WO2015114895A1 - 膜厚計測方法及び膜厚計測装置 - Google Patents

膜厚計測方法及び膜厚計測装置 Download PDF

Info

Publication number
WO2015114895A1
WO2015114895A1 PCT/JP2014/078385 JP2014078385W WO2015114895A1 WO 2015114895 A1 WO2015114895 A1 WO 2015114895A1 JP 2014078385 W JP2014078385 W JP 2014078385W WO 2015114895 A1 WO2015114895 A1 WO 2015114895A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
reflectance
film thickness
transmittance
value
Prior art date
Application number
PCT/JP2014/078385
Other languages
English (en)
French (fr)
Inventor
賢一 大塚
中野 哲寿
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201480074364.2A priority Critical patent/CN105940282B/zh
Priority to KR1020167021399A priority patent/KR102232214B1/ko
Priority to DE112014006304.5T priority patent/DE112014006304T5/de
Priority to US15/114,909 priority patent/US9846028B2/en
Publication of WO2015114895A1 publication Critical patent/WO2015114895A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0691Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of objects while moving
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Definitions

  • the present invention relates to a film thickness measuring method and a film thickness measuring apparatus.
  • Patent Document 1 describes a method for producing a composite film in which translucent thin films are laminated.
  • Patent Document 1 when ultra-thin films are formed on both surfaces of a base film, reflected light from the ultra-thin film formed on the back surface is used to measure the thickness of the ultra-thin film formed on the surface. It is described that it affects. And the method described in patent document 1 intends to reduce such an influence by mixing a light absorption material in a base film.
  • Patent Document 2 describes a method for measuring the thickness of a thin film formed on a transparent substrate.
  • the thickness of the thin film is measured in consideration of the back surface reflection coefficient contribution rate ⁇ , which is the ratio at which the reflected light from the back surface of the transparent substrate is detected. is doing.
  • Patent Document 3 describes a method of irradiating a multilayer thin film with light and measuring the thickness of the multilayer thin film based on the spectral spectrum of the reflected light.
  • the thickness of each film on the front surface and the back surface of the film to be measured in which films are formed on both surfaces of the substrate is measured using a fast Fourier transform method.
  • membrane on the surface and the back surface is measured using the reflected light in a wavelength band with a low transmittance and the reflected light in a wavelength band with a high transmittance.
  • Patent Document 4 describes a method for measuring a film thickness formed on a substrate.
  • the thickness of the substrate is changed while changing the assumed value of the thickness of the substrate.
  • the ratio (light reception ratio) of the reflected light incident on the light receiving unit is calculated based on the relationship between the theoretical reflectance and the light reception data when the substrate is a mirror surface. Further, using this light reception ratio and the above theoretical reflectance, model data of a reflection spectrum for a substrate having an assumed film thickness is set and compared with the light reception data. Then, the film thickness corresponding to the model data having the maximum coincidence with the light reception data is specified as the thickness of the thin film.
  • a method of measuring the thickness of the thin film formed on the surface of the substrate there is a method of irradiating the thin film with light, detecting the reflected light, and specifying the thickness based on the spectral spectrum of the reflected light.
  • various thin films may be formed on both the front and back surfaces of resin films and glass substrates.
  • a transparent conductive film for touch panel use in which a clear hard coat is applied on the surface and an optical adjustment layer / adhesive layer / transparent conductive film (ITO) is sequentially laminated on the back surface.
  • ITO transparent conductive film
  • the present invention has been made in view of such problems, and even when a thin film is formed on both the front surface and the back surface of the substrate, the thickness of the thin film on the surface is accurately determined. It is an object of the present invention to provide a film thickness measuring method and a film thickness measuring apparatus that can measure well.
  • a first film thickness measurement method includes a base material having a front surface and a back surface, a first film formed on the front surface, and a back surface.
  • a method of measuring a film thickness of a measurement object comprising a second film wherein a light irradiation step of irradiating light on the surface side of the measurement object, and for each wavelength of reflected light on the surface side of the measurement object
  • the film thickness of the first film is determined by comparing the surface transmittance, which is the reflectance, and the theoretical spectral reflectance, which is the reflectance for each theoretical wavelength, taking into account the back surface reflectance, which is the reflectance on the back surface side.
  • the film thickness of the first film is determined based on the closest theoretical spectral reflectance.
  • the reflected light from the back surface side of the base material affects the thickness measurement of the thin film on the front surface.
  • the magnitude of this influence depends on the reflectance on the back side of the substrate, and the reflectance on the back side varies depending on the refractive index and thickness of the thin film formed on the back side.
  • the theoretical spectral reflectance taking into account the reflectance on the front surface side, the transmittance on the front surface side, and the reflectance on the back surface side, and the actually measured spectral reflectance
  • a plurality of theoretical spectroscopy obtained by changing the reflectance value on the front surface side, the transmittance value on the front surface side, and the reflectance value on the back surface side, respectively.
  • the thickness of the first film is determined based on the theoretical spectral reflectance closest to the measured spectral reflectance.
  • the influence of the reflected light on the back surface side can be reflected in the theoretical spectral reflectance, so that the influence of the thickness and refractive index of the second film formed on the back surface is taken into consideration.
  • the thickness of the first film on the surface can be accurately measured.
  • the second film thickness measuring method includes a base material having a front surface and a back surface, a first film formed on the front surface, and a second film formed on the back surface.
  • a method for measuring a film thickness of a measurement object comprising: a light irradiation step for irradiating light on the front surface side of the measurement object; and light detection for detecting the intensity for each wavelength of transmitted light on the back surface side of the measurement object Step, the measured spectral transmittance which is the transmittance for each wavelength obtained based on the detection result in the light detection step, the surface transmittance which is the transmittance on the front surface side and the surface reflectance which is the reflectance, and the back surface side
  • a film that determines the film thickness of the first film by comparing the backside transmittance that is the transmittance and the theoretical spectral transmittance that is the transmittance for each theoretical wavelength in consideration of the backside reflectance that is the reflectance.
  • a film thickness specifying step In comparison, a plurality of theoretical spectral transmittances and actual spectral transmittances obtained by changing the values of the surface transmittance and the surface reflectance, and the back surface transmittance and the back surface reflectance, respectively, The film thickness of the first film is determined based on the theoretical spectral transmittance closest to the actually measured spectral transmittance.
  • the theoretical spectral transmittance and the measured spectral transmittance in consideration of the transmittance and reflectance on the front surface side, and the transmittance and reflectance on the back surface side. More specifically, the front side transmittance value, the front side reflectance value, the back side transmittance value, and the front side reflectance value are changed.
  • the film thickness of the first film is determined based on the theoretical spectral transmittance closest to the actually measured spectral transmittance.
  • the influence of the second film on the back surface side can be reflected in the theoretical spectral transmittance, so the influence of the thickness and refractive index of the second film formed on the back surface is taken into consideration.
  • the thickness of the first film on the surface can be accurately measured.
  • a first film thickness measuring device includes a base material having a front surface and a back surface, a first film formed on the front surface, and a second film formed on the back surface.
  • a device for measuring a film thickness of a measurement object provided with a light irradiation unit for irradiating light on the surface side of the measurement object, and light detection for detecting the intensity for each wavelength of reflected light on the surface side of the measurement object , Measured spectral reflectance that is the reflectance for each wavelength obtained based on the detection result in the light detection unit, the surface reflectance that is the reflectance on the front surface side and the surface transmittance that is the transmittance, and the back surface side
  • a film thickness calculating unit that determines the film thickness of the first film by comparing the theoretical spectral reflectance that is the reflectance for each theoretical wavelength with the back surface reflectance being the reflectance taken into account;
  • the film thickness calculation unit includes the values of the surface reflectance and the surface transmittance, and the back surface reflection.
  • the film thickness calculation unit includes a theoretical spectral reflectance and a measured spectral reflectance that take into account the reflectance on the front surface side, the transmittance on the front surface side, and the reflectance on the back surface side. More specifically, a plurality of theoretical spectral reflections obtained by changing the reflectance value on the front surface side, the transmittance value on the front surface side, and the reflectance value on the back surface side, respectively.
  • the thickness of the first film is determined based on the theoretical spectral reflectance closest to the measured spectral reflectance. As a result, the influence of the reflected light on the back surface side can be reflected in the theoretical spectral reflectance. Therefore, considering the influence of the thickness and refractive index of the second film formed on the back surface, It is possible to accurately measure the thickness of one film.
  • a second film thickness measuring apparatus includes a base material having a front surface and a back surface, a first film formed on the front surface, and a second film formed on the back surface.
  • a device for measuring the film thickness of a measurement object provided with a light irradiation unit for irradiating light on the surface side of the measurement object, and light detection for detecting the intensity for each wavelength of transmitted light on the back side of the measurement object , The measured spectral transmittance that is the transmittance for each wavelength obtained based on the detection result in the light detection portion, the surface transmittance that is the transmittance on the front surface side and the surface reflectance that is the reflectance, and the back surface side A film that determines the film thickness of the first film by comparing the backside transmittance that is the transmittance and the theoretical spectral transmittance that is the transmittance for each theoretical wavelength in consideration of the backside reflectance that is the reflectance.
  • a thickness calculator includes a surface transmittance value and a surface A plurality of theoretical spectral transmittances obtained by changing the reflectance value, the back surface transmittance value, and the back surface reflectance value and the measured spectral transmittance, and the theoretical spectrum closest to the measured spectral transmittance
  • the film thickness of the first film is determined based on the transmittance.
  • the film thickness calculation unit includes a theoretical spectral transmittance in consideration of the transmittance on the front surface side, the reflectance on the front surface side, the transmittance on the back surface side, and the reflectance on the back surface side. Comparison (fitting) with the measured spectral transmittance. More specifically, the transmittance value on the front surface side, the reflectance value on the front surface side, the transmittance value on the back surface side, and the reflectance on the back surface side.
  • the film thickness of the first film is determined based on the theoretical spectral transmittance closest to the measured spectral transmittance among the plurality of theoretical spectral transmittances obtained by changing the values of.
  • the influence of the second film on the back surface side can be reflected in the theoretical spectral transmittance. Therefore, in consideration of the influence of the thickness and refractive index of the second film formed on the back surface, The thickness of the first film can be accurately measured.
  • the film thickness measuring method and the film thickness measuring apparatus according to one aspect of the present invention, even when a thin film is formed on both the front surface and the back surface of the base material, the thickness of the thin film on the front surface is determined. It can measure with high accuracy.
  • FIG. 6 is a diagram illustrating definitions of parameters included in mathematical expressions (1) to (3).
  • FIG. 1 is a cross-sectional view illustrating a configuration of a measurement object 100 of a film thickness measuring method and a film thickness measuring apparatus according to the first embodiment.
  • the measurement object 100 includes a base material 101, a first film (surface film) 102, and a second film (back film) 103.
  • the substrate 101 is a plate-like or film-like member having a front surface 101a and a back surface 101b, and is made of, for example, resin, glass, a semiconductor wafer, or the like.
  • the thickness of the base material 101 is, for example, 100 ⁇ m or more.
  • the first film 102 is formed on the surface 101 a of the substrate 101.
  • the second film 103 is formed on the back surface 101 b of the base material 101.
  • the first film 102 and the second film 103 are formed by processes such as film formation such as vacuum film formation, coating, and etching.
  • Examples of the measurement object 100 include a touch panel, a semiconductor device, a secondary battery, a solar battery, an FPD (flat panel display), and an optical film.
  • the first film 102 includes a plurality of layers such as an optical adjustment layer, an adhesive layer, and a transparent conductive film (ITO), and the second film 103 is clear hard. It consists of a layer of a coating agent.
  • FIG. 2 is a diagram schematically showing the configuration of the film thickness measuring apparatus 1A of the present embodiment.
  • the film thickness measuring apparatus 1A is an apparatus that measures the film thickness of the measurement object 100 shown in FIG.
  • the film thickness measuring device 1A includes a light irradiation unit 10, a light detection unit 20A, and a film thickness calculation unit 30A.
  • the measurement target object 100 may be in a state of being conveyed by the roller 110 as shown in the figure, or may be in a stationary state.
  • the light irradiation unit 10 irradiates the surface of the measurement object 100 on the surface 101a side with light.
  • the light irradiation unit 10 includes a light source 11, a light guide member 12, and a light emitting unit 13.
  • the light source 11 generates non-coherent (incoherent) light L1.
  • the wavelength band of the light L1 may be a visible wavelength range.
  • the light source 11 is preferably a lamp light source that emits white light or a white LED.
  • the wavelength band of the light L1 may be a wavelength band extending from the visible wavelength range to the near-infrared wavelength range, and may have a substantially flat (broad) spectrum in the infrared wavelength range.
  • the wavelength band of the light L1 includes the near-infrared wavelength range
  • the light L1 can be transmitted even if the measurement target 100 has a color, so that the influence of the color of the measurement target 100 is reduced.
  • various light emitting elements such as an ASE (Amplified Spontaneous Emission) light source, an LED, and an SLD (Super Luminescent Diode) can be applied as the light source 11.
  • ASE Ampton
  • LED LED
  • SLD Super Luminescent Diode
  • a white light source and an optical component such as an optical film may be combined with each other.
  • One end of the light guide member 12 is optically coupled to the light source 11, and guides the light L1 emitted from the light source 11.
  • a light guide or an optical fiber is preferably used as the light guide member 12.
  • the light emitting unit 13 is optically coupled to the other end of the light guide member 12 and irradiates the measurement object 100 with the light L1 guided by the light guide member 12.
  • the light emitting unit 13 is disposed at a position facing the first film 102 of the measurement target 100, that is, a position facing the surface 101 a of the base material 101.
  • the light detection unit 20A detects the intensity (spectrum) for each wavelength of the reflected light on the surface 101a side of the measurement object 100.
  • the light detection unit 20A includes a light incident unit 21a, a light guide member 22a, and a spectral detection unit 23a. Reflected light L2 from the measurement object 100 is incident on the light incident portion 21a.
  • the light incident part 21 a is arranged at a position facing the first film 102 of the measurement object 100, that is, a position facing the surface 101 a of the substrate 101. Note that the optical axis of the light emitting unit 13 and the optical axis of the light incident unit 21 a may be parallel to each other or may intersect each other in the measurement object 100.
  • the optical axis of the light emitting part 13 and the optical axis of the light incident part 21a may coincide with each other.
  • One end of the light guide member 22a is optically coupled to the light incident portion 21a, and guides the reflected light L2 incident on the light incident portion 21a.
  • a light guide or an optical fiber is preferably used as the light guide member 22a.
  • the spectroscopic detection unit 23a is optically coupled to the other end of the light guide member 22a. The spectroscopic detection unit 23a splits the reflected light L2 guided by the light guide member 22a for each wavelength, and detects the intensity of the light for each split wavelength. .
  • the spectroscopic detection unit 23a is preferably configured by, for example, a combination of a spectroscopic optical element (for example, a prism or a grating element) and an image sensor (for example, a line sensor, an area image sensor, a photomultiplier tube, a photodiode, or the like). .
  • the spectroscopic detection unit 23a outputs the detected light intensity as an electric signal.
  • the film thickness calculation unit 30A determines the film thicknesses of the first film 102 and the second film 103 based on the detection result in the light detection unit 20A. That is, the film thickness calculation unit 30A obtains the measured spectral reflectance that is the reflectance for each wavelength obtained based on the detection result in the light detection unit 20A and the theoretical spectral reflectance that is the reflectance for each theoretical wavelength. The film thicknesses of the first film 102 and the second film 103 are obtained by comparing and fitting each other.
  • the control unit 40 is a part for controlling operations of the light irradiation unit 10, the light detection unit 20 ⁇ / b> A, and the film thickness calculation unit 30 ⁇ / b> A, and is preferably realized by a computer having a CPU and a memory, for example.
  • the display unit 50 displays the thickness values of the first film 102 and the second film 103 calculated by the film thickness calculation unit 30A, measurement conditions, and the like.
  • the input device 60 is configured by, for example, a mouse or a keyboard, and is used when an operator inputs measurement conditions and the like.
  • the display unit 50 and the input device 60 may be integrated as a touch panel display.
  • the control unit 40, the display unit 50, and the input device 60 may be provided outside the film thickness measuring device 1A.
  • FIG. 3 is a view for explaining the principle of film thickness measurement, and shows a cross section of the film B2 formed on the base material B1.
  • incoherent light La is incident on the film B2
  • the reflected light on the surface of the film B2 and the reflected light on the interface between the base material B1 and the film B2 interfere with each other. Since the optical path length of the reflected light at the interface between the base material B1 and the film B2 becomes longer than the optical path length of the reflected light on the surface of the film B2 by the amount of the optical path in the film B2, Causes a phase difference corresponding to the thickness of the film B2.
  • FIG. 4A shows a case where the film thickness of the film B2 is thinner than the other figures
  • FIG. 4C shows a case where the film thickness of the film B2 is thicker than the other figures.
  • the spectrum of the reflected light after reflection (reflection spectrum) undulates due to the interference, but the interval between the waves becomes smaller as the film thickness of the film B2 increases.
  • the film thickness of the film B2 can be obtained using the relationship between the reflection spectrum and the film thickness of the film B2.
  • Specific methods include a fast Fourier transform method and a curve fitting method.
  • the fast Fourier transform method is a method of performing a fast Fourier transform on a reflection spectrum and obtaining a film thickness from the peak frequency.
  • the curve fitting method fits the spectral reflectance (measured spectral reflectance) obtained from the measured reflection spectrum and the theoretical spectral reflectance calculated from the theoretical formula, and obtains the film thickness from the fitted theoretical spectral reflectance. Is the method.
  • a curve fitting method is used. According to the curve fitting method, even if the thickness of the film B2 is 1 ⁇ m or less, it can be measured with high accuracy. FIG.
  • FIG. 5 is a graph showing an example of curve fitting when the film B2 is an ITO film (thickness 350 nm).
  • a graph G11 shows the actual spectral reflectance
  • a graph G12 shows the theoretical spectral reflectance.
  • the film thickness value at the theoretical spectral reflectance at which the square of the difference between these graphs G11 and G12 is the smallest is the film thickness of the film B2.
  • the films 102 and 103 are formed on both surfaces of the base material 101 as shown in FIG. 1, the reflection spectrum after interference by the first film 102 is The reflection spectrum after interference by the second film 103 is superimposed. Therefore, it is difficult to obtain an accurate value even if the above method is applied as it is and the thickness of the first film 102 is measured.
  • the reflectance of the back surface 101b of the base material 101 is such that the irradiation light L1 passing through the inside of the base material 101 is transmitted through the back surface 101b in addition to the light reflected by the back surface 101b, and the surroundings (air or vacuum).
  • the reflectance depends on the refractive index and film thickness of the second film 103.
  • Expressions (1) and (2) are expressions indicating the theoretical spectral reflectance R theory of the present embodiment. Note that ⁇ is a wavelength.
  • FIG. 6 is a diagram showing the definition of each parameter included in Equations (1) and (2). As shown in FIG. 6, in Equations (1) and (2), the extinction coefficient around the measurement object 100 (air or vacuum) is k 0, and the extinction coefficient of the first film 102 is k 1. And the extinction coefficient of the substrate 101 is k 2 (where k 2 ⁇ 0), and the extinction coefficient of the second film 103 is k 3 .
  • the refractive index around the measurement object 100 is n 0
  • the refractive index of the first film 102 is n 1
  • the refractive index of the substrate 101 is n 2
  • the second film 103 is n 3
  • the reflectance (first surface reflectance) on the surface 101a on the first film 102 side is R 012 ( ⁇ )
  • the reflectance (back surface reflectance) on the back surface 101b on the substrate 101 side is R 230.
  • the reflectance (second surface reflectance) at the surface 101a on the substrate 101 side is R 210 ( ⁇ ).
  • the transmittance (surface transmittance) on the surface 101a on the first film 102 side is T 012 ( ⁇ )
  • the transmittance on the surface of the first film 102 on the first film 102 side is T 210 ( ⁇ ).
  • the film thickness of the first film 102 is d 1
  • the thickness of the substrate 101 is d 2
  • the film thickness of the second film 103 is d 3 .
  • the first surface reflectance R 012 (which is the reflectance at the surface 101a of the substrate 101 on the first film 102 side).
  • the second surface reflectance R 210 ( ⁇ ), which is the reflectance at the surface 101a on the base material 101 side
  • the surface transmittance T 012 ( ⁇ ), which is the transmittance, and the reflectance (back surface reflectance) R 230 ( ⁇ ) on the back surface 101b on the substrate 101 side are taken into consideration.
  • the ⁇ term on the right side of Equation (1) indicates the multiple reflection component in the substrate 101, and this multiple reflection component is the reflectance R 230 ( ⁇ ) on the back surface 101b viewed from the substrate 101 side. Based on the reflectance R 210 ( ⁇ ) on the surface 101a viewed from the substrate 101 side and the transmittance T 012 ( ⁇ ) on the surface 101a.
  • FIG. 7 is a flowchart showing the operation of the film thickness measuring apparatus 1A of this embodiment and the film thickness measuring method.
  • the light irradiation unit 10 irradiates the surface 101a side of the measurement object 100 with non-coherent light L1 such as white light (light irradiation step S11).
  • 20 A of light detection parts disperse
  • the film thickness calculation unit 30A calculates the film thicknesses of the first film 102 and the second film 103 (film thickness specifying step S13).
  • the film thickness calculating unit 30A first calculates the measured spectral reflectance based on the detection signal from the light detecting unit 20A (step S131).
  • the film thickness calculator 30A first obtains the reflection spectrum S sig ( ⁇ ) from the intensity of each wavelength of the reflected light L2.
  • the film thickness calculation unit 30A calculates the standard reflection spectrum S ref ( ⁇ ) acquired in advance using the standard measurement object and the reflection spectrum S sig ( ⁇ ). Calculate the ratio. This ratio is the measured spectral reflectance R sig ( ⁇ ).
  • the film thickness calculator 30A calculates the theoretical spectral reflectance R theory (step S132). First, the extinction coefficient k 2 , refractive index n 2 , and thickness d 2 of the base material 101, the extinction coefficient k 1 and refractive index n 1 of the first film 102, and the extinction of the second film 103. The coefficient k 3 and the refractive index n 3 are input by the operator. The film thickness calculator 30A calculates the value of the first surface reflectance R 012 ( ⁇ ), the value of the second surface reflectance R 210 ( ⁇ ), and the value of the surface transmittance T 012 ( ⁇ ) in Equation (1).
  • the value of the transmittance T 210 ( ⁇ ) and the value of the back surface reflectance R 230 ( ⁇ ) are respectively changed, and the values of the plurality of first surface reflectances R 012 ( ⁇ ) and the plurality of second surfaces are changed.
  • a plurality of theoretical spectral reflectances R theory consisting of
  • the film thickness calculator 30A compares the plurality of theoretical spectral reflectances R theory and the measured spectral reflectances R sig ( ⁇ ) with each other, and is closest to (fits to) the measured spectral reflectances R sig ( ⁇ ). ) Theoretical spectral reflectance R theory is obtained (step S133).
  • step S133 for example, the least square method is used. That is, the film thickness calculating unit 30A is determined for each of the plurality of theoretical spectral reflectance R theory, the square of the value of the difference between the measured spectral reflectance R sig (lambda) between the theoretical spectral reflectance R theory, the The theoretical spectral reflectance R theory that minimizes the value is selected.
  • the film thickness calculation unit 30A calculates the film thickness d 1 of the first film 102 based on the theoretical spectral reflectance R theory that is closest (substantially coincides) with the actually measured spectral reflectance R sig ( ⁇ ). (Step S134).
  • the theoretical first surface reflectance R theory012 ( ⁇ ) depends on the refractive index and film thickness of the first film 102 as shown in the following equations (4) to (6). It is a function of the thickness d 1 .
  • r 01 is the amplitude reflection coefficient at the interface between air and the first film 102
  • r 12 is the amplitude reflection at the interface between the first film 102 and the substrate 101.
  • a coefficient, N 1 n 1 ⁇ ik 1 .
  • Equation (7) to (9) the theoretical second surface reflectance R theory210 ( ⁇ ) depends on the refractive index and film thickness of the first film 102 as shown in the following equations (7) to (9). It is a function of the film thickness d 1 .
  • Equations (7) to (9) r 21 is the amplitude reflection coefficient at the interface between the substrate and the first film 102, and r 10 is the amplitude reflection coefficient at the interface between the first film 102 and air. is there.
  • the theoretical surface transmittance T theory012 ( ⁇ ) also depends on the refractive index and film thickness of the first film 102 as shown in the following equations (10) to (12). It is a function of the thickness d 1 .
  • t 01 is the amplitude transmission coefficient at the interface between air and the first film 102
  • t 12 is the amplitude transmission coefficient at the interface between the first film 102 and the substrate.
  • N 2 n 2 ⁇ ik 2 .
  • the transmittance T theory210 ( ⁇ ) at the surface of the theoretical first film 102 is also expressed by the refractive index and film thickness of the first film 102 as shown in the following equations (13) to (15). And is a function of the film thickness d 1 .
  • Equations (13) to (15) t 21 is the amplitude transmission coefficient at the interface between the substrate and the first film 102, and t 10 is the amplitude transmission coefficient at the interface between the first film 102 and air. is there.
  • the film thickness calculation unit 30A selects the first surface reflectance R 012 ( ⁇ ), the second surface reflectance R 210 ( ⁇ ), and the surface transmittance T of the theoretical spectral reflectance R theory selected in step S133. 012 (lambda), and the transmittance T 210 (lambda) determining the value of film thickness d 1 from each. Then, the film thickness calculation unit 30 ⁇ / b> A determines and outputs the average value or the least square value of the obtained values of the plurality of film thicknesses d 1 as the film thickness of the first film 102 of the measurement object 100. Note that one of the obtained values of the film thickness d 1 may be determined as the film thickness of the first film 102 of the measurement object 100.
  • the film thickness d 1 obtained from the first surface reflectance R 012 ( ⁇ ) of the theoretical spectral reflectance R theory . May be determined as the film thickness of the first film 102.
  • the film thickness calculation unit 30A calculates the film thickness d 3 of the second film 103 (step S135).
  • the theoretical back surface reflectance R theory230 ( ⁇ ) depends on the refractive index and film thickness of the second film 103 as shown in the following equations (16) to (18), and the film thickness d 3 Is a function of In Equations (16) to (18), r 23 is an amplitude reflection coefficient at the interface between the substrate 101 and the second film 103, and r 30 is an amplitude reflection at the interface between the second film 103 and air.
  • a coefficient, N 3 n 3 ⁇ ik 3 .
  • the film thickness calculation unit 30A is based on the mathematical formulas (16) to (18) from the reflectance R theory230 ( ⁇ ) that fits the back surface reflectance R 230 ( ⁇ ) of the theoretical spectral reflectance R theory selected in step S133.
  • the value of the film thickness d 3 is obtained, determined as the film thickness of the second film 103 of the measurement object 100, and output.
  • the film thickness calculating unit 30A determines the actual spectral reflectance R sig ( ⁇ ) obtained based on the detection result in the light detection step S12 and the surface 101a side.
  • the first surface reflectance R 012 ( ⁇ ) that is the reflectance, the second surface reflectance R 210 ( ⁇ ), the surface transmittance T 012 ( ⁇ ) that is the transmittance on the surface 101a side, and the transmittance T 210 ( ⁇ ) and the theoretical spectral reflectance R theory with the back surface reflectance R 230 ( ⁇ ), which is the reflectance on the back surface 101b side, are compared to determine the film thickness d 1 and the second thickness of the first film 102.
  • step S134 of calculating the film thickness d 1 of the first film 102, the order of the step S135 of calculating the film thickness d 3 of the second layer 103 is arbitrary, it is performed after step S135 above Alternatively, steps S134 and S135 may be performed in parallel.
  • One theoretical spectral reflectance comprising a combination of the value of the surface transmittance T 012 ( ⁇ ), the value of a certain transmittance T 210 ( ⁇ ), and the value of a certain back surface reflectance R 230 ( ⁇ ) R theory is calculated (step S136).
  • the theoretical spectral reflectance R theory and the measured spectral reflectance R sig ( ⁇ ) are fitted (step S137).
  • step S138 When not fitting (the square of the difference exceeds a threshold value, etc.) (step S138; No), the value of the first surface reflectance R 012 ( ⁇ ), the second surface reflectance R 210 ( ⁇ ) , The value of the surface transmittance T 012 ( ⁇ ), the value of the transmittance T 210 ( ⁇ ), and the value of the back surface reflectance R 230 ( ⁇ ) are changed (step S139).
  • the theoretical spectral reflectance R theory and the measured spectral reflectance R sig ( ⁇ ) are fitted. By repeating such processing, among a plurality of theoretical spectral reflectance R theory, it is possible to determine the theoretical spectral reflectance R theory that fits with the measured spectral reflectance R sig ( ⁇ ).
  • the film thickness d 1 of the first film 102 is calculated from the value of 210 ( ⁇ ), the value of the surface transmittance T 012 ( ⁇ ), the value of the transmittance T 210 ( ⁇ ), and the value of the back surface reflectance R 230 ( ⁇ ).
  • the film thickness d 3 of the second film 103 is obtained.
  • the theoretical spectral reflectance R theory may be prepared by changing the value of the film thickness d 3 of the second film 103 in Expression (18). That is, in the plurality of theoretical spectral reflectance calculation steps S132 shown in FIG. 7, as shown in FIG. 9, first, the values of the thicknesses d 1 of the plurality of first films 102 and the second films 103 are obtained. to set the value of the thickness d 3 of (S1321). Next, the plurality of first surface reflectances R 012 ( ⁇ ) and the plurality of second surface reflectances R 210 ( ⁇ ) at the set values of the film thickness d 1 and the film thickness d 3.
  • a plurality of surface transmittances T 012 ( ⁇ ), a plurality of transmittances T 210 ( ⁇ ), and a plurality of back surface reflectances R 230 ( ⁇ ) (S1322). Then, the calculated first surface reflectance values R 012 ( ⁇ ), the plurality of second surface reflectance values R 210 ( ⁇ ), the plurality of surface transmittance values T 012 ( ⁇ ), A plurality of theoretical spectral reflectances R theory corresponding to the values of the plurality of transmittances T 210 ( ⁇ ) and the values of the plurality of back surface reflectances R 230 ( ⁇ ) are calculated (S 1323).
  • the values of reflectance and transmittance may be changed.
  • the theoretical spectral reflectance R theory ( ⁇ ) corresponding to a certain film thickness d 1 value and a certain film thickness d 3 value can be compared with the actually measured spectral reflectance R sig ( ⁇ ). Therefore, by calculating the theoretical spectral reflectance R theory ( ⁇ ) closest to the measured spectral reflectance R sig ( ⁇ ), the calculation step S134 of the surface film thickness d 1 and the calculation step of the film thickness d 3 of the back film are performed. Even if S135 is not performed, the value of the film thickness d 1 and the value of the film thickness d 3 can be determined.
  • the film thickness measuring apparatus 1A uses the second surface reflectance R 210 ( ⁇ ) on the surface 101a on the substrate 101 side, and the surface 101a.
  • the film thickness of the first film 102 is based on the theoretical spectral reflectance R theory closest to the measured spectral reflectance R sig ( ⁇ ).
  • the film thickness d1 of the first film 102 on the surface 101a can be measured with high accuracy.
  • the first surface reflectance R 012 ( ⁇ ) and the second surface reflectance R 210 ( ⁇ ) are used as the reflectance on the surface 101a side
  • the surface transmittance T 012 ( ⁇ ) and the second surface reflectance R 210 ( ⁇ ) are used as the transmittance on the surface 101a side.
  • the plurality of theoretical spectral reflectances R theory obtained by changing the transmittance T 210 ( ⁇ ) on the surface of the first film 102 and the back surface reflectance R 230 ( ⁇ ) on the back surface 101b side, respectively.
  • the measurement accuracy of the film thickness d 1 of the first film 102 on the surface 101a can be further improved.
  • the first surface reflectance R 012 ( ⁇ ) on the surface 101a side with respect to the thickness value of the first film 102 and the thickness value of the second film 103, the second The surface reflectance R 210 ( ⁇ ), the surface transmittance T 012 ( ⁇ ), the transmittance T 210 ( ⁇ ) on the surface of the first film 102, and the back surface reflectance R 230 ( ⁇ ) on the back surface 101b side are calculated. Then, a plurality of theoretical spectral reflectances R theory may be acquired by changing the thickness value of the first film 102 and the thickness value of the second film 103. Thereby, several theoretical spectral reflectance R theory can be acquired suitably.
  • the values of the surface reflectances R 012 ( ⁇ ) and R 210 ( ⁇ ) of the theoretical spectral reflectance R theory closest to the measured spectral reflectance R sig ( ⁇ ), and the surface transmittance T 012 (lambda) and on the basis of one value of at least one of the value of T 210 ( ⁇ ), may be obtained the value of the thickness of the first layer 102.
  • membrane 102 can be acquired suitably.
  • the film thickness d 3 of the second film 103 may be determined based on the theoretical spectral reflectance R theory closest to the actually measured spectral reflectance R sig ( ⁇ ). As a result, both the film thickness d 1 of the first film 102 on the front surface 101a and the film thickness d 3 of the second film 103 on the back surface 101b can be measured simultaneously and accurately with a single measurement. it can.
  • the film thickness identification step S13 and the film thickness calculation unit 30A of the present embodiment the film thickness d 1 of the first film 102 and the film thickness d 3 of the second film 103 are determined. Only the film thickness d 1 of the film 102 may be determined.
  • the film thickness of the second film 103 is based on the value of the back surface reflectance R 230 ( ⁇ ) of the theoretical spectral reflectance R theory closest to the actually measured spectral reflectance R sig ( ⁇ ). May be obtained by calculation. Thereby, the value of the film thickness of the second film 103 can be suitably obtained.
  • the actual spectral reflectance R sig ( ⁇ ) and the theoretical spectral reflectance R theory are directly fitted.
  • the actual spectral reflectance R sig ( ⁇ ) and the theoretical spectral reflectance R The theory may be Fourier transformed, and the frequency distribution of the measured spectral reflectance R sig ( ⁇ ) and the frequency distribution of the theoretical spectral reflectance R theory may be fitted to each other.
  • first modification In the first embodiment, the case where the first film 102 and the second film 103 are formed of a single layer has been exemplified, but one or both of the first film 102 and the second film 103 include a plurality of layers. Even if it exists, it is possible to obtain
  • the reflectance on the surface 101a side (first surface reflectance) depending on the refractive index and the layer thickness of the plurality of layers included in the first film 102, the second A film in which a reflectance (back surface reflectance) on the back surface 101b side depending on a refractive index and a layer thickness of a plurality of layers included in the film 103 is used is used.
  • FIG. 10 is a diagram showing the definition of each parameter in this modification, and illustrates the case where the first film 102 is composed of three layers and the second film 103 is composed of two layers.
  • the extinction coefficient around the measurement object 100 (air) is k 0 and the extinction coefficients of the first layer 102a to the third layer 102c of the first film 102 are set.
  • the extinction coefficient of the base material 101 is k 2 (where k 2 ⁇ 0)
  • the extinction coefficients of the first layer 103 a and the second layer 103 b of the second film 103 are k, respectively. and 31 and k 32.
  • the refractive index around the measurement object 100 (air) is n 0, and the refractive indexes of the first layer 102a to the third layer 102c of the first film 102 are n 11 to n 13 , respectively.
  • the refractive index is n 2
  • the refractive indexes of the first layer 103a and the second layer 103b of the second film 103 are n 31 and n 32 , respectively.
  • the thicknesses of the first layer 102a to the third layer 102c of the first film 102 are d 11 to d 13 respectively
  • the thickness of the base material 101 is d 2
  • the first layer 103a of the second film 103 is set.
  • the thicknesses of the second layer 103b are d 31 and d 32 , respectively.
  • the definitions of the surface reflectances R 012 ( ⁇ ), R 210 ( ⁇ ), and R 230 ( ⁇ ), and the transmittances T 012 ( ⁇ ) and T 210 ( ⁇ ) are the same as those in the first embodiment.
  • the first surface reflectance R 012 ( ⁇ ) is obtained by the above-described equations (4) to (6)
  • the second surface reflectance R 210 ( ⁇ ) is obtained by the aforementioned equations (7) to (9).
  • the surface transmittance T 012 ( ⁇ ) is the above-described formulas (10) to (12)
  • the transmittance T 210 ( ⁇ ) at the surface of the first film 102 is the above-described formulas (13) to (15). By rewriting, it is expressed as a function of the layer thicknesses d 11 , d 12 , and d 13 of each layer of the first film 102.
  • the back surface reflectance R 230 ( ⁇ ) is expressed as a function of the layer thicknesses d 31 and d 32 of each layer of the second film 103 by rewriting the above-described equations (16) to (18). Therefore, in this modification, as in the case where the first film 102 and the second film 103 are formed of a single layer, the theoretical spectral reflectance R theory closest to the actually measured spectral reflectance R sig ( ⁇ ) is set in step S133.
  • step S134 After obtaining, in step S134, the first surface reflectance R 012 ( ⁇ ), the second surface reflectance R 210 ( ⁇ ), the surface transmittance T 012 ( ⁇ ), and the theoretical spectral reflectance R theory , and Theoretical reflectance R theory012 ( ⁇ ), reflectance R theory210 ( ⁇ ), and transmittance T that fit the transmittance T 210 ( ⁇ ) on the surface of the first film 102 (that is, the surface of the first layer 102a).
  • the theory012 ( ⁇ ) and the transmittance T theory210 ( ⁇ ) are searched while changing the values of the layer thicknesses d 11 to d 13 .
  • the film thickness calculator 30A outputs the values of the layer thicknesses d 11 to d 13 when fitted as the layer thicknesses of the first layer 102a to the third layer 102c.
  • the theoretical reflectance R theory230 ( ⁇ ) that fits the back surface reflectance R 230 ( ⁇ ) of the theoretical spectral reflectance R theory is changed while changing the values of the layer thicknesses d 31 and d 32.
  • the film thickness calculation unit 30A outputs the values of the layer thicknesses d 31 and d 32 when fitted as the layer thicknesses of the first layer 103a and the second layer 103b.
  • the first surface reflectance R 012 ( ⁇ ), the second surface reflectance R 210 ( ⁇ ), The surface transmittance T 012 ( ⁇ ), the transmittance T 210 ( ⁇ ) on the surface of the first film 102, and the back surface reflectance R 230 ( ⁇ ) change, and the theoretical spectral reflectance R theory changes accordingly.
  • the thicknesses d 11 to d 13 , d 31 and d 32 can be obtained with high accuracy based on the values of the back surface reflectance R 230 ( ⁇ ).
  • the object to be searched while changing the layer thicknesses d 11 to d 13 is at least the first surface reflectance R 012 ( ⁇ ) of the theoretical spectral reflectance R theory , the second surface.
  • any one of the reflectance R 210 ( ⁇ ), the surface transmittance T 012 ( ⁇ ), and the transmittance T 210 ( ⁇ ) on the surface of the first film 102 may be used. Further, when the first film 102 and the second film 103 include a plurality of layers, for example, the first surface reflectance is changed by changing the layer thicknesses d 11 to d 13 , d 31 and d 32.
  • a plurality of theoretical spectral reflectances R theory are prepared by changing ⁇ ), and the thicknesses of the respective layers at the theoretical spectral reflectances R theory that fit the measured spectral reflectances R sig ( ⁇ ) are set to the respective layer thicknesses d 11 to d 13. , D 31 and d 32 may be determined.
  • FIG. 11 is a diagram schematically showing a configuration of a film thickness measuring apparatus 1B according to the second embodiment.
  • the film thickness measuring device 1B is a device that measures the film thickness of the measurement object 100 shown in FIG.
  • the film thickness measurement device 1 ⁇ / b> B includes a light irradiation unit 10, a light detection unit 20 ⁇ / b> B, a film thickness calculation unit 30 ⁇ / b> B, a control unit 40, a display unit 50, and an input device 60.
  • the configurations of the light irradiation unit 10, the control unit 40, the display unit 50, and the input device 60 are the same as those in the first embodiment.
  • the measurement target object 100 may be in a state of being conveyed by the roller 110 as shown in the figure, or may be in a stationary state.
  • the light detection unit 20B detects the intensity (spectrum) for each wavelength of the transmitted light L3 on the back surface 101b side of the measurement object 100.
  • the light detection unit 20B includes a light incident unit 21b, a light guide member 22b, and a spectral detection unit 23b.
  • the transmitted light L3 from the measurement object 100 is incident on the light incident portion 21b.
  • the light incident part 21 b is arranged at a position facing the second film 103 of the measurement object 100, that is, a position facing the back surface 101 b of the base material 101.
  • One end of the light guide member 22b is optically coupled to the light incident portion 21b, and guides the transmitted light L3 incident on the light incident portion 21b.
  • the spectroscopic detection unit 23b is optically coupled to the other end of the light guide member 22b.
  • the spectroscopic detection unit 23b splits the transmitted light L3 guided by the light guide member 22b for each wavelength, and detects the intensity of the split light.
  • the light guide member 22b and the spectroscopic detection unit 23b can have the same configuration as the light guide member 22a and the spectroscopic detection unit 23a of the first embodiment, for example.
  • the spectroscopic detection unit 23b outputs the detected light intensity as an electrical signal.
  • the film thickness calculation unit 30B obtains the film thicknesses of the first film 102 and the second film 103 based on the detection result in the light detection unit 20B. That is, the film thickness calculation unit 30B obtains the measured spectral transmittance that is the transmittance for each wavelength obtained based on the detection result in the light detection unit 20B and the theoretical spectral transmittance that is the transmittance for each theoretical wavelength.
  • the film thicknesses of the first film 102 and the second film 103 are obtained by comparing and fitting each other.
  • the transmittance (surface transmittance) and reflectance (surface reflectance) on the surface 101a side depending on the refractive index and film thickness of the first film 102, and the second film 103 is used in which the transmittance (back surface transmittance) and the reflectance (back surface reflectance) on the back surface 101b side depending on the refractive index and film thickness of 103 are added.
  • Expression (19) is an expression showing the theoretical spectral transmittance T theory of the present embodiment. Note that ⁇ is a wavelength, and the definition of each parameter in Formula (19) and the calculation formulas of A 2 and R 210 ( ⁇ ) are the same as those in the first embodiment.
  • Equation (11) in the theoretical spectral transmittance T theory , in addition to the transmittance (surface transmittance) T 012 ( ⁇ ) on the front surface 101a side, the transmittance (back surface transmittance) T on the back surface 101b side. 230 ( ⁇ ) is taken into account.
  • this theoretical spectral transmittance T theory multiple reflection components in the substrate 101 are taken into consideration. That is, the ⁇ term on the right side of Equation (19) indicates the multiple reflection component in the substrate 101, and this multiple reflection component is a reflectance (back surface reflectance) R on the back surface 101b viewed from the substrate 101 side. 230 ( ⁇ ) and the reflectance (surface reflectance) R 210 ( ⁇ ) at the surface 101a viewed from the substrate 101 side.
  • FIG. 12 is a flowchart showing the operation of the film thickness measuring apparatus 1B and the film thickness measuring method of the present embodiment.
  • the light irradiation unit 10 irradiates the surface 101a side of the measurement object 100 with non-coherent light L1 such as white light (light irradiation step S31).
  • the light detection unit 20B splits the transmitted light L3 on the back surface 101b side of the measurement object 100 for each wavelength, and detects the intensity of each wavelength (light detection step S32).
  • the film thickness calculation unit 30B calculates the film thicknesses of the first film 102 and the second film 103 (film thickness specifying step S33).
  • the film thickness calculating unit 30B first calculates the measured spectral transmittance based on the detection signal from the light detecting unit 20B (step S331).
  • the film thickness calculation unit 30B first obtains a transmission spectrum S ′ sig ( ⁇ ) from the intensity of each wavelength of the transmitted light L3.
  • the film thickness calculation unit 30B uses the standard transmission spectrum S ′ ref ( ⁇ ) acquired in advance using the standard measurement object and the transmission spectrum S ′ sig ( ⁇ ). And the ratio is calculated. This ratio is the measured spectral transmittance T sig ( ⁇ ).
  • the film thickness calculation unit 30B calculates the theoretical spectral transmittance T theory (step S332). First, the extinction coefficient k 2 , refractive index n 2 , and thickness d 2 of the base material 101, the extinction coefficient k 1 and refractive index n 1 of the first film 102, and the extinction of the second film 103. The coefficient k 3 and the refractive index n 3 are input by the operator. The film thickness calculation unit 30B calculates each value of the surface transmittance T 012 ( ⁇ ), the surface reflectance R 210 ( ⁇ ), the back surface transmittance T 230 ( ⁇ ), and the reflectance R 230 ( ⁇ ) in Equation (20).
  • the film thickness calculating unit 30B includes a plurality of theoretical spectral transmittance T theory and the measured spectral transmittance T sig (lambda) were compared with each other, to the nearest (fit to the measured spectral transmittance T sig (lambda) )
  • Theoretical spectral transmittance T theory is obtained (step S333).
  • step S333 for example, the least square method is used.
  • the film thickness calculating unit 30B is determined for each of the plurality of theoretical spectral transmittance T theory, the square of the value of the difference between the measured spectral transmittance T sig (lambda) between the theoretical spectral transmittance T theory, the The theoretical spectral transmittance T theory that minimizes the value is selected.
  • the film thickness calculation unit 30B calculates the film thickness d 1 of the first film 102 based on the theoretical spectral transmittance T theory that is closest (fit) to the actually measured spectral transmittance T sig ( ⁇ ) (Ste S334).
  • the theoretical surface transmittance T theory012 ( ⁇ ) is a function of the film thickness d 1 as shown in the following equations (21) to (23).
  • t 01 is the amplitude transmission coefficient at the interface between air and the first film 102
  • t 12 is the amplitude transmission at the interface between the first film 102 and the substrate 101.
  • a coefficient, N 1 n 1 ⁇ ik 1 .
  • the theoretical surface reflectance R theory210 ( ⁇ ) is also a function of the film thickness d 1 as shown in the following equations (24) to (26). Therefore, the film thickness calculator 30B sets the surface transmittance T theory012 ( ⁇ ) and the surface reflectance R theory 210 ( ⁇ ) in the theoretical spectral transmittance T theory that is closest to (fits) the measured spectral transmittance T sig ( ⁇ ). On the basis of this, the values of the film thickness d 1 are calculated using the mathematical formulas (21) to (23) and the mathematical formulas (24) to (26), and the average value thereof is calculated as the film of the first film 102 of the measurement object 100. Output as thickness.
  • the film thickness calculation unit 30B calculates the film thickness d 3 of the second film 103 based on the theoretical spectral transmittance T theory that is closest (fit) to the actually measured spectral transmittance T sig ( ⁇ ) (step S3). S335).
  • the theoretical back surface reflectance R theory230 ( ⁇ ) is also a function of the film thickness d 3 as shown in the following equations (30) to (32). Therefore, the film thickness calculation unit 30B sets the back surface transmittance T theory230 ( ⁇ ) and the back surface reflectance R theory230 ( ⁇ ) in the theoretical spectral transmittance T theory that is closest (fit) to the actually measured spectral transmittance T sig ( ⁇ ). Based on the equations (27) to (29) and equations (30) to (32), the value of the film thickness d 3 is calculated, and the average value is calculated as the film of the second film 103 of the measurement object 100. Output as thickness.
  • the film thickness calculation unit 30B determines the actual spectral transmittance T sig ( ⁇ ) obtained based on the detection result in the light detection step S32 and the surface 101a side.
  • Theoretical spectral transmittance T theory in consideration of the surface transmittance T 012 ( ⁇ ) and the surface reflectance R 210 ( ⁇ ), and the back surface transmittance T 230 ( ⁇ ) and the back surface reflectance R 230 ( ⁇ ) on the back surface 101b side.
  • step S334 for calculating the film thickness d 1 of the first film 102 and the step S335 for calculating the film thickness d 3 of the second film 103 is arbitrary, and may be performed after step S335. Alternatively, steps S334 and S335 may be performed in parallel.
  • the fitting between the theoretical spectral transmittance T theory and the measured spectral transmittance T sig ( ⁇ ) is not limited to such a form.
  • the fitting may be performed by the following method. That is, one theoretical spectral transmittance comprising a combination of one surface transmittance T 012 ( ⁇ ), surface reflectance R 210 ( ⁇ ), back surface transmittance T 230 ( ⁇ ), and back surface reflectance R 230 ( ⁇ ). T theory is calculated.
  • the theoretical spectral transmittance T theory and the measured spectral transmittance T sig ( ⁇ ) are fitted. When it does not fit (for example, the square of the difference exceeds a threshold), the surface transmittance T 012 ( ⁇ ), the surface reflectance R 210 ( ⁇ ), the back surface transmittance T 230 ( ⁇ ), and the back surface reflectance The combination of R 230 ( ⁇ ) is changed, and fitting of the changed theoretical spectral transmittance T theory and measured spectral transmittance T sig ( ⁇ ) is performed again. By repeating such processing, among a plurality of theoretical spectral transmittance T theory, it is possible to determine the theoretical spectral transmittance T theory that fits with the measured spectral transmittance T sig ( ⁇ ).
  • the value of the film thickness d 1 of the first film 102 in the equations (23) and (26) and the film thickness d 3 of the second film 103 in the equations (29) and (32) are changed.
  • the theoretical spectral reflectance R theory may be prepared.
  • the value of the film thickness d 1 of the plurality of first films 102 and the value of the film thickness d 3 of the second film 103 are set.
  • the value of the back surface transmittance T 230 ( ⁇ ) and the value of the plurality of back surface reflectances R 230 ( ⁇ ) are respectively calculated, and the calculated values of the plurality of first surface transmittances T 012 ( ⁇ ) and the plurality of values are calculated.
  • the reflectance and transmittance changing step S139 shown in FIG. 7 by changing the value of the film thickness d 1 of the first film 102 and the value of the film thickness d 3 of the second film 103, You may change the value of each reflectance and transmittance.
  • the theoretical spectral transmittance T theory ( ⁇ ) corresponding to a certain film thickness d 1 value and a certain film thickness d 3 value can be compared with the actually measured spectral transmittance T sig ( ⁇ ). Therefore, by calculating the theoretical spectral transmittance T theory ( ⁇ ) closest to the measured spectral transmittance T sig ( ⁇ ), the calculation step S134 of the surface film thickness d 1 and the calculation step of the film thickness d 3 of the back surface film are performed. S135 even without, it is possible to determine the value and the value of the thickness d 3 of the thickness d 1.
  • the film thickness calculation unit 30B performs the surface transmittance T 012 ( ⁇ ), the surface reflectance R 210 ( ⁇ ) on the front surface 101a side, and the rear surface transmittance T 230 on the back surface 101b side. Comparison (fitting) between the theoretical spectral transmittance T theory with ( ⁇ ) and the back surface reflectance R 230 ( ⁇ ) taken into account and the measured spectral transmittance T sig ( ⁇ ) is performed.
  • the film thickness d 1 of the first film 102 is determined based on the theoretical spectral transmittance T theory that is closest to the measured spectral transmittance T sig ( ⁇ ) among the plurality of theoretical spectral transmittances T theory obtained in this manner. Yes.
  • the influence of the second film 103 on the back surface 101b side can be reflected in the theoretical spectral transmittance T theory. Therefore, the influence of the thickness and refractive index of the second film 103 formed on the back surface 101b can be considered. Considering this, the film thickness d 1 of the first film 102 on the surface 101a can be accurately measured.
  • the film thickness d 3 of the second film 103 may be determined based on the theoretical spectral transmittance T theory that is closest to the actually measured spectral transmittance T sig ( ⁇ ).
  • both the film thickness d 1 of the first film 102 on the front surface 101a and the film thickness d 3 of the second film 103 on the back surface 101b can be measured simultaneously and accurately with a single measurement. it can.
  • the second The film thickness d 3 of the film 103 may be calculated.
  • the film thickness d 1 of the first film 102 and the film thickness d 3 of the second film 103 are calculated. Only the film thickness d 1 of the film 102 may be calculated.
  • the measured spectral transmittance T sig ( ⁇ ) and the theoretical spectral transmittance T theory are directly fitted.
  • the measured spectral transmittance T sig ( ⁇ ) and the theoretical spectral transmittance T The theory may be Fourier transformed, and the frequency distribution of the measured spectral transmittance T sig ( ⁇ ) and the frequency distribution of the theoretical spectral transmittance T theory may be fitted to each other.
  • the theoretical surface transmittance T theory012 ( ⁇ ) and the surface reflectance R theory210 ( ⁇ ) are obtained by rewriting the above-described mathematical formulas (21) to (26) to obtain the layer thickness of each layer of the first film 102. Expressed as a function of d 11 , d 12 , and d 13 . Further, the theoretical back surface transmittance T theory230 ( ⁇ ) and back surface reflectance R theory230 ( ⁇ ) can be obtained by rewriting the above formulas (27) to (32) to obtain the layer thickness d of each layer of the second film 103. It expressed as a function of 31 and d 32.
  • the theoretical spectral transmittance T theory closest to the actually measured spectral transmittance T sig ( ⁇ ) is set in step S333.
  • fitting is performed while changing the values of the layer thicknesses d 11 to d 13 .
  • the transmittance T theory012 ( ⁇ ) and the reflectance R theory210 ( ⁇ ) are respectively the surface transmittance T 012 ( ⁇ ) and the surface reflectance R 210 ( ⁇ ) of the theoretical spectral transmittance T theory selected in step S333.
  • step S335 The values of the layer thicknesses d 11 to d 13 that are closest to the respective layers are calculated, and the average value or the least square value thereof is output as each layer thickness of the first layer 102a to the third layer 102c.
  • step S335 fitting is performed while changing the values of the layer thicknesses d 31 and d 32 .
  • the back surface transmittance T theory230 ( ⁇ ) and the back surface reflectance R theory230 ( ⁇ ) respectively correspond to the back surface transmittance T 230 ( ⁇ ) and the back surface reflectance R 230 (the theoretical spectral transmittance T theory selected in step S333.
  • The values of the layer thicknesses d 31 and d 32 that are closest to the respective values are calculated, and the average value or the least square value thereof is output as each layer thickness of the first layer 103a and the second layer 103b.
  • the surface transmittance T 012 ( ⁇ ), the surface reflectance R 210 ( ⁇ ), and the back surface transmittance T 230 ( ⁇ ) and back surface reflectance R 230 ( ⁇ ) change, and the theoretical spectral transmittance T theory changes accordingly. Accordingly, even in the case where the first film 102 and the second film 103 each include a plurality of layers as in this modification, the theoretical spectral transmittance T closest to the measured spectral transmittance T sig ( ⁇ ).
  • each layer thickness d 11 to d 13 , d 31 and d 32 can be obtained with high accuracy.
  • the objects to be searched while changing the layer thicknesses d 11 to d 13 are at least the surface transmittance T 012 ( ⁇ ) of the theoretical spectral transmittance T theory and the surface reflectance R 210 ( ⁇ ).
  • the surface transmittance T 012 ( ⁇ ) is changed by changing the layer thicknesses d 11 to d 13 , d 31, and d 32.
  • the surface reflectance R 210 ( ⁇ ), the back surface transmittance T 230 ( ⁇ ), and the back surface reflectance R 230 ( ⁇ ) are changed to prepare a plurality of theoretical spectral reflectances R theory , and the measured spectral reflectances R sig ( The thickness of each layer at the theoretical spectral reflectance R theory that fits with ⁇ ) may be determined as the layer thicknesses d 11 to d 13 , d 31, and d 32 .
  • the film thickness measuring method and film thickness measuring apparatus according to the present invention are not limited to the above-described embodiments, and various other modifications are possible.
  • the theoretical spectral reflectance is obtained by Expressions (1) to (3)
  • the theoretical spectral transmittance is obtained by Expression (11)
  • the theoretical spectral reflectance and the theoretical spectral transmittance are calculated. Is not limited to these, and any mathematical formula can be used.
  • the film thickness specifying unit or the film thickness calculating unit may be configured for the film thickness value of the first film and the film thickness value of the second film.
  • a plurality of theories can be obtained by calculating the value of the surface reflectance, the value of the surface transmittance, and the value of the back surface reflectance, and changing the value of the film thickness of the first film and the value of the film thickness of the second film.
  • the spectral reflectance may be acquired. Thereby, a plurality of theoretical spectral reflectances can be suitably acquired.
  • the surface reflectance value and the surface transmittance of the theoretical spectral reflectance closest to the actual spectral reflectance are measured.
  • the film thickness value of the first film may be obtained based on at least one of the ratio values.
  • the first film includes a plurality of layers, and the theoretical spectrum closest to the actually measured spectral reflectance in the film thickness specifying step or the film thickness calculating unit.
  • the thickness of each of the plurality of layers of the first film may be determined based on the reflectance.
  • the first film includes a plurality of layers, and in the film thickness specifying step or the film thickness calculation unit is the theoretical spectrum closest to the measured spectral transmittance. The thickness of each of the plurality of layers of the first film may be determined based on the transmittance.
  • the reflectance and transmittance on the surface side change according to the thickness of these layers, and the theoretical spectral reflectance and theoretical spectral transmittance change accordingly. Therefore, the plurality of theoretical spectral reflectances or theoretical spectral transmittances obtained by changing the thickness values of the plurality of layers included in the first film are compared with the measured spectral transmittance or the measured spectral transmittance. Thus, the thickness of each of the plurality of layers of the first film can be obtained with high accuracy.
  • the film thickness of the second film is determined based on a theoretical spectral reflectance that is closest to the actually measured spectral reflectance in the film thickness specifying step. The thickness may be further determined.
  • the film thickness of the second film is determined based on the theoretical spectral transmittance that is closest to the actually measured spectral transmittance in the film thickness specifying step. The thickness may be further determined.
  • the film thickness specifying unit or the film thickness calculating unit is based on the value of the back surface reflectance of the theoretical spectral reflectance closest to the measured spectral reflectance.
  • the thickness value of the second film may be obtained. Thereby, the value of the film thickness of the second film can be suitably obtained.
  • the second film includes a plurality of layers, and the theoretical spectrum closest to the actually measured spectral reflectance in the film thickness specifying step or the film thickness calculating unit. The thickness of each of the plurality of layers of the second film may be determined based on the reflectance. Further, in the second film thickness measuring method and film thickness measuring apparatus, the second film includes a plurality of layers, and the theoretical spectrum closest to the actual measured spectral transmittance in the film thickness specifying step or the film thickness calculating unit. The thickness of each of the plurality of layers of the second film may be determined based on the transmittance.
  • the reflectance and transmittance on the back side change according to the thickness of these layers, and the theoretical spectral reflectance and theoretical spectral transmittance change accordingly. Therefore, the plurality of theoretical spectral reflectances or theoretical spectral transmittances obtained by changing the thickness values of the plurality of layers included in the second film are compared with the measured spectral transmittance or the measured spectral transmittance. Thus, the layer thickness of each of the plurality of layers of the second film can be obtained with high accuracy.
  • DESCRIPTION OF SYMBOLS 1A, 1B ... Film thickness measuring apparatus 10 ... Light irradiation part, 11 ... Light source, 12 ... Light guide member, 13 ... Light emission part, 20A, 20B ... Light detection part, 21a, 21b ... Light incident part, 22a, 22b ... light guide member, 23a, 23b ... spectral detection part, 30A, 30B ... film thickness calculation part, 40 ... control part, 50 ... display part, 60 ... input device, 100 ... measurement object, 101 ... base material, 101a ... Front surface, 101b ... back surface, 102 ... first film, 103 ... second film, 110 ... roller, L1 ... irradiation light, L2 ... reflected light, L3 ... transmitted light.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Textile Engineering (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

 膜厚計測装置1Aは、計測対象物100に光を照射する光照射部10と、反射光の波長毎の強度を検出する光検出部20Aと、光検出部20Aにおける検出結果に基づいて得られる実測分光反射率と、表面反射率及び表面透過率、並びに裏面反射率が加味された理論分光反射率とを比較することにより第1の膜102の膜厚を決定する膜厚算出部30Aとを備える。膜厚算出部30Aは、表面反射率の値及び表面透過率の値、並びに裏面反射率の値をそれぞれ変化させて得られる複数の理論分光反射率と実測分光反射率とを比較し、該実測分光反射率に最も近い理論分光反射率に基づいて第1の膜102の膜厚を決定する。

Description

膜厚計測方法及び膜厚計測装置
 本発明は、膜厚計測方法及び膜厚計測装置に関するものである。
 特許文献1には、透光性薄膜が積層された複合フィルムの製造方法が記載されている。この特許文献1には、基材フィルムの両面に極薄フィルムが形成されている場合に、裏面に形成された極薄フィルムからの反射光が、表面に形成された極薄フィルムの厚み計測に影響することが記載されている。そして、特許文献1に記載された方法は、基材フィルムに光吸収材を混入させることによって、そのような影響を低減することを企図している。
 特許文献2には、透明基板上に形成された薄膜の厚さ測定方法が記載されている。この特許文献2には、透明基板の表面上に形成された薄膜に光を照射し、その反射光に基づいて薄膜の厚さを測定する際に、透明基板の裏面からの反射光が測定精度に影響することが記載されている。この問題を解決するため、特許文献2に記載された測定方法では、透明基板の裏面からの反射光が検出される割合である裏面反射係数寄与率γを考慮して、薄膜の厚さを測定している。
 特許文献3には、多層薄膜に光を照射し、その反射光の分光スペクトルに基づいて多層薄膜の厚さを測定する方法が記載されている。この特許文献3に記載された測定方法では、高速フーリエ変換法を用いて、基材の両面に膜が形成された被測定フィルムの表面上及び裏面上の各膜の厚さを測定している。また、透過率が低い波長帯域での反射光と、透過率が高い波長帯域での反射光とを用いて、表面上及び裏面上の各膜の厚さを測定している。
 特許文献4には、基板上に形成された膜厚を測定する方法が記載されている。この特許文献4に記載された測定方法では、基板表面の凹凸状態にばらつきがあっても各基板の膜厚を効率良く測定するために、基板の膜厚の仮定値を変化させながら、膜厚毎に基板が鏡面である場合の理論上の反射率と受光データとの関係に基づき、受光部に入射する反射光の比率(受光比率)を算出する。更に、この受光比率と上記の理論上の反射率とを用いて仮定の膜厚を有する基板についての反射スペクトルのモデルデータを設定し、受光データと比較する。そして、受光データとの一致度が最大となるモデルデータに対応する膜厚を、薄膜の厚みとして特定する。
特開平8-99346号公報 特開2000-65536号公報 特開2008-292473号公報 特開2002-277215号公報
 基材の表面に形成された薄膜の厚さを計測する方法として、薄膜に光を照射してその反射光を検出し、該反射光の分光スペクトルに基づいて厚さを特定する方法がある。しかしながら、近年、樹脂フィルムやガラス基材の表面上及び裏面上の双方に種々の薄膜が形成される場合がある。一例としては、クリアハードコートが表面上に塗布され、光学調整層/接着層/透明導電膜(ITO)が裏面上に順に積層された、タッチパネル用途の透明導電性フィルムなどが挙げられる。このような場合、基材の裏面側からの反射光が影響するため、上記の方法によって薄膜の厚さを精度良く計測することが困難となることがある。
 本発明は、このような問題点に鑑みてなされたものであり、基材の表面上及び裏面上の双方に薄膜が形成されている場合であっても、表面上の薄膜の厚さを精度よく計測することができる膜厚計測方法及び膜厚計測装置を提供することを目的とする。
 上述した課題を解決するために、本発明の一側面による第1の膜厚計測方法は、表面及び裏面を有する基材と、表面上に形成された第1の膜と、裏面上に形成された第2の膜とを備える計測対象物の膜厚を計測する方法であって、計測対象物の表面側に光を照射する光照射ステップと、計測対象物の表面側における反射光の波長毎の強度を検出する光検出ステップと、光検出ステップにおける検出結果に基づいて得られる波長毎の反射率である実測分光反射率と、表面側における反射率である表面反射率、表面側における透過率である表面透過率、及び裏面側における反射率である裏面反射率が加味された理論上の波長毎の反射率である理論分光反射率とを比較することにより第1の膜の膜厚を決定する膜厚特定ステップと、を備え、膜厚特定ステップにおいて、表面反射率の値、表面透過率の値、及び裏面反射率の値を変化させて得られる複数の理論分光反射率と実測分光反射率とを比較し、該実測分光反射率に最も近い理論分光反射率に基づいて第1の膜の膜厚を決定する。
 前述したように、基材の表面上及び裏面上の双方に薄膜が形成されている場合、基材の裏面側からの反射光が表面上の薄膜の厚さ計測に影響を与える。この影響の大きさは基材の裏面側における反射率に依存し、裏面側における反射率は、裏面上に形成されている薄膜の屈折率や厚さによって変動する。上記の第1の膜厚計測方法では、膜厚特定ステップにおいて、表面側における反射率、表面側における透過率、及び裏面側における反射率が加味された理論分光反射率と、実測分光反射率との比較(フィッティング)をしており、より詳細には、表面側の反射率の値、表面側の透過率の値、及び裏面側の反射率の値をそれぞれ変化させて得られる複数の理論分光反射率のうち、実測分光反射率に最も近い理論分光反射率に基づいて、第1の膜の膜厚を決定している。このような方法によれば、裏面側の反射光による影響を理論分光反射率に反映させることができるので、裏面上に形成されている第2の膜の厚さや屈折率の影響を考慮して、表面上の第1の膜の厚さを精度良く計測することができる。
 また、本発明の一側面による第2の膜厚計測方法は、表面及び裏面を有する基材と、表面上に形成された第1の膜と、裏面上に形成された第2の膜とを備える計測対象物の膜厚を計測する方法であって、計測対象物の表面側に光を照射する光照射ステップと、計測対象物の裏面側における透過光の波長毎の強度を検出する光検出ステップと、光検出ステップにおける検出結果に基づいて得られる波長毎の透過率である実測分光透過率と、表面側における透過率である表面透過率及び反射率である表面反射率、並びに裏面側における透過率である裏面透過率及び反射率である裏面反射率が加味された理論上の波長毎の透過率である理論分光透過率とを比較することにより第1の膜の膜厚を決定する膜厚特定ステップと、を備え、膜厚特定ステップにおいて、表面透過率の値及び表面反射率の値、並びに裏面透過率の値及び裏面反射率の値をそれぞれ変化させて得られる複数の理論分光透過率と実測分光透過率とを比較し、該実測分光透過率に最も近い理論分光透過率に基づいて第1の膜の膜厚を決定する。
 上記の第2の膜厚計測方法では、膜厚特定ステップにおいて、表面側における透過率及び反射率、並びに裏面側における透過率及び反射率が加味された理論分光透過率と実測分光透過率との比較(フィッティング)をしており、より詳細には、表面側の透過率の値、表面側の反射率の値、裏面側の透過率の値、及び表面側の反射率の値をそれぞれ変化させて得られる複数の理論分光透過率のうち、実測分光透過率に最も近い理論分光透過率に基づいて、第1の膜の膜厚を決定している。このような方法によれば、裏面側の第2の膜による影響を理論分光透過率に反映させることができるので、裏面上に形成されている第2の膜の厚さや屈折率の影響を考慮して、表面上の第1の膜の厚さを精度良く計測することができる。
 また、本発明の一側面による第1の膜厚計測装置は、表面及び裏面を有する基材と、表面上に形成された第1の膜と、裏面上に形成された第2の膜とを備える計測対象物の膜厚を計測する装置であって、計測対象物の表面側に光を照射する光照射部と、計測対象物の表面側における反射光の波長毎の強度を検出する光検出部と、光検出部における検出結果に基づいて得られる波長毎の反射率である実測分光反射率と、表面側における反射率である表面反射率及び透過率である表面透過率、並びに裏面側における反射率である裏面反射率が加味された理論上の波長毎の反射率である理論分光反射率とを比較することにより第1の膜の膜厚を決定する膜厚算出部と、を備え、膜厚算出部は、表面反射率の値及び表面透過率の値、並びに裏面反射率の値をそれぞれ変化させて得られる複数の理論分光反射率と実測分光反射率とを比較し、該実測分光反射率に最も近い理論分光反射率に基づいて第1の膜の膜厚を決定する。
 上記の第1の膜厚計測装置では、膜厚算出部が、表面側における反射率、表面側における透過率、及び裏面側における反射率が加味された理論分光反射率と実測分光反射率との比較(フィッティング)をしており、より詳細には、表面側の反射率の値、表面側の透過率の値、及び裏面側の反射率の値をそれぞれ変化させて得られる複数の理論分光反射率のうち、実測分光反射率に最も近い理論分光反射率に基づいて、第1の膜の膜厚を決定している。これにより、裏面側の反射光による影響を理論分光反射率に反映させることができるので、裏面上に形成されている第2の膜の厚さや屈折率の影響を考慮して、表面上の第1の膜の厚さを精度良く計測することができる。
 また、本発明の一側面による第2の膜厚計測装置は、表面及び裏面を有する基材と、表面上に形成された第1の膜と、裏面上に形成された第2の膜とを備える計測対象物の膜厚を計測する装置であって、計測対象物の表面側に光を照射する光照射部と、計測対象物の裏面側における透過光の波長毎の強度を検出する光検出部と、光検出部における検出結果に基づいて得られる波長毎の透過率である実測分光透過率と、表面側における透過率である表面透過率及び反射率である表面反射率、並びに裏面側における透過率である裏面透過率及び反射率である裏面反射率が加味された理論上の波長毎の透過率である理論分光透過率とを比較することにより第1の膜の膜厚を決定する膜厚算出部と、を備え、膜厚算出部は、表面透過率の値及び表面反射率の値、並びに裏面透過率の値及び裏面反射率の値をそれぞれ変化させて得られる複数の理論分光透過率と実測分光透過率とを比較し、該実測分光透過率に最も近い理論分光透過率に基づいて第1の膜の膜厚を決定する。
 上記の第2の膜厚計測装置では、膜厚算出部が、表面側における透過率、表面側における反射率、裏面側における透過率、及び裏面側における反射率が加味された理論分光透過率と実測分光透過率との比較(フィッティング)をしており、より詳細には、表面側の透過率の値、表面側の反射率の値、裏面側の透過率の値、及び裏面側の反射率の値をそれぞれ変化させて得られる複数の理論分光透過率のうち、実測分光透過率に最も近い理論分光透過率に基づいて、第1の膜の膜厚を決定している。これにより、裏面側の第2の膜による影響を理論分光透過率に反映させることができるので、裏面上に形成されている第2の膜の厚さや屈折率の影響を考慮して、表面上の第1の膜の厚さを精度良く計測することができる。
 なお、特許文献1に記載された方法では、基材フィルムに光吸収材を混入させる必要があるので計測対象物が限定されてしまう問題がある。特に、上述した透明導電性フィルムなどのように透明な基材が使用されている場合には、このような方法を使用することができない。これに対し、上述した各膜厚計測方法及び各膜厚計測装置によれば、基材の両面に膜が形成されている場合に、基材の透光性に関係なく、膜厚測定を精度良く行うことが可能となる。
 また、特許文献2に記載された方法では、裏面反射係数寄与率γを得るために、膜が形成されていない状態での反射スペクトルと、光トラップなどを用いて基材の裏面からの反射を抑えた状態での反射スペクトルとをそれぞれ計測する必要があり、計測に手間を要する。これに対し、上述した各膜厚計測方法及び各膜厚計測装置によれば、単に波長毎の反射率(もしくは波長毎の透過率)を計測すれば足るので、基材の両面に膜が形成されている場合の膜厚測定を簡便に行うことが可能となる。
 また、特許文献3に記載された方法のように高速フーリエ変換法を用いる場合、例えば厚さ1μm以下といった薄い膜の厚さ計測には適さない。上述した各膜厚計測方法及び各膜厚計測装置によれば、このような極めて薄い膜であっても精度良く計測することが可能である。また、特許文献3に記載された方法では、屈折率が互いに異なる複数の層が膜内に含まれている場合、膜厚を精度良く計測することが困難である。これに対し、上述した各膜厚計測方法及び各膜厚計測装置によれば、第1及び第2の膜内に複数の層が含まれている場合であっても、膜厚を精度良く計測することが可能となる。
 本発明の一側面による膜厚計測方法及び膜厚計測装置によれば、基材の表面上及び裏面上の双方に薄膜が形成されている場合であっても、表面上の薄膜の厚さを精度よく計測することができる。
第1実施形態による膜厚計測方法及び膜厚計測装置の計測対象物の構成を示す断面図である。 第1実施形態の膜厚計測装置の構成を模式的に示す図である。 膜厚計測の原理を説明するための図であって、基材上に形成されている膜の断面を示している。 干渉後の反射光の強度と波長との関係を示すグラフである。 膜がITO膜である場合のカーブフィッティングの例を示すグラフである。 数式(1)~(3)に含まれる各パラメータの定義を示す図である。 第1実施形態の膜厚計測装置の動作及び膜厚計測方法を示すフローチャートである。 第1実施形態の膜厚計測装置の動作及び膜厚計測方法の別の例を示すフローチャートである。 複数の理論分光反射率の算出方法を示すフローチャートである。 第1変形例における各パラメータの定義を示す図である。 第2実施形態による膜厚計測装置の構成を模式的に示す図である。 第2実施形態の膜厚計測装置の動作及び膜厚計測方法を示すフローチャートである。
 以下、添付図面を参照しながら本発明の一側面による膜厚計測方法及び膜厚計測装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 (第1の実施の形態)
図1は、第1実施形態による膜厚計測方法及び膜厚計測装置の計測対象物100の構成を示す断面図である。図1に示されるように、計測対象物100は、基材101と、第1の膜(表面膜)102と、第2の膜(裏面膜)103とを有している。基材101は、表面101aと裏面101bとを有する板状若しくはフィルム状の部材であって、例えば樹脂やガラス、半導体ウエハ等によって構成される。基材101の厚さは例えば100μm以上である。第1の膜102は、基材101の表面101a上に形成されている。第2の膜103は、基材101の裏面101b上に形成されている。第1の膜102及び第2の膜103は、例えば真空成膜などの成膜や塗布、エッチングなどの工程により形成される。計測対象物100の一例としては、タッチパネル、半導体デバイス、二次電池、太陽電池、FPD(フラットパネルディスプレイ)、光学フィルム等が挙げられる。計測対象物100がタッチパネル用途の透明導電性フィルムである場合、第1の膜102は光学調整層、接着層、透明導電膜(ITO)といった複数の層を含み、第2の膜103はクリアハードコート剤の層からなる。
 図2は、本実施形態の膜厚計測装置1Aの構成を模式的に示す図である。膜厚計測装置1Aは、図1に示された計測対象物100の膜厚を計測する装置である。図2に示されるように、膜厚計測装置1Aは、光照射部10と、光検出部20Aと、膜厚算出部30Aとを備えている。なお、計測対象物100は、図に示されるようにローラー110によって搬送されている状態であってもよく、或いは静止状態であってもよい。
 光照射部10は、計測対象物100の表面101a側の面に光を照射する。光照射部10は、光源11と、導光部材12と、光出射部13とを含んで構成されている。光源11は、非コヒーレント(インコヒーレント)な光L1を発生する。光L1の波長帯域は、可視波長域であっても良く、その場合、光源11としては、白色光を出射するランプ系光源若しくは白色LEDなどが好適である。また、光L1の波長帯域は、可視波長域から近赤外波長域に亘る波長帯であっても良く、赤外波長領域において略平坦な(ブロードな)スペクトルを有してもよい。特に、光L1の波長帯域が近赤外波長域を含む場合、計測対象物100に色味があっても光L1が透過することができるので、計測対象物100の色味による影響を低減することができる。その場合、光源11としては、ASE(Amplified Spontaneous Emission)光源、LED、SLD(Super Luminescent Diode)といった種々の発光要素が適用され得る。また、白色光源と光学フィルムなどの光学部品とが互いに組み合わされてもよい。
 導光部材12は、その一端が光源11に光結合されており、光源11から出射された光L1を導く。導光部材12としては、例えば、ライトガイドや光ファイバ等が好適に用いられる。光出射部13は、導光部材12の他端と光結合されており、導光部材12によって導かれた光L1を計測対象物100に照射する。光出射部13は、計測対象物100の第1の膜102と対向する位置、すなわち基材101の表面101aと対向する位置に配置される。
 光検出部20Aは、計測対象物100の表面101a側における反射光の波長毎の強度(スペクトル)を検出する。光検出部20Aは、光入射部21aと、導光部材22aと、分光検出部23aとを含んで構成されている。光入射部21aには、計測対象物100からの反射光L2が入射される。光入射部21aは、計測対象物100の第1の膜102と対向する位置、すなわち基材101の表面101aと対向する位置に配置される。なお、光出射部13の光軸と光入射部21aの光軸とは、互いに平行であってもよいし、計測対象物100において互いに交差してもよい。また、光出射部13の光軸と光入射部21aの光軸とが互いに一致してもよい。導光部材22aは、その一端が光入射部21aに光結合されており、光入射部21aに入射した反射光L2を導く。導光部材22aとしては、例えば、ライトガイドや光ファイバ等が好適に用いられる。分光検出部23aは、導光部材22aの他端と光結合されており、導光部材22aによって導かれた反射光L2を波長毎に分光し、分光された波長毎の光の強度を検出する。分光検出部23aは、例えば、分光光学素子(例えばプリズムやグレーティング素子など)と、撮像素子(例えばラインセンサ、エリアイメージセンサ、光電子増倍管、フォトダイオードなど)との組合せによって好適に構成される。分光検出部23aは、検出した光強度を電気信号として出力する。
 膜厚算出部30Aは、光検出部20Aにおける検出結果に基づいて、第1の膜102及び第2の膜103の膜厚を求める。すなわち、膜厚算出部30Aは、光検出部20Aにおける検出結果に基づいて得られる波長毎の反射率である実測分光反射率と、理論上の波長毎の反射率である理論分光反射率とを比較し、これらを互いにフィッティングすることにより、第1の膜102及び第2の膜103の膜厚を求める。
 膜厚計測装置1Aは、上記の構成に加えて、制御部40と、表示部50と、入力装置60とを更に備えている。制御部40は、光照射部10、光検出部20A、及び膜厚算出部30Aの動作を制御するための部分であって、たとえばCPU及びメモリを有するコンピュータによって好適に実現される。表示部50は、膜厚算出部30Aによって算出された第1の膜102及び第2の膜103の各膜厚の値、及び計測条件等を表示する。入力装置60は、例えばマウスやキーボードなどによって構成され、操作者が計測条件などを入力する際に用いられる。なお、表示部50及び入力装置60は、タッチパネルディスプレイとして一体化されてもよい。また、制御部40、表示部50、及び入力装置60は、膜厚計測装置1Aの外部に設けられてもよい。
 ここで、本実施形態の膜厚計測装置1Aを用いた膜厚計測方法について詳細に説明する。図3は、膜厚計測の原理を説明するための図であって、基材B1上に形成されている膜B2の断面を示している。いま、膜B2にインコヒーレントな光Laが入射すると、膜B2の表面での反射光と、基材B1と膜B2との界面での反射光とが相互に干渉する。基材B1と膜B2との界面での反射光の光路長は、膜B2の表面での反射光の光路長に対して膜B2内の光路の分だけ長くなるので、これらの反射光の間には、膜B2の厚さに応じた位相差が生じる。
 図4(a)~図4(c)は、干渉後の反射光の強度と波長との関係を示すグラフである。図4(a)は膜B2の膜厚が他の図よりも薄い場合を示しており、図4(c)は膜B2の膜厚が他の図よりも厚い場合を示している。図4に示されるように、干渉後の反射光のスペクトル(反射スペクトル)は干渉により波打つが、その波の間隔は膜B2の膜厚が厚くなるほど小さくなる。
 上記のような反射スペクトルと膜B2の膜厚との関係を利用して、膜B2の膜厚を求めることができる。具体的な手法としては、高速フーリエ変換法及びカーブフィッティング法がある。高速フーリエ変換法は、反射スペクトルに対し高速フーリエ変換を行い、そのピーク周波数から膜厚を求める方法である。カーブフィッティング法は、計測された反射スペクトルから求められる分光反射率(実測分光反射率)と、理論式から算出された理論分光反射率とをフィッティングし、フィットした理論分光反射率から膜厚を求める方法である。本実施形態では、カーブフィッティング法が用いられる。カーブフィッティング法によれば、膜B2の厚さが1μm以下であっても精度良く計測することができる。図5は、膜B2がITO膜(厚さ350nm)である場合のカーブフィッティングの例を示すグラフである。図5において、グラフG11は実測分光反射率を示しており、グラフG12は理論分光反射率を示している。例えば、これらのグラフG11及びG12の差の二乗が最も小さくなる理論分光反射率における膜厚値が、膜B2の膜厚とされる。
 しかしながら、本実施形態の計測対象物100では、図1に示されたように基材101の両面に膜102,103が形成されているので、第1の膜102による干渉後の反射スペクトルに、第2の膜103による干渉後の反射スペクトルが重畳してしまう。従って、上記の方法をそのまま適用して第1の膜102の膜厚を計測しようとしても正確な値を求めることが難しい。
 そこで、本実施形態の理論分光反射率としては、基材101内部の多重反射の影響を反映するために、第1の膜102の屈折率や膜厚に依存する基材101の表面101aにおける反射率(表面反射率)と、同じく第1の膜102の屈折率や膜厚に依存する基材101の表面101aにおける透過率(表面透過率)と、基材101の裏面101bにおける反射率(裏面反射率)とを加味している。ここで、基材101の裏面101bにおける反射率は、基材101内部を通る照射光L1が裏面101bで反射した光に加え、裏面101bを透過し、第2の膜103と周囲(空気や真空)の境界で反射して基材101へ戻る光の影響も含んでいるため、第2の膜103の屈折率や膜厚に依存する反射率となる。
 数式(1)及び(2)は、本実施形態の理論分光反射率Rtheoryを示す式である。なお、λは波長である。また、図6は、数式(1)及び(2)に含まれる各パラメータの定義を示す図である。図6に示されるように、数式(1)及び(2)では、計測対象物100の周囲(空気や真空)の消衰係数をk0とし、第1の膜102の消衰係数をk1とし、基材101の消衰係数をk2(但しk2≧0)とし、第2の膜103の消衰係数をk3とする。また、計測対象物100の周囲(空気や真空)の屈折率をn0とし、第1の膜102の屈折率をn1とし、基材101の屈折率をn2とし、第2の膜103の屈折率をn3とする。また、第1の膜102側における表面101aでの反射率(第1の表面反射率)をR012(λ)とし、基材101側における裏面101bでの反射率(裏面反射率)をR230(λ)とし、基材101側における表面101aでの反射率(第2の表面反射率)をR210(λ)とする。また、第1の膜102側における表面101aでの透過率(表面透過率)をT012(λ)とし、第1の膜102側における第1の膜102の表面での透過率をT210(λ)とする。また、第1の膜102の膜厚をd1とし、基材101の厚さをd2とし、第2の膜103の膜厚をd3とする。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 数式(1)及び(2)に示されるように、理論分光反射率Rtheoryでは、第1の膜102側における基材101の表面101aでの反射率である第1の表面反射率R012(λ)に加えて、基材101内部の多重反射の影響を反映するために、基材101側における表面101aでの反射率である第2の表面反射率R210(λ)、表面101aでの透過率である表面透過率T012(λ)、及び基材101側における裏面101bでの反射率(裏面反射率)R230(λ)が考慮されている。すなわち、数式(1)右辺のΣ項が基材101内での多重反射成分を示しており、この多重反射成分は、基材101側から見た裏面101bでの反射率R230(λ)と、基材101側から見た表面101aでの反射率R210(λ)と、表面101aでの透過率T012(λ)とに基づいている。
 図7は、本実施形態の膜厚計測装置1Aの動作及び膜厚計測方法を示すフローチャートである。図7に示されるように、まず、光照射部10が、計測対象物100の表面101a側に対して白色光などの非コヒーレントな光L1を照射する(光照射ステップS11)。次に、光検出部20Aが、計測対象物100の表面101a側における反射光L2を波長毎に分光し、各波長の強度を検出する(光検出ステップS12)。
 続いて、膜厚算出部30Aが、第1の膜102及び第2の膜103の膜厚を求める(膜厚特定ステップS13)。この膜厚特定ステップS13では、膜厚算出部30Aは、まず光検出部20Aからの検出信号に基づいて実測分光反射率を算出する(ステップS131)。このために、膜厚算出部30Aは、まず、反射光L2の波長毎の強度から反射スペクトルSsig(λ)を求める。次に、膜厚算出部30Aは、数式(3)に示されるように、標準計測対象物を用いて予め取得された標準反射スペクトルSref(λ)と、反射スペクトルSsig(λ)との比を算出する。この比が、実測分光反射率Rsig(λ)となる。
Figure JPOXMLDOC01-appb-M000003
 続いて、膜厚算出部30Aは、理論分光反射率Rtheoryを算出する(ステップS132)。まず、基材101の消衰係数k2、屈折率n2、及び厚さd2と、第1の膜102の消衰係数k1及び屈折率n1と、第2の膜103の消衰係数k3及び屈折率n3とが操作者により入力される。膜厚算出部30Aは、数式(1)の第1の表面反射率R012(λ)の値、第2の表面反射率R210(λ)の値、表面透過率T012(λ)の値、透過率T210(λ)の値、及び裏面反射率R230(λ)の値をそれぞれ変化させて、複数の第1の表面反射率R012(λ)の値、複数の第2の表面反射率R210(λ)の値、複数の表面透過率T012(λ)の値、複数の透過率T210(λ)の値、及び複数の裏面反射率R230(λ)の値の組み合わせからなる複数の理論分光反射率Rtheoryを求める。
 続いて、膜厚算出部30Aは、複数の理論分光反射率Rtheoryと実測分光反射率Rsig(λ)とを相互に比較し、実測分光反射率Rsig(λ)に最も近い(フィットする)理論分光反射率Rtheoryを求める(ステップS133)。このステップS133では、例えば最小二乗法が用いられる。すなわち、膜厚算出部30Aは、複数の理論分光反射率Rtheoryそれぞれに対して、実測分光反射率Rsig(λ)と理論分光反射率Rtheoryとの差の2乗の値を求め、その値が最小となる理論分光反射率Rtheoryを選択する。
 続いて、膜厚算出部30Aは、実測分光反射率Rsig(λ)に最も近い(略一致する)理論分光反射率Rtheoryに基づいて、第1の膜102の膜厚d1を算出する(ステップS134)。理論的な第1の表面反射率Rtheory012(λ)は、次の数式(4)~(6)に示されるように、第1の膜102の屈折率や膜厚に依存しており、膜厚d1の関数となっている。なお、数式(4)~(6)において、r01は空気と第1の膜102との界面における振幅反射係数であり、r12は第1の膜102と基材101との界面における振幅反射係数であり、N1=n1-ik1である。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 また、理論的な第2の表面反射率Rtheory210(λ)は、次の数式(7)~(9)に示されるように、第1の膜102の屈折率や膜厚に依存しており、膜厚d1の関数となっている。なお、数式(7)~(9)において、r21は基板と第1の膜102との界面における振幅反射係数であり、r10は第1の膜102と空気との界面における振幅反射係数である。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 さらに、理論的な表面透過率Ttheory012(λ)もまた、次の数式(10)~(12)に示されるように、第1の膜102の屈折率や膜厚に依存しており、膜厚d1の関数となっている。なお、数式(10)~(12)において、t01は空気と第1の膜102との界面における振幅透過係数であり、t12は第1の膜102と基板との界面における振幅透過係数であり、N2=n2-ik2である。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 さらに、理論的な第1の膜102の表面における透過率Ttheory210(λ)もまた、次の数式(13)~(15)に示されるように、第1の膜102の屈折率や膜厚に依存しており、膜厚d1の関数となっている。なお、数式(13)~(15)において、t21は基板と第1の膜102との界面における振幅透過係数であり、t10は第1の膜102と空気との界面における振幅透過係数である。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 そこで、膜厚算出部30Aは、ステップS133において選択された理論分光反射率Rtheoryの第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、及び透過率T210(λ)それぞれから膜厚d1の値を求める。そして、膜厚算出部30Aは、求められた複数の膜厚d1の値の平均値や最小二乗値を、計測対象物100の第1の膜102の膜厚として決定し、出力する。なお、求められた複数の膜厚d1の値のうち1つを計測対象物100の第1の膜102の膜厚と決定してもよい。特に、第1の膜102側における表面101aでの反射率R012(λ)の影響が大きいため、理論分光反射率Rtheoryの第1の表面反射率R012(λ)から求まる膜厚d1の値を第1の膜102の膜厚と決定してもよい。
 また、膜厚算出部30Aは、第2の膜103の膜厚d3を算出する(ステップS135)。理論的な裏面反射率Rtheory230(λ)は、次の数式(16)~(18)に示されるように、第2の膜103の屈折率や膜厚に依存しており、膜厚d3の関数となっている。なお、数式(16)~(18)において、r23は基材101と第2の膜103との界面における振幅反射係数であり、r30は第2の膜103と空気との界面における振幅反射係数であり、N3=n3-ik3である。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 膜厚算出部30Aは、ステップS133において選択された理論分光反射率Rtheoryの裏面反射率R230(λ)にフィットする反射率Rtheory230(λ)から数式(16)~(18)に基づいて膜厚d3の値を求め、計測対象物100の第2の膜103の膜厚として決定し、出力する。
 上記のように、本実施形態の膜厚特定ステップS13では、膜厚算出部30Aが、光検出ステップS12における検出結果に基づいて得られる実測分光反射率Rsig(λ)と、表面101a側における反射率である第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面101a側における透過率である表面透過率T012(λ)及び透過率T210(λ)、並びに裏面101b側における反射率である裏面反射率R230(λ)が加味された理論分光反射率Rtheoryとを比較することにより、第1の膜102の膜厚d1及び第2の膜103の膜厚d3を求める。なお、第1の膜102の膜厚d1を算出するステップS134と、第2の膜103の膜厚d3を算出するステップS135との順序は任意であり、ステップS135から先に行ってもよく、ステップS134及びS135を並行して行ってもよい。
 なお、本実施形態では、予め複数の理論分光反射率Rtheoryを算出しておき、これらの理論分光反射率Rtheoryに対して実測分光反射率Rsig(λ)をフィットさせる例を示したが、理論分光反射率Rtheoryと実測分光反射率Rsig(λ)とのフィッティングはこのような形態に限られない。例えば、次のような方法でフィッティングを行ってもよい。すなわち、図8に示されるように、或る一つの第1の表面反射率R012(λ)の値、或る一つの第2の表面反射率R210(λ)の値、或る一つの表面透過率T012(λ)の値、或る一つの透過率T210(λ)の値、及び或る一つの裏面反射率R230(λ)の値の組み合わせからなる一つの理論分光反射率Rtheoryを算出する(ステップS136)。この理論分光反射率Rtheoryと実測分光反射率Rsig(λ)とのフィッティングを行う(ステップS137)。フィットしない(差の2乗が閾値を超えている等の)場合に(ステップS138;No)、第1の表面反射率R012(λ)の値、第2の表面反射率R210(λ)の値、表面透過率T012(λ)の値、透過率T210(λ)の値、及び裏面反射率R230(λ)の値の組み合わせを変更し(ステップS139)、再度、変更後の理論分光反射率Rtheoryと実測分光反射率Rsig(λ)とのフィッティングを行う。このような処理を繰り返すことによって、複数の理論分光反射率Rtheoryのうち、実測分光反射率Rsig(λ)とフィットする理論分光反射率Rtheoryを求めることができる。
 また、本実施形態では、実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheory(λ)における第1の表面反射率R012(λ)の値、第2の表面反射率R210(λ)の値、表面透過率T012(λ)の値、透過率T210(λ)の値、及び裏面反射率R230(λ)の値から第1の膜102の膜厚d1及び第2の膜103の膜厚d3を求める例を示したが、数式(6)、(9)、(12)、及び(15)の第1の膜102の膜厚d1の値と、数式(18)の第2の膜103の膜厚d3の値とをそれぞれ変化させることによって、理論分光反射率Rtheoryを用意してもよい。すなわち、図7に示された複数の理論分光反射率の算出ステップS132において、図9に示されるように、まず、複数の第1の膜102の膜厚d1の値及び第2の膜103の膜厚d3の値を設定する(S1321)。次に、設定された複数の膜厚d1の値及び膜厚d3の値における複数の第1の表面反射率R012(λ)の値、複数の第2の表面反射率R210(λ)の値、複数の表面透過率T012(λ)の値、複数の透過率T210(λ)の値、及び複数の裏面反射率R230(λ)の値をそれぞれ算出する(S1322)。そして、算出された複数の第1の表面反射率R012(λ)の値、複数の第2の表面反射率R210(λ)の値、複数の表面透過率T012(λ)の値、複数の透過率T210(λ)の値、及び複数の裏面反射率R230(λ)の値に対応する複数の理論分光反射率Rtheoryを算出する(S1323)。或いは、図7に示される反射率及び透過率の変更ステップS139において、第1の膜102の膜厚d1の値および第2の膜103の膜厚d3の値を変更することにより、各反射率及び透過率の値を変更してもよい。これらの場合、或る膜厚d1の値と或る膜厚d3の値とに対応する理論分光反射率Rtheory(λ)を実測分光反射率Rsig(λ)と比較することができるため、実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheory(λ)が求めることによって、表面膜の膜厚d1の算出ステップS134及び裏面膜の膜厚d3の算出ステップS135を行わなくても、膜厚d1の値と膜厚d3の値とを決定することができる。
 以上に説明した、本実施形態による膜厚計測装置1A及び膜厚計測方法によって得られる効果について説明する。前述したように、基材の表面上及び裏面上の双方に薄膜が形成されている場合、基材の裏面側からの反射光が表面上の薄膜の厚さ計測に影響を与える。この影響の大きさは基材の裏面側における反射率に依存し、裏面側における反射率は、裏面上に形成されている薄膜の屈折率や厚さによって変動する。この問題を解決するため、本実施形態では、膜厚特定ステップS13において、膜厚算出部30Aが、基材101側における表面101aでの第2の表面反射率R210(λ)、表面101aでの透過率T012(λ)、及び基材101側における裏面101bでの裏面反射率R230(λ)が加味された理論分光反射率Rtheoryと、実測分光反射率Rsig(λ)との比較(フィッティング)を行っている。そして、基材101側における表面101aでの第2の表面反射率R210(λ)、表面101aでの透過率T012(λ)、及び基材101側における裏面101bでの裏面反射率R230(λ)を変化させて得られる複数の理論分光反射率Rtheoryのうち、実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheoryに基づいて、第1の膜102の膜厚d1を決定している。これにより、基材101内部の多重反射による影響を理論分光反射率Rtheoryに反映させることができるので、表面101a上の第1の膜102の膜厚d1を精度良く計測することができる。さらに、表面101a側における反射率として第1の表面反射率R012(λ)及び第2の表面反射率R210(λ)を、表面101a側における透過率として表面透過率T012(λ)及び第1の膜102の表面における透過率T210(λ)を、裏面101b側における反射率として裏面反射率R230(λ)をそれぞれ加味した理論分光反射率Rtheoryと、実測分光反射率Rsig(λ)との比較(フィッティング)を行い、そして、表面101a側の第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、第1の膜102の表面での透過率T210(λ)、及び裏面101b側の裏面反射率R230(λ)をそれぞれ変化させて得られる複数の理論分光反射率Rtheoryのうち、実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheoryの第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、及び透過率T210(λ)の値のうち少なくも1つの値に基づいて、第1の膜102の膜厚d1を決定することによって、表面101a上の第1の膜102の膜厚d1の計測精度をより向上させることができる。
 また、本実施形態のように、第1の膜102の膜厚の値及び第2の膜103の膜厚の値に対する表面101a側の第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、第1の膜102の表面での透過率T210(λ)、及び裏面101b側の裏面反射率R230(λ)を算出し、第1の膜102の膜厚の値及び第2の膜103の膜厚の値を変化させることによって、複数の理論分光反射率Rtheoryを取得してもよい。これにより、複数の理論分光反射率Rtheoryを好適に取得することができる。
 また、本実施形態のように、実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheoryの表面反射率R012(λ)及びR210(λ)の値と、表面透過率T012(λ)及びT210(λ)の値とのうち少なくともいずれか一方の値に基づいて、第1の膜102の膜厚の値を求めてもよい。これにより、第1の膜102の膜厚を好適に取得することができる。
 また、本実施形態のように、実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheoryに基づいて、第2の膜103の膜厚d3を決定してもよい。これにより、表面101a上の第1の膜102の膜厚d1と、裏面101b上の第2の膜103の膜厚d3との双方を、一回の計測で同時に精度良く計測することができる。なお、本実施形態の膜厚特定ステップS13及び膜厚算出部30Aでは、第1の膜102の膜厚d1と第2の膜103の膜厚d3とを決定しているが、第1の膜102の膜厚d1のみを決定してもよい。
 また、本実施形態のように、実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheoryの裏面反射率R230(λ)の値に基づいて、第2の膜103の膜厚の値を計算により求めてもよい。これにより、第2の膜103の膜厚の値を好適に得ることができる。
 また、本実施形態では実測分光反射率Rsig(λ)と理論分光反射率Rtheoryとを直接的にフィッティングしているが、例えば、実測分光反射率Rsig(λ)と理論分光反射率Rtheoryとをそれぞれフーリエ変換し、実測分光反射率Rsig(λ)の周波数分布と理論分光反射率Rtheoryの周波数分布とを相互にフィッティングしてもよい。
 (第1の変形例)
第1実施形態では第1の膜102及び第2の膜103が単層からなる場合を例示したが、第1の膜102及び第2の膜103の一方または双方が複数の層を含む場合であっても、各層の層厚を求めることが可能である。本変形例の理論分光反射率としては、第1の膜102に含まれる複数の層の屈折率や層厚に依存する表面101a側における反射率(第1の表面反射率)と、第2の膜103に含まれる複数の層の屈折率や層厚に依存する裏面101b側における反射率(裏面反射率)とが加味されたものが用いられる。
 図10は、本変形例における各パラメータの定義を示す図であって、第1の膜102が3つの層からなり、第2の膜103が2つの層からなる場合を例示している。図10に示されるように、本変形例では、計測対象物100の周囲(空気)の消衰係数をk0とし、第1の膜102の第1層102a~第3層102cの消衰係数をそれぞれk11~k13とし、基材101の消衰係数をk2(但しk2≧0)とし、第2の膜103の第1層103a及び第2層103bの消衰係数をそれぞれk31及びk32とする。また、計測対象物100の周囲(空気)の屈折率をn0とし、第1の膜102の第1層102a~第3層102cの屈折率をそれぞれn11~n13とし、基材101の屈折率をn2とし、第2の膜103の第1層103a及び第2層103bの屈折率をそれぞれn31及びn32とする。また、第1の膜102の第1層102a~第3層102cの各層厚をそれぞれd11~d13とし、基材101の厚さをd2とし、第2の膜103の第1層103a及び第2層103bの各層厚をそれぞれd31及びd32とする。なお、表面反射率R012(λ)、R210(λ)、及びR230(λ)、並びに透過率T012(λ)及びT210(λ)の定義は第1実施形態と同様である。
 この場合、第1の表面反射率R012(λ)は前述した数式(4)~(6)を、第2の表面反射率R210(λ)は前述した数式(7)~(9)を、表面透過率T012(λ)は前述した数式(10)~(12)を、第1の膜102の表面における透過率T210(λ)は前述した数式(13)~(15)をそれぞれ書き換えることにより、第1の膜102の各層の層厚d11、d12、及びd13の関数として表される。また、裏面反射率R230(λ)は、前述した数式(16)~(18)を書き換えることにより、第2の膜103の各層の層厚d31及びd32の関数として表される。従って、本変形例では、第1の膜102及び第2の膜103が単層からなる場合と同様に、ステップS133において実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheoryを求めたのち、ステップS134において、その理論分光反射率Rtheoryの第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、及び第1の膜102の表面(つまり、第1層102aの表面)における透過率T210(λ)にフィットする理論上の反射率Rtheory012(λ)、反射率Rtheory210(λ)、透過率Ttheory012(λ)、及び透過率Ttheory210(λ)を、層厚d11~d13の値を変化させながら探索する。そして、膜厚算出部30Aは、フィットしたときの層厚d11~d13の値を、第1層102a~第3層102cの各層厚として出力する。また、ステップS135において、その理論分光反射率Rtheoryの裏面反射率R230(λ)にフィットする理論上の反射率Rtheory230(λ)を、層厚d31及びd32の値を変化させながら探索する。そして、膜厚算出部30Aは、フィットしたときの層厚d31及びd32の値を、第1層103a及び第2層103bの各層厚として出力する。
 第1の膜102及び第2の膜103が複数の層を含む場合、これらの層厚に応じて第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、第1の膜102の表面における透過率T210(λ)、及び裏面反射率R230(λ)が変化し、それに伴って理論分光反射率Rtheoryが変化する。従って、本変形例のように、第1の膜102及び第2の膜103がそれぞれ複数の層を含む場合であっても、実測分光反射率Rsig(λ)に最も近い理論分光反射率Rtheoryの第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、第1の膜102の表面における透過率T210(λ)、及び裏面反射率R230(λ)の値に基づいて、各層厚d11~d13、d31及びd32を精度良く求めることができる。なお、第1実施形態と同様に、各層厚d11~d13を変化させながら探索する対象は、少なくとも理論分光反射率Rtheoryの第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、及び第1の膜102の表面における透過率T210(λ)のうち1つであればよい。また、第1の膜102及び第2の膜103が複数の層を含む場合には、例えば、各層厚d11~d13、d31及びd32を変化させることによって、第1の表面反射率R012(λ)、第2の表面反射率R210(λ)、表面透過率T012(λ)、第1の膜102の表面における透過率T210(λ)、及び裏面反射率R230(λ)を変化させ、複数の理論分光反射率Rtheoryを用意し、実測分光反射率Rsig(λ)とフィットする理論分光反射率Rtheoryでの各層の厚みを、各層厚d11~d13、d31及びd32として決定してもよい。
 (第2の実施の形態)
図11は、第2実施形態による膜厚計測装置1Bの構成を模式的に示す図である。膜厚計測装置1Bは、図1に示された計測対象物100の膜厚を計測する装置である。図11に示されるように、膜厚計測装置1Bは、光照射部10、光検出部20B、膜厚算出部30B、制御部40、表示部50、及び入力装置60を備えている。光照射部10、制御部40、表示部50、及び入力装置60の構成は、第1実施形態と同様である。なお、計測対象物100は、図に示されるようにローラー110によって搬送されている状態であってもよく、或いは静止状態であってもよい。
 光検出部20Bは、計測対象物100の裏面101b側における透過光L3の波長毎の強度(スペクトル)を検出する。光検出部20Bは、光入射部21bと、導光部材22bと、分光検出部23bとを含んで構成されている。光入射部21bには、計測対象物100からの透過光L3が入射される。光入射部21bは、計測対象物100の第2の膜103と対向する位置、すなわち基材101の裏面101bと対向する位置に配置される。導光部材22bは、その一端が光入射部21bに光結合されており、光入射部21bに入射した透過光L3を導く。分光検出部23bは、導光部材22bの他端と光結合されており、導光部材22bによって導かれた透過光L3を波長毎に分光し、分光された波長毎の光の強度を検出する。導光部材22b及び分光検出部23bは、例えば第1実施形態の導光部材22a及び分光検出部23aと同様の構成を有することができる。分光検出部23bは、検出した光強度を電気信号として出力する。
 膜厚算出部30Bは、光検出部20Bにおける検出結果に基づいて、第1の膜102及び第2の膜103の膜厚を求める。すなわち、膜厚算出部30Bは、光検出部20Bにおける検出結果に基づいて得られる波長毎の透過率である実測分光透過率と、理論上の波長毎の透過率である理論分光透過率とを比較し、これらを互いにフィッティングすることにより、第1の膜102及び第2の膜103の膜厚を求める。
 本実施形態の理論分光透過率としては、第1の膜102の屈折率や膜厚に依存する表面101a側における透過率(表面透過率)及び反射率(表面反射率)と、第2の膜103の屈折率や膜厚に依存する裏面101b側における透過率(裏面透過率)及び反射率(裏面反射率)とが加味されたものが用いられる。数式(19)は、本実施形態の理論分光透過率Ttheoryを示す式である。なお、λは波長であり、数式(19)内の各パラメータの定義及びA2、R210(λ)の算出式は第1実施形態と同様である。
Figure JPOXMLDOC01-appb-M000019
数式(11)に示されるように、理論分光透過率Ttheoryでは、表面101a側における透過率(表面透過率)T012(λ)に加えて、裏面101b側における透過率(裏面透過率)T230(λ)が考慮されている。また、この理論分光透過率Ttheoryでは、基材101内での多重反射成分が考慮されている。すなわち、数式(19)右辺のΣ項が基材101内での多重反射成分を示しており、この多重反射成分は、基材101側から見た裏面101bでの反射率(裏面反射率)R230(λ)と、基材101側から見た表面101aでの反射率(表面反射率)R210(λ)とに基づいている。
 図12は、本実施形態の膜厚計測装置1Bの動作及び膜厚計測方法を示すフローチャートである。図12に示されるように、まず、光照射部10が、計測対象物100の表面101a側に対して白色光などの非コヒーレントな光L1を照射する(光照射ステップS31)。次に、光検出部20Bが、計測対象物100の裏面101b側における透過光L3を波長毎に分光し、各波長の強度を検出する(光検出ステップS32)。
 続いて、膜厚算出部30Bが、第1の膜102及び第2の膜103の膜厚を求める(膜厚特定ステップS33)。この膜厚特定ステップS33では、膜厚算出部30Bは、まず光検出部20Bからの検出信号に基づいて実測分光透過率を算出する(ステップS331)。このために、膜厚算出部30Bは、まず、透過光L3の波長毎の強度から透過スペクトルS’sig(λ)を求める。次に、膜厚算出部30Bは、数式(20)に示されるように、標準計測対象物を用いて予め取得された標準透過スペクトルS’ref(λ)と、透過スペクトルS’sig(λ)との比を算出する。この比が、実測分光透過率Tsig(λ)となる。
Figure JPOXMLDOC01-appb-M000020
 続いて、膜厚算出部30Bは、理論分光透過率Ttheoryを算出する(ステップS332)。まず、基材101の消衰係数k2、屈折率n2、及び厚さd2と、第1の膜102の消衰係数k1及び屈折率n1と、第2の膜103の消衰係数k3及び屈折率n3とが操作者により入力される。膜厚算出部30Bは、数式(20)の表面透過率T012(λ)、表面反射率R210(λ)、裏面透過率T230(λ)、及び反射率R230(λ)の各値をそれぞれ変化させて、複数の表面透過率T012(λ)及び表面反射率R210(λ)の値と複数の裏面透過率T230(λ)及び裏面反射率R230(λ)の値との組み合わせを含む複数の理論分光透過率Ttheoryを求める。
 続いて、膜厚算出部30Bは、複数の理論分光透過率Ttheoryと実測分光透過率Tsig(λ)とを相互に比較し、実測分光透過率Tsig(λ)に最も近い(フィットする)理論分光透過率Ttheoryを求める(ステップS333)。このステップS333では、例えば最小二乗法が用いられる。すなわち、膜厚算出部30Bは、複数の理論分光透過率Ttheoryそれぞれに対して、実測分光透過率Tsig(λ)と理論分光透過率Ttheoryとの差の2乗の値を求め、その値が最小となる理論分光透過率Ttheoryを選択する。
 続いて、膜厚算出部30Bは、実測分光透過率Tsig(λ)に最も近い(フィットする)理論分光透過率Ttheoryに基づいて、第1の膜102の膜厚d1を算出する(ステップS334)。理論的な表面透過率Ttheory012(λ)は、次の数式(21)~(23)に示されるように、膜厚d1の関数となっている。なお、数式(21)~(23)において、t01は空気と第1の膜102との界面における振幅透過係数であり、t12は第1の膜102と基材101との界面における振幅透過係数であり、N1=n1-ik1である。
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000023
 理論的な表面反射率Rtheory210(λ)もまた、次の数式(24)~(26)に示されるように、膜厚d1の関数となっている。
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000026
そこで、膜厚算出部30Bは、実測分光透過率Tsig(λ)に最も近い(フィットする)理論分光透過率Ttheoryにおける表面透過率Ttheory012(λ)及び表面反射率Rtheory210(λ)に基づいて、数式(21)~(23)及び数式(24)~(26)を用いて膜厚d1の値を算出し、それらの平均値を計測対象物100の第1の膜102の膜厚として出力する。
 また、膜厚算出部30Bは、実測分光透過率Tsig(λ)に最も近い(フィットする)理論分光透過率Ttheoryに基づいて、第2の膜103の膜厚d3を算出する(ステップS335)。理論的な裏面透過率Ttheory230(λ)は、次の数式(27)~(29)に示されるように、膜厚d3の関数となっている。なお、数式(27)~(29)において、t23は基材101と第2の膜103との界面における振幅透過係数であり、t30は第2の膜103と空気との界面における振幅透過係数であり、N3=n3-ik3である。
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000029
 理論的な裏面反射率Rtheory230(λ)もまた、次の数式(30)~(32)に示されるように、膜厚d3の関数となっている。
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000032
そこで、膜厚算出部30Bは、実測分光透過率Tsig(λ)に最も近い(フィットする)理論分光透過率Ttheoryにおける裏面透過率Ttheory230(λ)及び裏面反射率Rtheory230(λ)に基づいて、数式(27)~(29)及び数式(30)~(32)を用いて膜厚d3の値を算出し、それらの平均値を計測対象物100の第2の膜103の膜厚として出力する。
 上記のように、本実施形態の膜厚特定ステップS33では、膜厚算出部30Bが、光検出ステップS32における検出結果に基づいて得られる実測分光透過率Tsig(λ)と、表面101a側における表面透過率T012(λ)及び表面反射率R210(λ)、並びに裏面101b側における裏面透過率T230(λ)及び裏面反射率R230(λ)が加味された理論分光透過率Ttheoryとを比較することにより、第1の膜102の膜厚d1及び第2の膜103の膜厚d3を求める。なお、第1の膜102の膜厚d1を算出するステップS334と、第2の膜103の膜厚d3を算出するステップS335との順序は任意であり、ステップS335から先に行ってもよく、ステップS334及びS335を並行して行ってもよい。
 なお、本実施形態では、予め複数の理論分光透過率Ttheoryを算出しておき、これらの理論分光透過率Ttheoryに対して実測分光透過率Tsig(λ)をフィットさせる例を示したが、理論分光透過率Ttheoryと実測分光透過率Tsig(λ)とのフィッティングはこのような形態に限られない。例えば、第1実施形態の図8に示された方法と同様に、次のような方法でフィッティングを行ってもよい。すなわち、各一つの表面透過率T012(λ)、表面反射率R210(λ)、裏面透過率T230(λ)及び裏面反射率R230(λ)の組み合わせからなる一つの理論分光透過率Ttheoryを算出する。この理論分光透過率Ttheoryと実測分光透過率Tsig(λ)とのフィッティングを行う。フィットしない(差の2乗が閾値を超えている等の)場合に、表面透過率T012(λ)、表面反射率R210(λ)、裏面透過率T230(λ)、及び裏面反射率R230(λ)の組み合わせを変更し、再度、変更後の理論分光透過率Ttheoryと実測分光透過率Tsig(λ)とのフィッティングを行う。このような処理を繰り返すことによって、複数の理論分光透過率Ttheoryのうち、実測分光透過率Tsig(λ)とフィットする理論分光透過率Ttheoryを求めることができる。
 また、本実施形態では、実測分光透過率Tsig(λ)に最も近い理論分光透過率Ttheory(λ)における表面透過率T012(λ)の値、表面反射率R210(λ)の値、裏面透過率T230(λ)の値、及び裏面反射率R230(λ)の値とから第1の膜102の膜厚d1及び第2の膜103の膜厚d3を求める例を示したが、数式(23)及び(26)の第1の膜102の膜厚d1の値と、数式(29)及び(32)の第2の膜103の膜厚d3とをそれぞれ変化させることにより、理論分光反射率Rtheoryを用意してもよい。すなわち、例えば、第1実施形態の図9に示された方法と同様に、まず、複数の第1の膜102の膜厚d1の値及び第2の膜103の膜厚d3の値を設定し、設定された複数の膜厚d1の値及び膜厚d3の値における複数の表面透過率T012(λ)の値、複数の表面反射率R210(λ)の値、複数の裏面透過率T230(λ)の値、及び複数の裏面反射率R230(λ)の値をそれぞれ算出し、算出された複数の第1の表面透過率T012(λ)の値、複数の第2の表面反射率R210(λ)の値、複数の裏面透過率T230(λ)の値、及び複数の裏面反射率R230(λ)の値に対応する複数の理論分光透過率Ttheoryを算出してもよい。また、図7に示された反射率及び透過率の変更ステップS139において、第1の膜102の膜厚d1の値および第2の膜103の膜厚d3の値を変更することにより、各反射率及び透過率の値を変更してもよい。これらの場合、或る膜厚d1の値と或る膜厚d3の値とに対応する理論分光透過率Ttheory(λ)を実測分光透過率Tsig(λ)と比較することができるため、実測分光透過率Tsig(λ)に最も近い理論分光透過率Ttheory(λ)を求めることによって、表面膜の膜厚d1の算出ステップS134及び裏面膜の膜厚d3の算出ステップS135を行わなくても、膜厚d1の値及び膜厚d3の値を決定することができる。
 以上に説明した、本実施形態による膜厚計測装置1B及び膜厚計測方法によって得られる効果について説明する。本実施形態では、膜厚特定ステップS33において、膜厚算出部30Bが、表面101a側における表面透過率T012(λ)、表面反射率R210(λ)、裏面101b側における裏面透過率T230(λ)、及び裏面反射率R230(λ)が加味された理論分光透過率Ttheoryと、実測分光透過率Tsig(λ)との比較(フィッティング)を行っている。そして、表面101a側の表面透過率T012(λ)、表面反射率R210(λ)、裏面101b側における裏面透過率T230(λ)、及び裏面反射率R230(λ)をそれぞれ変化させて得られる複数の理論分光透過率Ttheoryのうち、実測分光透過率Tsig(λ)に最も近い理論分光透過率Ttheoryに基づいて、第1の膜102の膜厚d1を決定している。これにより、裏面101b側の第2の膜103による影響を理論分光透過率Ttheoryに反映させることができるので、裏面101b上に形成されている第2の膜103の厚さや屈折率の影響を考慮して、表面101a上の第1の膜102の膜厚d1を精度良く計測することができる。
 また、本実施形態のように、実測分光透過率Tsig(λ)に最も近い理論分光透過率Ttheoryに基づいて、第2の膜103の膜厚d3を決定してもよい。これにより、表面101a上の第1の膜102の膜厚d1と、裏面101b上の第2の膜103の膜厚d3との双方を、一回の計測で同時に精度良く計測することができる。なお、この場合、実測分光透過率Tsig(λ)に最も近い理論分光透過率Ttheoryの裏面透過率T230(λ)及び裏面反射率R230(λ)の値に基づいて、第2の膜103の膜厚d3を算出してもよい。また、本実施形態の膜厚特定ステップS33及び膜厚算出部30Bでは、第1の膜102の膜厚d1と第2の膜103の膜厚d3とを算出しているが、第1の膜102の膜厚d1のみを算出してもよい。
 また、本実施形態では実測分光透過率Tsig(λ)と理論分光透過率Ttheoryとを直接的にフィッティングしているが、例えば、実測分光透過率Tsig(λ)と理論分光透過率Ttheoryとをそれぞれフーリエ変換し、実測分光透過率Tsig(λ)の周波数分布と理論分光透過率Ttheoryの周波数分布とを相互にフィッティングしてもよい。
 (第2の変形例)
第2実施形態では第1の膜102及び第2の膜103が単層からなる場合を例示したが、第1の膜102及び第2の膜103の一方または双方が複数の層を含む場合であっても、各層の層厚を求めることが可能である。本変形例の理論分光透過率としては、第1の膜102に含まれる複数の層の屈折率や層厚に依存する表面101a側における透過率(表面透過率)及び反射率(表面反射率)と、第2の膜103に含まれる複数の層の屈折率や層厚に依存する裏面101b側における透過率(裏面透過率)及び反射率(裏面反射率)とが加味されたものが用いられる。
 第1実施形態の図10に示された構成について考える。この場合、理論上の表面透過率Ttheory012(λ)及び表面反射率Rtheory210(λ)は、前述した数式(21)~(26)を書き換えることにより、第1の膜102の各層の層厚d11、d12、及びd13の関数として表される。また、理論上の裏面透過率Ttheory230(λ)及び裏面反射率Rtheory230(λ)は、前述した数式(27)~(32)を書き換えることにより、第2の膜103の各層の層厚d31及びd32の関数として表される。従って、本変形例では、第1の膜102及び第2の膜103が単層からなる場合と同様に、ステップS333において実測分光透過率Tsig(λ)に最も近い理論分光透過率Ttheoryを求めたのち、ステップS334において、層厚d11~d13の値を変化させながらフィッティングを行う。そして、透過率Ttheory012(λ)及び反射率Rtheory210(λ)それぞれが、ステップS333において選択された理論分光透過率Ttheoryの表面透過率T012(λ)及び表面反射率R210(λ)それぞれに最も近づくときの層厚d11~d13の値をそれぞれ算出し、それらの平均値もしくは最小二乗値を第1層102a~第3層102cの各層厚として出力する。また、ステップS335において、層厚d31及びd32の値を変化させながらフィッティングを行う。そして、裏面透過率Ttheory230(λ)及び裏面反射率Rtheory230(λ)それぞれが、ステップS333において選択された理論分光透過率Ttheoryの裏面透過率T230(λ)及び裏面反射率R230(λ)それぞれに最も近づくときの層厚d31及びd32の値をそれぞれ算出し、それらの平均値もしくは最小二乗値を第1層103a及び第2層103bの各層厚として出力する。
 第1の膜102及び第2の膜103が複数の層を含む場合、これらの層厚に応じて表面透過率T012(λ)、表面反射率R210(λ)、裏面透過率T230(λ)、及び裏面反射率R230(λ)が変化し、それに伴って理論分光透過率Ttheoryが変化する。従って、本変形例のように、第1の膜102及び第2の膜103がそれぞれ複数の層を含む場合であっても、実測分光透過率Tsig(λ)に最も近い理論分光透過率Ttheoryの表面透過率T012(λ)、表面反射率R210(λ)、裏面透過率T230(λ)、及び裏面反射率R230(λ)の値に基づいて、各層厚d11~d13、d31及びd32を精度良く求めることができる。なお、第1実施形態と同様に、各層厚d11~d13を変化させながら探索する対象は、少なくとも理論分光透過率Ttheoryの表面透過率T012(λ)、表面反射率R210(λ)のうち1つであればよい。また、第1の膜102及び第2の膜103が複数の層を含む場合、例えば、各層厚d11~d13、d31及びd32を変化させることによって、表面透過率T012(λ)、表面反射率R210(λ)、裏面透過率T230(λ)及び裏面反射率R230(λ)を変化させ、複数の理論分光反射率Rtheoryを用意し、実測分光反射率Rsig(λ)とフィットする理論分光反射率Rtheoryでの各層の厚みを、各層厚d11~d13、d31及びd32として決定してもよい。
 本発明による膜厚計測方法及び膜厚計測装置は、上述した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記実施形態では理論分光反射率を数式(1)~(3)によって求め、理論分光透過率を数式(11)によって求めているが、理論分光反射率及び理論分光透過率を算出する数式はこれらに限定されず、任意の数式を用いることができる。
 また、上記の第1の膜厚計測方法及び膜厚計測装置は、膜厚特定ステップにおいて若しくは膜厚算出部が、第1の膜の膜厚の値及び第2の膜の膜厚の値に対する表面反射率の値、表面透過率の値、及び裏面反射率の値を算出し、第1の膜の膜厚の値及び第2の膜の膜厚の値を変化させることによって、複数の理論分光反射率を取得することを特徴としてもよい。これにより、複数の理論分光反射率を好適に取得することができる。
 また、上記の第1の膜厚計測方法及び膜厚計測装置は、膜厚特定ステップにおいて若しくは膜厚算出部が、実測分光反射率に最も近い理論分光反射率の表面反射率の値及び表面透過率の値の少なくともいずれか一方の値に基づいて第1の膜の膜厚の値を求めることを特徴としてもよい。
 また、上記の第1の膜厚計測方法及び膜厚計測装置は、第1の膜が複数の層を含み、膜厚特定ステップにおいて若しくは膜厚算出部が、実測分光反射率に最も近い理論分光反射率に基づいて第1の膜の複数の層それぞれの層厚を決定することを特徴としてもよい。また、上記の第2の膜厚計測方法及び膜厚計測装置は、第1の膜が複数の層を含み、膜厚特定ステップにおいて若しくは膜厚算出部が、実測分光透過率に最も近い理論分光透過率に基づいて第1の膜の複数の層それぞれの層厚を決定することを特徴としてもよい。
 第1の膜が複数の層を含む場合、これらの層厚に応じて表面側の反射率及び透過率が変化し、それに伴って理論分光反射率及び理論分光透過率が変化する。従って、第1の膜に含まれる複数の層の厚さの値をそれぞれ変化させて得られる複数の理論分光反射率若しくは理論分光透過率と、実測分光透過率若しくは実測分光透過率とを比較することにより、第1の膜の複数の層それぞれの層厚を精度よく求めることができる。
 また、上記の第1の膜厚計測方法及び膜厚計測装置は、膜厚特定ステップにおいて若しくは膜厚算出部が、実測分光反射率に最も近い理論分光反射率に基づいて第2の膜の膜厚を更に決定することを特徴としてもよい。また、上記の第2の膜厚計測方法及び膜厚計測装置は、膜厚特定ステップにおいて若しくは膜厚算出部が、実測分光透過率に最も近い理論分光透過率に基づいて第2の膜の膜厚を更に決定することを特徴としてもよい。これらの方法及び装置によって、一回の計測により第1及び第2の膜の各膜厚を同時に精度よく計測することができる。
 また、上記の第1の膜厚計測方法及び膜厚計測装置は、膜厚特定ステップにおいて若しくは膜厚算出部が、実測分光反射率に最も近い理論分光反射率の裏面反射率の値に基づいて第2の膜の膜厚の値を求めることを特徴としてもよい。これにより、第2の膜の膜厚の値を好適に得ることができる。
 また、上記の第1の膜厚計測方法及び膜厚計測装置は、第2の膜が複数の層を含み、膜厚特定ステップにおいて若しくは膜厚算出部が、実測分光反射率に最も近い理論分光反射率に基づいて第2の膜の複数の層それぞれの層厚を決定することを特徴としてもよい。また、上記の第2の膜厚計測方法及び膜厚計測装置は、第2の膜が複数の層を含み、膜厚特定ステップにおいて若しくは膜厚算出部が、実測分光透過率に最も近い理論分光透過率に基づいて第2の膜の複数の層それぞれの層厚を決定することを特徴としてもよい。
 第2の膜が複数の層を含む場合、これらの層厚に応じて裏面側の反射率及び透過率が変化し、それに伴って理論分光反射率及び理論分光透過率が変化する。従って、第2の膜に含まれる複数の層の厚さの値をそれぞれ変化させて得られる複数の理論分光反射率若しくは理論分光透過率と、実測分光透過率若しくは実測分光透過率とを比較することにより、第2の膜の複数の層それぞれの層厚を精度よく求めることができる。
 1A,1B…膜厚計測装置、10…光照射部、11…光源、12…導光部材、13…光出射部、20A,20B…光検出部、21a,21b…光入射部、22a,22b…導光部材、23a,23b…分光検出部、30A,30B…膜厚算出部、40…制御部、50…表示部、60…入力装置、100…計測対象物、101…基材、101a…表面、101b…裏面、102…第1の膜、103…第2の膜、110…ローラー、L1…照射光、L2…反射光、L3…透過光。

Claims (21)

  1.  表面及び裏面を有する基材と、前記表面上に形成された第1の膜と、前記裏面上に形成された第2の膜とを備える計測対象物の膜厚を計測する方法であって、
     前記計測対象物の前記表面側に光を照射する光照射ステップと、
     前記計測対象物の前記表面側における反射光の波長毎の強度を検出する光検出ステップと、
     前記光検出ステップにおける検出結果に基づいて得られる波長毎の反射率である実測分光反射率と、前記表面側における反射率である表面反射率、前記表面側における透過率である表面透過率、及び前記裏面側における反射率である裏面反射率が加味された理論上の波長毎の反射率である理論分光反射率とを比較することにより前記第1の膜の膜厚を決定する膜厚特定ステップと、
    を備え、
     前記膜厚特定ステップにおいて、前記表面反射率の値、前記表面透過率の値、及び前記裏面反射率の値を変化させて得られる複数の理論分光反射率と前記実測分光反射率とを比較し、該実測分光反射率に最も近い前記理論分光反射率に基づいて前記第1の膜の膜厚を決定する、膜厚計測方法。
  2.  前記膜厚特定ステップにおいて、前記第1の膜の膜厚の値及び前記第2の膜の膜厚の値に対する前記表面反射率の値、前記表面透過率の値、及び前記裏面反射率の値を算出し、前記第1の膜の膜厚の値及び前記第2の膜の膜厚の値を変化させることによって、前記複数の理論分光反射率を取得する、請求項1に記載の膜厚計測方法。
  3.  前記膜厚特定ステップにおいて、前記実測分光反射率に最も近い前記理論分光反射率の前記表面反射率の値及び前記表面透過率の値の少なくともいずれか一方の値に基づいて前記第1の膜の膜厚の値を求める、請求項1または2に記載の膜厚計測方法。
  4.  前記第1の膜が複数の層を含み、
     前記膜厚特定ステップにおいて、前記実測分光反射率に最も近い前記理論分光反射率に基づいて前記第1の膜の前記複数の層それぞれの層厚を決定する、請求項1~3のいずれか一項に記載の膜厚計測方法。
  5.  前記膜厚特定ステップにおいて、前記実測分光反射率に最も近い前記理論分光反射率に基づいて前記第2の膜の膜厚を更に決定する、請求項1~4のいずれか一項に記載の膜厚計測方法。
  6.  前記膜厚特定ステップにおいて、前記実測分光反射率に最も近い前記理論分光反射率の前記裏面反射率の値に基づいて前記第2の膜の膜厚の値を求める、請求項1~5のいずれか一項に記載の膜厚計測方法。
  7.  前記第2の膜が複数の層を含み、
     前記膜厚特定ステップにおいて、前記実測分光反射率に最も近い前記理論分光反射率に基づいて前記第2の膜の前記複数の層それぞれの層厚を決定する、請求項1~6のいずれか一項に記載の膜厚計測方法。
  8.  表面及び裏面を有する基材と、前記表面上に形成された第1の膜と、前記裏面上に形成された第2の膜とを備える計測対象物の膜厚を計測する方法であって、
     前記計測対象物の前記表面側に光を照射する光照射ステップと、
     前記計測対象物の前記裏面側における透過光の波長毎の強度を検出する光検出ステップと、
     前記光検出ステップにおける検出結果に基づいて得られる波長毎の透過率である実測分光透過率と、前記表面側における透過率である表面透過率及び反射率である表面反射率、並びに前記裏面側における透過率である裏面透過率及び反射率である裏面反射率が加味された理論上の波長毎の透過率である理論分光透過率とを比較することにより前記第1の膜の膜厚を決定する膜厚特定ステップと、
    を備え、
     前記膜厚特定ステップにおいて、前記表面透過率の値及び前記表面反射率の値、並びに前記裏面透過率の値及び前記裏面反射率の値をそれぞれ変化させて得られる複数の理論分光透過率と前記実測分光透過率とを比較し、該実測分光透過率に最も近い前記理論分光透過率に基づいて前記第1の膜の膜厚を決定する、膜厚計測方法。
  9.  前記第1の膜が複数の層を含み、
     前記膜厚特定ステップにおいて、前記実測分光透過率に最も近い前記理論分光透過率に基づいて前記第1の膜の前記複数の層それぞれの層厚を決定する、請求項8に記載の膜厚計測方法。
  10.  前記膜厚特定ステップにおいて、前記実測分光透過率に最も近い前記理論分光透過率に基づいて前記第2の膜の膜厚を更に決定する、請求項8または9に記載の膜厚計測方法。
  11.  前記第2の膜が複数の層を含み、
     前記膜厚特定ステップにおいて、前記実測分光透過率に最も近い前記理論分光透過率に基づいて前記第2の膜の前記複数の層それぞれの層厚を決定する、請求項8~10のいずれか一項に記載の膜厚計測方法。
  12.  表面及び裏面を有する基材と、前記表面上に形成された第1の膜と、前記裏面上に形成された第2の膜とを備える計測対象物の膜厚を計測する装置であって、
     前記計測対象物の前記表面側に光を照射する光照射部と、
     前記計測対象物の前記表面側における反射光の波長毎の強度を検出する光検出部と、
     前記光検出部における検出結果に基づいて得られる波長毎の反射率である実測分光反射率と、前記表面側における反射率である表面反射率及び透過率である表面透過率、並びに前記裏面側における反射率である裏面反射率が加味された理論上の波長毎の反射率である理論分光反射率とを比較することにより前記第1の膜の膜厚を決定する膜厚算出部と、
     を備え、
     前記膜厚算出部は、前記表面反射率の値及び前記表面透過率の値、並びに前記裏面反射率の値をそれぞれ変化させて得られる複数の理論分光反射率と前記実測分光反射率とを比較し、該実測分光反射率に最も近い前記理論分光反射率に基づいて前記第1の膜の膜厚を決定する、膜厚計測装置。
  13.  前記膜厚算出部が、前記第1の膜の膜厚の値及び前記第2の膜の膜厚の値に対する前記表面反射率の値、前記表面透過率の値、及び前記裏面反射率の値を算出し、前記第1の膜の膜厚の値及び前記第2の膜の膜厚の値を変化させることによって、前記複数の理論分光反射率を取得する、請求項12に記載の膜厚計測装置。
  14.  前記膜厚算出部が、前記実測分光反射率に最も近い前記理論分光反射率の前記表面反射率の値及び前記表面透過率の値の少なくともいずれか一方の値に基づいて前記第1の膜の膜厚の値を求める、請求項12または13に記載の膜厚計測装置。
  15.  前記第1の膜が複数の層を含み、
     前記膜厚算出部が、前記実測分光反射率に最も近い前記理論分光反射率の値に基づいて前記第1の膜の前記複数の層それぞれの層厚を決定する、請求項12~14のいずれか一項に記載の膜厚計測装置。
  16.  前記膜厚算出部が、前記実測分光反射率に最も近い前記理論分光反射率の値に基づいて前記第2の膜の膜厚を更に求める、請求項12~15のいずれか一項に記載の膜厚計測装置。
  17.  前記第2の膜が複数の層を含み、
     前記膜厚算出部が、前記実測分光反射率に最も近い前記理論分光反射率の値に基づいて前記第2の膜の前記複数の層それぞれの層厚を決定する、請求項12~16のいずれか一項に記載の膜厚計測装置。
  18.  表面及び裏面を有する基材と、前記表面上に形成された第1の膜と、前記裏面上に形成された第2の膜とを備える計測対象物の膜厚を計測する装置であって、
     前記計測対象物の前記表面側に光を照射する光照射部と、
     前記計測対象物の前記裏面側における透過光の波長毎の強度を検出する光検出部と、
     前記光検出部における検出結果に基づいて得られる波長毎の透過率である実測分光透過率と、前記表面側における透過率である表面透過率及び反射率である表面反射率、並びに前記裏面側における透過率である裏面透過率及び反射率である裏面反射率が加味された理論上の波長毎の透過率である理論分光透過率とを比較することにより前記第1の膜の膜厚を決定する膜厚算出部と、
     を備え、
     前記膜厚算出部は、前記表面透過率の値及び前記表面反射率の値、並びに前記裏面透過率の値及び前記裏面反射率の値をそれぞれ変化させて得られる複数の理論分光透過率と前記実測分光透過率とを比較し、該実測分光透過率に最も近い前記理論分光透過率に基づいて前記第1の膜の膜厚を決定する、膜厚計測装置。
  19.  前記第1の膜が複数の層を含み、
     前記膜厚算出部が、前記実測分光透過率に最も近い前記理論分光透過率に基づいて前記第1の膜の前記複数の層それぞれの層厚を決定する、請求項18に記載の膜厚計測装置。
  20.  前記膜厚算出部が、前記実測分光透過率に最も近い前記理論分光透過率に基づいて前記第2の膜の膜厚を更に決定する、請求項18または19に記載の膜厚計測装置。
  21.  前記第2の膜が複数の層を含み、
     前記膜厚算出部が、前記実測分光透過率に最も近い前記理論分光透過率に基づいて前記第2の膜の前記複数の層それぞれの層厚を決定する、請求項18~20のいずれか一項に記載の膜厚計測装置。
PCT/JP2014/078385 2014-01-30 2014-10-24 膜厚計測方法及び膜厚計測装置 WO2015114895A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201480074364.2A CN105940282B (zh) 2014-01-30 2014-10-24 膜厚测量方法及膜厚测量装置
KR1020167021399A KR102232214B1 (ko) 2014-01-30 2014-10-24 막두께 계측 방법 및 막두께 계측 장치
DE112014006304.5T DE112014006304T5 (de) 2014-01-30 2014-10-24 Filmdickenmessverfahren und Filmdickenmessvorrichtung
US15/114,909 US9846028B2 (en) 2014-01-30 2014-10-24 Film thickness measurement method and film thickness measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014015973A JP6290637B2 (ja) 2014-01-30 2014-01-30 膜厚計測方法及び膜厚計測装置
JP2014-015973 2014-01-30

Publications (1)

Publication Number Publication Date
WO2015114895A1 true WO2015114895A1 (ja) 2015-08-06

Family

ID=53756493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078385 WO2015114895A1 (ja) 2014-01-30 2014-10-24 膜厚計測方法及び膜厚計測装置

Country Status (7)

Country Link
US (1) US9846028B2 (ja)
JP (1) JP6290637B2 (ja)
KR (1) KR102232214B1 (ja)
CN (1) CN105940282B (ja)
DE (1) DE112014006304T5 (ja)
TW (1) TWI629449B (ja)
WO (1) WO2015114895A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216410A1 (ja) * 2017-05-26 2018-11-29 コニカミノルタ株式会社 測定装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016131018A1 (en) * 2015-02-12 2016-08-18 Glowforge Inc. Visual preview for laser fabrication
US10509390B2 (en) 2015-02-12 2019-12-17 Glowforge Inc. Safety and reliability guarantees for laser fabrication
US10563973B2 (en) * 2016-03-28 2020-02-18 Kla-Tencor Corporation All surface film metrology system
CN109154786B (zh) 2016-05-17 2020-12-04 Asml荷兰有限公司 基于贯穿波长的相似性的度量强健性
WO2018098399A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Controlled deceleration of moveable components in a computer numerically controlled machine
WO2018098397A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Calibration of computer-numerically-controlled machine
CN110226137A (zh) 2016-11-25 2019-09-10 格罗弗治公司 借助图像跟踪进行制造
WO2018098393A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Housing for computer-numerically-controlled machine
WO2018098398A1 (en) 2016-11-25 2018-05-31 Glowforge Inc. Preset optical components in a computer numerically controlled machine
WO2018216246A1 (ja) * 2017-05-23 2018-11-29 浜松ホトニクス株式会社 配向特性測定方法、配向特性測定プログラム、及び配向特性測定装置
US11243073B2 (en) 2017-05-23 2022-02-08 Hamamatsu Photonics K.K. Orientation characteristic measurement method, orientation characteristic measurement program, and orientation characteristic measurement device
CN107179054B (zh) * 2017-05-28 2019-09-24 中国计量大学 用于bopp生产的薄膜厚度监测装置
JP6285597B1 (ja) * 2017-06-05 2018-02-28 大塚電子株式会社 光学測定装置および光学測定方法
JP6550101B2 (ja) * 2017-07-13 2019-07-24 Jfeテクノリサーチ株式会社 膜厚測定方法及び膜厚測定装置
JP6368408B1 (ja) * 2017-08-08 2018-08-01 Ckd株式会社 ブリスタ包装機
WO2019087848A1 (ja) * 2017-11-01 2019-05-09 コニカミノルタ株式会社 膜厚測定方法、膜厚測定システム、光反射フィルムの製造方法及び光反射フィルムの製造システム
JP6956673B2 (ja) * 2018-04-09 2021-11-02 三菱電機株式会社 膜厚測定装置
JP7283901B2 (ja) * 2018-12-27 2023-05-30 株式会社Screenホールディングス 熱処理方法および熱処理装置
CN109540007B (zh) * 2019-01-02 2021-08-27 长江存储科技有限责任公司 超厚薄膜的测量方法和测量装置
WO2021106299A1 (ja) * 2019-11-26 2021-06-03 浜松ホトニクス株式会社 光学ユニット及び膜厚計測装置
US11287253B2 (en) * 2019-12-30 2022-03-29 Industrial Technology Research Institute Device and method applicable for measuring ultrathin thickness of film on substrate
KR102305193B1 (ko) * 2021-01-28 2021-09-27 에이치비솔루션(주) 백색광주사간섭계를 이용한 투명막 굴절률 측정 방법
US11698622B2 (en) 2021-03-09 2023-07-11 Glowforge Inc. Previews for computer numerically controlled fabrication
US20220388111A1 (en) * 2021-06-03 2022-12-08 Applied Materials, Inc. Using light coupling properties for film detection
US20220388112A1 (en) * 2021-06-03 2022-12-08 Applied Materials, Inc. Using light coupling properties for machine-learning-based film detection
CN113433077B (zh) * 2021-06-11 2023-12-19 大连海事大学 一种基于油膜相对厚度获取油膜衰减系数的方法
WO2023210153A1 (ja) * 2022-04-27 2023-11-02 浜松ホトニクス株式会社 屈折率分布計測装置、膜厚分布計測装置、屈折率分布計測方法、および膜厚分布計測方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58704A (ja) * 1981-06-26 1983-01-05 Nec Corp 膜厚測定装置
JPH05248824A (ja) * 1992-03-06 1993-09-28 Sumitomo Electric Ind Ltd 薄膜の膜厚測定方法及び装置
JPH0634523A (ja) * 1992-07-21 1994-02-08 Photo Device Kk 偏光解析方法およびこれによるエリプソメータ
JPH0755435A (ja) * 1993-08-20 1995-03-03 Dainippon Screen Mfg Co Ltd 多層膜試料の膜厚測定方法
JP2002277215A (ja) * 2001-03-14 2002-09-25 Omron Corp 膜厚測定方法およびその方法を用いた膜厚センサ
JP2004191266A (ja) * 2002-12-13 2004-07-08 Hitachi Ltd 膜厚計測方法及びその装置並びにそれを用いた薄膜デバイスの製造方法及びその製造装置
JP2004354372A (ja) * 2003-05-01 2004-12-16 Showa Shinku:Kk 膜厚計測装置搭載の光学薄膜形成用装置及び光学薄膜の成膜方法
JP2005140726A (ja) * 2003-11-10 2005-06-02 Omron Corp 薄膜測定方法及び薄膜測定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2624221B2 (ja) 1995-07-03 1997-06-25 東レ株式会社 複合フィルムの製造方法および薄膜フィルムの製造方法
JP3790628B2 (ja) 1998-08-20 2006-06-28 大塚電子株式会社 膜厚及び光学定数の測定方法及び装置
US6525829B1 (en) * 2001-05-25 2003-02-25 Novellus Systems, Inc. Method and apparatus for in-situ measurement of thickness of copper oxide film using optical reflectivity
JP3848571B2 (ja) * 2001-12-28 2006-11-22 Hoya株式会社 薄膜形成方法及び装置
JP3811150B2 (ja) * 2003-09-05 2006-08-16 株式会社東芝 膜厚測定方法、膜厚測定システム、半導体装置の製造方法及び膜厚測定システム制御プログラム
US7589843B2 (en) * 2005-09-27 2009-09-15 Verity Instruments, Inc. Self referencing heterodyne reflectometer and method for implementing
JP5186129B2 (ja) * 2006-08-25 2013-04-17 大日本スクリーン製造株式会社 溝パターンの深さの測定方法および測定装置
US7646489B2 (en) 2007-04-25 2010-01-12 Yokogawa Electric Corporation Apparatus and method for measuring film thickness
WO2010013325A1 (ja) * 2008-07-30 2010-02-04 株式会社ニレコ 分光測光装置
CN101865641B (zh) * 2010-03-05 2012-05-30 新奥光伏能源有限公司 一种测量半导体薄膜厚度的方法及装置
US9360302B2 (en) * 2011-12-15 2016-06-07 Kla-Tencor Corporation Film thickness monitor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58704A (ja) * 1981-06-26 1983-01-05 Nec Corp 膜厚測定装置
JPH05248824A (ja) * 1992-03-06 1993-09-28 Sumitomo Electric Ind Ltd 薄膜の膜厚測定方法及び装置
JPH0634523A (ja) * 1992-07-21 1994-02-08 Photo Device Kk 偏光解析方法およびこれによるエリプソメータ
JPH0755435A (ja) * 1993-08-20 1995-03-03 Dainippon Screen Mfg Co Ltd 多層膜試料の膜厚測定方法
JP2002277215A (ja) * 2001-03-14 2002-09-25 Omron Corp 膜厚測定方法およびその方法を用いた膜厚センサ
JP2004191266A (ja) * 2002-12-13 2004-07-08 Hitachi Ltd 膜厚計測方法及びその装置並びにそれを用いた薄膜デバイスの製造方法及びその製造装置
JP2004354372A (ja) * 2003-05-01 2004-12-16 Showa Shinku:Kk 膜厚計測装置搭載の光学薄膜形成用装置及び光学薄膜の成膜方法
JP2005140726A (ja) * 2003-11-10 2005-06-02 Omron Corp 薄膜測定方法及び薄膜測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRUYNEEL, FILIP. ET AL.: "Method for measuring the cell gap in liquid-crystal displays", OPTICAL ENGINEERING, vol. 40, no. 2, pages 259 - 267 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018216410A1 (ja) * 2017-05-26 2018-11-29 コニカミノルタ株式会社 測定装置
JPWO2018216410A1 (ja) * 2017-05-26 2020-03-26 コニカミノルタ株式会社 測定装置

Also Published As

Publication number Publication date
JP2015141176A (ja) 2015-08-03
US20160349038A1 (en) 2016-12-01
TW201530091A (zh) 2015-08-01
JP6290637B2 (ja) 2018-03-07
KR102232214B1 (ko) 2021-03-24
CN105940282B (zh) 2019-03-05
CN105940282A (zh) 2016-09-14
TWI629449B (zh) 2018-07-11
DE112014006304T5 (de) 2016-11-03
US9846028B2 (en) 2017-12-19
KR20160114080A (ko) 2016-10-04

Similar Documents

Publication Publication Date Title
JP6290637B2 (ja) 膜厚計測方法及び膜厚計測装置
JP4482618B2 (ja) 膜厚測定装置及び膜厚測定方法
US7646489B2 (en) Apparatus and method for measuring film thickness
JP4871435B1 (ja) 膜厚測定装置及び膜厚測定方法
CN105066889B (zh) 一种便携式薄膜测厚仪及其膜厚测量方法
TWI766116B (zh) 膜厚計測裝置、膜厚計測方法、膜厚計測程式及記錄膜厚計測程式之記錄媒體
CN106460165A (zh) 用于处理基板上的材料的设备以及用于测量在基板上处理的材料的光学性质的方法
JP6363819B2 (ja) 膜厚測定方法及び膜厚測定装置
Bae et al. Optical method for simultaneous thickness measurements of two layers with a significant thickness difference
CN102243065B (zh) 一种基于背向补偿的透明基底薄膜厚度测量系统
US9885668B2 (en) Surface inspection device, surface inspection method, and program
TWI598565B (zh) 測量薄膜厚度的方法
WO2010097972A1 (ja) 薄膜検査装置及びその方法
US8279453B2 (en) Method and device for measuring thickness of multilayer film
JPH11352019A (ja) 光透過型反射防止用光学機能フィルムの表面反射率測定方法とその装置、および、光透過型反射防止用光学機能フィルムの製造方法
JP6023485B2 (ja) 光学特性測定システムおよび光学特性測定方法
JP2005351790A (ja) 膜厚情報取得装置、膜厚演算装置、膜厚測定システムおよびフィルムの製造方法
WO2012032575A1 (ja) 屈折率測定装置及び屈折率測定方法
KR20230026025A (ko) 박막 필름의 정밀 두께 측정 시스템
JP2023056722A (ja) 光学スペクトルの計算方法及びプログラム
JP2005201634A (ja) 膜厚測定方法、及び装置
JPH1194525A (ja) 膜厚測定方法及び膜厚測定装置
CN111288903A (zh) 一种可对复合膜多种参数进行在线测量的测量头及装置
JP2005091131A (ja) カラーレジスト膜厚測定装置
JP2004045606A (ja) 電子写真感光体の評価装置および評価方法、電子写真感光体の製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114909

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006304

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20167021399

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14880447

Country of ref document: EP

Kind code of ref document: A1