JP7458005B2 - ガラス評価装置、ガラス評価方法 - Google Patents

ガラス評価装置、ガラス評価方法 Download PDF

Info

Publication number
JP7458005B2
JP7458005B2 JP2021075212A JP2021075212A JP7458005B2 JP 7458005 B2 JP7458005 B2 JP 7458005B2 JP 2021075212 A JP2021075212 A JP 2021075212A JP 2021075212 A JP2021075212 A JP 2021075212A JP 7458005 B2 JP7458005 B2 JP 7458005B2
Authority
JP
Japan
Prior art keywords
glass
light
evaluation device
scattered light
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021075212A
Other languages
English (en)
Other versions
JP2022169279A (ja
Inventor
秀治 折原
芳男 折原
信明 寺門
巧 藤原
儀宏 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIHARA INDUSTRIAL CO., LTD.
Tohoku University NUC
Original Assignee
ORIHARA INDUSTRIAL CO., LTD.
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIHARA INDUSTRIAL CO., LTD., Tohoku University NUC filed Critical ORIHARA INDUSTRIAL CO., LTD.
Priority to JP2021075212A priority Critical patent/JP7458005B2/ja
Publication of JP2022169279A publication Critical patent/JP2022169279A/ja
Application granted granted Critical
Publication of JP7458005B2 publication Critical patent/JP7458005B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、ガラス評価装置、ガラス評価方法に関する。
携帯電話やスマートフォン等の電子機器において、表示部や、筐体本体にガラスが用いられることが多い。このようなガラスには、ガラス強度を上げるために、ガラス表面にイオン交換による表面層(イオン交換層)を形成することにより強度を上げた、所謂化学強化ガラスが使用されている。
化学強化ガラスの表面層は、少なくともガラス表面側に存在しイオン交換による圧縮応力が発生している圧縮応力層を含み、ガラス内部側に該圧縮応力層に隣接して存在し引張応力が発生している引張応力層を含んでもよい。
化学強化ガラスにはイオン交換がしやすく、化学強化工程で、短時間で、表面応力値が高く、応力層の深さが深くできるガラスとして、ナトリウム含有のアルミノシリケート系のガラスが多く使われる。
このアルミノシリケート系ガラスを高温の硝酸カリウム溶融塩に浸漬して、化学強化処理を施す。カリウムイオンは溶融塩中の濃度が高いために、ガラス中のナトリウムイオンと溶融塩中のカリウムイオンが交換される。カリウムイオンはナトリウムイオンより大きさが大きいため、ガラス表面に大きな圧縮応力が発生し、ガラスの強度を上げる。そして、化学強化処理を施されたガラスにおいて、硝酸カリウム溶液塩に接しているガラス表面は一番カリウムイオン濃度が高く、ガラス表面から深さ方向に濃度は下がっていく。
ここで、ガラスの屈折率は、ナトリウムイオンがカリウムイオンにイオン交換されるとより高くなる。つまり、化学強化ガラスにおいて、ガラス表面は一番屈折率が高く、ガラス表面から深さとともに屈折率が下がる。
このような化学強化ガラスの表面層の応力を測定する技術としては、例えば、化学強化ガラスの表面層の屈折率が内部の屈折率より高い場合に、光導波効果と光弾性効果とを利用して、表面層の圧縮応力を非破壊で測定する技術(以下、非破壊測定技術とする)が挙げられる(例えば、非特許文献1参照)。この非破壊測定技術では、単色光を化学強化ガラスの表面層に入射して光導波効果により複数のモードを発生させ、各モードで光線軌跡が決まった光を取出し、凸レンズで各モードに対応する輝線に結像させる。なお、結像させた輝線は、モードの数だけ存在する。
又、この非破壊測定技術では、表面層から取出した光は、入射面に対して、光の電場の振動方向が水平と垂直の二種の光成分についての輝線を観察できるように構成されている。そして、次数の一番低いモード1の光は表面層の一番表面に近い側を通る性質を利用し、二種の光成分のモード1に対応する輝線の位置から、それぞれの光成分についての屈折率を算出し、その二種の屈折率の差とガラスの光弾性係数から化学強化ガラスの表面付近の応力を求めている(例えば、特許文献1参照)。
又、化学強化ガラスの表面層の応力分布の測定に関し、上記の非破壊測定技術の原理を元に、全てのモードに対応する輝線の位置に基づいてガラスの表面からの屈折率分布を求め、更に、光弾性効果に基づいて応力分布を求める方法が提案されている(例えば、特許文献2参照)。
しかし、化学強化ガラスも強度向上と性能向上のため、多様になっており、従来の応力測定方法では十分な評価ができなくなっている。
例えば、リチウム含有のガラスを表面付近の領域はカリウム、表面付近より深い領域はナトリウムの2種のイオンと交換し、応力分布を制御した強化ガラスがある。
このリチウム含有ガラスの化学強化ガラスにおいて、光導波光を利用した従来のガラス評価装置では、リチウムがカリウムに交換されると屈折率が上がるために、リチウムがカリウムに交換された表面付近の応力層を評価することはできるが、リチウムがナトリウムに交換されると屈折率が下がるために、リチウムがナトリウムに交換される表面付近より深い領域は評価することができない。そのため、化学強化層全体の応力分布は測定できない。
このような化学強化ガラスの応力分布を測定するためにレーザ光の散乱光が光弾性効果により強度が変化することを利用したガラス評価装置が提案されている(例えば、特許文献3参照)。このガラス評価装置では、屈折率分布に関係なく化学強化ガラス内部の応力を測定することができる。
(結晶化ガラス)
一方、携帯電話やスマートフォン等の電子機器の、表示部や、筐体本体にガラスの代わりに、強度がさらに強い結晶化ガラスが使わるようになってきた。
結晶化ガラスにおいては、特に表示部に使用するには透明でなければならないため、ここで使用する結晶化ガラスは、結晶粒が可視光の波長より十分小さな結晶化ガラスであり、可視域においては、透明である。そのため、従来の光学的な表面ガラス評価装置で、化学強化工程で形成される表面の応力を測定することができる。
特開昭53-136886号公報 特開2016-142600号公報 国際公開第2018/056121号 特開2020-139940号公報 特許第6203355号 特開平6-347343号公報
Yogyo-Kyokai-Shi(窯業協会誌)87{3}1979 「ラマンスペクトルに基づく化学強化ガラスの局所応力評価式の構築」寺門信明,高橋儀宏,藤原巧,折原秀治,折原芳男、月刊機能材料40 27-35 2020年12月 ASTM C770 - 98 Standard Test Method for Measurement of Glass Stress--Optical Coefficient ProcedureB
しかしながら、背景技術で説明した現在実用化されているガラスの応力測定方法は全て光弾性効果を利用している。そのため、応力値を算出するには光弾性係数を使用するが、この光弾性係数はガラスの組成で異なるため応力測定されるガラスの種類ごとに、光弾性係数を測定する必要がある。
そして、化学強化ガラスでは、強い圧縮応力を発生させるために、ガラス中の一部のイオンを交換する。その交換するイオンは全体の組成に対し20%近くに達する場合もあり、ガラスの組成が大きく変わり、光弾性係数も変化している。しかし、従来の強化ガラスの応力測定方法では、光弾性係数はガラス素材の係数を一定であるとして計算しており、化学強化された表面付近の応力値は、実際の値と異なることが懸念されている。
さらに、ガラスの光弾性係数を測定する公に認められた方法として、非特許文献3に記載の方法がある。この方法では、ガラスに4点曲げ法により応力を発生させ、光弾性効果による複屈折量を測定して光弾性係数を求める。この方法では、光弾性係数を測定するガラスに4点曲げで応力を発生させるときに、ガラスの一つ面に最大の圧縮応力、反対の面に最大の引張応力が発生する。ガラスは通常、外力により数十MPaの引っ張り応力がかかると割れてしまうので、測定できる光弾性係数は10MPa以下の応力での係数である。しかし、化学強化ガラスの表面には数100MPaから1000MPa近くまで、圧縮応力が発生しており、低い応力で測定された光弾性係数が当てはめられるか疑問視される。また、非常に薄いガラスでは精度よく光弾性係数を測定することが難しい。
さらに、屈折率分布をいとわないレーザ光の散乱光が光弾性効果により強度変化することを利用したガラス評価装置においては、強化ガラスに入射するレーザ光の偏光位相差を時間的に変化させ、散乱光強度を測定し応力を算出するために、1回の応力測定に、数秒から数十秒と時間をかける必要があり、強化ガラスの生産での品質管理では生産性が低いという課題があった。
一方光弾性効果を使わないガラス中の応力測定方法として、ラマンスペクトルを利用した応力測定方法も検討されている(特許文献4、非特許文献2)。この応力測定方法では、ガラスのある深さでのラマンスペクトルのD1、D2、及びA1ピークから応力を算出できるとしている。化学強化による圧縮応力の発生は、イオン交換率(プラスの効果)と構造緩和(マイナスの効果)によって決まる。従来の光弾性効果を利用した方法では、それらを分離して評価することができなかった。例えば、ある二地点の応力値が等しいとしても、それが高いイオン交換率によるものか、構造緩和が効果的に抑制された結果なのかは判別できない。ラマン評価法では、D1、D2(構造緩和)、A1(構造緩和+イオン交換)に注目することで、それらの寄与を区別できるとしている。
しかし、この光弾性効果を利用しない特許文献4、および非特許文献2に記載の方法では応力の深さ方向の分布を測定する方法として、共焦点顕微鏡を使用することが提案されている。特許文献5は共焦点ラマン顕微鏡の例である。共焦点ラマン顕微鏡では、ある特定の深さのラマンスペクトルを測定することができるため、この共焦点ラマン顕微鏡のスペクトルデータを特許文献4に記載の方法で解析することで、光弾性効果を利用せずに、強化ガラスの深さ方向の応力分布を測定できる。しかし、この共焦点ラマン顕微鏡では一度にある深さの一点しか測定ができない。そのために、深さ方向の分布を知るためには、顕微鏡の焦点を少しずつずらして、複数回測定する必要があり、精度の高い移動機構が必要で、かつ、幅広く分布を測定するには、非常に時間がかかる。
また、結晶化ガラスは、一般的なガラスより強度が高い。そのため、化学強化した結晶化ガラスは通常の強化ガラスより高い強度を得られる。しかし、その結晶化ガラスでは、強度等の物理的な性能が、結晶状態(粒径、結晶粒密度、結晶種)等に大きく影響される。そのため、結晶化ガラスでは、化学強化による応力分布と共に、結晶化ガラスの強度にかかわる物理量を測定する必要がある。更に、この再結晶工程で生成された結晶も、化学強化工程で変化する可能性もあり、その影響はガラス表面からの深さで異なり、化学強化液と接する表面において一番影響が大きく、深さ方向に分布を持つことが考えられる。
本発明は、上記の点に鑑みてなされたものであり、光弾性効果を利用せずにガラスの様々な物理量を測定可能なガラス評価装置を提供することを目的とする。
本ガラス評価装置は、レーザ光源と、被測定体であるガラスの表面層内に前記レーザ光源からのレーザ光を斜めに入射させる光供給部材と、前記表面層内に入射された前記レーザ光からの散乱光を分光する回折格子と、前記回折格子により分光された光を電気信号に変換する撮像素子と、前記電気信号をスペクトルデータに変換し、前記スペクトルデータに基づいて前記ガラスの表面から所定深さの物理量を求める演算部と、を有し、前記撮像素子は、2次元に配列された画素を有し、前記回折格子は、分光方向が前記レーザ光の進行方向と垂直となるように配置され、前記演算部は、前記撮像素子において、前記分光方向と平行な方向に配列された画素からの情報を前記スペクトルデータに変換し、前記分光方向と垂直な方向に配列された画素からの情報に基づいて前記ガラスの深さ方向の物理量の分布を求める
開示の技術によれば、光弾性効果を利用せずにガラスの様々な物理量を測定可能なガラス評価装置を提供できる。
第1実施形態に係るガラス評価装置を例示する図である。 図1の光供給部材付近の部分拡大図である。 図1の点線枠B内を方向Aより視た図である。 通過領域制限部材に結像されたガラス中の散乱光画像とそれを説明する図である。 撮像素子110とその上に結像される分光された散乱光画像である。 図5に示す撮像素子110のY=5とY=10におけるX方向の輝度値を示す図である。 ガラス評価装置1で測定したガラスのある深さでのラマンスペクトルの一例である。 ガラス評価装置1の応力分布を測定する方法を例示するフローチャートである。 ガラス評価装置1の演算部120の機能ブロックを例示する図である。 結晶化ガラスのラマンスペクトルの一例である。 ガラスの主成分であるSiOの結晶である石英のラマンスペクトルの一例である。 第1実施形態の変形例1に係るガラス評価装置を例示する図である。 第2実施形態に係るガラス評価装置を例示する図である。 光供給部材40とガラス200との界面を進むレーザ光Lの散乱光画像を例示する図である。 光供給部材40とガラス200との間に液体150を挟むための構造部の第1の例を示す図である。 光供給部材40とガラス200との間に液体150を挟むための構造部の第2の例を示す図である。 光供給部材40とガラス200との間に液体150を挟むための構造部の第3の例を示す図である。
以下、図面を参照して発明を実施するための形態について説明する。各図面において、
同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
〈第1実施形態〉
(全体構成)
図1は、第1実施形態に係るガラス評価装置を例示する図である。図1に示すように、ガラス評価装置1は、レーザ光源10と、偏光部材20と、光供給部材40と、第一光変換部材50と、光波長選択部材60と、通過領域制限部材70と、第二光変換部材80と、回折格子90と、第三光変換部材100と、撮像素子110と、演算部120とを有する。
200は、被測定体となるガラスである。ガラス200は、例えば、化学強化法や風冷強化法等により強化処理が施された強化ガラスである。
(レーザ光源、偏光部材)
レーザ光源10は、光供給部材40からガラス200の表面層にレーザ光Lを斜めに入射するように配置されており、レーザ光源10と光供給部材40との間に、偏光部材20が挿入されている。ガラス評価装置1がラマン散乱光を用いて測定を行う場合には、レーザ光Lの偏光方向がガラス200の表面に対して水平に設定された直線偏光になるように偏光部材20が挿入されることが好ましい。これにより、ラマン散乱光を効率よく発生させることができる。ただし、偏光部材20は、必要に応じて挿入すればよい。また、レーザ光源10と偏光部材20との間にスペックル低減素子を挿入してもよい。
レーザ光源10のビーム径は、ガラス200の表面210付近で一番小さくなるように絞られている。また、レーザ光Lがガラス200へ入射するときの角度は、ガラス200の表面210に対して、10°以上30°以下に設定される。これは10°を下回ると、光導波効果によりレーザ光Lがガラス200の表面210を伝播し、ガラス200の内部の情報を取れなくなるからである。逆に30°を超えると、レーザ光Lの光路長に対するガラス200の内部の深さ分解能が下がるため好ましくない。レーザ光Lがガラス200へ入射するときの角度は、ガラス200の表面210に対して、15°±5°に設定することがより好ましい。
レーザ光源10としては、波長が405nm、532nm、785nmなどのDPSS(Diode Pumped Solid State)レーザを使用できる。例えば、物理量の検出にラマン散乱光を使用する場合には、バンドパスフィルタでレーザ光源10と同波長を除去するが、その際にレーザ光源10の波長が一定でないと、バンドパスフィルタが効かなくなる。DPSSレーザは波長の安定性がよいため(温度変化等の影響を受けて波長が変化しにくいため)、ラマン散乱光を使用する際に特に好適である。ただし、レーザ光源10として、DPSSレーザに代えて、他の固体レーザ、ガスレーザ、半導体レーザなども使用できる。
ガラス200の深さ方向の分解能を上げるためには、レーザ光Lの最小ビーム径の位置がガラス200のイオン交換層内にあり、最小ビーム径が20μm以下であることが好ましい。レーザ光Lの最小ビーム径の位置を、ガラス200の表面210とすると、更に好ましい。なお、レーザ光Lのビーム径が深さ方向の分解能となるため、必要な深さ方向の分解能以下のビーム径にする必要がある。ここで、ビーム径とはビーム中央の輝度が最大になる時の1/e(約13.5%)の幅を意味し、ビーム形状が楕円形状やシート状の場合、ビーム径は最小幅を意味する。但し、この場合は、ビーム径の最小幅がガラス深さ方向を向いている必要がある。
(光供給部材)
光供給部材40は、被測定体であるガラス200の表面210に光学的に接触した状態で設置されている。光供給部材40は、被測定体であるガラス200の表面層内にレーザ光源10からのレーザ光Lを斜めに入射させる。光供給部材40としては、例えば、光学ガラス製のプリズムを用いることができる。この場合、ガラス200の表面210において、光線がプリズムを介して光学的に入射するために、プリズムの屈折率はガラス200の屈折率とほぼ同じ(±0.2以内)にする必要がある。屈折率を同じにすることで、界面での反射をなくすことができる。
図2は、図1の光供給部材付近の部分拡大図である。図2において、光供給部材40のレーザ光Lが入射する第1面41は、レーザ光Lに対して略垂直である。ただし、レーザ光Lが第1面41に対して完全に垂直の場合、反射光がレーザ光源10に戻るので、これを防止するために、第1面41はレーザ光Lに対して-2°~-0.5°又は+0.5°~+2°傾いていることが好ましい。
また、光供給部材40は、レーザ光Lのガラス200内での散乱光Lsを取り出す光取り出し部材としての機能も有している。光供給部材40において、散乱光Lsを取り出す第2面42は、レーザ光Lと略平行であることが好ましい。これは、散乱光Lsが通過領域制限部材70上に結像されるときに、結像される像のピントが全面で合うようにするためである。第1面41及び第2面42にレーザ光Lの波長での反射率を下げるために、反射防止膜を設けてもよい。
なお、図2で説明したレーザ光Lからの散乱光Lsは、ガラス200にレーザ光Lが入射する表面210の近傍の散乱光であるが、ガラス200が薄い場合、ガラス200のレーザ光Lが出射する裏面211近傍からの散乱光も同様に測定に使用することができる。
(浸液)
光供給部材40とガラス200との間に、ガラス200の屈折率とほぼ同じ屈折率を持つ液体を挟んでもよい。これにより、ガラス200内に、効率よくレーザ光Lを入射することができる。これについては、第2実施形態で詳しく説明する。
(散乱光の結像)
ガラス200の表面層内に入射されたレーザ光Lは、微量の散乱光を発生する。第一光変換部材50は、ガラス200の表面層内に入射されたレーザ光Lからの散乱光をガラス200の外部に結像する。具体的には、ガラス200中で発生した散乱光中、レーザ光Lの進行方向に対して垂直で、かつレーザ光Lがガラス200の表面210に入射する際の入射面に平行な方向に散乱された散乱光Lsは、光供給部材40を通過する。そして、光供給部材40を通過した散乱光Lsは、第一光変換部材50により、散乱光画像としてガラス200の外部に結像される。第一光変換部材50としては、例えば、ガラス製の凸レンズや、複数の凸レンズや凹レンズを組み合わせたレンズを用いることができる。また、レンズの倍率は、例えば、1倍から10倍が使われる。
(分光機能)
図3は、図1の点線枠B内を方向Aより視た図である。図1の点線枠B内には、通過領域制限部材70、第二光変換部材80、回折格子90、第三光変換部材100、及び撮像素子110が含まれている。点線枠B内については、方向Aより視た方が説明しやすいため、図3により説明する。
第一光変換部材50により散乱光Lsが結像された位置には、第一光変換部材50に結像された光の一部を通過させる通過領域制限部材70が配置されている。通過領域制限部材70上の全ての位置でピントを合わせるために、第一光変換部材50による結像系の光軸はレーザ光Lに対してほぼ直角で、レーザ光Lのガラス200の表面210への入射面に対して平行であることが好ましい。
第一光変換部材50により通過領域制限部材70の位置に結像された光の一部は、通過領域制限部材70のスリット70xを通過する。スリット70xの形状は細長い長方形であり、例えば、スリット70xの短辺の幅は10μm~100μm、スリット70xの長辺の幅は100μm~10000μmである。
そして、スリット70xの短辺は、図3の図面に対して水平方向(図1の図面に対しては垂直方向)である。また、スリット70xの長辺は、図3の図面に対して垂直方向(奥行き方向)(図1の図面に対してはレーザ光Lの進行方向)である。すなわち、スリット70xの長辺は、レーザ光Lの進行方向に平行である。なお、図3では、スリット70xの短辺側が間隙として図示されている。以降、スリット70xの短辺方向の幅を通過領域の幅、長辺方向の幅を通過領域の長さと称する場合がある。
通過領域制限部材70のスリット70xを通過した散乱光画像の一部の光は、第二光変換部材80より平行光にされ、回折格子90に照射される。第二光変換部材80としては、例えば、ガラス製の凸レンズや、複数の凸レンズや凹レンズを組み合わせたレンズを使用できる。また、第二光変換部材80として、凹面鏡や放物面鏡を使用してもよい。
回折格子90は、分光方向がレーザ光Lの進行方向と垂直な方向となるように配置されている。言い換えれば、回折格子90は、分光方向がスリット70xの長辺方向と垂直な方向となるように配置されている。回折格子90は、ガラス200の表面層内に入射されたレーザ光Lからの散乱光を分光する。具体的には、回折格子90は、第二光変換部材80からの平行光を分光する。回折格子90としては、例えば、線密度が300本/mmから1800本/mmの透過型回折格子を使用できる。第二光変換部材80から回折格子90に入射した光は、分光されて反対側に出射される。回折格子90として、反射型回折格子を使用してもよい。ただし、その場合、分光される光は、入射された光と同じ側に反射されるので、第三光変換部材100及び撮像素子110の位置は図1や図2とは異なり、入射された方向に設置される。
回折格子90により分光された光は、第三光変換部材100により、撮像素子110上に結像される。撮像素子110上に結像される画像は、通過領域制限部材70のスリット70xを通過した通過領域制限部材70上の画像が分光されたものである。なお、図3等のLdは、回折格子90により分光された光を示している。
(撮像素子)
撮像素子110は、回折格子90により分光されて第三光変換部材100により撮像素子110上に結像された散乱光画像の光を電気信号に変換する機能を備えており、2次元に配列された画素を有する。詳しくは、撮像素子110は、例えば、受光した光を電気信号に変換し、2次元画像を構成する複数の画素毎の輝度値を画像データとして、演算部120に出力することができる。撮像素子110としては、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の素子を用いることができるが、同様の機能を備えた他の素子を用いてもよい。
撮像素子110の画素の2次元の並び中、図3の図面に対して平行な方向の画素並びの方向は、分光されたスペクトルデータとなる。一方、図3の図面に対して垂直な方向の画素並びの方向は、ガラス200中のレーザ光Lによる散乱光画像のレーザ光Lに沿った方向、すなわち、ガラス200の深さ方向となる。
(演算部)
演算部120は、撮像素子110から画像データを取り込み、画像処理や数値計算をする機能を備えている。演算部120は、これ以外の機能(例えば、レーザ光源10の光量や露光時間を制御する機能等)を有する構成としてもよい。
演算部120は、例えば、撮像素子110から取得した電気信号をスペクトルデータに変換し、変換したスペクトルデータに基づいてガラス200の表面から所定深さの物理量や深さ方向の物理量の分布を求める。具体的には、演算部120は、撮像素子110において、回折格子90の分光方向(すなわち、レーザ光Lの進行方向と垂直な方向)と平行な方向に配列された画素からの情報をスペクトルデータに変換する。また、演算部120は、撮像素子110において、回折格子90の分光方向と垂直な方向(すなわち、レーザ光Lの進行方向と平行な方向)に配列された画素からの情報に基づいてガラス200の深さ方向の物理量や物理量の分布を求める。
演算部120は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、メインメモリ等を含むように構成することができる。この場合、演算部120の各種機能は、ROM等に記録されたプログラムがメインメモリに読み出されてCPUにより実行されることによって実現できる。演算部120のCPUは、必要に応じてRAMからデータを読み出したり、格納したりできる。但し、演算部120の一部又は全部は、ハードウェアのみにより実現されてもよい。又、演算部120は、物理的に複数の装置等により構成されてもよい。演算部120としては、例えば、パーソナルコンピュータを用いることができる。
演算部120は、撮像素子110の2次元配列された画素の電気信号のうち、図3の図面に水平な横方向1列の画素の電気信号を、ガラス200中のある深さの散乱光のスペクトルデータに変換することができる。演算部120は、この変換を図3の図面に垂直な撮像素子の縦方向の画素並びについて順次行うことにより、ガラス200中の深さ方向のスペクトルデータの分布を得ることができる。
(分光器詳細)
図3に示す部分は、一般的に分光器とよばれる装置に相当する機能をもち、レーザ光源10の波長λから100nm程度長い波長の範囲、すなわちλ~λ+100nmのスペクトルデータを、分解能3nm以下で分光することができる。
λ~λ+100nmの波長範囲にはラマン散乱光のスペクトル(単にラマンスペクトルと称する場合がある)が含まれている。演算部120でラマン散乱光のスペクトルデータを解析することで、物理量として、ガラス200の組成、分子構造(ガラス構造)、応力などを知ることができる。ガラス評価装置1では、さらに、ガラス200の表面210から深さ方向におけるラマンスペクトルの違い、すなわちラマンスペクトルの分布を測定することができる。これにより、ガラス200における、応力の深さ方向の分布や、組成、分子構造(ガラス構造)などの、強度にかかわる物理量の変化、分布などを知ることができる。
(深さ方向の測定)
図4は、通過領域制限部材に結像されたガラス中の散乱光画像とそれを説明する図である。図4(a)は実際の散乱光画像であり、図4(b)は実際の散乱光画像を説明するために模式的に示した図である。
図4(b)において、領域Gの部分はガラス200中であり、領域Hの部分は、プリズムあるいは浸液部分であり、点Pは、その境目すなわちガラス200の表面210となる。枠SLは通過領域制限部材70の通過領域(スリット70x)であり、この通過領域を通過した画像の光が、第二光変換部材80及び第三光変換部材100、並びに回折格子90により、撮像素子110上に分光された画像として結像される。
通過領域制限部材70上の散乱光画像と撮像素子110上の分光された画像の大きさの比は、第二光変換部材80及び第三光変換部材100であるレンズの焦点距離の比となり、焦点距離が同じ場合は、同じ大きさの画像となる。
図5は、撮像素子110とその上に結像される分光された散乱光画像である。説明しやすくするために、散乱光はλ1とλ2の2種の単波長の成分だけをもつと仮定し、またその波長での成分はガラス200の深さ方向で強度が異なっていると仮定する。
図5の撮像素子110では、画素Pixが2次元に並んでいる。図5のX方向は、図3の図面に対して水平な方向であり、回折格子90の分光方向である。また、図5のY方向は、図3の図面に対し垂直な方向であり、ガラス200の深さ方向である。また、撮像素子110の画素数は、実際は縦横とも100以上であるが、図5では、簡略化させるために、21×21画素の撮像素子を図示している。
図6(a)及び図6(b)は、図5に示す撮像素子110のY=5とY=10におけるX方向の輝度値を示しており、ガラス200の異なる深さでの分光されたスペクトルである。図6(a)及び図6(b)は、散乱光に含まれるλ1のスペクトルとλ2のスペクトルであり、Y=5とY=10でのそれぞれの強度が異なるよう図示してある。つまり、図6(a)及び図6(b)は、各スペクトルのガラス200の深さでのスペクトル強度が異なる場合の例である。このように、ガラス200の深さごとに、λ1及びλ2の波長の強度を知ることができる。
言うまでもないが、ここの説明では、2つの波長の成分を持つ散乱光で説明したが、実際は、多くの波長、あるいは連続の成分をもつスペクトル成分である。
また、測定されたスペクトルのガラス200の深さ位置を求めることができる。例えば、図4(b)の点Qでのガラス200の表面210からの深さDは、第一光変換部材50による結像倍率が2倍で、ガラス200中に入射されたレーザ光Lの角度がガラスの表面に対して15°の場合、図4(b)の点Pと点Qの距離をPQとすると、深さD=1/2×PQ×sin15°となる。第二光変換部材80及び第三光変換部材100の焦点距離が同じ場合、分光され撮像素子110上に結像された画像の大きさも図5と同じである。
そして、撮像素子110の画素のピッチが10μmの場合、1画素当たりのガラス200の深さは1.3μmとなり、例えば、図5のY=5とY=10との深さの差は6.5μmとなる。また、10μmピッチで1000画素の撮像素子の場合では、1.3mmまでの深さを測定できる。
(感度、分解能メリット)
このように、レーザ光Lが斜めに入射されているために、ガラス200の深さ方向について、容易に高い空間分解能を得ることができる。また、レーザ光Lが斜めに入射されていることから、共焦点顕微鏡などに対して、同じ空間分解能で比べると、感度を高くすることができる。例えば、レーザ光Lの深さ位置が10μm異なると、レーザ光Lは、1/sin15°=約4倍の距離進むことになり、4倍の広さからの散乱光を測定することになるため、感度を4倍高くすることができる。
(深さ方向の空間分解能)
ガラス200の深さ方向の応力分布の空間分解能は前述した撮像素子110の画素ピッチ以外に、レーザ光Lのビーム径、通過領域制限部材70の通過領域であるスリット70xの幅で決まる。
まず、レーザ光Lのビーム径は前述したように、φ20μm以下に設定されており、深さ方向の空間分解能は、このビーム径とほぼ同じである。そのため、レーザ光Lの測定する部分でのビーム径を小さくすることで、さらに空間分解能を上げることができる。例えば、レーザ光Lのビーム径は、レーザ光Lの波長を532nmとすると、最小で1μm程度まで絞れるため、分解能も1μm程度まで上げることができる。ただし、その場合、高い分解能で測定できる深さ範囲は狭くなる。また、その場合、撮像素子110も高解像度が必要だが、前述したように画素ピッチが10μmで深さ方向の解像度が1.25μmであり、撮像素子110の画素ピッチはさらに小さいものが実用化されているため問題はない。
一方、レーザ光Lのビーム径を絞らなくとも、第一光変換部材50のNAを大きくし、倍率を上げ焦点深度を狭くし、さらに、通過領域制限部材70のスリット70xの幅を狭くすることで、共焦点顕微鏡のように空間分解能を上げることができる。
(散乱光の検出方向、偏光方向)
ラマン散乱光は微弱であるため、ラマン散乱光以外の成分の検出系への入射を防ぐことが好ましい。本実施形態では、ラマン散乱光の散乱光強度が入射されるレーザ光Lの偏光方向に影響されることを利用し、レーザ光Lに対して90°方向の散乱光を取得する。そのため、ラマン散乱光以外の成分である、レーザ光源10の方向へ反射する正反射光、レーザ光進行方向に進む正透過光やミー散乱光の影響を除くことができる。
ガラス評価装置1が偏光部材20を有し、かつ、散乱光Lsのうちラマン散乱光を測定する場合、通常、偏光部材20により、レーザ光Lの偏光方向は、測定をする散乱光Lsの進行方向に対して直角(言い換えれば、ガラス200の表面に対して水平)にする。しかし、偏光部材20を90度回転し、測定する散乱光Lsの進行方向に対してレーザ光Lの偏光方向を水平(言い換えれば、ガラス200の表面に対して垂直)にすると、散乱強度は非常に弱くなる。
偏光部材20が回転される前の散乱光Lsと回転された後の散乱光Lsは共通のバックグランドをもち、このバックグランドには蛍光などの入射光の偏光方向にほとんど依存しないスペクトルも含まれる。そこで、演算部120は、あらかじめレーザ光Lの偏光を散乱光Lsの進行方向に対して水平にして測定したスペクトルデータをバックグランド信号としてRAM等に記憶しておいてもよい。そして、演算部120は、レーザ光Lの偏光方向が散乱光Lsの進行方向に対して垂直になるように偏光部材20を配置して測定したラマン散乱光のスペクトルデータから、記憶しているバックグランド信号を差し引く処理を行ってもよい。これにより、散乱光Lsとしてラマン散乱光を測定する際のスペクトルデータのS/Nを向上することができる。
レーザ光Lと、通過領域制限部材70との間に、偏光部材を挿入してもよい。この偏光部材の偏光方向は、図1におけるレーザ光Lがガラス200の表面210に入射する際の入射面に対して垂直方向にするのが最もよい。散乱光中、ラマン散乱光は直線偏光であり、蛍光、ミー散乱光は偏光解消度が大きいので、それらの散乱光成分をより抑制する効果がある。特に、結晶化ガラスなどでは、散乱を生じさせる結晶粒がガラスに比べ大きく、ミー散乱光成分が多いため、効果的である。
(画素加算による深さ方向の分解能の可変と感度)
ラマン散乱光の強度が弱い場合、図5の撮像素子110において、Y方向、すなわちガラス200の深さ方向の画素並びについて、隣り合う複数の画素の信号を加算、あるいは平均化することで、深さ方向の空間分解能はやや劣化するが、感度を上げることができる。この処理は、演算部120で容易に行うことができる。
(レイリー散乱光除去1)
レーザ光Lと通過領域制限部材70との間に、少なくともレーザ光Lの波長を含み、レーザ光Lの波長より短い波長、あるいは、レーザ光Lの波長のみを透過させない光波長選択部材60を挿入してもよい。すなわち、ガラス評価装置1は、散乱光Lsに含まれるレイリー散乱光を除去する光波長選択部材60を有してもよい。
散乱光中、強度が強く、レーザ波長と同じ波長であるレイリー散乱光成分を除去することで、レーザ光Lの波長により近い、すなわち、より周波数の低いラマン散乱光を測定することが可能となる。光波長選択部材60としては、例えば、誘電体膜を多層にしたバンドパスフィルタやショートパスフィルタを使用できる。また、光波長選択部材60は、光軸に対して傾けて配置し、カットオフ波長を可変できるようにしてもよい。
(レイリー散乱光除去2)
また、レーザ光Lの波長と同じ波長であるレイリー散乱光成分を除去する方法として、分光されたレーザ波長の位置を撮像素子110の画素並びから外すようにしてもよい。
そもそも、分光器は波長を分ける機能を有するため、ラマン散乱光と異なる波長のレイリー散乱光は分離できる。しかし、撮像素子110上の分光されたスペクトル像において、レイリー散乱光がラマン散乱光より極端に強い場合、例えば、100倍以上あると、レイリー散乱光の波長の位置の画素に非常に強い光が入射される。そのため、その光で発生した電子が過剰になり、周辺のラマン散乱光のスペクトル成分の画素にまで漏れ出し、ラマン散乱光のスペクトルを測定できなくなる、いわゆるハレーションを起こすおそれがある。
そこで、撮像素子110において、散乱光Lsに含まれるレイリー散乱光の波長部分の画素は光学的に遮蔽されていることが好ましい。このようにすることで、ハレーションをなくし、よりレイリー散乱光の波長に近い、すなわち、周波数の低いラマン散乱光を測定することができる。
撮像素子110のレイリー散乱光の波長部分の画素を光学的に遮蔽する具体的な方法として、撮像素子のレイリー散乱光の波長の画素部分を金属の薄膜や、少なくともその波長の光を吸収する樹脂フィルターで覆うことが挙げられる。前者は、撮像素子を作製する工程でアルミ配線などの層を使うことで実現できる。また、後者は、カラーの撮像素子ではオンチップのフィルターを形成する技術が使われており、その技術により実現できる。一方、一般的なシリコンウエハ上に形成されるCCDやCMOSセンサーなどの撮像素子は、有効な画素のエリア以外、例えばオプティカルブラックエリア、読み出し回路エリアなど、全てのエリアが、アルミ配線の層を利用し、遮蔽されているのが一般的である。そこで、レイリー散乱光の波長の位置を有効な画素エリア外になるように、撮像素子の位置を設定することで、レイリー散乱光による撮像素子のハレーションを抑制できる。
(応力の算出方法)
ラマンスペクトルから応力を決定する方法を説明する。例えば、非特許文献2中の図2は、一般的なアルミノシリケート系化学強化ガラスにおけるラマンスペクトルであり、イオン未交換領域と、イオン交換によって圧縮応力が発生した領域のスペクトルが示されている。特許文献4及び非特許文献2によると非特許文献2中の図2のアルミノシリケート系化学強化ガラスのラマンスペクトル中、特徴的なピークとして、Boson、D1、D2、及びA1がそれぞれ60、480、580、及び1100cm-1付近に観察され、Bosonピーク位置、D1とD2のピーク強度比、及びA1ピーク位置が化学強化による圧縮応力に影響があり、ラマン散乱光を分光してこれらのピークを測定することで、応力を算出できるとしている。
具体的な方法としては、測定する強化ガラスについて、あらかじめヤング率及びポアソン比を測定し、深部におけるイオン未交換部と最表面近傍のイオン交換部のラマンスペクトルを取得し、Bosonピーク位置、D1とD2のピーク強度比、及びA1ピーク位置を決定する。続けて、最表面近傍のイオン交換部の組成を電子線プローブマイクロアナライザーやX線光電子分光などを用いて決定し、その組成に一致する溶融急冷ガラスを作製し、ラマンスペクトルを取得し、Bosonピーク位置、D1とD2のピーク強度比、及びA1ピーク位置を決定する。これらのデータから非特許文献2の式(10)における右辺第1項の圧縮応力に係る定数項が決定でき、各深さにおけるD1とD2のピーク強度比、及びA1ピーク位置と非特許文献2の式(3)の応力のつり合い条件から、各深さにおける応力を算出することができる。
図7は、ガラス評価装置1で測定したガラスのある深さでのラマンスペクトルの一例であり、引用した非特許文献2と同様、応力を算出するために必要なD1、D2、及びA1ピークが確認できる。D1、D2、及びA1ピークは小さいため、前述の偏光部材20により偏光方向を90°回転したスペクトルデータを強度基準とすることが好ましい。すなわち、前述のバックグランド信号を差し引く処理を行うことにより蛍光などの入射光の偏光方向に依存しないスペクトルを減じて、スペクトルデータのS/Nを向上することが好ましい。さらに、次に説明するピーク値の分離方法と組み合わせることにより、分離精度を向上させ、D1とD2のピーク強度比とA1ピーク位置を正確に決定することができる。
(ピーク強度とピーク位置の測定方法)
D1とD2ピークの強度、及びA1ピークの位置を決定するために、D1、D2、及びA1ピークを中心とする少なくとも3つのガウス波形を用いてスペクトルを最小二乗フィッティングし、D1とD2ピーク強度比と正確なA1ピーク位置を決定できる。本実施形態では、ガラス200のある深さでのラマンスペクトルを得ることができるので、D1、D2、及びA1ピークから、深さ方向の応力分布を測定することができる。
このように、ラマンスペクトルの分布に基づいて、D1、D2、及びA1ピークを用いて、ある深さの応力を計算することができる。さらに、ガラス評価装置1では、深さごとのガラス200のラマンスペクトルを機械的な移動をすることなく、2次元の撮像素子110で一度に測定できる。すなわち、ある深さの範囲で連続的に各深さでのラマンスペクトルを測定し、深さ方向の応力分布を測定することができる。
(測定のフロー)
次に、図8及び図9を参照しながら測定のフローについて説明する。図8は、ガラス評価装置1の応力分布を測定する方法を例示するフローチャートである。図9は、ガラス評価装置1の演算部120の機能ブロックを例示する図である。
まず、図8に示すステップS101では、レーザ光源10からのレーザ光Lを、光供給部材40を介して、被測定体であるガラス200内に表面210に対して斜めに入射させる(光供給工程)。
次に、ステップS102では、ガラス200内に入射したレーザ光Lからの散乱光Lsを通過領域制限部材70のスリット70x上に結像する(散乱光画像結像工程)。
次に、ステップS103では、通過領域制限部材70のスリット70xを通過したレーザ散乱光画像を分光し、撮像素子110に結像する(分光工程)。
次に、ステップS104では、撮像素子110は、撮像素子面上の画像を電気信号(デジタルデータ)に変換し、演算部120へ送る(撮像工程)。
ステップS105~S107は、撮像工程で得られた電気信号(デジタルデータ)をスペクトルデータに変換し、スペクトルデータに基づいてガラス200の表面から所定深さの物理量を求める演算工程である。
まず、ステップS105では、演算部120のスペクトルデータ作成手段121は、撮像工程で得られた分光された散乱光画像の画像データを用いて、レーザ光Lに沿ったガラス中の各深さのスペクトルデータを作成する(スペクトルデータ作成工程)。
次に、ステップS106では、演算部120のスペクトル強度測定手段122は、レーザ光Lに沿ったガラス中の各深さのスペクトルデータからラマンスペクトルのD1とD2の強度及びA1のピーク位置を測定する(スペクトル強度測定工程)。
次に、ステップS107では、演算部120の物理量算出手段123は、測定したラマンスペクトルに基づいて、所望の物理量を算出する(物理量算出工程)。例えば、演算部120は、レーザ光Lに沿ったガラス200中の各深さのラマンスペクトルのD1、D2の強度比及びA1のピーク位置に基づいて、ガラス200の表面210からの深さ方向の応力分布を測定する。或いは、演算部120は、レーザ光Lに沿ったガラス200中の各深さのラマンスペクトルの各ピークに基づいて、ガラス200の強度を評価する物理量を算出してもよい。もちろん、これらの両方を算出してもよい。なお、算出した応力分布や物理量を、表示装置(液晶ディスプレイ等)に表示させてもよい。
このように、ガラス評価装置1では、従来のガラス評価装置とは異なり、光弾性効果を利用していない。そして、ガラス評価装置1では、被測定体となるガラスの屈折率分布にかかわらず、散乱光Lsに含まれるラマン散乱光等に基づいて、どのようなガラスにおいても、一度に短時間でガラスの深さ方向の応力分布を含む様々な物理量を測定可能である。
(ガラス200が結晶化ガラスである場合の例)
図10は、結晶化ガラスのラマンスペクトルの一例である。図11は、ガラスの主成分であるSiOの結晶である石英のラマンスペクトルの一例であり、比較のために示している。図11の結晶である石英ではラマンスペクトルは結晶による鋭いピークが見られるが、図10の結晶化ガラスのラマンスペクトルは一部鋭いピークがあるものの非常にブロードである。結晶化ガラスはガラス中に体積で10~80%結晶粒が混じっている状態であるため、そのラマンスペクトルは、図10のように、ガラスのブロードのピークに結晶の鋭いピークが混じったスペクトルとなる。
この結晶粒からの鋭いピークの位置、幅、及びガラスからのブロードのスペクトルとの強度の比、などから、結晶粒の結晶状態(粒径、結晶粒密度、結晶種)、結晶化ガラスの結晶相の割合、などを知ることができる。
しかし、結晶化ガラスではガラス材料を熱処理により再結晶させるが、ガラスの表面付近と内部で、結晶化ガラスの結晶相の割合、結晶粒の結晶状態(粒径、結晶粒密度、結晶種)などが均一でないことがある。また、結晶化ガラスにおける化学強化工程は再結晶工程の後で行われるが、化学強化工程は400から500℃程度の高温で行われ、また、カリウムイオンはナトリウムイオンが表面から内部に拡散していく過程で結晶構造が変化する場合がある。特に表面付近がこの影響を受けやすく、表面付近の結晶化ガラスの構造が変化してしまうことがある。
ガラス評価装置1では、散乱光Lsに含まれるラマン散乱光等に基づいて、上記と同様の方法により結晶化ガラスの表面付近の結晶化ガラス構造の結晶状態(粒径、結晶粒密度、結晶種)、及び結晶相の割合などの変化を測定することができる。
結晶化ガラスでの化学強化による表面付近の応力は、前述の強化ガラスの例と同様、ラマンスペクトルのD1/D2の比から求めることができるほか、結晶のピーク位置からも求めることができる。結晶化ガラスのラマンスペクトルには結晶の鋭いピークが観察できる。この結晶からのピークの位置のシフト量から応力を求めることができる。例えば、特許文献6などで、詳細な説明がされている。
(蛍光光のスペクトルデータを解析する例)
ガラス200からの散乱光Lsには、ラマン散乱光以外に蛍光光も含まれる。そこで、演算部120で蛍光光のスペクトルデータを解析することにより、ガラスの組成、不純物、結晶性などを知ることが可能である。ガラス評価装置1が蛍光光を用いて測定を行う場合には、レーザ光Lの偏光方向が図1におけるレーザ光Lがガラス200の表面210に入射する際の入射面に対して垂直方向に設定された直線偏光になるように偏光部材20が挿入されることが好ましい。これにより、ラマン散乱光を除去して蛍光光を効率よく発生させることができる。
また、結晶化ガラスでは、結晶粒の大きさや密度が大きいと散乱光強度も高くなる。ガラス評価装置1では、ラマン散乱光の解析による応力や結晶化ガラスの結晶状態(粒径、結晶粒密度、結晶種)の深さ方向の分布とともに、蛍光光のスペクトルや散乱光そのものの強度から、ガラスの組成、不純物の分布、結晶化ガラスの結晶状態(粒径、結晶粒密度、結晶種)を測定できる。そのため、測定値の精度や信頼性向上をすることができる。
〈第1実施形態の変形例1〉
第1実施形態の変形例1では、第1実施形態とは構成の異なるガラス評価装置の例を示す。なお、第1実施形態の変形例1において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図12は、第1実施形態の変形例1に係るガラス評価装置を例示する図である。図12に示すように、ガラス評価装置1Aは、第一光変換部材50、光波長選択部材60、分光機能をもった点線枠Bの中の部材が、ガラス200に対して、光供給部材40とは反対側に配置され、更に、ガラス200の裏面211と接するように光取出し部材45が配置された点が、ガラス評価装置1(図1参照)と相違する。
ガラス評価装置1Aでは、ガラス200の裏面211側で生じた散乱光Ls2を、プリズム等である光取出し部材45、第一光変換部材50、通過領域制限部材70、第二光変換部材80、回折格子90、第三光変換部材100、撮像素子110に入射させ、撮像素子110で深さ方向の各深さのラマンスペクトルを測定し、演算部120で、応力分布などを測定する。ガラス評価装置1Aは、散乱光Ls2に含まれるレイリー散乱光を除去する光波長選択部材60を有してもよい。
ガラス200は、一般に、表裏面側が同一の応力分布である。そのため、第1実施形態のように、ガラス200の表面210側(レーザ光Lの入射側)の散乱光Lsを検出してもよいし、第1実施形態の変形例1のように、ガラス200の裏面211側(レーザ光Lの出射側)の散乱光L2を検出してもよい。
ガラス評価装置1Aの場合にも、ガラス評価装置1と同様に、ガラス200中に入射されたレーザ光Lに沿った、ラマン散乱光のスペクトルに基づいて、ガラス200の裏面211からの深さ方向の応力分布等を算出することができる。もちろん、ガラス評価装置1Aでは、蛍光光を用いた測定も可能である。
〈第2実施形態〉
第2実施形態では、光供給部材とガラスとの間に液体を挟む例を示す。なお、第2実施形態において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図13は、第2実施形態に係るガラス評価装置を例示する図であり、光供給部材とガラスとの界面近傍の断面を図示している。第2実施形態に係るガラス評価装置において、図13で示す以外の部分については、ガラス評価装置1やガラス評価装置1Aと同様とすることができる。
図13に示すように、本実施形態では、光供給部材40とガラス200との間に、ガラス200の屈折率とほぼ同じ屈折率を持つ液体150を挟んでいる。これはガラス200の屈折率はガラスの種類によって若干異なるため、光供給部材40の屈折率と完全に一致させるには、ガラスの種類ごとに光供給部材40を取り換える必要がある。しかしこの交換作業は非効率なので、光供給部材40とガラス200との間にガラス200の屈折率とほぼ同じ屈折率を持つ液体150を挟むことにより、ガラス200内に、効率よくレーザ光Lを入射することができる。
液体150としては、例えば、1-ブロモナフタレン(n=1.64)とキシレン(n=1.50)との混合液を用いることができる。液体150の屈折率は、それぞれの混合比で決まるため、容易にガラス200の屈折率と同じ屈折率にすることができる。また、シリコンオイルなども利用できる。
このとき、ガラス200と液体150との屈折率差は±0.03以下にすることが好ましく、±0.02以下にすることがより好ましく、±0.01以下にすることが更に好ましい。液体150が無い場合、ガラス200と光供給部材の間には散乱光が発生し、約20μm程度の範囲でデータが取れない。
液体150の厚みは、10μm以上にすると、散乱光が10μm程度又はそれ以下に抑制されるため、10μm以上にすることが好ましい。原理上、液体150の厚みはいくらあっても良いが液体の取扱いを考えると500μm以下とすることが好ましい。
図14は、光供給部材40とガラス200との界面を進むレーザ光Lの散乱光画像を例示する図である。図14において、点Aはガラスの表面散乱光であり、点Dは光供給部材40の表面の表面散乱光である。点Aと点Dとの間は液体150からの散乱光である。
液体150の厚みが薄いと点Aと点Dとはほぼ同じ点となり、ガラス200の表面散乱と光供給部材40の表面散乱が加わった表面散乱光となる。光供給部材40は、多くのガラス200を測定していくと、表面の傷付が多く発生してしまう。そうすると、非常に大きな表面散乱光が発生する。しかし、図13のように、液体150を挟むことで、光供給部材40とガラス200との間隔を保つことにより、光供給部材40の表面散乱光がガラス200の最表面層付近の測定にかぶることを防ぐことができる。
図15は、光供給部材40とガラス200との間に液体150を挟むための構造部の第1の例を示す図である。図15(a)のように、光供給部材40の表面に研磨やエッチングにより10μm以上の窪み40xを形成し、窪み40x内に液体150を充填することで、液体150の厚みを安定して10μm以上とすることができる。窪み40xの深さは、原理上いくらあっても良いが、加工のしやすさを考えると500μm以下が好ましい。
又、光供給部材40の表面に窪み40xを形成する代わりに、図15(b)のように光供給部材40の表面に厚み10μm以上のランド部材140を形成し、ランド部材140に保持された液体150のランドを形成してもよい。ランド部材140は、例えば、真空蒸着やスパッタ等の薄膜形成技術等で、光供給部材40の表面に、金属、酸化物、樹脂等により形成できる。ランド部材140で液体150を保持することで、液体150の厚みを安定して10μm以上とすることができる。ランド部材140の厚さは、原理上いくらあっても良いが、加工のしやすさを考えると500μm以下が好ましい。
〈第2実施形態の変形例〉
第2実施形態の変形例では、光供給部材40とガラス200との間に液体150を挟むための構造部の図15とは異なる例を示す。なお、第2実施形態の変形例において、既に説明した実施形態と同一構成部についての説明は省略する場合がある。
図16は、光供給部材40とガラス200との間に液体150を挟むための構造部の第2の例を示す図である。図16に示すように、光供給部材40の表面に形成する窪み40yの底は平坦でなくてもよい。窪み40yは、例えば、凹レンズと同様の球面状の窪みとすることができる。窪み40yの深さは、例えば、10μm以上500μm以下とすることができる。一例として、窪み40yの深さを50μm、窪み40yの周囲の直径を10mmとした場合には、曲率半径Rは200mmとすることができる。
窪み40yは、凹レンズと同じ製法により、容易に球面状の窪みに形成することができる。窪み40yに充填される液体150は光供給部材40の屈折率と同じであるため、球面状の窪み中の液体150によるレンズの効果はなく、レーザ光の軌跡や、散乱光を撮像する撮像素子の像に影響はない。
図17は、光供給部材40とガラス200との間に液体150を挟むための構造部の第3の例を示す図である。図17に示すように、光供給部材40のガラス200側の表面に、突起部である片凹レンズ143が取り付けられている。片凹レンズ143は、ガラス200と接する。片凹レンズ143は、光供給部材40を介してガラス200内に入射するレーザ光の光路の一部となる。片凹レンズ143には、例えば球面状の窪み143xが形成されている。窪み143xの深さは、例えば、10μm以上500μm以下とすることができる。
光供給部材40と片凹レンズ143は、それぞれ別体として形成され、光供給部材40及び片凹レンズ143と屈折率がほぼ同じである光学接着材により接着されている。一般的な光学素子の加工において、平面だけで形成されるプリズム形成工程と、球面を形成するレンズ形成工程とは、技術が異なり、球面状の窪みを持ったプリズムを形成するのは難しく、多くの工程が必要で、生産性が悪く、製造コストが非常に高価になる。すなわち、プリズムである光供給部材40と片凹レンズ143とを一体構造とすることは困難である。
しかし、プリズムである光供給部材40、片凹レンズ143単独では、それぞれの加工技術で容易に形成することができる。又、光供給部材40と片凹レンズ143との間に、光供給部材40及び片凹レンズ143と屈折率がほぼ同じであるガラス板が挿入されてもよい。このガラス板は、光供給部材40をガラス評価装置本体に取り付けるために使うことができる。
なお、図16及び図17において、窪み40yや143x内に描かれた交差する曲線は、図面を視易くするために便宜上描いたものであり、実在する線(細い溝や突起等)を示すものではない。
又、以上では、窪み40yや143xを球面状の窪みとして説明したが、窪み40yや143xは球面状には限定されず、湾曲している部分を備えた面であれば良い。窪み40yや143xは、例えば、非球面状等の窪みであっても構わない。
以上、好ましい実施形態について詳説したが、上述した実施形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施形態に種々の変形及び置換を加えることができる。
例えば、ラマン散乱光の波長は、レーザ光の波長より長い波長側だけでなく、レーザ光の波長より短い波長側へも発生する。上記の各実施形態ではレーザ光の波長より長い波長側のラマンスペクトルを使用したが、レーザ光の波長より短い波長側のラマンスペクトルを使用してもよい。
1、1A ガラス評価装置
10 レーザ光源
20 偏光部材
40 光供給部材
40x、40y、143x 窪み
41 第1面
42 第2面
45 光取出し部材
50 第一光変換部材
60 光波長選択部材
70 通過領域制限部材
70x スリット
80 第二光変換部材
90 回折格子
100 第三光変換部材
110 撮像素子
120 演算部
121 スペクトルデータ作成手段
122 スペクトル強度測定手段
123 物理量算出手段
140 ランド部材
143 片凹レンズ
150 液体
200 ガラス
210 表面
211 裏面

Claims (17)

  1. レーザ光源と、
    被測定体であるガラスの表面層内に前記レーザ光源からのレーザ光を斜めに入射させる光供給部材と、
    前記表面層内に入射された前記レーザ光からの散乱光を分光する回折格子と、
    前記回折格子により分光された光を電気信号に変換する撮像素子と、
    前記電気信号をスペクトルデータに変換し、前記スペクトルデータに基づいて前記ガラスの表面から所定深さの物理量を求める演算部と、を有し、
    前記撮像素子は、2次元に配列された画素を有し、
    前記回折格子は、分光方向が前記レーザ光の進行方向と垂直となるように配置され、
    前記演算部は、前記撮像素子において、前記分光方向と平行な方向に配列された画素からの情報を前記スペクトルデータに変換し、前記分光方向と垂直な方向に配列された画素からの情報に基づいて前記ガラスの深さ方向の物理量の分布を求める、ガラス評価装置。
  2. 前記表面層内に入射された前記レーザ光からの散乱光を前記ガラスの外部に結像する第一光変換部材と、
    前記第一光変換部材に結像された光の一部を通過させる通過領域制限部材と、
    前記通過領域制限部材を通過した前記光を平行光にする第二光変換部材と、を有し、
    前記回折格子は、前記第二光変換部材からの前記平行光を分光する、請求項1に記載のガラス評価装置。
  3. 前記回折格子により分光された前記平行光を結像する第三光変換部材を有し、
    前記撮像素子は、前記第三光変換部材により結像された光を電気信号に変換する、請求項2に記載のガラス評価装置。
  4. 前記第一光変換部材は、前記レーザ光の進行方向に垂直で、かつ前記レーザ光が前記ガラスの表面に入射する際の入射面に平行な方向に散乱された散乱光を前記ガラスの外部に結像する、請求項2又は3に記載のガラス評価装置。
  5. 前記スペクトルデータは、ラマン散乱光のスペクトルデータである、請求項1乃至のいずれか一項に記載のガラス評価装置。
  6. 前記レーザ光は、偏光方向が前記ガラスの表面に対して水平に設定された直線偏光である、請求項に記載のガラス評価装置。
  7. 前記物理量が応力を含む、請求項又はに記載のガラス評価装置。
  8. 前記散乱光に含まれるレイリー散乱光を除去する光波長選択部材を有する、請求項乃至のいずれか一項に記載のガラス評価装置。
  9. 前記撮像素子において、前記散乱光に含まれるレイリー散乱光の波長部分の画素は光学的に遮蔽されている、請求項乃至のいずれか一項に記載のガラス評価装置。
  10. 前記演算部は、前記レーザ光の偏光方向を前記散乱光の進行方向に対して水平にして測定したスペクトルデータをバックグランド信号として記憶しておき、前記レーザ光の偏光方向を前記散乱光の進行方向に対して垂直にして測定した前記スペクトルデータから、記憶している前記バックグランド信号を差し引く処理を行う、請求項乃至のいずれか一項に記載のガラス評価装置。
  11. 前記スペクトルデータは、蛍光光のスペクトルデータである、請求項1乃至のいずれか一項に記載のガラス評価装置。
  12. 前記レーザ光は、偏光方向が前記ガラスの表面に対して垂直に設定された直線偏光である、請求項11に記載のガラス評価装置。
  13. 前記光供給部材と前記ガラスとの間に、前記ガラスの屈折率との屈折率差が0.03以下である液体を備えている、請求項1乃至12のいずれか一項に記載のガラス評価装置。
  14. 前記光供給部材の前記ガラスに接する面には、深さが10μm以上500μm以下の窪みが形成され、
    前記窪み内に前記液体が充填されている、請求項13に記載のガラス評価装置。
  15. 前記光供給部材の表面に、前記ガラスと接する突起部が設けられ、
    前記突起部は、前記光供給部材を介して前記ガラス内に入射する前記レーザ光の光路の一部となり、
    前記突起部の前記ガラスに接する側には、深さが10μm以上500μm以下の窪みが形成され、
    前記窪み内に前記液体が充填されている、請求項13に記載のガラス評価装置。
  16. 前記窪みは、湾曲している部分を備えた面からなる、請求項14又は15に記載のガラス評価装置。
  17. 被測定体であるガラスの表面層内にレーザ光源からのレーザ光を斜めに入射させる光供給工程と、
    前記表面層内に入射された前記レーザ光からの散乱光を、分光方向が前記レーザ光の進行方向と垂直となるように配置された回折格子により分光する分光工程と、
    前記分光工程により分光された光を、2次元に配列された画素を有する撮像素子により電気信号に変換する撮像工程と、
    前記電気信号をスペクトルデータに変換し、前記スペクトルデータに基づいて前記ガラスの表面から所定深さの物理量を求める演算工程と、を有し、
    前記演算工程では、前記撮像素子において、前記分光方向と平行な方向に配列された画素からの情報を前記スペクトルデータに変換し、前記分光方向と垂直な方向に配列された画素からの情報に基づいて前記ガラスの深さ方向の物理量の分布を求める、ガラス評価方法。
JP2021075212A 2021-04-27 2021-04-27 ガラス評価装置、ガラス評価方法 Active JP7458005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021075212A JP7458005B2 (ja) 2021-04-27 2021-04-27 ガラス評価装置、ガラス評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021075212A JP7458005B2 (ja) 2021-04-27 2021-04-27 ガラス評価装置、ガラス評価方法

Publications (2)

Publication Number Publication Date
JP2022169279A JP2022169279A (ja) 2022-11-09
JP7458005B2 true JP7458005B2 (ja) 2024-03-29

Family

ID=83944287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021075212A Active JP7458005B2 (ja) 2021-04-27 2021-04-27 ガラス評価装置、ガラス評価方法

Country Status (1)

Country Link
JP (1) JP7458005B2 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139940A (ja) 2019-02-22 2020-09-03 国立大学法人東北大学 化学強化ガラスの残留応力の評価方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139940A (ja) 2019-02-22 2020-09-03 国立大学法人東北大学 化学強化ガラスの残留応力の評価方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ラマン分光法の基礎(2)ラマンスペクトルの特徴,JASCO日本分光,2020年09月28日,第1頁,[online], 2020年9月28日時点のウェブアーカイブ, <URL>https://web.archive.org/web/20200928032831/https://www.jasco.co.jp/jpn/technique/internet-seminar/raman/raman2.html,[2023年9月28日検索]
ラマン分光法の基礎(3)ラマン分光光度計の構成と発展の歴史,JASCO日本分光,2020年10月09日,第1頁,[online], 2020年10月9日時点のウェブアーカイブ, <URL>https://web.archive.org/web/20201009162839/https://www.jasco.co.jp/jpn/technique/internet-seminar/raman/raman3.html,[2023年9月28日検索]

Also Published As

Publication number Publication date
JP2022169279A (ja) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2018056121A1 (ja) 強化ガラスの応力測定装置、強化ガラスの応力測定方法、強化ガラスの製造方法、強化ガラス
US8797532B2 (en) System and method for polarization measurement
JP5172204B2 (ja) 光学特性測定装置およびフォーカス調整方法
US7495762B2 (en) High-density channels detecting device
JP5892156B2 (ja) ガラスの表面応力測定装置およびガラスの表面応力測定方法
US20080144001A1 (en) Spectral imaging device
FI125690B (en) Mirror for Fabry-Perot interferometer and method for its manufacture
KR102388258B1 (ko) 도파관 기반 필터를 갖는 광학 부품
JP2010197358A (ja) 分光分析装置及び元素分析装置
EP1111333A1 (en) Light source device, spectroscope comprising the light source device, and film thickness sensor
TWI434029B (zh) 分光元件、分光裝置及分光方法
JP7458005B2 (ja) ガラス評価装置、ガラス評価方法
KR20220120588A (ko) 결합된 ocd 및 광반사변조 방법 및 시스템
JP2001242083A (ja) 光増強方法、光増強装置、及びそれを用いた蛍光測定方法、蛍光測定装置
CN114112131A (zh) 强化玻璃的应力测定装置、强化玻璃的应力测定方法、强化玻璃
KR102609557B1 (ko) Oes 장치 및 그 oes 장치를 포함한 플라즈마 검사 장치
JP7284512B2 (ja) 強化ガラスの応力測定装置、強化ガラスの応力測定方法
US11988497B2 (en) Optical unit and film thickness measurement device
JP2012237646A (ja) ラマン顕微分光装置及びラマン分光方法
JP3908726B2 (ja) 音響光学変調フィルターを用いた透明薄膜の3次元形状測定装置
US20230168186A1 (en) Enhanced evanescent prism coupling systems and methods for characterizing stress in chemically strengthened curved parts
JP7437750B2 (ja) 強化ガラスの表面屈折率測定装置及び表面屈折率測定方法、強化ガラスの表面応力測定装置及び表面応力測定方法
JP2023139605A (ja) 分光イメージングユニット
JP2020076598A (ja) 応力測定装置、応力測定方法
CN116952839A (zh) 基于布里渊散射光谱的立方晶系材料弹性常数测量方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230928

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240307

R150 Certificate of patent or registration of utility model

Ref document number: 7458005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150