WO2023092810A1 - 强流电子直线加速器核素制备系统 - Google Patents

强流电子直线加速器核素制备系统 Download PDF

Info

Publication number
WO2023092810A1
WO2023092810A1 PCT/CN2021/143018 CN2021143018W WO2023092810A1 WO 2023092810 A1 WO2023092810 A1 WO 2023092810A1 CN 2021143018 W CN2021143018 W CN 2021143018W WO 2023092810 A1 WO2023092810 A1 WO 2023092810A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
nuclide
preparation system
linear accelerator
module
Prior art date
Application number
PCT/CN2021/143018
Other languages
English (en)
French (fr)
Inventor
黄永盛
陈沅
贺远强
Original Assignee
中山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山大学 filed Critical 中山大学
Priority to DE112021005300.0T priority Critical patent/DE112021005300T5/de
Publication of WO2023092810A1 publication Critical patent/WO2023092810A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/12Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by electromagnetic irradiation, e.g. with gamma or X-rays
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/04Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators
    • G21G1/06Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes outside nuclear reactors or particle accelerators by neutron irradiation

Definitions

  • the invention relates to the technical field of nuclear medicine, in particular to a high-current electron linear accelerator nuclide preparation system.
  • the existing technology can only provide electron beams less than or equal to 10 MeV, and the energy is not high enough.
  • the object of the present invention is to provide a high-current electron linear accelerator nuclide preparation system, which provides an overall scheme capable of producing and preparing 99 Mo radioactive isotopes, and the scheme can produce gamma rays of sufficient energy to achieve The 99 Mo isotope that meets the actual needs is prepared.
  • the present invention discloses a high-current electron linear accelerator nuclide preparation system, which includes a high-current electron accelerator module, a target making and shooting module, and a nuclear drug purification and separation module.
  • the high-current electron accelerator module is used for A high-energy electron beam of 39.8 MeV is generated, and the high-energy electron beam is bombarded on the target making and shooting module to generate a large amount of bremsstrahlung gamma ray gamma and secondary neutron beams, and the gamma ray gamma and secondary neutron beam
  • the neutron beam bombards the Mo sample target set in the nuclear drug purification and separation module to produce 99 Mo radioactive isotopes.
  • the high-current electron accelerator module of the present invention produces a high-energy electron beam of 39.8 MeV to bombard the target making and shooting module to generate a large amount of bremsstrahlung gamma rays and secondary neutron beams, Then the gamma ray gamma and the secondary neutron beam are bombarded on the Mo sample target arranged in the nuclear medicine purification and separation module to produce the Mo radioactive isotope of the Mo sample target, so that the present invention can produce gamma ray gamma of sufficient energy to Realize the preparation of 99 Mo isotopes that meet the actual needs within the allowable time.
  • the Mo sample target is a highly concentrated 100 Mo sample target.
  • the following nuclear reactions are generated:
  • the threshold energy of the gamma ray ⁇ is greater than or equal to 9.1 MeV.
  • the following nuclear reactions are generated:
  • the following nuclear reactions are generated:
  • the following nuclear reactions are generated:
  • the target making and shooting module includes a conversion target on which the high-energy electron beam bombards, and the conversion target is a metal target with element W.
  • the conversion target is in the shape of a disc, the diameter of the conversion target is 1.5 cm, and the thickness is 5 mm;
  • the Mo sample target is in the shape of a disc, the diameter of the Mo sample target is 1 cm, and the thickness is 1.5 mm .
  • Fig. 1 is the structural representation of the high-current electron linear accelerator nuclide preparation system of the present invention
  • Figure 2 is a comparison chart of performance parameters of various metal targets.
  • the high-current electron linear accelerator nuclide preparation system 100 of this embodiment provides an overall solution capable of producing and preparing 99 Mo radioisotopes, and the prepared 99 Mo radioisotopes can be transported to Mo-
  • the Tc generator 200 is used as the raw material of the Mo-Tc generator 200, where the Mo-Tc generator 200 is a nuclide generator for separating the daughter isotope from the parent isotope.
  • the high-current electron linear accelerator nuclide preparation system 100 includes a high-current electron accelerator module 10, a target making and shooting module 20, and a nuclear drug purification and separation module 30, wherein the high-current electron accelerator module 10 is used to generate a high-energy electron beam of 39.8 MeV, It can be understood that the high-energy electron beam generated by the high-current electron accelerator module 10 is a high-energy electron beam with an average current intensity of 39.8 MeV.
  • the high-energy electron beam bombards the target-making targeting module 20 to generate a large amount of bremsstrahlung gamma-ray gamma rays and secondary neutron beams.
  • Bremsstrahlung here refers to the radiation produced by the sudden deceleration of high-speed electrons, and generally refers to the radiation emitted by charged particles during collisions (especially Coulomb scattering between them).
  • the high-energy electron beam bombards the target making and shooting module 20 , and the bombardment process causes the velocity of the high-energy electron beam to decrease suddenly, so that the high-energy electron beam produces a large amount of bremsstrahlung gamma rays ⁇ and secondary neutron beams.
  • the Mo sample target in this embodiment is a highly concentrated 100 Mo sample target, so that after the nuclear reaction produced by the gamma ray and the secondary neutron beam bombarding the 100 Mo sample target, a sufficient amount of 99 Mo radioactivity can be directly produced isotopes to meet the needs of subsequent use.
  • the following nuclear reactions are generated:
  • n is a neutron
  • the threshold energy of gamma ray ⁇ needs to be greater than or equal to 9.1 MeV in order to carry out the above nuclear reaction. It is measured by experiments that when the threshold energy of gamma ray ⁇ is 14.5 MeV, the nuclear reaction cross section of the above nuclear reaction process reaches the maximum value, which is about 150 mb.
  • the following nuclear reactions are produced:
  • the following nuclear reactions are generated:
  • the following nuclear reactions are generated:
  • n is a neutron
  • the 99 Mo radioactive isotope prepared in this embodiment is the above The sum of the 99 Mo radioactive isotopes of the four nuclear reactions.
  • the target making and shooting module 20 includes a conversion target on which the high-energy electron beam is bombarded, and the conversion target is a metal target with element W.
  • the conversion target is disc-shaped with a diameter of 1.5 cm and a thickness of 5 mm;
  • the 100 Mo sample target is disc-shaped with a diameter of 1 cm and a thickness of 1.5 mm. It is found through experiments that the maximum conversion efficiency of gamma ray ⁇ and the maximum conversion efficiency of 99 Mo radioisotope can be guaranteed after the above-mentioned optimization of the size of the conversion target and the Mo sample target.
  • the composition of the conversion target it is best to choose a metal target with a high Z (high atomic number) as the conversion target.
  • the thermal power and heat dissipation of the metal target also need to be considered.
  • This example gives a variety of Comparison of performance parameters of metal targets. It can be seen from Fig. 2 that the metal target with element W has the highest melting point and the second highest thermal conductivity, so the structure of the target cooling system can be simplified. In addition, the metal target with the element W has lower cost and facilitates the maintenance of the high current electron linear accelerator nuclide preparation system 100 of this embodiment. Based on the above reasons, choosing a metal target with element W as the conversion target can effectively improve the conversion efficiency and reduce the manufacturing cost of the system.
  • the nuclear drug purification and separation module 30 includes a target drug delivery protection unit, which has a radiation protection structure, and the target drug delivery protection unit is used to send 100 Mo samples to the nuclear drug purification and separation module 30 at regular intervals at the designated position, and the targeting drug delivery protection unit is also used to deliver the prepared 99 Mo radioisotope to the rear, which is pulverized and dissolved by physical and chemical methods to form a MoO 3 solution and then enters the Mo-Tc generator 200 .
  • a disc-shaped 100 Mo sample target with a diameter of 1 cm and a thickness of 1.5 mm is used.
  • the weight of a piece of 100 Mo sample target is 0.25 g. 20 pieces of 100 Mo sample targets are stacked together and put into the nuclear drug purification and separation module 30 Inside.
  • the automatic production of continuous experimental target shooting and target selection can be realized to obtain the optimal 99 Mo radioisotope preparation scheme.
  • the output of 99 Mo radioisotope in this embodiment can reach 0.064-0.081Ci/h/ g/mA, fully able to meet the requirements of the existing technology.
  • the intense electron accelerator module 10 of the present invention produces a high-energy electron beam of 39.8 MeV to bombard the target making and shooting module 20 to produce a large amount of bremsstrahlung gamma rays gamma and secondary neutrons Beam, then make gamma ray gamma and secondary neutron beam bombardment the Mo sample target that is arranged in nuclear medicine purification separation module 30, to produce the Mo radioactive isotope of Mo sample target, make the present invention can produce the gamma ray of enough energy ⁇ , in order to prepare 99 Mo isotopes that meet the actual needs within the allowable time.

Abstract

一种强流电子直线加速器核素制备系统,其包括强流电子加速器模块、制靶打靶模块和核药提纯分离模块,所述强流电子加速器模块用于产生39.8MeV的高能电子束,所述高能电子束轰击在所述制靶打靶模块上,以产生大量轫致辐射的伽马射线γ和次级中子束,所述伽马射线γ和次级中子束轰击设置在所述核药提纯分离模块内的Mo样品靶,以产生 99Mo放射性同位素;本发明提供了能够生产制备 99Mo放射性同位素的整体方案,且该方案能够产生足够能量的伽马射线γ,以实现在允许时间内制备出满足实际需求的 99Mo同位素。

Description

强流电子直线加速器核素制备系统
本申请要求于2021年11月26日提交中国专利局、申请号为202111425763.7、发明名称为“强流电子直线加速器核素制备系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及核医学技术领域,尤其涉及一种强流电子直线加速器核素制备系统。
背景技术
核医学行业面临放射性核素供应短缺的现象愈发严峻,原因在于全球范围内的放射性核素依赖于极少数的研究用反应堆制备。这些研究用反应堆建堆时间久远、维护成本高、年产量低,并且面临废物处置难的安全性问题。除了已关闭的研究用反应堆外,多数计划于2025年前后关闭,将造成永久性减产,导致中游核医学企业原材料采购资源紧张且采购成本上升。国际上加拿大trumpy实验室和日本有相应的电子加速器驱动制备同位素的方案,但国内关于电子加速器驱动制备同位素的技术方案仍然是空白。
另外,现有技术只能提供小于等于10MeV的电子束,能量不够高,没有大于35MeV的强流电子直线加速器,能够用于放射性同位素的制备,且现有技术也无法解决利用加速器打靶制备 99Mo同位素的整套方案。
发明内容
本发明的目的是提供一种强流电子直线加速器核素制备系统,提供了能够生产制备 99Mo放射性同位素的整体方案,且该方案能够产生足够能量的伽马射线γ,以实现在允许时间内制备出满足实际需求的 99Mo同位素。
为了实现上有目的,本发明公开了一种强流电子直线加速器核素制备系统,其包括强流电子加速器模块、制靶打靶模块和核药提纯分离模块,所述强流电子加速器模块用于产生39.8MeV的高能电子束,所述高能电子束轰击在所述制靶打靶模块上,以产生大量轫致辐射的伽马射线γ和次级 中子束,所述伽马射线γ和次级中子束轰击设置在所述核药提纯分离模块内的Mo样品靶,以产生 99Mo放射性同位素。
与现有技术相比,本发明的强流电子加速器模块产生39.8MeV的高能电子束,以轰击在制靶打靶模块上,以产生大量轫致辐射的伽马射线γ和次级中子束,再使伽马射线γ和次级中子束轰击设置在核药提纯分离模块内的Mo样品靶,以产生Mo样品靶的Mo放射性同位素,使得本发明能够产生足够能量的伽马射线γ,以实现在允许时间内制备出满足实际需求的 99Mo同位素。
较佳地,所述Mo样品靶为高浓缩的 100Mo样品靶。
较佳地,所述伽马射线γ和次级中子束轰击所述 100Mo样品靶后,产生如下核反应:
100Mo+γ→ 99Mo+n。
具体地,所述伽马射线γ的阈值能量大于或等于9.1MeV。
较佳地,所述伽马射线γ和次级中子束轰击所述 100Mo样品靶后,产生如下核反应:
100Mo+γ→ 99mNb+p;
99mNb(T 1/2=15s)→ 99Mo+β。
较佳地,所述伽马射线γ和次级中子束轰击所述 100Mo样品靶后,产生如下核反应:
100Mo+γ→ 99mNb+p;
99mNb(T 1/2=12.6m)→ 99Mo+β。
较佳地,所述伽马射线γ和次级中子束轰击所述 100Mo样品靶后,产生如下核反应:
100Mo+n→ 99Mo+2n。
较佳地,所述制靶打靶模块包括转换靶,所述高能电子束轰击在所述转换靶上,所述转换靶为具有元素W的金属靶。
具体地,所述转换靶呈圆片状,所述转换靶的直径为1.5cm,厚度为5mm;所述Mo样品靶呈圆片状,所述Mo样品靶的直径为1cm,厚度为1.5mm。
附图说明
图1是本发明的强流电子直线加速器核素制备系统的结构示意图;
图2是多种金属靶的的性能参数对比图。
具体实施方式
为详细说明本发明的技术内容、构造特征、所实现目的及效果,以下结合实施方式并配合附图详予说明。
请参阅图1和图2所示,本实施例的强流电子直线加速器核素制备系统100,提供了能够生产制备 99Mo放射性同位素的整体方案,制备得到的 99Mo放射性同位素可输送至Mo-Tc发生器200,作为Mo-Tc发生器200的原材料使用,这里的Mo-Tc发生器200为核素发生器,用于将子体同位素从母体同位素中分离出来。该强流电子直线加速器核素制备系统100包括强流电子加速器模块10、制靶打靶模块20和核药提纯分离模块30,其中,强流电子加速器模块10用于产生39.8MeV的高能电子束,可以理解的是,强流电子加速器模块10产生的高能电子束为平均流强为39.8MeV的高能电子束。
高能电子束轰击在制靶打靶模块20上,以产生大量轫致辐射(bremsstrahlung)的伽马射线γ和次级中子束。这里的轫致辐射是指高速电子骤然减速产生的辐射,泛指带电粒子在碰撞(尤指它们之间的库仑散射)过程中发出的辐射。具体地,高能电子束轰击在制靶打靶模块20上,其轰击过程导致高能电子束速度骤减,以使高能电子束产生大量轫致辐射的伽马射线γ和次级中子束。
伽马射线γ和次级中子束轰击设置在核药提纯分离模块30内的Mo样品靶,以产生Mo样品靶的 99Mo放射性同位素。优选地,本实施例的Mo样品靶为高浓缩的 100Mo样品靶,以使伽马射线γ和次级中子束轰击 100Mo样品靶产生的核反应后,能够直接产生足量的 99Mo放射性同位素,以满足后续使用需求。
较佳地,伽马射线γ和次级中子束轰击 100Mo样品靶后,产生如下核反应:
100Mo+γ→ 99Mo+n,
其中,这里的n为中子。
具体地,伽马射线γ的阈值能量需要大于或等于9.1MeV,才能进行上述核反应。经实验测得,当伽马射线γ的阈值能量为14.5MeV时,上述核反应过程的核反应截面达到最大值,约为150mb。
值得注意的是,该核反应是本实施例获得 99Mo放射性同位素的主要方式,事实上,在伽马射线γ和次级中子束轰击 100Mo样品靶后,还会产生其他的能够生成 99Mo放射性同位素的核反应,下面对其余的核反应过程进行说明:
较佳地,伽马射线γ和次级中子束轰击 100Mo样品靶后,产生如下核反应:
100Mo+γ→ 99mNb+p;
99mNb(T 1/2=15s)→ 99Mo+β,
其中,这里的 99mNb为 99mNb放射性同位素,p为质子; 99mNb放射性同位素在经过半衰期T 1/2=15s后,生成 99Mo放射性同位素和β粒子。
较佳地,伽马射线γ和次级中子束轰击 100Mo样品靶后,产生如下核反应:
100Mo+γ→ 99mNb+p;
99mNb(T 1/2=12.6m)→ 99Mo+β,
其中,这里的 99mNb为 99mNb放射性同位素,p为质子; 99mNb放射性同位素在经过半衰期T 1/2=12.6m后,生成 99Mo放射性同位素和β粒子。
较佳地,伽马射线γ和次级中子束轰击 100Mo样品靶后,产生如下核反应:
100Mo+n→ 99Mo+2n,
其中,这里的n为中子。
由上述说明可知,伽马射线γ和次级中子束轰击 100Mo样品靶后,会产生多种类型的核反应,且上述核反应是同时进行的,本实施例制得的 99Mo放射性同位素为上述四个核反应的 99Mo放射性同位素的总和。
较佳地,制靶打靶模块20包括转换靶,高能电子束轰击在转换靶上,转换靶为具有元素W的金属靶。具体地,转换靶呈圆片状,转换靶的直径为1.5cm,厚度为5mm; 100Mo样品靶呈圆片状 100Mo样品靶的直径为1cm,厚度为1.5mm。经实验测得,经过对转换靶和Mo样品靶的尺寸进行上述优化后,能够保证伽马射线γ的最大转换效率,及 99Mo放射性同位素的最大转换效率。
事实上,在选择转换靶的成分时,最好选择高Z(高原子序数)的金属靶作为转换靶,当然,还需要考虑金属靶的热功率和散热问题,本实施例给出了多种金属靶的的性能参数对比。由图2可知,具有元素W的金属靶具有最高的熔点和第二高的导热系数,因此可以简化目标冷却系统的结构。此外,具有元素W的金属靶成本较低且便于本实施例的强流电子直线加速器核素制备系统100的维护。基于上述原因,选择具有元素W的金属靶作为转换靶,能够有效提升转化效率和降低系统的制造成本。
进一步地,核药提纯分离模块30包括打靶送药防护单元,该打靶送药防护单元具有辐射防护结构,该靶送药防护单元用于将 100Mo样品靶定时送到核药提纯分离模块30中的指定位置上,且打靶送药防护单元还用于将制得的 99Mo放射性同位素输送至后方经过物理化学的方法粉碎溶解成为MoO 3溶液再进入Mo-Tc发生器200。
下面给出适用于本实施例的强流电子直线加速器核素制备系统100的优化打靶方案:
采用直径为1cm、厚度为1.5mm的圆片状 100Mo样品靶,一片 100Mo样品靶的重量为0.25g,将20片 100Mo样品靶叠放在一起,并放入核药提纯分离模块30内。启用本强流电子直线加速器核素制备系统100连续打靶7天,在7天后,取出最靠近转换靶的一片或多片 100Mo样品靶作为产品送去制样,随后同时将后面的 100Mo样品靶推向转换靶,以补齐被拿走的 100Mo样品靶的空缺,再继续轰击。通过上述步骤实现连续不断的实验打 靶取靶自动化生产,以获得最优的 99Mo放射性同位素制备方案,经实验测得,本实施例的 99Mo放射性同位素的产量可达到0.064-0.081Ci/h/g/mA,完全能够满足现有技术的要求。
结合图1和图2,本发明的强流电子加速器模块10产生39.8MeV的高能电子束,以轰击在制靶打靶模块20上,以产生大量轫致辐射的伽马射线γ和次级中子束,再使伽马射线γ和次级中子束轰击设置在核药提纯分离模块30内的Mo样品靶,以产生Mo样品靶的Mo放射性同位素,使得本发明能够产生足够能量的伽马射线γ,以实现在允许时间内制备出满足实际需求的 99Mo同位素。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。

Claims (9)

  1. 一种强流电子直线加速器核素制备系统,其特征在于:包括强流电子加速器模块、制靶打靶模块和核药提纯分离模块,所述强流电子加速器模块用于产生39.8MeV的高能电子束,所述高能电子束轰击在所述制靶打靶模块上,以产生大量轫致辐射的伽马射线γ和次级中子束,所述伽马射线γ和次级中子束轰击设置在所述核药提纯分离模块内的Mo样品靶,以产生 99Mo放射性同位素。
  2. 如权利要求1所述的强流电子直线加速器核素制备系统,其特征在于:所述Mo样品靶为高浓缩的 100Mo样品靶。
  3. 如权利要求2所述的强流电子直线加速器核素制备系统,其特征在于:所述伽马射线γ和次级中子束轰击所述 100Mo样品靶后,产生如下核反应:
    100Mo+γ→ 99Mo+n。
  4. 如权利要求3所述的强流电子直线加速器核素制备系统,其特征在于:所述伽马射线γ的阈值能量大于或等于9.1MeV。
  5. 如权利要求2所述的强流电子直线加速器核素制备系统,其特征在于:所述伽马射线γ和次级中子束轰击所述 100Mo样品靶后,产生如下核反应:
    100Mo+γ→ 99mNb+p;
    99mNb(T 1/2=15s)→ 99Mo+β。
  6. 如权利要求2所述的强流电子直线加速器核素制备系统,其特征在于:所述伽马射线γ和次级中子束轰击所述 100Mo样品靶后,产生如下核反应:
    100Mo+γ→ 99mNb+p;
    99mNb(T 1/2=12.6m)→ 99Mo+β。
  7. 如权利要求2所述的强流电子直线加速器核素制备系统,其特征在于:所述伽马射线γ和次级中子束轰击所述 100Mo样品靶后,产生如下核反应:
    100Mo+n→ 99Mo+2n。
  8. 如权利要求1所述的强流电子直线加速器核素制备系统,其特征在于:所述制靶打靶模块包括转换靶,所述高能电子束轰击在所述转换靶上,所述转换靶为具有元素W的金属靶。
  9. 如权利要求8所述的强流电子直线加速器核素制备系统,其特征在于:所述转换靶呈圆片状,所述转换靶的直径为1.5cm,厚度为5mm;所述Mo样品靶呈圆片状,所述Mo样品靶的直径为1cm,厚度为1.5mm。
PCT/CN2021/143018 2021-11-26 2021-12-30 强流电子直线加速器核素制备系统 WO2023092810A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112021005300.0T DE112021005300T5 (de) 2021-11-26 2021-12-30 System zur Herstellung von Nukliden mit einem Hochstrom-Elektronen-Linearbeschleuniger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111425763.7 2021-11-26
CN202111425763.7A CN114121331B (zh) 2021-11-26 2021-11-26 强流电子直线加速器核素制备系统

Publications (1)

Publication Number Publication Date
WO2023092810A1 true WO2023092810A1 (zh) 2023-06-01

Family

ID=80370800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143018 WO2023092810A1 (zh) 2021-11-26 2021-12-30 强流电子直线加速器核素制备系统

Country Status (3)

Country Link
CN (1) CN114121331B (zh)
DE (1) DE112021005300T5 (zh)
WO (1) WO2023092810A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129049A1 (en) * 2009-08-18 2011-06-02 Schenter Robert E Very large enhancements of thermal neutron fluxes resulting in a very large enhancement of the production of molybdenum-99
US20110305308A1 (en) * 2010-06-10 2011-12-15 Fu-Min Su Advanced once-through processing for extracting molybdenum-99 from deuterium and low enriched uranium solutions
CN105453187A (zh) * 2013-05-23 2016-03-30 加拿大光源公司 使用电子束生产钼-99
CN110473645A (zh) * 2019-08-20 2019-11-19 西安迈斯拓扑科技有限公司 基于韧致辐射和光核反应双功能靶的99Mo生产方法及设备
CN111028973A (zh) * 2019-12-03 2020-04-17 成都米纳克企业管理咨询合伙企业(有限合伙) 一种基于电子加速器的二级辐照生产99Mo的系统及方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110706840B (zh) * 2019-10-18 2021-01-05 中国科学院合肥物质科学研究院 一种基于加速器驱动的99Mo次临界生产装置及方法
CN113470843A (zh) * 2021-08-02 2021-10-01 中国原子能科学研究院 生产放射性同位素的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110129049A1 (en) * 2009-08-18 2011-06-02 Schenter Robert E Very large enhancements of thermal neutron fluxes resulting in a very large enhancement of the production of molybdenum-99
US20110305308A1 (en) * 2010-06-10 2011-12-15 Fu-Min Su Advanced once-through processing for extracting molybdenum-99 from deuterium and low enriched uranium solutions
CN105453187A (zh) * 2013-05-23 2016-03-30 加拿大光源公司 使用电子束生产钼-99
CN110473645A (zh) * 2019-08-20 2019-11-19 西安迈斯拓扑科技有限公司 基于韧致辐射和光核反应双功能靶的99Mo生产方法及设备
CN111028973A (zh) * 2019-12-03 2020-04-17 成都米纳克企业管理咨询合伙企业(有限合伙) 一种基于电子加速器的二级辐照生产99Mo的系统及方法

Also Published As

Publication number Publication date
DE112021005300T5 (de) 2023-08-31
CN114121331A (zh) 2022-03-01
CN114121331B (zh) 2023-02-28

Similar Documents

Publication Publication Date Title
US5764715A (en) Method and apparatus for transmutation of atomic nuclei
US20090274258A1 (en) Compound isotope target assembly for production of medical and commercial isotopes by means of spectrum shaping alloys
Didyk et al. Phenomenological nuclear-reaction description in deuterium-saturated palladium and synthesized structure in dense deuterium gas under γ-quanta irradiation
US9202602B2 (en) Production of isotopes using high power proton beams
Tsechanski et al. Electron accelerator-based production of molybdenum-99: Bremsstrahlung and photoneutron generation from molybdenum vs. tungsten
US20110194662A1 (en) Accelerator-based method of producing isotopes
US20200176135A1 (en) Low temperature controllable nuclear fusion device and realization mode thereof
Wang et al. Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator
US20150332799A1 (en) Methods and apparatus for the production of isotopes
Danagulyan et al. Formation of medical radioisotopes 111 In, 117 m Sn, 124 Sb, and 177 Lu in photonuclear reactions
Zelinsky et al. NSC KIPT neutron source on the base of subcritical assembly driven with electron linear accelerator
Uno et al. Measurement of the neutron activation cross sections of 12C, 30Si, 47Ti, 48Ti, 52Cr, 59Co, and 58Ni between 15 and 40 MeV
Diamond et al. Actinium-225 production with an electron accelerator
Lobok et al. Laser-based photonuclear production of medical isotopes and nuclear waste transmutation
WO2023092810A1 (zh) 强流电子直线加速器核素制备系统
Feizi et al. Developing an Accelerator Driven System (ADS) based on electron accelerators and heavy water
US6252921B1 (en) Nuclear isomers as neutron and energy sources
Stichelbaut et al. Design of accelerator-based solutions to produce 99Mo using lowly-enriched uranium
WO2020077269A1 (en) Methods and apparatus for facilitating localized nuclear fusion reactions enhanced by electron screening
Ledingham et al. Laser-induced nuclear physics and applications
Feizi et al. Design and parameter optimization of a small-scale electron-based ADS for radioactive waste transmutation
Kalamara et al. Measurement of the 234U (n, f) cross section in the energy range between 14.8 and 17.8 MeV using Micromegas detectors
Demchenko et al. A neutron source on a basis of a subcritical assembly driven by a deuteron linac
LU102817B1 (en) A nuclear target, method for inducing a nuclear reaction and a device suitable for carrying out the method
Ledingham Laser induced nuclear physics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21965528

Country of ref document: EP

Kind code of ref document: A1