WO2021106299A1 - 光学ユニット及び膜厚計測装置 - Google Patents

光学ユニット及び膜厚計測装置 Download PDF

Info

Publication number
WO2021106299A1
WO2021106299A1 PCT/JP2020/032919 JP2020032919W WO2021106299A1 WO 2021106299 A1 WO2021106299 A1 WO 2021106299A1 JP 2020032919 W JP2020032919 W JP 2020032919W WO 2021106299 A1 WO2021106299 A1 WO 2021106299A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
unit
film thickness
optical unit
Prior art date
Application number
PCT/JP2020/032919
Other languages
English (en)
French (fr)
Inventor
育男 荒田
覚司 瀧本
賢一 大塚
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to DE112020005762.3T priority Critical patent/DE112020005762T5/de
Priority to US17/634,298 priority patent/US11988497B2/en
Priority to JP2021561167A priority patent/JP7495429B2/ja
Priority to KR1020227006578A priority patent/KR20220101070A/ko
Priority to CN202080081801.9A priority patent/CN114787580B/zh
Publication of WO2021106299A1 publication Critical patent/WO2021106299A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/06Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0804Catadioptric systems using two curved mirrors
    • G02B17/0816Catadioptric systems using two curved mirrors off-axis or unobscured systems in which not all of the mirrors share a common axis of rotational symmetry, e.g. at least one of the mirrors is warped, tilted or decentered with respect to the other elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0864Catadioptric systems having non-imaging properties
    • G02B17/0868Catadioptric systems having non-imaging properties for light condensing, e.g. for use with a light emitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials
    • G01N21/474Details of optical heads therefor, e.g. using optical fibres
    • G01N2021/4742Details of optical heads therefor, e.g. using optical fibres comprising optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • G01N2021/8427Coatings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/08Optical fibres; light guides

Definitions

  • the present disclosure relates to an optical unit and a film thickness measuring device.
  • High-density storage devices are configured by vertically stacking layers of data storage cells.
  • Each data storage cell has, for example, a multilayer structure in which a silicon oxide film and a silicon nitride film are repeatedly laminated on a silicon substrate, and one pair of the silicon oxide film and the silicon nitride film forms one data storage cell. doing. Since the memory capacity of the device is proportional to the number of pairs of the silicon oxide film and the silicon nitride film, the number of layers and the thickness of the device are increasing. Film thickness non-uniformity affects the electrical properties of the device. Non-uniformity of the film formation rate leads to a decrease in productivity due to an increase in cleaning. Therefore, the importance of film thickness quality control and film thickness process control in manufacturing devices is increasing.
  • a film thickness measurement method (spectroscopy) using spectroscopy can be mentioned.
  • the spectroscopic method it is easy to incorporate the measurement head into the film forming apparatus and there are few restrictions in the embodiment, so that it can be easily applied to the in-line film thickness monitor as compared with the cross-section observation technique.
  • a candidate for an optimum film thickness solution is obtained by using the comparison result between the measured reflectance and the theoretical reflectance for each wavelength of the object to be measured in the first wavelength range.
  • the optimum solution for the film thickness is determined from the candidates for the optimum solution using the comparison result between the measured reflectance and the theoretical reflectance for each wavelength of the measurement object S in the second wavelength range different from the first wavelength range. doing.
  • the amount of change in the reflectance spectrum with respect to the film thickness of the multilayer film tends to be larger in the ultraviolet region than in the visible region. Therefore, in the present situation where the number of layers and the number of thin films of devices are increasing, it is considered effective to perform spectroscopy using light in the ultraviolet region from the viewpoint of improving measurement accuracy.
  • there are various technical problems such as stray light, dispersion, scattering, brightness, durability, and cost.
  • the intensity of visible light is significantly higher than that of ultraviolet light, the exposure time is limited to a range in which the visible light sensitivity is not saturated in the detection system, and the required ultraviolet light sensitivity is required. May be difficult to obtain. Therefore, a technique capable of constructing an optimum spectrum for film thickness measurement has been desired.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an optical unit capable of forming an optimum spectrum for film thickness measurement and a film thickness measuring device using the same.
  • the optical unit includes an input unit in which light having a wavelength ranging from the ultraviolet region to the visible region is input, an optical system that collects light in a state of causing chromatic aberration, and light having chromatic aberration. Among them, an opening is provided in which light having a wavelength in the visible region is not imaged and light having a wavelength in the ultraviolet region is imaged.
  • this optical unit In this optical unit, chromatic aberration is caused in the input light, and the light having a wavelength in the visible region is not imaged at the opening, but the light having a wavelength in the ultraviolet region is imaged.
  • the spectral intensity of the light output from the opening in the ultraviolet region can be increased relative to the spectral intensity in the visible region. Therefore, it becomes easy to obtain the sensitivity of the ultraviolet light required in the detection system, and the optimum spectrum for film thickness measurement can be constructed.
  • the optical system may further include a diffuser plate arranged on the optical axis of light.
  • a diffuser plate arranged on the optical axis of light.
  • the diffuser plate may be arranged on the optical axis of light between the optical system and the opening. In this case, a small diffuser can be arranged with respect to the light collected by the optical system. Therefore, the optical unit can be miniaturized. Further, by arranging the diffuser plate in the immediate vicinity of the opening, the loss of the amount of light can be minimized.
  • the optical system may include a lens and a parabolic mirror. By combining a lens and a parabolic mirror, it is possible to suppress the occurrence of unnecessary chromatic aberration with respect to light having wavelengths in the ultraviolet region and the visible region.
  • the optical system may be configured to include a parallel flat plate or a wedge prism.
  • a parallel flat plate or wedge prism By combining a parallel flat plate or wedge prism and a parabolic mirror, it is possible to suppress the occurrence of excessive chromatic aberration with respect to light having wavelengths in the ultraviolet region and the visible region.
  • a parallel flat plate When a parallel flat plate is used, it is possible to generate relatively small chromatic aberration. Wedge prisms are significant when the numerical aperture of light is relatively small.
  • the opening may be an input end to an optical fiber.
  • light in which the spectral intensity in the ultraviolet region is relatively increased with respect to the spectral intensity in the visible region can be introduced into the optical fiber.
  • the opening may be a pinhole.
  • light in which the spectral intensity in the ultraviolet region is relatively increased with respect to the spectral intensity in the visible region can be extracted through a pinhole.
  • the film thickness measuring device measures the above-mentioned optical unit, a light source that inputs light having a wavelength from the ultraviolet region to the visible region into the optical unit, and light output from the light source unit through an opening.
  • a light guide unit that guides the object to be measured, a detection unit that spectrally detects the light to be detected from the object to be measured, and an analysis unit that analyzes the film thickness of the object to be measured based on the detection result by the detection unit.
  • the light input from the light source to the optical unit may include a wavelength range of 200 nm to 300 nm.
  • the amount of change in the reflectance spectrum with respect to the film thickness of the multilayer film tends to be larger in the ultraviolet region than in the visible region. Therefore, when the light input from the light source to the optical unit includes the above wavelength range, the measurement accuracy can be improved.
  • the light input from the light source to the optical unit may include a wavelength range of 300 nm to 800 nm.
  • the light input from the light source to the optical unit includes the above wavelength range, the balance of the intensity spectrum of the detected light is maintained, and the measurement accuracy is improved.
  • the light input from the light source to the optical unit may include a wavelength range of 300 nm to 1100 nm.
  • the light input from the light source to the optical unit includes the above wavelength range, the balance of the intensity spectrum of the detected light is maintained, and the measurement accuracy is improved.
  • the optimum spectrum for film thickness measurement can be constructed.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a film thickness measuring device.
  • the film thickness measuring device 1 is a device that measures the film thickness of the film constituting the object S to be measured.
  • the film thickness measuring device 1 is configured as an in-line film thickness monitor in the film forming device 2.
  • the object S to be measured is, for example, a device having a multilayer film structure in which a plurality of first films and second films are alternately laminated on a substrate.
  • the object S to be measured is arranged on a stage 4 provided in the chamber 3 of the film forming apparatus 2.
  • a control device 5 is connected to the film thickness measuring device 1.
  • the control device 5 is a device that controls the operation of the film thickness measuring device 1, and is configured by, for example, a computer.
  • a computer is configured to include, for example, a memory such as a RAM and a ROM, a processor (arithmetic circuit) such as a CPU, a communication interface, and a storage unit such as a hard disk. Examples of such computers include personal computers, microcomputers, cloud servers, smart devices (smartphones, tablet terminals, etc.) and the like.
  • a display device 6 such as a monitor and an input device 7 such as a keyboard and a mouse are connected to the control device 5.
  • the display device 6 displays, for example, the film thickness measured by the film thickness measuring device 1, the set measurement conditions, and the like.
  • the input device 7 executes various inputs such as a measurement start input and a measurement condition input to the control device 5 based on the user's operation.
  • the control device 5, the display device 6, and the input device 7 may be incorporated as a configuration of the film thickness measuring device 1.
  • the film thickness measuring device 1 has a measuring head 11.
  • the measurement head 11 includes a light source 12, an optical unit 13, a detection unit 14, and an analysis unit 15. Further, an optical input / output unit 16 is connected to the measurement head 11.
  • the light source 12 outputs the measurement light L1 to the object S to be measured.
  • the light source 12 is composed of, for example, a light source device that outputs white light including wavelengths in the ultraviolet region (200 nm to 300 nm) and wavelengths in the visible region (300 nm to 800 nm). Examples of such a light source device include a laser-excited plasma light source.
  • the light source device may be, for example, a xenon lamp, a lamp in which a deuterium lamp and a halogen lamp are combined, or the like.
  • the optical unit 13 is a unit that adjusts the spectral intensity of the measurement light L1 output from the measurement head 11.
  • the optical unit 13 has a function of increasing the spectral intensity of the measurement light L1 in the ultraviolet region relative to the spectral intensity in the visible region. Details of the optical unit 13 will be described later.
  • the detection unit 14 is a part that detects the light L2 to be detected from the object S to be measured.
  • the detection unit 14 is composed of, for example, a multi-channel spectroscopic detector.
  • the detection unit 14 disperses the detected light L2 into each wavelength component by a spectroscopic element such as a grating or a prism, and detects the intensity of the dispersed light of each wavelength by the optical sensor group.
  • the optical sensor group is composed of, for example, a plurality of light receiving units arranged one-dimensionally. The optical sensor group detects the intensity of the light of each wavelength component in the detected light L2 by the light receiving unit corresponding to each wavelength, and outputs the detection result to the analysis unit 15.
  • the optical input / output unit 16 is a portion that irradiates the object to be measured S arranged in the chamber 3 of the film forming apparatus 2 with the measurement light L1 and receives the light to be detected L2.
  • the optical input / output unit 16 is optically connected to the optical unit 13 by, for example, an optical fiber 17, and is optically connected to the detection unit 14 by an optical fiber 18.
  • the optical input / output unit 16 is formed into a film. It is arranged in the vicinity of the view port 19 provided in the chamber 3 of the device 2.
  • the measurement light L1 from the optical input / output unit 16 is guided by the optical fiber 17 and is incident on the object S to be measured through the viewport 19.
  • the light L2 to be detected from the object S to be measured is incident on the optical input / output unit through the viewport 19.
  • the light L2 to be detected incident on the optical input / output unit 16 is guided by the optical fiber 18 and incident on the detection unit 14.
  • the reflected light of the measurement light L1 reflected by the object S to be measured is used as the light to be detected L2, but the light L2 to be detected is the transmitted light of the measurement light L1 transmitted through the object S to be measured. There may be.
  • the analysis unit 15 is a part that analyzes the film thickness of the film constituting the object S to be measured.
  • the analysis unit 15 may be configured by a computer like the control device 5, or may be configured by an integrated circuit such as an FPGA (Field-Programmable Gate Array).
  • FPGA Field-Programmable Gate Array
  • FIG. 2 is a schematic configuration diagram showing an embodiment of the optical unit.
  • the optical unit 13 is a unit that adjusts the spectral intensity of the measurement light L1 output from the light source 12.
  • the optical unit 13 includes an input unit 21, an optical system 22, a monitor output unit 23, and a measurement output unit 24 in a housing 25.
  • the input unit 21, the optical system 22, the monitor output unit 23, and the measurement output unit 24 are optically coupled to each other.
  • the input unit 21 is a portion where light having a wavelength ranging from the ultraviolet region to the visible region is input.
  • the input unit 21 is, for example, a hole portion 25a provided in the wall portion of the housing 25.
  • the exit port of the measurement light L1 in the light source 12 is in contact with or close to the hole 25a.
  • the measurement light L1 output from the light source 12 is input into the housing 25 through the hole 25a.
  • the optical system 22 is a portion that collects the measurement light L1 in a state where chromatic aberration is generated.
  • the optical system 22 is composed of a lens 26, a pair of parabolic mirrors 27 and 27, a beam splitter 28, and a diffuser plate 29.
  • the lens 26 is arranged so as to close the hole 25a. Chromatic aberration occurs in the measurement light L1 that has passed through the lens 26 due to the dispersion of the lens material.
  • the parabolic mirror 27 is, for example, an off-axis parabolic mirror.
  • the measurement light L1 that has passed through the lens 26 is reflected by one of the parabolic mirrors 27 and becomes parallel light.
  • the parallel light L1 is reflected by the other parabolic mirror 27 and focused toward the measurement output unit 24.
  • the beam splitter 28 is arranged on the optical axis of the measurement light L1 from the other parabolic mirror 27 toward the measurement output unit 24, and reflects a part of the measurement light L1 toward the monitor output unit 23.
  • the reflectance of the beam splitter 28 is, for example, 8% due to the surface reflection of uncoated glass.
  • the reflectance of the beam splitter 28 may be further increased by a coating such as chromium.
  • a part of the measurement light L1 output from the monitor output unit 23 is used, for example, for drift correction of the light source 12.
  • the rest of the measurement light L1 that has passed through the beam splitter 28 passes through the diffuser plate 29 and then enters the measurement output unit 24.
  • the measurement light L1 output from the measurement output unit 24 enters the optical fiber 17 (see FIG. 1) and is guided to the optical input / output unit 16.
  • the monitor output unit 23 and the measurement output unit 24 may be provided with a shutter that blocks the measurement light L1 if necessary.
  • the measurement output unit 24 has an opening 31 in which the measurement light L1 is imaged.
  • the measurement output unit 24 is a connector to which the optical fiber 17 is connected, and as shown in FIG. 3, the opening 31 is configured by the input end 17a to the optical fiber 17.
  • the measurement light L1 has chromatic aberration caused by the lens 26. Due to this chromatic aberration, the focal position of the long wavelength component among the wavelength components included in the measurement light L1 shifts to the front side in the optical axis direction, and the focal position of the short wavelength component shifts to the rear side in the optical axis direction.
  • the opening 31 is arranged at a position where the light La having a wavelength in the visible region is not imaged and the light Lb having a wavelength in the ultraviolet region is imaged in the measurement light L1 in which chromatic aberration has occurred.
  • FIG. 4 is a diagram showing a spectral waveform of the measurement light adjusted by the optical unit.
  • the horizontal axis represents wavelength (nm) and the vertical axis represents relative intensity (normalized with a peak value of 1).
  • the spectral waveform of the measurement light L1 output from the light source 12 is a mountainous waveform having a wavelength of 550 nm as the first peak and a wavelength of 380 nm as the second peak (Graph A). ).
  • the spectral waveform of the measurement light L1 output from the optical unit 13 has a flat peak in the wavelength range of 280 nm to 500 nm as a result of adjusting the balance of the spectral intensity in the visible region with respect to the spectral intensity in the ultraviolet region. It is a waveform (graph B).
  • the diffuser plate 29 is arranged between the optical system 22 and the opening 31 on the optical axis of the measurement light L1.
  • the diffusion plate 29 is arranged immediately before the opening 31 (input end 17a).
  • the measurement light L1 from the optical unit 13 is guided to the optical input / output unit 16 by the optical fiber 17, it is assumed that vibration is applied to the optical fiber 17.
  • the balance of the spectral intensities of the light to be detected L2 finally detected by the detection unit 14 changes, and the error in film thickness measurement increases.
  • the diffuser plate is arranged on the optical axis of the measurement light L1, as shown in FIG. 3, the emission angle distribution for each wavelength of the light output from the opening 31 (output end 17b) can be made uniform. ..
  • the optical unit 13 and the film thickness measuring device 1 using the optical unit 13 chromatic aberration is caused in the input measurement light L1, and the light La having a wavelength in the visible region is not formed in the opening 31.
  • Light Lb having a wavelength in the ultraviolet region is imaged.
  • the spectral intensity of the light output from the opening 31 in the ultraviolet region can be increased relative to the spectral intensity in the visible region. Therefore, it becomes easy to obtain the sensitivity of the ultraviolet light required in the detection system, and the optimum spectrum for film thickness measurement can be constructed.
  • a method of passing the measurement light L1 through a filter can be considered.
  • a dielectric multilayer film filter in order to design a film in which the transmittance of light having a wavelength in the visible region is positively lowered, it is necessary to use a coating substance having an absorbency for light in the vicinity of a wavelength of 200 nm.
  • a coating substance having an absorbency for light in the vicinity of a wavelength of 200 nm in order to reduce the spectral intensity in the visible region.
  • the optical system 22 includes a diffuser plate 29 arranged on the optical axis of the measuring light L1.
  • the diffuser plate 29 is arranged on the optical axis of the measurement light L1 between the optical system 22 and the opening 31. As a result, the small diffuser plate 29 can be arranged with respect to the measurement light L1 focused by the optical system 22.
  • the optical unit 13 can be miniaturized. Further, by arranging the diffuser plate 29 in the immediate vicinity of the opening 31, the loss of the amount of light can be minimized.
  • the diffuser plate 29 does not necessarily have to be arranged between the optical system 22 and the opening 31.
  • the diffuser plate 29 may be arranged after the output end 17b of the optical fiber 17.
  • the optical system 22 includes a lens 26 and a parabolic mirror 27.
  • An optical system consisting of only a lens is common for applications in the visible region, but when dealing with light with wavelengths in the ultraviolet to visible region, it is possible that chromatic aberration more than necessary will occur. .. Therefore, by combining the lens 26 and the parabolic mirror 27 as in the optical unit 13 and the film thickness measuring device 1, chromatic aberration more than necessary is generated with respect to the measured light L1 having wavelengths in the ultraviolet region and the visible region. Can be suppressed.
  • the opening 31 is composed of an input end 17a to the optical fiber 17.
  • the measurement light L1 in which the spectral intensity in the ultraviolet region is relatively increased with respect to the spectral intensity in the visible region can be introduced into the optical fiber 17.
  • the optical system 22 includes the lens 26 and the parabolic mirror 27.
  • the optical system 22 replaces the lens 26 with the parallel flat plate 41 and It may be configured to include a parabolic mirror 27.
  • the parallel flat plate 41 is arranged at a position between the parabolic mirror 27 and the opening 31.
  • the opening 31 is formed by a pinhole 43. In this way, when the parallel flat plate 41 and the parabolic mirror 27 are combined, it is possible to generate relatively small chromatic aberration.
  • the optical system 22 may include a wedge prism 42 and a parabolic mirror 27 instead of the lens 26.
  • the wedge prism 42 is arranged at a position between the parabolic mirror 27 and the opening 31.
  • the opening 31 is formed by the pinhole 43 as in the case of FIG.
  • the combination of the parallel flat plate 41 and the parabolic mirror 27 is significant when the numerical aperture of the measurement light L1 focused through the parabolic mirror 27 is relatively small.
  • the wedge prism 42 is used, the focal position of the long wavelength component in the measurement light L1 shifts to the side intersecting the optical axis with respect to the focal position of the short wavelength component.
  • the pinhole 43 by arranging the pinhole 43 at the position where the light Lb having the wavelength in the ultraviolet region is imaged, the spectral intensity in the ultraviolet region of the light output from the opening 31 is relatively increased with respect to the spectral intensity in the visible region. Can be made to.
  • the lens 26, the diffuser plate 29, the parallel plane plate 41, and the wedge prism 42 described above need to be made of a material having transparency to ultraviolet light.
  • a material having transparency to ultraviolet light examples include synthetic quartz, calcium fluoride, magnesium fluoride, sapphire and the like.
  • the light source 12 is configured by a light source device that outputs white light including, for example, a wavelength in the ultraviolet region (200 nm to 300 nm) and a wavelength in the visible region (300 nm to 800 nm).
  • a light source device that outputs white light including wavelengths in the ultraviolet region (200 nm to 300 nm) and wavelengths in the visible to near infrared regions (300 nm to 1100 nm).
  • the optical unit 13 has an input unit 21 for inputting the measurement light L1 having a wavelength extending from the ultraviolet region to the near infrared region, an optical system 22 for condensing the measurement light L1 with chromatic aberration caused, and chromatic aberration.
  • the measured light L1 the light La'of wavelengths in the visible to near-infrared region may not be imaged, and the opening 31 may be provided in which the light Lb having a wavelength in the ultraviolet region is imaged.
  • the spectral intensity in the ultraviolet region of the light output from the opening 31 can be relatively increased with respect to the spectral intensity in the visible to near-infrared region. Therefore, it becomes easy to obtain the sensitivity of the ultraviolet light required in the detection system, and the optimum spectrum for film thickness measurement can be constructed.
  • the film thickness measuring device 1 When the film thickness measuring device 1 is configured as an in-line film thickness monitor in the film forming device 2, space saving of the device is required. Therefore, it is important to make the optical unit 13 applied to the film thickness measuring device 1 smaller.
  • the optical unit 13 13A to 13D for the purpose of miniaturization will be described.
  • the optical unit 13A is optically connected to the fiber output type light source 12.
  • the optical system 22 of the optical unit 13A includes a beam splitter 51, a lens 52, and an ellipsoidal mirror 53.
  • the input unit 21 is composed of an optical fiber 54 that guides the measurement light L1.
  • the monitor output unit 23 is composed of an optical fiber 55, and the measurement output unit 24 is composed of an optical fiber 56.
  • the lens 52 for example, a parallel flat plate, a wedge prism, or the like can be used.
  • the ellipsoidal mirror 53 can be replaced with a cheaper spherical mirror when the optical fiber 54 and the optical fibers 55 and 56 are sufficiently close to each other.
  • a shutter for switching ON / OFF of the measurement light L1 may be arranged between the beam splitter 51 and the optical fibers 54, 55, 56.
  • the measurement light L1 output from the light source 12 is guided to the optical unit 13A by the optical fiber 54 and passes through the beam splitter 51 and the lens 52. Chromatic aberration occurs in the measurement light L1 that has passed through the lens 52 due to the dispersion of the lens material. After that, the measurement light L1 is reflected by the ellipsoidal mirror 53 and is incident on the beam splitter 51 again. A part of the measurement light L1 is reflected by the beam splitter 51 and incident on the optical fiber 55 which is the monitor output unit 23. The rest of the measurement light L1 passes through the beam splitter 51 and is incident on the optical fiber 56 which is the measurement output unit 24.
  • the light La having a wavelength in the visible region is not imaged at the input end of the optical fiber 55, but the light Lb having a wavelength in the ultraviolet region is imaged.
  • the light La having a wavelength in the visible region is not imaged at the input end 56a (opening 31) of the optical fiber 56, and the light Lb having a wavelength in the ultraviolet region is formed. Image.
  • the spectral intensity in the ultraviolet region of the light output from the opening 31 can be relatively increased with respect to the spectral intensity in the visible region. Therefore, it becomes easy to obtain the sensitivity of the ultraviolet light required in the detection system, and the optimum spectrum for film thickness measurement can be constructed. Further, by downsizing the optical unit 13A, the space of the device can be saved when it is used as an in-line film thickness monitor in the film forming device.
  • the optical unit 13B is different from the optical unit 13A in that the monitor output unit 23 and the measurement output unit 24 are separate units.
  • Each of the optical system 22 of the unit of the monitor output unit 23 and the optical system 22 of the unit of the measurement output unit 24 has a lens 52 and an ellipsoidal mirror 53.
  • the beam splitter 51 is omitted.
  • the optical fiber 54 that guides the measurement light L1 from the light source 12 is branched.
  • a shutter for switching ON / OFF of the measurement light L1 may be arranged between the lens 52 and the optical fibers 54, 55, 56.
  • the measurement light L1 output from one of the branched optical fibers 54 passes through the lens 52 in the unit of the monitor output unit 23, is reflected by the ellipsoidal mirror 53 in a state where chromatic aberration is generated, and then is the monitor output unit 23. It is incident on the optical fiber 55.
  • the measurement light L1 output from the other side of the branched optical fiber 54 passes through the lens 52 in the unit of the measurement output unit 24, is reflected by the ellipsoidal mirror 53 in a state where chromatic aberration is generated, and then is the measurement output unit 24. It is incident on the optical fiber 56.
  • the light La having a wavelength in the visible region is not imaged at the input end of the optical fiber 55, but the light Lb having a wavelength in the ultraviolet region is imaged.
  • the light La having a wavelength in the visible region is not imaged at the input end 56a (opening 31) of the optical fiber 56, and the light Lb having a wavelength in the ultraviolet region is formed. Image.
  • the spectral intensity in the ultraviolet region of the light output from the opening 31 can be relatively increased with respect to the spectral intensity in the visible region. Therefore, it becomes easy to obtain the sensitivity of the ultraviolet light required in the detection system, and the optimum spectrum for film thickness measurement can be constructed. Further, by downsizing the optical unit 13B, the space of the device can be saved when it is used as an in-line film thickness monitor in the film forming device.
  • the optical components constituting the optical system 22 need to be arranged in the optical system 22 of the unit of the monitor output unit 23 and the optical system 22 of the unit of the measurement output unit 24, respectively, but the beam splitter 51 Is not required, so that the optical system 22 of each unit can be simplified and the ease of manufacturing can be improved.
  • the configuration of the monitor output unit 23 of the optical unit 13C is different from that of the optical unit 13C. More specifically, in the optical unit 13C, the optical system 22 is not provided with the beam splitter 51, and instead, the hole portion 53a is provided in the center of the ellipsoidal mirror 53.
  • the optical fiber 55 constituting the monitor output unit 23 is arranged on the back side of the ellipsoidal mirror 53 (opposite side of the optical fiber 56 which is the measurement output unit 24) so as to correspond to the hole portion 53a.
  • a shutter for switching ON / OFF of the measurement light L1 may be arranged between the lens 52 and the optical fibers 54 and 56, and between the ellipsoidal mirror 53 and the optical fiber 55. Further, a diffuser plate 29 may be arranged between the ellipsoidal mirror 53 and the optical fiber 55.
  • the measurement light L1 output from the light source 12 passes through the lens 52, is reflected by the ellipsoidal mirror 53 in a state where chromatic aberration is generated, and then is incident on the optical fiber 56 which is the measurement output unit 24.
  • the measurement light L1 in which chromatic aberration has occurred the light La having a wavelength in the visible region is not formed on the input end 56a (opening 31) of the optical fiber 56, but the light Lb having a wavelength in the ultraviolet region is formed.
  • the ellipsoidal mirror 53 a part of the measurement light L1 passes through the hole 53a and is incident on the optical fiber 55 which is the monitor output unit 23.
  • the spectral intensity in the ultraviolet region of the light output from the opening 31 can be relatively increased with respect to the spectral intensity in the visible region. Therefore, it becomes easy to obtain the sensitivity of the ultraviolet light required in the detection system, and the optimum spectrum for film thickness measurement can be constructed. Further, by downsizing the optical unit 13C, the space of the device can be saved when it is used as an in-line film thickness monitor in the film forming device.
  • the spectral intensity in the ultraviolet region is relatively increased only in the measurement output unit 24, but depending on the application of the optical unit 13C, the relative spectral intensity in the ultraviolet region in the monitor output unit 23 is relative. This configuration can be adopted when a large increase is not required.
  • the diffuser plate 29 is arranged between the ellipsoidal mirror 53 and the optical fiber 55, the signal for monitoring is stabilized.
  • the optical unit 13D is optically connected to the head output type light source 12.
  • the optical system 22 of the optical unit 13D includes a lens 52, a parabolic mirror 57, and a parabolic mirror 58.
  • the parabolic mirror 57 is, for example, an off-axis parabolic mirror.
  • the parabolic mirror 58 can be replaced with a cheaper spherical mirror.
  • a hole 57a extending in a direction facing the input portion 21 is provided in the center of the reflecting surface of the parabolic mirror 57.
  • the optical fiber 55 constituting the monitor output unit 23 is arranged on the back side (opposite side of the input unit 21) of the parabolic mirror 57 so as to correspond to the hole portion 57a.
  • a diffuser plate 29 may be arranged between the parabolic mirror 57 and the optical fiber 55.
  • an optical fiber 56 constituting the measurement output unit 24 is inserted in the center of the reflecting surface of the parabolic mirror 57 in a direction facing the parabolic mirror 58.
  • the input end 56a (opening 31) of the optical fiber 56 is exposed to the reflecting surface of the parabolic mirror 57 at a position adjacent to the hole 57a.
  • a shutter for switching ON / OFF of the measurement light L1 may be arranged between the parabolic mirror 57 and the parabolic mirror 58 and between the parabolic mirror 57 and the optical fiber 55.
  • the measurement light L1 output from the light source 12 is guided into the optical unit 13D via the input unit 21 and passes through the lens 52. Chromatic aberration occurs in the measurement light L1 that has passed through the lens 52 due to the dispersion of the lens material. After that, a part of the measurement light L1 enters the optical fiber 55, which is the output unit 23 for monitoring, from the reflecting surface of the parabolic mirror 57 through the hole portion 57a. The rest of the measurement light L1 is collimated by the parabolic mirror 57 and reflected by the parabolic mirror 58.
  • the rest of the measurement light L1 reflected by the parabolic mirror 58 and returned to the parabolic mirror 57 is incident on the optical fiber 56 which is the measurement output unit 24 on the reflection surface of the parabolic mirror 57.
  • the light La having a wavelength in the visible region is not formed on the input end 56a (opening 31) of the optical fiber 56, but the light Lb having a wavelength in the ultraviolet region is formed.
  • the spectral intensity in the ultraviolet region of the light output from the opening 31 can be relatively increased with respect to the spectral intensity in the visible region. Therefore, it becomes easy to obtain the sensitivity of the ultraviolet light required in the detection system, and the optimum spectrum for film thickness measurement can be constructed. Further, by downsizing the optical unit 13D, even when the head output type light source 12 is used, the space of the device can be saved when it is used as an in-line film thickness monitor in the film forming device.
  • the spectral intensity in the ultraviolet region is relatively increased only in the signal output unit 24, but depending on the application of the optical unit 13D, the relative spectral intensity in the ultraviolet region in the monitor output unit 23 is relative. This configuration can be adopted when a large increase is not required.
  • the diffuser plate 29 is arranged between the parabolic mirror 57 and the optical fiber 55, the signal for the monitor is stabilized.
  • 1 ... Thickness measuring device 12 ... Light source, 13 (13A to 13D) ... Optical unit, 14 ... Detection unit, 15 ... Analysis unit, 17 ... Optical fiber (light guide unit), 18, 56 ... Optical fiber (light guide) Part), 17a, 56a ... Input end (opening), 21 ... Input part, 22 ... Optical system, 26, 52 ... Lens, 27, 57, 58 ... Paradoxical mirror, 29 ... Diffusing plate, 31 ... Opening , 41 ... Parallel flat plate, 42 ... Wedge prism, 43 ... Pinhole (opening), L1 ... Measurement light (light), L2 ... Detected light, La ... Visible wavelength light, Lb ... Extraviolet wavelength Light, S ... Object to be measured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

光学ユニット13は、紫外域から可視域にわたる波長の計測光L1が入力される入力部21と、色収差を生じさせた状態で計測光L1を集光する光学系22と、色収差が生じた計測光L1のうち、可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像する開口部31と、を備える。

Description

光学ユニット及び膜厚計測装置
 本開示は、光学ユニット及び膜厚計測装置に関する。
 近年、従来の2次元メモリに比べて高密度のストレージを実現できるデバイスが注目を集めている。高密度ストレージデバイスは、データストレージセルのレイヤーを垂直に積層することによって構成されている。各データストレージセルは、例えばシリコン基板上にシリコン酸化膜とシリコン窒化膜とを繰り返し積層した多層膜構造となっており、シリコン酸化膜及びシリコン窒化膜の1つのペアが1つのデータストレージセルを形成している。当該デバイスのメモリ容量は、シリコン酸化膜及びシリコン窒化膜のペア数に比例するため、デバイスの多層化及び薄膜化が進んできている。膜厚の不均一性は、デバイスの電気的特性に影響する。成膜レートの不均一性は、クリーニングの増加による生産性の低下を招く。したがって、デバイスを製造する際の膜厚の品質管理や成膜のプロセスコントロールの重要性が増してきている。
 インライン膜厚モニタへの適用を考えた場合、分光を利用した膜厚計測手法(分光法)が挙げられる。分光法を用いた場合、成膜装置への測定ヘッドの組み込みも簡便で、実施形態上の制約も少ないため、断面観察技術に比べてインライン膜厚モニタへの適用が容易となる。例えば特許文献1に記載の膜厚計測装置では、第1の波長範囲における計測対象物の波長毎の実測反射率と理論反射率との比較結果を用いて膜厚の最適解の候補を求め、第1の波長範囲とは異なる第2の波長範囲における計測対象物Sの波長毎の実測反射率と理論反射率との比較結果を用いて最適解の候補の中から膜厚の最適解を決定している。
特開2019-120607号公報
 多層膜の膜厚に対する反射率スペクトルの変化量は、可視域に比べて紫外域のほうが大きくなる傾向を有している。このため、デバイスの多層化及び薄膜化が進んでいる現状では、測定精度の向上の観点から、紫外域の光を用いた分光を行うことが有効であると考えられる。しかしながら、紫外域の光を扱う場合、迷光、分散、散乱、輝度、耐久性、コストといった様々な技術的課題が存在する。特に、紫外域の光に対して可視域の光の強度が大幅に上回る場合、検出系において可視域の光の感度が飽和しない範囲に露光時間が制限され、必要とする紫外域の光の感度が得られ難くなるおそれがある。そのため、膜厚計測に最適なスペクトルを構成できる技術が望まれていた。
 本開示は、上記課題の解決のためになされたものであり、膜厚計測に最適なスペクトルを構成できる光学ユニット及びこれを用いた膜厚計測装置を提供することを目的とする。
 本開示の一側面に係る光学ユニットは、紫外域から可視域にわたる波長の光が入力される入力部と、色収差を生じさせた状態で光を集光する光学系と、色収差が生じた光のうち、可視域の波長の光が結像せず、紫外域の波長の光が結像する開口部と、を備える。
 この光学ユニットでは、入力された光に色収差を生じさせ、開口部において可視域の波長の光が結像せず、紫外域の波長の光が結像するようになっている。この光学ユニットでは、開口部から出力する光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させることができる。したがって、検出系において必要とする紫外域の光の感度が得られ易くなり、膜厚計測に最適なスペクトルを構成できる。
 光学系は、光の光軸上に配置された拡散板を更に備えていてもよい。色収差を利用して紫外域の波長の光を開口部に結像させる場合、開口部に結像しない可視域の光では、開口数の比較的小さい成分のみが開口部に入射される。このため、開口部から出力される光の波長毎の出射角度分布が大きくばらつくことが考えられる。これに対し、光の光軸上に拡散板を配置することで、開口部から出力される光の波長毎の出射角度分布を均一化できる。
 拡散板は、光学系と開口部との間の光の光軸上に配置されていてもよい。この場合、光学系によって集光される光に対して小型の拡散板を配置できる。したがって、光学ユニットの小型化が図られる。また、拡散板を開口部の直近に配置することで、光量のロスを最小限に抑えることができる。
 光学系は、レンズ及び放物面鏡を含んで構成されていてもよい。レンズ及び放物面鏡を組み合わせることにより、紫外域及び可視域の波長の光に対して必要以上の色収差が生じることを抑制できる。
 光学系は、平行平面板又はウェッジプリズムを含んで構成されていてもよい。平行平面板又はウェッジプリズム、及び放物面鏡を組み合わせることにより、紫外域及び可視域の波長の光に対して必要以上の色収差が生じることを抑制できる。平行平面板を用いる場合、比較的小さな色収差を生じさせることが可能となる。ウェッジプリズムは、光の開口数が比較的小さい場合に有意である。
 開口部は、光ファイバへの入力端であってもよい。この場合、紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させた光を光ファイバに導入できる。
 開口部は、ピンホールであってもよい。この場合、紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させた光を、ピンホールを介して取り出すことができる。
 本開示の一側面に係る膜厚計測装置は、上記光学ユニットと、紫外域から可視域にわたる波長の光を光学ユニットに入力する光源と、開口部を介して光源ユニットから出力した光を計測光として被計測物に導光する導光部と、被計測物からの被検出光を分光検出する検出部と、検出部による検出結果に基づいて被計測物の膜厚を解析する解析部と、を備える。
 この膜厚計測装置では、紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させた光が計測光として光学ユニットから出力される。したがって、検出系において必要とする紫外域の光の感度が得られ易くなり、膜厚計測に最適なスペクトルを構成できる。
 光源から光学ユニットに入力される光は、200nm~300nmの波長範囲を含んでいてもよい。多層膜の膜厚に対する反射率スペクトルの変化量は、可視域に比べて紫外域のほうが大きくなる傾向を有している。したがって、光源から光学ユニットに入力される光が上記波長範囲を含むことにより、測定精度の向上が図られる。
 光源から光学ユニットに入力される光は、300nm~800nmの波長範囲を含んでいてもよい。光源から光学ユニットに入力される光が上記波長範囲を含むことにより、被検出光の強度スペクトルのバランスが維持され、測定精度の向上が図られる。
 光源から光学ユニットに入力される光は、300nm~1100nmの波長範囲を含んでいてもよい。光源から光学ユニットに入力される光が上記波長範囲を含むことにより、被検出光の強度スペクトルのバランスが維持され、測定精度の向上が図られる。
 本開示によれば、膜厚計測に最適なスペクトルを構成できる。
膜厚計測装置の一実施形態を示す概略構成図である。 光学ユニットの一実施形態を示す概略構成図である。 計測光の集光の様子を示す概略図である。 光学ユニットによって調整された計測光のスペクトル波形を示す図である。 拡散板が無い場合の計測光の集光の様子を示す概略図である。 光学ユニットの変形例の要部を示す概略図である。 光学ユニットの別の変形例の要部を示す概略図である。 光学ユニットの更なる変形例を示す概略図である。 光学ユニットの更なる変形例を示す概略図である。 光学ユニットの更なる変形例を示す概略図である。 光学ユニットの更なる変形例を示す概略図である。
 以下、図面を参照しながら、本発明の一側面に係る膜厚計測装置及び膜厚計測方法の好適な実施形態について詳細に説明する。
 図1は、膜厚計測装置の一実施形態を示す概略構成図である。この膜厚計測装置1は、被計測物Sを構成する膜の膜厚を計測する装置である。本実施形態では、膜厚計測装置1は、成膜装置2におけるインライン膜厚モニタとして構成されている。被計測物Sは、例えば基板上に第1の膜及び第2の膜が交互に複数積層された多層膜構造を有するデバイスである。被計測物Sは、成膜装置2のチャンバ3内に設けられたステージ4上に配置されている。
 図1に示すように、膜厚計測装置1には、制御装置5が接続されている。制御装置5は、膜厚計測装置1の動作を制御する装置であり、例えばコンピュータによって構成されている。コンピュータは、例えばRAM、ROM等のメモリ、及びCPU等のプロセッサ(演算回路)、通信インターフェイス、ハードディスク等の格納部を備えて構成されている。かかるコンピュータとしては、例えばパーソナルコンピュータ、マイクロコンピュータ、クラウドサーバ、スマートデバイス(スマートフォン、タブレット端末など)などが挙げられる。
 制御装置5には、モニタ等の表示装置6及びキーボード、マウス等の入力装置7が接続されている。表示装置6には、例えば膜厚計測装置1によって計測された膜厚、設定された計測条件等が表示される。また、入力装置7は、ユーザの操作に基づいて、計測の開始の入力、計測条件の入力といった各種入力を制御装置5に対して実行する。制御装置5、表示装置6、及び入力装置7は、膜厚計測装置1の構成として組み込まれていてもよい。
 膜厚計測装置1は、図1に示すように、計測ヘッド11を有している。計測ヘッド11は、光源12と、光学ユニット13と、検出部14と、解析部15とを含んで構成されている。また、計測ヘッド11には、光入出力部16が接続されている。光源12は、被計測物Sに対して計測光L1を出力する。光源12は、例えば紫外域の波長(200nm~300nm)及び可視域の波長(300nm~800nm)を含む白色光を出力する光源装置によって構成されている。かかる光源装置としては、例えばレーザ励起プラズマ光源が挙げられる。光源装置は、例えばキセノンランプ、重水素ランプとハロゲンランプとを組み合わせたランプなどであってもよい。
 光学ユニット13は、計測ヘッド11から出力される計測光L1のスペクトル強度を調整するユニットである。この光学ユニット13は、計測光L1の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させる機能を有している。光学ユニット13の詳細は、後述する。
 検出部14は、被計測物Sからの被検出光L2を検出する部分である。検出部14は、例えばマルチチャンネル型の分光検出器によって構成されている。検出部14は、例えばグレーティングやプリズムなどの分光素子によって被検出光L2を各波長成分に分光し、分光した各波長の光の強度を光センサ群により検出する。光センサ群は、例えば複数の受光部が1次元配列されることによって構成されている。光センサ群は、各波長に対応する受光部によって被検出光L2における各波長成分の光の強度を検出し、検出結果を解析部15に出力する。
 光入出力部16は、成膜装置2のチャンバ3内に配置された被計測物Sに対し、計測光L1の照射及び被検出光L2の受光を行う部分である。光入出力部16は、例えば光ファイバ17によって光学ユニット13に光学的に接続されていると共に、光ファイバ18によって検出部14に光学的に接続されている、光入出力部16は、成膜装置2のチャンバ3に設けられたビューポート19の近傍に配置されている。
 光入出力部16からの計測光L1は、光ファイバ17によって導光され、ビューポート19を通じて被計測物Sに入射する。被計測物Sからの被検出光L2は、ビューポート19を通じて光入出力部に入射する。光入出力部16に入射した被検出光L2は、光ファイバ18によって導光され、検出部14に入射する。図1の例では、被計測物Sで反射した計測光L1の反射光を被検出光L2として用いているが、被検出光L2は、被計測物Sを透過した計測光L1の透過光であってもよい。
 解析部15は、被計測物Sを構成する膜の膜厚を解析する部分である。解析部15は、例えば制御装置5と同様にコンピュータによって構成されていてもよく、FPGA(Field-Programmable Gate Array)といった集積回路によって構成されていてもよい。解析部15は、検出部14から被検出光L2の各波長成分の光の強度の検出結果を受け取ると、当該検出結果に基づいて被計測物Sの第1の膜の膜厚及び第2の膜の膜厚をそれぞれ解析する。
 続いて上述した光学ユニット13について詳細に説明する。
 図2は、光学ユニットの一実施形態を示す概略構成図である。上述したように、光学ユニット13は、光源12から出力された計測光L1のスペクトル強度を調整するユニットである。図2に示すように、光学ユニット13は、入力部21と、光学系22と、モニタ用出力部23と、計測用出力部24とを筐体25内に備えて構成されている。入力部21と、光学系22と、モニタ用出力部23と、計測用出力部24とは、互いに光学的に結合されている。入力部21は、紫外域から可視域にわたる波長の光が入力される部分である。入力部21は、例えば筐体25の壁部に設けられた孔部25aである。孔部25aには、光源12における計測光L1の出射口が当接又は近接している。光源12から出力される計測光L1は、孔部25aを通して筐体25内に入力される。
 光学系22は、色収差を生じさせた状態で計測光L1を集光する部分である。図2の例では、光学系22は、レンズ26と、一対の放物面鏡27,27と、ビームスプリッタ28と、拡散板29とによって構成されている。レンズ26は、孔部25aを塞ぐように配置されている。レンズ26を通った計測光L1には、レンズ材料の分散に起因して色収差が生じる。放物面鏡27は、例えば軸外し放物面鏡である。
 レンズ26を通過した計測光L1は、一方の放物面鏡27で反射し、平行光となる。平行光となった計測光L1は、他方の放物面鏡27で反射し、計測用出力部24に向けて集光される。ビームスプリッタ28は、他方の放物面鏡27から計測用出力部24に向かう計測光L1の光軸上に配置され、計測光L1の一部をモニタ用出力部23に向けて反射する。ビームスプリッタ28の反射率は、コーティング無しのガラスの表面反射によって例えば8%となっている。ビームスプリッタ28の反射率は、クロムなどのコーティングにより更に高められていてもよい。モニタ用出力部23から出力する計測光L1の一部は、例えば光源12のドリフト補正に利用される。ビームスプリッタ28を透過した計測光L1の残部は、拡散板29を通過した後、計測用出力部24に入射する。計測用出力部24から出力する計測光L1は、光ファイバ17(図1参照)に入射し、光入出力部16に導光される。モニタ用出力部23及び計測用出力部24には、必要に応じて計測光L1を遮るシャッタが設けられていてもよい。
 計測用出力部24は、計測光L1が結像する開口部31を有している。本実施形態では、計測用出力部24は、光ファイバ17が接続されるコネクタであり、図3に示すように、光ファイバ17への入力端17aによって開口部31が構成されている。上述したように、計測光L1には、レンズ26によって色収差が生じている。この色収差により、計測光L1に含まれる波長成分のうち、長波長成分の焦点位置が光軸方向の前方側にシフトし、短波長成分の焦点位置が光軸方向の後方側にシフトする。開口部31は、色収差が生じた計測光L1のうち、可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像する位置に配置されている。
 これにより、計測用出力部24から出力する計測光L1では、紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大する。図4は、光学ユニットによって調整された計測光のスペクトル波形を示す図である。同図では、横軸に波長(nm)、縦軸を相対強度(ピーク値を1として規格化)としている。図4に示すように、光源12から出力される計測光L1のスペクトル波形は、波長550nm近辺を第1ピークとし、波長380nm近辺を第2ピークとする山なりの波形となっている(グラフA)。これに対し、光学ユニット13から出力する計測光L1のスペクトル波形は、紫外域のスペクトル強度に対する可視域のスペクトル強度のバランスが調整された結果、波長280nm~波長500nmの範囲でフラットなピークを有する波形となっている(グラフB)。
 拡散板29は、図2及び図3に示すように、計測光L1の光軸上において光学系22と開口部31との間に配置されている。本実施形態では、拡散板29は、開口部31(入力端17a)の直前に配置されている。色収差を利用して紫外域の波長の光を開口部31に結像させる場合、開口部31に結像しない可視域の光では、開口数の比較的小さい成分のみが開口部31に入射される。このため、図5に示すように、開口部31から出力される光(ここでは、光ファイバ17の出力端17bから出力される光)の波長毎の出射角度分布が大きくばらつくことが考えられる。
 本実施形態のように、光学ユニット13からの計測光L1を光ファイバ17によって光入出力部16に導光する態様では、光ファイバ17に振動が加わることが想定される。この場合、最終的に検出部14で検出される被検出光L2のスペクトル強度のバランスが変化し、膜厚計測の誤差が増大してしまうことが考えられる。これに対し、計測光L1の光軸上に拡散板を配置する場合、図3に示すように、開口部31(出力端17b)から出力される光の波長毎の出射角度分布を均一化できる。これにより、光ファイバ17に振動が加わった場合でも、最終的に検出部14で検出される被検出光L2のスペクトル強度のバランスに変化が生じることが抑制され、膜厚計測の誤差の増大を回避することが可能となる。
 以上説明したように、光学ユニット13及びこれを用いた膜厚計測装置1では、入力された計測光L1に色収差を生じさせ、開口部31において可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像するようになっている。この光学ユニット13では、開口部31から出力する光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させることができる。したがって、検出系において必要とする紫外域の光の感度が得られ易くなり、膜厚計測に最適なスペクトルを構成できる。
 なお、光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させる手法としては、フィルタに計測光L1を通す手法も考えられる。しかしながら、例えば誘電体多層膜フィルタを用いる場合、可視域の波長の光の透過率を積極的に下げた膜設計を行うにあたり、波長200nm近傍の光に対する吸収性を有するコーティング物質を用いざるを得ず、可視域のスペクトル強度のみを減少させることが難しい。また、吸収フィルタを用いる場合、波長200nm近傍の光の透過率を下げずに可視域の光の透過率のみを下げる性質のフィルタは、現状では存在していない。したがって、光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させるにあたっては、光学ユニット13のように色収差を用いた手法が有意となる。
 また、光学ユニット13及び膜厚計測装置1では、光学系22が計測光L1の光軸上に配置された拡散板29を備えている。この拡散板29の配置により、開口部31から出力される計測光L1の波長毎の出射角度分布を均一化できる。したがって、最終的に検出部14で検出される被検出光L2のスペクトル強度のバランスに変化が生じることが抑制され、膜厚計測の誤差の増大を回避することが可能となる。本実施形態では、拡散板29が光学系22と開口部31との間の計測光L1の光軸上に配置されている。これにより、光学系22によって集光される計測光L1に対して小型の拡散板29を配置できる。したがって、光学ユニット13の小型化が図られる。また、拡散板29を開口部31の直近に配置することで、光量のロスを最小限に抑えることができる。なお、拡散板29は、必ずしも光学系22と開口部31との間に配置される必要はない。拡散板29は、光ファイバ17の出力端17bの後段に配置されていてもよい。
 また、光学ユニット13及び膜厚計測装置1では、光学系22がレンズ26及び放物面鏡27を含んで構成されている。レンズのみで構成される光学系は、可視域の光に対する用途では一般的であるが、紫外域~可視域の波長の光を扱う場合には、必要以上の色収差が生じてしまうことが考えられる。したがって、この光学ユニット13及び膜厚計測装置1のようにレンズ26及び放物面鏡27を組み合わせることにより、紫外域及び可視域の波長の計測光L1に対して必要以上の色収差が生じることを抑制できる。
 また、光学ユニット13及び膜厚計測装置1では、開口部31が光ファイバ17への入力端17aによって構成されている。この場合、紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させた計測光L1を光ファイバ17に導入できる。
 本開示は、上記実施形態に限られるものではない。例えば上記実施形態では、レンズ26及び放物面鏡27を含んで光学系22が構成されているが、光学系22は、図6に示すように、レンズ26に代えて、平行平面板41及び放物面鏡27を含んで構成されていてもよい。図6の例では、放物面鏡27と開口部31との間の位置に平行平面板41が配置されている。また、図6の例では、開口部31がピンホール43によって構成されている。このように、平行平面板41と放物面鏡27とを組み合わせる場合、比較的小さな色収差を生じさせることが可能となる。
 また、光学系22は、図7に示すように、レンズ26に代えて、ウェッジプリズム42及び放物面鏡27を含んで構成されていてもよい。図7の例では、放物面鏡27と開口部31との間の位置にウェッジプリズム42が配置されている。また、図7の例では、図6の場合と同様に、開口部31がピンホール43によって構成されている。平行平面板41と放物面鏡27との組み合わせは、放物面鏡27を経て集光される計測光L1の開口数が比較的小さい場合に有意である。ウェッジプリズム42を用いる場合、計測光L1における長波長成分の焦点位置は、短波長成分の焦点位置に対して光軸に交差する方向側にシフトする。したがって、紫外域の波長の光Lbが結像する位置にピンホール43を配置することにより、開口部31から出力する光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させることができる。
 上述したレンズ26、拡散板29、平行平面板41、及びウェッジプリズム42は、紫外光に対する透過性を有する材料によって形成されている必要がある。このような材料としては、例えば合成石英、フッ化カルシウム、フッ化マグネシウム、サファイアなどが挙げられる。
 また、上記実施形態では、光源12は、例えば紫外域の波長(200nm~300nm)及び可視域の波長(300nm~800nm)を含む白色光を出力する光源装置によって構成されているが、光源12は、例えば紫外域の波長(200nm~300nm)及び可視~近赤外の波長(300nm~1100nm)を含む白色光を出力する光源装置によって構成されていてもよい。すなわち、光学ユニット13は、紫外域から近赤外にわたる波長の計測光L1が入力される入力部21と、色収差を生じさせた状態で計測光L1を集光する光学系22と、色収差が生じた計測光L1のうち、可視から近赤外域の波長の光La’が結像せず、紫外域の波長の光Lbが結像する開口部31と、を備える構成であってもよい。このような構成においても、開口部31から出力する光の紫外域のスペクトル強度を可視から近赤外域のスペクトル強度に対して相対的に増大させることができる。したがって、検出系において必要とする紫外域の光の感度が得られ易くなり、膜厚計測に最適なスペクトルを構成できる。
 膜厚計測装置1を成膜装置2におけるインライン膜厚モニタとして構成する場合、装置の省スペース化が要求される。このため、膜厚計測装置1に適用する光学ユニット13をより小型化することが重要となっている。以下、小型化を目的とした光学ユニット13(13A~13D)の構成例について説明する。
 図8に示すように、光学ユニット13Aは、ファイバ出力型の光源12に光学的に接続されている。光学ユニット13Aの光学系22は、ビームスプリッタ51と、レンズ52と、楕円面ミラー53とを有している。入力部21は、計測光L1を導光する光ファイバ54によって構成されている。モニタ用出力部23は、光ファイバ55によって構成され、計測用出力部24は、光ファイバ56によって構成されている。レンズ52としては、例えば平行平面板やウェッジプリズム等を用いることができる。楕円面ミラー53は、光ファイバ54と光ファイバ55,56とが十分に近接している場合には、より安価な球面ミラーに置き換えることもできる。ビームスプリッタ51と光ファイバ54,55,56との間には、計測光L1のON/OFFを切り替えるシャッタが配置されていてもよい。
 光源12から出力した計測光L1は、光ファイバ54によって光学ユニット13Aに導光され、ビームスプリッタ51及びレンズ52を透過する。レンズ52を通った計測光L1には、レンズ材料の分散に起因して色収差が生じる。その後、計測光L1は、楕円面ミラー53で反射し、再びビームスプリッタ51に入射する。計測光L1の一部は、ビームスプリッタ51で反射し、モニタ用出力部23である光ファイバ55に入射する。計測光L1の残部は、ビームスプリッタ51を透過し、計測用出力部24である光ファイバ56に入射する。光ファイバ55の入力端には、色収差が生じた計測光L1のうち、可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像する。同様に、光ファイバ56の入力端56a(開口部31)には、色収差が生じた計測光L1のうち、可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像する。
 このような光学ユニット13Aにおいても、開口部31から出力する光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させることができる。したがって、検出系において必要とする紫外域の光の感度が得られ易くなり、膜厚計測に最適なスペクトルを構成できる。また、光学ユニット13Aの小型化により、成膜装置におけるインライン膜厚モニタとして用いた場合の装置の省スペース化が図られる。
 図9に示すように、光学ユニット13Bは、モニタ用出力部23と計測用出力部24とを別個のユニットとしている点で上記光学ユニット13Aと相違している。モニタ用出力部23のユニットの光学系22及び計測用出力部24のユニットの光学系22のそれぞれは、レンズ52及び楕円面ミラー53を有している。これらの光学系22では、ビームスプリッタ51が省略されている。ビームスプリッタ51の配置に代えて、光源12からの計測光L1を導光する光ファイバ54が分岐している。レンズ52と光ファイバ54,55,56との間には、計測光L1のON/OFFを切り替えるシャッタが配置されていてもよい。
 分岐した光ファイバ54の一方から出力した計測光L1は、モニタ用出力部23のユニットにおいてレンズ52を通り、色収差が生じた状態で楕円面ミラー53で反射した後、モニタ用出力部23である光ファイバ55に入射する。分岐した光ファイバ54の他方から出力した計測光L1は、計測用出力部24のユニットにおいてレンズ52を通り、色収差が生じた状態で楕円面ミラー53で反射した後、計測用出力部24である光ファイバ56に入射する。光ファイバ55の入力端には、色収差が生じた計測光L1のうち、可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像する。同様に、光ファイバ56の入力端56a(開口部31)には、色収差が生じた計測光L1のうち、可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像する。
 このような光学ユニット13Bにおいても、開口部31から出力する光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させることができる。したがって、検出系において必要とする紫外域の光の感度が得られ易くなり、膜厚計測に最適なスペクトルを構成できる。また、光学ユニット13Bの小型化により、成膜装置におけるインライン膜厚モニタとして用いた場合の装置の省スペース化が図られる。この光学ユニット13Bでは、光学系22を構成する光学部品をモニタ用出力部23のユニットの光学系22及び計測用出力部24のユニットの光学系22にそれぞれ配置する必要があるが、ビームスプリッタ51が不要となるため、各ユニットの光学系22が簡単化され、製造容易性を高めることができる。
 図10に示すように、光学ユニット13Cは、モニタ用出力部23の構成が上記光学ユニット13Cと相違している。より具体的には、光学ユニット13Cでは、光学系22にビームスプリッタ51が設けられておらず、その代わりに、楕円面ミラー53の中央に孔部53aが設けられている。モニタ用出力部23を構成する光ファイバ55は、孔部53aに対応するように楕円面ミラー53の背面側(計測用出力部24である光ファイバ56の反対側)に配置されている。レンズ52と光ファイバ54,56との間、楕円面ミラー53と光ファイバ55との間には、計測光L1のON/OFFを切り替えるシャッタが配置されていてもよい。また、楕円面ミラー53と光ファイバ55との間には、拡散板29が配置されていてもよい。
 光源12から出力した計測光L1は、レンズ52を通り、色収差が生じた状態で楕円面ミラー53で反射した後、計測用出力部24である光ファイバ56に入射する。光ファイバ56の入力端56a(開口部31)には、色収差が生じた計測光L1のうち、可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像する。楕円面ミラー53では、計測光L1の一部が孔部53aを通過し、モニタ用出力部23である光ファイバ55に入射する。
 このような光学ユニット13Cにおいても、開口部31から出力する光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させることができる。したがって、検出系において必要とする紫外域の光の感度が得られ易くなり、膜厚計測に最適なスペクトルを構成できる。また、光学ユニット13Cの小型化により、成膜装置におけるインライン膜厚モニタとして用いた場合の装置の省スペース化が図られる。光学ユニット13Cでは、紫外域のスペクトル強度が相対的に増大されるのは計測用出力部24のみであるが、光学ユニット13Cの用途により、モニタ用出力部23における紫外域のスペクトル強度の相対的な増大が不要な場合には、本構成を採用することができる。楕円面ミラー53と光ファイバ55との間に拡散板29を配置する場合、モニタ用の信号の安定化が図られる。
 図11に示すように、光学ユニット13Dは、ヘッド出力型の光源12に光学的に接続されている。光学ユニット13Dの光学系22は、レンズ52と、放物面鏡57と、放物面鏡58とを有している。放物面鏡57は、例えば軸外し放物面鏡である。放物面鏡58は、より安価な球面ミラーに置き換えることもできる放物面鏡57における反射面の中央には、入力部21と対向する向きに延びる孔部57aが設けられている。モニタ用出力部23を構成する光ファイバ55は、孔部57aに対応するように放物面鏡57の背面側(入力部21の反対側)に配置されている。放物面鏡57と光ファイバ55との間には、拡散板29が配置されていてもよい。
 また、放物面鏡57における反射面の中央には、放物面鏡58と対向する向きに計測用出力部24を構成する光ファイバ56が挿入されている。光ファイバ56の入力端56a(開口部31)は、孔部57aに隣接する位置で、放物面鏡57の反射面に露出した状態となっている。放物面鏡57と放物面鏡58との間、及び放物面鏡57と光ファイバ55との間には、計測光L1のON/OFFを切り替えるシャッタが配置されていてもよい。
 光源12から出力した計測光L1は、入力部21を介して光学ユニット13D内に導光され、レンズ52を透過する。レンズ52を通った計測光L1には、レンズ材料の分散に起因して色収差が生じる。その後、計測光L1の一部は、放物面鏡57の反射面から孔部57aを通ってモニタ用出力部23である光ファイバ55に入射する。計測光L1の残部は、放物面鏡57によって平行光化され、放物面鏡58で反射する。放物面鏡58で反射して放物面鏡57に戻った計測光L1の残部は、当該放物面鏡57の反射面において計測用出力部24である光ファイバ56に入射する。光ファイバ56の入力端56a(開口部31)には、色収差が生じた計測光L1のうち、可視域の波長の光Laが結像せず、紫外域の波長の光Lbが結像する。
 このような光学ユニット13Dにおいても、開口部31から出力する光の紫外域のスペクトル強度を可視域のスペクトル強度に対して相対的に増大させることができる。したがって、検出系において必要とする紫外域の光の感度が得られ易くなり、膜厚計測に最適なスペクトルを構成できる。また、光学ユニット13Dの小型化により、ヘッド出力型の光源12を用いた場合であっても、成膜装置におけるインライン膜厚モニタとして用いた場合の装置の省スペース化が図られる。光学ユニット13Dでは、紫外域のスペクトル強度が相対的に増大されるのは信号用出力部24のみであるが、光学ユニット13Dの用途により、モニタ用出力部23における紫外域のスペクトル強度の相対的な増大が不要な場合には、本構成を採用することができる。放物面鏡57と光ファイバ55との間に拡散板29を配置する場合、モニタ用の信号の安定化が図られる。
 1…膜厚計測装置、12…光源、13(13A~13D)…光学ユニット、14…検出部、15…解析部、17…光ファイバ(導光部)、18,56…光ファイバ(導光部)、17a,56a…入力端(開口部)、21…入力部、22…光学系、26,52…レンズ、27,57,58…放物面鏡、29…拡散板、31…開口部、41…平行平面板、42…ウェッジプリズム、43…ピンホール(開口部)、L1…計測光(光)、L2…被検出光、La…可視域の波長の光、Lb…紫外域の波長の光、S…被計測物。

Claims (11)

  1.  紫外域から可視域にわたる波長の光が入力される入力部と、
     色収差を生じさせた状態で前記光を集光する光学系と、
     前記色収差が生じた前記光のうち、可視域の波長の光が結像せず、紫外域の波長の光が結像する開口部と、を備える光学ユニット。
  2.  前記光学系は、前記光の光軸上に配置された拡散板を更に備える請求項1記載の光学ユニット。
  3.  前記拡散板は、前記光学系と前記開口部との間の前記光の光軸上に配置されている請求項2記載の光学ユニット。
  4.  前記光学系は、レンズ及び放物面鏡を含んで構成されている請求項1~3のいずれか一項記載の光学ユニット。
  5.  前記光学系は、平行平面板又はウェッジプリズム、及び放物面鏡を含んで構成されている請求項1~3のいずれか一項記載の光学ユニット。
  6.  前記開口部は、光ファイバへの入力端である請求項1~5のいずれか一項記載の光学ユニット。
  7.  前記開口部は、ピンホールである請求項1~5のいずれか一項記載の光学ユニット。
  8.  請求項1~7のいずれか一項記載の光学ユニットと、
     紫外域から可視域にわたる波長の光を前記光学ユニットに入力する光源と、
     前記開口部を介して前記光学ユニットから出力した光を計測光として被計測物に導光する導光部と、
     前記被計測物からの被検出光を分光検出する検出部と、
     前記検出部による検出結果に基づいて前記被計測物の膜厚を解析する解析部と、を備える膜厚計測装置。
  9.  前記光源から前記光学ユニットに入力される前記光は、200nm~300nmの波長範囲を含んでいる請求項8記載の膜厚計測装置。
  10.  前記光源から前記光学ユニットに入力される前記光は、300nm~800nmの波長範囲を含んでいる請求項8又は9記載の膜厚計測装置。
  11.  前記光源から前記光学ユニットに入力される前記光は、300nm~1100nmの波長範囲を含んでいる請求項8又は9記載の膜厚計測装置。
     
PCT/JP2020/032919 2019-11-26 2020-08-31 光学ユニット及び膜厚計測装置 WO2021106299A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112020005762.3T DE112020005762T5 (de) 2019-11-26 2020-08-31 Optische Einheit und Schichtdicken-Messvorrichtung
US17/634,298 US11988497B2 (en) 2019-11-26 2020-08-31 Optical unit and film thickness measurement device
JP2021561167A JP7495429B2 (ja) 2019-11-26 2020-08-31 光学ユニット及び膜厚計測装置
KR1020227006578A KR20220101070A (ko) 2019-11-26 2020-08-31 광학 유닛 및 막두께 계측 장치
CN202080081801.9A CN114787580B (zh) 2019-11-26 2020-08-31 光学单元及膜厚测量装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019213046 2019-11-26
JP2019-213046 2019-11-26

Publications (1)

Publication Number Publication Date
WO2021106299A1 true WO2021106299A1 (ja) 2021-06-03

Family

ID=76130454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032919 WO2021106299A1 (ja) 2019-11-26 2020-08-31 光学ユニット及び膜厚計測装置

Country Status (6)

Country Link
US (1) US11988497B2 (ja)
JP (1) JP7495429B2 (ja)
KR (1) KR20220101070A (ja)
CN (1) CN114787580B (ja)
DE (1) DE112020005762T5 (ja)
WO (1) WO2021106299A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497544B1 (ja) 2022-12-06 2024-06-10 浜松ホトニクス株式会社 膜厚計測装置及び膜厚計測方法
WO2024122133A1 (ja) * 2022-12-06 2024-06-13 浜松ホトニクス株式会社 膜厚計測装置及び膜厚計測方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284701A (ja) * 2005-03-31 2006-10-19 Olympus Corp 顕微鏡用照明装置および蛍光顕微鏡装置
JP2007198771A (ja) * 2006-01-24 2007-08-09 Ricoh Co Ltd 膜厚測定方法及び膜厚測定装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914925A (ja) * 1995-06-29 1997-01-17 Shincron:Kk 紫外・可視域光学系
JP2002328306A (ja) * 2001-04-27 2002-11-15 Nikon Corp 紫外線顕微鏡およびこれを用いた観察方法
JP4136891B2 (ja) * 2003-10-17 2008-08-20 株式会社島津製作所 蛍光画像/スペクトルを測定する蛍光測定装置
US20060285120A1 (en) 2005-02-25 2006-12-21 Verity Instruments, Inc. Method for monitoring film thickness using heterodyne reflectometry and grating interferometry
JP2007140013A (ja) * 2005-11-17 2007-06-07 Olympus Corp 光検出光学系および光学システム
JP2007192750A (ja) * 2006-01-20 2007-08-02 Sumitomo Electric Ind Ltd 光計測装置及び広帯域光源装置
JP2008218799A (ja) * 2007-03-06 2008-09-18 Topcon Corp 表面検査方法及び装置
JP5519688B2 (ja) * 2009-10-13 2014-06-11 浜松ホトニクス株式会社 膜厚測定装置および膜厚測定方法
JP2013032981A (ja) * 2011-08-02 2013-02-14 Otsuka Denshi Co Ltd 膜厚測定装置
JP6290637B2 (ja) * 2014-01-30 2018-03-07 浜松ホトニクス株式会社 膜厚計測方法及び膜厚計測装置
JP6487579B1 (ja) 2018-01-09 2019-03-20 浜松ホトニクス株式会社 膜厚計測装置、膜厚計測方法、膜厚計測プログラム、及び膜厚計測プログラムを記録する記録媒体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284701A (ja) * 2005-03-31 2006-10-19 Olympus Corp 顕微鏡用照明装置および蛍光顕微鏡装置
JP2007198771A (ja) * 2006-01-24 2007-08-09 Ricoh Co Ltd 膜厚測定方法及び膜厚測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7497544B1 (ja) 2022-12-06 2024-06-10 浜松ホトニクス株式会社 膜厚計測装置及び膜厚計測方法
WO2024122133A1 (ja) * 2022-12-06 2024-06-13 浜松ホトニクス株式会社 膜厚計測装置及び膜厚計測方法

Also Published As

Publication number Publication date
DE112020005762T5 (de) 2022-09-22
US20220333913A1 (en) 2022-10-20
US11988497B2 (en) 2024-05-21
CN114787580B (zh) 2024-06-04
TW202122746A (zh) 2021-06-16
CN114787580A (zh) 2022-07-22
JP7495429B2 (ja) 2024-06-04
JPWO2021106299A1 (ja) 2021-06-03
KR20220101070A (ko) 2022-07-19

Similar Documents

Publication Publication Date Title
CN111433652B (zh) 显微镜系统和用于采用这种显微镜系统显微地成像的方法
JP5172203B2 (ja) 光学特性測定装置および測定方法
US7495762B2 (en) High-density channels detecting device
WO2021106299A1 (ja) 光学ユニット及び膜厚計測装置
US10393579B2 (en) Miniature spectrometer and a spectroscopic method
TWI766116B (zh) 膜厚計測裝置、膜厚計測方法、膜厚計測程式及記錄膜厚計測程式之記錄媒體
US20060007438A1 (en) Optical processor using detecting assembly and method using same
JP2010197358A (ja) 分光分析装置及び元素分析装置
JP7172959B2 (ja) 分光分析装置及び分光分析方法
JP5879893B2 (ja) 光学フィルターデバイス、光学モジュールおよび電子機器
US20220026271A1 (en) Signal collection spectrometer
JP7486178B2 (ja) 分光分析装置
US11340114B2 (en) Spectrum measurement system
JP2007285761A (ja) ハーフミラーおよびそれを使用した顕微分光測定装置
KR101326204B1 (ko) 박막 두께 측정장치 및 방법
JP7458005B2 (ja) ガラス評価装置、ガラス評価方法
EP4334674A1 (en) Systems and methods to acquire three dimensional images using spectral information
WO2024124098A1 (en) Devices, methods, and systems for imaging, sensing, measuring and recording spectrum
CN116297227A (zh) 光谱椭偏测量方法、系统及存储介质
CN116435205A (zh) 一种光谱椭偏测量系统
JP2005164304A (ja) 照射光学系及びこの照射光学系を備えた粒子処理装置
IL257633A (en) Pinhole mirror
JP2010266476A (ja) 色調調整装置、光源装置及びスペクトル測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20892088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021561167

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20892088

Country of ref document: EP

Kind code of ref document: A1