WO2015111586A1 - フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ - Google Patents

フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ Download PDF

Info

Publication number
WO2015111586A1
WO2015111586A1 PCT/JP2015/051419 JP2015051419W WO2015111586A1 WO 2015111586 A1 WO2015111586 A1 WO 2015111586A1 JP 2015051419 W JP2015051419 W JP 2015051419W WO 2015111586 A1 WO2015111586 A1 WO 2015111586A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium fluoride
neutron moderator
manufacturing
fluoride sintered
sintered body
Prior art date
Application number
PCT/JP2015/051419
Other languages
English (en)
French (fr)
Inventor
日高 古屋
一人 真田
佳憲 菅原
秀明 薄
中村 勝
進一 竹井
Original Assignee
日本軽金属株式会社
株式会社Cics
株式会社シンターランド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53681389&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2015111586(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP20212172.9A priority Critical patent/EP3815745A1/en
Priority to KR1020167019974A priority patent/KR101885011B1/ko
Priority to JP2015559074A priority patent/JP6085782B2/ja
Priority to ES15740248T priority patent/ES2846151T3/es
Priority to AU2015210075A priority patent/AU2015210075B2/en
Application filed by 日本軽金属株式会社, 株式会社Cics, 株式会社シンターランド filed Critical 日本軽金属株式会社
Priority to CN201580005534.6A priority patent/CN106414369B/zh
Priority to RU2016133616A priority patent/RU2655356C2/ru
Priority to DK15740248.8T priority patent/DK3098209T3/da
Priority to PL15740248T priority patent/PL3098209T3/pl
Priority to EP15740248.8A priority patent/EP3098209B1/en
Publication of WO2015111586A1 publication Critical patent/WO2015111586A1/ja
Priority to US15/216,536 priority patent/US9868673B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/553Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on fluorides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/12Moderator or core structure; Selection of materials for use as moderator characterised by composition, e.g. the moderator containing additional substances which ensure improved heat resistance of the moderator
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/10Scattering devices; Absorbing devices; Ionising radiation filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a neutron moderator mainly used for neutron capture therapy, a method for manufacturing the neutron moderator, and a method for manufacturing a magnesium fluoride sintered body that is optimal as a neutron moderator.
  • neutron moderators used as moderators for selective cancer treatment
  • examples include lithium fluoride, aluminum fluoride, and magnesium fluoride.
  • Magnesium fluoride is particularly suitable as a neutron moderator because it has a good function of decelerating a neutron beam to an energy of 10 keV or less. are known.
  • magnesium fluoride is considered to be excellent as a neutron moderating function for decelerating to an energy region of 10 keV or less.
  • the moderator which combined magnesium fluoride and polytetrafluoroethylene.
  • a neutron moderator in order to improve neutron moderation performance, it is appropriate to use magnesium fluoride as a sintered body in order to manufacture only with magnesium fluoride without using polytetrafluoroethylene.
  • the neutron moderator has a predetermined size, and it is desired to obtain a sintered body of magnesium fluoride in which the relative density is increased by suppressing cracking or chipping.
  • the present invention has been made in view of the above, and provides a method for manufacturing a magnesium fluoride sintered body, a method for manufacturing a neutron moderator, and a neutron moderator that suppress cracking or chipping and increase the relative density. Objective.
  • a method for manufacturing a magnesium fluoride sintered body according to the present invention is a method for manufacturing a magnesium fluoride sintered body, in which a magnesium fluoride powder material is used as a mold.
  • an electric current sintering step is a method for manufacturing a magnesium fluoride sintered body, in which a magnesium fluoride powder material is used as a mold.
  • This manufacturing method results in a sintered body with little variation in particle size distribution and suppressed particle size growth, and can increase cracking or chipping and increase the relative density.
  • the magnesium fluoride powder material is a high-purity material of 99% by mass or more, and the balance contains inevitable impurities.
  • the magnesium fluoride sintered compact can suppress the neutron which has energy smaller than 0.5 eV.
  • the magnesium fluoride sintered body can suppress neutrons having energy greater than 10 keV.
  • a method for manufacturing a neutron moderator includes preparing a plurality of disk-shaped magnesium fluoride sintered bodies manufactured by the above-described magnesium fluoride sintered body manufacturing method. And a laminating step of laminating and joining the disk-shaped magnesium fluoride sintered bodies to produce a neutron moderator.
  • a second intermediate laminated body obtained by performing a drilling process on the intermediate body by a machining process is further provided. It is preferable to laminate at least one. With this manufacturing method, a disk-shaped magnesium fluoride sintered body with poor workability can be drilled with high accuracy.
  • the laminating step when the disc-shaped magnesium fluoride sintered body is used as an intermediate body, a third intermediate laminated body obtained by tapering the outer periphery by a machining process is used for the intermediate body. It is preferable to laminate at least one.
  • the magnesium fluoride sintered body which is likely to be cracked or chipped on the outer periphery, is processed into a disk shape, so that the taper can be accurately processed.
  • the stacking step it is preferable to manufacture a neutron moderator by stacking the first intermediate stack, the second intermediate stack, and the third intermediate stack.
  • the neutron moderator by the magnesium fluoride sintered compact which suppressed the crack or the chip
  • the neutron moderator of the present invention is a neutron moderator that decelerates neutrons, and includes an intermediate laminate in which a plurality of disc-shaped magnesium fluoride sintered bodies are laminated. It is characterized by including.
  • This neutron moderator can suppress neutrons having an energy smaller than 0.5 eV by a magnesium fluoride sintered body in which the relative density is increased by suppressing cracking or chipping.
  • the neutron moderator can suppress neutrons having an energy higher than 10 keV by a magnesium fluoride sintered body in which cracking or chipping is suppressed to increase the relative density.
  • the present invention it is possible to provide a method for manufacturing a magnesium fluoride sintered body, a method for manufacturing a neutron moderator, and a neutron moderator, in which cracking or chipping is suppressed and the relative density is increased.
  • FIG. 1 is an explanatory diagram for explaining a neutron source generator equipped with a neutron moderator according to this embodiment.
  • FIG. 2 is a perspective view of the neutron moderator according to the present embodiment.
  • FIG. 3 is a side view of FIG.
  • FIG. 4 is a top view of FIG.
  • FIG. 5 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 6 is a flowchart for explaining the manufacturing method of the neutron moderator according to the present embodiment.
  • FIG. 7 is a schematic view schematically showing an energization pulse sintering apparatus.
  • FIG. 8 is a side view of the disc-shaped magnesium fluoride sintered body according to the present embodiment.
  • FIG. 9 is a top view of FIG. FIG.
  • FIG. 10 is an explanatory diagram for explaining a stacked state of the stacked body of the first intermediate stacked body according to the present embodiment.
  • FIG. 11 is a schematic diagram showing a first intermediate laminate according to the present embodiment.
  • FIG. 12 is an explanatory diagram for explaining a stacking state of the stacked body of the second intermediate stacked body according to the present embodiment.
  • FIG. 13 is an explanatory diagram for explaining a machining process for manufacturing the second intermediate laminate according to the present embodiment.
  • FIG. 14 is a schematic view showing a second intermediate laminate according to the present embodiment.
  • FIG. 15 is an explanatory diagram for explaining a stacking state of the stacked body of the third intermediate stacked body according to the present embodiment.
  • FIG. 16 is an explanatory diagram for explaining a machining process for manufacturing the third intermediate laminate according to the present embodiment.
  • FIG. 17 is a schematic diagram showing a third intermediate laminate according to the present embodiment.
  • FIG. 1 is an explanatory diagram for explaining a neutron source generator equipped with a neutron moderator according to this embodiment.
  • the neutron source generator includes an accelerator 100, a beam transport 25, a bending magnet 26, and a target unit 20.
  • the accelerator 100 is a device for accelerating protons, and an ion source 21, a low energy beam transport system (LEBT) 22, and an acceleration tube 23 are arranged in order from the upstream side to the downstream side.
  • the ion source 21 is a device that converts protons into positive ions.
  • the low energy beam transport system 22 is an interface between the ion source 21 and the acceleration tube 23.
  • the beam transport 25 is a beam path for guiding protons accelerated by the accelerator 100 to the target unit 20.
  • the beam transport 25 is changed so that the traveling direction of the accelerated proton is guided to the target unit 20 arranged at an arbitrary position via the bending magnet 26.
  • the bending magnet 26 is for bending the traveling direction of protons accelerated by the accelerator 100.
  • the beam transport 25 may guide protons accelerated by the accelerator 100 to the target unit 20 without using the bending magnet 26.
  • the target unit 20 is a device that generates neutrons by the reaction between protons and the target 27.
  • the target unit 20 includes a target 27, a neutron moderator 1, a neutron reflector 29, and an irradiation unit 28.
  • the target 27 is configured by forming a target material such as a thin film of metallic lithium on a support (substrate) such as copper by vapor deposition.
  • the target 27 shown in this embodiment is a cone-shaped target having an inner wall surface (inner surface) with a lithium thin film.
  • the target material is not limited to this shape. For example, any shape target such as a plate-like target having a lithium thin film on its surface may be used.
  • the target material may be another target material such as beryllium.
  • the neutron moderator 1 is a neutron moderator for decelerating neutrons generated at the target 27.
  • the neutron reflector 29 Since the neutron reflector 29 does not emit unnecessary neutrons outside the target unit 20, the neutron reflector 29 covers the periphery of the target 27 and the neutron moderator 1 with lead or the like.
  • the irradiation unit 28 is an opening that emits neutrons decelerated by the neutron moderator 1.
  • neutron capture therapy that selectively kills cancer cells has been studied and clinically implemented in reactor facilities.
  • the neutron source generator shown in FIG. 1 can obtain neutrons without using a nuclear reactor.
  • a substance that easily undergoes a nuclear reaction with thermal neutrons such as a compound containing boron-10 (B-10), which is a non-radioactive isotope, is drugized in advance and administered to the human body in advance. It is taken into only the existing region, that is, the cancer cell mixed with normal cells.
  • Neutron capture therapy is a neutron source generator shown in Fig. 1, which irradiates cancer sites with neutrons (thermal neutrons and epithermal neutrons) that have little effect on the human body, and selectively suppresses only cancer cells. Is the law.
  • the neutron moderator 1 needs to decelerate the emitted neutrons to an energy region of 10 keV or less in order to make the neutrons (thermal neutrons and epithermal neutrons) with little influence on the human body. Since the neutron moderator 1 of this embodiment decelerates neutrons with magnesium fluoride, the neutron moderation performance in the energy region of 20 keV or less is high.
  • the effective energy of neutrons as radiation for the treatment of recurrent cancer is generally 0.5 eV or more and 10 keV or less, and when it is smaller than 0.5 eV, it tends to affect normal tissues on the skin surface of the living body and exceeds 10 keV. The effect on normal tissues other than cancer tissues inside the human body is increased.
  • the neutron moderator 1 according to the present embodiment can suppress neutrons having energy smaller than 0.5 eV compared to a heavy water moderator as compared with a heavy water moderator.
  • the neutron moderator 1 of this embodiment can suppress the neutron which has energy larger than 10 keV than the moderator made from polytetrafluoroethylene compared with the moderator made from polytetrafluoroethylene.
  • the neutron moderator 1 of the present embodiment it is preferable to use magnesium fluoride as a sintered body in order to obtain a predetermined passing cross-sectional area with magnesium fluoride.
  • the magnesium fluoride sintered body needs to be devised in order to maintain the quality of the sintered state such as cracks or chips when trying to be an effective size as the neutron moderator 1 of the present embodiment. .
  • the neutron moderator 1 will be described in detail with reference to FIGS.
  • FIG. 2 is a perspective view of the neutron moderator according to the present embodiment.
  • FIG. 3 is a side view of FIG.
  • FIG. 4 is a top view of FIG.
  • FIG. 5 is a cross-sectional view taken along the line AA shown in FIG.
  • the neutron moderator 1 is a substantially cylindrical body having an upper surface 1A on the target 27 side, a lower surface 1B on the irradiation unit 28 side, and an outer periphery 1P shown in FIG.
  • the thickness of the neutron moderator 1 is the thickness L in the neutron passage direction from the target 27 to the irradiation unit 28 shown in FIG.
  • the neutron moderator 1 has a ratio of the thickness L to the diameter D (thickness). L / diameter D) is often 180% or more.
  • L / diameter D is often 180% or more.
  • the relative density may be reduced inside the neutron moderator 1 due to the non-uniformity of the pressurized state.
  • the non-uniformity of the relative density of the neutron moderator 1 may affect the neutron moderation.
  • the neutron moderator 1 is a large size (especially diameter (phi) 150 mm or more), a crack or a chip
  • the upper surface 1A of the neutron moderator 1 is provided with a tapered surface 1C of a recess 27H into which the target 27 shown in FIG. 1 is inserted.
  • the diameter d of the lower surface 1B of the neutron moderator 1 is provided with an outer peripheral tapered surface 1T having a smaller diameter on the lower surface 1B side so as to be smaller than the diameter D of the outer periphery 1P.
  • the inventors applied a solid compression sintering method called spark plasma sintering (SPS) or pulse electric current sintering to reduce cracks and increase the yield rate.
  • SPS spark plasma sintering
  • the present inventors have intensively studied a method for manufacturing a sintered body and have come up with the present embodiment.
  • FIG. 6 is a flowchart for explaining a method of manufacturing the neutron moderator according to the present embodiment.
  • FIG. 7 is a schematic view schematically showing an energization pulse sintering apparatus.
  • the method for manufacturing a sintered body according to the present embodiment includes a powder filling step S1 and an intermediate body sintering step S2.
  • the method for manufacturing a neutron moderator according to the present embodiment further includes, as a lamination process, a lamination process S3 of the first intermediate laminate, a drilling process S4, a lamination process S5 of the second intermediate laminate, and an outer peripheral taper machining. It includes a step S6, a third intermediate laminate stacking step S7, and a neutron moderator assembly step S8.
  • the discharge plasma sintering apparatus 30 includes a chamber V that can replace the internal atmosphere with a vacuum or Ar, and a nitrogen gas atmosphere, a graphite die GD, a graphite punch GP, a graphite spacer GS, A pressure shaft and a DC pulse power source E are provided.
  • the graphite die GD, the graphite punch GP, the graphite spacer GS, and the energizing pressure shaft are formed of a conductive material, such as stainless steel.
  • the DC pulse power source E can apply an ON-OFF DC pulse voltage current to the magnesium fluoride powder M in the graphite die GD through the graphite die GD, the graphite punch GP, and the energizing pressure shaft.
  • the method for manufacturing a sintered body according to the present embodiment prepares magnesium fluoride powder and performs powder filling by tapping in the powder filling step S1.
  • FIG. 8 is a side view of the disc-shaped magnesium fluoride sintered body according to the present embodiment.
  • FIG. 9 is a top view of FIG.
  • the magnesium fluoride sintered body ds according to the present embodiment is, for example, a disk (flat cylindrical body) having a thickness t and a diameter Dt. The thickness t with respect to the diameter Dt is more preferably 8% or more and 15% or less. Thereby, the disk-shaped magnesium fluoride sintered body ds can suppress cracking or chipping.
  • the manufacturing method of the neutron moderator according to the present embodiment is further prepared by manufacturing a plurality of disk-shaped magnesium fluoride sintered bodies ds as intermediate bodies in the stacking step S3 of the first intermediate stacked body.
  • the first intermediate laminate is laminated in the lamination step S3 and bonded in the thickness direction.
  • FIG. 10 is an explanatory diagram for explaining a stacked state of the stacked body of the first intermediate stacked body according to the present embodiment.
  • FIG. 11 is a schematic diagram showing a first intermediate laminate according to the present embodiment.
  • the thickness of the disk-shaped magnesium fluoride sintered body ds may not be the same.
  • one of the disk-shaped magnesium fluoride sintered bodies ds on the upper surface may be cut to the upper surface 2A by cutting the surface 2a.
  • one of the disk-shaped magnesium fluoride sintered bodies ds on the lower surface may be cut to the lower surface 2B by cutting the surface 2b.
  • the method for manufacturing a neutron moderator according to the present embodiment further manufactures the first intermediate stacked body 2 shown in FIG. 11 as a stacking process.
  • the first intermediate laminate 2 has a cylindrical shape.
  • FIG. 12 is an explanatory diagram for explaining a stacking state of the stacked body of the second intermediate stacked body according to the present embodiment.
  • FIG. 13 is an explanatory diagram for explaining a machining process for manufacturing the second intermediate laminate according to the present embodiment.
  • FIG. 14 is a schematic view showing a second intermediate laminate according to the present embodiment.
  • one of the disk-shaped magnesium fluoride sintered bodies ds is revolved spirally while rotating the drill 40, and the tapered surface 1C. Is drilled.
  • the magnesium fluoride sintered body ds is prone to cracking or chipping immediately before the drill 40 penetrates the other surface when drilling from one surface.
  • the cutting device stops the spiral revolution immediately before the drill 40 of the magnesium fluoride sintered body ds penetrates the other surface and moves linearly in the thickness direction. For this reason, as shown in FIG.
  • the method for manufacturing a neutron moderator according to the present embodiment further manufactures a plurality of disk-shaped magnesium fluoride sintered bodies ds, which have been drilled in the drilling process S4, as intermediates as a lamination process. Then, the second intermediate laminate is laminated in the lamination step S5 and joined in the thickness direction.
  • the thicknesses of the disk-shaped magnesium fluoride sintered bodies ds may not be the same.
  • one of the disk-shaped magnesium fluoride sintered bodies ds on the upper surface is formed by cutting the surface 3a and cutting the surface to the upper surface 3A, leaving the protrusion 3Q around the edge of the tapered surface 1C. May be.
  • the method for manufacturing a neutron moderator according to the present embodiment further manufactures the second intermediate stacked body 3 shown in FIG. 14 as a stacking process.
  • the outer diameter shape of the second intermediate laminate 3 is a cylindrical shape. It is preferable that the angle ⁇ of the tapered surface 1C be a constant angle in consideration of the order of the stacked disk-shaped magnesium fluoride sintered bodies ds.
  • FIG. 15 is an explanatory diagram for explaining a stacking state of the stacked body of the third intermediate stacked body according to the present embodiment.
  • FIG. 16 is an explanatory diagram for explaining a machining process for manufacturing the third intermediate laminate according to the present embodiment.
  • FIG. 17 is a schematic diagram showing a third intermediate laminate according to the present embodiment.
  • the tapered surface 1T is machined by pressing the drill 40 from the outer periphery to one of the disk-shaped magnesium fluoride sintered bodies ds.
  • the magnesium fluoride sintered body ds may leave the cylindrical portion 4S as shown in FIG.
  • the angle ⁇ of the tapered surface 1T is preferably set to a constant angle in consideration of the order of the stacked disc-shaped magnesium fluoride sintered bodies ds.
  • the manufacturing method of the neutron moderator according to the present embodiment further includes a plurality of disk-shaped magnesium fluoride sintered bodies ds obtained by performing taper processing on the outer periphery in the outer periphery taper processing step S6 as an intermediate body as a lamination process. Are prepared and prepared, and are laminated in the lamination step S7 of the third intermediate laminated body and bonded in the thickness direction.
  • the manufacturing method of the neutron moderator according to the present embodiment further manufactures the third intermediate stacked body 4 shown in FIG. 17 as a stacking process.
  • the outer diameter shape of the third intermediate laminate 4 is a substantially conical shape including the upper surface 4A, the lower surface 4B, and the tapered surface 1T.
  • the neutron moderator manufacturing method joins the upper surface 2A of the first intermediate laminate 2 and the lower surface 3B of the second intermediate laminate 3 in the assembly step S8 of the neutron moderator.
  • the upper surface 3A of the second intermediate laminate 3 becomes the upper surface 1A of the neutron moderator.
  • the lower surface 2B of the first intermediate laminate 2 and the upper surface 4A of the third intermediate laminate 4 are joined.
  • the lower surface 4B of the third intermediate laminate 4 becomes the lower surface 1B of the neutron moderator.
  • the first intermediate laminate 2, the second intermediate laminate 3, and the third intermediate laminate 4 are laminated to produce the neutron moderator 1.
  • the method for manufacturing a magnesium fluoride sintered body includes the powder filling step S1 in which the magnesium fluoride powder material is tapped and filled in the mold, and the magnesium fluoride powder material that is filled is energized with pulses.
  • the magnesium fluoride powder material filled in the powder filling step S1 is a high-purity material of 99% by mass or more, and the balance may contain inevitable impurities.
  • the magnesium fluoride sintered body ds can suppress neutrons having energy smaller than 0.5 eV.
  • the magnesium fluoride sintered body ds can suppress neutrons having energy greater than 10 keV.
  • the neutron moderator manufacturing method includes a preparation step of preparing a plurality of disk-shaped magnesium fluoride sintered bodies ds manufactured by the above-described magnesium fluoride sintered body manufacturing method, and disk-shaped magnesium fluoride sintering. And laminating the body ds and joining them to produce the neutron moderator 1. Thereby, since it is not necessary to sinter the magnesium fluoride sintered body ds having a large thickness, the possibility that the relative density is reduced inside the neutron moderator 1 can be reduced.
  • the neutron moderator 1 is a laminate obtained by further drilling the intermediate magnesium fluoride sintered body ds by a machining process.
  • stacked at least 1 is included.
  • the neutron moderator 1 is a laminated body obtained by tapering the outer periphery of the magnesium fluoride sintered body ds of the intermediate body by a machining process.
  • a third intermediate laminated body 4 including at least one laminated body is included.
  • the neutron moderator 1 includes a first intermediate laminate 2 in which a plurality of disc-shaped magnesium fluoride sintered bodies ds are laminated.
  • the neutron moderator 1 can suppress neutrons having an energy smaller than 0.5 eV by the magnesium fluoride sintered body ds whose relative density is increased by suppressing cracking or chipping.
  • the neutron moderator 1 can suppress neutrons having an energy higher than 10 keV by the magnesium fluoride sintered body ds in which the relative density is increased by suppressing cracking or chipping.
  • the neutron moderator 1 includes the first intermediate laminate 2, the second intermediate laminate 3, and the third intermediate laminate 4, the first intermediate laminate 2, the second intermediate laminate 3, and the third intermediate laminate.
  • the neutron moderation performance is uniform in any laminate of the body 4.
  • Example 2 The sample is filled with magnesium fluoride powder (manufactured by Morita Chemical Co., Ltd.) with a purity of 99% or more in a container of a mold whose inner volume is sintered diameter ⁇ (mm) x thickness (mm), and tapping filling is performed. It was.
  • a container filled with magnesium fluoride powder was set in a discharge plasma sintering apparatus, and the sintering atmosphere was reduced to a vacuum atmosphere by reducing the pressure.
  • the pressurization conditions were constant pressurization conditions and variable conditions (changed in order of arrows in Table 1), and the presence or absence of cracks was confirmed.
  • the energization conditions were the same in each example and each comparative example, and pulse energization with a maximum current output of about 18000 A was used.
  • the heating rate was 1 ° C./min (min) or higher and 15 ° C./min or lower until the magnesium fluoride powder reached the holding temperature.
  • the holding temperature was heated in the range of 630 ° C. or higher and 900 ° C. or lower.
  • the holding time was set in the range of 15 minutes to 240 minutes.
  • the presence or absence of cracks was investigated, samples without cracks were designated as Examples 1 to 13, and samples with cracks were designated as Comparative Examples 1 to 12.
  • the rate of temperature rise is preferably 1 ° C./min to 7 ° C./min.
  • the temperature rising rate of the mold is higher than 7 ° C./min, the temperature difference between the inside and outside of the magnesium fluoride sintered body becomes large, the crystal grain size tends to vary, and cracking tends to occur.
  • the rate of temperature rise is 7 ° C./min or less, the temperature of the magnesium fluoride sintered body can be increased to such an extent that there is no significant difference in the particle size growth of the magnesium fluoride sintered body. . For this reason, the crack of a sintered compact can be suppressed.
  • the rate of temperature rise is less than 1 ° C./min, heating takes time and the production rate / efficiency decreases.
  • the magnesium fluoride powder is not particularly limited as long as the powder has a high pure concentration of 99.0% or more.
  • cation exchange in which the cation exchange group is generally magnesium is not limited.
  • a general-purpose magnesium fluoride powder such as one obtained by adding hydrofluoric acid to the resin and separating and grinding the obtained magnesium fluoride particles can be used.
  • the pressure condition in the method for producing a magnesium fluoride sintered body is preferably around 20 MPa.
  • the pressure condition is lower than 20 MPa, the magnesium fluoride powder body cannot be sufficiently compressed, the gap between the powders becomes large, and the magnesium fluoride sintered body is cracked.
  • a pressurization condition is larger than 20 MPa, the outer peripheral part of a magnesium fluoride sintered body may be easily damaged.
  • the pressurization condition is larger than 20 MPa, when the size of the magnesium fluoride sintered body is increased, there arises a problem in the specification of the manufacturing apparatus that it is difficult to apply a large pressure on the performance of the apparatus.
  • the pressing condition is constant, the crystal structure of the sintered body is likely to be uniform, and it is preferable that the pressure during sintering is constant.
  • the holding temperature in the method for producing a magnesium fluoride sintered body is preferably 650 to 800 ° C. If the holding temperature is lower than 650 ° C, the holding time must be lengthened to make the crystal grains uniform. Conversely, if the holding temperature is higher than 800 ° C, no further effect is observed and the saturated state is reached. Therefore, the cost is reduced.
  • the mold heating and holding time after sintering in the method for producing a magnesium fluoride sintered body for 45 minutes or more. Further, even if the holding time exceeds 180 minutes, the effect is not changed so much and the saturated state is reached, which may increase the manufacturing cost.
  • the relative density can be 99% or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Particle Accelerators (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Radiation-Therapy Devices (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

 割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータを提供する。フッ化マグネシウム焼結体の製造方法は、フッ化マグネシウム粉末材を金型にタッピング充填を行う粉体充填工程S1と、充填されたフッ化マグネシウム粉末材を、パルスを通電しながら焼結するパルス通電焼結を行い、フッ化マグネシウム焼結体(中間体)を得る中間体焼結(パルス通電焼結)工程S2と、を含む。

Description

フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ
 本発明は、主に中性子捕捉療法に用いられる中性子モデレータ及びその製造方法、中性子モデレータとして最適なフッ化マグネシウム焼結体の製造方法、に関する。
 従来、ホウ素中性子捕捉治療をはじめとする、選択的ガン治療用モデレータとして用いられる中性子減速材については、様々な材料が検討されてきた。例えば、フッ化リチウム、フッ化アルミニウムおよびフッ化マグネシウムなどがあげられるが、特にフッ化マグネシウムは、中性子線を10keV以下のエネルギーに減速させる機能が良好であるため、中性子減速材として最適な材料として知られている。
特開2004-233168号公報
Optimizing the OSU-ABNS Base Moderator Assembly Materials for BNCT B. Khorsandia*, T. E. Blue a Nuclear Engineering Program, The Ohio State University, Columbus, OH 43210, USA Accelerator-Based source of epithermal neutrons for neutron capture therapy. Kononov O E, Kononov V N, Solov’EV A N, Bokhovko M V At Energy Vol.97 No.3, PP626-631
 上述した特許文献1に記載の技術では、フッ化リチウムを中性子減速材にする。しかしながら、特許文献1に記載の技術では、リチウムはレアメタルの一種であり、製造コストが課題となっている。
 このため、非特許文献1に記載の技術では、10keV以下のエネルギー領域まで減速させる中性子減速機能としてフッ化マグネシウムが優れているとされている。また、非特許文献2に記載の技術では、フッ化マグネシウムとポリテトラフルオロエチレンを組み合わせた減速材の記載がある。
 中性子モデレータとして、中性子減速性能を高めるため、ポリテトラフルオロエチレンを使用せずフッ化マグネシウムだけで製造するには、フッ化マグネシウムを焼結体にすることが適切である。中性子モデレータは、所定の大きさがあり、割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウムの焼結体を得ることが望まれている。
 本発明は、上記に鑑みてなされたものであって、割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明のフッ化マグネシウム焼結体の製造方法は、フッ化マグネシウム焼結体の製造方法であって、フッ化マグネシウム粉末材を金型にタッピング充填を行う粉体充填工程と前記粉体充填工程で充填された前記フッ化マグネシウム粉末材を、パルスを通電しながら焼結するパルス通電焼結を行い、フッ化マグネシウム焼結体を得るパルス通電焼結工程と、を含むことを特徴とする。
 この製造方法により、粒径分布にバラつきの少ない、粒径成長を抑制した焼結体となり、割れ又は欠けを抑制して相対密度を高めることができる。
 本発明の望ましい態様として、前記粉体充填工程において、フッ化マグネシウム粉末材が99質量%以上の高純度材であり、残部が不可避不純物を含む。これにより、フッ化マグネシウム焼結体は、0.5eVより小さいエネルギーを有する中性子を抑制できる。また、フッ化マグネシウム焼結体は、10keVより大きいエネルギーを有する中性子を抑制できる。
 上述した課題を解決し、目的を達成するために、中性子モデレータの製造方法は、上述したフッ化マグネシウム焼結体の製造方法で製造された複数の円盤状のフッ化マグネシウム焼結体を複数準備する準備工程と、前記円盤状のフッ化マグネシウム焼結体を積層し、接合して、中性子モデレータを製造する積層工程と、を含む。これにより、厚みの大きなフッ化マグネシウム焼結体を焼結する必要がなくなることから、中性子モデレータの内部で相対密度が低下する可能性を低減できる。
 本発明の望ましい態様として、前記積層工程は、前記円盤状のフッ化マグネシウム焼結体を中間体とした場合、前記中間体にさらに機械加工工程により孔開け加工を行った第2中間積層体を少なくとも1つ積層することが好ましい。この製造方法により、加工性の悪い円盤状のフッ化マグネシウム焼結体を精度よく孔開け加工することができる。
 本発明の望ましい態様として、前記積層工程では、前記円盤状のフッ化マグネシウム焼結体を中間体とした場合、前記中間体に機械加工工程により外周にテーパ加工を行った第3中間積層体を少なくとも1つ積層する、ことが好ましい。この製造方法により、割れ又は欠けが外周に生じやすいフッ化マグネシウム焼結体を円盤状で加工することで、精度よくテーパ加工することができる。
 本発明の望ましい態様として、前記積層工程では、前記第1中間積層体、前記第2中間積層体及び前記第3中間積層体を積層することにより、中性子モデレータを製造することが好ましい。これにより、割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウム焼結体による中性子モデレータを得ることができる。
 上述した課題を解決し、目的を達成するために、本発明の中性子モデレータは、中性子を減速させる中性子モデレータであって、複数の円盤状のフッ化マグネシウム焼結体が積層される中間積層体を含むことを特徴とする。
 この中性子モデレータは、割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウム焼結体により、0.5eVより小さいエネルギーを有する中性子を抑制できる。また、中性子モデレータは、割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウム焼結体により、10keVより大きいエネルギーを有する中性子を抑制できる。
 本発明によれば、割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータを提供することができる。
図1は、本実施形態に係る中性子モデレータを備える中性子源発生装置を説明する説明図である。 図2は、本実施形態に係る中性子モデレータの斜視図である。 図3は、図2の側面図である。 図4は、図2の上面図である。 図5は、図3に示すA-A断面の断面図である。 図6は、本実施形態に係る中性子モデレータの製造方法を説明するためのフローチャートである。 図7は、通電パルス焼結装置を模式的に示す模式図である。 図8は、本実施形態に係る円盤状のフッ化マグネシウム焼結体の側面図である。 図9は、図8の上面図である。 図10は、本実施形態に係る第1中間積層体の積層体の積層状態を説明するための説明図である。 図11は、本実施形態に係る第1中間積層体を示す模式図である。 図12は、本実施形態に係る第2中間積層体の積層体の積層状態を説明するための説明図である。 図13は、本実施形態に係る第2中間積層体を製造する機械加工工程を説明するための説明図である。 図14は、本実施形態に係る第2中間積層体を示す模式図である。 図15は、本実施形態に係る第3中間積層体の積層体の積層状態を説明するための説明図である。 図16は、本実施形態に係る第3中間積層体を製造する機械加工工程を説明するための説明図である。 図17は、本実施形態に係る第3中間積層体を示す模式図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。また、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに、以下に記載した構成要素は適宜組み合わせることが可能である。
(中性子源発生装置)
 図1は、本実施形態に係る中性子モデレータを備える中性子源発生装置を説明する説明図である。図1に示すように、中性子源発生装置は、加速器100と、ビームトランスポート25と、ベンディング磁石26と、ターゲットユニット20とを備えている。
 加速器100は、陽子を加速するための装置であり、上流側から下流側に向けて順番にイオン源21、低エネルギービーム輸送系(LEBT)22、加速管23がそれぞれ配置されている。イオン源21は、陽子をプラスイオンにする装置である。低エネルギービーム輸送系22は、イオン源21と加速管23とのインターフェースである。
 ビームトランスポート25は、加速器100で加速された陽子をターゲットユニット20まで導くためのビーム通路である。ビームトランスポート25は、ベンディング磁石26を介して、加速された陽子の進行方向を任意の位置に配置されるターゲットユニット20に導くように、変更している。このように、ベンディング磁石26は、加速器100によって加速された陽子の進行方向を曲げるためのものである。ビームトランスポート25は、ベンディング磁石26を介さずに、加速器100で加速された陽子をターゲットユニット20まで導いてもよい。
 ターゲットユニット20は、陽子とターゲット27の反応により中性子を発生させる装置である。ターゲットユニット20は、ターゲット27と、中性子モデレータ1と、中性子反射体29と、照射部28とを備えている。
 ターゲット27は、銅などの支持体(基板)に蒸着によって金属リチウムの薄膜などのターゲット材料を形成して構成されている。この実施の形態で示されるターゲット27は、内壁面(内表面)にリチウムの薄膜が施されたコーン状のターゲットである。ターゲット材料は、この形状に限定されない。例えば、表面にリチウムの薄膜が施されたプレート状のターゲットなど、あらゆる形状のターゲットでもよい。また、ターゲット材料は、他のターゲット材料、例えばベリリウムなどでもよい。中性子モデレータ1は、ターゲット27で発生した中性子を減速するための中性子減速材である。
 中性子反射体29は、ターゲットユニット20外に不要な中性子を放出しないため、鉛などで、ターゲット27及び中性子モデレータ1の周囲を覆っている。照射部28は、中性子モデレータ1で減速した中性子を放出する開口である。
 近年、癌細胞を選択的に死滅させる中性子捕捉療法が研究され、原子炉施設において臨床実施されている。図1に示す中性子源発生装置は、原子炉を用いないで中性子を得ることができる。中性子捕捉療法は、熱中性子などと核反応を起こしやすい物質、例えば、非放射性同位元素であるホウ素-10(B-10)を含有する化合物を薬剤化し、あらかじめそれを人体に投与し、癌の存在領域、すなわち正常細胞と混在する癌細胞のみに取り込ませておく。中性子捕捉療法は、図1に示す中性子源発生装置で、人体に影響の少ないエネルギーの中性子(熱中性子や熱外中性子)を癌の部位に照射し、癌細胞のみを選択的に抑制する癌治療法である。
 中性子モデレータ1は、人体に影響の少ないエネルギーの中性子(熱中性子や熱外中性子)とするために、放出された中性子を10keV以下のエネルギー領域に中性子を減速させる必要がある。本実施形態の中性子モデレータ1は、フッ化マグネシウムで中性子を減速するので、20keV以下のエネルギー領域における中性子減速性能が高い。
 再発がん治療の放射線として中性子の有効なエネルギーは、一般的に0.5eV以上10keV以下であり、0.5eVより小さい場合は、生体の皮膚表面の正常組織に影響を与えやすく、10keVを超えると、人体内部の癌組織以外の正常組織への影響が大きくなる。本実施形態の中性子モデレータ1は、重水製のモデレータと比較して、重水製のモデレータよりも0.5eVより小さいエネルギーを有する中性子を抑制できる。また、本実施形態の中性子モデレータ1は、ポリテトラフルオロエチレン製のモデレータと比較して、ポリテトラフルオロエチレン製のモデレータよりも10keVより大きいエネルギーを有する中性子を抑制できる。
 本実施形態の中性子モデレータ1として、フッ化マグネシウムで所定の通過断面積を得るようにするには、フッ化マグネシウムを焼結体にすることが好ましい。しかしながら、フッ化マグネシウムの焼結体は、本実施形態の中性子モデレータ1として有効な大きさにしようとすると、割れ又は欠けなど焼結状態の品質を保つために工夫が必要であることが分かった。以下、中性子モデレータ1について、図2から図17を用いて詳細に説明する。
(中性子モデレータ)
 図2は、本実施形態に係る中性子モデレータの斜視図である。図3は、図2の側面図である。図4は、図3の上面図である。図5は、図3に示すA-A断面の断面図である。中性子モデレータ1は、図3に示すように、図1に示すターゲット27側を上面1A、照射部28側を下面1B、外周1Pを有する略円柱体である。図3に示すように、中性子モデレータ1の厚みを図1に示すターゲット27から照射部28に向かう中性子の通過方向の厚みLとした場合、中性子モデレータ1は、直径Dに対する厚みLの比(厚みL/直径D)が180%以上であることが多い。このような中性子モデレータ1の形状を一体で焼結した場合、加圧状態の不均一性から、中性子モデレータ1の内部で相対密度が低下する可能性がある。中性子モデレータ1の相対密度の不均一性は、中性子の減速に影響を与える可能性がある。また、中性子モデレータ1は、大型サイズ(特に直径(φ)150mm以上)である場合、外周部に割れ又は欠けが発生する可能性がある。
 また、図4及び図5に示すように、中性子モデレータ1の上面1Aには、図1に示すターゲット27が挿入される、凹部27Hのテーパ面1Cを備えている。また、図3に示すように、中性子モデレータ1の下面1Bの直径dは、外周1Pの直径Dよりも小さくなるように、下面1B側に直径が小さくなる外周のテーパ面1Tを備えている。中性子モデレータ1は、テーパ面1C及びテーパ面1Tの面積が大きいと形状を精度よく加工することが難しい。
 以上の観点から、発明者らは放電プラズマ焼結(SPS:spark plasma Sintering)又はパルス通電焼結とよばれる固体圧縮焼結法を応用することで、割れが少なく、歩留まり率の高いフッ化マグネシウム焼結体の製造方法について鋭意検討し、本実施形態を発案するに至った。
 図6は、本実施形態に係る中性子モデレータの製造方法を説明するためのフローチャートである。図7は、通電パルス焼結装置を模式的に示す模式図である。図6に示すように、本実施形態に係る焼結体の製造方法は、粉体充填工程S1と、中間体焼結工程S2とを含む。本実施形態に係る中性子モデレータの製造方法は、さらに、積層工程として、第1中間積層体の積層工程S3と、孔開け加工工程S4と、第2中間積層体の積層工程S5と、外周テーパ加工工程S6と、第3中間積層体の積層工程S7と、中性子モデレータの組み立て工程S8とを含む。
 図7に示すように、放電プラズマ焼結装置30は、内部雰囲気を真空又はAr、窒素ガス雰囲気にガス置換できるチャンバ-Vと、グラファイトダイGDと、グラファイトパンチGPと、グラファイトスペーサーGSと、通電加圧軸と、直流パルス電源Eとを備えている。グラファイトダイGDと、グラファイトパンチGP、グラファイトスペーサーGSおよび通電加圧軸とは、導電性のある材料、例えばステンレスなどで形成されている。
 直流パルス電源Eは、グラファイトダイGDと、グラファイトパンチGPと、通電加圧軸とを通じて、グラファイトダイGD内のフッ化マグネシウム粉体MにON-OFF直流パルス電圧電流を印加することができる。
 本実施形態に係る焼結体の製造方法は、粉体充填工程S1において、フッ化マグネシウム粉体を用意し、タッピングによる粉体充填を行う。
 本実施形態に係る焼結体の製造方法は、中間体焼結工程S2において、パルスを通電しながら焼結するパルス通電焼結される。ここで、グラファイトダイGDの中のフッ化マグネシウム粉体は、グラファイトパンチGPと通電加圧軸で加圧される圧力Pで円盤状に圧縮される。図8は、本実施形態に係る円盤状のフッ化マグネシウム焼結体の側面図である。図9は、図8の上面図である。本実施形態に係るフッ化マグネシウム焼結体dsは、例えば厚みt、直径Dtの円盤(扁平円筒体)である。直径Dtに対する厚みtは、8%以上15%以下であることがより好ましい。これにより、円盤状のフッ化マグネシウム焼結体dsは、割れ又は欠けを抑制することができる。
 次に、本実施形態に係る中性子モデレータの製造方法は、さらに、第1中間積層体の積層工程S3において、複数の円盤状のフッ化マグネシウム焼結体dsを中間体として製造して準備した上で、第1中間積層体の積層工程S3で積層し、厚み方向に接合する。
 図10は、本実施形態に係る第1中間積層体の積層体の積層状態を説明するための説明図である。図11は、本実施形態に係る第1中間積層体を示す模式図である。図10に示すように、円盤状のフッ化マグネシウム焼結体dsの厚みは、すべて同じでなくてもよい。例えば、上面になる円盤状のフッ化マグネシウム焼結体dsの1つは、表面2aを切削加工して、上面2Aまで表面を削りこんでもよい。また、下面になる円盤状のフッ化マグネシウム焼結体dsの1つは、表面2bを切削加工して、下面2Bまで表面を削りこんでもよい。以上により、本実施形態に係る中性子モデレータの製造方法は、さらに、積層工程として、図11に示す第1中間積層体2を製造する。この第1中間積層体2は円柱形状になる。
 次に、本実施形態に係る中性子モデレータの製造方法は、さらに、積層工程として、孔開け加工工程S4において、複数の円盤状のフッ化マグネシウム焼結体dsの上面の中央部分を孔開け加工する。図12は、本実施形態に係る第2中間積層体の積層体の積層状態を説明するための説明図である。図13は、本実施形態に係る第2中間積層体を製造する機械加工工程を説明するための説明図である。図14は、本実施形態に係る第2中間積層体を示す模式図である。
 本実施形態では、図12に示すようにテーパ面1Cの表面をなめらかに形成する必要がある。ここで図13に示すように、本実施形態の機械加工工程は、円盤状のフッ化マグネシウム焼結体dsの1つに対して、ドリル40を自転させながら螺旋状に公転させ、テーパ面1Cを孔開け加工していく。フッ化マグネシウム焼結体dsは、割れ又は欠けを抑制するため、一方の表面より孔開けして削り込む場合、ドリル40が他方の面を貫通する直前に割れ又は欠けが発生しやすい。このため、切削装置は、フッ化マグネシウム焼結体dsのドリル40を他方の面を貫通させる直前に螺旋状の公転をやめて、厚み方向に直線的に動かすことが好ましい。このため、図12に示すように、円盤状のフッ化マグネシウム焼結体dsのテーパ面1C及び下面3Bと連続的かつ鉛直な方向に延びる鉛直内壁3Sをつくることができ、テーパ面1Cの最終加工部分の厚みが確保されることで、割れ又は欠けを抑制することができる。
 次に、本実施形態に係る中性子モデレータの製造方法は、さらに、積層工程として、孔開け加工工程S4において孔開け加工された、複数の円盤状のフッ化マグネシウム焼結体dsを中間体として製造して準備した上で、第2中間積層体の積層工程S5で積層し、厚み方向に接合する。
 図12に示すように、円盤状のフッ化マグネシウム焼結体dsの厚みは、すべて同じでなくてもよい。例えば、上面になる円盤状のフッ化マグネシウム焼結体dsの1つは、表面3aを切削加工して、上面3Aまで表面を削りこんで、テーパ面1Cの縁の周囲に突部3Qを残してもよい。以上により、本実施形態に係る中性子モデレータの製造方法は、さらに、積層工程として、図14に示す第2中間積層体3を製造する。この第2中間積層体3の外径形状は円筒形状になる。テーパ面1Cの角度αは、積層される円盤状のフッ化マグネシウム焼結体dsの順序を考慮しつつ、一定の角度としていくことが好ましい。
 次に、本実施形態に係る中性子モデレータの製造方法は、さらに、外周テーパ加工工程S6において、複数の円盤状のフッ化マグネシウム焼結体dsの外周部分をテーパ加工する。図15は、本実施形態に係る第3中間積層体の積層体の積層状態を説明するための説明図である。図16は、本実施形態に係る第3中間積層体を製造する機械加工工程を説明するための説明図である。図17は、本実施形態に係る第3中間積層体を示す模式図である。
 本実施形態では、図15に示すようにテーパ面1Tの表面をなめらかに形成する必要がある。ここで図16に示すように、本実施形態の機械加工工程は、円盤状のフッ化マグネシウム焼結体dsの1つに対して、外周外側からドリル40を押し付けて、テーパ面1Tを加工していく。フッ化マグネシウム焼結体dsは、図15に示すように、円柱部分4Sを残してもよい。テーパ面1Tの角度βは、積層される円盤状のフッ化マグネシウム焼結体dsの順序を考慮しつつ、一定の角度としていくことが好ましい。
 次に、本実施形態に係る中性子モデレータの製造方法は、さらに、積層工程として、外周テーパ加工工程S6において外周にテーパ加工を行った、複数の円盤状のフッ化マグネシウム焼結体dsを中間体として製造して準備した上で、第3中間積層体の積層工程S7で積層し、厚み方向に接合する。
 本実施形態に係る中性子モデレータの製造方法は、さらに、積層工程として、図17に示す第3中間積層体4を製造する。この第3中間積層体4の外径形状は、上面4A、下面4B、及びテーパ面1Tを備える略円錐形状になる。
 以上により、本実施形態に係る中性子モデレータの製造方法は、中性子モデレータの組み立て工程S8において、第1中間積層体2の上面2Aと第2中間積層体3の下面3Bとを接合する。第2中間積層体3の上面3Aが中性子モデレータの上面1Aになる。また、第1中間積層体2の下面2Bと第3中間積層体4の上面4Aとを接合する。第3中間積層体4の下面4Bが中性子モデレータの下面1Bになる。第1中間積層体2、第2中間積層体3及び第3中間積層体4は、積層されることにより、中性子モデレータ1が製造される。
 以上説明したように、フッ化マグネシウム焼結体の製造方法は、フッ化マグネシウム粉末材を金型にタッピング充填を行う粉体充填工程S1と、充填されたフッ化マグネシウム粉末材を、パルスを通電しながら焼結するパルス通電焼結を行い、フッ化マグネシウム焼結体(中間体)を得る中間体焼結(パルス通電焼結)工程S2と、を含む。この製造方法により、フッ化マグネシウム焼結体dsは、粒径分布にバラつきの少ない、粒径成長を抑制した焼結体となり、割れ又は欠けを抑制して相対密度を高めることができる。
 粉体充填工程S1において充填されるフッ化マグネシウム粉末材は、99質量%以上の高純度材であり、残部が不可避不純物を含んでもよい。これにより、フッ化マグネシウム焼結体dsは、0.5eVより小さいエネルギーを有する中性子を抑制できる。また、フッ化マグネシウム焼結体dsは、10keVより大きいエネルギーを有する中性子を抑制できる。
 中性子モデレータの製造方法は、上述したフッ化マグネシウム焼結体の製造方法で製造された複数の円盤状のフッ化マグネシウム焼結体dsを複数準備する準備工程と、円盤状のフッ化マグネシウム焼結体dsを積層し、接合して、中性子モデレータ1を製造する積層工程と、を含む。これにより、厚みの大きなフッ化マグネシウム焼結体dsを焼結する必要がなくなることから、中性子モデレータ1の内部で相対密度が低下する可能性を低減できる。
 中性子モデレータ1は、円盤状のフッ化マグネシウム焼結体dsを第1中間積層体2とした場合、中間体のフッ化マグネシウム焼結体dsにさらに機械加工工程により孔開け加工を行った積層体を少なくとも1つ積層している第2中間積層体3を含む。この製造方法により、加工性の悪い円盤状のフッ化マグネシウム焼結体dsを薄くしているので、個々のフッ化マグネシウム焼結体dsを貫通する孔の精度が向上する。
 中性子モデレータ1は、円盤状のフッ化マグネシウム焼結体dsを第1中間積層体とした場合、中間体のフッ化マグネシウム焼結体dsに機械加工工程により外周にテーパ加工を行った積層体を少なくとも1つ積層している第3中間積層体4を含む。この製造方法により、円盤状のフッ化マグネシウム焼結体dsを薄くしているので、割れ又は欠けが外周に生じやすいフッ化マグネシウム焼結体dsの加工精度が向上する。
 中性子モデレータ1は、複数の円盤状のフッ化マグネシウム焼結体dsが積層される第1中間積層体2を含む。この中性子モデレータ1は、割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウム焼結体dsにより、0.5eVより小さいエネルギーを有する中性子を抑制できる。また、中性子モデレータ1は、割れ又は欠けを抑制して相対密度を高めたフッ化マグネシウム焼結体dsにより、10keVより大きいエネルギーを有する中性子を抑制できる。
 中性子モデレータ1は、第1中間積層体2、第2中間積層体3及び第3中間積層体4が積層されているので、第1中間積層体2、第2中間積層体3及び第3中間積層体4のどの積層体でも中性子の減速性能が均一になる。
(実施例)
 試料は、純度99%以上のフッ化マグネシウム粉末(森田化学工業製)を、内容積が焼結直径φ(mm)×厚さ(mm)となる金型の容器に充填し、タッピング充填を行った。
 次いで、試料は、フッ化マグネシウム粉末を充填した容器を、放電プラズマ焼結装置にセットし、焼結雰囲気を減圧により真空の雰囲気中とした。加圧条件は、一定の加圧条件及び可変(表1中矢印の順序で順に変更)の条件で、割れの有無を確認した。通電条件は、各実施例、各比較例で同一とし、最大電流出力18000A程度のパルス通電とした。昇温速度は、1℃/分(min)以上15℃/分以下の範囲で、保持温度にフッ化マグネシウム粉末が達するまで加熱を行った。保持温度は、630℃以上900℃以下の範囲で加熱を行った。保持時間は、15分以上240分以下の範囲で設定した。割れの有無を調査し、割れのなしの試料を実施例1から実施例13とし、割れのありの試料を比較例1から比較例12とした。
 実施例の知見によれば、昇温速度は、1℃/分以上7℃/分以下とすることが好ましい。金型の昇温速度が7℃/分よりも大きいと、フッ化マグネシウムの焼結体の内外の温度差が大きくなり、結晶粒径にバラつきができやすくなり、割れが生じやすくなる。逆に昇温速度は、7℃/分以下であれば、フッ化マグネシウム焼結体の粒径成長に大きな差が生じない程度にフッ化マグネシウム焼結体の温度を上昇させていくことができる。このため、焼結体の割れを抑制することができる。また昇温速度は、1℃/分よりも小さいと、加熱に時間がかかり製造速度・効率が低下してしまう。
 実施例の知見によれば、フッ化マグネシウム粉末においては、99.0%以上の高純濃度の粉末であれば特に限定されるものではなく、例えば一般的にカチオン交換基がマグネシウムであるカチオン交換樹脂にフッ化水素酸を加え、得られたフッ化マグネシウム粒子を分離・粉砕したもの等、汎用なフッ化マグネシウム粉末を用いることができる。
 実施例の知見によれば、フッ化マグネシウム焼結体の製造方法における加圧条件は、20MPa前後が好ましい。加圧条件が20MPaより低いと、フッ化マグネシウム粉末体の十分な圧縮が行えず粉末の間隙が大きくなり、フッ化マグネシウム焼結体の割れを引き起こす原因となる。また加圧条件が20MPaよりも大きい場合、フッ化マグネシウム焼結体の外周部の破損が生じやすくなる可能性がある。加圧条件が20MPaよりも大きい場合、フッ化マグネシウム焼結体の寸法が大きくなると、装置の性能上大きな圧力を加えることが困難になるという製造装置の仕様上の課題が発生する。また、加圧条件は、一定にした方が、焼結体の結晶構造が均一になりやすく、焼結を行う際の加圧は一定とするのが好ましい。
 実施例の知見によれば、フッ化マグネシウム焼結体の製造方法における保持温度は、650~800℃が好ましい。保持温度が650℃よりも小さいと、結晶粒を均一にするために保持時間を長くしなければならず、逆に保持温度が800℃よりも大きいと、それ以上の効果が認められず飽和状態となるためコスト性が低下する。
 実施例の知見によれば、フッ化マグネシウム焼結体の製造方法における焼結後の金型加熱保持時間は、45分以上保持することが好ましい。また保持時間は、180分を超えても効果はそれほど変わらなくなり飽和状態となるため、製造コストが増加してしまう可能性がある。
 実施例の知見によれば、相対密度は、相対密度99%以上にすることができる。
1 中性子モデレータ
2 第1中間積層体
3 第2中間積層体
4 第3中間積層体
20 ターゲットユニット
21 イオン源
22 低エネルギービーム輸送系
23 加速管
25 ビームトランスポート
26 ベンディング磁石
27 ターゲット
28 照射部
29 中性子反射体
30 放電プラズマ焼結装置
40 ドリル
100 加速器
ds フッ化マグネシウム焼結体
E 直流パルス電源
GD グラファイトダイ
GP グラファイトパンチ
GS グラファイトスペーサー

Claims (7)

  1.  フッ化マグネシウム焼結体の製造方法であって、
     フッ化マグネシウム粉末材を金型にタッピング充填を行う粉体充填工程と
     前記粉体充填工程で充填された前記フッ化マグネシウム粉末材を、パルスを通電しながら焼結するパルス通電焼結を行い、フッ化マグネシウム焼結体を得るパルス通電焼結工程と、
     を含むことを特徴とするフッ化マグネシウム焼結体の製造方法。
  2.  前記粉体充填工程において、フッ化マグネシウム粉末材が99質量%以上の高純度材であり、残部が不可避不純物を含む、請求項1に記載のフッ化マグネシウム焼結体の製造方法。
  3.  請求項1乃至請求項2に記載のフッ化マグネシウム焼結体の製造方法で製造された複数の円盤状のフッ化マグネシウム焼結体を複数準備する準備工程と、
     前記円盤状のフッ化マグネシウム焼結体を積層し、接合して、中性子モデレータを製造する積層工程と、
     を含む中性子モデレータの製造方法。
  4.  前記積層工程は、前記円盤状のフッ化マグネシウム焼結体を中間体とした場合、前記中間体にさらに機械加工工程により孔開け加工を行った第2中間積層体を少なくとも1つ積層する、請求項3に記載の中性子モデレータの製造方法。
  5.  前記積層工程では、前記円盤状のフッ化マグネシウム焼結体を中間体とした場合、前記中間体に機械加工工程により外周にテーパ加工を行った第3中間積層体を少なくとも1つ積層する、請求項4に記載の中性子モデレータの製造方法。
  6.  前記積層工程では、前記第1中間積層体、前記第2中間積層体及び前記第3中間積層体を積層することにより、中性子モデレータを製造する請求項5に記載の中性子モデレータの製造方法。
  7.  中性子を減速させる中性子モデレータであって、
     複数の円盤状のフッ化マグネシウム焼結体が積層される中間積層体を含むことを特徴とする中性子モデレータ。
PCT/JP2015/051419 2014-01-22 2015-01-20 フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ WO2015111586A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP15740248.8A EP3098209B1 (en) 2014-01-22 2015-01-20 Method for manufacturing a magnesium fluoride sintered compact and a method for manufacturing a neutron moderator
KR1020167019974A KR101885011B1 (ko) 2014-01-22 2015-01-20 불화 마그네슘 소결체의 제조 방법, 중성자 모더레이터의 제조 방법 및 중성자 모더레이터
JP2015559074A JP6085782B2 (ja) 2014-01-22 2015-01-20 フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ
ES15740248T ES2846151T3 (es) 2014-01-22 2015-01-20 Método para fabricar una pieza compacta sinterizada de fluoruro de magnesio y método para fabricar un moderador de neutrones
AU2015210075A AU2015210075B2 (en) 2014-01-22 2015-01-20 Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator
EP20212172.9A EP3815745A1 (en) 2014-01-22 2015-01-20 Neutron moderator
CN201580005534.6A CN106414369B (zh) 2014-01-22 2015-01-20 氟化镁烧结体的制造方法、中子慢化剂的制造方法及中子慢化剂
RU2016133616A RU2655356C2 (ru) 2014-01-22 2015-01-20 Способ изготовления спеченной порошковой детали из фторида магния, способ изготовления замедлителя нейтронов и замедлитель нейтронов
DK15740248.8T DK3098209T3 (da) 2014-01-22 2015-01-20 Fremgangsmåde til fremstilling af en magnesiumfluorid-sintreret kompakt masse og en fremgangsmåde til fremstilling af en neutronmoderator
PL15740248T PL3098209T3 (pl) 2014-01-22 2015-01-20 Sposób wytwarzania spiekanej wypraski z fluorku magnezu i sposób wytwarzania moderatora neutronów
US15/216,536 US9868673B2 (en) 2014-01-22 2016-07-21 Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-009883 2014-01-22
JP2014009883 2014-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/216,536 Continuation US9868673B2 (en) 2014-01-22 2016-07-21 Method for manufacturing magnesium fluoride sintered compact, method for manufacturing neutron moderator, and neutron moderator

Publications (1)

Publication Number Publication Date
WO2015111586A1 true WO2015111586A1 (ja) 2015-07-30

Family

ID=53681389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051419 WO2015111586A1 (ja) 2014-01-22 2015-01-20 フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ

Country Status (12)

Country Link
US (1) US9868673B2 (ja)
EP (2) EP3815745A1 (ja)
JP (1) JP6085782B2 (ja)
KR (1) KR101885011B1 (ja)
CN (2) CN106414369B (ja)
AU (1) AU2015210075B2 (ja)
DK (1) DK3098209T3 (ja)
ES (1) ES2846151T3 (ja)
HU (1) HUE053143T2 (ja)
PL (1) PL3098209T3 (ja)
RU (1) RU2655356C2 (ja)
WO (1) WO2015111586A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104354A1 (ja) * 2014-12-26 2016-06-30 国立大学法人筑波大学 放射線減速材用MgF2系フッ化物焼結体及びその製造方法
EP3343569A4 (en) * 2015-10-15 2018-08-29 Neuboron Medtech Ltd. Neutron moderation material
WO2019034043A1 (zh) * 2017-08-18 2019-02-21 南京中硼联康医疗科技有限公司 用于慢化中子的缓速体
JPWO2019074078A1 (ja) * 2017-10-11 2020-11-05 日本軽金属株式会社 遮蔽機能を有する箱型構造体

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5813258B2 (ja) * 2013-07-08 2015-11-17 国立大学法人 筑波大学 中性子線減速材用フッ化物焼結体及びその製造方法
EP3316665B1 (en) * 2014-12-08 2019-10-09 Neuboron Medtech Ltd. Beam shaping assembly for neutron capture therapy
EP3326984A4 (en) * 2015-07-21 2019-03-20 Nippon Light Metal Co., Ltd. MAGNESIUM FLUORIDE SINTERED BODY, METHOD FOR PRODUCING A MAGNESIUM FLUORIDE SINTERED BODY, NEUTRON MOTORATOR AND METHOD FOR PRODUCING A NEUTRON MOTORATOR
WO2019114307A1 (zh) * 2017-12-15 2019-06-20 南京中硼联康医疗科技有限公司 中子捕获治疗系统
IT201800004594A1 (it) * 2018-04-17 2019-10-17 Processo per la realizzazione di target per la produzione di radioisotopi
US11517769B2 (en) * 2019-07-10 2022-12-06 Ricoh Company, Ltd. Neutron beam transmission adjusting device comprising a neutron beam transmission unit including a neutron reactant, method for producing neutron beam transmission adjusting device, and neutron beam adjusting method
IT202000005653A1 (it) * 2020-03-17 2021-09-17 Omnicos Group S R L Metodo per la produzione di un prodotto cosmetico costituito da strati di materiale in polvere compatta
CN113186440A (zh) * 2021-04-28 2021-07-30 禾材高科(苏州)有限公司 一种氟化铝基陶瓷中子慢化材料及其制备方法
CN113808772A (zh) * 2021-09-10 2021-12-17 中山大学 一种中子慢化材料
CN115894033B (zh) * 2021-09-30 2023-11-14 涿州钢研昊普科技有限公司 一种大尺寸氟化镁慢化体的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216409A (ja) * 1994-02-07 1995-08-15 Sumitomo Coal Mining Co Ltd 放電プラズマ焼結方法および装置
JPH11139862A (ja) * 1997-11-04 1999-05-25 Sumitomo Metal Mining Co Ltd 高密度MgO焼結体及びその製造方法
JP2003049207A (ja) * 2001-08-03 2003-02-21 Fuji Heavy Ind Ltd 焼結体の製造方法及び放電プラズマ焼結用被焼結体
JP2004233168A (ja) 2003-01-29 2004-08-19 Japan Science & Technology Agency 中性子捕捉療法に用いる中性子遮蔽板、およびヒト以外の哺乳動物に対して行なう中性子捕捉療法、ならびに治療用中性子照射装置
JP2008230904A (ja) 2007-03-20 2008-10-02 Miyagi Prefecture 多孔質体およびその製造方法
JP2009192488A (ja) * 2008-02-18 2009-08-27 Sumitomo Heavy Ind Ltd 減速材及び減速装置
JP2013217874A (ja) * 2012-04-12 2013-10-24 Toshiba Corp 高速炉および高速炉の反射体集合体
WO2014010704A1 (ja) * 2012-07-13 2014-01-16 株式会社八神製作所 中性子発生装置用のターゲットとその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3301781A (en) * 1964-10-27 1967-01-31 Gen Motors Corp Method of making magnesium fluoride articles
US5880478A (en) * 1997-05-19 1999-03-09 Lucent Technologies Inc. Compound refractive lenses for low energy neutrons
JP4083273B2 (ja) 1997-12-03 2008-04-30 ペンタックス株式会社 セラミックスと金属との接合方法
JP4282586B2 (ja) * 2004-11-02 2009-06-24 Spsシンテックス株式会社 ナノ精密焼結システム
EP1895819A1 (en) 2006-08-29 2008-03-05 Ion Beam Applications S.A. Neutron generating device for boron neutron capture therapy
JP5501040B2 (ja) * 2009-03-26 2014-05-21 日本碍子株式会社 アルミナ焼結体、その製法及び半導体製造装置部材
RU2436877C1 (ru) * 2010-05-06 2011-12-20 Закрытое акционерное общество (ЗАО) "ИНКРОМ" Способ получения фторидной нанокерамики
FR2961623B1 (fr) * 2010-06-16 2013-08-30 Commissariat Energie Atomique Joint d'interface solide a porosite ouverte pour crayon de combustible nucleaire et pour barre de commande nucleaire
US8771391B2 (en) * 2011-02-22 2014-07-08 Baker Hughes Incorporated Methods of forming polycrystalline compacts
JP5577287B2 (ja) * 2011-03-30 2014-08-20 日本碍子株式会社 フッ化マグネシウム焼結体、その製法及び半導体製造装置用部材
CN202372648U (zh) * 2011-12-22 2012-08-08 同方威视技术股份有限公司 一种探测器
JP6261919B2 (ja) * 2013-09-06 2018-01-17 三菱重工機械システム株式会社 中性子照射装置
US9789335B2 (en) * 2014-09-24 2017-10-17 Techno Eye Corporation MgF2—CaF2 binary system sintered body for radiation moderator and method for producing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07216409A (ja) * 1994-02-07 1995-08-15 Sumitomo Coal Mining Co Ltd 放電プラズマ焼結方法および装置
JPH11139862A (ja) * 1997-11-04 1999-05-25 Sumitomo Metal Mining Co Ltd 高密度MgO焼結体及びその製造方法
JP2003049207A (ja) * 2001-08-03 2003-02-21 Fuji Heavy Ind Ltd 焼結体の製造方法及び放電プラズマ焼結用被焼結体
JP2004233168A (ja) 2003-01-29 2004-08-19 Japan Science & Technology Agency 中性子捕捉療法に用いる中性子遮蔽板、およびヒト以外の哺乳動物に対して行なう中性子捕捉療法、ならびに治療用中性子照射装置
JP2008230904A (ja) 2007-03-20 2008-10-02 Miyagi Prefecture 多孔質体およびその製造方法
JP2009192488A (ja) * 2008-02-18 2009-08-27 Sumitomo Heavy Ind Ltd 減速材及び減速装置
JP2013217874A (ja) * 2012-04-12 2013-10-24 Toshiba Corp 高速炉および高速炉の反射体集合体
WO2014010704A1 (ja) * 2012-07-13 2014-01-16 株式会社八神製作所 中性子発生装置用のターゲットとその製造方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Optimizing the OSU-ABNS Base Moderator Assembly Materials for BNCT B. Khorsandia", T. E. BLUE A NUCLEAR ENGINEERING PROGRAM
ANONYMOUS: "Physics of ceramics", 2004, UCHIDA ROKAKUHO PUBLISHINGCO., LTD, article TABLE 2-3, pages: 23 - 30,107-115, XP055672808
BYUNG-NAM KIM ET AL.: "Effects of heating rate on microstructure and transparency of spark-plasma-sintered alumina", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 29, no. 2, January 2009 (2009-01-01), pages 323 - 327, XP025586517, DOI: 10.1016/j.jeurceramsoc.2008.03.015
BYUNG-NAM KIM ET AL.: "Spark plasma sintering of transparent alumina", SCRIPTA MATERIALIA, vol. 57, no. 7, 25 July 2007 (2007-07-25), pages 607 - 610, XP022170012
INOUE R. ET AL.: "Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy", APPLIED RADIATION AND ISOTOPES, vol. 88, 27 December 2013 (2013-12-27), pages 225 - 228, XP055214584 *
KHORSANDI B. ET AL.: "Optimizing the OSU-ABNS Base Moderator Assembly Materials for BNCT", ELEVENTH WORLD CONGRESS ON NEUTRON CAPTURE THERAPY (ISNCT-11, 2004, pages 1 - 10, XP008184398 *
KONONOV 0 E; KONONOV V N; SOLOV' EV A N; BOKHOVKO M V: "Accelerator-Based source of epithermal neutrons for neutron capture therapy", ENERGY, vol. 97, no. 3, pages 626 - 631
NEW CERAMICS ASSOCIATION: "New ceramics - Materials and their applications", 1977, article "7.2.4 Non-oxide transparent polycrystalline body", pages: 220, 234, XP055672675
PAUL HAGENMÜLLER: "Inorganic Solid Fluorides", 1985, ACADEMIC PRESS, INC., article "Preparative methods", pages: 18,65,66,598,599, XP055672694
See also references of EP3098209A1

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016104354A1 (ja) * 2014-12-26 2016-06-30 国立大学法人筑波大学 放射線減速材用MgF2系フッ化物焼結体及びその製造方法
JPWO2016104354A1 (ja) * 2014-12-26 2017-04-27 国立大学法人 筑波大学 放射線減速材用MgF2系フッ化物焼結体及びその製造方法
EP3343569A4 (en) * 2015-10-15 2018-08-29 Neuboron Medtech Ltd. Neutron moderation material
JP2018536154A (ja) * 2015-10-15 2018-12-06 南京中硼▲聯▼康医▲療▼科技有限公司Neuboron Medtech Ltd. 中性子減速材
US10157693B2 (en) 2015-10-15 2018-12-18 Neuboron Medtech Ltd. Neutron moderation material
EP3570292A1 (en) * 2015-10-15 2019-11-20 Neuboron Medtech Ltd. Neutron moderation material
CN110507915A (zh) * 2015-10-15 2019-11-29 南京中硼联康医疗科技有限公司 中子缓速材料
CN110507915B (zh) * 2015-10-15 2021-03-09 南京中硼联康医疗科技有限公司 中子缓速材料
WO2019034043A1 (zh) * 2017-08-18 2019-02-21 南京中硼联康医疗科技有限公司 用于慢化中子的缓速体
JPWO2019074078A1 (ja) * 2017-10-11 2020-11-05 日本軽金属株式会社 遮蔽機能を有する箱型構造体
JPWO2019074079A1 (ja) * 2017-10-11 2020-11-05 日本軽金属株式会社 中性子遮蔽性能を有する遮蔽接着剤

Also Published As

Publication number Publication date
RU2016133616A (ru) 2018-03-02
KR101885011B1 (ko) 2018-08-02
CN106414369B (zh) 2019-12-13
DK3098209T3 (da) 2021-02-01
EP3098209A1 (en) 2016-11-30
ES2846151T3 (es) 2021-07-28
EP3098209B1 (en) 2020-12-30
US9868673B2 (en) 2018-01-16
KR20160102048A (ko) 2016-08-26
AU2015210075B2 (en) 2017-04-20
HUE053143T2 (hu) 2021-06-28
EP3815745A1 (en) 2021-05-05
RU2655356C2 (ru) 2018-05-25
JP6085782B2 (ja) 2017-03-01
RU2016133616A3 (ja) 2018-03-02
EP3098209A4 (en) 2017-09-27
US20160326062A1 (en) 2016-11-10
CN110818418A (zh) 2020-02-21
PL3098209T3 (pl) 2021-05-17
CN106414369A (zh) 2017-02-15
AU2015210075A1 (en) 2016-08-04
JPWO2015111586A1 (ja) 2017-03-23

Similar Documents

Publication Publication Date Title
JP6085782B2 (ja) フッ化マグネシウム焼結体の製造方法、中性子モデレータの製造方法及び中性子モデレータ
JP6524391B2 (ja) フッ化マグネシウム焼結体の製造方法、及び中性子モデレータの製造方法
CN109666811A (zh) 一种耐辐照高熵合金及其制备方法
JP6113453B2 (ja) 中性子発生装置用のターゲットとその製造方法
CN107082642B (zh) 中子射线减速材料用氟化物烧结体及中子射线减速材料
CN112831678B (zh) 一种铝/氟化铝复合陶瓷中子慢化体及其制备方法
WO2023092810A1 (zh) 强流电子直线加速器核素制备系统
JP7401899B2 (ja) 中性子発生用リチウムターゲット及びその製造方法
CN114164406B (zh) 用于脉冲功率装置的颗粒压结式二极管阳极靶及制备方法
Gavrin et al. Reactor target from metal chromium for “pure” high-intensive artificial neutrino source
Gavrin et al. REACTOR TARGET FROM METALLIC CHROMIUM FOR© PUREª HIGH-INTENSITY ARTIFICIAL NEUTRINO SOURCE
KR20230164717A (ko) 대상 재료들의 보호를 위한 재료들 및 구성들
Bobyr et al. TDS investigation of the influence of helium on hydrogen isotope exchange in tungsten at sequential exposures to deuterium and helium-protium plasmas
Stadlmann Future accelerators for Secondary particle production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740248

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559074

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167019974

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015740248

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740248

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015210075

Country of ref document: AU

Date of ref document: 20150120

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016133616

Country of ref document: RU

Kind code of ref document: A