2021-09-07 日本聚乙烯株式会社 含极性基团的烯烃共聚物
US20220135718A1 (en) 2019-03-04 2022-05-05 Japan Polyethylene Corporation Multi-component ionomer
EP3950737A4 (en) 2019-04-02 2022-06-15 Japan Polyethylene Corporation POLYAMIDE RESIN COMPOSITION WITH A SPECIFIC IONOMER
WO2020262482A1 (ja) 2019-06-24 2020-12-30 日本ポリエチレン株式会社 フィルム状成形体用樹脂及びそれからなる成形品
CN114026133B (zh) 2019-06-24 2024-03-19 日本聚乙烯株式会社 注射成型用或压缩成型用树脂组合物
JP2021001329A (ja) 2019-06-24 2021-01-07 日本ポリエチレン株式会社 ラミネート用重合体組成物及びそれを用いた積層体
JP7453843B2 (ja) 2020-04-30 2024-03-21 日本ポリエチレン株式会社 極性基含有オレフィン共重合体及びその製造方法
CN117720698B (zh) * 2023-12-14 2024-05-03 山东聚星石油科技有限公司 一种耐温抗盐纳米交联聚合物微球及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375014A (ja) 1986-09-17 1988-04-05 Idemitsu Kosan Co Ltd 新規エチレン共重合体
JPH02308803A (ja) * 1989-05-23 1990-12-21 Idemitsu Kosan Co Ltd エチレン―不飽和カルボン酸共重合体の製造法
JPH0621643B2 (ja) * 1985-10-16 1994-03-23 三菱自動車工業株式会社 車両用自動変速機の油圧制御装置
JPH0660220B2 (ja) 1986-07-16 1994-08-10 出光興産株式会社 エチレン系共重合体の製造法
WO2010050256A1 (ja) 2008-10-30 2010-05-06 日本ポリプロ株式会社 新規な金属錯体ならびにそれを用いたα-オレフィン重合体の製造方法およびα-オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP2010150246A (ja) 2008-11-20 2010-07-08 Japan Polyethylene Corp 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。
JP2013227521A (ja) 2012-03-30 2013-11-07 Japan Polyethylene Corp オレフィン系樹脂組成物並びにそれを用いた積層体および複合化製品

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3132120A (en) * 1961-02-03 1964-05-05 Du Pont Method for the preparation of ethylene copolymers
GB1179200A (en) * 1967-12-28 1970-01-28 Gulf Research Development Co Process for Preparation of Ethylene-Carboxylic Acid Copolymers.
US4081587A (en) * 1977-05-16 1978-03-28 Gulf Oil Corporation Process for the manufacture of ethylene-acrylic acid copolymers
JPS6079008A (ja) * 1983-09-14 1985-05-04 Nippon Petrochem Co Ltd 色相良好なエチレン−アクリル酸共重合体またはエチレン−アクリル酸エチル−アクリル酸共重合体の製造法
JPH0660220A (ja) 1992-08-07 1994-03-04 Oki Electric Ind Co Ltd 文書画像の領域抽出方法
US6562906B2 (en) * 2000-08-11 2003-05-13 E. I. Du Pont De Nemours And Company Bi-modal ionomers
US7315579B2 (en) * 2001-02-28 2008-01-01 Broadcom Corporation Trellis coded modulation tails
CN102292344B (zh) * 2008-11-20 2014-12-10 日本聚乙烯株式会社 新三芳基膦或三芳基胂化合物及α-烯烃聚合催化剂、三元共聚物和α-烯烃/(甲基)丙烯酸系共聚物的制法
US8669312B2 (en) * 2009-10-07 2014-03-11 Bridgestone Sports Co., Ltd. Golf ball material and method of preparing the same
US8680204B2 (en) * 2009-12-23 2014-03-25 Hyun J. Kim Crosslinked ionomer compositions
US8372911B2 (en) * 2010-07-27 2013-02-12 Bridgestone Sports Co., Ltd. Golf ball material and method of preparing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621643B2 (ja) * 1985-10-16 1994-03-23 三菱自動車工業株式会社 車両用自動変速機の油圧制御装置
JPH0660220B2 (ja) 1986-07-16 1994-08-10 出光興産株式会社 エチレン系共重合体の製造法
JPS6375014A (ja) 1986-09-17 1988-04-05 Idemitsu Kosan Co Ltd 新規エチレン共重合体
JPH02308803A (ja) * 1989-05-23 1990-12-21 Idemitsu Kosan Co Ltd エチレン―不飽和カルボン酸共重合体の製造法
WO2010050256A1 (ja) 2008-10-30 2010-05-06 日本ポリプロ株式会社 新規な金属錯体ならびにそれを用いたα-オレフィン重合体の製造方法およびα-オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP2010150246A (ja) 2008-11-20 2010-07-08 Japan Polyethylene Corp 新規なトリアリールホスフィン又はトリアリールアルシン化合物及びそれらを用いたα−オレフィン系重合触媒並びにα−オレフィン系共重合体の製造方法。
JP2013227521A (ja) 2012-03-30 2013-11-07 Japan Polyethylene Corp オレフィン系樹脂組成物並びにそれを用いた積層体および複合化製品

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BAMFORD, C. H.: "Encyclopedia of Polymer Science and Engineering", vol. 13, 1986, WILEY: NEW YORK, pages: 708
See also references of EP3101040A4
SKUPOV, K. M.; PICHE, L.; CLAVERIE, J. P., MACROMOLECULES, vol. 41, 2008, pages 2309 - 2310
T. RUENZI; D. FROEHLICH; S. MECKING, J. AM. CHEM. SOC., vol. 132, 2010, pages 17690 - 17691
V. A. KRYUCHKOV; J. -C. DAIGLE; K. M. SKUPOV; J. P. CLAVERIE; F. M. WINNK, J. AM. CHEM. SOC., vol. 132, 2010, pages 15573 - 15579
VLADIMIR A. KRYUCHKOV: "Amphiphilic polyethylenes leading to surfactant-free thermoresponsive nanoparticles", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, 2010, pages 15573 - 15579, XP055217277 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016060218A1 (ja) * 2014-10-15 2016-04-21 日本ポリエチレン株式会社 エチレン系アイオノマーの製造方法及びエチレン系アイオノマー
US10717855B2 (en) 2014-10-15 2020-07-21 Japan Polyethylene Corporation Production method of ethylene-based ionomer and ethylene-based ionomer
US20190263945A1 (en) * 2016-07-27 2019-08-29 The University Of Tokyo Metal complex and method for producing the same, catalyst component for olefin polymerization and catalyst for olefin polymerization containing the metal complex, and methods for producing ?-olefin polymer and copolymer using the catalyst for olefin polymerization
US11149099B2 (en) * 2016-07-27 2021-10-19 The University Of Tokyo Metal complex and method for producing the same, catalyst component for olefin polymerization and catalyst for olefin polymerization containing the metal complex, and methods for producing α-olefin polymer and copolymer using the catalyst for olefin polymerization

Also Published As

Publication number Publication date
EP3101040A4 (en) 2017-02-01
JP2015163691A (ja) 2015-09-10
JP6594628B2 (ja) 2019-10-23
CN105940016A (zh) 2016-09-14
EP3101040A1 (en) 2016-12-07
US20170002120A1 (en) 2017-01-05
US10550211B2 (en) 2020-02-04
US20180201704A1 (en) 2018-07-19
EP3101040B1 (en) 2019-05-15

Similar Documents

Publication Publication Date Title
JP6594628B2 (ja) エチレン/不飽和カルボン酸共重合体の製造方法及びその共重合体
JP4524335B2 (ja) 新規な金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP6750936B2 (ja) エチレン系アイオノマーの製造方法及びエチレン系アイオノマー
JP5232718B2 (ja) 新規な金属錯体を含む重合触媒成分およびそれを用いたα−オレフィン重合体またはα−オレフィン・(メタ)アクリル酸エステル共重合体の製造方法
JP5812764B2 (ja) 金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP5597582B2 (ja) 金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
US10301401B2 (en) Olefin polymerization catalyst and method for producing olefin polymer
JP5863538B2 (ja) 金属錯体およびそれを用いたα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP5863539B2 (ja) 金属錯体およびそれを用いたα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP5622376B2 (ja) 新規な金属錯体ならびにそれを用いたα−オレフィン重合体の製造方法およびα−オレフィンとプロペン酸誘導体エステル共重合体の製造方法
JP6356507B2 (ja) オレフィン重合触媒及びオレフィン重合体の製造方法
JP6867761B2 (ja) 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα−オレフィン重合体の製造方法
JP6938265B2 (ja) 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα−オレフィン重合体の製造方法
JP2013043979A (ja) α−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP6938264B2 (ja) 金属錯体およびその製造方法、当該金属錯体を含むオレフィン重合用触媒成分およびオレフィン重合用触媒、並びに、当該オレフィン重合用触媒を用いたα−オレフィン重合体及び共重合体の製造方法
JP5989572B2 (ja) 金属錯体およびそれを用いたα−オレフィンと(メタ)アクリル酸エステル共重合体の製造方法
JP6913051B2 (ja) 金属錯体、及びそれを用いたα−オレフィン/(メタ)アクリル酸エステル共重合体の製造方法
JP6771946B2 (ja) 新規固体担持オレフィン重合触媒及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15742823

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15113243

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015742823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015742823

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE